Science.gov

Sample records for activating adenylate cyclase

  1. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa).

    PubMed Central

    Carricarte, V C; Bianchini, G M; Muschietti, J P; Téllez-Iñón, M T; Perticari, A; Torres, N; Flawiá, M M

    1988-01-01

    An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105,000 g and shows in crude extracts an apparent Mr of about 84,000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase. PMID:3128270

  2. The Effects of Thrombin on Adenyl Cyclase Activity and a Membrane Protein from Human Platelets

    PubMed Central

    Brodie, G. N.; Baenziger, Nancy Lewis; Chase, Lewis R.; Majerus, Philip W.

    1972-01-01

    Washed human platelets were incubated with 0.1-1.0 U/ml human thrombin and the effects on adenyl cyclase activity and on a platelet membrane protein (designated thrombin-sensitive protein) were studied. Adenyl cyclase activity was decreased 70-90% when intact platelets were incubated with thrombin. The T½ for loss of adenyl cyclase activity was less than 15 sec at 1 U/ml thrombin. There was no decrease of adenyl cyclase activity when sonicated platelets or isolated membranes were incubated with these concentrations of thrombin. Loss of adenyl cyclase activity was relatively specific since the activities of other platelet membrane enzymes were unaffected by thrombin. Prior incubation of platelets with dibutyryl cyclic adenosine monophosphate (AMP), prostaglandin E1, or theophylline protected adenyl cyclase from inhibition by thrombin. Incubation of intact but not disrupted platelets with thrombin resulted in the release of thrombin-sensitive protein from the platelet membrane. The rapid release of this protein (T½ < 15 sec) at low concentrations of thrombin suggested that removal of thrombin-sensitive protein from the platelet membrane is an integral part of the platelet release reaction. This hypothesis is supported by the parallel effects of thrombin on adenyl cyclase activity and thrombin-sensitive protein release in the presence of dibutyryl cyclic AMP, prostaglandin E1, and theophylline at varying concentrations of thrombin. Images PMID:4331802

  3. Stimulation of hormone-responsive adenylate cyclase activity by a factor present in the cell cytosol.

    PubMed Central

    MacNeil, S; Crawford, A; Amirrasooli, H; Johnson, S; Pollock, A; Ollis, C; Tomlinson, S

    1980-01-01

    1. Homogenates of whole tissues were shown to contain both intracellular and extracellular factors that affected particulate adenylate cyclase activity in vitro. Factors present in the extracellular fluids produced an inhibition of basal, hormone- and fluoride-stimulated enzyme activity but factors present in the cell cytosol increased hormone-stimulated activity with relatively little effect on basal or fluoride-stimulated enzyme activity. 2. The existence of this cytosol factor or factors was investigated using freshly isolated human platelets, freshly isolated rat hepatocytes, and cultured cells derived from rat osteogenic sarcoma, rat calvaria, mouse melanoma, pig aortic endothelium, human articular cartilage chondrocytes and human bronchial carcinoma (BEN) cells. 3. The stimulation of the hormone response by the cytosol factor ranged from 60 to 890% depending on the tissue of origin of the adenylate cyclase. 4. In each case the behaviour of the factor was similar to the action of GTP on that particular adenylate cyclase preparation. 5. No evidence of tissue or species specificity was found, as cytosols stimulated adenylate cyclase from their own and unrelated tissues to the same degree. 6. In the human platelet, the inclusion of the cytosol in the assay of adenylate cyclase increased the rate of enzyme activity in response to stimulation by prostaglandin E1 without affecting the amount of prostaglandin E1 required for half-maximal stimulation or the characteristics of enzyme activation by prostaglandin E. PMID:7396869

  4. Alterations in adipocyte adenylate cyclase activity in morbidly obese and formerly morbidly obese humans.

    PubMed

    Martin, L F; Klim, C M; Vannucci, S J; Dixon, L B; Landis, J R; LaNoue, K F

    1990-08-01

    Studies examining animal models of genetic obesity have identified defects in adipocyte hormone-stimulated lipolysis that involve the adenylate cyclase transmembrane signaling system, specifically those components that decrease adenylate cyclase activity. To determine whether obese people demonstrate alterations in adenylate cyclase activity that could contribute to the maintenance of obesity by inhibiting lipolysis, we examined human adipocytes from patients who were lean, obese, or formerly obese. Fat samples were obtained from the lower abdomen of 14 women who were morbidly obese (obese group), from 10 women who were formerly morbidly obese and had lost weight after gastric stapling (postobese group), and from 10 similarly aged women of normal weight (controls). Adipocyte adenylate cyclase activity was determined under ligand-free (no stimulatory or inhibitory influences present), hormone-stimulated (isoproterenol, 10(-6) mmol/L), and maximal (cells stimulated with 10 mumol/L forskolin) conditions by measuring cyclic adenosine monophosphate (cAMP) levels by radioimmunoassay. The activity of adenylate cyclase was significantly different (p less than 0.01) in the three groups. Adipocytes from obese women had lower levels of cyclase activity under both ligand-free (5% vs 16% of maximal) and hormone-stimulated conditions (76% vs 100% of maximal) than adipocytes from normal women. Postobese women had levels of hormone-stimulated cAMP identical to those of normal women but still had abnormal ligand-free levels (under 5%). These results suggest the presence of an alteration in adipocyte adenylate cyclase regulation in morbidly obese women that is not entirely corrected when weight is lost after food intake is reduced by gastric stapling. This alteration in ligand-free cAMP activity may contribute to the development and maintenance of obesity. PMID:2166354

  5. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis

    SciTech Connect

    Verkman, A.S.; Ausiello, D.A.; Jung, C.Y.; Skorecki, K.L.

    1986-08-12

    Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn/sup 2 +/), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously (Verkman, A. S., Skorecki, K. L., and Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123) and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.

  6. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    SciTech Connect

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. Univ. of California, Los Angeles )

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  7. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure.

    PubMed

    Scarpace, P J; Baresi, L A; Morley, J E

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the beta-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the beta-adrenergic pathway, adenylate cyclase activity and beta-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. beta-Adrenergic receptors were identified in BAT using [125I]iodocyanopindolol. Binding sites had the characteristics of mixed beta 1- and beta 2-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in beta-adrenergic receptor density due to a loss of the beta 1-adrenergic subtype. This BAT beta-adrenergic receptor downregulation was tissue specific, since myocardial beta-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. In contrast, food deprivation did not alter BAT beta-adrenergic receptor density. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. The ratio of isoproterenol-stimulated to forskolin-stimulated adenylate cyclase activity decreased in the sucrose-fed and cold-exposed rats but not in the food-deprived rats. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of beta-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability. PMID:2827501

  8. Digitonin effects on photoreceptor adenylate cyclase.

    PubMed

    Bitensky, M W; Gorman, R E; Miller, W H

    1972-03-24

    Adenylate cyclase is described in a number of photoreceptor membranes. Vertebrate rod outer segments contain light-regulated cyclase, and light regulation is abolished by digitonin. Disruption of microvilli in cone and rhabdomphotoreceptors is also associated with loss of light regulation and retention of full enzymic activity. The data suggest that inhibitory constraint provides regulation in cyclase systems and that disruption of membrane structure uncouples catalytic and regulatory elements.

  9. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase.

    PubMed Central

    Eggerickx, D; Denef, J F; Labbe, O; Hayashi, Y; Refetoff, S; Vassart, G; Parmentier, M; Libert, F

    1995-01-01

    A human gene encoding an orphan G-protein-coupled receptor named ACCA (adenylate cyclase constitutive activator) was isolated from a genomic library using as a probe a DNA fragment obtained by low-stringency PCR. Human ACCA (hACCA) is a protein of 330 amino acids that exhibits all the structural hallmarks of the main family of G-protein-coupled receptors. Expression of hACCA resulted in a dramatic stimulation of adenylate cyclase, similar in amplitude to that obtained with other Gs-coupled receptors fully activated by their respective ligands. This stimulation was obtained in a large variety of stable cell lines derived from various organs, and originating from different mammalian species. hACCA was found to be the human homologue of a recently reported mouse orphan receptor (GPCR21). The mouse ACCA (mACCA) was therefore recloned by PCR, and expression of mACCA in Cos-7 cells demonstrated that the mouse receptor behaved similarly as a constitutive activator of adenylate cyclase. It is not known presently whether the stimulation of adenylate cyclase is the result of a true constitutive activity of the receptor or, alternatively, is the consequence of a permanent stimulation by a ubiquitous ligand. The tissue distribution of mACCA was determined by RNase protection assay. Abundant transcripts were found in the brain, whereas lower amounts were detected in testis, ovary and eye. Various hypotheses concerning the constitutive activity of ACCA and their potential biological significance are discussed. Images Figure 4 Figure 5 PMID:7639700

  10. Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide.

    PubMed

    Green, J P; Johnson, C L; Weinstein, H; Maayani, S

    1977-12-01

    D-Lysergic acid diethylamide and D-2-bromolysergic acid diethylamide are competitive antagonists of the histamine activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); E.C. 4.6.1.1] in broken cell preparations of the hippocampus and cortex of guinea pig brain. The adenylate cyclase is linked to the histamine H2-receptor. Both D-lysergic acid diethylamide and D-2-bromolysergic acid diethylamide show topological congruency with potent H2-antagonists. D-2-Bromolysergic acid diethylamide is 10 times more potent as an H2-antagonist than cimetidine, which has been the most potent H2-antagonist reported, and D-lysergic acid diethylamide is about equipotent to cimetidine. Blockade of H2-receptors could contribute to the behavioral effects of D-2-bromolysergic acid diethylamide and D-lysergic acid diethylamide.

  11. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  12. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  13. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride.

    PubMed Central

    Sternweis, P C; Gilman, A G

    1982-01-01

    Activation of the purified guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase by F- requires the presence of Mg2+ and another factor. This factor, which contaminates commercial preparations of various nucleotides and disposable glass test tubes, has been identified as Al3+. In the presence of 10 mM Mg2+ and 5 mM F-, AlCl3 causes activation of G/F with an apparent activation constant of approximately 1-5 muM. The requirement for Al3+ is highly specific; of 28 other metals tested, only Be2+ promoted activation of G/F by F-. PMID:6289322

  14. Effects of Ca++ and Prostaglandin E1 on Vasopressin Activation of Renal Adenyl Cyclase

    PubMed Central

    Marumo, Fumiaki; Edelman, Isidore S.

    1971-01-01

    Adenyl cyclase activity was assayed in crude homogenates of the renal cortex, medulla, and papilla of the golden hamster. The specific activity (moles C-AMP/unit of time per mg protein of tissue) of the enzyme under basal conditions, was greatest in papilla, somewhat lower in medulla, and least in cortex. On an absolute scale, the sensitivity to vasopressin was greater in the medullary and papillary than in the cortical homogenates. In addition, at concentrations of 0.1-1.0 mm, CaCl2 inhibited the enzyme in the order papilla > medulla > cortex. These results imply the existence of distinct differences in the composition of the adenyl cyclase-receptor complex in various parts of the kidney. We proposed that Ca++ inhibits the core enzyme directly since at the minimally inhibitory concentration (0.1 mm), CaCl2 reduced to an equivalent extent (a) basal activity, (b) the response to graded doses of vasopressin (0.5 to 50.0 mU/ml) and (c) the response to maximal stimulatory concentrations of NaF (10 mm). Prostaglandin E1 (PGE1 = 10−7m) had no effect on either basal adenyl-cyclase activity or the response to 10 mm NaF in medullary and papillary homogenates. 7-Oxa-13-prostynoic acid (10−4m) similarly had no effect under basal conditions or on stimulation with NaF in medullary homogenates. Both fatty acids, however, inhibited the enzymic response to vasopressin, particularly at low concentrations of the peptide. The straight-chain fatty acid, 11-eicosanoic acid (10−7m), was inactive on basal activity or on the response to vasopressin. The possibility that PGE1 modifies the coupling mechanism between the core enzyme and the hormone-specific receptor is discussed. PMID:4329002

  15. Isolated neuronal growth cones from developing rat forebrain possess adenylate cyclase activity which can be augmented by various receptor agonists.

    PubMed

    Lockerbie, R O; Hervé, D; Blanc, G; Tassin, J P; Glowinski, J

    1988-01-01

    Isolated neuronal growth cones from neonatal rat forebrain were found to contain a high specific activity of adenylate cyclase (61 pmol cyclic AMP/min/mg protein) compared to the pelleted starting homogenate (5 pmol cyclic AMP/min/mg protein). Forskolin at 10(-4) M increased adenylate cyclase activity in both the pelleted homogenate and growth cone fraction by 70 and 217 pmol cyclic AMP/min/mg protein, respectively, over basal levels. The incremental effect of forskolin was 3-fold greater in the growth cone fraction than in the pelleted homogenate. However, relative to basal levels in each of the two fractions, forskolin increased adenylate cyclase activity in the growth cone fraction by only approx. 5-fold compared to 15-fold in the pelleted homogenate. Dopamine (10(-4) M), vasoactive intestinal polypeptide (10(-6) M) and isoproterenol (10(-5) M) also augmented adenylate cyclase activity in the two fractions. In the growth cone fraction, dopamine and vasoactive intestinal polypeptide produced a stimulation over basal levels by approx. 20 pmol cyclic AMP/min/mg protein while isoproterenol produced a stimulation of approx. 10 pmol cAMP/min/mg protein. The incremental effects of these receptor agonists in the growth cone fraction are approx. 5-fold greater than in the pelleted homogenate. The dopamine-sensitive adenylate cyclase activity in the growth cone fraction could be blocked by the compound SCH23390, a selective D1 receptor antagonist. At saturating concentrations, all combinations of dopamine, vasoactive intestinal polypeptide and isoproterenol were found to be completely additive on adenylate cyclase activity in the growth cone fraction.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Adenylate cyclase activity in fish gills in relation to salt adaptation

    SciTech Connect

    Guibbolini, M.E.; Lahlou, B.

    1987-07-06

    The influence of salt adaptation on specific adenylate cyclase activity (measured by conversion of (..cap alpha..-/sup 32/P) - ATP into (..cap alpha..-/sup 32/P) - cAMP) was investigated in gill plasma membranes of rainbow trout (Salmo gairdneri) adapted to various salinities (deionized water, DW; fresh water, FW; 3/4 sea water, 3/4 SW; sea water, SW) and in sea water adapted- mullet (Mugil sp.). Basal activity declined by a factor of 2 in trout with increasing external salinity (pmoles cAMP/mg protein/10 min: 530 in DW, 440 in FW, 340 in 3/4 SW; 250 in SW) and was very low in SW adapted-mullet: 35. The Km for ATP was similar (0.5 mM) in both FW adapted- and SW adapted- trout in either the absence (basal activity) or in the presence of stimulating agents (isoproterenol; NaF) while the Vm varied. Analysis of stimulation ratios with respect to basal levels of the enzyme showed that hormones and pharmacological substances (isoproterenol, NaF) display a greater potency in high salt than in low salt adapted- fish gills. In contrast, salt adaptation did not have any effect on the regulation of adenylate cyclase by PGE/sub 1/. These results are interpreted in relation to the general process of osmoregulation. 27 references, 6 figures.

  17. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  18. Reduced basal and stimulated (isoprenaline, Gpp(NH)p, forskolin) adenylate cyclase activity in Alzheimer's disease correlated with histopathological changes.

    PubMed

    Ohm, T G; Bohl, J; Lemmer, B

    1991-02-01

    Cyclic adenosine monophosphate (cAMP) is an adenylate cyclase borne second messenger involved in basic metabolic events. The beta-adrenoceptor sensitive adenylate cyclase was studied in post-mortem hippocampi of controls and Alzheimer patients. Virtually identical subsets of each hippocampus homogenate were stimulated by 100 mumol isoprenaline, Gpp(NH)p and forskolin, respectively, in presence of an ATP-regenerating system. The determination of cAMP formed was carried out by means of a radioassay. The observed significant 50% reduction in basal as well as in stimulated adenylate cyclase activity in Alzheimer's disease is negatively correlated with semiquantitative evaluations of amyloid plaques (P less than 0.05) but not with neuritic plaques, neurofibrillary tangles or neuropil threads. This reduction in enzyme activity is obviously not due to simple cell loss alone. It is likely that the crucial point of the observed functional disturbance is at the level of the catalytic unit of the adenylate cyclase, since the same degree of reduction is maintained at all steps of the signal cascade. PMID:2054615

  19. Tachyphylaxis to PACAP-27 after inhibition of NO synthesis: a loss of adenylate cyclase activation

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The vasodilator effects of pituitary adenylate cyclase activating polypeptide (PACAP-27) are subject to tachyphylaxis in rats treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). This study examined whether this tachyphylaxis is due to the loss of vasodilator potency of cAMP generated by activation of the G(s) protein-coupled PACAP receptors. Five successive treatments with PACAP-27 (2 nmol/kg iv) produced pronounced vasodilator responses in saline-treated rats that were not subject to tachyphylaxis. The first injection of PACAP-27 (2 nmol/kg iv) in L-NAME (50 micromol/kg iv)-treated rats produced vasodilator responses of similar magnitude to those in saline-treated rats, whereas four subsequent injections produced progressively and markedly smaller responses. The hemodynamic effects of the membrane-permeable cAMP analog 8-(4-chlorophenylthiol)-cAMP (8-CPT-cAMP; 5-15 micromol/kg iv) were similar in L-NAME-treated rats and in L-NAME-treated rats that had received the five injections of PACAP-27. In addition, five injections of 8-CPT-cAMP (10 micromol/kg iv) produced pronounced vasodilator responses in saline- and L-NAME-treated rats that were not subject to the development of tachyphylaxis. These results suggest that a loss of biological potency of cAMP is not responsible for tachyphylaxis to PACAP-27 in L-NAME-treated rats. This tachyphylaxis may be due to the inability of the G(s) protein-coupled PACAP receptor to activate adenylate cyclase.

  20. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase.

    PubMed Central

    Roelofs, J; Snippe, H; Kleineidam, R G; Van Haastert, P J

    2001-01-01

    The core of adenylate and guanylate cyclases is formed by an intramolecular or intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a heterodimer and are activated by G-proteins. In contrast, membrane-bound guanylate cyclases have only one transmembrane spanning region and one cyclase domain, and are activated by extracellular ligands to form a homodimer. In the cellular slime mould, Dictyostelium discoideum, membrane-bound guanylate cyclase activity is induced after cAMP stimulation; a G-protein-coupled cAMP receptor and G-proteins are essential for this activation. We have cloned a Dictyostelium gene, DdGCA, encoding a protein with 12 transmembrane spanning regions and two cyclase domains. Sequence alignment demonstrates that the two cyclase domains are transposed, relative to these domains in adenylate cyclases. DdGCA expressed in Dictyostelium exhibits high guanylate cyclase activity and no detectable adenylate cyclase activity. Deletion of the gene indicates that DdGCA is not essential for chemotaxis or osmo-regulation. The knock-out strain still exhibits substantial guanylate cyclase activity, demonstrating that Dictyostelium contains at least one other guanylate cyclase. PMID:11237875

  1. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    PubMed Central

    Tlili, Mounira; Rouatbi, Sonia; Sriha, Badreddine; Ben Rhouma, Khémais; Sakly, Mohsen; Vaudry, David; Wurtz, Olivier; Tebourbi, Olfa

    2015-01-01

    The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders. PMID:26199679

  2. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    SciTech Connect

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.

  3. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating

    PubMed Central

    Hurley, Matthew M.; Maunze, Brian; Block, Megan E.; Frenkel, Mogen M.; Reilly, Michael J.; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A.; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive.

  4. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    PubMed Central

    Hattori, Satoko; Takao, Keizo; Tanda, Koichi; Toyama, Keiko; Shintani, Norihito; Baba, Akemichi; Hashimoto, Hitoshi; Miyakawa, Tsuyoshi

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory. PMID:23060763

  5. Hemodynamic actions of systemically injected pituitary adenylate cyclase activating polypeptide-27 in the rat

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aims of this study were (1) to characterize the hemodynamic mechanisms underlying the hypotensive effects of pituitary adenylate cyclase activating polypeptide-27 (PACAP-27 0.1-2.0 nmol/kg, i.v.) in pentobarbital-anesthetized rats, and (2) to determine the roles of the autonomic nervous system, adrenal catecholamines and endothelium-derived nitric oxide (NO) in the expression of PACAP-27-mediated effects on hemodynamic function. PACAP-27 produced dose-dependent decreases in mean arterial blood pressure and hindquarter and mesenteric vascular resistances in saline-treated rats. PACAP-27 also produced pronounced falls in mean arterial blood pressure in rats treated with the ganglion blocker, chlorisondamine (5 mg/kg, i.v.). The hypotensive and vasodilator actions of PACAP-27 were not attenuated by the beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.), or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME 50 micromol/kg, i.v.). PACAP-27 produced dose-dependent increases in heart rate whereas the hypotensive response produced by the nitrovasodilator, sodium nitroprusside (10 microg/kg, i.v.), was associated with a minimal tachycardia. The PACAP-27-induced tachycardia was unaffected by chlorisondamine, but was virtually abolished by propranolol. These results suggest that the vasodilator effects of PACAP-27 are due to actions in the microcirculation rather than to the release of adrenal catecholamines and that this vasodilation may not involve the release of endothelium-derived NO. These results also suggest that PACAP-27 produces tachycardia by directly releasing norepinephrine from cardiac sympathetic nerve terminals rather than by direct or baroreceptor reflex-mediated increases in sympathetic nerve activity.

  6. Pituitary Adenylate Cyclase-Activating Polypeptide induces a depressive-like phenotype in rats

    PubMed Central

    Seiglie, Mariel P.; Smith, Karen L.; Blasio, Angelo; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Major Depressive Disorder (MDD) is a chronic, life-threatening psychiatric condition characterized by depressed mood, psychomotor alterations, and a markedly diminished interest or pleasure in most activities, known as anhedonia. Available pharmacotherapies have limited success and the need for new strategies is clear. Recent studies attribute a major role to the pituitary adenylate cyclase-activating polypeptide (PACAP) system in mediating the response to stress. PACAP knockout mice display profound alterations in depressive-like behaviors and genetic association studies have demonstrated that genetic variants of the PACAP gene are associated with MDD. However, the effects of PACAP on depressive-like behaviors in rodents have not yet been systematically examined. The present study investigated the effects of central administration of PACAP in rats on depressive-like behaviors, using well-established animal models that represent some of the endophenotypes of depression. We used intracranial self-stimulation (ICSS) to assess the brain reward function, saccharin preference test to assess anhedonia, social interaction to assess social withdrawal, and forced swim test (FST) to assess behavioral despair. PACAP raised the current threshold for ICSS, elevation blocked by the PACAP antagonist PACAP(6-38). PACAP reduced the preference for a sweet saccharin solution, and reduced the time the rats spent interacting with a novel animal. Interestingly, PACAP administration did not affect immobility in the FST. Our results demonstrate a role for the central PACAP/PAC1R system in the regulation of depressive-like behaviors, and suggest that hyperactivity of the PACAP/PAC1R system may contribute to the pathophysiology of depression, particularly the associated anhedonic symptomatology and social dysfunction. PMID:26264905

  7. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating.

    PubMed

    Hurley, Matthew M; Maunze, Brian; Block, Megan E; Frenkel, Mogen M; Reilly, Michael J; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  8. Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating

    PubMed Central

    Hurley, Matthew M.; Maunze, Brian; Block, Megan E.; Frenkel, Mogen M.; Reilly, Michael J.; Kim, Eugene; Chen, Yao; Li, Yan; Baker, David A.; Liu, Qing-Song; Choi, SuJean

    2016-01-01

    While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive. PMID:27597817

  9. Pituitary adenylate cyclase-activating polypeptide prevents contrast-induced nephropathy in a novel mouse model

    PubMed Central

    Khan, Altaf-M; Maderdrut, Jerome L; Li, Min; Toliver, Herman L; Coy, David H; Simon, Eric E; Batuman, Vecihi

    2013-01-01

    We determined whether pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) prevents contrast-induced nephropathy using human renal proximal tubule epithelial (HK-2) cells and homozygous endothelial nitric oxide synthase-deficient (eNOS−/−) mice as a novel in vivo model. Cultured HK-2 cells were pretreated with 10−9–10−6 mol/L PACAP or vasoactive intestinal peptide (VIP) for 1 h, and then exposed to ionic (Urografin) or nonionic (iohexol) contrast media at 50 mg iodine/mL for 24 h. Male eNOS−/− mice received Urografin (1.85 g iodine/kg) intravenously after water deprivation for 24 h, and PACAP38 (10 μg) intraperitoneally 1 h before and 12 h after Urografin injection. Urografin and iohexol increased lactate dehydrogenase and kidney injury molecule 1 in the culture medium, induced apoptosis, and inhibited cell proliferation in HK-2 cell cultures. PACAP38 and VIP reduced these changes in a dose-dependent manner. PACAP38 was more potent than VIP. In eNOS−/− mice, Urografin raised serum creatinine and cystatin C levels, caused renal tubule damage, induced apoptosis, and promoted neutrophil influx. Urografin also increased kidney protein levels of proinflammatory cytokines, and kidney mRNA levels of proinflammatory cytokines, kidney injury biomarkers, and enzymes responsible for reactive oxygen and nitrogen species. PACAP38 significantly reduced these Urografin-induced changes in eNOS−/− mice. This study shows that both Urografin and iohexol are toxic to HK-2 cells, but Urografin is more toxic than iohexol. Urografin causes acute kidney injury in eNOS−/− mice. PACAP38 protects HK-2 cells and mouse kidneys from contrast media and is a potential therapeutic agent for contrast-induced nephropathy. PMID:24400164

  10. Oxymetazoline inhibits adenylate cyclase by activation of serotonin-1 receptors in the OK cell, an established renal epithelial cell line.

    PubMed

    Murphy, T J; Bylund, D B

    1988-07-01

    The nonselective alpha-adrenergic agonist oxymetazoline inhibits parathyroid hormone (PTH)-stimulated cAMP production in intact OK cells, an epithelial cell line derived from an American opossum kidney. This inhibition, however, is not blocked by alpha 2-adrenergic receptor antagonists. After excluding several alternate hypotheses to explain this anomalous activity of oxymetazoline, we hypothesized that oxymetazoline activates a receptor in OK cells that is negatively coupled to adenylate cyclase but distinct from the alpha 2-adrenergic receptor. Prior exposure of OK cells to pertussis toxin blocks the inhibitory response to oxymetazoline, suggesting involvement of a guanine nucleotide-binding regulatory protein. Screening various compounds for attenuation of PTH-stimulated adenylate cyclase showed that serotonin (5HT) is a potent and fully efficacious agonist. Desensitization of alpha 2-receptor-mediated inhibition of cAMP production by epinephrine did not alter the response to either 5HT or oxymetazoline, indicating that these compounds do not produce their effect by activating alpha 2-adrenergic receptors. The 5HT1 receptor-selective antagonist methiothepin, but not ketanserin (5HT2-selective) or ICS-205,930 (5HT3-selective), blocked the response to both 5HT and oxymetazoline. The potency of methiothepin for antagonizing oxymetazoline-induced inhibition of PTH-stimulated cAMP production was not significantly different from its potency for the 5HT-induced effect. These data indicate that OK cells express a 5HT1 receptor that is negatively coupled to adenylate cyclase and that oxymetazoline is an agonist at these receptors.

  11. Adrenalectomy mediated alterations in adrenergic activation of adenylate cyclase in rat liver

    SciTech Connect

    El-Refai, M.; Chan, T.

    1986-05-01

    Adrenalectomy caused a large increase in the number of ..beta..-adrenergic binding sites on liver plasma membranes as measured by /sup 125/I-iodocyanopindolol (22 and 102 fmol/mg protein for control and adrenalectomized (ADX) rats). Concomitantly an increase in the number of binding sites for /sup 3/H-yohimbine was also observed (104 and 175 fmol/mg protein for control and adx membranes). Epinephrine-stimulated increase in cyclic AMP accumulation in isolated hepatocytes were greater in cells from ADX rats. This increase in ..beta..-adrenergic mediated action was much less than what may be expected as a result of the increase in the ..beta..-adrenergic binding in ADX membranes. In addition phenoxybenzamine (10 ..mu..M) further augmented this action of epinephrine in both control and ADX cells. To test the hypothesis that the increase in the number of the inhibitory ..cap alpha../sub 2/-adrenergic receptors in adrenalectomy is responsible for the muted ..beta..-adrenergic response, the authors injected rats with pertussis toxin (PT). This treatment may cause the in vivo ribosylation of the inhibitory binding protein (Ni). Adenylate cyclase (AC) activity in liver plasma membranes prepared from treated and untreated animals was measured. In contrast with control rats, treatment of ADX rats with PT resulted in a significant increase in the basal activity of AC (5.5 and 7.7 pmol/mg protein/min for untreated and treated rats respectively). Isoproterenol (10 ..mu..M), caused AC activity to increase to 6.5 and 8.4 pmol/mg protein/min for membranes obtained from ADX untreated and ADX treated rats respectively. The ..cap alpha..-adrenergic antagonists had no significant effect on the ..beta..-adrenergic-mediated activation of AC in liver plasma membranes from PT treated control and ADX rats. The authors conclude that the ..beta..-adrenergic activation of AC is attenuated by Ni protein both directly and as a result of activation of ..cap alpha..-adrenergic receptors.

  12. Adenylate cyclases involvement in pathogenicity, a minireview.

    PubMed

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.

  13. Diuretics and the renal adenylate cyclase system

    PubMed Central

    Dawborn, J.K.; Macneil, S.; Martin, T.J.

    1977-01-01

    1 The relationship between the diuretic effectiveness and the effect on the renal adenylate cyclase of three diuretics, acetazolamide, frusemide and ethacrynic acid, was examined. The hypothesis that acetazolamide and parathyroid hormone (PTH), inhibit renal carbonic anhydrase by a cyclic adenosine 3′,5′-monophosphate (cyclic AMP)-dependent mechanism was also tested. 2 In vitro, acetazolamide, frusemide and ethacrynic acid at high concentrations (10-3M) all produced some inhibition of basal and stimulated rat kidney plasma membrane adenylate cyclase. The effect of acetazolamide was much less than that of frusemide and ethacrynic acid. These plasma membrane effects were reproduced in studies of cyclic AMP formation in isolated kidney tubules of rats. 3 Intravenous injections of acetazolamide did not change the total cyclic AMP content of the kidneys of rats killed by microwave irradiation. 4 Acetazolamide produced a diuresis in the rat and a slight inhibition of the antidiuretic effect of Pitressin. Frusemide produced a diuresis and greatly reduced the antidiuretic response to Pitressin. Ethacrynic acid was ineffective as a diuretic in the rat and actually enhanced the antidiuretic response to Pitressin. 5 In investigating the possible influence of diuretics and PTH on the activity and state of phosphorylation of carbonic anhydrase it was found that: there was no correlation between the ability of diuretics to inhibit carbonic anhydrase activity and to inhibit carbonic anhydrase phosphorylation; neither PTH nor cyclic AMP (in the presence of adenosine triphosphate, Mg2+, K+ and incubation at 37°C) inhibited rat cortex homogenate carbonic anhydrase activity. 6 It seems unlikely that any of the tested diuretics exerts its pharmacological effect by means of changes in kidney cyclic AMP metabolism. PMID:202362

  14. Pituitary adenylate cyclase-activating polypeptide-like compounds could modulate the activity of coelomocytes in the earthworm.

    PubMed

    Somogyi, Ildiko; Boros, Akos; Engelmann, Peter; Varhalmi, Eszter; Nemeth, Jozsef; Lubics, Andrea; Tamas, Andrea; Kiss, Peter; Reglodi, Dora; Pollak, Edit; Molnar, Laszlo

    2009-04-01

    By means of radioimmunoassay, we studied the concentration of pituitary adenylate cyclase-activating polypeptide (PACAP)-like proteins in intact and regenerating earthworms. Transection of animals increased the concentration of PACAP-like compounds in coelomocytes, and a decreasing rostrocaudal gradient was detected in the regenerating animals. Western blot analysis revealed a range of PAC1-receptor proteins with molecular weights from 40 to 80 kDa. Electron microscopic immunocytochemistry showed that PAC1 receptors were located on distinct sets of coelomocytes (mainly on amebocytes and on some granulocytes). Based on our results we hypothesize a link between PACAP and coelomocytes, suggesting that PACAP modulates the function of amebocytes and certain granulocytes that play a role in tissue remodeling of regenerating earthworms. PMID:19456404

  15. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies

    PubMed Central

    May, Victor

    2014-01-01

    The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress- and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis (BNST) in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala (CeA) may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with post-traumatic stress disorder (PTSD) in humans. PMID:25636177

  16. Pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamic-pituitary-gonadal axis: a review of the literature.

    PubMed

    Thomas, Robin L; Crawford, Natalie M; Grafer, Constance M; Halvorson, Lisa M

    2013-08-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP), an ancient molecule highly preserved across species, has been classified as a member of the secretin/glucagon/vasoactive intestinal peptide/growth hormone-releasing hormone polypeptide family. PACAP was first identified as a hypothalamic-releasing factor; nevertheless, it has subsequently been determined to have widespread distribution and function, including expression in the pituitary, gonads, placenta, central and peripheral nervous systems, intestinal tract, and adrenal gland. Consistent with its widespread distribution, PACAP has been found to exert pleiotropic effects. Although first described over 20 years ago, only relatively recently has substantial attention turned to evaluating PACAP's role in the reproductive system. This review will focus on our current understanding of the expression pattern and function of PACAP in the hypothalamic-pituitary-gonadal axis.

  17. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    PubMed Central

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806

  18. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP)/PAC1HOP1 Receptor Activation Coordinates Multiple Neurotrophic Signaling Pathways

    PubMed Central

    May, Victor; Lutz, Eve; MacKenzie, Christopher; Schutz, Kristin C.; Dozark, Kate; Braas, Karen M.

    2010-01-01

    MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways. PMID:20093365

  19. Protein kinase C sensitizes olfactory adenylate cyclase

    PubMed Central

    1993-01-01

    Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory

  20. Restricting mobility of Gsalpha relative to the beta2-adrenoceptor enhances adenylate cyclase activity by reducing Gsalpha GTPase activity.

    PubMed Central

    Wenzel-Seifert, K; Lee, T W; Seifert, R; Kobilka, B K

    1998-01-01

    The beta2-adrenoceptor (beta2AR) activates the G-protein Gsalpha to stimulate adenylate cyclase (AC). Fusion of the beta2AR C-terminus to the N-terminus of Gsalpha (producing beta2ARGsalpha) markedly increases the efficiency of receptor/G-protein coupling compared with the non-fused state. This increase in coupling efficiency can be attributed to the physical proximity of receptor and G-protein. To determine the optimal length for the tether between receptor and G-protein we constructed fusion proteins from which 26 [beta2AR(Delta26)Gsalpha] or 70 [beta2AR(Delta70)Gsalpha] residues of the beta2AR C-terminus had been deleted and compared the properties of these fusion proteins with the previously described beta2ARGsalpha. Compared with beta2ARGsalpha, basal and agonist-stimulated GTP hydrolysis was markedly decreased in beta2AR(Delta70)Gsalpha, whereas the effect of the deletion on binding of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) was relatively small. Surprisingly, deletions did not alter the efficiency of coupling of the beta2AR to Gsalpha as assessed by GTP[S]-sensitive high-affinity agonist binding. Moreover, basal and ligand-regulated AC activities in membranes expressing beta2AR(Delta70)Gsalpha and beta2AR(Delta26)Gsalpha were higher than in membranes expressing beta2ARGsalpha. These findings suggest that restricting the mobility of Gsalpha relative to the beta2AR results in a decrease in G-protein inactivation by GTP hydrolysis and thereby enhanced activation of AC. PMID:9729456

  1. Engineering adenylate cyclases regulated by near-infrared window light

    PubMed Central

    Ryu, Min-Hyung; Kang, In-Hye; Nelson, Mathew D.; Jensen, Tricia M.; Lyuksyutova, Anna I.; Siltberg-Liberles, Jessica; Raizen, David M.; Gomelsky, Mark

    2014-01-01

    Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset. PMID:24982160

  2. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  3. Inhibition of heat shock protein 90 attenuates adenylate cyclase sensitization after chronic morphine treatment.

    PubMed

    Koshimizu, Taka-aki; Tsuchiya, Hiroyoshi; Tsuda, Hidetoshi; Fujiwara, Yoko; Shibata, Katsushi; Hirasawa, Akira; Tsujimoto, Gozoh; Fujimura, Akio

    2010-02-19

    Cellular adaptations to chronic opioid treatment result in enhanced responsiveness of adenylate cyclase and an increase in forskolin- or agonist-stimulated cAMP production. It is, however, not known whether chaperone molecules such as heat shock proteins contribute to this adenylate cyclase sensitization. Here, we report that treatment of cells with geldanamycin, an inhibitor of heat shock protein 90 (Hsp90), led to effective attenuation of morphine-induced adenylate cyclase sensitization. In SK-N-SH human neuroblastoma cells, morphine significantly increased RNA transcript and protein levels of type I adenylate cyclase, leading to sensitization. Whole-genome tiling array analysis revealed that cAMP response element-binding protein, an important mediator for cellular adaptation to morphine, associated with the proximal promoter of Hsp90AB1 not only in SK-N-SH cells but also in rat PC12 and human embryonic kidney cells. Hsp90AB1 transcript and protein levels increased significantly during morphine treatment, and co-application of geldanamycin (0.1-10 nM) effectively suppressed the increase in forskolin-activated adenylate cyclase activation by 56%. Type I adenylate cyclase, but not Hsp90AB1, underwent significant degradation during geldanamycin treatment. These results indicate that Hsp90 is a new pharmacological target for the suppression of adenylate cyclase sensitization induced by chronic morphine treatment.

  4. The effect of pituitary adenylate cyclase-activating polypeptide on elevated plus maze behavior and hypothermia induced by morphine withdrawal.

    PubMed

    Lipták, Nándor; Dochnal, Roberta; Babits, Anikó; Csabafi, Krisztina; Szakács, Júlia; Tóth, Gábor; Szabó, Gyula

    2012-02-01

    The aim of the present investigation was to study the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on morphine withdrawal-induced behavioral changes and hypothermia in male CFLP mice. Elevated plus maze (EPM) and jump tests were used to assess naloxone-precipitated morphine withdrawal-induced behavior responses. Different doses of subcutaneous (s.c.) naloxone, (0.1 and 0.2 mg/kg, respectively) were used to precipitate the emotional and psychical aspects of withdrawal on EPM and 1 mg/kg (s.c.) was used to induce the somatic withdrawal signs such as jumping, and the changes in body temperature. In our EPM studies, naloxone proved to be anxiolytic in mice treated with morphine. Chronic intracerebroventricular (i.c.v.) administration of PACAP alone had no significant effect on withdrawal-induced anxiolysis and total activity at doses of 500 ng and 1 μg. At dose of 500 ng, however, PACAP significantly counteracted the reduced motor activity in the EPM test in mice treated with morphine and diminished the hypothermia and shortened jump latency induced by naloxone in mice treated with morphine. These findings indicate that anxiolytic-like behavior may be mediated via a PACAP-involved pathway and PACAP may play an important role in chronic morphine withdrawal-induced hypothermia as well.

  5. Corticotropin-releasing factor binding to peripheral tissue and activation of the adenylate cyclase-adenosine 3',5'-monophosphate system

    SciTech Connect

    Dave, J.R.; Eiden, L.E.; Eskay, R.L.

    1985-06-01

    Specific binding sites for rat corticotropin-releasing factor (rCRF) are present in rat adrenal medulla, ventral prostate, spleen, liver, kidney, and testis and bovine chromaffin cells in culture. Maximal binding of (/sup 125/I)rCRF occurred within 25 min at 4 C and was saturable. Scatchard analysis of rCRF binding to rat adrenal membranes and bovine chromaffin cells revealed the existence of two classes of binding sites. One class had a relatively higher apparent affinity and lower number of binding sites, whereas the other class had a relatively lower affinity and higher number of binding sites. CRF induced a dose-related increase in rat adrenal membrane adenylate cyclase activity and cAMP levels in bovine chromaffin cells. Nanomolar concentrations of rCRF maximally stimulated adenylate cyclase activity in rat adrenal membranes and maximally increased cAMP levels in bovine chromaffin cells to 86% and 130% above control values, respectively. The demonstration of specific CRF-binding sites in a variety of peripheral tissues and the finding that activation of specific CRF-binding sites in adrenal tissue stimulates the adenylate cyclase-cAMP system suggest that CRF may have an important regulatory role in various peripheral tissues.

  6. Effects of the adenylate cyclase activator forskolin and its inactive derivative 1,9-dideoxyforskolin on insect cytochrome P-450 dependent steroid hydroxylase activity.

    PubMed

    Keogh, D P; Mitchell, M J; Crooks, J R; Smith, S L

    1992-01-15

    The adenylate cyclase activator forskolin and its pharmacologically inactive derivative 1,9-dideoxyforskolin were found to inhibit in a dose-dependent fashion the ecdysone 20-monooxygenase activity associated with wandering stage larvae of Drosophila melanogaster and fat body and midgut from last instar larvae of the tobacco hornworm, Manduca sexta. The concentrations of these labdane diterpenes required to elicit a 50% inhibition of the cytochrome P-450 dependent steroid hydroxylase activity in the insect tissues ranged from approximately 5 x 10(-6) to 5 x 10(-4) M.

  7. The biological role of pituitary adenylate cyclase-activating polypeptide (PACAP) in growth and feeding behavior in juvenile fish.

    PubMed

    Lugo, Juana Maria; Oliva, Aymé; Morales, Antonio; Reyes, Osvaldo; Garay, Hilda Elisa; Herrera, Fidel; Cabrales, Ania; Pérez, Ever; Estrada, Mario Pablo

    2010-11-01

    To date, many technologies have been developed to increase efficiency in aquaculture, but very few successful biotechnology molecules have arrived on the market. In this context, marine biotechnology has an opportunity to develop products to improve the output of fish in aquaculture. Published in vivo studies on the action of the pituitary adenylate cyclase-activating polypeptide (PACAP) in fish are scarce. Recently, our group, for the first time, demonstrated the biological role of this neuropeptide administrated by immersion baths in the growth and development of larval fish. In this work, we have evaluated the effects of recombinant Clarias gariepinus PACAP administration by intraperitoneal injection on growth performance and feeding behavior in juvenile fish. Our results showed the physiological role of this peptide for growth control in fish, including the juvenile stage, and confirm that its biological functions are well conserved in fish, since C. gariepinus PACAP stimulated growth in juvenile tilapia Oreochromis niloticus. In addition, we have observed that the growth-promoting effect of PACAP in juvenile tilapia was correlated with higher GH concentration in serum. With regard to the neuroendocrine regulation of growth control by PACAP, it was demonstrated that PACAP stimulates food intake in juvenile tilapia. In general, PACAP appears to act in the regulation of the growth control in juvenile fish. These findings propose that PACAP is a prominent target with the potential to stimulate fish growth in aquaculture. PMID:20853308

  8. Studies of the cAMP mediated aggregation in Dictyostelium discoideum: receptor mediated activation of the adenylate cyclase

    SciTech Connect

    Theibert, W.E.A.B.

    1985-01-01

    Dictyostelium discoideum, a eukaryotic amoeba of the cellular slime mold family, provides an interesting paradigm in developmental biology. During development, hundreds of thousands of cells aggregate to form a multicellular aggregate. Aggregation is mediated by chemotaxis and chemical signaling. Waves of adenosine 3'-5' cyclic monophosphate (cAMP) propagate through the monolayer and provide transient gradients for chemotaxis. The author has used a reversible inhibitor of the cAMP signaling response to demonstrate that adaptation to cAMP is independent of the activation of the adenylate cyclase and therefore is not caused by the rise in intracellular cAMP. Next, it is shown that adenosine inhibits the cAMP signaling response. Inhibition is rapid, reversible, and depends on the cAMP stimulus concentration. Then the specificity of the cAMP receptors which mediates signaling is determined and compared with the receptors which mediate chemotaxis, the cGMP response, and cAMP binding antagonism. The cAMP surface receptor has been identified by photoaffinity labeling intact cells with (/sup 32/P)-8-N/sub 3/-cAMP using an ammonium sulfate binding stabilization technique. The photoactivated ligand specifically labels a polypeptide, localized to the membrane fraction, which migrates as a closely spaced doublet on SDS Page.

  9. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study.

    PubMed

    Hannibal, Jens

    2002-11-25

    In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes.

  10. Circulating kisspeptin and pituitary adenylate cyclase-activating polypeptide (PACAP) do not correlate with gonadotropin serum levels.

    PubMed

    Kanasaki, Haruhiko; Purwana, Indri N; Oride, Aki; Mijiddorj, Tselmeg; Sukhbaatar, Unurjargal; Miyazaki, Kohji

    2013-06-01

    Kisspeptins are known to be the principle regulators of the hypothalamic-pituitary gonadal (HPG) axis. In addition, the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of pituitary gonadotropins has been elucidated. We measured plasma concentrations of kisspeptin and PACAP and determined whether the levels of these peptides varied in proportion to circulating gonadotropin levels. Plasma luteinizing hormone (LH) levels were higher in postmenopausal women and in patients with premature ovarian failure (POF) and lower in patients with idiopathic hypogonadotropic hypogonadism (IHH) compared with the LH level in normally menstruating women. Similarly, serum follicle-stimulating hormone levels were higher in postmenopausal women and in patients with POF but lower in pregnant women and patients with IHH compared with normally menstruating women. Plasma levels of kisspeptins were significantly higher in pregnant women compared with normally menstruating women. However, no significant differences were observed in postmenopausal women, patients with POF, and patients with IHH. On the other hand, plasma levels of PACAP were significantly lower in pregnant women, patients with POF, and in IHH patients when compared with normally menstruating women. No significant differences were observed in PACAP concentration between postmenopausal women and in normally menstruating women. Our observations suggest that the serum levels of kisspeptins and PACAP did not correlate with variations in serum gonadotropin levels.

  11. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    PubMed Central

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  12. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease.

    PubMed

    Reglodi, Dóra; Lubics, Andrea; Tamás, Andrea; Szalontay, Luca; Lengvári, István

    2004-05-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide, exerting different actions in the central and peripheral nervous systems. Among others, it has neurotrophic and neuroprotective effects. In the present study, we investigated the effects of PACAP in a rat model of Parkinson's disease. Rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) into the substantia nigra. PACAP-treated animals received 0.1 microg PACAP as a pretreatment. Control animals without PACAP treatment displayed severe hypokinesia at 1 and 10 days postlesion when compared to animals receiving saline only. In only 1 day postlesion, by contrast, PACAP-treated rats showed no hypokinesia. Asymmetrical signs, such as turning, rearing and biased thigmotaxic scanning were observed in all lesioned animals 1 day postlesion. PACAP-treated animals, however, showed better recovery as they ceased to display asymmetrical signs 10 days later and showed markedly less apomorphine-induced rotations. Tyrosine-hydroxylase immunohistochemistry revealed that control animals had more than 95% loss of the dopaminergic cells in the ipsilateral substantia nigra, while PACAP-treated animals had only approximately 50% loss of dopaminergic cells. In summary, the present results show the neuroprotective effect of PACAP in 6-OHDA-induced lesion of substantia nigra, with less severe acute neurological symptoms and a more rapid amelioration of behavioral deficits.

  13. Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary.

    PubMed Central

    Onali, P; Schwartz, J P; Costa, E

    1981-01-01

    The activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by vasoactive intestinal peptide (VIP) was used as a model to investigate the molecular mechanisms triggered by the occupancy of dopamine recognition sites in rat anterior pituitary. Dopamine failed to change the basal enzyme activity, but it inhibited the stimulation of adenylate cyclase elicited by VIP. Apomorphine, 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene, and 2-bromo-alpha-ergocryptine mimicked the effect of dopamine, whereas (-)-sulpiride and and classical neuroleptics antagonized it. Dopamine failed to modulate the activation of pituitary adenylate cyclase by prostaglandin E1, which does not increase prolactin secretion. From these results we infer that stimulation of D-2 (dopamine) receptors may affect pituitary secretion by inhibiting the activation of anterior pituitary adenylate cyclase by VIP or other secretagogues. PMID:6171819

  14. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    PubMed

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and

  15. Changes in lipid composition and isoproterenol- and ethanol-stimulated adenylate cyclase activity in aging Fischer rat bladders.

    PubMed

    Wheeler, M A; Pontari, M; Nishimoto, T; Weiss, R M

    1990-07-01

    In the aging rat bladder dome, changes are noted in membrane composition and in the activity of the membrane-bound enzyme, adenylate cyclase (AC). When bladder domes from 22 day and 22 to 24 month Fischer rats are compared, changes in composition include: a 25% decrease in percentage of protein [(milligrams of protein per milligram of wet weight) x 100]; an approximately 40% decrease in both the total phospholipid content and in the content of the major phospholipids, phosphatidylcholine and phosphatidylethanolamine; and a 69% increase in the cholesterol to phospholipid ratio. These changes are indicative of a more rigid lipid bilayer in the aged rat bladder. Changes in AC with aging include a decrease in basal and forskolin-activated AC and a loss of the ability of isoproterenol to activate AC in the aged (22-24 month) rat bladder dome homogenate. Activation by isoproterenol (ISO; 3 microM) is 55 and 72% over 5' guanylimidodiphosphate [Gpp(NH)p; 1 microM] controls in 22 day and 90 day rat bladder dome homogenates, respectively. Activation by AC by NaF and Gpp(NH)p does not decline with aging. Ethanol, an agent that increases membrane fluidity, stimulates AC to a much greater extent in homogenates from the 22 month than from the 22 day or 90 day rat bladder dome. The ethanol-induced activation occurs not only in basal AC but also in Gpp(NH)p- and ISO-plus Gpp(NH)p-activated AC. The observed changes in AC with aging in part may reflect changes in the membrane lipid environment. PMID:2366184

  16. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor.

    PubMed

    Resch, Jon M; Albano, Rebecca; Liu, XiaoQian; Hjelmhaug, Julie; Lobner, Doug; Baker, David A; Choi, SuJean

    2014-07-28

    In the central nervous system, cystine import in exchange for glutamate through system xc(-) is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc(-) activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally-derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc(-) . In the current study, 24-hour treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc(-) function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc(-) inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc(-) activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc(-) . Furthermore, the potentiation of system xc(-) activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc(-) activity. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  17. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.).

    PubMed

    Kong, Linghai; Albano, Rebecca; Madayag, Aric; Raddatz, Nicholas; Mantsch, John R; Choi, SuJean; Lobner, Doug; Baker, David A

    2016-05-01

    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.

  18. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that

  19. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target

    PubMed Central

    Juhász, Tamás; Matta, Csaba; Katona, Éva; Somogyi, Csilla; Takács, Roland; Gergely, Pál; Csernoch, László; Panyi, Gyorgy; Tóth, Gábor; Reglődi, Dóra; Tamás, Andrea; Zákány, Róza

    2014-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2) were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote cartilage regeneration

  20. Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis

    PubMed Central

    Resch, Jon M.; Boisvert, Joanne P.; Hourigan, Allison E.; Mueller, Christopher R.; Yi, Sun Shin

    2011-01-01

    Numerous studies have demonstrated that the hypothalamic ventromedial nuclei (VMN) regulate energy homeostasis by integrating and utilizing behavioral and metabolic mechanisms. The VMN heavily express pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptors (PAC1R). Despite the receptor distribution, most PACAP experiments investigating affects on feeding have focused on intracerebroventricular administration or global knockout mice. To identify the specific contribution of PACAP signaling in the VMN, we injected PACAP directly into the VMN and measured feeding behavior and indices of energy expenditure. Following an acute injection of PACAP, nocturnal food intake was significantly reduced for 6 h after injections without evidence of malaise. In addition, PACAP-induced suppression of feeding also occurred following an overnight fast and could be blocked by a specific PAC1R antagonist. Metabolically, VMN-specific injections of PACAP significantly increased both core body temperature and spontaneous locomotor activity with a concurrent increase in brown adipose uncoupling protein 1 mRNA expression. To determine which signaling pathways were responsive to PACAP administration into the VMN, we measured mRNA expression of well-characterized hypothalamic neuropeptide regulators of feeding. One hour after PACAP administration, expression of pro-opiomelanocortin mRNA was significantly increased in the arcuate nuclei (ARC), with no changes in neuropeptide Y and agouti-related polypeptide mRNA levels. This suggests that PAC1R expressing VMN neurons projecting to pro-opiomelanocortin neurons contribute to hypophagia by involving melanocortin signaling. While the VMN also abundantly express PACAP protein, the present study demonstrates that PACAP input to the VMN can influence the control of energy homeostasis. PMID:21957159

  1. In vitro adenylate cyclase-stimulating activity predicts the occurrence of humoral hypercalcemia of malignancy in nude mice.

    PubMed Central

    Weir, E C; Insogna, K L; Brownstein, D G; Bander, N H; Broadus, A E

    1988-01-01

    A number of factors have been proposed as potential mediators of the syndrome of humoral hypercalcemia of malignancy (HHM), but to date no firm cause-and-effect relationship has been established. We attempted to establish such a relationship by determining whether the presence or absence of adenylate cyclase-stimulating activity (ACSA) in the media of cultured tumor cells predicted the occurrence of the syndrome of HHM when these cell lines were grown in nude mice in vivo. Conditioned media from 35 human renal carcinoma cell lines were surveyed for ACSA in the PTH-sensitive rat osteosarcoma 17/2.8 cell assay. 12 lines were positive (mean, 13.7-fold stimulation, range, 3.0 to 44.0), and 23 lines were negative (mean, 1.2-fold stimulation, range, 0.9 to 1.5). We were successful in establishing five of the positive and six of the negative lines in three to five nude mice per line. Mice implanted with the positive lines uniformly became hypercalcemic (mean serum calcium, 15.8 mg/dl), whereas mice implanted with the negative lines uniformly remained normocalcemic (mean serum calcium, 9.5 mg/dl), in spite of comparable mean tumor size. Acid-urea tumor extracts from each of four hypercalcemic animals contained potent in vitro ACSA (mean, 15.9-fold stimulation), while 5/5 extracts from normocalcemic animals did not (mean, 1.4-fold stimulation). Our study demonstrates that in this model system in vitro ACSA is a reliable predictive marker for HHM in vivo. Whether the protein responsible for this activity is also the mediator of the bone resorption seen in HHM remains to be demonstrated. Images PMID:3343341

  2. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  3. Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway

    PubMed Central

    Lee, Sang Jin; Hwang, Jung-Ah; Lee, Jieun; Choi, Il-Ju; Seo, Hyehyun; Park, Jong-Hoon; Suzuki, Hiromu; Yamamoto, Eiichiro; Kim, In-Hoo; Jeong, Jin Sook; Ju, Mi Ha; Lee, Dong-Hee; Lee, Yeon-Su

    2013-01-01

    Adenylate cyclase 3 (ADCY3) is a widely expressed membrane-associated protein in human tissues, which catalyzes the formation of cyclic adenosine-3′,5′-monophosphate (cAMP). However, our transcriptome analysis of gastric cancer tissue samples (NCBI GEO GSE30727) revealed that ADCY3 expression was specifically altered in cancer samples. Here we investigated the tumor-promoting effects of ADCY3 overexpression and confirmed a significant correlation between the upregulation of ADCY3 and Lauren's intestinal-type gastric cancers. ADCY3 overexpression increased cell migration, invasion, proliferation, and clonogenicity in HEK293 cells; conversely, silencing ADCY3 expression in SNU-216 cells reduced these phenotypes. Interestingly, ADCY3 overexpression increased both the mRNA level and activity of matrix metalloproteinase 2 (MMP2) and MMP9 by increasing the levels of cAMP and phosphorylated cAMP-responsive element-binding protein (CREB). Consistent with these findings, treatment with a protein kinase A (PKA) inhibitor decreased MMP2 and MMP9 expression levels in ADCY3-overexpressing cells. Knockdown of ADCY3 expression by stable shRNA in human gastric cancer cells suppressed tumor growth in a tumor xenograft model. Thus, ADCY3 overexpression may exert its tumor-promoting effects via the cAMP/PKA/CREB pathway. Additionally, bisulfite sequencing of the ADCY3 promoter region revealed that gene expression was reduced by hypermethylation of CpG sites, and increased by 5-Aza-2′-deoxycytidine (5-Aza-dC)-induced demethylation. Our study is the first to report an association of ADCY3 with gastric cancer as well as its tumorigenic potentials. In addition, we demonstrate that the expression of ADCY3 is regulated through an epigenetic mechanism. Further study on the mechanism of ADCY3 in tumorigenesis will provide the basis as a new molecular target of gastric cancer. PMID:24113161

  4. Changed sensitivity of adenylate cyclase signaling system to biogenic amines and peptide hormones in tissues of starving rats.

    PubMed

    Shpakov, A O; Kuznetsova, L A; Plesneva, S A; Pertseva, M N

    2007-07-01

    In the myocardium and skeletal muscles of rats deprived of food for 2 days, basal activity of adenylate cyclase decreased, while the sensitivity of adenylate cyclase signaling system to the stimulating effects of non-hormonal agents (guanine nucleotides and NaF) and beta-agonist isoproterinol modulating adenylate cyclase through stimulating G proteins increased. In starving organism, the regulatory effects of hormones realizing their effects through inhibitory G proteins (somatostatin in the myocardium and bromocryptin in the brain) weakened. Their inhibitory effects on forskolin-stimulated adenylate cyclase activity and stimulating effects on binding of guanosine triphosphate decreased. In the brain of starving rats, the differences in the sensitivity of the adenylate cyclase signaling system to hormones and nonhormonal agents were less pronounced than in the muscle tissues, which attested to tissue-specific changes in the functional state of this system under conditions of 2-day starvation.

  5. Photo-dynamics of the lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Tanwar, M.; Veetil, S. K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-09-01

    The absorption and emission spectroscopic behavior of lyophilized photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain consisting of a BLUF domain (BLUF = Blue Light sensor Using Flavin) and a cyclase homology domain was studied in the dark, during blue-light exposure and after blue-light exposure at a temperature of 4 °C. The BLUF domain photo-cycle dynamics observed for snap-frozen NgPAC2 was lost by lyophilization (no signaling state formation with flavin absorption red-shift). Instead, blue-light photo-excitation of lyophilized NgPAC2 caused sterically restricted Tyr-Tyr cross-linking (o,o‧-ditysosine formation) and partial flavin cofactor reduction.

  6. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth.

    PubMed

    Van Dijck, P; Ma, P; Versele, M; Gorwa, M F; Colombo, S; Lemaire, K; Bossi, D; Loïez, A; Thevelein, J M

    2000-10-01

    The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation.

  7. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth.

    PubMed

    Van Dijck, P; Ma, P; Versele, M; Gorwa, M F; Colombo, S; Lemaire, K; Bossi, D; Loïez, A; Thevelein, J M

    2000-10-01

    The initiation of fermentation in the yeast Saccharomyces cerevisiae is associated with a rapid drop in stress resistance. This is disadvantageous for several biotechnological applications, e.g. the preparation of freeze doughs. We have isolated mutants in a laboratory strain which are deficient in fermentation-induced loss of stress resistance ('fil' mutants) using a heat shock selection protocol. We show that the fil1 mutant contains a mutation in the CYR1 gene which encodes adenylate cyclase. It causes a change at position 1682 of glutamate into lysine and results in a tenfold drop in adenylate cyclase activity. The fil1 mutant displays a reduction in the glucose-induced cAMP increase, trehalase activation and loss of heat resistance. Interestingly, the fil1 mutant shows the same growth and fermentation rate as the wild type strain, as opposed to other mutants with reduced activity of the cAMP pathway. Introduction of the fil1 mutation in the vigorous Y55 strain and cultivation of the mutant under pilot scale conditions resulted in a yeast that displayed a higher freeze and drought resistance during active fermentation compared to the wild type Y55 strain. These results show that high stress resistance and high fermentation activity are compatible biological properties. Isolation of fil-type mutations appears a promising avenue for development of industrial yeast strains with improved stress resistance during active fermentation. PMID:11075928

  8. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes.

    PubMed

    Striem, B J; Pace, U; Zehavi, U; Naim, M; Lancet, D

    1989-05-15

    Sucrose and other saccharides, which produce an appealing taste in rats, were found to significantly stimulate the activity of adenylate cyclase in membranes derived from the anterior-dorsal region of rat tongue. In control membranes derived from either tongue muscle or tongue non-sensory epithelium, the effect of sugars on adenylate cyclase activity was either much smaller or absent. Sucrose enhanced adenylate cyclase activity in a dose-related manner, and this activation was dependent on the presence of guanine nucleotides, suggesting the involvement of a GTP-binding protein ('G-protein'). The activation of adenylate cyclase by various mono- and di-saccharides correlated with their electrophysiological potency. Among non-sugar sweeteners, sodium saccharin activated the enzyme, whereas aspartame and neohesperidin dihydrochalcone did not, in correlation with their sweet-taste effectiveness in the rat. Sucrose activation of the enzyme was partly inhibited by Cu2+ and Zn2+, in agreement with their effect on electrophysiological sweet-taste responses. Our results are consistent with a sweet-taste transduction mechanism involving specific receptors, a guanine-nucleotide-binding protein and the cyclic AMP-generating enzyme adenylate cyclase.

  9. Adenylate cyclase in Arthrospira platensis responds to light through transcription.

    PubMed

    Kashith, M; Keerthana, B; Sriram, S; Ramamurthy, V

    2016-08-19

    Cyclic 3',5' adenosine monophosphate (cAMP) is a ubiquitous signaling molecule, but its role in higher plants was in doubt due to its very low concentration. In this study we wanted to look at the flux of cAMP in response to light in algae, considered to be the more primitive form of photosynthetic organisms. While it did not fluctuate very much in the tested green algae, in the cyanobacterium Arthrospira platensis its level was closely linked to exposure to light. The expression from cyaC, the major isoform of adenylate cyclase was strongly influenced by exposure of the cells to light. There was about 300 fold enhancement of cyaC transcripts in cells exposed to light compared to the transcripts in cells in the dark. Although post-translational regulation of adenylate cyclase activity has been widely known, our studies suggest that transcriptional control could also be an important aspect of its regulation in A. platensis. PMID:27311855

  10. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin.

    PubMed

    Wald, Tomas; Osickova, Adriana; Masin, Jiri; Liskova, Petra M; Petry-Podgorska, Inga; Matousek, Tomas; Sebo, Peter; Osicka, Radim

    2016-04-01

    Adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of the whooping cough agent Bordetella pertussis penetrates phagocytes expressing the integrin complement receptor 3 (CR3, CD11b/CD18, α(M)β(2) or Mac-1). CyaA translocates its adenylate cyclase (AC) enzyme domain into cell cytosol and catalyzes unregulated conversion of ATP to cAMP, thereby subverting cellular signaling. In parallel, CyaA forms small cation-selective membrane pores that permeabilize cells for potassium efflux, contributing to cytotoxicity of CyaA and eventually provoking colloid-osmotic cell lysis. To investigate whether the single-pass α-helical transmembrane segments of CR3 subunits CD11b and CD18 do directly participate in AC domain translocation and/or pore formation by the toxin, we expressed in CHO cells variants of CR3 that contained artificial transmembrane segments, or lacked the transmembrane segment(s) at all. The results demonstrate that the transmembrane segments of CR3 are not directly involved in the cytotoxic activities of CyaA but serve for maintaining CR3 in a conformation that is required for efficient toxin binding and action. PMID:26802078

  11. Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity.

    PubMed

    Sampaio, Lucia de Fatima S; Maia, José Guilherme S; de Parijós, Amanda M; de Souza, Rita Z; Barata, Lauro Euclides S

    2012-01-01

    Rosewood oil (RO) (Aniba rosaeodora Ducke) is rich in linalool, a monoterpene alcohol, which has well studied anxiolytic, sedative and anticonvulsant effects. The inhibition of the increases in cAMP protects against seizures in a diversity of models of epilepsy. In this paper, the principal aim was to investigate the effects of RO, (±)-linalool and (-)-linalool) on adenylate cyclase. They were tested in chick retinas and forskolin was used to stimulate the enzyme target. The phosphodiesterase inhibitor, 4-(3-butoxy-4-methoxybenzyl)-imidazolidin-2-one, and the non-selective adenosine receptor antagonist 3-isobutyl-methyl-xanthine (IBMX), were used to control the participation of phosphodiesterase and adenosine receptors in the resulting effects, respectively. The cAMP accumulation was measured by enzyme immune assay (EIA). Rosewood oil, (-)-linalool and (±)-linalool inhibited exclusively the cAMP accumulation stimulated by forskolin, even when adenosine receptors were blocked with IBMX. The IC(50) values (in μ m concentration range) calculated from their concentration response-curves were not statistically different, however, the compounds presented a different relative efficacy. These results extend the range of subcellular mechanisms underlying the relaxant action of linalool on the central nervous system.

  12. Evidence for a dissociable protein subunit required for calmodulin stimulation of brain adenylate cyclase.

    PubMed Central

    Toscano, W A; Westcott, K R; LaPorte, D C; Storm, D R

    1979-01-01

    An adenylate cyclase [ATP pyrophosphatelyase (cyclizing), EC 4.6.1.1] preparation that is not stimulated by NaF,5'-guanylyl imidodiphosphate, or Ca2+.calmodulin has been isolated from bovine cerebral cortex by Affi-Gel Blue chromatography and calmodulin-Sepharose chromatography. Sensitivity to these effectors was restored by incubation of the adenylate cyclase preparation with detergent-solubilized protein from bovine cerebral cortex. Reconstitution of of Ca2+.calmodulin activation required the presence of 5'-guanylyl imidodiphosphate. The factor required for restoration of Ca2+.calmodulin stimulation was sensitive to heat, trypsin digestion, and N-ethylmaleimide. These observations suggest that this adenylate cyclase activity requires the presence of one or more guanyl nucleotide binding subunits for calmodulin sensitivity. PMID:293663

  13. Virulence of Bordetella bronchiseptica: role of adenylate cyclase-hemolysin.

    PubMed Central

    Gueirard, P; Guiso, N

    1993-01-01

    Bordetella bronchiseptica is a pathogen of laboratory, domestic, and wild animals and sometimes of humans. In the present study some characteristics of the virulence of B. bronchiseptica isolates of different origin were studied. All isolates had similar phenotypes, similar bacteriological characters, and synthesized adenylate cyclase-hemolysin, filamentous hemagglutinin and pertactin but not pertussis toxin. These isolates, however, differed in their ability to express dermonecrotic toxin and to cause a lethal infection, but no correlation was found with the human or animal origin of the isolates. The fact that the most virulent isolate did not express dermonecrotic toxin suggests that this toxin does not play an important role in the virulence of the bacteria in the murine model. After infection with virulent B. bronchiseptica a very early synthesis and a persistence of anti-adenylate cyclase-hemolysin and anti-filamentous hemagglutinin antibodies were observed in the sera of infected mice, suggesting a persistence of the bacteria or of its antigens. B. bronchiseptica adenylate cyclase-hemolysin was purified and was shown to be a major protective antigen against B. bronchiseptica infection. Furthermore, we showed that its immunological and protective properties were different from that of B. pertussis adenylate cyclase-hemolysin, confirming that Bordetella species are immunologically different. Images PMID:8406794

  14. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    SciTech Connect

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).

  15. Inhibition of hormonally regulated adenylate cyclase by the beta gamma subunit of transducin.

    PubMed Central

    Bockaert, J; Deterre, P; Pfister, C; Guillon, G; Chabre, M

    1985-01-01

    Transducin (T), the GTP-binding protein of the retina activates the cGMP phosphodiesterase system, and presents analogies with the proteins GS and Gi which respectively mediate adenylate cyclase activation and inhibition by hormone receptors. These proteins are all comprised of an alpha subunit carrying the GTP-binding site and a beta gamma subunit made of two peptides. The beta peptide (35 kd) appears similar in the three proteins. We demonstrate here that purified T beta gamma inhibits adenylate cyclase from human platelet membranes. This inhibition was observed when adenylate cyclase was stimulated by GTP, prostaglandin E1 (PGE1), NaF and forskolin, but not when stimulated by GTP(gamma)S. In the presence of GTP and forskolin, the T beta gamma-induced maximal inhibition was not additive with the alpha 2-receptor-induced adenylate cyclase inhibition mediated by Gi. Both inhibitions were suppressed at high Mg2+ concentrations, which as also known to dissociate T beta gamma from T alpha-GDP. This suggests that these adenylate cyclase inhibitions are due to the formation of inactive complexes of GS alpha-GDP with T beta gamma or Gi beta gamma. T beta gamma-induced inhibition did not require detergent and could be suppressed by simple washing. T beta gamma effects are dependent on its concentration rather than on its total amount. This suggests that T beta gamma can operate in solution with no integration into the membrane. Similar inhibitory effects of T beta gamma are observed on adenylate cyclase from anterior pituitary and lymphoma S49 cell lines. PMID:3861319

  16. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Targets Down Syndrome Candidate Region 1 (DSCR1/RCAN1) to control Neuronal Differentiation*

    PubMed Central

    Lee, Eun Hye; Kim, Seon Sook; Lee, Seul; Baek, Kwan-Hyuck; Seo, Su Ryeon

    2015-01-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is a neurotrophic peptide involved in a wide range of nervous functions, including development, differentiation, and survival, and various aspects of learning and memory. Here we report that PACAP induces the expression of regulator of calcineurin 1 (RCAN1, also known as DSCR1), which is abnormally expressed in the brains of Down syndrome patients. Increased RCAN1 expression is accompanied by activation of the PKA-cAMP response element-binding protein pathways. EMSA and ChIP analyses demonstrate the presence of a functional cAMP response element in the RCAN1 promoter. Moreover, we show that PACAP-dependent neuronal differentiation is significantly disturbed by improper RCAN1 expression. Our data provide the first evidence of RCAN1, a Down syndrome-related gene, as a novel target for control of the neurotrophic function of PACAP. PMID:26157140

  17. A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate.

    PubMed

    Pirger, Zsolt; László, Zita; Kemenes, Ildikó; Tóth, Gábor; Reglodi, Dóra; Kemenes, György

    2010-10-13

    Similar to other invertebrate and vertebrate animals, cAMP-dependent signaling cascades are key components of long-term memory (LTM) formation in the snail Lymnaea stagnalis, an established experimental model for studying evolutionarily conserved molecular mechanisms of long-term associative memory. Although a great deal is already known about the signaling cascades activated by cAMP, the molecules involved in the learning-induced activation of adenylate cyclase (AC) in Lymnaea remained unknown. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy in combination with biochemical and immunohistochemical methods, recently we have obtained evidence for the existence of a Lymnaea homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) and for the AC-activating effect of PACAP in the Lymnaea nervous system. Here we first tested the hypothesis that PACAP plays an important role in the formation of robust LTM after single-trial classical food-reward conditioning. Application of the PACAP receptor antagonist PACAP6-38 around the time of single-trial training with amyl acetate and sucrose blocked associative LTM, suggesting that in this "strong" food-reward conditioning paradigm the activation of AC by PACAP was necessary for LTM to form. We found that in a "weak" multitrial food-reward conditioning paradigm, lip touch paired with sucrose, memory formation was also dependent on PACAP. Significantly, systemic application of PACAP at the beginning of multitrial tactile conditioning accelerated the formation of transcription-dependent memory. Our findings provide the first evidence to show that in the same nervous system PACAP is both necessary and instructive for fast and robust memory formation after reward classical conditioning.

  18. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures.

    PubMed

    Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  19. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    PubMed Central

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  20. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  1. Properties of Adenyl Cyclase from Human Jejunal Mucosa during Naturally Acquired Cholera and Convalescence

    PubMed Central

    Chen, Lincoln C.; Rohde, Jon E.; Sharp, Geoffrey W. G.

    1972-01-01

    The enterotoxin of Vibrio cholerae causes copious fluid production throughout the lenght of the small intestine. As this is thought to be mediated by stimulation of adenyl cyclase, a study has been made of the activity and properties of this enzyme in jejunal biopsy tissue taken from patients during the diarrheal phase of cholera and after recovery. Adenyl cyclase activity during cholera was increased more than twofold relative to the enzyme in convalescence. Under both conditions stimulation by prostaglandin E1 (PGE1) and by fluoride was observed. The responsiveness to PGE1 was not altered in cholera; the total activity of the fluoride-stimulated enzyme was similar, a finding that suggests cholera toxin stimulates pre-existing enzyme in the intestinal cell. The enzymes during cholera and convalescence were similar in all other properties examined. Optimal Mg++ concentration was 10 mM; Mn++ at 5 mM stimulated the enzyme but could not replace Mg++ except in the presence of 10 mM fluoride. Calcium was markedly inhibitory at concentrations greater than 10-4 M. The pH optimum was 7.5 and the Michaelis constant (Km) for ATP concentration approximated 10-4 M. Thus the interaction of cholera toxin with human intestinal adenyl cyclase does not alter the basic properties of the enzyme. When biopsy specimens were maintained intact in oxygenated Ringer's solution at 0°C, no loss of activity was observed at 1½ and 3 hr. In contrast, when the cells were homogenized, rapid loss of activity, with a half-life of 90 min was seen even at 0°C. Consequently for comparative assays of human jejunal adenyl cyclase, strict control of the experimental conditions is required. It was under such conditions that a twofold increase in basal adenyl cyclase activity during cholera was observed. Images PMID:4335441

  2. Alteration with dietary state of the activity and zonal distribution of adenylate cyclase stimulated by glucagon, fluoride and forskolin in microdissected rat liver tissue.

    PubMed

    Zierz, S; Jungermann, K

    1984-12-17

    Adenylate cyclase activated by glucagon, fluoride and forskolin was measured in liver homogenates and microdissected periportal and perivenous tissue of fed and fasted rats. A radiochemical microtest, more sensitive by 2-3 orders of magnitude as compared with the usual assay, was established for the determination of the activity in liver samples corresponding to 200-600 ng dry weight. In liver homogenates from fasted as compared to fed animals the glucagon-stimulated and fluoride-stimulated activity was increased by 1.65-fold, while the basal and the forskolin-stimulated activity remained the same. In microdissected tissue of both fed and fasted animals the activity was stimulated in about 60% of the samples by glucagon, fluoride and forskolin (responsive samples). However, in about 40% of the microdissected tissue samples the activity could not be stimulated by any of the above activators (non-responsive samples). In responsive microdissected tissue of fasted as compared to fed animals, the glucagon-stimulated and fluoride stimulated activity but not the basal and the forskolin-activated activity was increased by 2-3-fold. In responsive microdissected samples of fed animals neither the basal nor the stimulated activities showed a significant periportal to perivenous gradient. In samples of fasted animals, however, a zonal gradient was observed for the glucagon-stimulated activity exhibiting a 1.5-fold higher rate in the perivenous zone.

  3. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis.

    PubMed

    Pirger, Zsolt; Laszlo, Zita; Hiripi, Laszlo; Hernadi, Laszlo; Toth, Gabor; Lubics, Andrea; Reglodi, Dora; Kemenes, Gyorgy; Mark, Laszlo

    2010-11-01

    PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.

  4. Generation of highly selective VPAC2 receptor agonists by high throughput mutagenesis of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide.

    PubMed

    Yung, Stephanie L; Dela Cruz, Fernando; Hamren, Sarah; Zhu, Jian; Tsutsumi, Manami; Bloom, James W; Caudle, Margaret; Roczniak, Steve; Todd, Tracey; Lemoine, Lynn; MacDougall, Margit; Shanafelt, Armen B; Pan, Clark Q

    2003-03-21

    Pituitary adenylate cyclase-activating peptide (PACAP) has a specific receptor PAC1 and shares two receptors VPAC1 and VPAC2 with vasoactive intestinal peptide (VIP). VPAC2 activation enhances glucose-induced insulin release while VPAC1 activation elevates glucose output. To generate a large pool of VPAC2 selective agonists for the treatment of type 2 diabetes, structure-activity relationship studies were performed on PACAP, VIP, and a VPAC2 selective VIP analog. Chemical modifications on this analog that prevent recombinant expression were sequentially removed to show that a recombinant peptide would retain VPAC2 selectivity. An efficient recombinant expression system was then developed to produce and screen hundreds of mutant peptides. The 11 mutations found on the VIP analog were systematically replaced with VIP or PACAP sequences. Three of these mutations, V19A, L27K, and N28K, were sufficient to provide most of the VPAC2 selectivity. C-terminal extension with the KRY sequence from PACAP38 led to potent VPAC2 agonists with improved selectivity (100-1000-fold). Saturation mutagenesis at positions 19, 27, 29, and 30 of VIP and charge-scanning mutagenesis of PACAP27 generated additional VPAC2 selective agonists. We have generated the first set of recombinant VPAC2 selective agonists described, which exhibit activity profiles that suggest therapeutic utility in the treatment of diabetes.

  5. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins

    PubMed Central

    Kimberg, Daniel V.; Field, Michael; Johnson, Judith; Henderson, Antonia; Gershon, Elaine

    1971-01-01

    The effects of several prostaglandins (PG) and a highly purified preparation of cholera enterotoxin (CT) on intestinal mucosal adenyl cyclase activity and the effect of CT on intestinal mucosal cyclic 3′,5′-adenosine monophosphate concentration were determined in guinea pig and rabbit small intestine and were correlated with the effects of the same agents on ion transport. Adenyl cyclase activity, measured in a crude membrane fraction of the mucosa, was found at all levels of the small intestine with the highest activity per milligram protein in the duodenum. The prostaglandins, when added directly to the assay, increased adenyl cyclase activity; the greatest effect (2-fold increase) was obtained with PGE1 (maximal effect at 0.03 mM) and PGE2. The prostaglandins also increased short-circuit current (SCC) in isolated guinea pig ileal mucosa, with PGE1 and PGE2 again giving the greatest effects. The prior addition of theophylline (10 mM) reduced the subsequent SCC response to PGE1 and vice versa. It was concluded, therefore, that the SCC response to PGE1, like the response to theophylline, represented active Cl secretion. CT increased adenyl cyclase activity in guinea pig and rabbit ileal mucosa when preincubated with the mucosa from 1 to 2.5 hr in vitro or for 2.5 hr in vivo but not when added directly to the assay. The increments in activity caused by PGE1 and NaF were the same in CT-treated and control mucosa. Cyclic 3′,5′-AMP concentration in rabbit ileal mucosa was increased 3.5-fold after a 2 hr preincubation with CT in vitro. Phosphodiesterase activity in the crude membrane fraction of the mucosa was unaffected by either CT or PGE1. A variety of other agents including insulin, glucagon, parathormone, thyroid-stimulating hormone, L-thyroxine, thyrocalcitonin, vasopressin, and epinephrine all failed to change adenyl cyclase activity. It is concluded that CT and certain prostaglandins produce small intestinal fluid secretion by increasing mucosal adenyl

  6. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Impairs the Regulation of Apoptosis in Megakaryocytes by Activating NF-κB: a Proteomic Study*

    PubMed Central

    Di Michele, Michela; Peeters, Karen; Loyen, Serena; Thys, Chantel; Waelkens, Etienne; Overbergh, Lutgart; Hoylaerts, Marc; Van Geet, Christel; Freson, Kathleen

    2012-01-01

    We previously showed that the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor VPAC1 are negative regulators of megakaryopoiesis and platelet function, but their downstream signaling pathway that inhibits this process still remained unknown. A combined proteomic, transcriptomic, and bioinformatic approach was here used to elucidate the molecular mechanisms underlying PACAP signaling via VPAC1 in megakaryocytes. Two-dimensional difference gel electrophoresis and tandem MS were applied to detect differentially expressed proteins in megakaryocytic CHRF cells stimulated with PACAP. The majority of the 120 proteins modulated by PACAP belong to the class of “cell cycle and apoptosis” proteins. The up- or down-regulated expression of some proteins was confirmed by immunoblot and immunohistochemical analysis. A meta-analysis of our data and 12 other published studies was performed to evaluate signaling pathways involved in different cellular models of PACAP response. From 2384 differentially expressed genes/proteins, 83 were modulated by PACAP in at least three independent studies and Ingenuity Pathway Analysis further identified apoptosis as the highest scored network with NF-κB as a key-player. PACAP inhibited serum depletion-induced apoptosis of CHRF cells via VPAC1 stimulation. In addition, PACAP switched on NF-κB dependent gene expression since higher nuclear levels of the active NF-κB p50/p65 heterodimer were found in CHRF cells treated with PACAP. Finally, a quantitative real time PCR apoptosis array was used to study RNA from in vitro differentiated megakaryocytes from a PACAP overexpressing patient, leading to the identification of 15 apoptotic genes with a 4-fold change in expression and Ingenuity Pathway Analysis again revealed NF-κB as the central player. In conclusion, our findings suggest that PACAP interferes with the regulation of apoptosis in megakaryocytes, probably via stimulation of the NF-κB pathway. PMID:21972247

  7. Multiple splice variants of the pituitary adenylate cyclase-activating polypeptide type 1 receptor detected by RT-PCR in single rat pituitary cells.

    PubMed

    Bresson-Bépoldin, L; Jacquot, M C; Schlegel, W; Rawlings, S R

    1998-10-01

    Alternative splicing of the rat type 1 pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (PVR1) produces variants that couple either to both adenylyl cyclase (AC) and phospholipase C (PLC) (PVR1 short, PVR1 hop, PVR1 hiphop), or to AC alone (PVR1 hip). We have previously shown that populations of clonal alphaT3-1 gonadotrophs express PVR1 hop and PVR1 short mRNAs, whereas clonal GH4C1 somatotrophs do not. Here we have used the single cell RT-PCR technique to investigate whether normal rat gonadotrophs and somatotrophs express PVR1 mRNA, whether a single cell co-expresses multiple splice variant forms, and whether differential PVR1 mRNA expression correlates with differences in PACAP-stimulated Ca2+ signalling. We found that individual rat gonadotrophs expressed mRNA either for PVR1 hop, for PVR1 short, or co-expressed the two forms. Although we found no differences between the splice variant(s) expressed and the characteristics of PACAP-stimulated Ca2+ responses, the expression of PVR1 mRNA is consistent with the known PACAP stimulation of the PLC system in gonadotrophs. Individual rat somatotrophs also expressed PVR1 hop or PVR1 short (but not PVR1 hip) mRNAs although these forms were never co-expressed. The expression of PVR1 mRNA in somatotrophs can explain in part the activation by PACAP of the AC system in such cells. In conclusion, the single cell RT-PCR technique was used to demonstrate expression of multiple PVR1 splice variants in single identified pituitary cells. These findings open up important questions on the role of alternative splicing in cell biology. PMID:9801454

  8. Multiple splice variants of the pituitary adenylate cyclase-activating polypeptide type 1 receptor detected by RT-PCR in single rat pituitary cells.

    PubMed

    Bresson-Bépoldin, L; Jacquot, M C; Schlegel, W; Rawlings, S R

    1998-10-01

    Alternative splicing of the rat type 1 pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (PVR1) produces variants that couple either to both adenylyl cyclase (AC) and phospholipase C (PLC) (PVR1 short, PVR1 hop, PVR1 hiphop), or to AC alone (PVR1 hip). We have previously shown that populations of clonal alphaT3-1 gonadotrophs express PVR1 hop and PVR1 short mRNAs, whereas clonal GH4C1 somatotrophs do not. Here we have used the single cell RT-PCR technique to investigate whether normal rat gonadotrophs and somatotrophs express PVR1 mRNA, whether a single cell co-expresses multiple splice variant forms, and whether differential PVR1 mRNA expression correlates with differences in PACAP-stimulated Ca2+ signalling. We found that individual rat gonadotrophs expressed mRNA either for PVR1 hop, for PVR1 short, or co-expressed the two forms. Although we found no differences between the splice variant(s) expressed and the characteristics of PACAP-stimulated Ca2+ responses, the expression of PVR1 mRNA is consistent with the known PACAP stimulation of the PLC system in gonadotrophs. Individual rat somatotrophs also expressed PVR1 hop or PVR1 short (but not PVR1 hip) mRNAs although these forms were never co-expressed. The expression of PVR1 mRNA in somatotrophs can explain in part the activation by PACAP of the AC system in such cells. In conclusion, the single cell RT-PCR technique was used to demonstrate expression of multiple PVR1 splice variants in single identified pituitary cells. These findings open up important questions on the role of alternative splicing in cell biology.

  9. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1

    PubMed Central

    Baxter, Paul S; Martel, Marc-Andre; McMahon, Aoife; Kind, Peter C; Hardingham, Giles E

    2011-01-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca2+ transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB’s activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands. PMID:21623792

  10. Defective responsiveness of adenylate cyclase to forskolin in the Drosophila memory mutant rutabaga.

    PubMed

    Dudai, Y; Sher, B; Segal, D; Yovell, Y

    1985-12-01

    The Drosophila memory mutant rutabaga (rut) has been previously shown to have a defective subpopulation (or functional state) of the enzyme adenylate cyclase. We report here that the reduced adenylate cyclase activity is also associated with a defective responsiveness of the enzyme to forskolin. Forskolin activation isotherms of the enzyme in normal membranes reveal low- and high-affinity forskolin-interacting components; the residual enzyme in the mutant shows a smaller proportion of the high-affinity response. In addition, in mutant membrane preparations, forskolin fails to shift the Km of the enzyme for free Mg2+ and for MgATP, in contrast to the situation in the normal tissue. The defect in the responsiveness to forskolin in rut is even more pronounced in a Lubrol-solubilized enzyme preparation, and is due to intrinsic properties of the cyclase system rather than to the absence (or presence) of a soluble, or detergent solubilized, factor in rut. The reduced forskolin responsiveness maps to the X chromosomal segment 12F5-6 to 13A1-5, within the region previously reported to span the locus that controls both the abortive memory and the lack of Ca2+-stimulation of adenylate cyclase in rut17. The possible relevance of the findings to postulated molecular mechanisms of short-term memory formation is discussed. PMID:3935769

  11. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei.

    PubMed

    Lugo, Juana María; Carpio, Yamila; Morales, Reynold; Rodríguez-Ramos, Tania; Ramos, Laida; Estrada, Mario Pablo

    2013-12-01

    The high conservation of the pituitary adenylate cyclase activating polypeptide (PACAP) sequence indicates that this peptide fulfills important biological functions in a broad spectrum of organisms. However, in invertebrates, little is known about its presence and its functions remain unclear. Up to now, in non-mammalian vertebrates, the majority of studies on PACAP have focused mainly on the localization, cloning and structural evolution of this peptide. As yet, little is known about its biological functions as growth factor and immunomodulator in lower vertebrates. Recently, we have shown that PACAP, apart from its neuroendocrine role, influences immune functions in larval and juvenile fish. In this work, we isolated for the first time the cDNA encoding the mature PACAP from a crustacean species, the white shrimp Litopenaeus vannamei, corroborating its high degree of sequence conservation, when compared to sequences reported from tunicates to mammalian vertebrates. Based on this, we have evaluated the effects of purified recombinant Clarias gariepinus PACAP administrated by immersion baths on white shrimp growth and immunity. We demonstrated that PACAP improves hemocyte count, superoxide dismutase, lectins and nitric oxide synthase derived metabolites in treated shrimp related with an increase in total protein concentration and growth performance. From our results, PACAP acts as a regulator of shrimp growth and immunity, suggesting that in crustaceans, as in vertebrate organisms, PACAP is an important molecule shared by both the endocrine and the immune systems.

  12. Molecular cloning and mRNA distribution of pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide in the lungfish.

    PubMed

    Lee, L T O; Tam, J K V; Chan, D W; Chow, B K C

    2009-04-01

    In this article, we report the isolation of a full-length cDNA clone encoding pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide (PRP) from lungfish Protopterus dolloi. When comparing the deduced amino acid sequences, the lungfish PACAP was found to be highly conserved with other vertebrates; however, the PRP shares only lower levels of sequence identity with known PRP sequences. Consistently in phylogenetic analysis, the lungfish PRP, similar to sturgeon PRP, fails to cluster with other PRPs. In addition to the full-length clone, another cDNA encoding a short precursor that lacks the first 32 amino acids of the PRP was also isolated. Interestingly, similar isoforms were also identified in several nonmammalian vertebrates, and it was suggested that exon skipping of PRP/PACAP transcripts was a mechanism that regulated the expression ratio of PACAP to PRP in nonmammalian vertebrates. By real-time PCR, both long and short PRP/PACAP transcripts were found almost exclusively in the brain, and the short isoform is the more abundant transcript (3.7 times more), indicating that PACAP is the major product produced in lungfish brain. The expression patterns of lungfish and previously studied frog PRP/PACAP suggest that the PRP/PACAP gene in the tetrapod lineage may first express in the central nervous system; in the process of evolution, the functions of these peptides diversified and were later found in other tissues.

  13. Molecular cloning and mRNA distribution of pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide in the lungfish.

    PubMed

    Lee, L T O; Tam, J K V; Chan, D W; Chow, B K C

    2009-04-01

    In this article, we report the isolation of a full-length cDNA clone encoding pituitary adenylate cyclase-activating polypeptide (PACAP)/PACAP-related peptide (PRP) from lungfish Protopterus dolloi. When comparing the deduced amino acid sequences, the lungfish PACAP was found to be highly conserved with other vertebrates; however, the PRP shares only lower levels of sequence identity with known PRP sequences. Consistently in phylogenetic analysis, the lungfish PRP, similar to sturgeon PRP, fails to cluster with other PRPs. In addition to the full-length clone, another cDNA encoding a short precursor that lacks the first 32 amino acids of the PRP was also isolated. Interestingly, similar isoforms were also identified in several nonmammalian vertebrates, and it was suggested that exon skipping of PRP/PACAP transcripts was a mechanism that regulated the expression ratio of PACAP to PRP in nonmammalian vertebrates. By real-time PCR, both long and short PRP/PACAP transcripts were found almost exclusively in the brain, and the short isoform is the more abundant transcript (3.7 times more), indicating that PACAP is the major product produced in lungfish brain. The expression patterns of lungfish and previously studied frog PRP/PACAP suggest that the PRP/PACAP gene in the tetrapod lineage may first express in the central nervous system; in the process of evolution, the functions of these peptides diversified and were later found in other tissues. PMID:19456341

  14. Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins.

    PubMed

    Milde, Markus; Werthmann, Ruth C; von Hayn, Kathrin; Bünemann, Moritz

    2014-04-01

    A wide variety of G-protein-coupled receptors either activate or inhibit ACs (adenylate cyclases), thereby regulating cellular cAMP levels and consequently inducing proper physiological responses. Stimulatory and inhibitory G-proteins interact directly with ACs, whereas G(q)-coupled receptors exert their effects primarily via Ca2+. Using the FRET-based cAMP sensor Epac1 (exchange protein directly activated by cAMP 1)-cAMPS (adenosine 3',5'-cyclic monophosphorothioate), we studied cAMP levels in single living VSMCs (vascular smooth muscle cells) or HUVECs (human umbilical vein endothelial cells) with subsecond temporal resolution. Stimulation of purinergic (VSMCs) or thrombin (HUVECs) receptors rapidly decreased cAMP levels in the presence of the β-adrenergic agonist isoprenaline via a rise in Ca2+ and subsequent inhibition of AC5 and AC6. Specifically in HUVECs, we observed that, in the continuous presence of thrombin, cAMP levels climbed slowly after the initial decline with a delay of a little less than 1 min. The underlying mechanism includes phospholipase A2 activity and cyclo-oxygenase-mediated synthesis of prostaglandins. We studied further the dynamics of the inhibition of ACs via G(i)-proteins utilizing FRET imaging to resolve interactions between fluorescently labelled G(i)-proteins and AC5. FRET between Gα(i1) and AC5 developed at much lower concentration of agonist compared with the overall G(i)-protein activity. We found the dissociation of Gα(i1) subunits and AC5 to occur slower than the G(i)-protein deactivation. This led us to the conclusion that AC5, by binding active Gα(i1), interferes with G-protein deactivation and reassembly and thereby might sensitize its own regulation. PMID:24646224

  15. Persistent stimulation of adenylate cyclase and urea transport by an AVP photolabel

    SciTech Connect

    Eggena, P.; Ma, C.L.; Fahrenholz, F.; Schwartz, I.L.

    1985-07-01

    The effects of a photoaffinity label for arginine vasopressin receptors, (Phe2, Phe(p-N3)3)AVP (N3-AVP), on urea permeability and adenylate cyclase activity have been investigated in the toad urinary bladder. This compound, when activated by ultraviolet light, induced a maximal and persistent increase in the urea permeability of the intact bladder and a persistent increase in the adenylate cyclase activity of toad bladder epithelial cell homogenates. Covalent attachment of the analogue to target tissue during photolysis was equivalent at 4 and 20 degrees C. Bladders exposed to N3-AVP in the presence of AVP during photolysis were substantially less permeable to urea than controls that had been exposed to N3-AVP alone. These findings constitute further evidence in support of the previous suggestion that N3-AVP binds covalently to AVP receptors and, in addition, demonstrates that N3-AVP evokes a persistent increase in adenylate cyclase activity which, in turn, triggers a persistent increase in bladder permeability to urea.

  16. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    SciTech Connect

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  17. Role of Adenylate Cyclase 1 in Retinofugal Map Development

    PubMed Central

    Dhande, Onkar S.; Bhatt, Shivani; Anishchenko, Anastacia; Elstrott, Justin; Iwasato, Takuji; Swindell, Eric C.; Xu, Hong-Ping; Jamrich, Milan; Itohara, Shigeyoshi; Feller, Marla B.; Crair, Michael C.

    2013-01-01

    The development of topographic maps of the sensory periphery is sensitive to the disruption of adenylate cyclase 1 (AC1) signaling. AC1 catalyzes the production of cAMP in a Ca2+/calmodulin-dependent manner, and AC1 mutant mice (AC1−/−) have disordered visual and somatotopic maps. However, the broad expression of AC1 in the brain and the promiscuous nature of cAMP signaling have frustrated attempts to determine the underlying mechanism of AC1-dependent map development. In the mammalian visual system, the initial coarse targeting of retinal ganglion cell (RGC) projections to the superior colliculus (SC) and lateral geniculate nucleus (LGN) is guided by molecular cues, and the subsequent refinement of these crude projections occurs via an activity-dependent process that depends on spontaneous retinal waves. Here, we show that AC1−/− mice have normal retinal waves but disrupted map refinement. We demonstrate that AC1 is required for the emergence of dense and focused termination zones and elimination of inaccurately targeted collaterals at the level of individual retinofugal arbors. Conditional deletion of AC1 in the retina recapitulates map defects, indicating that the locus of map disruptions in the SC and dorsal LGN of AC1−/− mice is presynaptic. Finally, map defects in mice without AC1 and disrupted retinal waves (AC1−/−;β2−/− double KO mice) are no worse than those in mice lacking only β2−/−, but loss of AC1 occludes map recovery in β2−/− mice during the second postnatal week. These results suggest that AC1 in RGC axons mediates the development of retinotopy and eye-specific segregation in the SC and dorsal LGN. PMID:22102330

  18. Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart.

    PubMed Central

    Alexander, R W; Galper, J B; Neer, E J; Smith, T W

    1982-01-01

    We have studied the properties of beta-adrenergic receptors and of their interaction with adenylate cyclase in the chick myocardium during embryogenesis. Between 4.5 and 7.5 days in ovo the number of receptors determined by (-)-[3H]dihydroalprenolol ([3H]DHA) binding is constant at approx. 0.36 pmol of receptor/mg of protein. By day 9 the density decreases significantly to 0.22 pmol of receptor/mg of protein. At day 12.5--13.5 the number was 0.14--0.18 pmol of receptor/mg of protein. This number did not change further up to day 16. The same results were obtained with guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) added to the assay mixtures. There was no significant change in receptor affinity for the antagonist [3H]DHA between days 5.5 and 13. Despite the decrease in numbers of beta-adrenergic receptors, there was no change in basal, p[NH]ppG-, isoprenaline- or isoprenaline-plus-p[NH]ppG-stimulated adenylate cyclase activity between days 3 and 12 of development. We conclude that beta-adrenergic receptors and adenylate cyclase are not co-ordinately regulated during early embryonic development of the chick heart. Some of the beta-adrenergic receptors present very early in the ontogeny of cardiac tissue appear not to be coupled to adenylate cyclase since their loss is not reflected in decreased activation of the enzyme. PMID:6289805

  19. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems.

    PubMed

    Iemolo, Attilio; Ferragud, Antonio; Cottone, Pietro; Sabino, Valentina

    2015-07-01

    Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF.

  20. Pituitary adenylate cyclase-activating polypeptide enhances saliva secretion via direct binding to PACAP receptors of major salivary glands in mice.

    PubMed

    Matoba, Yuko; Nonaka, Naoko; Takagi, Yoshitoki; Imamura, Eisaku; Narukawa, Masayuki; Nakamachi, Tomoya; Shioda, Seiji; Banks, William A; Nakamura, Masanori

    2016-09-01

    Xerostomia, or dry mouth, is a common syndrome that is generally treated with artificial saliva; however, no other effective methods have yet been established. Saliva secretion is mainly under the control of the autonomic nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is recognized as a multifunctional neuropeptide in various organs. In this study, we examined the effect of PACAP on saliva secretion, and detected the distribution of the PACAP type 1 receptor (PAC1R) in major salivary glands, including the parotid, submandibular, and sublingual glands, in 9-week-old male C57BL/6 mice. Intranasal administration of PACAP 38 increased the amount of saliva secreted, which was not inhibited by atropine pretreatment. Immunohistochemical analysis showed that PAC1R was distributed in the three major salivary glands. In the parotid and sublingual glands, PAC1R was detected in striated duct cells, whereas in the submandibular gland, a strong PAC1R immunoreaction was detected in tall columnar epithelial cells in the granular ducts (i.e., pillar cells), as well as in some striated duct cells. PACAP significantly increased the concentration of epidermal growth factor in saliva. These results suggest that PACAP directly regulates saliva secretion by controlling the absorption activity in the ducts, and that pillar cells regulate the function of granular epithelial cells in the granular duct, such as the secretion of growth factors into the saliva. Collectively, these results suggest the possibility of PACAP as a new effective treatment of xerostomia. Anat Rec, 299:1293-1299, 2016. © 2016 Wiley Periodicals, Inc. PMID:27339371

  1. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) and Vasoactive Intestinal Peptide (VIP) Regulate Murine Neural Progenitor Cell Survival, Proliferation, and Differentiation

    PubMed Central

    Scharf, Eugene; May, Victor; Braas, Karen M.; Shutz, Kristin C.

    2009-01-01

    Neural stem/progenitor cells (NPC) have gained wide interest over the last decade from their therapeutic potential, either through transplantation or endogenous replacement, after central nervous system (CNS) disease and damage. Whereas several growth factors and cytokines have been shown to promote NPC survival, proliferation, or differentiation, the identification of other regulators will provide much needed options for NPC self-renewal or lineage development. Although previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) can regulate stem/progenitor cells, the responses appeared variable. To examine the direct roles of these peptides in NPCs, postnatal mouse NPC cultures were withdrawn from epidermal growth factor (EGF) and fibroblastic growth factor (FGF) and maintained under serum-free conditions in the presence or absence of PACAP27, PACAP38, or VIP. The NPCs expressed the PAC1(short)null receptor isoform, and the activation of these receptors decreased progenitor cell apoptosis more than 80% from TUNEL assays and facilitated proliferation more than fivefold from bromodeoxyuridine (BrdU) analyses. To evaluate cellular differentiation, replicate control and peptide-treated cultures were examined for cell fate marker protein and transcript expression. In contrast with previous work, PACAP peptides downregulated NPC differentiation, which appeared consistent with the proliferation status of the treated cells. Accordingly, these results demonstrate that PACAP signaling is trophic and can maintain NPCs in a multipotent state. With these attributes, PACAP may be able to promote endogenous NPC self-renewal in the adult CNS, which may be important for endogenous self-repair in disease and ageing processes. PMID:18629655

  2. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) regulate murine neural progenitor cell survival, proliferation, and differentiation.

    PubMed

    Scharf, Eugene; May, Victor; Braas, Karen M; Shutz, Kristin C; Mao-Draayer, Yang

    2008-11-01

    Neural stem/progenitor cells (NPC) have gained wide interest over the last decade from their therapeutic potential, either through transplantation or endogenous replacement, after central nervous system (CNS) disease and damage. Whereas several growth factors and cytokines have been shown to promote NPC survival, proliferation, or differentiation, the identification of other regulators will provide much needed options for NPC self-renewal or lineage development. Although previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) can regulate stem/progenitor cells, the responses appeared variable. To examine the direct roles of these peptides in NPCs, postnatal mouse NPC cultures were withdrawn from epidermal growth factor (EGF) and fibroblastic growth factor (FGF) and maintained under serum-free conditions in the presence or absence of PACAP27, PACAP38, or VIP. The NPCs expressed the PAC1(short)null receptor isoform, and the activation of these receptors decreased progenitor cell apoptosis more than 80% from TUNEL assays and facilitated proliferation more than fivefold from bromodeoxyuridine (BrdU) analyses. To evaluate cellular differentiation, replicate control and peptide-treated cultures were examined for cell fate marker protein and transcript expression. In contrast with previous work, PACAP peptides downregulated NPC differentiation, which appeared consistent with the proliferation status of the treated cells. Accordingly, these results demonstrate that PACAP signaling is trophic and can maintain NPCs in a multipotent state. With these attributes, PACAP may be able to promote endogenous NPC self-renewal in the adult CNS, which may be important for endogenous self-repair in disease and ageing processes.

  3. Ontogeny of fetal adenylate cyclase; mechanisms for regulation of beta-adrenergic receptors.

    PubMed

    Maier, J A; Roberts, J M; Jacobs, M M

    1989-11-01

    Transmembrane second messenger signalling systems regulate differentiation, growth and homeostatic responses during fetal development. The beta-adrenergic adenylate cyclase system is the best studied of these and has been used as a model to investigate the control of developmental processes. In tissues such as lung, heart and parotid, beta-adrenergic responsiveness of adenylate cyclase increases during development. In the developing fetal lung beta-receptor concentration increases during gestation or after glucocorticoid treatment, but cannot fully explain enhanced adrenergic responsiveness. To probe developmental and hormonal effects on beta-receptor function, we asked if advancing gestation or glucocorticoid treatment alters beta-receptor-Gs interactions in fetal rabbit lung membrane particulates. Before 25 days gestation, 1-isoproterenol competes for 3H-dihydroalprenolol (DHA), a radiolabelled beta-antagonist, with a single low affinity, later in gestation, high and low affinities of isoproterenol for the beta-receptor are present which can be shifted to the lower affinity by addition of guanyl nucleotide. High affinity binding is precociously induced in 25 days--fetal lung particulates as early as 3 h after maternal betamethasone treatment, but beta-adrenoreceptor concentration in treated fetuses was increased over controls only after 24 h of treatment. Cholera toxin catalyzed ADP ribosylation of membrane particulates showed cholera toxin substrate (Gs) was not altered by glucocorticoid treatment. Stimulation of adenylate cyclase activity with isoproterenol (100mM) and GTP (100mM) resulted in no incremental increase over that produced by GTP (100mM) alone in glucocorticoid treated or control particulates, either early or late in gestation. These data demonstrate that beta-receptor-Gs interactions are not sufficient to produce full agonist responses. Although both beta-adrenergic receptors and Gs are present in fetal rabbit lung early in gestation, interaction

  4. Stimulation of Synthesis and Release of Brain-Derived Neurotropic Factor (BDNF) from Intestinal Smooth Muscle Cells by Substance P and Pituitary Adenylate Cyclase-Activating Peptide (PACAP)

    PubMed Central

    Al-Qudah, M.; Alkahtani, R.; Akbarali, H.I.; Murthy, K.S.; Grider, J.R.

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. Methods The expression and secretion of BDNF from smooth muscle cultured from rabbit longitudinal intestinal muscle in response to substance P and pituitary adenylate cyclase activating peptide (PACAP) was measured by western blot and ELISA. BDNF mRNA was measured by rt-PCR. Key Results The expression of BNDF protein and mRNA was greater in smooth muscle cells from the longitudinal muscle than from circular muscle layer. PACAP and substance P increased the expression of BDNF protein and mRNA in cultured longitudinal smooth muscle cells. PACAP and substance P also stimulated the secretion of BDNF from cultured longitudinal smooth muscle cells. Chelation of intracellular calcium with BAPTA prevented substance P-induced increase in BDNF mRNA and protein expression as well as substance P-induced secretion of BDNF. Conclusions & Inferences Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in smooth muscle cells and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. PMID:26088546

  5. Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain

    PubMed Central

    Missig, Galen A.; Roman, Carolyn W.; Vizzard, Margaret A.; Braas, Karen M.; May, Victor

    2015-01-01

    The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders. PMID:24998751

  6. Ventilatory and cardiovascular actions of centrally and peripherally administered trout pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) in the unanaesthetized trout.

    PubMed

    Le Mével, J-C; Lancien, F; Mimassi, N; Conlon, J M

    2009-12-01

    In mammals, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are involved in cardiovascular and respiratory regulation. Several studies have demonstrated the presence of PACAP, VIP and their receptors in various tissues of teleost fish, including the brain, but little is known about their respiratory and cardiovascular effects. The present study was undertaken to compare the central and peripheral actions of graded doses (25-100 pmol) of trout PACAP and trout VIP on ventilatory and cardiovascular variables in the unanaesthetized rainbow trout. Compared with vehicle, only intracerebroventricular injection of PACAP significantly (P<0.05) elevated the ventilation frequency and the ventilation amplitude, but both peptides significantly increased the total ventilation (total ventilation). However, the maximum hyperventilatory effect of PACAP was approximately 2.5-fold higher than the effect of VIP at the 100 pmol dose (PACAP, (total ventilation)=+5407+/-921 arbitrary units, a.u.; VIP, (total ventilation)=+2056+/-874 a.u.; means +/- s.e.m.). When injected centrally, only PACAP produced a significant increase in mean dorsal aortic blood pressure (P(DA)) (100 pmol: +21%) but neither peptide affected heart rate (f(H)). Intra-arterial injections of either PACAP or VIP were without effect on the ventilatory variables. PACAP was without significant action on P(DA) and f(H) while VIP significantly elevated P(DA) (100 pmol: +36%) without changing f(H). In conclusion, the selective central hyperventilatory actions of exogenously administered trout PACAP, and to a lesser extent VIP, suggest that the endogenous peptides may be implicated in important neuroregulatory functions related to the central control of ventilation in trout.

  7. Bi-directional effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on fear-related behavior and c-Fos expression after fear conditioning in rats.

    PubMed

    Meloni, Edward G; Venkataraman, Archana; Donahue, Rachel J; Carlezon, William A

    2016-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in stress regulation and learning and memory. PACAP has neuromodulatory actions on brain structures within the limbic system that could contribute to its acute and persistent effects in animal models of stress and anxiety-like behavior. Here, male Sprague-Dawley rats were implanted with intracerebroventricular (ICV) cannula for infusion of PACAP-38 (0.5, 1, or 1.5 μg) or vehicle followed 30 min later by fear conditioning. Freezing was measured early (1, 4, and 7 days) or following a delay (7, 10, and 13 days) after conditioning. PACAP (1.5 μg) produced a bi-phasic response in freezing behavior across test days: relative to controls, PACAP-treated rats showed a reduction in freezing when tested 1 or 7 days after fear conditioning that evolved into a significant elevation in freezing by the third test session in the early, but not delayed, group. Corticosterone (CORT) levels were significantly elevated in PACAP-treated rats following fear conditioning, but not at the time of testing (Day 1). Brain c-Fos expression revealed PACAP-dependent alterations within, as well as outside of, areas typically implicated in fear conditioning. Our findings raise the possibility that PACAP disrupts fear memory consolidation by altering synaptic plasticity within neurocircuits normally responsible for encoding fear-related cues, producing a type of dissociation or peritraumatic amnesia often seen in people early after exposure to a traumatic event. However, fear memories are retained such that repeated testing and memory reactivation (e.g., re-experiencing) causes the freezing response to emerge and persist at elevated levels. PACAP systems may represent an axis on which stress and exposure to trauma converge to promote maladaptive behavioral responses characteristic of psychiatric illnesses such as post-traumatic stress disorder (PTSD). PMID:26590791

  8. Characterization of the dopamine stimulated adenylate cyclase in the pedal ganglia of Mytilus edulis: interactions with etorphine, beta-endorphin, DALA, and methionine enkephalin.

    PubMed

    Stefano, G B; Catapane, E J; Kream, R M

    1981-03-01

    The dopamine-stimulated adenylate cyclase activity was studied both in vivo and in vitro in the central nervous system of the bivalve mollusc Mytilus edulis. Dopamine, epinine, and apomorphine stimulated the enzyme system. Fluphenazine, haloperidol, chlorpromaxine, and to a lesser extent BOL inhibited the dopamine-stimulated adenylate cyclase. Etorphine, beta-endorphine, DALA, and methionine enkephalin depressed cyclic AMP levels. This phenomena was naloxone reversible. In addition, the opioids inhibited the stimulation of adenylate cyclase by dopamine. This phenomena was also naloxone reversible. The study demonstrates an interaction among dopamine, the opioids, and cyclic AMP. PMID:6286125

  9. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes.

    PubMed

    Tolkovsky, A M; Levitzki, A

    1978-09-01

    The mode of coupling of the beta-adrenergic receptor to the enzyme adenylate cyclase in turkey erythrocyte membranes was analyzed in detail. A number of experimental techniques have been used: (1) measurement of the kinetics of cyclase activation to its permanetly active state in the presence of guanylyl imidodiphosphate, as a function of hormone concentrations; (2) measurement of antagonist and agoinst binding to the beta-adrenergic receptor prior and subsequent to the enzyme activation by hormone and guanylyl imidodiphosphate. On the bases of these two approaches, all the models of receptor to enzyme coupling which involve an equilibrium between the enzyme and the receptor can be rejected. The binding and the kinetic data, however, can be fitted by two diametrically opposed models of receptor to enzyme coupling: (a) the precouped enzyme-receptor model where activation of the enzyme occurs, according to the following scheme: formula (see text) where H is the hormone, RE is the precoupled respetor-enzyme complex, k1 and k2 are the rate constants describing hormone binding, and k is the rate constant characterizing the formation of HRE' from the intermediate HRE. According to this model, the activated complex is composed of all of the interacting species. (b) The other model is the collision coupling mechanism: formula (see test) wheere KH is the horome-receptor dissociation constant, k1 is the bimolecular rate constant governing the formation of HRE, and k3 the rate constant governing the activation of the enzyme. In this case the intermediate never accumulates and constitutes only a small fraction of the total receptor and adenylate cyclase concentrations. In order to establish which of the two mechanisms governs the mode of adenylate cyclase activation by its receptor, a diagnostic experiment was performed: Progressive inactivation of the beta receptor by a specific affinity label was found to cause a decrease in the maximal binding capacity of the receptor and a

  10. Increased sensitivity in the interaction of the dopaminergic/adenosinergic system at the level of the adenylate cyclase activity in the striatum of the "weaver" mouse.

    PubMed

    K, Botsakis; V, Tondikidou; N, Panagopoulos; M, Margariti; N, Matsokis; F, Angelatou

    2016-10-01

    The specific antagonistic interaction between dopamine D1 and adenosine A1 receptors (D1/A1), as well as between dopamine D2 and adenosine A2a receptors (D2/A2a) exist not only at the receptor/receptor level, but also at the level of the secondary messengers. In this study, we examined the possible changes in these interactions at the level of cAMP formation in membrane preparation from "weaver" mouse striatum (a genetic model of Parkinson disease), by using specific agonists of these receptors. We also examined in the striatum of the "weaver" mouse the interaction between D1 and D2 dopamine receptors. Our results showed that in the striatum of "weaver" mice: a) the cAMP synthesis induced by D1 receptor activation (SKF 38393), was significantly reduced compared to control mice, while A1 receptor activation (L-PIA) leaded to a more intense inhibition of the D1-induced cAMP-formation compared to the controls, b) the cAMP synthesis which was induced by A2a receptor activation (CGS 21680), was significantly increased compared to the control mice. The specific D2 receptor agonist Quinpirole, added in low concentrations, caused a significant reduction of the A2a-induced cAMP formation, which was not observed in the control mouse. Furthermore, the D1 receptor induced cAMP synthesis was significantly higher in control compared to "weaver" striatum, which was more efficiently downregulated by D2 receptor agonist Quinpirole. These results suggest that the sensitivity to D1 and A2a receptor agonists is altered and that the interaction between D1/A1 and D2/A2a receptors is enhanced in the striatum of the "weaver" mutation, while an uncoupling between D1 and D2 receptors was observed. Since the adenylate cyclase basal activity did not differ between "weaver" and control striatum, the above-mentioned changes seem to be due to alterations in the function of the adenosine/dopamine receptors and their coupling to the G-proteins.

  11. In vivo and in vitro models of demyelinating disease: activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes.

    PubMed Central

    Beushausen, S; Narindrasorasak, S; Sanwal, B D; Dales, S

    1987-01-01

    The specificity of JHM virus (JHMV) tropism for rat oligodendrocytes, as one of the primary host cells in the central nervous system, is maintained after explanation (S. Beushausen and S. Dales, Virology 141:89-101, 1985). The temporal correlation between onset of resistance to JHMV infection in vivo, completion of myelination, and maturation of the central nervous system can be simulated in vitro by inducers of oligodendrocyte differentiation (Beushausen and Dales, Virology, 1985). Stimulation of differentiation through the elevation of intracellular cyclic AMP (cAMP) levels suggests a possible connection between activation of the adenylate cyclase system and coronavirus expression. Chromatographic analysis of cAMP-dependent protein kinase activity in cytosol extracts prepared from astrocytes or oligodendrocytes revealed that both glial cell types were deficient in protein kinase I, indicating that expression of coronavirus in differentiated cells was not contingent upon the presence of protein kinase I. However, treatment with N6,2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (dbcAMP) resulted in a severalfold enhancement of the free regulatory subunit (RI) in oligodendrocytes but not in astrocytes. The RII subunit in both neural cell types was relatively unaffected. Rapid increase in RI due to dbcAMP treatment was correlated with inhibition of JHMV expression. Other differentiation inducers, including 8-Br cAMP and forskolin which, by contrast, caused a decrease in detectable RI, also blocked JHMV expression. This apparent anomaly can be attributed to an increased turnover of RI due to destabilization of the molecule which occurs upon site-specific binding of the cyclic nucleotides. On the basis of these observations, we conclude that the state of oligodendrocyte differentiation manifested with the modulation of RI regulates JHMV expression. The differentiation process did not affect either virus adsorption or sequestration but appeared to inhibit the

  12. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    SciTech Connect

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.; Guillon, G.; Homburger, V.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher mass (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.

  13. Insect Stage-Specific Adenylate Cyclases Regulate Social Motility in African Trypanosomes

    PubMed Central

    Lopez, Miguel A.; Saada, Edwin A.

    2014-01-01

    Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed “social motility,” based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies. PMID:25416239

  14. Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes.

    PubMed

    Lopez, Miguel A; Saada, Edwin A; Hill, Kent L

    2015-01-01

    Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed "social motility," based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies. PMID:25416239

  15. Adenylate Cyclase Toxin (ACT) from Bordetella hinzii: Characterization and Differences from ACT of Bordetella pertussis

    PubMed Central

    Donato, Gina M.; Hsia, Hung-Lun J.; Green, Candace S.; Hewlett, Erik L.

    2005-01-01

    Bordetella hinzii is a commensal respiratory microorganism in poultry but is increasingly being recognized as an opportunistic pathogen in immunocompromised humans. Although associated with a variety of disease states, practically nothing is known about the mechanisms employed by this bacterium. In this study, we show by DNA sequencing and reverse transcription-PCR that both commensal and clinical strains of B. hinzii possess and transcriptionally express cyaA, the gene encoding adenylate cyclase toxin (ACT) in other pathogenic Bordetella species. By Western blotting, we also found that B. hinzii produces full-length ACT protein in quantities that are comparable to those made by B. pertussis. In contrast to B. pertussis ACT, however, ACT from B. hinzii is less extractable from whole bacteria, nonhemolytic, has a 50-fold reduction in adenylate cyclase activity, and is unable to elevate cyclic AMP levels in host macrophages (nontoxic). The decrease in enzymatic activity is attributable, at least in part, to a decreased binding affinity of B. hinzii ACT for calmodulin, the eukaryotic activator of B. pertussis ACT. In addition, we demonstrate that the lack of intoxication by B. hinzii ACT may be due to the absence of expression of cyaC, the gene encoding the accessory protein required for the acylation of B. pertussis ACT. These results demonstrate the expression of ACT by B. hinzii and represent the first characterization of a potential virulence factor of this organism. PMID:16267282

  16. Adenylate cyclase regulates elongation of mammalian primary cilia

    SciTech Connect

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  17. Heterologous desensitization of adenylate cyclase from pigeon erythrocytes under the action of the catalytic subunit of cAMP-dependent protein kinase

    SciTech Connect

    Popov, K.M.; Bulargina, T.V.; Severin, E.S.

    1985-09-20

    Preincubation of the plasma membranes from pigeon erythrocytes with the catalytic subunit of cAMP-dependent protein kinase leads to desensitization of adenylate cyclase of the erythrocytes. The adenylate cyclase activity, measured in the presence of 10 ..mu..M isoproterenol and 50 ..mu..M GTP-..gamma..-S, is decreased by 40% in 10 min of incubation, while the activity in the presence of 50 ..mu..M GTP-..gamma..-S is decreased by 35% in 20 min. The decrease in the adenylate cyclase activity is due to an increase in the lag phase of activation of the enzyme in the presence of a GTP analog stable to hydrolysis and a decrease in the activity in the steady-state phase of activation. Heterologous desensitization of adenylate cyclase under the action of cAMP-dependent protein kinase is coupled with a decrease in the number of ..beta..-adrenoreceptors capable of passing into a state of high affinity for antagonists in the absence of guanylic nucleotides. The influence of the catalytic subunit on adenylate cyclase entirely models the process of desensitization of the enzyme absorbed in the influence of isoproterenol or cAMP on erythrocytes.

  18. Magnesium regulation of the beta-receptor-adenylate cyclase complex. II. Sc3+ as a Mg2 antagonist.

    PubMed

    Maguire, M E

    1982-09-01

    Sc3+ bears the same relationship to Mg2+ as La3+ to Ca2+, a similar ionic radius but increased charge. Therefore, the possibility was investigated that Sc3+ would be a Mg2+ antagonist at Mg2+ sites on the beta-adrenergic receptor-adenylate cyclase complex of the murine S49 lymphoma cell. Sc3+ is consistently much more potent than La3+ in inhibiting adenylate cyclase regardless of the mode of activation. IC50 values for Sc3+ of 10-30 microM were observed, whereas those for La3+ were about 300 microM. However, Sc3+ does not block the ability of Mg2+ to increase beta-receptor affinity for agonist nor alter agonist affinity by itself. Furthermore, Sc3+ is a weak inhibitor of the beta-receptor-mediated inhibition of Mg2+ influx. In cyc- S49 membranes, in which the catalytic subunit of cyclase cannot interact with the nucleotide-coupling protein(s), Sc3+ is as potent as in wild-type S49 membranes and again more potent than La3+. Substrate kinetics show that Sc3+, like Mg2+, modulates adenylate cyclase activity by affecting the Vmax without altering the Km for substrate. The data suggest that Sc3+ is a specific antagonist of Mg2+ at the Mg2+ site on the catalytic subunit and support the suggestion that there are two distinct sites for Mg2+ with different functions, one site on the coupling protein(s) and one on the catalytic subunit. It was also found that an apparent complex of Sc3+ and F-, ScF4-, is a potent inhibitor of adenylate cyclase, with an IC50 of 3 microM. PMID:6292689

  19. Guanine-nucleotide-dependent inhibition of adenylate cyclase of rabbit heart by glucagon.

    PubMed

    Kiss, Z; Tkachuk, V A

    1984-07-16

    The present study demonstrates an inhibitory effect of glucagon on the adenylate cyclase system of rabbit heart. Inhibition was maximal (22-40%) at 0.1-0.01 microM glucagon and required the presence of 0.01-0.1 mM GTP or guanosine 5'-[beta, gamma-imido]triphosphate (GuoPP[NH]P). Reduced or no inhibitor effect of glucagon was observed: (a) after limited proteolysis of plasma membrane proteins by trypsin, (b) in the presence of 1 mM Mn2+, (c) in the absence of Na+, and (d) during the first 10 min of incubation if GuoPP[NH]P was the activating ligand. With GTP as the activating ligand, inhibition of cyclase by glucagon occurred without delay. These data are consistent with a mediation of glucagon inhibition by a guanine-nucleotide-binding protein. In the presence of ethanol (0.2 M) or benzyl alcohol (0.05 M), agents which are known to increase the fluidity of biological membranes, glucagon increased the enzyme activity in a guanine-nucleotide-dependent manner. Activation of cyclase in the presence of alcohols was maximal (30-60%) at 0.1-1.0 microM glucagon and 0.01 mM guanine nucleotides. Data suggest that glucagon receptors can interact with both the activatory and inhibitory guanine-nucleotide-binding proteins and the physical state of membranes may play a role in determining which interaction will be preferential.

  20. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  1. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography.

    PubMed Central

    Vauquelin, G; Geynet, P; Hanoune, J; Strosberg, A D

    1977-01-01

    The adenylate cyclase [ATP pyrophosphatelyase (cyclizing); EC 4.6.1.1] and beta-adrenergic receptor of plasma membranes of turkey erythrocytes were solubilized in an active form by treatment with either NaF or guanylylimidodiphosphate and digitonin. The solubilized enzyme was no longer stimulated by catecholamines, NaF, or guanine nucleotides. The digitonin extract was chromatographed on an alprenolol-agarose derivative. While the bulk of protein and all the adenylate cyclase activity passed unretarded through the column, the receptor was retained. It eluted free of enzyme activity with an alprenolol solution containing 1 M NaCl; the yield was 25-30%. The protein content of the alprenolol eluates was too low to be estimated by the Lowry technique and was assessed by a more sensitive fluorometric method. Under these conditions, the beta-adrenergic receptor was purified approximately 2000-fold in a single step with retention of all its pharmacological properties. These experiments establish that the beta-adrenergic receptor and the adenylate cyclase are independent entities which may be separated on a functional basis. PMID:198798

  2. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    SciTech Connect

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  3. Endotoxic lipopolysaccharides stimulate steroidogenesis and adenylate cyclase in adrenal tumor cells.

    PubMed

    Wolff, J; Cook, G H

    1975-12-01

    Lipopolysaccharides (endotoxins) from Escherichia coli, Serratia marcesens and Salmonella typhosa stimulated steroid production in Y-1 adrenal tumor cells in culture with a latent period of 3-4 h. Lipid A, derived from Escherichia coli lipopolysaccharide, also stimulated steroidogenesis. Lipopolysaccharides and lipid A also stimulate adenylate cyclase activity and cause rounding of the cells. In contrast, lipopolysaccharides do not stimulate steroidogenesis in receptor-deficient adrenal tumor cells (OS-3) or Leydig tumor cells (I-10). This tends to rule out contamination by enterotoxin to which these lines respond. Although both hormone and lipopolysaccharide responses are lost in these lines, there was no interaction between these sites as judged by the failure of lipopolysaccharides to block, during their latency, the response to corticotropin in Y-1 cells. The possibility that the lipopolysaccharide effect is one on membrane conformation is discussed.

  4. Studies on cell migration, adenylate cyclase and membrane-coating granules in the buccal epithelium of the zinc-deficient rabbit, including the influence of isoproterenol.

    PubMed

    Chen, S Y

    1988-01-01

    Cell migration was slightly increased; cytochemical reaction deposits of adenylate cyclase and the area density of membrane-coating granules (MCG) were significantly increased. Upon isoproterenol stimulation, the MCG area density was significantly increased, whereas the cell migration rate was unchanged. Thus in zinc deficiency, there may be a simultaneous increase in the production and secretion of MCGs, in adenylate cyclase activity, and in cell migration. The non-significantly increased cell migration rate may not keep pace with the significantly increased cell-production rate, resulting in thickening of the epithelium.

  5. Adenylate cyclase 3: a new target for anti-obesity drug development.

    PubMed

    Wu, L; Shen, C; Seed Ahmed, M; Östenson, C-G; Gu, H F

    2016-09-01

    Obesity has become epidemic worldwide, and abdominal obesity has a negative impact on health. Current treatment options on obesity, however, still remain limited. It is then of importance to find a new target for anti-obesity drug development based upon recent molecular studies in obesity. Adenylate cyclase 3 (ADCY3) is the third member of adenylyl cyclase family and catalyses the synthesis of cAMP from ATP. Genetic studies with candidate gene and genome-wide association study approaches have demonstrated that ADCY3 genetic polymorphisms are associated with obesity in European and Chinese populations. Epigenetic studies have indicated that increased DNA methylation levels in the ADCY3 gene are involved in the pathogenesis of obesity. Furthermore, biological analyses with animal models have implicated that ADCY3 dysfunction resulted in increased body weight and fat mass, while reduction of body weight is partially explained by ADCY3 activation. In this review, we describe genomic and biological features of ADCY3, summarize genetic and epigenetic association studies of the ADCY3 gene with obesity and discuss dysfunction and activation of ADCY3. Based upon all data, we suggest that ADCY3 is a new target for anti-obesity drug development. Further investigation on the effectiveness of ADCY3 activator and its delivery approach to treat abdominal obesity has been taken into our consideration. PMID:27256589

  6. Stimulatory and inhibitory effects of guanine nucleotides on arginine-vasotocin-sensitive adenylate cyclase in the epithelial cell membranes of the bullfrog bladder.

    PubMed

    Mishina, T; Shimada, H; Marumo, F

    1983-11-01

    The effects of arginine-vasotocin and nucleotides on the steady-state kinetics of the adenylate cyclase activity in the epithelial cell membranes of the bullfrog (Rana catesbiana) bladder were studied. Arginine-vasotocin stimulated adenylate cyclase more effectively than oxytocin or arginine-vasopressin, with respect to both the maximal hormonal activation ratio relative to basal, and the hormone concentration yielding a half-maximal response (apparent Km). Arginine-vasotocin, GTP and its analogue guanyl-5'-yl imidodiphosphate (Gpp(NH)p) increased the Vmax of the basal adenylate cyclase activity, but showed no effect of the apparent Km of the system for ATP. In addition, Gpp(NH)p enhanced the arginine-vasotocin-stimulated adenylate cyclase activity, further increasing the Vmax, while GTP showed no statistically significant effect. Dual effects of GDP were apparent: it was stimulatory at 1 x 10(-5) mol/l and inhibitory at 1 x 10(-3) mol/l, on both the basal and the arginine-vasotocin-stimulated adenylate cyclase activity. Guanosine 5'-monophosphate, CTP, UTP and ITP showed no apparent effect on the enzyme activity. Sodium fluoride acted in the same manner as GTP on the adenylate cyclase system, increasing only basal activity. Adenylate cyclase activities exhibited pH optima that were less distinct in the presence than in the absence of Gpp(NH)p. The Arrhenius plot of the temperature experiment showed that a high-energy step was involved for activation by Gpp(NH)p or arginine-vasotocin. When the relative activation ratios by arginine-vasotocin at different ATP concentrations were studied, a distinct activation optimum was shown at 2.5 x 10(-4) mol ATP/l, either in the absence or presence of Gpp(NH)p. The possibility that GTP, GDP nd ATP play a regulatory role in the epithelial cells of the bullfrog bladder by adjusting the responsiveness of the system to a natural hormone, arginine-vasotocin, is discussed. PMID:6606697

  7. Effects of adenylate cyclase toxin from Bordetella pertussis on human neutrophil interactions with Coccidioides immitis and Staphylococcus aureus.

    PubMed Central

    Galgiani, J N; Hewlett, E L; Friedman, R L

    1988-01-01

    Bordetella pertussis extract that contained adenylate cyclase toxin produced large increases in human neutrophil cyclic AMP levels and inhibited their oxidative burst, as reflected by luminol-enhanced chemiluminescence and superoxide release. The adenylate cyclase toxin-containing extract blocked neutrophil-mediated inhibition of N-acetylglucosamine incorporation by arthroconidia of Coccidioides immitis in a dose-dependent fashion but had no effect on neutrophil phagocytosis of Candida glabrata and only a slight inhibitory effect on arthroconidial attachment. Neither purified pertussis toxin nor extracts from Bordetella mutants lacking the adenylate cyclase toxin affected neutrophil-mediated inhibition of arthroconidial N-acetylglucosamine incorporation. These studies indicate that adenylate cyclase toxin, alone or in concert with other B. pertussis-elaborated toxins, blocks neutrophil inhibition of arthroconidia, primarily by affecting neutrophil responses other than attachment or phagocytosis. PMID:2894360

  8. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed

    Ugur, O; Onaran, H O

    1997-05-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  9. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.

    PubMed Central

    Ugur, O; Onaran, H O

    1997-01-01

    We used a simple experimental approach to clarify some contradictory predictions of the collision coupling and equilibrium models (e.g. ternary complex, two-state ternary complex or quinternary complex), which describe G-protein-mediated beta-adrenergic receptor signalling in essentially different manners. Analysis of the steady-state coupling of beta-adrenoceptors to adenylate cyclase in turkey erythrocyte membranes showed that: (1) in the absence of an agonist, Gpp(NH)p (a hydrolysis-resistant analogue of GTP) can activate adenylate cyclase very slowly; (2) this activity reaches a steady state in approx. 5 h, the extent of activity depending on the concentration of the nucleotide; (3) isoprenaline-activated steady-state adenylate cyclase can be inactivated by propranolol (a competitive antagonist that relaxes the receptor activation), in the presence of Gpp(NH)p (which provides a virtual absence of GTPase) and millimolar concentrations of Mg2+ (the rate of this inactivation is relatively fast); (4) increasing the concentration of Gpp(NH)p can saturate the steady-state activity of adenylate cyclase. The saturated enzyme activity was lower than that induced by isoprenaline under the same conditions. This additional agonist-induced activation was reversible. In the light of these results, we conclude that agonist can also activate the guanine nucleotide-saturated system in the absence of GTPase by a mechanism other than guanine nucleotide exchange. We explain these phenomena in the framework of a quinternary complex model as an agonist-induced and receptor-mediated dissociation of guanine nucleotide-saturated residual heterotrimer, the equilibrium concentration of which is not necessarily zero. These results, which suggest a continuous interaction between receptor and G-protein, can hardly be accommodated by the collision coupling model that was originally suggested for the present experimental system and then applied to many other G-protein systems. Therefore we

  10. Regulation of uterine adenylate cyclase by magnesium, manganese and calcium ions

    SciTech Connect

    Rayford, W.; Sanders, R.B.

    1987-05-01

    The regulation of rat uterine adenylate cyclase (AC) by Mg/sup 2 +/, Mn/sup 2 +/ and Ca/sup 2 +/ was examined during metestrus and proestrus of the estrous cycle and Days 1 and 4 of pseudopregnancy, before and after a mild trauma to the uterus. Mg/sup 2 +/ increased cyclase activity on all days measured. Maximal enzymic activity occurred with 5-10 mM Mg/sup 2 +/ during Day 4 following a mild traumatic stimulus to the uterus. The apparent Ka for Mg/sup 2 +/ was not significantly changed during these days. AC activity as a function of Mn/sup 2 +/ concentration was biphasic. It increased with increasing concentrations of Mn/sup 2 +/ and was maximal at 1.0-2.5 mM during Day 4 following uterine trauma. Higher concentrations of Mn/sup 2 +/ were inhibitory. The apparent Ka for Mn/sup 2 +/ was 0.36 +/- 0.05 mM and was not significantly altered during the days studied. Even though the Ka for Mn/sup 2 +/ was ten-fold lower than that for Mg/sup 2 +/, the Vmaxes shown with both ions were similar. Ca/sup 2 +/ is a potent inhibitor of uterine AC activity. When measured at its I.C./sub 50/, it lowered AC activity as Mg/sup 2 +/ concentrations were increased. Ca/sup 2 +/ did not have a significant effect on AC activated by Mn/sup 2 +/. The data showed that Mg/sup 2 +/, Mn/sup 2 +/ and Ca/sup 2 +/ might have important regulatory roles in the activation and inhibition of uterine AC in the rodent.

  11. Changes in vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide and neuropeptide Y-ergic structures of the enteric nervous system in the carcinoma of the human large intestine.

    PubMed

    Godlewski, Janusz; Łakomy, Ireneusz Mirosław

    2010-01-01

    This investigation was aimed at immunohistochemical analysis of potential changes in the enteric nervous system caused by cancer of the large intestine. In this purpose, neurons and nerve fibers of intestinal plexuses containing neuropeptides: vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP) and neuropeptide Y (NPY), in pathologically changed part of the large intestine were microscpically observed and compared. Samples were taken from patients operated due to cancer of the sigmoid colon and rectum. The number of neurons and density of nerve fibres containing neuropeptides found in sections with cancer tissues were compared to those observed in sections from the uninvolved intestinal wall. Changes relating to reductions in the number of NPY-ergic neurons and density of nerve fibres in submucous and myenteric plexuses in the sections with cancer tissues (pathological sections) were statistically significant. A statistically similar presence of VIP-ergic and PACAP-ergic neurons in the submucosal and myenteric plexuses was observed in both the pathological and control sections. On the other hand, in the pathological sections, VIP-ergic nerve fibres in the myenteric plexuses and PACAP-ergic nerve fibres in the submucosal and myenteric plexuses were found to be less dense. Analysis revealed changes in pathologically affected part of the large intestine may caused disruption of proper intestinal function. Observed changes in the neural elements which are responsible for relaxation of the intestine may suggest dysfunction in the innervation of this part of the colon.

  12. Effect of total or partial uterus extirpation on sympathetic uterus-projecting neurons in porcine inferior mesenteric ganglion. B. Changes in expression of neuropeptide Y, galanin, vasoactive intestinal polypeptide, pituitary adenylate-cyclase activating peptide, somatostatin and substance P.

    PubMed

    Wasowicz, K

    2003-01-01

    The expression of neuropeptide Y (NPY), galanin (GAL), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), somatostatin (SOM) and substance P (SP) was studied in the neurons of the inferior mesenteric ganglion (IMG) projecting to the uterine horn and uterine cervix after uterus extirpation-induced axotomy in sexually immature gilts. The expression was studied with immunohistochemistry, in situ hybridization and RT-PCR. Uterus-projecting neurons were identified by retrograde tracing with Fast Blue (FB). Immunohistochemistry revealed that FB-positive (FB+) uterus-projecting neurons in control animals contained only immunoreactivities to NPY (ca. 50%) and GAL (single neurons). Uterus extirpation increased the occurrence of NPY and GAL in FB+ neurons. No other studied neuropeptides were found in axotomized uterus-projecting neurons. Hybridization in situ revealed the reduction of NPY expression and induction of GAL expression in FB+ neurons. RT-PCR detected induction of GAL expression in the IMG after uterus extirpation. The expression level of NPY and SOM was significant and was not affected by axotomy. The expression level of PACAP was very low and did not differ between IMG of control, partially and totally hysterectomized animals. No VIP and SP expression was detected in all ganglia. The presented data show clear axotomy-related changes in the expression of GAL and NPY in the uterus-projecting neurons of the porcine IMG. PMID:12817785

  13. Cloning, tissue distribution and effects of food deprivation on pituitary adenylate cyclase activating polypeptide (PACAP)/PACAP-related peptide (PRP) and preprosomatostatin 1 (PPSS 1) in Atlantic cod (Gadus morhua).

    PubMed

    Xu, Meiyu; Volkoff, Hélène

    2009-04-01

    Full-length complementary deoxyribonucleic acid sequences encoding pituitary adenylate cyclase activating polypeptide (PACAP)/PACAP-related peptide (PRP) and preprosomatostatin 1 (PPSS 1) were cloned from Atlantic cod (Gadus morhua) hypothalamus using reverse transcription and rapid amplification of complementary deoxyribonucleic acid ends. Semi-quantitative reverse transcriptase polymerase chain reaction shows that PRP/PACAP mRNA and PPSS 1 mRNA are widely distributed throughout cod brain. During development, PRP/PACAP and PPSS 1 were detected at the 30-somite stage and pre-hatching stage, respectively, and expression levels gradually increased up to the hatched larvae. PPSS 1, but not PRP/PACAP, appeared to be affected by food availability during early development. In juvenile cod, PPSS 1 expression levels increased and remained significantly higher than that of control fed fish throughout 30 days of starvation and during a subsequent 10 days refeeding period. In contrast, PRP/PACAP expression levels were not affected by 30 days of food deprivation, but a significant increase in expression levels was observed during the 10 days refeeding period in the experimental food-deprived group as compared to the control fed group. Our results suggest that PRP/PACAP and PPSS 1 may be involved in the complex regulation of growth, feeding and metabolism during food deprivation and refeeding in Atlantic cod. PMID:19135491

  14. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin

    SciTech Connect

    Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L.

    2014-10-10

    Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken

  15. Concanavalin A amplifies both beta-adrenergic and muscarinic cholinergic receptor-adenylate cyclase-linked pathways in cardiac myocytes.

    PubMed Central

    Rocha-Singh, K J; Hines, D K; Honbo, N Y; Karliner, J S

    1991-01-01

    Concanavalin A (Con A) is a tetrameric plant lectin that disrupts plasma membrane-cytoskeletal interactions and alters plasma membrane fluidity. We used Con A as a probe to explore beta-adrenergic and muscarinic cholinergic receptor-mediated regulation of cAMP in intact neonatal rat ventricular myocytes. Preincubation with Con A, 0.5 micrograms/ml, attenuated 1 microM (-)-norepinephrine (NE)-induced downregulation of beta-adrenergic receptors and resulted in a 50% augmentation of cAMP accumulation stimulated by 1 microM NE. Con A also augmented forskolin (1-10 microM)-stimulated cAMP accumulation by an average of 37% (P less than 0.05); however, Con A preincubation had no effect on basal or cholera toxin-stimulated cAMP content. The muscarinic cholinergic agonist carbachol (1-100 microM) decreased 1 microM NE-stimulated cAMP generation by an average of 32% (n = 7, P less than 0.05); preincubation with Con A further enhanced the inhibitory effect of carbachol by 18% (n = 7, P less than 0.05). Carbachol (1 microM) for 2 h decreased muscarinic cholinergic receptor density in whole cells by 33%; preincubation with Con A prevented this receptor downregulation. Con A pretreatment did not affect (-)-isoproterenol- or forskolin-stimulated adenylate cyclase activity in cell homogenates, suggesting that an intact cytoarchitecture is necessary for Con A to augment cAMP formation. We conclude that Con A, through its modulation of beta-adrenergic and muscarinic cholinergic receptor signaling, amplifies both stimulatory and inhibitory adenylate cyclase-linked pathways in intact neonatal ventricular myocytes. These data suggest the possibility that plasma membrane-cytoskeletal interaction is an important regulator of transmembrane signaling because interference with this interaction results in alterations in cAMP accumulation mediated by both beta-adrenergic- and muscarinic cholinergic-adenylate cyclase pathways. PMID:1653274

  16. Adenyl cyclase and interleukin 6 are downstream effectors of parathyroid hormone resulting in stimulation of bone resorption.

    PubMed Central

    Greenfield, E M; Shaw, S M; Gornik, S A; Banks, M A

    1995-01-01

    Parathyroid hormone and other bone resorptive agents function, at least in part, by inducing osteoblasts to secrete cytokines that stimulate both differentiation and resorptive activity of osteoclasts. We previously identified two potentially important cytokines by demonstrating that parathyroid hormone induces expression by osteoblasts of IL-6 and leukemia inhibitory factor without affecting levels of 14 other cytokines. Although parathyroid hormone activates multiple signal transduction pathways, induction of IL-6 and leukemia inhibitory factor is dependent on activation of adenyl cyclase. This study demonstrates that adenyl cyclase is also required for stimulation of osteoclast activity in cultures containing osteoclasts from rat long bones and UMR106-01 rat osteoblast-like osteosarcoma cells. Since the stimulation by parathyroid hormone of both cytokine production and bone resorption depends on the same signal transduction pathway, we hypothesized that IL-6 might be a downstream effector of parathyroid hormone. We found that addition of exogenous IL-6 mimics the ability of parathyroid hormone to stimulate bone resorption. More importantly, an antibody directed against the IL-6 receptor blocks moderate stimulation of osteoclast activity induced by the hormone. Interestingly, strong stimulation of resorption overcomes this dependence on IL-6. Thus, parathyroid hormone likely induces multiple, redundant cytokines that can overcome the IL-6 requirement associated with moderate stimulation. Taken together with studies showing that many other bone resorptive agents also stimulate IL-6 production, our results suggest that IL-6 may be a downstream effector of these agents as well as of parathyroid hormone. Images PMID:7657797

  17. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3

    PubMed Central

    Osicka, Radim; Osickova, Adriana; Hasan, Shakir; Bumba, Ladislav; Cerny, Jiri; Sebo, Peter

    2015-01-01

    Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis. DOI: http://dx.doi.org/10.7554/eLife.10766.001 PMID:26650353

  18. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3.

    PubMed

    Osicka, Radim; Osickova, Adriana; Hasan, Shakir; Bumba, Ladislav; Cerny, Jiri; Sebo, Peter

    2015-01-01

    Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis. PMID:26650353

  19. Progesterone prevents linkage of rabbit myometrial alpha 2-adrenergic receptors to inhibition of adenylate cyclase.

    PubMed

    Wu, Y Y; Riemer, R K; Goldfien, A; Roberts, J M

    1989-04-01

    The uterine response to adrenergic stimulation is determined by the hormonal milieu. This response is particularly well characterized in the rabbit. In this species, as in humans, the response of the uterus to sympathetic stimulation is alpha-adrenergically mediated contraction with elevated circulating estrogen. However, with progesterone predominance, similar stimulation inhibits uterine contractions, a response mediated by beta-adrenergic receptors acting through their second message, cyclic adenosine monophosphate. We studied the mechanisms by which sex steroids regulate myometrial adrenergic responses. In this study, we questioned whether part of the effect of sex steroids could be explained by an alteration of the coupling of the alpha 2-adrenergic receptor to the inhibition of adenylate cyclase. We found that in the progesterone-treated rabbit, although alpha 2-receptors are present, they are not linked to inhibition of cyclic adenosine monophosphate synthesis. The net synthesis of cyclic adenosine monophosphage in response to endogenous catecholamines is determined by their activation of beta-adrenergic receptors to increase and alpha 2-receptors to decrease cyclic adenosine monophosphate formation. Thus the uncoupling of alpha 2-receptors contributes to increased intracellular cyclic adenosine monophosphate in myometrium of progesterone-treated animals consistent with the reported predominance of beta-adrenergic contractile responses in this setting.

  20. Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase

    PubMed Central

    An, Sungwon; Irwin, Robert P.; Allen, Charles N.; Tsai, Connie

    2011-01-01

    Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in the synchronization to environmental light cycles. It is not known, however, if or how VIP entrains circadian gene expression or behavior. Here, we tested candidate signaling pathways required for VIP-mediated entrainment of SCN rhythms. We found that single applications of VIP reset PER2 rhythms in a time- and dose-dependent manner that differed from light. Unlike VIP-mediated signaling in other cell types, simultaneous antagonism of adenylate cyclase and phospholipase C activities was required to block the VIP-induced phase shifts of SCN rhythms. Consistent with this, VIP rapidly increased intracellular cAMP in most SCN neurons. Critically, daily VIP treatment entrained PER2 rhythms to a predicted phase angle within several days, depending on the concentration of VIP and the interval between VIP applications. We conclude that VIP entrains circadian timing among SCN neurons through rapid and parallel changes in adenylate cyclase and phospholipase C activities. PMID:21389307

  1. Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior

    PubMed Central

    Hammack, Sayamwong E.; Cheung, Joseph; Rhodes, Kimberly M.; Schutz, Kristin C.; Falls, William A.; Braas, Karen M.; May, Victor

    2009-01-01

    Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC1 receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC1 receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 day chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC1 receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC1 receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior. PMID:19181454

  2. Reconstitution of beta-adrenergic receptor with components of adenylate cyclase.

    PubMed Central

    Hekman, M; Feder, D; Keenan, A K; Gal, A; Klein, H W; Pfeuffer, T; Levitzki, A; Helmreich, E J

    1984-01-01

    Beta 1-Adrenergic receptor proteins were extracted from turkey erythrocyte membranes with lauroyl sucrose and digitonin and purified by affinity chromatography on a column of alprenolol agarose Affi-gel 10 or 15. The 5000-fold purified receptor is able to couple functionally with the stimulatory GTP-binding protein (GS) from either turkey or duck erythrocytes. Functional coupling was achieved by three different approaches. (i) Purified beta-receptor polypeptides were coupled in phospholipid (asolectin) vesicles with GS from a crude cholate or lauroyl sucrose extract of turkey erythrocyte membranes. The detergent was removed and vesicles were formed with SM-2 beads. (ii) Purified beta-receptor was reconstituted with pure, homogeneous GS in asolectin vesicles. (iii) Purified beta-receptors were either coupled in asolectin vesicles with a mixture of pure, homogeneous Gpp(NH)p-activated GS and a lauroyl sucrose extract of turkey erythrocyte membranes, or with pure, homogeneous Gpp(NH)p-activated GS alone. The decay of activity was measured on addition of GTP and hormone. In (ii) and (iii), the detergent was removed and vesicles were formed by gel filtration on Sephadex G-50 columns. In each of the three different experimental conditions, the beta-receptor was activated with l-isoproterenol and activation was blocked with d,l-propranolol. Activated GS were measured separately by means of their capacity to activate a crude Lubrol PX-solubilized adenylate cyclase preparation from rabbit myocardial membrane. The kinetics of GS activation by purified beta-receptors occupied by l-isoproterenol was first order and activation was linearly dependent on receptor concentration.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. PMID:6098472

  3. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Charania, M A; Brockman, K L; Zhang, Y; Banerjee, A; Pinchuk, G E; Fredrickson, J K; Beliaev, A S; Saffarini, D A

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  4. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K. L.; Zhang, Y.; Banerjee, A.; Pinchuk, Grigoriy E.; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  5. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K.; Zhang, Yang; Banerjee, A.; Pinchuk, Grigoriy; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, S. oneidensis MR-1 uses the cAMP receptor protein, CRP, for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an E. coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, DMSO, or Fe(III), whereas the deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III), and to a lesser extent with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and the cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagella biosynthesis, and electron transport, were differentially expressed in the cyaC mutant, but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration, and may contribute to additional signaling pathways independent of CRP.

  6. Biochemical mechanisms of myocardial adenylate cyclase subsensitivity to isoproterenol in cardiac hypertrophy of spontaneously hypertensive rats

    SciTech Connect

    Cheon, J.W.

    1986-01-01

    The responsiveness of the myocardial adenylate cyclase (AC) system in generating cAMP was studied using isoproterenol (a beta-adrenergic receptor agonist), cholera toxin (a guanosinetriphosphatase inhibitor) and forskolin (a catalytic unit activator) in isolated myocytes of age-matched, 14-17 weeks old Wistar Kyoto normotensive rates (WKYs) and spontaneously hypertensive rats (SHRs). We found a reduction in isoproterenol-stimulated cAMP formation in myocytes of SHRs compared with WKYs. This reduction was not due to changes in isoproterenol-receptor interactions. Scatchard plot analysis of (/sup 3/H)CGP 12177 binding to beta-adrenergic receptors in isolated myocytes of WKYs and SHRs revealed to significant differences in the maximum number of binding sites or dissociation constant. There were no significant differences in Ki and IC/sub 50/ calculated from the competitive displacement of (/sup 3/H)CGP 12177 binding by (-) isoproterenol, suggesting no change in the affinity of the beta-adrenergic receptors for isoproterenol. We found no significant differences in forskolin-stimulated cAMP formation between the two groups. This suggest that the reduction in isoproterenol-stimulated cAMP formation observed in myocytes of SHRs is not due to changes in the ability of catalytic unit to convert ATP to cAMP. Interestingly, cholera toxin-stimulated cAMP formation was increased in myocytes of SHRs. One possible explanation for these observations may be increased guanosinetriphosphatase (GTPase) activation by isoproterenol in myocytes of SHRs. The activation of GTPase by isoproterenol in myocytes of SHRs. The activation of GTPase by isoproterenol was measured as the release of Pi from (..gamma..-/sup 32/P)GTP. There was an increase in isoproterenol-stimulated GTPase activity in myocytes of SHRs compared with WKYs.

  7. Glucagon-stimulated adenylate cyclase detects a selective perturbation of the inner half of the liver plasma-membrane bilayer achieved by the local anaesthetic prilocaine.

    PubMed

    Houslay, M D; Dipple, I; Rawal, S; Sauerheber, R D; Esgate, J A; Gordon, L M

    1980-07-15

    Prilocaine can increase the fluidity of rat liver plasma membranes, as indicated by a fatty acid spin-probe. This led to the activation of the membrane-bound fluoride-stimulated adenylate cyclase activity, but not the Lubrol-solubilized activity, suggesting that increased lipid fluidity can activate the enzyme. With increasing prilocaine concentrations above 10 mM, the membrane-bound fluoride-stimulated activity was progressively inhibited, even though bilayer fluidity continued to increase and the activity of the solubilized enzyme remained unaffected. Glucagon-stimulated adenylate cyclase was progressively inhibited by increasing prilocaine concentrations. Prilocaine (10 mM) had no effect on the lipid phase separation occurring at 28 degrees C and attributed to those lipids in the external half of the bilayer, as indicated by Arrhenius plots of both glucagon-stimulated adenylate cyclase activity and the order parameter of a fatty acid spin-probe. However, 10 mM-prilocaine induced a lipid phase separation at around 11 degrees C that was attributed to the lipids of the internal (cytosol-facing) half of the bilayer. It is suggested that prilocaine (10 mM) can selectively perturb the inner half of the bilayer of rat liver plasma membranes owing to its preferential interaction with the acidic phospholipids residing there.

  8. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium

    PubMed Central

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Takahashi, Tetsuo; Tame, Jeremy R. H.; Iseki, Mineo; Park, Sam-Yong

    2016-01-01

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  9. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium.

    PubMed

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-Ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Ikegaya, Yuji; Takahashi, Tetsuo; Tame, Jeremy R H; Iseki, Mineo; Park, Sam-Yong

    2016-06-14

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  10. Differential effects of GTP on the coupling of beta-adrenergic receptors to adenylate cyclase from frog and turkey erythrocytes. Application of new methods for the analysis of receptor-effector coupling.

    PubMed

    Limbird, L E; DeLean, A; Hickey, A R; Pike, L J; Lefkowitz, R J

    1979-08-22

    A detailed comparison of the interaction of beta-adrenergic receptors with adenylate cyclase stimulation and modification of this interaction by guanine nucleotides has been made in two model systems, the frog and turkey erythrocyte. Objective analysis of the data was facilitated by the development of new graphical methods which involve the use of logit-logit transformations of percent receptor occupancy versus percent enzyme stimulation plots (coupling curves). Receptor-cyclase coupling in turkey erythrocyte membranes demonstrates a proportional relationship between receptor occupancy and adenylate cyclase activation and is unaffected by exogenous guanine nucleotides. By comparison, the proportional relationship of receptor occupancy and adenylate cyclase activation observed in frog erythrocyte membranes in the absence of guanine nucleotides is modified by the addition of exogenous guanine nucleotides such that a greater fractional enzyme stimulation is elicited by low receptor occupancy. Methodological criteria crucial for valid comparison of receptor occupancy and adenylate cyclase activity are delineated. In addition, the possible molecular mechanisms of receptor-cyclase coupling which might give rise to the coupling curves observed are discussed.

  11. Desensitization of adenylate cyclase in a human keratinocyte cell line by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    SciTech Connect

    Choi, E.J.; Young, M.J.; Toscano, D.L.; Greenlee, W.F.; Toscano, W.A. Jr.

    1987-05-01

    Regulation of adenylate cyclase in human keratinocyte cell line SCC 12 is altered after TCDD exposure. TCDD-treated cells show a 50% decrease in isoproterenol - stimulated adenylate cyclase activity. The reduced responsiveness of these cells to isoproterenol was concentration dependent on TCDD. The inactive TCDD analog, 2,7-dibenzo-p-dioxin did not affect isoproterenol activation. Altered hormone stimulation of adenylate cyclase can result from decreased receptor number or affinity, a defect in coupling of receptors via G/sub s/, or modification of the catalytic subunit. To distinguish between these possibilities, enzyme activity was assayed in the presence of different site-specific activators of this enzyme system. Cells exposed to TCDD for 24 hr showed a reduced response to the GTP analog, Gpp(NH)p. Forskolin stimulation was not affected by TCDD treatment. (/sup 125/I)-iodocyanopindolol (ICP) binding to ..beta..-adrenergic receptors was examined after TCDD treatment. The equilibrium dissociation constant (K/sub d/) for ICP was unaffected by TCDD treatment, whereas, the total number of specific ICP-binding sites was reduced from 1080 in control cells to 780 sites per cell in TCDD (10 nM) exposed cells.

  12. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    SciTech Connect

    Grasso, P.; Reichert, L.E. Jr. )

    1990-08-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+ influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.

  13. Adenylate cyclase toxin-mediated delivery of the S1 subunit of pertussis toxin into mammalian cells.

    PubMed

    Iwaki, Masaaki; Konda, Toshifumi

    2016-02-01

    The adenylate cyclase toxin (ACT) of Bordetella pertussis internalizes its catalytic domain into target cells. ACT can function as a tool for delivering foreign protein antigen moieties into immune effector cells to induce a cytotoxic T lymphocyte response. In this study, we replaced the catalytic domain of ACT with an enzymatically active protein moiety, the S1 (ADP-ribosyltransferase) subunit of pertussis toxin (PT). The S1 moiety was successfully internalized independent of endocytosis into sheep erythrocytes. The introduced polypeptide exhibited ADP-ribosyltransferase activity in CHO cells and induced clustering typical to PT. The results indicate that ACT can act as a vehicle for not only epitopes but also enzymatically active peptides to mammalian cells.

  14. Adenylate cyclase 5 is required for melanophore and male pattern development in the guppy (Poecilia reticulata).

    PubMed

    Kottler, Verena A; Künstner, Axel; Koch, Iris; Flötenmeyer, Matthias; Langenecker, Tobias; Hoffmann, Margarete; Sharma, Eshita; Weigel, Detlef; Dreyer, Christine

    2015-09-01

    Guppies (Poecilia reticulata) are colorful fish that have attracted the attention of pigmentation researchers for almost a century. Here, we report that the blond phenotype of the guppy is caused by a spontaneous mutation in the guppy ortholog of adenylate cyclase 5 (adcy5). Using double digest restriction site-associated DNA sequencing (ddRADseq) and quantitative trait locus (QTL) mapping, we linked the blond phenotype to a candidate region of 118 kb, in which we subsequently identified a 2-bp deletion in adcy5 that alters splicing and leads to a premature stop codon. We show that adcy5, which affects life span and melanoma growth in mouse, is required for melanophore development and formation of male orange pigmentation traits in the guppy. We find that some components of the male orange pattern are particularly sensitive to loss of Adcy5 function. Our work thus reveals a function for Adcy5 in patterning of fish color ornaments.

  15. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  16. What is the possible contribution of Ca2+-stimulated adenylate cyclase to acquisition, consolidation and retention of an associative olfactory memory in Drosophila.

    PubMed

    Dudai, Y; Corfas, G; Hazvi, S

    1988-01-01

    We have quantitatively analyzed the effect of the mutation rut, which lesions a Ca2+-stimulated subpopulation (or functional state) of adenylate cyclase, on acquisition, consolidation and retention of an olfactory associative memory in Drosophila. The classical conditioning paradigm developed by Tully and Quinn (1985) was employed. Our data indicate that rut reduces acquisition and short-term memory in this paradigm, yet does not abolish consolidation of residual memory into an anesthesia-resistant form. Assuming that the rut behavioral defect is not due to altered neuroanatomy, the data also suggest that the adenylate cyclase activity lesioned by rut is only one of the molecular processes required for acquisition and short-term memory. These different postulated processes seem to act in parallel but are probably recruited sequentially; the mechanism involving rut+ gene product is necessary for response prior to other mechanisms which do not require rut+. It is also suggested, on the basis of the present results combined with previous data, that processes which do not require Ca2+-activated cyclase can not fulfill the partial role of this enzyme during acquisition but can partially compensate for its absence in later phases of memory formation. PMID:3127581

  17. Photo-dynamics and thermal behavior of the BLUF domain containing adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Tanwar, M.; Veetil, S. K.; Kateriya, S.; Stierl, M.; Hegemann, P.

    2013-02-01

    The absorption and emission spectroscopic behavior of the photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain was studied in the dark, during blue-light exposure and after blue-light exposure. The typical BLUF domain (BLUF = Blue Light sensor Using Flavin) flavin cofactor absorption and fluorescence photo-cycle dynamics was observed. For fresh samples a reversible concentration dependent protein oligomerization occurred showing up in free flavin binding and protein color center formation with increasing protein concentration. Thermal and temporal irreversible protein unfolding with loss of BLUF domain activity was investigated. Temperature dependent protein melting times and the apparent protein melting temperature were determined. The photodynamic behavior of the NgPAC2 is compared with the behavior of the previously investigated photo-activated cyclase NgPAC1 (nPAC) from the same N. gruberi NEG-M strain.

  18. Mutation in the β-hairpin of the Bordetella pertussis adenylate cyclase toxin modulates N-lobe conformation in calmodulin.

    PubMed

    Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L

    2014-10-10

    Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM.

  19. Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae.

    PubMed

    Nicastro, Raffaele; Tripodi, Farida; Gaggini, Marco; Castoldi, Andrea; Reghellin, Veronica; Nonnis, Simona; Tedeschi, Gabriella; Coccetti, Paola

    2015-10-01

    In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.

  20. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    SciTech Connect

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.

  1. Heterogeneity of Bordetella bronchiseptica adenylate cyclase (cyaA) RTX domain.

    PubMed

    Wehmann, Enikő; Khayer, Bernadett; Magyar, Tibor

    2015-01-01

    Bordetella bronchiseptica is a widespread pathogen, with a broad host range, occasionally including humans. Diverse virulence factors (adhesins, toxins) allow its adaptation to its host, but this property of the adenylate cyclase (cyaA) toxin is not well understood. In this study, we analyzed the repeats-in-toxin domain of B. bronchiseptica cyaA with PCR, followed by restriction fragment length analysis. Of ninety-two B. bronchiseptica strains collected from different hosts and geographic regions, 72 (78.3 %) carried cyaA and four RFLP types (A-D) were established using NarI and SalI. However, in 20 strains, cyaA was replaced with a peptide transport protein operon. A phylogenetic tree based on partial nucleotide sequences of cyaA revealed that group 2 contains strains of specifically human origin, whereas subgroup 1a contains all but one of the strains from pigs. The human strains showed many PCR-RFLP and sequence variants, confirming the clonal population structure of B. bronchiseptica. PMID:25475014

  2. Heterogeneity of Bordetella bronchiseptica adenylate cyclase (cyaA) RTX domain.

    PubMed

    Wehmann, Enikő; Khayer, Bernadett; Magyar, Tibor

    2015-01-01

    Bordetella bronchiseptica is a widespread pathogen, with a broad host range, occasionally including humans. Diverse virulence factors (adhesins, toxins) allow its adaptation to its host, but this property of the adenylate cyclase (cyaA) toxin is not well understood. In this study, we analyzed the repeats-in-toxin domain of B. bronchiseptica cyaA with PCR, followed by restriction fragment length analysis. Of ninety-two B. bronchiseptica strains collected from different hosts and geographic regions, 72 (78.3 %) carried cyaA and four RFLP types (A-D) were established using NarI and SalI. However, in 20 strains, cyaA was replaced with a peptide transport protein operon. A phylogenetic tree based on partial nucleotide sequences of cyaA revealed that group 2 contains strains of specifically human origin, whereas subgroup 1a contains all but one of the strains from pigs. The human strains showed many PCR-RFLP and sequence variants, confirming the clonal population structure of B. bronchiseptica.

  3. PPARgamma-dependent regulation of adenylate cyclase 6 amplifies the stimulatory effect of cAMP on renin gene expression.

    PubMed

    Desch, Michael; Schubert, Thomas; Schreiber, Andrea; Mayer, Sandra; Friedrich, Björn; Artunc, Ferruh; Todorov, Vladimir T

    2010-11-01

    The second messenger cAMP plays an important role in the regulation of renin gene expression. Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is known to stimulate renin gene transcription acting through PPARγ-binding sequences in renin promoter. We show now that activation of PPARγ by unsaturated fatty acids or thiazolidinediones drastically augments the cAMP-dependent increase of renin mRNA in the human renin-producing cell line Calu-6. The underlying mechanism involves potentiation of agonist-induced cAMP increase and up-regulation of adenylate cyclase 6 (AC6) gene expression. We identified a palindromic element with a 3-bp spacer (Pal3) in AC6 intron 1 (AC6Pal3). AC6Pal3 bound PPARγ and mediated trans-activation by PPARγ agonist. AC6 knockdown decreased basal renin mRNA level and attenuated the maximal PPARγ-dependent stimulation of the cAMP-induced renin gene expression. AC6Pal3 decoy oligonucleotide abrogated the PPARγ-dependent potentiation of cAMP-induced renin gene expression. Treatment of mice with PPARγ agonist increased AC6 mRNA kidney levels. Our data suggest that in addition to its direct effect on renin gene transcription, PPARγ "sensitizes" renin gene to cAMP via trans-activation of AC6 gene. AC6 has been identified as PPARγ target gene with a functional Pal3 sequence.

  4. Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis.

    PubMed

    Šmídková, Markéta; Dvoráková, Alexandra; Tloust'ová, Eva; Česnek, Michal; Janeba, Zlatko; Mertlíková-Kaiserová, Helena

    2014-01-01

    Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.

  5. Long-term morphine treatment enhances proteasome-dependent degradation of G beta in human neuroblastoma SH-SY5Y cells: correlation with onset of adenylate cyclase sensitization.

    PubMed

    Moulédous, Lionel; Neasta, Jérémie; Uttenweiler-Joseph, Sandrine; Stella, Alexandre; Matondo, Mariette; Corbani, Maïthé; Monsarrat, Bernard; Meunier, Jean-Claude

    2005-08-01

    The initial aim of this study was to identify protein changes associated with long-term morphine treatment in a recombinant human neuroblastoma SH-SY5Y clone (sc2) stably overexpressing the human mu-opioid (MOP) receptor. In MOP receptor-overexpressing sc2 cells, short-term morphine exposure was found to be much more potent and efficacious in inhibiting forskolin-elicited production of cAMP, and long-term morphine exposure was shown to induce a substantially higher degree of opiate dependence, as reflected by adenylate cyclase sensitization, than it did in wild-type neuroblastoma cells. Differential proteomic analysis of detergent-resistant membrane rafts isolated from untreated and chronically morphine-treated sc2 cells revealed long-term morphine exposure to have reliably induced a 30 to 40% decrease in the abundance of five proteins, subsequently identified by mass spectrometry as G protein subunits alphai(2), alphai(3), beta(1), and beta(2), and prohibitin. Quantitative Western blot analyses of whole-cell extracts showed that long-term morphine treatment-induced down-regulation of Gbeta but not of the other proteins is highly correlated (r(2) = 0.96) with sensitization of adenylate cyclase. Down-regulation of Gbeta and adenylate cyclase sensitization elicited by long-term morphine treatment were suppressed in the presence of carbobenzoxy-l-leucyl-l-leucyl-l-norvalinal (MG-115) or lactacystin. Thus, sustained activation of the MOP receptor by morphine in sc2 cells seems to promote proteasomal degradation of Gbeta to sensitize adenylate cyclase. Together, our data suggest that the long-term administration of opiates may elicit dependence by altering the neuronal balance of heterotrimeric G proteins and adenylate cyclases, with the ubiquitin-proteasome pathway playing a pivotal role. PMID:15901846

  6. Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases

    PubMed Central

    Beltz, Stephanie; Bassler, Jens; Schultz, Joachim E

    2016-01-01

    Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates. DOI: http://dx.doi.org/10.7554/eLife.13098.001 PMID:26920221

  7. Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases.

    PubMed

    Beltz, Stephanie; Bassler, Jens; Schultz, Joachim E

    2016-02-27

    Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates.

  8. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.

    PubMed

    Vianna, Cristina R; Ferreira, Mariana C; Silva, Carol L C; Tanghe, An; Neves, Maria J; Thevelein, Johan M; Rosa, Carlos A; Van Dijck, Patrick

    2010-01-01

    Fermentation-induced loss of stress resistance in yeast is an important phenotype from an industrial point of view. It hampers optimal use of frozen dough applications as well as high gravity brewing fermentations because these applications require stress-tolerant yeast strains during active fermentation. Different mutants (e.g. fil1, an adenylate cyclase mutant CYR1(lys1682)) that are affected in this loss of stress resistance have been isolated, but so far the identification of the target genes important for the increased tolerance has failed. Previously we have shown that neither trehalose nor Hsp104 nor STRE-controlled genes are involved in the higher stress tolerance of the fil1 mutant. The contribution of other putative downstream factors of the PKA pathway was investigated and here we show that the small heat-shock protein Hsp26 is required for the high heat stress tolerance of the fil1 mutant, both in stationary phase cells as well as during active fermentation. PMID:20924200

  9. Quantification of the Adenylate Cyclase Toxin of Bordetella pertussis In Vitro and during Respiratory Infection

    PubMed Central

    Eby, Joshua C.; Gray, Mary C.; Warfel, Jason M.; Paddock, Christopher D.; Jones, Tara F.; Day, Shandra R.; Bowden, James; Poulter, Melinda D.; Donato, Gina M.; Merkel, Tod J.

    2013-01-01

    Whooping cough results from infection of the respiratory tract with Bordetella pertussis, and the secreted adenylate cyclase toxin (ACT) is essential for the bacterium to establish infection. Despite extensive study of the mechanism of ACT cytotoxicity and its effects over a range of concentrations in vitro, ACT has not been observed or quantified in vivo, and thus the concentration of ACT at the site of infection is unknown. The recently developed baboon model of infection mimics the prolonged cough and transmissibility of pertussis, and we hypothesized that measurement of ACT in nasopharyngeal washes (NPW) from baboons, combined with human and in vitro data, would provide an estimate of the ACT concentration in the airway during infection. NPW contained up to ∼108 CFU/ml B. pertussis and 1 to 5 ng/ml ACT at the peak of infection. Nasal aspirate specimens from two human infants with pertussis contained bacterial concentrations similar to those in the baboons, with 12 to 20 ng/ml ACT. When ∼108 CFU/ml of a laboratory strain of B. pertussis was cultured in vitro, ACT production was detected in 60 min and reached a plateau of ∼60 ng/ml in 6 h. Furthermore, when bacteria were brought into close proximity to target cells by centrifugation, intoxication was increased 4-fold. Collectively, these data suggest that at the bacterium-target cell interface during infection of the respiratory tract, the concentration of ACT can exceed 100 ng/ml, providing a reference point for future studies of ACT and pertussis pathogenesis. PMID:23429530

  10. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis.

    PubMed

    Česnek, Michal; Jansa, Petr; Šmídková, Markéta; Mertlíková-Kaiserová, Helena; Dračínský, Martin; Brust, Tarsis F; Pávek, Petr; Trejtnar, František; Watts, Val J; Janeba, Zlatko

    2015-08-01

    Novel small-molecule agents to treat Bordetella pertussis infections are highly desirable, as pertussis (whooping cough) remains a serious health threat worldwide. In this study, a series of 2-substituted derivatives of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA, adefovir), in their isopropyl ester bis(L-phenylalanine) prodrug form, were designed and synthesized as potent inhibitors of adenylate cyclase toxin (ACT) isolated from B. pertussis. The series consists of PMEA analogues bearing either a linear or branched aliphatic chain or a heteroatom at the C2 position of the purine moiety. Compounds with a small C2 substituent showed high potency against ACT without cytotoxic effects as well as good selectivity over human adenylate cyclase isoforms AC1, AC2, and AC5. The most potent ACT inhibitor was found to be the bisamidate prodrug of the 2-fluoro PMEA derivative (IC50 =0.145 μM). Although the bisamidate prodrugs reported herein exhibit overall lower activity than the bis(pivaloyloxymethyl) prodrug (adefovir dipivoxil), their toxicity and plasma stability profiles are superior. Furthermore, the bisamidate prodrug was shown to be more stable in plasma than in macrophage homogenate, indicating that the free phosphonate can be effectively distributed to target tissues, such as the lungs. Thus, ACT inhibitors based on acyclic nucleoside phosphonates may represent a new strategy to treat whooping cough.

  11. The Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre.

    PubMed

    Al-Younis, Inas; Wong, Aloysius; Gehring, Chris

    2015-12-21

    Adenylate cyclases (ACs) catalyse the formation of the second messenger cyclic adenosine 3',5'-monophosphate (cAMP) from adenosine 5'-triphosphate (ATP). Although cAMP is increasingly recognised as an important signalling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP7(1-100) is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP7(1-100) generates cAMP in vitro. PMID:26638082

  12. Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice(1,2,3).

    PubMed

    Arakawa, Hiroyuki; Akkentli, Fatih; Erzurumlu, Reha S

    2014-01-01

    Cover FigureRegion-specific adenylyl cyclase 1 (AC1) loss of function differentially affects both patterning and sensorimotor behaviors in mice. AC1 is expressed at all levels of the somatosensory pathway and plays a major role in refinement and patterning of topographic sensory maps. Cortex-specific AC1 loss of function (CxAC1KO mice) does not affect barrel patterning and activation of specific barrels corresponding to stimulated whiskers and does not impair sensorimotor behaviors. While global (AC1KO) and thalamus-specific (ThAC1KO) AC1 loss of function leads to absence of barrel patterns, selective whisker stimulation activates topographically aligned cortical loci. Despite functional topography of the whisker-barrel cortex, sensorimotor and social behaviors are impaired, indicating the importance of patterning of topographical sensory maps in the neocortex. Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the "barrelless"/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning of the

  13. Hepatic adenylate cyclase 3 is upregulated by Liraglutide and subsequently plays a protective role in insulin resistance and obesity

    PubMed Central

    Liang, Y; Li, Z; Liang, S; Li, Y; Yang, L; Lu, M; Gu, H F; Xia, N

    2016-01-01

    Objective: Recent studies have demonstrated that adenylate cyclase 3 (AC3) has a protective role in obesity. This gene resides at the pathway with glucagon-like peptide (GLP)-1. Liraglutide is a GLP-1 analog and has independent glucose and body weight (BW)-reducing effects. In the present study, we aimed to examine whether hepatic AC3 activity was regulated by Liraglutide and to further understand the effect of AC3 in reduction of BW and insulin resistance. Subjects: The diabesity and obese mice were induced from db/db and C57BL/6 J mice, respectively, by high-fat diet. Liraglutide (0.1 mg kg−1 per 12 h) was given to the mice twice daily for 12 weeks. C57BL/6 J mice fed with chow diet and obese or diabesity mice treated with saline were used as the controls. Hepatic AC3 gene expression at mRNA and protein levels was analyzed with real-time reverse transcription-PCR and western blot. Fasting blood glucose and serum insulin levels were measured and followed insulin resistance index (HOMA-IR) was evaluated according to the homeostasis model assessment. Results: After administration of Liraglutide, BW and HOMA-IR in obese and diabesity mice were decreased, whereas hepatic AC3 mRNA and protein expression levels were upregulated. The AC3 gene expression was negatively correlated with BW, HOMA-IR and the area ratio of hepatic fat deposition in the liver. Conclusions: The present study thus provides the evidence that hepatic AC3 gene expression is upregulated by Liraglutide. The reduction of BW and improvement of insulin resistance with Liraglutide may be partially explained by AC3 activation. PMID:26807509

  14. Contribution of Bordetella filamentous hemagglutinin and adenylate cyclase toxin to suppression and evasion of interleukin-17-mediated inflammation.

    PubMed

    Henderson, Michael W; Inatsuka, Carol S; Sheets, Amanda J; Williams, Corinne L; Benaron, David J; Donato, Gina M; Gray, Mary C; Hewlett, Erik L; Cotter, Peggy A

    2012-06-01

    Bordetella pertussis and Bordetella bronchiseptica establish respiratory infections with notorious efficiency. Our previous studies showed that the fhaB genes of B. pertussis and B. bronchiseptica, which encode filamentous hemagglutinin (FHA), are functionally interchangeable and provided evidence that FHA-deficient B. bronchiseptica induces more inflammation in the lungs of mice than wild-type B. bronchiseptica. We show here that the robust inflammatory response to FHA-deficient B. bronchiseptica is characterized by the early and sustained influx of interleukin-17 (IL-17)-positive neutrophils and macrophages and, at 72 h postinoculation, IL-17-positive CD4(+) T cells, suggesting that FHA allows the bacteria to suppress the development of an IL-17-mediated inflammatory response. We also show that the cyaA genes of B. pertussis and B. bronchiseptica, which encode adenylate cyclase toxin (ACT), are functionally interchangeable and that ACT, specifically its catalytic activity, is required for B. bronchiseptica to resist phagocytic clearance but is neither required for nor inhibitory of the induction of inflammation if bacteria are present in numbers sufficient to persist during the first 3 days postinoculation. Incubation of bone marrow-derived macrophages with a ΔcyaA strain caused decreased production of IL-1β and increased production of tumor necrosis factor alpha (TNF-α) and IL-12, while incubation with a ΔcyaA ΔfhaB strain caused increased production of IL-23. These data suggest that FHA and ACT both contribute to suppress the recruitment of neutrophils and the development of an IL-17-mediated immune response. To our knowledge, this is the first demonstration of a microbial pathogen suppressing IL-17-mediated inflammation in vivo as a strategy to evade innate immunity.

  15. Interactions between neuropeptide Y and the adenylate cyclase pathway in rat mesenteric small arteries: role of membrane potential.

    PubMed Central

    Prieto, D; Buus, C; Mulvany, M J; Nilsson, H

    1997-01-01

    arteries: a depolarization of arterial smooth muscle which is probably due to activation of non-selective cation channels, and a marked inhibition of adenylate cyclase activity, which in turn inhibits the hyperpolarization produced by cAMP accumulation in these arteries. PMID:9263910

  16. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  17. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice.

    PubMed Central

    Goodwin, M S; Weiss, A A

    1990-01-01

    Proliferation of Bordetella pertussis in the lungs of infant mice challenged by the intranasal route was examined. The bacteria rapidly proliferated in the lungs of mice challenged with a sublethal dose of a wild-type strain (BP338) or a filamentous hemagglutinin mutant (BPM409) from 500 at day 0 to 10(7) at day 15. The infection cleared in about 40 days. Pertussis toxin-deficient mutant BP357 gave a similar profile; however, the number of bacteria recovered was slightly reduced, suggesting that pertussis toxin is not essential for bacterial growth in the lungs. In contrast, adenylate cyclase toxin mutant BP348 was rapidly cleared from the lungs, with no viable bacteria remaining 10 days postchallenge, suggesting that the adenylate cyclase toxin is a colonization factor required for the bacteria to initiate infection. PMID:2401570

  18. Cell-cycle arrest induced by the bacterial adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis

    PubMed Central

    Gray, Mary C.; Hewlett, Erik L.

    2014-01-01

    Summary Bacillus anthracis Edema Toxin (ET) and Bordetella pertussis Adenylate Cyclase Toxin (ACT) enter host cells and produce cAMP. To understand the cellular consequences, we exposed J774 cells to these toxins at ng/ml (pM) concentrations, then followed cell number and changes in cell signaling pathways. Under these conditions, both toxins produce a concentration-dependent inhibition of cell proliferation without cytotoxicity. ET and ACT increase the proportion of cells in G1/G0 and reduce S-phase, such that a single addition of ET or ACT inhibits cell division for 3 to 6 days. Treatment with ET or ACT produces striking changes in proteins controlling cell cycle, including virtual elimination of phosphorylated ERK 1/2 and Cyclin D1 and increases in phospho-CREB and p27Kip1. Importantly, PD98059, a MEK inhibitor, elicits a comparable reduction in Cyclin D1 to that produced by the toxins and blocks proliferation. These data show that non-lethal concentrations of ET and ACT impose a prolonged block on the proliferation of J774 cells by impairment of the progression from G1/G0 to S-phase in a process involving cAMP-mediated increases in phospho-CREB and p27Kip1 and reductions in phospho-ERK 1/2 and Cyclin D1. This phenomenon represents a new mechanism by which these toxins affect host cells. PMID:20946259

  19. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    SciTech Connect

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-12-21

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 ..mu..M and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 ..mu..M and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 ..mu..M respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D/sub 2/-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 ..mu..M. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, /sup 3/H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D/sup 1/- and D/sup 2/-dopamine receptors. 33 references, 3 figures, 2 tables.

  20. AKAP79, PKC, PKA and PDE4 participate in a Gq-linked muscarinic receptor and adenylate cyclase 2 cAMP signalling complex

    PubMed Central

    Shen, Jia X.; Cooper, Dermot M. F.

    2014-01-01

    AC2 (adenylate cyclase 2) is stimulated by activation of Gq-coupled muscarinic receptors through PKC (protein kinase C) to generate localized cAMP in HEK (human embryonic kidney)-293 cells. In the present study, we utilized a sensitive live-cell imaging technique to unravel the proteins that play essential roles in a Gq-coupled muscarinic receptor-mediated cAMP signalling complex. We reveal that, upon agonist binding to the Gq-coupled muscarinic receptor, AKAP79 (A-kinase-anchoring protein 79) recruits PKC to activate AC2 to produce cAMP. The cAMP formed is degraded by PDE4 (phosphodiesterase 4) activated by an AKAP-anchored PKA (protein kinase A). Calcineurin, a phosphatase bound to AKAP79, is not involved in this regulation. Overall, a transient cAMP increase is generated from AC2 by Gq-coupled muscarinic receptor activation, subject to sophisticated regulation through AKAP79, PKC, PDE4 and PKA, which significantly enhances acetylcholine-mediated signalling. PMID:23889134

  1. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form.

    PubMed

    Karst, Johanna C; Ntsogo Enguéné, V Yvette; Cannella, Sara E; Subrini, Orso; Hessel, Audrey; Debard, Sylvain; Ladant, Daniel; Chenal, Alexandre

    2014-10-31

    The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.

  2. In vivo control of gluconeogenesis in wild-type Neurospora crassa and in the adenylate cyclase-deficient cr-1 (crisp) mutant.

    PubMed Central

    Neves, M J; Terenzi, H F

    1989-01-01

    The rate of cycloheximide-resistant incorporation of carbon from [14C]alanine and [14C]acetate into polysaccharidic material was used to study gluconeogenic activity in wild-type Neurospora crassa and in the adenylate cyclase-deficient cr-1 (crisp-1) mutant. The wild-type efficiently utilized alanine and acetate as gluconeogenic substrates, whereas the mutant used acetate efficiently but was unable to use alanine. Cycloheximide-resistant 14C-incorporating activity was sensitive to carbon catabolite effects (repression and inactivation) in the two strains, which suggested that cyclic AMP metabolism was not involved in these regulatory responses. In the wild type, gluconeogenesis was induced by incubation of the cells in the absence of a carbon source. In contrast, cr-1 required supplementation with acetate. This finding suggested that induction of gluconeogenesis in N. crassa could be mediated by metabolites formed in carbon-starved cells. The cr-1 mutant seemed to be deficient in this process and to depend on an exogenous effector to induce gluconeogenesis. Incubation of cr-1 with cyclic AMP partially overcame the acetate requirement for induction of gluconeogenesis. PMID:2522093

  3. Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant.

    PubMed Central

    Erdogan, S; Houslay, M D

    1997-01-01

    The cAMP phosphodiesterase (PDE) 3 and PDE4 isoforms provide the major cAMP-hydrolysing PDE activities in Jurkat T-cells, with additional contributions from the PDE1 and PDE2 isoforms. Challenge of cells with the adenylate cyclase activator forskolin led to a rapid, albeit transient, increase in PDE3 activity occurring over the first 45 min, followed by a sustained increase in PDE3 activity which began after approximately 3 h and continued for at least 24 h. Only this second phase of increase in PDE3 activity was blocked by the transcriptional inhibitor actinomycin D. After approximately 3 h of exposure to forskolin, PDE4 activity had increased, via a process that could be inhibited by actinomycin D, and it remained elevated for at least a 24 h period. Such actions of forskolin were mimicked by cholera toxin and 8-bromo-cAMP. Forskolin increased intracellular cAMP concentrations in a time-dependent fashion and its action was enhanced when PDE induction was blocked with actinomycin D. Reverse transcription (RT)-PCR analysis, using generic primers designed to detect transcripts representing enzymically active products of the four PDE4 genes, identified transcripts for PDE4A and PDE4D but not for PDE4B or PDE4C in untreated Jurkat T-cells. Forskolin treatment did not induce transcripts for either PDE4B or PDE4C; however, it reduced the RT-PCR signal for PDE4A transcripts and markedly enhanced that for PDE4D transcripts. Using RT-PCR primers for PDE4 splice variants, a weak signal for PDE4D1 was evident in control cells whereas, in forskolin-treated cells, clear signals for both PDE4D1 and PDE4D2 were detected. RT-PCR analysis of the PDE4A species indicated that it was not the PDE4A isoform PDE-46 (PDE4A4B). Immunoblotting of control cells for PDE4 forms identified a single PDE4A species of approximately 118 kDa, which migrated distinctly from the PDE4A4B isoform PDE-46, with immunoprecipitation analyses showing that it provided all of the PDE4 activity in control

  4. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes.

    PubMed Central

    Rocha-Singh, K J; Honbo, N Y; Karliner, J S

    1991-01-01

    We explored the effects of two components of ischemia, hypoxia and glucose deprivation, on the beta-adrenergic receptor (beta AR)-adenylate cyclase system in a model of hypoxic injury in cultured neonatal rat ventricular myocytes. After 2 h of hypoxia in the presence of 5 mM glucose, cell surface beta AR density (3H-CGP-12177) decreased from 54.8 +/- 8.4 to 39 +/- 6.3 (SE) fmol/mg protein (n = 10, P less than 0.025), while cytosolic beta AR density (125I-iodocyanopindolol [ICYP]) increased by 74% (n = 5, P less than 0.05). Upon reexposure to oxygen cell surface beta AR density returned toward control levels. Cells exposed to hypoxia and reoxygenation without glucose exhibited similar alterations in beta AR density. In hypoxic cells incubated with 5 mM glucose, the addition of 1 microM (-)-norepinephrine (NE) increased cAMP generation from 29.3 +/- 10.6 to 54.2 +/- 16.1 pmol/35 mm plate (n = 5, P less than 0.025); upon reoxygenation cAMP levels remained elevated above control (n = 5, P less than 0.05). In contrast, NE-stimulated cAMP content in glucose-deprived hypoxic myocytes fell by 31% (n = 5, P less than 0.05) and did not return to control levels with reoxygenation. beta AR-agonist affinity assessed by (-)-isoproterenol displacement curves was unaltered after 2 h of hypoxia irrespective of glucose content. Addition of forskolin (100 microM) to glucose-supplemented hypoxic cells increased cAMP generation by 60% (n = 5; P less than 0.05), but in the absence of glucose this effect was not seen. In cells incubated in glucose-containing medium, the decline in intracellular ATP levels was attenuated after 2 h of hypoxia (21 vs. 40%, P less than 0.05). Similarly, glucose supplementation prevented LDH release in hypoxic myocytes. We conclude that (a) oxygen and glucose independently regulate beta AR density and agonist-stimulated cAMP accumulation; (b) hypoxia has no effect on beta AR-agonist or antagonist affinity; (c) 5 mM glucose attenuates the rate of decline in

  5. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    PubMed Central

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  6. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin.

    PubMed

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  7. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta.

    PubMed Central

    Yu, S M; Kuo, S C

    1995-01-01

    1. The vasorelaxant activity of isoliquiritigenin, isolated from Dalbergia odorifera T, was investigated in the phenylephrine-precontracted rat aorta by measuring tension, guanylate and adenylate cyclase activities, guanosine 3':5'-cyclic monophosphate (cyclic GMP) and adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels. 2. Isoliquiritigenin concentration-dependently relaxed rat aorta contracted with phenylephrine, KCl, U-46619, endothelin and 5-hydroxytryptamine, with EC50s of 7.4 +/- 1.6, 10.5 +/- 2.3, 14.3 +/- 3.3, 11.8 +/- 2.0 and 13.6 +/- 3.7 microM, respectively. 3. Isoliquiritigenin caused endothelium-independent relaxation of phenylephrine-precontracted rat aortic rings. Neither NG-monomethyl-L-arginine (L-NMMA) (an inhibitor of the L-arginine-NO pathway) nor oxyhaemoglobin (which binds NO) modified the relaxant effect of isoliquiritigenin. The relaxant action of isoliquiritigenin also persisted in intact aorta in the presence of indomethacin or glibenclamide. However, methylene blue, an inhibitor of soluble guanylate cyclase, abolished relaxation induced by isoliquiritigenin. 4. Incubation of rat aorta with isoliquiritigenin not only increased aortic cyclic GMP content but also caused small increases in aortic cyclic AMP content, and greatly potentiated the increases in cyclic AMP observed in the presence of forskolin. The maximum increase in cyclic GMP by isoliquiritigenin was reached earlier than the increase in cyclic AMP. This result suggests that the increases in cyclic GMP caused by isoliquiritigenin might stimulate the accumulation of cyclic AMP. 5. Concentration-dependent increases in soluble guanylate cyclase activity were observed in isoliquiritigenin (1-100 microM)- or sodium nitroprusside (SNP)-treated rat aortic smooth muscle cells, while adenylate cyclase activity was unchanged in isoliquiritigenin (100 microM)-treated cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7599926

  8. Characteristics of muscarinic receptors that selectively couple to inhibition of adenylate cyclase or stimulation of phospholipase C on NG108-15 and 1321N1 cells

    SciTech Connect

    Liang, M.

    1988-01-01

    The purpose of this dissertation was to establish whether different muscarinic receptor proteins selectively couple to different second messenger response system. Although both second messenger response systems are fully functional in both cell lines, activation of muscarinic cholinergic receptors only results in inhibition of adenylate cyclase in NG108-15 neuroblastoma {times} glioma cells and stimulation of phosphoinositide hydrolysis in 1321N1 human astrocytoma cells. Muscarinic receptors on both cell types were covalently labeled with ({sup 3}H)Propylbenzilylcholine mustard (({sup 3}H)PBCM) and the mobilities of the ({sup 3}H)PBCM-labelled species of both cells were compared by SDS-PAGE. 1321N1 and NG108-15 cells each primarily expressed a single ({sup 3}H)PBCM-labelled species with an apparent size of approximately 92,000 and 66,000 Da, respectively. ({sup 3}H)PBCM labelling was completely inhibited by 1 {mu}M atropine or by down-regulation of muscarinic receptors by an overnight incubation with carbachol. The apparent size of the ({sup 3}H)PBCM-labelled species of both cell lines was not altered by treatment with a series of protease inhibitors or by treatment with dithiothreitol and iodoacetamide. Another approach for determining differences in the muscarinic receptors of 2 cells lines was to study agonist-induced alteration of muscarinic receptor number. Exposure of both cell types to agonists resulted in rapid loss of muscarinic receptors from cell surface without change of total cellular muscarinic receptors followed by subsequently loss of receptors from cells. Muscarinic receptors on both cell lines were regulated by agonist with similar properties.

  9. Testosterone regulates levels of cystic fibrosis transmembrane regulator, adenylate cyclase, and cAMP in the seminal vesicles of orchidectomized rats.

    PubMed

    Ramli, Nur Siti Khadijah; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-01-15

    Secretions of chloride (Cl(-))- and bicarbonate (HCO3(-))-rich fluid by the seminal vesicles could involve cystic fibrosis transmembrane regulator (CFTR), which activity can be stimulated by cAMP generated from the reaction involving adenylate cyclase (AC). In this study, we investigated levels of CFTR, AC, and cAMP in the seminal vesicles under testosterone influence. Orchidectomized adult male rats received 7-day treatment with 125 or 250 μg/kg/day of testosterone with or without flutamide or finasteride. At the end of the treatment, animals were sacrificed and seminal vesicles were harvested for analyses of CFTR and AC protein expression level by Western blotting. Distribution of CFTR and AC in seminal vesicles was observed by immunohistochemistry. Levels of cAMP and dihydrotestosterone in seminal vesicle homogenates were measured by ELISA. Cystic fibrosis transmembrane regulator, AC, and cAMP levels increased with increasing doses of testosterone (P < 0.05 compared to nontreated orchidectomized rats). Cystic fibrosis transmembrane regulator and AC were expressed at the apical membrane of the epithelium lining the seminal vesicle lumen with higher expression levels observed in testosterone-treated rats than in non-treated orchidectomized rats (P < 0.05). The inhibitory effects of flutamide or finasteride on these parameters were greater in 250 μg/kg/day testosterone-treated rats than their effects in 125 μg/kg/day testosterone-treated rats. Higher dihydrotestosterone levels were observed in seminal vesicle homogenates after treatment with 250 μg/kg/day than with 125 μg/kg/day of testosterone (P < 0.05). Increased levels of CFTR, AC, and cAMP in seminal vesicles might contribute toward an increase in Cl(-) and HCO3(-) concentrations in the seminal fluid as reported under testosterone influence.

  10. Testosterone regulates levels of cystic fibrosis transmembrane regulator, adenylate cyclase, and cAMP in the seminal vesicles of orchidectomized rats.

    PubMed

    Ramli, Nur Siti Khadijah; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-01-15

    Secretions of chloride (Cl(-))- and bicarbonate (HCO3(-))-rich fluid by the seminal vesicles could involve cystic fibrosis transmembrane regulator (CFTR), which activity can be stimulated by cAMP generated from the reaction involving adenylate cyclase (AC). In this study, we investigated levels of CFTR, AC, and cAMP in the seminal vesicles under testosterone influence. Orchidectomized adult male rats received 7-day treatment with 125 or 250 μg/kg/day of testosterone with or without flutamide or finasteride. At the end of the treatment, animals were sacrificed and seminal vesicles were harvested for analyses of CFTR and AC protein expression level by Western blotting. Distribution of CFTR and AC in seminal vesicles was observed by immunohistochemistry. Levels of cAMP and dihydrotestosterone in seminal vesicle homogenates were measured by ELISA. Cystic fibrosis transmembrane regulator, AC, and cAMP levels increased with increasing doses of testosterone (P < 0.05 compared to nontreated orchidectomized rats). Cystic fibrosis transmembrane regulator and AC were expressed at the apical membrane of the epithelium lining the seminal vesicle lumen with higher expression levels observed in testosterone-treated rats than in non-treated orchidectomized rats (P < 0.05). The inhibitory effects of flutamide or finasteride on these parameters were greater in 250 μg/kg/day testosterone-treated rats than their effects in 125 μg/kg/day testosterone-treated rats. Higher dihydrotestosterone levels were observed in seminal vesicle homogenates after treatment with 250 μg/kg/day than with 125 μg/kg/day of testosterone (P < 0.05). Increased levels of CFTR, AC, and cAMP in seminal vesicles might contribute toward an increase in Cl(-) and HCO3(-) concentrations in the seminal fluid as reported under testosterone influence. PMID:26483308

  11. Optogenetic Modulation of an Adenylate Cyclase in Toxoplasma gondii Demonstrates a Requirement of the Parasite cAMP for Host-Cell Invasion and Stage Differentiation*

    PubMed Central

    Hartmann, Anne; Arroyo-Olarte, Ruben Dario; Imkeller, Katharina; Hegemann, Peter; Lucius, Richard; Gupta, Nishith

    2013-01-01

    Successful infection and transmission of the obligate intracellular parasite Toxoplasma gondii depends on its ability to switch between fast-replicating tachyzoite (acute) and quiescent bradyzoite (chronic) stages. Induction of cAMP in the parasitized host cells has been proposed to influence parasite differentiation. It is not known whether the parasite or host cAMP is required to drive this phenomenon. Other putative roles of cAMP for the parasite biology also remain to be identified. Unequivocal research on cAMP-mediated signaling in such intertwined systems also requires a method for an efficient and spatial control of the cAMP pool in the pathogen or in the enclosing host cell. We have resolved these critical concerns by expressing a photoactivated adenylate cyclase that allows light-sensitive control of the parasite or host-cell cAMP. Using this method, we reveal multiple roles of the parasite-derived cAMP in host-cell invasion, stage-specific expression, and asexual differentiation. An optogenetic method provides many desired advantages such as: (i) rapid, transient, and efficient cAMP induction in extracellular/intracellular and acute/chronic stages; (ii) circumvention of the difficulties often faced in cultures, i.e. poor diffusion, premature degradation, steady activation, and/or pleiotropic effects of cAMP agonists and antagonists; (iii) genetically encoded enzyme expression, thus inheritable to the cell progeny; and (iv) conditional and spatiotemporal control of cAMP levels. Importantly, a successful optogenetic application in Toxoplasma also illustrates its wider utility to study cAMP-mediated signaling in other genetically amenable two-organism systems such as in symbiotic and pathogen-host models. PMID:23525100

  12. Nucleotidyl Cyclase Activity of Particulate Guanylyl Cyclase A: Comparison with Particulate Guanylyl Cyclases E and F, Soluble Guanylyl Cyclase and Bacterial Adenylyl Cyclases Cyaa and Edema Factor

    PubMed Central

    Beste, Kerstin Y.; Spangler, Corinna M.; Burhenne, Heike; Koch, Karl-Wilhelm; Shen, Yuequan; Tang, Wei-Jen; Kaever, Volkhard; Seifert, Roland

    2013-01-01

    Guanylyl cyclases (GCs) regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs) and a nitric oxide-activated soluble GC (sGC). Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF) from Bacillus anthracis possess nucleotidyl cyclase (NC) activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides. PMID:23922959

  13. STC1 interference on calcitonin family of receptors signaling during osteoblastogenesis via adenylate cyclase inhibition.

    PubMed

    Terra, Silvia R; Cardoso, João Carlos R; Félix, Rute C; Martins, Leo Anderson M; Souza, Diogo Onofre G; Guma, Fatima C R; Canário, Adelino Vicente M; Schein, Vanessa

    2015-03-01

    Stanniocalcin 1 (STC1) and calcitonin gene-related peptide (CGRP) are involved in bone formation/remodeling. Here we investigate the effects of STC1 on functional heterodimer complex CALCRL/RAMP1, expression and activity during osteoblastogenesis. STC1 did not modify CALCRL and ramp1 gene expression during osteoblastogenesis when compared to controls. However, plasma membrane spatial distribution of CALCRL/RAMP1 was modified in 7-day pre-osteoblasts exposed to either CGRP or STC1, and both peptides induced CALCRL and RAMP1 assembly. CGRP, but not STC1 stimulated cAMP accumulation in 7-day osteoblasts and in CALCRL/RAMP1 transfected HEK293 cells. Furthermore, STC1 inhibited forskolin stimulated cAMP accumulation of HEK293 cells, but not in CALCRL/RAMP1 transfected HEK293 cells. However, STC1 inhibited cAMP accumulation in calcitonin receptor (CTR) HEK293 transfected cells stimulated by calcitonin. In conclusion, STC1 signals through inhibitory G-protein modulates CGRP receptor spatial localization during osteoblastogenesis and may function as a regulatory factor interacting with calcitonin peptide members during bone formation.

  14. X-linked recessive congenital muscle fiber hypotrophy with central nuclei: abnormalities of growth and adenylate cyclase in muscle tissue cultures.

    PubMed

    Askanas, V; Engel, W K; Reddy, N B; Barth, P G; Bethlem, J; Krauss, D R; Hibberd, M E; Lawrence, J V; Carter, L S

    1979-10-01

    Muscle cells in cultures established from biopsy specimens of two children with an infantile-fatal form of X-linked recessive muscle fiber smallness with central nuclei showed an unusual ability to proliferate through numerous passages. Ultrastructurally, the cultured muscle fibers appeared very immature even after several weeks. The nuclei were large, the number of ribosomes was greatly increased, the myofibrils remained unstriated, and glycogen was accumulated in large lakes. The plasmalemma bound concanavalin A, alpha-bungarotoxin, and ruthenium red normally, but with tannic acid it did not show the dark binding of mature fibers. Biochemically, in the cultured muscle fibers, beta-adrenergic receptors were quantitatively normal. The level of adenylate cyclase in membranes was less than in cultured normal muscle; this defect could be responsible for impaired control mechanisms resulting in the other abnormalities observed.

  15. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    PubMed

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. PMID:27582064

  16. Inhibitory role of monovalent ions on rat brain cortex adenylyl cyclase activity.

    PubMed

    Nikolic, Ivana; Mitrovic, Marina; Zelen, Ivanka; Zaric, Milan; Kastratovic, Tatjana; Stanojevic, Marijana; Nenadovic, Milutin; Stojanovic, Tomislav

    2013-10-01

    Adenylyl cyclases, comprise of a large family of enzymes that catalyze synthesis of the cyclic AMP from ATP. The aim of our study was to determine the effect of monovalent ions on both basal, stimulated adenylate cyclase EC 4.6.1.1 (AC) activity and C unit of AC and on GTPase active G-protein in the synaptic membranes of rat brain cortex. The effect of ion concentration from 30 to 200 mM (1 mM MgCl2) showed dose-dependent and significant inhibition of the basal AC activity, stimulated and unstimulated C unit activity. Stimulation of AC with 5 μM GTPγS in the presence of 50-200 mM of tested salts showed inhibitory effect on the AC activity. From our results it could be postulated that the investigated monovalent ions exert inhibitory effect on the AC complex activity by affecting the intermolecular interaction of the activated α subunit of G/F protein and the C unit of AC complex an inhibitory influence of tested monovalent ions on these molecular interaction.

  17. Complete protection against P. berghei malaria upon heterologous prime/boost immunization against circumsporozoite protein employing Salmonella type III secretion system and Bordetella adenylate cyclase toxoid.

    PubMed

    Tartz, Susanne; Rüssmann, Holger; Kamanova, Jana; Sebo, Peter; Sturm, Angelika; Heussler, Volker; Fleischer, Bernhard; Jacobs, Thomas

    2008-11-01

    Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.

  18. Photo-dynamics of the BLUF domain containing soluble adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Stierl, M.; Hegemann, P.; Kateriya, Suneel

    2011-08-01

    The amoeboflagellate Naegleria gruberi NEG-M comprises a BLUF ( blue light sensor using flavin) regulated adenylate cyclase (nPAC). The nPAC gene was expressed heterologously in Escherichia coli and the photo-dynamics of the nPAC protein was studied by optical absorption and fluorescence spectroscopy. Blue-light exposure of nPAC caused a typical BLUF-type photo-cycle behavior (spectral absorption red-shift, fluorescence quenching, absorption and fluorescence recovery in the dark). Additionally, time-delayed reversible photo-induced one-electron reduction of fully oxidized flavin (Fl ox) to semi-reduced flavin (FlH rad ) occurred. Furthermore, photo-excitation of FlH rad caused irreversible electron transfer to fully reduced anionic flavin (FlH -). A photo-induced electron transfer from Tyr or Trp to flavin (Tyr rad +-Fl rad - or Trp rad +-Fl rad - radical ion-pair formation) is thought to cause H-bond restructuring responsible for BLUF-type photo-cycling and permanent protein re-conformation enabling photo-induced flavin reduction by proton transfer. Some photo-degradation of Fl ox to lumichrome was observed. A model of the photo-dynamics of nPAC is developed.

  19. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  20. Expression of beta 1- and beta 3-adrenergic-receptor messages and adenylate cyclase beta-adrenergic response in bovine perirenal adipose tissue during its transformation from brown into white fat.

    PubMed Central

    Casteilla, L; Muzzin, P; Revelli, J P; Ricquier, D; Giacobino, J P

    1994-01-01

    Possible modifications of the beta-adrenergic effector system during the development of bovine perirenal brown adipose tissue (BAT) in utero and its transformation into white-like adipose tissue after birth were studied. The parameters assessed were the level of expression of beta 1-, beta 2- and beta 3-adrenergic receptor (AR) mRNAs and the response of the plasma-membrane adenylate cyclase to (-)-isoprenaline and to the beta 3-agonist BRL 37344. The beta 3-AR mRNA was found to be expressed very early in utero, i.e. before the third month of foetal life. Then it increased dramatically (9-fold) between month 6 of foetal life and birth. A high beta 3-AR mRNA level was maintained after birth up to an age of 3 months. After conversion of BAT into white-like adipose tissue, i.e. in the adult bovine, the beta 3-AR mRNA expression became small or not detectable, and the beta 1-AR mRNA, which was expressed much less than the beta 3-AR mRNA in foetal life, became predominant. A response of the adenylate cyclase to (-)-isoprenaline was observed in foetal life (3.1-fold stimulation). It decreased after birth (1.8-fold stimulation) and then remained constant until adulthood. A response to BRL 37344 was also observed in foetal life (1.8-fold stimulation). It was maintained after birth, but disappeared in the adult. A possible relationship between the beta-AR expression and the adenylate cyclase response to (-)-isoprenaline on the one hand and the uncoupling-protein expression on the other is discussed. The bovine might represent a good model to understand the transition from brown to white fat in the human. Images Figure 3 PMID:7904157

  1. Beta-agonist- and prostaglandin E1-induced translocation of the beta-adrenergic receptor kinase: evidence that the kinase may act on multiple adenylate cyclase-coupled receptors.

    PubMed Central

    Strasser, R H; Benovic, J L; Caron, M G; Lefkowitz, R J

    1986-01-01

    beta-Adrenergic receptor kinase (beta-AR kinase) is a cytosolic enzyme that phosphorylates the beta-adrenergic receptor only when it is occupied by an agonist [Benovic, J. Strasser, R. H., Caron, M. G. & Lefkowitz, R. J. (1986) Proc. Natl. Acad. Sci. USA 83, 2797-2801.] It may be crucially involved in the processes that lead to homologous or agonist-specific desensitization of the receptor. Stimulation of DDT1MF-2 hamster smooth muscle cells or S49 mouse lymphoma cells with a beta-agonist leads to translocation of 80-90% of the beta-AR kinase activity from the cytosol to the plasma membrane. The translocation process is quite rapid, is concurrent with receptor phosphorylation, and precedes receptor desensitization and sequestration. It is also transient, since much of the activity returns to the cytosol as the receptors become sequestered. Stimulation of beta-AR kinase translocation is a receptor-mediated event, since the beta-antagonist propranolol blocks the effect of agonist. In the kin- mutant of the S49 cells (lacks cAMP-dependent protein kinase), prostaglandin E1, which provokes homologous desensitization of its own receptor, is at least as effective as isoproterenol in promoting beta-AR kinase translocation to the plasma membrane. However, in the DDT1MF-2 cells, which contain alpha 1-adrenergic receptors coupled to phosphatidylinositol turnover, the alpha 1-agonist phenylephrine is ineffective. These results suggest that the first step in homologous desensitization of the beta-adrenergic receptor may be an agonist-promoted translocation of beta-AR kinase from cytosol to plasma membrane and that beta-AR kinase may represent a more general adenylate cyclase-coupled receptor kinase that participates in regulating the function of many such receptors. Images PMID:3018728

  2. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies.

    PubMed

    Selwa, Edithe; Davi, Marilyne; Chenal, Alexandre; Sotomayor-Pérez, Ana-Cristina; Ladant, Daniel; Malliavin, Thérèse E

    2014-07-25

    Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg(338), Asn(347), and Asp(360)) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn(347); ACm1A), two (Arg(338) and Asp(360); ACm2A), or three residues (Arg(338), Asn(347), and Asp(360); ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3AC-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.

  3. Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli.

    PubMed

    Donovan, Grant T; Norton, J Paul; Bower, Jean M; Mulvey, Matthew A

    2013-01-01

    In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H(2)O(2)) and acid stress. In the mutant strains, H(2)O(2) resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract.

  4. Crystal Structures of the Catalytic Domain of Human Soluble Guanylate Cyclase

    PubMed Central

    Allerston, Charles K.; von Delft, Frank; Gileadi, Opher

    2013-01-01

    Soluble guanylate cyclase (sGC) catalyses the synthesis of cyclic GMP in response to nitric oxide. The enzyme is a heterodimer of homologous α and β subunits, each of which is composed of multiple domains. We present here crystal structures of a heterodimer of the catalytic domains of the α and β subunits, as well as an inactive homodimer of β subunits. This first structure of a metazoan, heteromeric cyclase provides several observations. First, the structures resemble known structures of adenylate cyclases and other guanylate cyclases in overall fold and in the arrangement of conserved active-site residues, which are contributed by both subunits at the interface. Second, the subunit interaction surface is promiscuous, allowing both homodimeric and heteromeric association; the preference of the full-length enzyme for heterodimer formation must derive from the combined contribution of other interaction interfaces. Third, the heterodimeric structure is in an inactive conformation, but can be superposed onto an active conformation of adenylate cyclase by a structural transition involving a 26° rigid-body rotation of the α subunit. In the modelled active conformation, most active site residues in the subunit interface are precisely aligned with those of adenylate cyclase. Finally, the modelled active conformation also reveals a cavity related to the active site by pseudo-symmetry. The pseudosymmetric site lacks key active site residues, but may bind allosteric regulators in a manner analogous to the binding of forskolin to adenylate cyclase. This indicates the possibility of developing a new class of small-molecule modulators of guanylate cyclase activity targeting the catalytic domain. PMID:23505436

  5. Alterations in the expression of G-proteins and regulation of adenylate cyclase in human neuroblastoma SH-SY5Y cells chronically exposed to low-efficacy mu-opioids.

    PubMed

    Ammer, H; Schulz, R

    1993-10-01

    Western-blot analysis of human neuroblastoma SH-SY5Y cells (mu- and delta-receptors) revealed the presence of the following G-protein subunits: Gi alpha 1, Gi alpha 2, Gs alpha, G(o) alpha, Gz alpha, and G beta, a pattern resembling that observed in central nervous tissue. Chronic treatment of differentiated [all-trans-retinoic acid (10 microM; 6 days)] SH-SY5Y cells with D(-)-morphine (10 microM; 3 days) significantly increased the abundance of all G-protein subunits identified. Co-incubation of morphine-exposed cells together with naloxone (10 microM; 3 days) or the mu-selective opioid antagonist CTOP (10 microM; 3 days), but not with the delta-selective antagonist ICI-174,864 (10 microM; 3 days), completely abolished this effect, suggesting that the increase in G-protein abundance is specifically mediated by mu-receptors. Moreover, the biologically inactive enantiomer L(+)-morphine (10 microM; 3 days) failed to produce a similar effect. G-protein up-regulation developed in a time- and dose-dependent manner and is most likely due to enhanced protein synthesis de novo, since concomitant treatment of the cells with cycloheximide (100 micrograms/ml; 3 days) prevented this effect. Chronic treatment with the low-efficacy mu-selective opioid peptide morphiceptin (10 microM; 3 days), but not with the highly potent mu-agonist DAGO (0.1 microM; 3 days) produced a comparable increase in G-protein abundance. Coincident with quantitative effects on G-protein levels in morphine-tolerant/dependent SH-SY5Y cells, we found elevated levels of basal, forskolin (1 microM)- and prostaglandin-E1 (1 microM)-stimulated adenylate cyclase activities. Reconstitution experiments using S49 cyc- lymphoma-cell membranes suggest that this increase is most likely due to elevated levels of functionally intact Gs. Chronic treatment with both morphine and DAGO induces high degrees of tolerance in this cell line. However, the intrinsic activity of G1 was unchanged, as assessed in functional studies

  6. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu

    PubMed Central

    Mansouri, Shiva; Lietzau, Grazyna; Lundberg, Mathias; Nathanson, David; Nyström, Thomas; Patrone, Cesare

    2016-01-01

    Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia. PMID:27305000

  7. Adenylate kinase from Streptococcus pneumoniae is essential for growth through its catalytic activity

    PubMed Central

    Thach, Trung Thanh; Luong, Truc Thanh; Lee, Sangho; Rhee, Dong-Kwon

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) infection causes more than 1.6 million deaths worldwide. Pneumococcal growth is a prerequisite for its virulence and requires an appropriate supply of cellular energy. Adenylate kinases constitute a major family of enzymes that regulate cellular ATP levels. Some bacterial adenylate kinases (AdKs) are known to be critical for growth, but the physiological effects of AdKs in pneumococci have been poorly understood at the molecular level. Here, by crystallographic and functional studies, we report that the catalytic activity of adenylate kinase from S.pneumoniae (SpAdK) serotype 2 D39 is essential for growth. We determined the crystal structure of SpAdK in two conformations: ligand-free open form and closed in complex with a two-substrate mimic inhibitor adenosine pentaphosphate (Ap5A). Crystallographic analysis of SpAdK reveals Arg-89 as a key active site residue. We generated a conditional expression mutant of pneumococcus in which the expression of the adk gene is tightly regulated by fucose. The expression level of adk correlates with growth rate. Expression of the wild-type adk gene in fucose-inducible strains rescued a growth defect, but expression of the Arg-89 mutation did not. SpAdK increased total cellular ATP levels. Furthermore, lack of functional SpAdK caused a growth defect in vivo. Taken together, our results demonstrate that SpAdK is essential for pneumococcal growth in vitro and in vivo. PMID:25180151

  8. Product identification and adenylyl cyclase activity in chloroplasts of Nicotiana tabacum.

    PubMed

    Witters, Erwin; Quanten, Lieve; Bloemen, Jo; Valcke, Roland; Van Onckelen, Harry

    2004-01-01

    In view of the ongoing debate on plant cyclic nucleotide metabolism, especially the functional presence of adenylyl cyclase, a novel detection method has been worked out to quantify the reaction product. Using uniformly labelled (15)N-ATP as a substrate for adenylyl cyclase, a qualitative and quantitative liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) method was developed to measure de novo formed (15)N-adenosine 3',5'-cyclic monophosphate. Adenylyl cyclase activity was observed in chloroplasts obtained from Nicotiana tabacum cv. Petit Havana and the kinetic parameters and influence of various metabolic effectors are discussed in their context.

  9. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.

    PubMed

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K; Makino, Clint L

    2015-04-24

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. PMID:25767116

  10. Beta 1-adrenergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: stimulation of GnRH release via receptors positively coupled to adenylate cyclase.

    PubMed

    Martínez de la Escalera, G; Choi, A L; Weiner, R I

    1992-09-01

    The release of GnRH evoked by norepinephrine (NE) was studied in GT1 GnRH neuronal cell lines in superfusion and static cultures. GnRH release from static cultured GT1-7 cells was stimulated by NE in a dose-dependent fashion. This effect was mimicked by the nonsubtype-selective beta-adrenergic agonist isoproterenol and blocked by the beta-adrenergic antagonist propranolol and the beta 1-adrenergic subtype-specific antagonist CGP 20712A. However, the stimulation of GnRH release by NE was not affected by the beta 2-, alpha-, alpha 1-, or alpha 2-adrenergic antagonists ICI 118.551, phentolamine, prazosin, or yohimbine, respectively. Superfusion of GT1-1 cells with NE for 60-100 min resulted in rapid and sustained increases in GnRH secretion. The NE-stimulated GnRH release showed a higher amplitude and longer duration than the spontaneous GnRH pulses characteristic of GT1-1 cells. In parallel to the stimulation of GnRH release, NE also rapidly increased (first observed at 60 sec) the intracellular concentration of cAMP in isobutylmethylxanthine-pretreated GT1-1 and GT1-7 cells in a dose-dependent fashion. The stimulation of intracellular cAMP concentration was also mimicked by isoproterenol and blocked by propranolol and CGP 20712A. In addition, GT1 cells express beta 1- but not beta 2-adrenergic receptor mRNA, as probed by Northern blot analysis. These results demonstrate a direct stimulatory effect of NE on GnRH neurons. The pharmacological evidence and the mRNA analysis are consistent with NE acting through a beta 1-adrenergic receptor positively coupled to adenylate cyclase.

  11. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation

    PubMed Central

    Chen, Ying; Liu, Shiheng; Liu, Cuilan; Huang, Yan; Chi, Kaikai; Su, Tiantian; Zhu, Deyu; Peng, Jin; Xia, Zhijie; He, Jing; Xu, Sujuan; Hu, Wei; Gu, Lichuan

    2016-01-01

    C-di-GMP (3’,5’ -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity. PMID:27388857

  12. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Dizhoor, Alexander M

    2015-08-01

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823).

  13. Adenylate-forming enzymes.

    PubMed

    Schmelz, Stefan; Naismith, James H

    2009-12-01

    Thioesters, amides, and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture, and metal coordination that has evolved to catalyze this particular reaction. PMID:19836944

  14. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  15. Cytidylyl- and Uridylyl Cyclase Activity of Bacillus anthracis Edema Factor and Bordetella pertussis CyaA

    PubMed Central

    Göttle, Martin; Dove, Stefan; Kees, Frieder; Schlossmann, Jens; Geduhn, Jens; König, Burkhard; Shen, Yuequan; Tang, Wei-Jen; Kaever, Volkhard; Seifert, Roland

    2010-01-01

    Cyclic adenosine 3′:5′-monophosphate (cAMP) and cyclic guanosine 3′:5′-monophosphate (cGMP) are second messengers for a numerous mammalian cell functions. The natural occurrence and synthesis of a third cyclic nucleotide (cNMP), cyclic cytidine 3′:5′-monophosphate (cCMP) is discussed controversially, and almost nothing is known about cyclic uridine 3′:5′-monophosphate (cUMP). Bacillus anthracis and Bordetella pertussis secrete the adenylyl cyclase (AC) toxins edema factor (EF) and CyaA, respectively, weakening immune responses and facilitating bacterial proliferation. A cell-permeable cCMP analog inhibits human neutrophil superoxide production. Here, we report that EF and CyaA also possess cytidylyl cyclase (CC) and uridylyl cyclase (UC) activity. CC- and UC activity was determined by a radiometric assay, using [α-32P]CTP and [α-32P]UTP as substrates, respectively, and by an HPLC method. The identity of cNMPs was confirmed by mass spectrometry. Based on available crystal structures, we developed a model illustrating conversion of CTP to cCMP by bacterial toxins. In conclusion, we have shown both EF and CyaA have a rather broad substrate-specificity and exhibit cytidylyl- and uridylyl cyclase activity. Both cCMP and cUMP may contribute to toxin actions. PMID:20521845

  16. Regional distribution of somatostatin receptor binding and modulation of adenylyl cyclase activity in Alzheimer's disease brain.

    PubMed

    Bergström, L; Garlind, A; Nilsson, L; Alafuzoff, I; Fowler, C J; Winblad, B; Cowburn, R F

    1991-10-01

    We have previously reported a reduction in the inhibitory effect of somatostatin on adenylyl cyclase activity in the superior temporal cortex of a group of Alzheimer's disease cases, compared to a group of matched controls. In the present study, the levels of high affinity 125I-Tyr11-somatostatin-14 binding, its modulation by guanine nucleotides and the effects of somatostatin on adenylyl cyclase activity have been measured in preparations of frontal cortex, hippocampus, caudate nucleus and cerebellum from the same patient and control groups. A significant reduction in 125I-Tyr11-somatostatin-14 binding was observed in the frontal cortex, but not other regions, of the Alzheimer's disease group, compared with control values. The profiles of inhibition of specific 125I-Tyr11-somatostatin-14 binding by Gpp(NH)p were similar in all regions in both groups. No significant differences in basal, forskolin-stimulated, or somatostatin and neuropeptide Y inhibitions of adenylyl cyclase activity were found between the two groups. The pattern of change of somatostatin binding in the Alzheimer's disease cases observed in the present study differs from the reported pattern of loss of somatostatin neurons and may be secondary to the degeneration of somatostatin receptor-bearing cholinergic afferents arising from the nucleus basalis. The results of this study indicate that impaired somatostatin modulation of adenylyl cyclase is not a global phenomenon in Alzheimer's disease brain and also that there are no major disruptions of somatostatin receptor-G-protein coupling or of adenylyl cyclase catalytic activity in this disorder. PMID:1684616

  17. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjoo; Lee, Ho-June; Oh, Yumin; Choi, Seon-Guk; Hong, Se-Hoon; Kim, Hyo-Jin; Lee, Song-Yi; Choi, Ji-Woo; Su Hwang, Deog; Kim, Key-Sun; Kim, Hyo-Joon; Zhang, Jianke; Youn, Hyun-Jo; Noh, Dong-Young; Jung, Yong-Keun

    2014-02-01

    Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADDSer194. Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2+/- mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADDSer191. These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.

  18. Activation of Soluble Adenylyl Cyclase Protects against Secretagogue Stimulated Zymogen Activation in Rat Pancreaic Acinar Cells

    PubMed Central

    Kolodecik, Thomas R.; Shugrue, Christine A.; Thrower, Edwin C.; Levin, Lonny R.; Buck, Jochen; Gorelick, Fred S.

    2012-01-01

    An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis. PMID:22844459

  19. Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins.

    PubMed

    Zhang, Wenjun; Heemstra, John R; Walsh, Christopher T; Imker, Heidi J

    2010-11-23

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (∼70-residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways.

  20. Activation of the Pacidamycin PacL Adenylation Domain by MbtH-Like Proteins†

    PubMed Central

    Zhang, Wenjun; Heemstra, John R.; Walsh, Christopher T.; Imker, Heidi J.

    2010-01-01

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (~70 residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways. PMID:20964365

  1. Modulation of a pre-existing conformational equilibrium tunes adenylate kinase activity.

    PubMed

    Ådén, Jörgen; Verma, Abhinav; Schug, Alexander; Wolf-Watz, Magnus

    2012-10-10

    Structural plasticity is often required for distinct microscopic steps during enzymatic reaction cycles. Adenylate kinase from Escherichia coli (AK(eco)) populates two major conformations in solution; the open (inactive) and closed (active) state, and the overall turnover rate is inversely proportional to the lifetime of the active conformation. Therefore, structural plasticity is intimately coupled to enzymatic turnover in AK(eco). Here, we probe the open to closed conformational equilibrium in the absence of bound substrate with NMR spectroscopy and molecular dynamics simulations. The conformational equilibrium in absence of substrate and, in turn, the turnover number can be modulated with mutational- and osmolyte-driven perturbations. Removal of one hydrogen bond between the ATP and AMP binding subdomains results in a population shift toward the open conformation and a resulting increase of k(cat). Addition of the osmolyte TMAO to AK(eco) results in population shift toward the closed conformation and a significant reduction of k(cat). The Michaelis constants (K(M)) scale with the change in k(cat), which follows from the influence of the population of the closed conformation for substrate binding affinity. Hence, k(cat) and K(M) are mutually dependent, and in the case of AK(eco), any perturbation that modulates k(cat) is mirrored with a proportional response in K(M). Thus, our results demonstrate that the equilibrium constant of a pre-existing conformational equilibrium directly affects enzymatic catalysis. From an evolutionary perspective, our findings suggest that, for AK(eco), there exists ample flexibility to obtain a specificity constant (k(cat)/K(M)) that commensurate with the exerted cellular selective pressure.

  2. Developmental changes in ANP-stimulated guanylyl cyclase activity enhanced by ATP in rat lung membrane fractions.

    PubMed Central

    Charoonroje, P; Tokumitsu, Y; Nomura, Y

    1994-01-01

    1. ANP (atrial natriuretic peptides)- or ANP/ATP-stimulated guanylyl cyclase activities were compared in adult (2 month old) and neonatal (5-7 day old) rat lung membrane fractions. 2. The enzyme activities of both membranes depended on the incubation time and ATP concentration: although the activities of both membranes were similar after a short incubation time (4 min), those in adult membranes were lower than those of neonatal membranes after longer incubation times (10 and 30 min) or at lower concentrations of ATP. 3. ANP/ATP gamma S-stimulated guanylyl cyclase activities, which were much higher than ANP/ATP-stimulated activities, were similar in both membranes. 4. ATPase activity of adult membranes was higher than that of neonatal membranes, suggesting that hydrolysis of ATP leads to a decrease of ANP/ATP-guanylyl cyclase activity in adult membranes. Triton X-100 enhanced and diminished ANP/ATP-stimulated guanylyl cyclase activities of adult and neonatal membranes, respectively, and thereby abolished the adult/neonatal difference in the membrane response to ATP. 5. ANP-stimulated activities of both membranes were much more activated by pre-incubation with ATP gamma S than those induced by simultaneous addition of ATP gamma S. The former activities were decreased to levels of the latter by Triton X-100. The latter activities were not affected by Triton X-100. 6. The present results suggested that conformation of lung plasma membranes is related to activation of the ANP receptor/guanylyl cyclase system. PMID:7834209

  3. Selective inhibition of responses to nerve growth factor and of microtubule-associated protein phosphorylation by activators of adenylate cyclase.

    PubMed

    Greene, L A; Drexler, S A; Connolly, J L; Rukenstein, A; Green, S H

    1986-11-01

    To study the influence of cAMP on cellular responses to nerve growth factor (NGF) and to use elevation of intracellular cAMP to probe the NGF mechanism, cultured PC12 pheochromocytoma cells were exposed to forskolin and cholera toxin. As in other cell types, the latter agents greatly increased PC12 cell cAMP levels. Such treatment also brought about a reversible, dose-dependent suppression of NGF-promoted regeneration of neurites. In support of the role of cAMP in this effect, regeneration blockage by forskolin was potentiated by phosphodiesterase inhibitors. When tested on NGF-stimulated initiation of process outgrowth, cholera toxin and forskolin exerted a dual effect. As in previous studies, these drugs, when applied along with NGF, significantly enhanced the initial formation of short cytoplasmic extensions. However, after approximately 3 d of NGF exposure, at which time such extensions begin to acquire the morphological and ultrastructural features of neurites, these agents suppressed process outgrowth. That is, the neurites were fewer in number, significantly less branched, and much shorter than in control cultures. Such changes also occurred when these drugs were added to cultures that had been pretreated with NGF alone. Whereas forskolin and cholera toxin affect the formation and regeneration of neurites, these drugs did not interfere with the short-latency, transient changes in surface morphology that are triggered by NGF, nor did they inhibit transcription-dependent priming. In contrast, the rapidly occurring NGF-induced phosphorylation of tyrosine hydroxylase was suppressed. Moreover, forskolin and cholera toxin rapidly and selectively blocked the NGF-promoted phosphorylation of a set of microtubule-associated proteins known as chartins. Previous observations have suggested a causal relationship between NGF-induced chartin microtubule-associated protein phosphorylation and the formation and outgrowth of neurites. This is supported by the present data and provides a possible mechanism whereby elevated cAMP may interfere with neurite growth and regeneration.

  4. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors

    PubMed Central

    Mendez, Ana; Burns, Marie E.; Sokal, Izabela; Dizhoor, Alexander M.; Baehr, Wolfgang; Palczewski, Krzysztof; Baylor, Denis A.; Chen, Jeannie

    2001-01-01

    The retina's photoreceptor cells adjust their sensitivity to allow photons to be transduced over a wide range of light intensities. One mechanism thought to participate in sensitivity adjustments is Ca2+ regulation of guanylate cyclase (GC) by guanylate cyclase-activating proteins (GCAPs). We evaluated the contribution of GCAPs to sensitivity regulation in rods by disrupting their expression in transgenic mice. The GC activity from GCAPs−/− retinas showed no Ca2+ dependence, indicating that Ca2+ regulation of GCs had indeed been abolished. Flash responses from dark-adapted GCAPs−/− rods were larger and slower than responses from wild-type rods. In addition, the incremental flash sensitivity of GCAPs−/− rods failed to be maintained at wild-type levels in bright steady light. GCAP2 expressed in GCAPs−/− rods restored maximal light-induced GC activity but did not restore normal flash response kinetics. We conclude that GCAPs strongly regulate GC activity in mouse rods, decreasing the flash sensitivity in darkness and increasing the incremental flash sensitivity in bright steady light, thereby extending the rod's operating range. PMID:11493703

  5. The calcium-sensor guanylate cyclase activating protein type 2 specific site in rod outer segment membrane guanylate cyclase type 1.

    PubMed

    Duda, Teresa; Fik-Rymarkiewicz, Ewa; Venkataraman, Venkateswar; Krishnan, Ramalingam; Koch, Karl-Wilhelm; Sharma, Rameshwar K

    2005-05-17

    The rod outer segment membrane guanylate cyclase type 1 (ROS-GC1), originally identified in the photoreceptor outer segments, is a member of the subfamily of Ca(2+)-modulated membrane guanylate cyclases. In phototransduction, its activity is tightly regulated by its two Ca(2+)-sensor protein parts, GCAP1 and GCAP2. This study maps the GCAP2-modulatory site in ROS-GC1 through the use of multiple techniques involving surface plasmon resonance binding studies with soluble ROS-GC1 constructs, coimmunoprecipitation, functional reconstitution experiments with deletion mutants, and peptide competition assays. The findings show that the sequence motif of the core GCAP2-modulatory site is Y965-N981 of ROS-GC1. The site is distinct from the GCAP1-modulatory site. It, however, partially overlaps with the S100B-regulatory site. This indicates that the Y965-N981 motif tightly controls the Ca(2+)-dependent specificity of ROS-GC1. Identification of the site demonstrates an intriguing topographical feature of ROS-GC1. This is that the GCAP2 module transmits the Ca(2+) signals to the catalytic domain from its C-terminal side and the GCAP1 module from the distant N-terminal side.

  6. Purification, characterization, and N-terminal amino acid sequence of the adenylyl cyclase-activating protease from bovine sperm.

    PubMed

    Adeniran, A J; Shoshani, I; Minuth, M; Awad, J A; Elce, J S; Johnson, R A

    1995-03-01

    We previously reported the extraction of a factor from bovine sperm that activated adenylyl cyclases of rat brain and human platelets, and identified it as a trypsin-like protease that was referred to as "ninhibin." This proteolytic activity was purified to near homogeneity from an alkaline extract of washed sperm particles by sequential chromatography on p-aminobenzamidine agarose and CM-Sephadex. Purification was greater than 100-fold with nearly 30% recovery of protease activity exhibiting a major band of approximately 40 kDa. An approximately 45-kDa form of the protease was also evident in crude extracts and was preferentially isolated when the enzyme was prepared in the presence of a mixture of protease inhibitors. The larger form of the protease was substantially less effective in stimulating adenylyl cyclase than was the smaller form; it is likely to be a zymogen form from which the smaller, more active form is derived. Purified forms of acrosin and ninhibin exhibited similar mobilities on PAGE, similar capacities for activating adenylyl cyclase, similar patterns of proteolytic fragmentation, and similar immunoblot patterns obtained with an antibody against purified bovine acrosin. More importantly, the N-terminal amino acid sequence of bovine ninhibin was found to be identical with that of bovine acrosin and caprine acrosin and more than 75% identical with porcine acrosin. The data support the conclusion that the adenylyl cyclase-activating protease previously referred to as ninhibin is, in fact, acrosin. PMID:7756444

  7. Pituitary adenylyl cyclase activating peptide (PACAP) in the bed nucleus of the stria terminalis (BNST) increases corticosterone in male and female rats

    PubMed Central

    Lezak, K. R.; Roelke, E.; Harris, O.; Choi, I.; Edwards, S.; Gick, N.; Cocchiaro, G.; Missig, G.; Roman, C. W.; Braas, K. M.; Toufexis, D.J.; May, V.; Hammack, S. E.

    2014-01-01

    Single nucleotide polymorphisms (SNP) in the genes for pituitary adenylate cyclase-activating peptide (PACAP) and the PAC1 receptor have been associated with several psychiatric disorders whose etiology has been associated with stressor exposure and/or dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. In rats, exposure to repeated variate stress has been shown to increase PACAP and its cognate PAC1 receptor expression in the bed nucleus of the stria terminalis (BNST), a brain region implicated in anxiety and depression-related behaviors as well as the regulation of HPA axis activity. We have argued that changes in BNST PACAP signaling may mediate the changes in emotional behavior and dysregulation of the HPA axis associated with anxiety and mood disorders. The current set of studies was designed to determine whether BNST PACAP infusion leads to activation of the HPA axis as determined by increases in plasma corticosterone. We observed an increase in plasma corticosterone levels 30 minutes following BNST PACAP38 infusion in male and female rats, which was independent of estradiol (E2) treatment in females, and we found that plasma corticosterone levels were increased at both 30 minutes and 60 minutes, but returned to baseline levels 4 hours following the highest dose. PACAP38 infusion into the lateral ventricles immediately above the BNST did not alter plasma corticosterone level, and the increased plasma corticosterone following BNST PACAP was not blocked by BNST corticotropin releasing hormone (CRH) receptor antagonism. These results support others suggesting that BNST PACAP plays a key role in regulating stress responses. PMID:24845172

  8. Comparative theoretical study of the binding of luciferyl-adenylate and dehydroluciferyl-adenylate to firefly luciferase

    NASA Astrophysics Data System (ADS)

    Pinto da Silva, Luís; Vieira, João; Esteves da Silva, Joaquim C. G.

    2012-08-01

    This is the first report of a study employing a computational approach to study the binding of (D/L)-luciferyl-adenlyates and dehydroluciferyl-adenylate to firefly luciferase. A semi-empirical/molecular mechanics methodology was used to study the interaction between these ligands and active site molecules. All adenylates are complexed with the enzyme, mostly due to electrostatic interactions with cationic residues. Dehydroluciferyl-adenylate is expected to be a competitive inhibitor of luciferyl-adenylate, as their binding mechanism and affinity to luciferase are very similar. Both luciferyl-adenylates adopt the L-orientation in the active site of luciferase.

  9. A Chemoattractant-mediated Gi-coupled Pathway Activates Adenylyl Cyclase in Human Neutrophils

    PubMed Central

    Mahadeo, Dana C.; Janka-Junttila, Mirkka; Smoot, Rory L.; Roselova, Pavla

    2007-01-01

    Neutrophils and Dictyostelium use conserved signal transduction pathways to decipher chemoattractant gradients and migrate directionally. In both cell types, addition of chemoattractants stimulates the production of cAMP, which has been suggested to regulate chemotaxis. We set out to define the mechanism by which chemoattractants increase cAMP levels in human neutrophils. We show that chemoattractants elicit a rapid and transient activation of adenylyl cyclase (AC). This activation is sensitive to pertussis toxin treatment but independent of phosphoinositide-3 kinase activity and an intact cytoskeleton. Remarkably, and in sharp contrast to Gαs-mediated activation, chemoattractant-induced AC activation is lost in cell lysates. Of the nine, differentially regulated transmembrane AC isoforms in the human genome, we find that isoforms III, IV, VII, and IX are expressed in human neutrophils. We conclude that the signal transduction cascade used by chemoattractants to activate AC is conserved in Dictyostelium and human neutrophils and is markedly different from the canonical Gαs-meditated pathway. PMID:17135293

  10. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    PubMed Central

    Otto, Markus; Naumann, Christin; Brandt, Wolfgang; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles. PMID:27135223

  11. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members.

    PubMed

    Otto, Markus; Naumann, Christin; Brandt, Wolfgang; Wasternack, Claus; Hause, Bettina

    2016-01-01

    Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles. PMID:27135223

  12. Calcium-Myristoyl Tug Is a New Mechanism for Intramolecular Tuning of Calcium Sensitivity and Target Enzyme Interaction for Guanylyl Cyclase-activating Protein 1

    PubMed Central

    Peshenko, Igor V.; Olshevskaya, Elena V.; Lim, Sunghyuk; Ames, James B.; Dizhoor, Alexander M.

    2012-01-01

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca2+ sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca2+ sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca2+ binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca2+-bound and Mg2+-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca2+ sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca2+ binding to EF-hand 4 and Ca2+ sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu80 and Val180) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or “tug”) between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca2+ sensitivity. PMID:22383530

  13. Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase.

    PubMed

    Dizhoor, A M; Olshevskaya, E V; Henzel, W J; Wong, S C; Stults, J T; Ankoudinova, I; Hurley, J B

    1995-10-20

    Two vertebrate photoreceptor-specific membrane guanylyl cyclases, RetGC-1 and RetGC-2, are activated by a soluble 24-kDa retinal protein, p24, in a Ca(2+)-sensitive manner (Dizhoor, A.M., Lowe, D.G., Olshevskaya, E.V., Laura, R.P., and Hurley, J.B. (1994) Neuron 12, 1345-1352; Lowe, D.G., Dizhoor, A.M., Liu, K., Gu, O., Laura, R., Lu, L., and Hurley, J.B. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 5535-5539). The primary structure of bovine p24 has been derived from peptide sequencing and from its cDNA. p24 is a new EF-hand-type Ca(2+)-binding protein, related but not identical to another guanylyl cyclase-activating protein, GCAP (Palczewski, K., Subbaraya, I., Gorczyca, W.A., Helekar, B.S., Ruiz, C.C., Ohguro, H. Huang, J., Zhao, X., Crabb, J.W., Johnson, R.S., Walsh, K.A., Gray-Keller, M.P., Detwiler, P.B., and Baehr, W. (1994) Neuron 13, 395-404) and other members of the recovering family of Ca(2+)-binding proteins. Antibodies against a truncated fusion protein and against a p24-specific synthetic peptide specifically recognize retinal p24 on immunoblot. Both antibodies inhibit activation of photoreceptor membrane guanylyl cyclase by purified p24. p24 is found only in retina, and it copurifies with outer segment membranes. Immunocytochemical analysis shows that it is present in rod photoreceptor cells. An immobilized antibody column was used to purify p24 from a heat-treated retinal extract. Purified p24 appears on SDS-polyacrylamide gel electrophoresis as a homogeneous protein not contaminated with GCAP, and it activates photoreceptor guanylyl cyclase in vitro at submicromolar concentrations. Ca2+ inhibits this activation with an EC50 near 200 nM and a Hill coefficient of 1.7. Recombinant p24 expressed in 293 cells effectively stimulates photoreceptor guanylyl cyclase. These findings demonstrate that p24, like GCAP, imparts Ca2+ sensitivity to photoreceptor membrane guanylyl cyclase. We propose that p24 be referred to as GCAP-2 and that GCAP be referred to as

  14. Effects of abstinence and family history for alcoholism on platelet adenylyl cyclase activity.

    PubMed

    Menninger, J A; Barón, A E; Tabakoff, B

    1998-12-01

    Platelet adenylyl cyclase (AC) activity was measured in 32 alcohol-dependent subjects and 27 control subjects who were categorized as either family history-positive (FHP) or family history-negative (FHN) for alcoholism. The interview and blood sample collections were performed shortly after cessation of heavy drinking in the alcoholic group, and repeat blood samples were obtained at the end of the first and second weeks of monitored abstinence. Control subjects received the same interview and provided blood samples at the time of the interview. When subjects were not segregated for FHP or FHN status, there were no statistically significant differences in basal, cesium fluoride (CsF)-, or forskolin-stimulated mean AC activities between the controls and the alcoholics, at study entry or with 1 or 2 weeks of abstinence. On the other hand, over the 2-week course of sobriety from heavy drinking, the CsF-stimulated AC activity of FHP alcohol-dependent subjects decreased significantly (p = 0.03). FHP alcohol-dependent subjects after 2 weeks of sobriety had significantly lower mean CsF-stimulated AC activity than FHN controls (p = 0.04), whereas the FHN alcoholic subjects' CsF-stimulated AC activity did not differ significantly from FHN controls at this point in time. When all subjects were pooled and then categorized as either FHP or FHN, there was a significant difference in mean CsF-stimulated AC activity (p = 0.02) between the FHP and FHN subject groups. Genetic factors and abstinence appear to have roles in determining low platelet AC activity in alcoholic and nonalcoholic subjects. CsF-stimulated platelet AC activity, in particular, appears to act as a trait marker for a genetic vulnerability to developing alcoholism, but recent heavy drinking in male alcoholics is a factor that can mask differences between FHP and FHN subjects.

  15. NO and CO Differentially Activate Soluble Guanylyl Cyclase via a Heme Pivot-bend Mechanism

    SciTech Connect

    Ma,X.; Sayed, N.; Beuve, A.; van den Akker, F.

    2007-01-01

    Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.

  16. Structural features of Escherichia coli heat-stable enterotoxin that activates membrane-associated guanylyl cyclase.

    PubMed

    Sato, T; Shimonishi, Y

    2004-03-01

    Heat-stable enterotoxin (ST), a small peptide of 18 or 19 amino acid residues produced by enterotoxigenic Escherichia coli, is the cause of acute diarrhea in infants and travelers in developing countries. ST triggers a biological response by binding to a membrane-associated guanylyl cyclase C (GC-C) which is located on intestinal epithelial cell membranes. This binding causes an increase in the concentration of cGMP as a second messenger in cells and activates protein kinase A and cystic fibrosis transmembrane conductance regulator. Here we describe the crystal structure of an ST at 0.89 A resolution. The molecule has a ring-shaped molecular architecture consisting of six peptide molecules with external and internal diameters of approximately 35 and 7 A, respectively and a thickness of approximately 11 A. The conserved residues at the central portion of ST are distributed on the outer surface of the ring-shaped peptide hexamer, suggesting that the hexamer may be implicated in the association with GC-C through these invariant residues. PMID:15049831

  17. Differential Regulatory Role of Pituitary Adenylate Cyclase–Activating Polypeptide in the Serum-Transfer Arthritis Model

    PubMed Central

    Botz, Bálint; Bölcskei, Kata; Kereskai, László; Kovács, Miklós; Németh, Tamás; Szigeti, Krisztián; Horváth, Ildikó; Máthé, Domokos; Kovács, Noémi; Hashimoto, Hitoshi; Reglődi, Dóra; Szolcsányi, János; Pintér, Erika; Mócsai, Attila; Helyes, Zsuzsanna

    2014-01-01

    Objective Pituitary adenylate cyclase–activating polypeptide (PACAP) expressed in capsaicin-sensitive sensory neurons and immune cells has divergent functions in inflammatory and pain processes. This study was undertaken to investigate the involvement of PACAP in a mouse model of rheumatoid arthritis. Methods Arthritis was induced in PACAP−/− and wild-type (PACAP+/+) mice by K/BxN serum transfer. General features of the disease were investigated by semiquantitative scoring, plethysmometry, and histopathologic analysis. Mechano- and thermonociceptive thresholds and motor functions were also evaluated. Metabolic activity was assessed by positron emission tomography. Bone morphology was measured by in vivo micro–computed tomography, myeloperoxidase activity and superoxide production by bioluminescence imaging with luminol and lucigenin, respectively, and vascular permeability by fluorescent indocyanine green dye study. Results PACAP+/+ mice developed notable joint swelling, reduced grasping ability, and mechanical (but not thermal) hyperalgesia after K/BxN serum transfer. In PACAP−/− mice clinical scores and edema were significantly reduced, and mechanical hyperalgesia and motor impairment were absent, throughout the 2-week period of observation. Metabolic activity and superoxide production increased in the tibiotarsal joints of wild-type mice but were significantly lower in PACAP−/− animals. Myeloperoxidase activity in the ankle joints of PACAP−/− mice was significantly reduced in the early phase of arthritis, but increased in the late phase. Synovial hyperplasia was also significantly increased, and progressive bone spur formation was observed in PACAP-deficient mice only. Conclusion In PACAP-deficient mice with serum-transfer arthritis, joint swelling, vascular leakage, hyperalgesia, and early inflammatory cell accumulation are reduced; in the later phase of the disease, immune cell function and bone neoformation are increased. Elucidation of

  18. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    D Gallagher; S Kim; H Robinson; P Reddy

    2011-12-31

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV) - two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  19. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    Gallagher, D.T.; Robinson, H.; Kim, S.-K.; Reddy, P. T.

    2011-01-21

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  20. Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents

    PubMed Central

    Feng, Bin; Kiyatkin, Michael E.; La, Jun-Ho; Ge, Pei; Solinga, Robert; Silos-Santiago, Inmaculada; Gebhart, G.F.

    2013-01-01

    Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally-restricted 14-amino acid peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested, pinned flat mucosal side up for in vitro single-fiber recordings and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular and muscular-mucosal) to probing and circumferential stretch studied. Both cGMP (10–300μM) and uroguanylin (1–1000nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and muscular-mucosal afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and muscular-mucosal afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on muscular-mucosal afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization. PMID:23739979

  1. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA.

    PubMed

    Petrova, Olga E; Cherny, Kathryn E; Sauer, Karin

    2015-01-01

    Biofilm dispersion is a highly regulated process that allows biofilm bacteria to respond to changing environmental conditions and to disseminate to new locations. The dispersion of biofilms formed by the opportunistic pathogen Pseudomonas aeruginosa is known to require a number of cyclic di-GMP (c-di-GMP)-degrading phosphodiesterases (PDEs) and the chemosensory protein BdlA, with BdlA playing a pivotal role in regulating PDE activity and enabling dispersion in response to a wide array of cues. BdlA is activated during biofilm growth via posttranslational modifications and nonprocessive cleavage in a manner that is dependent on elevated c-di-GMP levels. Here, we provide evidence that the diguanylate cyclase (DGC) GcbA contributes to the regulation of BdlA cleavage shortly after initial cellular attachment to surfaces and, thus, plays an essential role in allowing biofilm cells to disperse in response to increasing concentrations of a variety of substances, including carbohydrates, heavy metals, and nitric oxide. DGC activity of GcbA was required for its function, as a catalytically inactive variant could not rescue impaired BdlA processing or the dispersion-deficient phenotype of gcbA mutant biofilms to wild-type levels. While modulating BdlA cleavage during biofilm growth, GcbA itself was found to be subject to c-di-GMP-dependent and growth-mode-specific regulation. GcbA production was suppressed in mature wild-type biofilms and could be induced by reducing c-di-GMP levels via overexpression of genes encoding PDEs. Taken together, the present findings demonstrate that the regulatory functions of c-di-GMP-synthesizing DGCs expand beyond surface attachment and biofilm formation and illustrate a novel role for DGCs in the regulation of the reverse sessile-motile transition of dispersion. PMID:25331436

  2. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene

    PubMed Central

    Rodriguez-Centeno, Javier; Sastre, Leandro

    2016-01-01

    Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation. PMID:26840347

  3. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    SciTech Connect

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B.Tracy

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.

  4. Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation

    PubMed Central

    Bavencoffe, Alexis; Li, Yong; Wu, Zizhen; Yang, Qing; Herrera, Juan; Kennedy, Eileen J.

    2016-01-01

    Little is known about intracellular signaling mechanisms that persistently excite neurons in pain pathways. Persistent spontaneous activity (SA) generated in the cell bodies of primary nociceptors within dorsal root ganglia (DRG) has been found to make major contributions to chronic pain in a rat model of spinal cord injury (SCI) (Bedi et al., 2010; Yang et al., 2014). The occurrence of SCI-induced SA in a large fraction of DRG neurons and the persistence of this SA long after dissociation of the neurons provide an opportunity to define intrinsic cell signaling mechanisms that chronically drive SA in pain pathways. The present study demonstrates that SCI-induced SA requires continuing activity of adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA), as well as a scaffolded complex containing AC5/6, A-kinase anchoring protein 150 (AKAP150), and PKA. SCI caused a small but significant increase in the expression of AKAP150 but not other AKAPs. DRG membranes isolated from SCI animals revealed a novel alteration in the regulation of AC. AC activity stimulated by Ca2+-calmodulin increased, while the inhibition of AC activity by Gαi showed an unexpected and dramatic decrease after SCI. Localized enhancement of the activity of AC within scaffolded complexes containing PKA is likely to contribute to chronic pathophysiological consequences of SCI, including pain, that are promoted by persistent hyperactivity in DRG neurons. SIGNIFICANCE STATEMENT Chronic neuropathic pain is a major clinical problem with poorly understood mechanisms and inadequate treatments. Recent findings indicate that chronic pain in a rat SCI model depends upon hyperactivity in dorsal root ganglia (DRG) neurons. Although cAMP signaling is involved in many forms of neural plasticity, including hypersensitivity of nociceptors in the presence of inflammatory mediators, our finding that continuing cAMP-PKA signaling is required for persistent SA months after SCI and long after isolation of

  5. Effects of hydroxyl radical scavengers KCN and CO on ultraviolet light-induced activation of crude soluble guanylate cyclase

    SciTech Connect

    Karlsson, J.O.; Axelsson, K.L.; Andersson, R.G.

    1985-01-01

    The crude soluble guanylate cyclase (GC) from bovine mesenteric artery was stimulated by ultraviolet (UV) light (366 nm). Addition of free radical scavengers, dimethylsulfoxide or superoxide dismutase and/or catalase to the GC assay did not abolish the stimulatory effect of UV light. On the contrary, the UV light-induced activation was enhanced in the presence of these scavengers. KCN (1 mM) did not affect the UV light-induced activation, while 0.1 mM of CO potentiated the activation. These results may indicate that UV light is operating through a direct interaction with the ferrous form of the GC-heme.

  6. Tuber physiology and properties of starch from tubers of transgenic potato plants with altered plastidic adenylate transporter activity.

    PubMed

    Geigenberger, P; Stamme, C; Tjaden, J; Schulz, A; Quick, P W; Betsche, T; Kersting, H J; Neuhaus, H E

    2001-04-01

    We showed recently that antisense plants with decreased activity of the plastidic ATP/ADP-transporter protein exhibit drastically reduced levels of starch and a decreased amylose/amylopectin ratio, whereas sense plants with increased activity of the transporter possessed more starch than wild-type plants and an increased amylose/amylopectin ratio. In this paper we investigate the effect of altered plastidic ATP/ADP-transporter protein expression on primary metabolism and granule morphology in more detail. Tuber tissues from antisense and sense plants exhibited substantially increased respiratory activity compared with the wild type. Tubers from antisense plants contained markedly increased levels of free sugars, UDP-Glc, and hexose phosphates, whereas phosphoenolpyruvate, isocitrate, ATP, ADP, AMP, UTP, UDP, and inorganic pyrophosphate levels were slightly decreased. In contrast, tubers from sense plants revealed a slight increase in adenine and uridine nucleotides and in the levels of inorganic pyrophosphate, whereas no significant changes in the levels of soluble sugars and metabolites were observed. Antisense tubers contained 50% reduced levels of ADP-Glc, whereas sense tubers contained up to 2-fold increased levels of this sole precursor for starch biosynthesis. Microscopic examination of starch grain morphology revealed that the size of starch grains from antisense tubers was substantially smaller (50%) compared with the wild type. The large starch grains from sense tubers appeared of a more angular morphology, which differed to the more ellipsoid shape of wild type grains. The results suggest a close interaction between plastidial adenylate transport and starch biosynthesis, indicating that ADP-Glc pyrophosphorylase is ATP-limited in vivo and that changes in ADP-Glc concentration determine starch yield, as well as granule morphology. Possible factors linking starch synthesis and respiration are discussed.

  7. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity.

    PubMed

    Hess, Kenneth C; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A; Buck, Jochen; Levin, Lonny R; Barrientos, Antoni

    2014-10-01

    Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.

  8. Activation of soluble guanylyl cyclase by YC-1 in aortic smooth muscle but not in ventricular myocardium from rat

    PubMed Central

    Wegener, Jörg W; Gath, Ingolf; Förstermann, Ulrich; Nawrath, Hermann

    1997-01-01

    The effects of YC-1 (3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole), an activator of soluble guanylyl cyclase, on tension, levels of cyclic GMP and cyclic AMP, and cardiac L-type Ca2+-current (ICa(L)) were investigated in aortic smooth muscle and ventricular heart muscle from rat.YC-1 (0.1–30 μM) induced a concentration-dependent relaxation in aortic rings precontracted with phenylephrine (3 μM). The relaxant effects of YC-1 were reversed by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (30 μM; ODQ), potentiated by zaprinast (10 μM) and antagonized by Rp-8-Br-cGMPS (100 μM).In ventricular heart muscle strips, YC-1 (30 μM) exhibited no effects on force of contraction (Fc) in the absence or presence of either zaprinast (10 μM) or 3-isobutyl-1-methylxanthine (30 μM). Fc was slightly increased by YC-1 (30 μM) in the presence of isoprenaline (100 nM), but this effect was not influenced by ODQ (30 μM).Cardiac ICa(L) was not significantly affected by YC-1 (30 μM), either in the absence or presence of isoprenaline (30 nM).In aortic rings, cyclic GMP levels were increased almost 3 fold by YC-1 (30 μM); this effect was abolished by ODQ (30 μM). In isolated ventricular cardiomyocytes, cyclic GMP levels were not affected by YC-1 (30 μM) but almost doubled by activation of particular guanylyl cyclase with atriopeptin II (100 nM).YC-1 (30 μM) did not increase cyclic AMP levels either in aortic rings or in ventricular cardiomyocytes. In contrast, isoprenaline (3 μM) increased cyclic AMP levels about two fold in both tissues. In cardiomyocytes, the effect of isoprenaline (3 μM) was slightly enhanced by YC-1 (30 μM).It is concluded that relaxation of smooth muscle preparations by YC-1 is mediated mainly by activation of soluble guanylyl cyclase and subsequent increase in cyclic GMP levels. The failure of YC-1 to affect cardiac Fc, levels of cyclic GMP, and ICa(L) suggests that soluble guanylyl cyclase is not

  9. Bifunctional homodimeric triokinase/FMN cyclase: contribution of protein domains to the activities of the human enzyme and molecular dynamics simulation of domain movements.

    PubMed

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-04-11

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.

  10. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role

    PubMed Central

    Barott, K. L.; Helman, Y.; Haramaty, L.; Barron, M. E.; Hess, K. C.; Buck, J.; Levin, L. R.; Tresguerres, M.

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels. PMID:23459251

  11. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  12. Pituitary adenylate cyclase-activating peptide (PACAP) and PAC1 receptor in the testis of cartilaginous fish Torpedo marmorata: A molecular and phylogenetic study.

    PubMed

    Agnese, Marisa; Valiante, Salvatore; Rosati, Luigi; Andreuccetti, Piero; Prisco, Marina

    2016-01-01

    The role of PACAP in spermatogenesis and steroidogenesis has been largely investigated in last years in mammals; conversely, a few studies have been performed in non mammalian vertebrates. In this paper we investigated the sequence, expression and localization of PACAP and its PAC1 receptor in the testis of the benthic elasmobranch Torpedo marmorata, the marbled electric ray. Cloning a partial PACAP cDNA, we demonstrated for the first time in elasmobranches that PACAP shows a highly conserved sequence, compared with the PACAP of other chordates (tunicates and vertebrates). Moreover, the phylogenetic analysis revealed that PACAP has been well preserved during evolution and that a negative selection acts on PACAP sequence, leading to the conservation of the coding sites. The phylogenetic consensus tree showed also that Torpedo PACAP is more related with the amphibian PACAP than with the teleost one. Finally, we demonstrated that in T. marmorata PACAP and its PAC1 receptor are synthesized directly in the testis, where they show a wider localization than mammals, suggesting that this neuropeptide is involved in the control of Torpedo spermatogenesis. PMID:26393433

  13. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components

    NASA Technical Reports Server (NTRS)

    Martin, E.; Lee, Y. C.; Murad, F.

    2001-01-01

    YC-1 [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole] is an allosteric activator of soluble guanylyl cyclase (sGC). YC-1 increases the catalytic rate of the enzyme and sensitizes the enzyme toward its gaseous activators nitric oxide or carbon monoxide. In other studies the administration of YC-1 to experimental animals resulted in the inhibition of the platelet-rich thrombosis and a decrease of the mean arterial pressure, which correlated with increased cGMP levels. However, details of YC-1 interaction with sGC and enzyme activation are incomplete. Although evidence in the literature indicates that YC-1 activation of sGC is strictly heme-dependent, this report presents evidence for both heme-dependent and heme-independent activation of sGC by YC-1. The oxidation of the sGC heme by 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one completely inhibited the response to NO, but only partially attenuated activation by YC-1. We also observed activation by YC-1 of a mutant sGC, which lacks heme. These findings indicate that YC-1 activation of sGC can occur independently of heme, but that activation is substantially increased when the heme moiety is present in the enzyme.

  14. Overexpression of Guanylate Cyclase Activating Protein 2 in Rod Photoreceptors In Vivo Leads to Morphological Changes at the Synaptic Ribbon

    PubMed Central

    López-Begines, Santiago; Fernández-Sánchez, Laura; Cuenca, Nicolás; Llorens, Jordi; de la Villa, Pedro; Méndez, Ana

    2012-01-01

    Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic

  15. A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue.

    PubMed

    Wilkinson, K D; Smith, S E; O'Connor, L; Sternberg, E; Taggart, J J; Berges, D A; Butt, T

    1990-08-14

    A nonhydrolyzable analogue of ubiquitin adenylate has been synthesized for use as a specific inhibitor of the ubiquitination of proteins. Ubiquitin adenylate is a tightly bound intermediate formed by the ubiquitin activating enzyme. The inhibitor adenosyl-phospho-ubiquitinol (APU) is the phosphodiester of adenosine and the C-terminal alcohol derived from ubiquitin. APU is isosteric with the normal reaction intermediate, the mixed anhydride of ubiquitin and AMP, but results from the replacement of the carbonyl oxygen of Gly76 with a methylene group. This stable analogue would be expected to bind to both ubiquitin and adenosine subsites and result in a tightly bound competitive inhibitor of ubiquitin activation. APU inhibits the ATP-PPi exchange reaction catalyzed by the purified ubiquitin activating enzyme in a manner competitive with ATP (Ki = 50 nM) and noncompetitive with ubiquitin (Ki = 35 nM). AMP has no effect on the inhibition, confirming that the inhibitor binds to the free form of the enzyme and not the thiol ester form. This inhibition constant is 10-fold lower than the dissociation constants for each substrate and 30-1000-fold lower than the respective Km values for ubiquitin and ATP. APU also effectively inhibits conjugation of ubiquitin to endogenous proteins catalyzed by reticulocyte fraction II with an apparent Ki of 0.75 microM. This weaker inhibition is consistent with the fact that activation of ubiquitin is not rate limiting in the conjugation reactions catalyzed by fraction II. APU is similarly effective as an inhibitor of the ubiquitin-dependent proteolysis of beta-lactoglobulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. PMID:26980729

  17. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism.

  18. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity.

  19. Meconium Ileus Caused by Mutations in GUCY2C, Encoding the CFTR-Activating Guanylate Cyclase 2C

    PubMed Central

    Romi, Hila; Cohen, Idan; Landau, Daniella; Alkrinawi, Suliman; Yerushalmi, Baruch; Hershkovitz, Reli; Newman-Heiman, Nitza; Cutting, Garry R.; Ofir, Rivka; Sivan, Sara; Birk, Ohad S.

    2012-01-01

    Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage. PMID:22521417

  20. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398

  1. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

  2. Tumor necrosis factor alpha activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism

    PubMed Central

    1990-01-01

    Endothelium-derived nitric oxide (NO) causes vasodilatation by activating soluble guanylate cyclase, and glomerular mesangial cells respond to NO with elevations of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). We explored whether mesangial cells can be stimulated to produce NO and whether NO modulates mesangial cell function in an autocrine or paracrine fashion. Tumor necrosis factor alpha (TNF-alpha) raised mesangial cell cGMP levels in a time- and concentration-dependent manner (threshold dose 1 ng/ml, IC50 13.8 ng/ml, maximal response 100 ng/ml). TNF-alpha-induced increases in mesangial cGMP content were evident at 8 h and maximal at 18-24 h. The TNF-alpha-induced stimulation of mesangial cell cGMP production was abrogated by actinomycin D or cycloheximide suggesting dependence on new RNA or protein synthesis. Hemoglobin and methylene blue, both known to inhibit NO action, dramatically reduced TNF-alpha-induced mesangial cell cGMP production. Superoxide dismutase, known to potentiate NO action, augmented the TNF-alpha-induced effect. Ng-monomethyl-L- arginine (L-NMMA) decreased cGMP levels in TNF-alpha-treated, but not vehicle-treated mesangial cells in a concentration-dependent manner (IC50 53 microM). L-arginine had no effect on cGMP levels in control or TNF-alpha-treated mesangial cells but reversed L-NMMA-induced inhibition. Interleukin 1 beta and lipopolysaccharide (LPS), but not interferon gamma, also increased mesangial cell cGMP content. Transforming growth factor beta 1 blunted the mesangial cell response to TNF-alpha. TNF-alpha-induced L-arginine-dependent increases in cGMP were also evident in bovine renal artery vascular smooth muscle cells, COS-1 cells, and 1502 human fibroblasts. These findings suggest that TNF-alpha induces expression in mesangial cell of an enzyme(s) involved in the formation of L-arginine-derived NO. Moreover, the data indicate that NO acts in an autocrine and paracrine fashion to activate mesangial cell soluble

  3. Uridylation and adenylation of RNAs

    PubMed Central

    Song, JianBo; Song, Jun; Mo, BeiXin; Chen, XueMei

    2016-01-01

    The posttranscriptional addition of nontemplated nucleotides to the 3′ ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3′ ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area. PMID:26563174

  4. Uridylation and adenylation of RNAs.

    PubMed

    Song, JianBo; Song, Jun; Mo, BeiXin; Chen, XueMei

    2015-11-01

    The posttranscriptional addition of nontemplated nucleotides to the 3' ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3' ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area. PMID:26563174

  5. Soluble guanylate cyclase is activated differently by excess NO and by YC-1: Resonance Raman spectroscopic evidence†

    PubMed Central

    Ibrahim, Mohammed; Derbyshire, Emily R.; Soldatova, Alexandra V.; Marletta, Michael A.; Spiro, Thomas G.

    2010-01-01

    Modulation of soluble guanylate cyclase (sGC) activity by nitric oxide (NO) involves two distinct steps. Low level activation of sGC is achieved by the stoichiometric binding of NO (1-NO) to the heme cofactor, while much higher activation is achieved by the binding of additional NO (xsNO) at a non-heme site. Addition of the allosteric activator YC-1 to the 1-NO form leads to activity comparable to xsNO state. In this study the mechanisms of sGC activation were investigated using electronic absorption and resonance Raman (RR) spectroscopic methods. RR spectroscopy confirmed that the 1-NO form contains 5-coordinate NO-heme and showed that the addition of NO to the 1-NO form has no significant effect on the spectrum. In contrast, addition of YC-1 to either the 1-NO or xsNO forms alters the RR spectrum significantly, indicating a protein-induced change in the heme geometry. This change in the heme geometry was also observed when BAY 41-2272 was added to the xsNO form. Bands assigned to bending and stretching motions of the vinyl and propionate substituents change intensity in a pattern suggesting altered tilting of the pyrrole rings to which they are attached. In addition, the N-O stretching frequency increases, with no change in the Fe-NO frequency, an effect modeled via DFT calculations as resulting from a small opening of the Fe-N-O angle. These spectral differences demonstrate different mechanisms of activation by synthetic activators, such as YC-1 and BAY 41-2272, and excess NO. PMID:20459051

  6. Soluble guanylate cyclase is activated differently by excess NO and by YC-1: resonance Raman spectroscopic evidence.

    PubMed

    Ibrahim, Mohammed; Derbyshire, Emily R; Soldatova, Alexandra V; Marletta, Michael A; Spiro, Thomas G

    2010-06-15

    Modulation of soluble guanylate cyclase (sGC) activity by nitric oxide (NO) involves two distinct steps. Low-level activation of sGC is achieved by the stoichiometric binding of NO (1-NO) to the heme cofactor, while much higher activation is achieved by the binding of additional NO (xsNO) at a non-heme site. Addition of the allosteric activator YC-1 to the 1-NO form leads to activity comparable to that of the xsNO state. In this study, the mechanisms of sGC activation were investigated using electronic absorption and resonance Raman (RR) spectroscopic methods. RR spectroscopy confirmed that the 1-NO form contains five-coordinate NO-heme and showed that the addition of NO to the 1-NO form has no significant effect on the spectrum. In contrast, addition of YC-1 to either the 1-NO or xsNO forms alters the RR spectrum significantly, indicating a protein-induced change in the heme geometry. This change in the heme geometry was also observed when BAY 41-2272 was added to the xsNO form. Bands assigned to bending and stretching motions of the vinyl and propionate substituents undergo changes in intensity in a pattern suggesting altered tilting of the pyrrole rings to which they are attached. In addition, the N-O stretching frequency increases, with no change in the Fe-NO stretching frequency, an effect modeled via DFT calculations as resulting from a small opening of the Fe-N-O angle. These spectral differences demonstrate different mechanisms of activation by synthetic activators, such as YC-1 and BAY 41-2272, and excess NO. PMID:20459051

  7. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies

    PubMed Central

    Sharina, I G; Sobolevsky, M; Papakyriakou, A; Rukoyatkina, N; Spyroulias, G A; Gambaryan, S; Martin, E

    2015-01-01

    Background and Purpose Fibrates are a class of drugs widely used to treat dyslipidaemias. They regulate lipid metabolism and act as PPARα agonists. Clinical trials demonstrate that besides changes in lipid profiles, fibrates decrease the incidence of cardiovascular events, with gemfibrozil exhibiting the most pronounced benefit. This study aims to characterize the effect of gemfibrozil on the activity and function of soluble guanylyl cyclase (sGC), the key mediator of NO signalling. Experimental Approach High-throughput screening of a drug library identified gemfibrozil as a direct sGC activator. Activation of sGC is unique to gemfibrozil and is not shared by other fibrates. Key Results Gemfibrozil activated purified sGC, induced endothelium-independent relaxation of aortic rings and inhibited platelet aggregation. Gemfibrozil-dependent activation was absent when the sGC haem domain was deleted, but was significantly enhanced when sGC haem was lacking or oxidized. Oxidation of sGC haem enhanced the vasoactive and anti-platelet effects of gemfibrozil. Gemfibrozil competed with the haem-independent sGC activators ataciguat and cinaciguat. Computational modelling predicted that gemfibrozil occupies the space of the haem group and interacts with residues crucial for haem stabilization. This is consistent with structure-activity data which revealed an absolute requirement for gemfibrozil's carboxyl group. Conclusions and Implications These data suggest that in addition to altered lipid and lipoprotein state, the cardiovascular preventive benefits of gemfibrozil may derive from direct activation and protection of sGC function. A sGC-directed action may explain the more pronounced cardiovascular benefit of gemfibrozil observed over other fibrates and some of the described side effects of gemfibrozil. PMID:25536881

  8. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  9. Block by gabapentin of the facilitation of glutamate release from rat trigeminal nucleus following activation of protein kinase C or adenylyl cyclase

    PubMed Central

    Maneuf, Yannick P; McKnight, Alexander T

    2001-01-01

    The effect of activation of protein kinase C (PKC) or adenylyl cyclase on release of glutamate has been investigated in a perfused slice preparation from the rat caudal trigeminal nucleus. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) produced a concentration-dependent increase in K+-evoked release of [2H]-glutamate (maximum increase 45%, EC50 11.8 nM), but in the presence of gabapentin (30 μM) the facilitation of release was blocked. The adenylyl cyclase activator forskolin (FSK) also induced a concentration-dependent increase in K+-evoked release of [3H]-glutamate (maximum increase 36%, EC50 2.4 μM), and again this facilitatory effect was blocked by gabapentin (30 μM). We suggest that these results may be of relevance to the antihyperalgesic properties of gabapentin, in conditions where concomitant release of substance P and CGRP produces activation of PKC and adenylyl cyclase respectively. PMID:11564640

  10. Chronic Activation of Heme Free Guanylate Cyclase Leads to Renal Protection in Dahl Salt-Sensitive Rats

    PubMed Central

    Hoffmann, Linda S.; Kretschmer, Axel; Lawrenz, Bettina; Hocher, Berthold; Stasch, Johannes-Peter

    2015-01-01

    The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC. PMID:26717150

  11. Chronic Activation of Heme Free Guanylate Cyclase Leads to Renal Protection in Dahl Salt-Sensitive Rats.

    PubMed

    Hoffmann, Linda S; Kretschmer, Axel; Lawrenz, Bettina; Hocher, Berthold; Stasch, Johannes-Peter

    2015-01-01

    The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and anti-inflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC. PMID:26717150

  12. Activation of soluble guanylyl cyclase by BAY 58-2667 improves bladder function in cyclophosphamide-induced cystitis in mice.

    PubMed

    de Oliveira, Mariana G; Calmasini, Fabiano B; Alexandre, Eduardo C; De Nucci, Gilberto; Mónica, Fabíola Z; Antunes, Edson

    2016-07-01

    Activators of soluble guanylyl cyclase (sGC) interact directly with its prosthetic heme group, enhancing the enzyme responsiveness in pathological conditions. This study aimed to evaluate the effects of the sGC activator BAY 58-2667 on voiding dysfunction, protein expressions of α1 and β1 sGC subunits and cGMP levels in the bladder tissues after cyclophosphamide (CYP) exposure. Female C57BL/6 mice (20-25 g) were injected with CYP (300 mg/kg ip) to induce cystitis. Mice were pretreated or not with BAY 58-2667 (1 mg/kg, gavage), given 1 h before CYP injection. The micturition patterns and in vitro bladder contractions were evaluated at 24 h. In freely moving mice, the CYP injection produced reduced the micturition volume and increased the number of urine spots. Cystometric recordings in CYP-injected mice revealed significant increases in basal pressure, voiding frequency, and nonvoiding contractions (NVCs), along with decreases in bladder capacity, intercontraction interval, and compliance. BAY 58-2667 significantly prevented the micturition alterations observed in both freely moving mice and cystometry and normalized the reduced in vitro carbachol-induced contractions in the CYP group. Reduced protein expressions of α1 and β1 sGC subunits and of cGMP levels were observed in the CYP group, all of which were prevented by BAY 58-2667. CYP exposure significantly increased reactive-oxygen species (ROS) generation in both detrusor and urothelium, and this was normalized by BAY 58-2667. The increased myeloperoxidase and cyclooxygenase-2 activities in the bladders of the CYP group remained unchanged by BAY 58-2667. Activators of sGC may constitute a novel and promising therapeutic approach for management of interstitial cystitis. PMID:27122537

  13. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  14. Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells.

    PubMed

    Maron, Bradley A; Zhang, Ying-Yi; Handy, Diane E; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A

    2009-03-20

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO(.)); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO(.) to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10(-9)-10(-7) mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a beta(1)-subunit cysteinyl residue demonstrated previously to modulate NO(.) sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC beta(1)-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H(2)O(2)) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H(2)O(2) did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO(.)-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC.

  15. Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock

    PubMed Central

    Chen, Dong; Buchanan, Gordon F.; Ding, Jian M.; Hannibal, Jens; Gillette, Martha U.

    1999-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep–wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating peptide (PACAP) are localized within the RHT. Whereas Glu is an established mediator of light entrainment, the role of PACAP is unknown. To understand the functional significance of this colocalization, we assessed the effects of nocturnal Glu and PACAP on phasing of the circadian rhythm of neuronal firing in slices of rat SCN. When coadministered, PACAP blocked the phase advance normally induced by Glu during late night. Surprisingly, blocking PACAP neurotransmission, with either PACAP6–38, a specific PACAP receptor antagonist, or anti-PACAP antibodies, augmented the Glu-induced phase advance. Blocking PACAP in vivo also potentiated the light-induced phase advance of the rhythm of hamster wheel-running activity. Conversely, PACAP enhanced the Glu-induced delay in the early night, whereas PACAP6–38 inhibited it. These results reveal that PACAP is a significant component of the Glu-mediated light-entrainment pathway. When Glu activates the system, PACAP receptor-mediated processes can provide gain control that generates graded phase shifts. The relative strengths of the Glu and PACAP signals together may encode the amplitude of adaptive circadian behavioral responses to the natural range of intensities of nocturnal light. PMID:10557344

  16. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase.

    PubMed

    Colby, S M; Alonso, W R; Katahira, E J; McGarvey, D J; Croteau, R

    1993-11-01

    The committed step in the biosynthesis of monoterpenes in mint (Mentha) species is the cyclization of geranyl pyrophosphate to the olefin (-)-4S-limonene catalyzed by limonene synthase (cyclase). Internal amino acid sequences of the purified enzyme from spearmint oil glands were utilized to design three distinct oligonucleotide probes. These probes were subsequently employed to screen a spearmint leaf cDNA library, and four clones were isolated. Three of these cDNA isolates were full-length and were functionally expressed in Escherichia coli, yielding a peptide that is immunologically recognized by polyclonal antibodies raised against the purified limonene synthase from spearmint and that is catalytically active in generating from geranyl pyrophosphate a product distribution identical to that of the native enzyme (principally limonene with small amounts of the coproducts alpha- and beta-pinene and myrcene). The longest open reading frame is 1800 nucleotides and the deduced amino acid sequence contains a putative plastidial transit peptide of approximately 90 amino acids and a mature protein of about 510 residues corresponding to the native enzyme. Several nucleotide differences in the 5'-untranslated region of all three full-length clones suggest the presence of several limonene synthase genes and/or alleles in the allotetraploid spearmint genome. Sequence comparisons with a sesquiterpene cyclase, epi-aristolochene synthase from tobacco, and a diterpene cyclase, casbene synthase from castor bean, demonstrated a significant degree of similarity between these three terpenoid cyclase types, the first three examples of this large family of catalysts to be described from higher plants.

  17. Expression of natriuretic peptides, nitric oxide synthase, and guanylate cyclase activity in frog mesonephros during the annual cycle.

    PubMed

    Fenoglio, Carla; Visai, Livia; Addario, Concetta; Gerzeli, Giuseppe; Milanesi, Gloria; Vaccarone, Rita; Barni, Sergio

    2004-06-01

    Natriuretic peptides (NPs), a family of structurally related hormones and nitric oxide (NO), generated by nitric oxide synthase (NOS), are believed to be involved in the regulation of fluid balance and sodium homeostasis. Differential expression and regulation of these factors depend on both physiological and pathological conditions. Both NPs and NO act in target organs through the activation of guanylate cyclase (GC) and the generation of guanosine 3',5'-cyclic monophosphate (cGMP), which is considered a common messenger for the action of these factors. The present study was designed to investigate--by histochemical methods--the expression of some NPs (proANP and ANP) and isoforms of NOS (neuronal NOS, nNOS, and inducible NOS, iNOS) in the mesonephros of Rana esculenta in different periods of the year including hibernation, to evaluate possible seasonal changes in their expression. We also studied the enzyme activity of NOS-related nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) and of GC. The experiments were performed on pieces of kidney of R. esculenta collected in their natural environment during active and hibernating life. The study was carried out using immunohistochemical techniques to demonstrate proANP, ANP, and some NOS isoforms. Antigen capture by enzyme linked immunosorbent assay (ELISA) was also performed to determine the presence of NPs in the frog kidney extract. Enzyme histochemistry was used to demonstrate the NOS-related NADPHd activity at light microscopy; GC activity was visualized at the electron microscope, using cerium as capture agent. The application of the immunohistochemical techniques demonstrated that frog mesonephros tubules express different patterns of distribution and/or expression of ANP and NOS during the annual cycle. Comparing the results obtained on active and hibernating frogs has provided interesting data; the NOS/NADPHd and GC activities showed some variations as well. Furthermore, the presence of NPs in

  18. Decreased expression of plastidial adenylate kinase in potato tubers results in an enhanced rate of respiration and a stimulation of starch synthesis that is attributable to post-translational redox-activation of ADP-glucose pyrophosphorylase.

    PubMed

    Oliver, Sandra N; Tiessen, Axel; Fernie, Alisdair R; Geigenberger, Peter

    2008-01-01

    Adenine nucleotides are of general importance for many aspects of cell function, but their role in the regulation of biosynthetic processes is still unclear. It was previously reported that decreased expression of plastidial adenylate kinase, catalysing the interconversion of ATP and AMP to ADP, leads to increased adenylate pools and starch content in transgenic potato tubers. However, the underlying mechanisms were not elucidated. Here, it is shown that decreased expression of plastidial adenylate kinase in growing tubers leads to increased rates of respiratory oxygen consumption and increased carbon fluxes into starch. Increased rates of starch synthesis were accompanied by post-translational redox-activation of ADP-glucose pyrophosphorylase (AGPase), catalysing the key regulatory step of starch synthesis in the plastid, while there were no substantial changes in metabolic intermediates or sugar levels. A similar increase in post-translational redox-activation of AGPase was found after supplying adenine to wild-type potato tuber discs to increase adenine nucleotide levels. Results provide first evidence for a link between redox-activation of AGPase and adenine nucleotide levels in plants.

  19. Clozapine effects on adenylyl cyclase activity and serotonin type 1A receptors in human brain post-mortem.

    PubMed

    Marazziti, Donatella; Baroni, Stefano; Palego, Lionella; Betti, Laura; Giannaccini, Gino; Castagna, Maura; Naccarato, Antonio G; Luccachini, Antonio; Catena-Dell'Osso, Mario; Dell'Osso, Liliana

    2014-04-01

    Although the pharmacological profile of the atypical antipsychotic clozapine has been extensively studied in animal models, little information is available on its effects in the human brain. In particular, much interest is focused on the understanding of clozapine activity on serotonin (5-HT) neurotransmission, particularly on 5-HT receptor of type 1A (5-HT(1A)) that seems to play a pivotal role in the control of the 5-HT system. The present work, therefore, aimed at evaluating the effects of clozapine and its major metabolite, norclozapine, on the modulation of adenylyl cyclase (AC) velocity via 5-HT(1A) receptors in human post-mortem brain regions, in particular the prefrontal cortex, hippocampus and raphe nuclei. Concomitantly, the ability of the two compounds to displace the specific binding of the 5-HT(1A) receptor agonist [³H]-8-hydroxy-(2-di-N-propylamino) tetralin ([³H]-8-OH-DPAT) was evaluated in the same brain areas. The results showed that both clozapine and norclozapine, although with a 20-fold lower affinity, displaced [³H]8-OH-DPAT binding in all of the brain regions analysed, suggesting their interaction with 5-HT(1A) receptors. At the same time, clozapine and, to a lesser extent, norclozapine were found to inhibit the forskolin (FK)-stimulated AC system, while decreasing cyclic adenosine monophosphate (cAMP) concentrations in the hippocampus only. The receptor characterisation of the clozapine effect on AC observed in the hippocampus by the use of antagonists showed a mixed profile, involving not only the 5-HT(1A) receptor but also a muscarinic (M) receptor subtype, most likely the M₄ one. These findings, while considering all the limitations due to the use of post-mortem tissues, are strongly suggestive of a region-dependent pharmacological action of clozapine in the human brain that may explain its peculiar clinical effects and open up research towards novel targets for future antipsychotic drugs.

  20. Crystal structures of glutaminyl cyclases (QCs) from Drosophila melanogaster reveal active site conservation between insect and mammalian QCs.

    PubMed

    Koch, Birgit; Kolenko, Petr; Buchholz, Mirko; Carrillo, David Ruiz; Parthier, Christoph; Wermann, Michael; Rahfeld, Jens-Ulrich; Reuter, Gunter; Schilling, Stephan; Stubbs, Milton T; Demuth, Hans-Ulrich

    2012-09-18

    Glutaminyl cyclases (QCs), which catalyze the formation of pyroglutamic acid (pGlu) at the N-terminus of a variety of peptides and proteins, have attracted particular attention for their potential role in Alzheimer's disease. In a transgenic Drosophila melanogaster (Dm) fruit fly model, oral application of the potent competitive QC inhibitor PBD150 was shown to reduce the burden of pGlu-modified Aβ. In contrast to mammals such as humans and rodents, there are at least three DmQC species, one of which (isoDromeQC) is localized to mitochondria, whereas DromeQC and an isoDromeQC splice variant possess signal peptides for secretion. Here we present the recombinant expression, characterization, and crystal structure determination of mature DromeQC and isoDromeQC, revealing an overall fold similar to that of mammalian QCs. In the case of isoDromeQC, the putative extended substrate binding site might be affected by the proximity of the N-terminal residues. PBD150 inhibition of DromeQC is roughly 1 order of magnitude weaker than that of the human and murine QCs. The inhibitor binds to isoDromeQC in a fashion similar to that observed for human QCs, whereas it adopts alternative binding modes in a DromeQC variant lacking the conserved cysteines near the active center and shows a disordered dimethoxyphenyl moiety in wild-type DromeQC, providing an explanation for the lower affinity. Our biophysical and structural data suggest that isoDromeQC and human QC are similar with regard to functional aspects. The two Dm enzymes represent a suitable model for further in-depth analysis of the catalytic mechanism of animal QCs, and isoDromeQC might serve as a model system for the structure-based design of potential AD therapeutics. PMID:22897232

  1. Comparison of soluble guanylate cyclase stimulators and activators in models of cardiovascular disease associated with oxidative stress.

    PubMed

    Costell, Melissa H; Ancellin, Nicolas; Bernard, Roberta E; Zhao, Shufang; Upson, John J; Morgan, Lisa A; Maniscalco, Kristeen; Olzinski, Alan R; Ballard, Victoria L T; Herry, Kenny; Grondin, Pascal; Dodic, Nerina; Mirguet, Olivier; Bouillot, Anne; Gellibert, Francoise; Coatney, Robert W; Lepore, John J; Jucker, Beat M; Jolivette, Larry J; Willette, Robert N; Schnackenberg, Christine G; Behm, David J

    2012-01-01

    Soluble guanylate cyclase (sGC), the primary mediator of nitric oxide (NO) bioactivity, exists as reduced (NO-sensitive) and oxidized (NO-insensitive) forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to those of NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A [a low, non-depressor dose, and a high dose which lowered mean arterial pressure (MAP) by 5-10 mmHg] and those of equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in (1) Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R) and (2) spontaneously hypertensive stroke prone rats (SHR-SP) on a high salt/fat diet (HSFD). In I/R, neither compound reduced infarct size 24 h after reperfusion. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria, and mortality, caused left ventricular hypertrophy with preserved ejection fraction, and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552, but not that of GSK2181236A, decreased urine output, and improved survival. Conversely, the low dose of GSK2181236A, but not that of BAY 60-4552, attenuated the development of cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and improved survival. In addition to these effects, the high dose of BAY 60-4552 reduced urine output and microalbuminuria and attenuated the increase in MAP to a greater extent than did GSK2181236A. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP isolated aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to both GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the oxidative state of sGC is responsible

  2. Comparison of Soluble Guanylate Cyclase Stimulators and Activators in Models of Cardiovascular Disease Associated with Oxidative Stress

    PubMed Central

    Costell, Melissa H.; Ancellin, Nicolas; Bernard, Roberta E.; Zhao, Shufang; Upson, John J.; Morgan, Lisa A.; Maniscalco, Kristeen; Olzinski, Alan R.; Ballard, Victoria L. T.; Herry, Kenny; Grondin, Pascal; Dodic, Nerina; Mirguet, Olivier; Bouillot, Anne; Gellibert, Francoise; Coatney, Robert W.; Lepore, John J.; Jucker, Beat M.; Jolivette, Larry J.; Willette, Robert N.; Schnackenberg, Christine G.; Behm, David J.

    2012-01-01

    Soluble guanylate cyclase (sGC), the primary mediator of nitric oxide (NO) bioactivity, exists as reduced (NO-sensitive) and oxidized (NO-insensitive) forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to those of NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A [a low, non-depressor dose, and a high dose which lowered mean arterial pressure (MAP) by 5–10 mmHg] and those of equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in (1) Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R) and (2) spontaneously hypertensive stroke prone rats (SHR-SP) on a high salt/fat diet (HSFD). In I/R, neither compound reduced infarct size 24 h after reperfusion. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria, and mortality, caused left ventricular hypertrophy with preserved ejection fraction, and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552, but not that of GSK2181236A, decreased urine output, and improved survival. Conversely, the low dose of GSK2181236A, but not that of BAY 60-4552, attenuated the development of cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and improved survival. In addition to these effects, the high dose of BAY 60-4552 reduced urine output and microalbuminuria and attenuated the increase in MAP to a greater extent than did GSK2181236A. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP isolated aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to both GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the oxidative state of sGC is responsible

  3. An aberrant adenylate kinase isoenzyme from the serum of patients with Duchenne muscular dystrophy.

    PubMed

    Hamada, M; Okuda, H; Oka, K; Watanabe, T; Ueda, K; Nojima, M; Kuby, S A; Manship, M; Tyler, F H; Ziter, F A

    1981-08-13

    The sera from patients with human Duchenne (X-linked) progressive muscular dystrophy contain elevated adenylate kinase (ATP: AMP phosphotransferase, EC 2.7.4.3) activities, in addition to their characteristically high creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) activities. By agarose gel electrophoresis of human Duchenne dystrophic serum, the presence of an apparently normal human serum adenylate kinase together with a variant species of adenylate kinase was detected. The latter enzyme species appeared, in its mobility, to be similar to that of the normal human liver-type adenylate kinase. The presence of this aberrant liver-type adenylate kinase could also be demonstrated by characteristic (for the liver type) inhibition patterns with P1,P5-di-(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate. On the other hand, by inhibition titrations with an anti-muscle-type adenylate kinase, hemolysates from the erythrocytes of several Duchenne and Becker's dystrophics were found to contain approx. 96% muscle-type adenylate kinase and their serum approx. 97% muscle-type adenylate kinase. These same patients contained approx. 89% M-M type creatine kinase in their serum (by inhibition against anti-human muscle-type creatine kinase) indicative of the presence also of M-B plus B-B type active isoenzymes. All of these data can best be explained by the presence of a variant or mutant adenylate kinase isoenzyme in the dystrophic serum. This isoenzyme appears to resemble the liver type in its inhibition patterns with P1,P5-di(adenosine-5')pentaphosphate, 5,5'-dithiobis(2-nitrobenzoate) and phosphoenolpyruvate, and in its heat stability (compare also the agarose gel electrophoresis pattern); but structurally, it is a muscle type, or derived from a muscle type, as shown immunologically by inhibition reactions with anti-muscle-type adenylate kinase. Whether this is a fetal-type isoenzyme of adenylate kinase will require further

  4. Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization.

    PubMed Central

    Ng, G Y; Trogadis, J; Stevens, J; Bouvier, M; O'Dowd, B F; George, S R

    1995-01-01

    The regulation of the dopamine D1 receptor was investigated by using c-myc epitope-tagged D1 receptors expressed in Sf9 (fall armyworm ovary) cells. Treatment of D1 receptors with 10 microM dopamine for 15 min led to a loss of the dopamine-detected high-affinity state of the receptor accompanying a 40% reduction in the ability of the receptor to mediate maximal dopamine stimulation of adenylyl cyclase activity. After 60 min of agonist exposure, 45 min after the occurrence of desensitization, 28% of the cell surface receptors were internalized into an intracellular light vesicular membrane fraction as determined by radioligand binding and supported by photoaffinity labeling, immunocytochemical staining, and immunoblot analysis. Pretreatment of cells with concanavalin A or sucrose completely blocked agonist-induced D1 receptor internalization without preventing agonist-induced desensitization, indicating a biochemical separation of these processes. Collectively, these findings indicate that the desensitization of D1 receptor-coupled adenylyl cyclase activity and D1 receptor internalization are temporarily and biochemically distinct mechanisms regulating D1 receptor function following agonist activation. Images Fig. 2 Fig. 3 PMID:7479745

  5. Luteinizing Hormone Reduces the Activity of the NPR2 Guanylyl Cyclase in Mouse Ovarian Follicles, Contributing to the Cyclic GMP Decrease that Promotes Resumption of Meiosis in Oocytes

    PubMed Central

    Robinson, Jerid W.; Zhang, Meijia; Shuhaibar, Leia C.; Norris, Rachael P.; Geerts, Andreas; Wunder, Frank; Eppig, John J.; Potter, Lincoln R.; Jaffe, Laurinda A.

    2012-01-01

    In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 minutes, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2 hours, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte. PMID:22546688

  6. A constitutively activated mutant of human soluble guanylyl cyclase (sGC): implication for the mechanism of sGC activation

    NASA Technical Reports Server (NTRS)

    Martin, Emil; Sharina, Iraida; Kots, Alexander; Murad, Ferid

    2003-01-01

    Heterodimeric alphabeta soluble guanylyl cyclase (sGC) is a recognized receptor for nitric oxide (NO) and mediates many of its physiological functions. Although it has been clear that the heme moiety coordinated by His-105 of the beta subunit is crucial for mediating the activation of the enzyme by NO, it is not understood whether the heme moiety plays any role in the function of the enzyme in the absence of NO. Here we analyze the effects of biochemical and genetic removal of heme and its reconstitution on the activity of the enzyme. Detergent-induced loss of heme from the wild-type alphabeta enzyme resulted in several-fold activation of the enzyme. This activation was inhibited after hemin reconstitution. A heme-deficient mutant alphabetaCys-105 with Cys substituted for His-105 was constitutively active with specific activity approaching the activity of the wild-type enzyme activated by NO. However, reconstitution of mutant enzyme with heme and/or DTT treatment significantly inhibited the enzyme. Mutant enzyme reconstituted with ferrous heme was activated by NO and CO alone and showed additive effects between gaseous effectors and the allosteric activator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrim idin-4-ylamine. We propose that the heme moiety through its coordination with His-105 of the beta subunit acts as an endogenous inhibitor of sGC. Disruption of the heme-coordinating bond induced by binding of NO releases the restrictions imposed by this bond and allows the formation of an optimally organized catalytic center in the heterodimer.

  7. Bifunctional Homodimeric Triokinase/FMN Cyclase

    PubMed Central

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-01-01

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity. PMID:24569995

  8. Bacterial terpene cyclases.

    PubMed

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  9. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C

    PubMed Central

    Pandey, Kailash N.

    2014-01-01

    Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems. PMID:25202235

  10. Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides

    PubMed Central

    Chen, Guangyu E.; Martin, Elizabeth C.; Hunter, C. Neil

    2016-01-01

    ABSTRACT The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzyme, the major component of which is a diiron protein named AcsF, while BchE, an oxygen-sensitive [4Fe-4S] cluster protein, dominates in phototrophs inhabiting anoxic environments, such as the purple phototrophic bacterium Rhodobacter sphaeroides. We identify a potential acsF in this organism and assay for activity of the encoded protein in a strain lacking bchE under various aeration regimes. Initially, cells lacking bchE did not demonstrate AcsF activity under any condition tested. However, on removal of a gene encoding a subunit of the cbb3-type respiratory terminal oxidase, cells cultured under regimes ranging from oxic to micro-oxic exhibited cyclase activity, confirming the activity of the oxygen-dependent enzyme in this model organism. Potential reasons for the utilization of an oxygen-dependent enzyme in anoxygenic phototrophs are discussed. IMPORTANCE The formation of the E ring of bacteriochlorophyll pigments is the least well characterized step in their biosynthesis, remaining enigmatic for over 60 years. Two unrelated enzymes catalyze this cyclization step; O2-dependent and O2-independent forms dominate in oxygenic and anoxygenic phototrophs, respectively. We uncover the activity of an O2-dependent enzyme in the anoxygenic purple phototrophic bacterium Rhodobacter sphaeroides, initially by inactivation of the high-affinity terminal respiratory oxidase, cytochrome cbb3. We propose that the O2-dependent form allows for the biosynthesis of a low level of bacteriochlorophyll under oxic conditions, so that a rapid initiation of photosynthetic processes is possible for

  11. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    PubMed Central

    Fewer, David P; Rouhiainen, Leo; Jokela, Jouni; Wahlsten, Matti; Laakso, Kati; Wang, Hao; Sivonen, Kaarina

    2007-01-01

    Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1) and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains. PMID:17908306

  12. Polymorphism in purified guanylate cyclase from vertebrate rod photoreceptors.

    PubMed Central

    Hayashi, F; Yamazaki, A

    1991-01-01

    Guanylate cyclase from rod photoreceptors of amphibian (toad, Bufo marinus, and frog, Rana catesbeiana) and bovine retinas was solubilized and purified by a single chromatography step on a GTP-agarose column. Silver staining of purified amphibian enzymes in SDS/polyacrylamide gels disclosed a doublet band (110 and 115 kDa), while the bovine enzyme appeared as a singlet band (110 kDa). The identification of these guanylate cyclases was confirmed using three chromatography systems with the purified enzymes. Specific binding to Con A-Sepharose suggested that rod guanylate cyclase is a glycoprotein. Two-dimensional gel electrophoresis of purified toad, frog, and bovine enzymes resolved two, three, and five variants, respectively, that differed in isoelectric point. Two variants of toad guanylate cyclase showed differences in various characterizations. These data suggest multiple mechanisms for regulation of guanylate cyclase activity in vertebrate rod photoreceptors. Images PMID:1675787

  13. Analysis of the Linker Region Joining the Adenylation and Carrier Protein Domains of the Modular Non-Ribosomal Peptide Synthetases

    PubMed Central

    Miller, Bradley R.; Sundlov, Jesse A.; Drake, Eric J.; Makin, Thomas A.; Gulick, Andrew M.

    2014-01-01

    Non-Ribosomal Peptide Synthetases (NRPSs) are multi-modular proteins capable of producing important peptide natural products. Using an assembly-line process the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation-PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C-terminal sub-domain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. PMID:24975514

  14. Activation of IKK/NF-κB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice

    PubMed Central

    Das, Subhankar; Periyasamy, Ramu

    2012-01-01

    The present study was aimed at determining the consequences of the disruption of guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) on proinflammatory responses of nuclear factor kappa B, inhibitory kappa B kinase, and inhibitory kappa B alpha (NF-κB, IKK, IκBα) in the kidneys of mutant mice. The results showed that the disruption of Npr1 enhanced the renal NF-κB binding activity by 3.8-fold in 0-copy (−/−) mice compared with 2-copy (+/+) mice. In parallel, IKK activity and IκBα protein phosphorylation were increased by 8- and 11-fold, respectively, in the kidneys of 0-copy mice compared with wild-type mice. Interestingly, IκBα was reduced by 80% and the expression of proinflammatory cytokines and renal fibrosis were significantly enhanced in 0-copy mice than 2-copy mice. Treatment of 0-copy mice with NF-κB inhibitors andrographolide, pyrrolidine dithiocarbamate, and etanercept showed a substantial reduction in renal fibrosis, attenuation of proinflammatory cytokines gene expression, and significantly reduced IKK activity and IkBα phosphorylation. These findings indicate that the systemic disruption of Npr1 activates the renal NF-κB pathways in 0-copy mice, which transactivates the expression of various proinflammatory cytokines to initiate renal remodeling; however, inhibition of NF-κB pathway repairs the abnormal renal pathology in mutant mice. PMID:22318993

  15. Adenylating Enzymes in Mycobacterium tuberculosis as Drug Targets

    PubMed Central

    Duckworth, Benjamin P.; Nelson, Kathryn M.; Aldrich, Courtney C.

    2013-01-01

    Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including high-throughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNA-synthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl-AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases. PMID:22283817

  16. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity

    PubMed Central

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Nick, Peter; Riemann, Michael

    2015-01-01

    Salinity stress represents a global constraint for rice, the most important staple food worldwide. Therefore the role of the central stress signal jasmonate for the salt response was analysed in rice comparing the responses to salt stress for two jasmonic acid (JA) biosynthesis rice mutants (cpm2 and hebiba) impaired in the function of ALLENE OXIDE CYCLASE (AOC) and their wild type. The aoc mutants were less sensitive to salt stress. Interestingly, both mutants accumulated smaller amounts of Na+ ions in their leaves, and showed better scavenging of reactive oxygen species (ROS) under salt stress. Leaves of the wild type and JA mutants accumulated similar levels of abscisic acid (ABA) under stress conditions, and the levels of JA and its amino acid conjugate, JA–isoleucine (JA-Ile), showed only subtle alterations in the wild type. In contrast, the wild type responded to salt stress by strong induction of the JA precursor 12-oxophytodienoic acid (OPDA), which was not observed in the mutants. Transcript levels of representative salinity-induced genes were induced less in the JA mutants. The absence of 12-OPDA in the mutants correlated not only with a generally increased ROS-scavenging activity, but also with the higher activity of specific enzymes in the antioxidative pathway, such as glutathione S-transferase, and fewer symptoms of damage as, for example, indicated by lower levels of malondialdehyde. The data are interpreted in a model where the absence of OPDA enhanced the antioxidative power in mutant leaves. PMID:25873666

  17. Soluble adenylyl cyclase is not required for axon guidance to netrin-1.

    PubMed

    Moore, Simon W; Lai Wing Sun, Karen; Xie, Fang; Barker, Philip A; Conti, Marco; Kennedy, Timothy E

    2008-04-01

    During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on netrin-1 action are well accepted, but the critical issue of whether cAMP production is activated by a netrin-1 induced signaling cascade remains uncertain. A previous report has suggested that axon guidance in response to netrin-1 requires cAMP production mediated by soluble adenyl cyclase (sAC). We have used genetic, molecular and biochemical strategies to assess this issue. Surprisingly, we found only extremely weak expression of sAC in embryonic neurons and determined that, under conditions where netrin-1 directs axonal pathfinding, exposure to netrin-1 does not alter cAMP levels. Furthermore, although netrin-1-deficient mice exhibit major axon guidance defects, we show that pathfinding is normal in sAC-null mice. Therefore, although cAMP can alter the response of axons to netrin-1, we conclude that netrin-1 does not alter cAMP levels in axons attracted by this cue, and that sAC is not required for axon attraction to netrin-1. PMID:18400890

  18. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization.

    PubMed

    Stenzel, Irene; Otto, Markus; Delker, Carolin; Kirmse, Nils; Schmidt, Diana; Miersch, Otto; Hause, Bettina; Wasternack, Claus

    2012-10-01

    Jasmonates are important signals in plant stress responses and plant development. An essential step in the biosynthesis of jasmonic acid (JA) is catalysed by ALLENE OXIDE CYCLASE (AOC) which establishes the naturally occurring enantiomeric structure of jasmonates. In Arabidopsis thaliana, four genes encode four functional AOC polypeptides (AOC1, AOC2, AOC3, and AOC4) raising the question of functional redundancy or diversification. Analysis of transcript accumulation revealed an organ-specific expression pattern, whereas detailed inspection of transgenic lines expressing the GUS reporter gene under the control of individual AOC promoters showed partially redundant promoter activities during development: (i) In fully developed leaves, promoter activities of AOC1, AOC2, and AOC3 appeared throughout all leaf tissue, but AOC4 promoter activity was vascular bundle-specific; (ii) only AOC3 and AOC4 showed promoter activities in roots; and (iii) partially specific promoter activities were found for AOC1 and AOC4 in flower development. In situ hybridization of flower stalks confirmed the GUS activity data. Characterization of single and double AOC loss-of-function mutants further corroborates the hypothesis of functional redundancies among individual AOCs due to a lack of phenotypes indicative of JA deficiency (e.g. male sterility). To elucidate whether redundant AOC expression might contribute to regulation on AOC activity level, protein interaction studies using bimolecular fluorescence complementation (BiFC) were performed and showed that all AOCs can interact among each other. The data suggest a putative regulatory mechanism of temporal and spatial fine-tuning in JA formation by differential expression and via possible heteromerization of the four AOCs. PMID:23028017

  19. Acutely administered melatonin decreases somatostatin-binding sites and the inhibitory effect of somatostatin on adenylyl cyclase activity in the rat hippocampus.

    PubMed

    Izquierdo-Claros, Rosa María; Boyano-Adánez Md, María del Carmen; Arilla-Ferreiro, Eduardo

    2004-03-01

    Melatonin is known to increase neuronal activity in the hippocampus, an effect contrary to that of somatostatin (somatotropin release-inhibiting factor, SRIF). Thus, the aim of this study was to investigate whether the somatostatinergic system is implicated in the mechanism of action of melatonin in the rat hippocampus. One group of rats was injected a single dose of melatonin [25 microg/kg subcutaneously (s.c.)] or saline containing ethanol (0.5%, s.c.) and killed 5 hr later. Melatonin significantly decreased the SRIF-like immunoreactivity levels and induced a significant decrease in the density of SRIF receptors as well as in the dissociation constant (Kd). SRIF-mediated inhibition of basal and forskolin-stimulated adenylyl cyclase activity was markedly decreased in hippocampal membranes from melatonin-treated rats. The functional activity of Gi proteins was similar in hippocampal membranes from melatonin-treated and control rats. Western blot analyses revealed that melatonin administration did not alter Gialpha1 or Gialpha2 levels. To determine if the changes observed were related to melatonin-induced activation of central melatonin receptors, a melatonin receptor antagonist, luzindole, was administered prior to melatonin injection. Pretreatment with luzindole (10 mg/kg, s.c.) did not alter the melatonin-induced effects on the above-mentioned parameters and luzindole, alone, had no observable effect. The present results demonstrate that melatonin decreases the activity of the SRIF receptor-effector system in the rat hippocampus, an effect which is apparently not mediated by melatonin receptors. As SRIF exerts an opposite effect to that of melatonin on hippocampal neuronal activity, it is possible that the SRIFergic system could be implicated in the mechanism of action of melatonin in the rat.

  20. Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous Nostoc H-NOX domain complexes

    PubMed Central

    Kumar, Vijay; Martin, Faye; Hahn, Michael G.; Schaefer, Martina; Stamler, Jonathan S.; Stasch, Johannes-Peter; van den Akker, Focco

    2013-01-01

    The soluble guanylyl cyclase (sGC) is an important receptor for nitric oxide (NO). Nitric oxide activates sGC several hundred fold to generate cGMP from GTP. Because of sGC’s salutary roles in cardiovascular physiology, it has received substantial attention as a drug target. The heme domain of sGC is key to its regulation as it not only contains the NO activation site but also harbors sites for NO-independent sGC activators as well an S-nitrosylation site (β1 C122) involved in desensitization. Here we report the crystal structure of the activator BAY 60-2770 bound to the Nostoc H-NOX domain that is homologous to sGC. The structure reveals that BAY 60-2770 has displaced the heme and acts as a heme mimetic via carboxylate-mediated interactions with the conserved YxSxR motif as well as hydrophobic interactions. Comparisons with the previously determined BAY 58-2667 bound structure reveals that BAY 60-2770 is more ordered in its hydrophobic tail region. sGC activity assays demonstrate that BAY 60-2770 has about 10% higher fold maximal stimulation compared to BAY 58-2667. S-nitrosylation of the BAY 60-2770 substituted Nostoc H-NOX domain causes subtle changes in the vicinity of the S-nitrosylated C122 residue. These shifts could impact the adjacent YxSxR motif and αF helix and as such potentially inhibit either heme incorporation or NO-activation of sGC and thus provide a structural basis for desensitization. PMID:23614626

  1. Farnesyloxycoumarins, a new class of squalene-hopene cyclase inhibitors.

    PubMed

    Cravotto, Giancarlo; Balliano, Gianni; Robaldo, Bruna; Oliaro-Bosso, Simonetta; Chimichi, Stefano; Boccalini, Marco

    2004-04-19

    A few naturally occurring prenyl- and prenyloxycoumarins and several new related synthetic derivatives were evaluated as inhibitors of squalene-hopene cyclase (SHC), a useful model enzyme, to predict their interactions with oxidosqualene cyclase (OSC). Umbelliprenin-10',11'-monoepoxide (IC(50) 2.5 microM) and the corresponding 6',7'-10',11' diepoxide (IC(50) 1.5 microM) were the most active enzyme inhibitors.

  2. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism.

    PubMed Central

    Lu, Q; Inouye, M

    1996-01-01

    Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8650159

  3. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity

    SciTech Connect

    Tumbale, Percy; Williams, Jessica S.; Schellenberg, Matthew J.; Kunkel, Thomas A.; Williams, R. Scott

    2013-12-22

    Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA–DNA, and acting in an RNA–DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure–function studies of human APTX–RNA–DNA–AMP–Zn complexes define a mechanism for detecting and reversing adenylation at RNA–DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA–DNA may contribute to neurological disease.

  4. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed.

  5. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  6. Soluble Adenylyl Cyclase in Health and Disease

    PubMed Central

    Schmid, Andreas; Meili, Dimirela; Salathe, Matthias

    2014-01-01

    The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO3-, Ca2+ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. PMID:25064591

  7. High Inorganic Triphosphatase Activities in Bacteria and Mammalian Cells: Identification of the Enzymes Involved

    PubMed Central

    Lakaye, Bernard; Servais, Anne-Catherine; Scholer, Georges; Fillet, Marianne; Elias, Benjamin; Derochette, Jean-Michel; Crommen, Jacques; Wins, Pierre; Bettendorff, Lucien

    2012-01-01

    Background We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. Methodology/Principal Findings Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. Conclusions and General Significance We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling. PMID:22984449

  8. Structural Studies of Archaealthermophilic Adenylate Kinase

    SciTech Connect

    Konisky, J.

    2002-07-10

    Through this DOE-sponsored program Konisky has studied the evolution and molecular biology of microbes that live in extreme environments. The emphasis of this work has been the determination of the structural features of thermophilic enzymes that allow them to function optimally at near 100 C. The laboratory has focused on a comparative study of adenylate kinase (ADK), an enzyme that functions to interconvert adenine nucleotides. Because of the close phylogenetic relatedness of members of the Methanococci, differences in the structure of their ADKs will be dominated by structural features that reflect contributions to their optimal temperature for activity, rather than differences due to phylogenetic divergence. We have cloned, sequenced and modeled the secondary structure for several methanococcal ADKs. Using molecular modeling threading approaches that are based on the solved structure for the porcine ADK, we have also proposed a general low resolution three dimensional structure for each of the methanococcal enzymes. These analyses have allowed us to propose structural features that confer hyperthermoactivity to those enzymes functioning in the hyperthermophilic members of the Methanococci. Using protein engineering methodologies, we have tested our hypotheses by examining the effects of selective structural changes on thermoactivity. Despite possessing between 68-81% sequence identity, the methanococcal AKs had significantly different stability against thermal denaturation, with melting points ranging from 69-103 C. The construction of several chimerical AKs by linking regions of the MVO and MJA AKs demonstrated the importance of cooperative interactions between amino- and carboxyl-terminal regions in influencing thermostability. Addition of MJA terminal fragments to the MVO AK increased thermal stability approximately 20 C while maintaining 88% of the mesophilic sequence. Further analysis using structural models suggested that hydrophobic interactions are

  9. Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation.

    PubMed

    Resta, Francesco; Masi, Alessio; Sili, Maria; Laurino, Annunziatina; Moroni, Flavio; Mannaioni, Guido

    2016-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have a key role in the control of cellular excitability. HCN2, a subgroup of the HCN family channels, are heavily expressed in small dorsal root ganglia (DRG) neurons and their activation seems to be important in the determination of pain intensity. Intracellular elevation of cAMP levels activates HCN-mediated current (Ih) and small DRG neurons excitability. GPR35, a Gi/o coupled receptor, is highly expressed in small DRG neurons, and we hypothesized that its activation, mediated by endogenous or exogenous ligands, could lead to pain control trough a reduction of Ih current. Patch clamp recordings were carried out in primary cultures of rat DRG neurons and the effects of GPR35 activation on Ih current and neuronal excitability were studied in control conditions and after adenylate cyclase activation with either forskolin or prostaglandin E2 (PGE2). We found that both kynurenic acid (KYNA) and zaprinast, the endogenous and synthetic GPR35 agonist respectively, were able to antagonize the forskolin-induced depolarization of resting membrane potential by reducing Ih-mediated depolarization. Similar results were obtained when PGE2 was used to activate adenylate cyclase and to increase Ih current and the overall neuronal excitability. Finally, we tested the analgesic effect of both GPR35 agonists in an in vivo model of PGE2-induced thermal hyperalgesia. In accord with the hypothesis, both KYNA and zaprinast showed a dose dependent analgesic effect. In conclusion, GPR35 activation leads to a reduced excitability of small DRG neurons in vitro and causes a dose-dependent analgesia in vivo. GPR35 agonists, by reducing adenylate cyclase activity and inhibiting Ih in DRG neurons may represent a promising new group of analgesic drugs. PMID:27131920

  10. Molecular cloning of growth hormone-releasing hormone/pituitary adenylyl cyclase-activating polypeptide in the frog Xenopus laevis: brain distribution and regulation after castration.

    PubMed

    Hu, Z; Lelievre, V; Tam, J; Cheng, J W; Fuenzalida, G; Zhou, X; Waschek, J A

    2000-09-01

    Pituitary adenylyl cyclase-activating peptide (PACAP) appears to regulate several neuroendocrine functions in the frog, but its messenger RNA (mRNA) structure and brain distribution are unknown. To understand the potential role of PACAP in the male frog hypothalamic-pituitary-gonadal axis, we cloned the frog Xenopus laevis PACAP mRNA and determined its distribution in the brain. We then analyzed the castration-induced alterations of mRNA expression for PACAP and its selective type I receptor (PAC1) in the hypothalamic anterior preoptic area, a region known to regulate reproductive function. The PACAP mRNA encodes a peptide precursor predicted to give rise to both GH-releasing hormone and PACAP. The deduced peptide sequence of PACAP-38 was nearly identical to that of human PACAP with one amino acid substitution. Abundant PACAP mRNA was detected in the brain, but not several other tissues, including the testis. In situ hybridization revealed strong expression of the PACAP gene in the dorsal pallium, ventral hypothalamus, and nuclei of cerebellum. PACAP mRNA signals were weak to moderate in the hypothalamic anterior preoptic area and were absent in the pituitary. Castration induced an increase in the expression of PACAP and PAC1 receptor mRNAs in the hypothalamic anterior preoptic area after 3 days. Replacement with testosterone prevented the castration-induced changes. These results provide a molecular basis for studying the physiological functions of PACAP in frog brain and suggest that PACAP may be involved in the feedback regulation of hypothalamic-pituitary-gonadal axis.

  11. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways.

    PubMed

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong; Lin, Kuan-Hung

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60  μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC) γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLC γ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders.

  12. Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c.

    PubMed

    Sinha, Sangita C; Wetterer, Martina; Sprang, Stephen R; Schultz, Joachim E; Linder, Jürgen U

    2005-02-23

    Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site. PMID:15678099

  13. P2 purinergic receptor activation of neuronal nitric oxide synthase and guanylyl cyclase in the dorsal facial area of the medulla increases blood flow in the common carotid arteries of cats.

    PubMed

    Hung, Y-W; Leung, Y-M; Lin, N-N; Lee, T J-F; Kuo, J-S; Tung, K-C; Gong, C-L

    2015-02-12

    In the dorsal facial area (DFA) of the medulla, an activation of either P2 purinergic receptor or nitric oxide synthase (NOS) results in the release of glutamate, leading to an increase in blood flow of the common carotid artery (CCA). It is not known whether activation of the P2 receptor by ATP may mediate activation of NOS/guanylyl cyclase to cause glutamate release and/or whether L-Arg (nitric oxide (NO) precursor) may also cause ATP release from any other neuron, to cause an increase in CCA flow. We demonstrated that microinjections of P2 receptor agonists (ATP, α,β-methylene ATP) or NO precursor (L-arginine) into the DFA increased CCA blood flow. The P2-induced CCA blood flow increase was dose-dependently reduced by pretreatment with NG-nitro-arginine methyl ester (L-NAME, a non-specific NOS inhibitor), 7-nitroindazole (7-NI, a relatively selective neuronal NOS inhibitor) or methylene blue (MB, a guanylyl cyclase inhibitor) but not by that with D-NAME (an isomer of L-NAME) or N5-(1-iminoethyl)-L-ornithine (L-NIO, a potent endothelial NOS inhibitor). Involvement of glutamate release in these responses were substantiated by microdialysis studies, in which perfusions of ATP into the DFA increased the glutamate concentration in dialysates, but co-perfusion of ATP with L-NAME or 7-NI did not. Nevertheless, the arginine-induced CCA blood flow increase was abolished by combined pretreatment of L-NAME and MB, but not affected by pretreatment with a selective P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). In conclusion, ATP activation of the P2 receptor in the DFA induced activation of neuronal NOS/guanylyl cyclase, which causes glutamate release leading to an increase in CCA blood flow. However, arginine activation of neuronal NOS/guanylyl cyclase, which also caused glutamate release and CCA blood flow increase, did not induce activation of P2 receptors. These findings provide important information for drug design and

  14. P2 purinergic receptor activation of neuronal nitric oxide synthase and guanylyl cyclase in the dorsal facial area of the medulla increases blood flow in the common carotid arteries of cats.

    PubMed

    Hung, Y-W; Leung, Y-M; Lin, N-N; Lee, T J-F; Kuo, J-S; Tung, K-C; Gong, C-L

    2015-02-12

    In the dorsal facial area (DFA) of the medulla, an activation of either P2 purinergic receptor or nitric oxide synthase (NOS) results in the release of glutamate, leading to an increase in blood flow of the common carotid artery (CCA). It is not known whether activation of the P2 receptor by ATP may mediate activation of NOS/guanylyl cyclase to cause glutamate release and/or whether L-Arg (nitric oxide (NO) precursor) may also cause ATP release from any other neuron, to cause an increase in CCA flow. We demonstrated that microinjections of P2 receptor agonists (ATP, α,β-methylene ATP) or NO precursor (L-arginine) into the DFA increased CCA blood flow. The P2-induced CCA blood flow increase was dose-dependently reduced by pretreatment with NG-nitro-arginine methyl ester (L-NAME, a non-specific NOS inhibitor), 7-nitroindazole (7-NI, a relatively selective neuronal NOS inhibitor) or methylene blue (MB, a guanylyl cyclase inhibitor) but not by that with D-NAME (an isomer of L-NAME) or N5-(1-iminoethyl)-L-ornithine (L-NIO, a potent endothelial NOS inhibitor). Involvement of glutamate release in these responses were substantiated by microdialysis studies, in which perfusions of ATP into the DFA increased the glutamate concentration in dialysates, but co-perfusion of ATP with L-NAME or 7-NI did not. Nevertheless, the arginine-induced CCA blood flow increase was abolished by combined pretreatment of L-NAME and MB, but not affected by pretreatment with a selective P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). In conclusion, ATP activation of the P2 receptor in the DFA induced activation of neuronal NOS/guanylyl cyclase, which causes glutamate release leading to an increase in CCA blood flow. However, arginine activation of neuronal NOS/guanylyl cyclase, which also caused glutamate release and CCA blood flow increase, did not induce activation of P2 receptors. These findings provide important information for drug design and

  15. [Comparative study of molecular mechanisms of natural and synthetic polycationic peptides action on the activity of the adenylyl cyclase signaling system].

    PubMed

    Shpakov, A O; Gur'ianov, I A; Kuznetsova, L A; Plesneva, S A; Zakharova, E T; Vlasov, G P; Pertseva, M N

    2006-01-01

    The molecular mechanisms of action of natural and synthetic polycationic peptides, forming amphiphilic helices, on the heterotrimeric G-proteins and enzyme adenylyl cyclase (AC), components of hormone-sensitive AC system, were studied. It is shown that synthetic peptides C-epsilonAhx-WKK(C10)-KKK(C10)-KKKK(C10)-YKK(C10)-KK (peptide I) and (GRGDSGRKKRRQRRRPPQ)2-K-epsilonAhx-C(Acm)(peptide II) in dose-dependent manner stimulate the basal AC activity, inhibit forskolin-stimulated AC activity and decrease both stimulating and inhibiting AC effects of the hormones in the tissues (brain striatum, heart muscle) of rat and in smooth muscles of the mollusc Anodonta cygnea. AC effects of these peptides are decreased after membrane treatment by cholera and pertussis toxins and are inhibited in the presence of the peptides, corresponding to C-terminal regions 385-394 alphas- and 346-355 alphai2-subunits of G-proteins. These data give evidence that the peptides I and II act on the signaling pathways which are realized through Gs- and Gi-proteins. At the same time, natural polycationic peptide mastoparan acts on AC system through Gi-proteins and blocks hormonal signals mediated via Gi-proteins only. Consequently, the action of mastoparan on G-proteins is selective and differs from the action of the synthetic peptides. It is also shown that peptide II, with branched structure, directly interacts not only with G-proteins (less effective in comparison with peptide I with hydrophobic radicals and mastoparan), but also with enzyme AC, the catalytic component of AC system. On the basis of data obtained the following conclusions were made: 1) the formation of amphiphilic helices is not enough for selective activation of G-protein by polycationic peptides, and 2) the primary structure of the peptides, the distribution of positive charged amino acids and hydrophobic radicals in them are very important for selective interaction between polycationic peptides and G-proteins.

  16. Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats.

    PubMed

    Rothermund, L; Friebe, A; Paul, M; Koesling, D; Kreutz, R

    2000-05-01

    We used YC-1 as a pharmacological tool to investigate the short-term blood pressure effects of NO-independent activation of sGC in normotensive and hypertensive rats. Four groups of normotensive Wistar-Kyoto rats were treated by i.v. injection with vehicle (V), YC-1 (YC-1), sodium nitroprusside (SNP), or YC-1 and SNP (YC-1+SNP). Hypertension was induced in four additional groups of WKY rats by 3 weeks of oral treatment with L-NAME. These animals were investigated with the same protocol as the normotensive animals: L-NAME/V, L-NAME/YC-1, L-NAME/SNP, L-NAME/YC-1+SNP. YC-1 lowered mean arterial blood pressure (MAP) in normotensive and hypertensive animals similarly to SNP alone (P<0.05, respectively). The combination of YC-1 with SNP caused a strong decrease of MAP in both the hypertensive and normotensive animals (P<0.05, respectively). SNP with YC-1 also induced a pronounced cyclic GMP increase in the aorta. This study shows for the first time the blood pressure lowering potential of bimodal targeting of the NO-sGC-system.

  17. Lycopene cyclase and phytoene synthase activities in the marine yeast Rhodosporidium diobovatum are encoded by a single gene crtYB.

    PubMed

    Guo, Wenjing; Tang, Hui; Zhang, Liping

    2014-10-01

    crtYB, encoding lycopene cyclase and phytoene synthase was cloned from Rhodosporidium diobovatum ATCC 2527 by rapid amplification of cDNA ends method. The full-length cDNA of crtYB is 2, 330 bp and contains eight introns. The gene products is a 594 amino acids, with a predicted molecular mass of 65.63 kDa and a pI of 6.73. The N-terminus of the protein contains six transmembrane regions, which has been characterized as a lycopene beta-cyclase. The C-terminal half has squalene and phytoene synthase signatures that identified as phytoene synthetase. By heterologous complementary detection of this gene in E. coli and HPLC analysis, the regions responsible for phytoene synthesis and lycopene cyclization were localized within the protein.

  18. Gustatory Habituation in "Drosophila" Relies on "Rutabaga" (Adenylate Cyclase)-Dependent Plasticity of GABAergic Inhibitory Neurons

    ERIC Educational Resources Information Center

    Paranjpe, Pushkar; Rodrigues, Veronica; VijayRaghavan, K.; Ramaswami, Mani

    2012-01-01

    In some situations, animals seem to ignore stimuli which in other contexts elicit a robust response. This attenuation in behavior, which enables animals to ignore a familiar, unreinforced stimulus, is called habituation. Despite the ubiquity of this phenomenon, it is generally poorly understood in terms of the underlying neural circuitry. Hungry…

  19. Identification of a D1 dopamine receptor, not linked to adenylate cyclase, on lactotroph cells.

    PubMed Central

    Schoors, D. F.; Vauquelin, G. P.; De Vos, H.; Smets, G.; Velkeniers, B.; Vanhaelst, L.; Dupont, A. G.

    1991-01-01

    1. We studied the lactotroph cells of the rat by both in vivo and in vitro pharmacological techniques for the presence of D1-receptors. Both approaches revealed the presence of D2-receptor, stimulated by quinpirole (resulting in an inhibition of prolactin secretion) and blocked by domperidone. 2. Administration of fenoldopam, the most selective D1-receptor agonist currently available, resulted in a dose-dependent decrease of prolactin secretion in vivo (after pretreatment with alpha-methyl-p-tyrosine) and in vitro (cultured pituitary cells). This increase was dose-dependently blocked by the selective D1-receptor antagonist, SCH 23390, and although the effect of fenoldopam was less than that obtained by D2-receptor stimulation, these data suggest that a D1-receptor also controls prolactin secretion. 3. In order to detect the location of these dopamine receptors, autoradiographic studies were performed by use of [3H]-SCH 23390 and [3H]-spiperone as markers for D1- and D2-receptors, respectively. Specific binding sites for [3H]-SCH 23390 were demonstrated. Fenoldopam dose-dependently reduced [3H]-SCH 23390 binding, but had no effect on [3H]-spiperone binding. Immunocytochemical labelling of prolactin cells after incubation with [3H]-SCH 23390 revealed that the granulae and hence, D1 binding sites were present on the lactotroph cells. 4. Radioligand binding studies performed on membranes from anterior pituitary cells revealed the presence of the D2-receptor (54 fmol mg-1 protein) with a Kd of 0.58 nM for [3H]-spiperone, but failed to detect D1-receptors. 5. Finally, we studied the effect of dopamine and of fenoldopam on the adenosine 3':5'-cyclic monophosphate (cyclic AMP) content of anterior pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 Figure 5 PMID:1833020

  20. Loss of Adenylate Cyclase Tonxin among closely related B. bronchiseptica strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bordetella bronchiseptica is a multi-host, gram-negative respiratory pathogen that causes everything from asymptomatic infection to fatal pneumonia. We have identified a strain of B. bronchiseptica, 253, that is inefficient at persisting in the lower respiratory tract of mice compared to the typica...

  1. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  2. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  3. Inhibition of vaccinia mRNA methylation by 2',5'-linked oligo(adenylic acid) triphosphate

    SciTech Connect

    Sharma, O.K.; Goswami, B.B.

    1981-04-01

    Extracts of interferon-treated cells synthesize unique 2',5'-linked oligo(adenylic acid) 5'-phosphates in the presence of ATP and double-stranded RNA. 2',5'-linked oligo(adenylic acid) 5'-triphosphate inhibits protein synthesis at nanomolar concentrations by activating RNase. We have observed that oligo(adenylic acid) 5'-monophosphate and 5'-triphosphate are potent inhibitors of vaccinia mRNA methylation in vitro. Both the methylation of the 5'-terminal guanine at the 7 position and the 2'-O-ribose methylation of the penultimate nucleoside are inhibited. Such inhibition of mRNA methylation is not due to degradation of the mRNA. Inhibition of the requisite modification of the 5' terminus of mRNA by 2',5'-linked oligo(adenylic acids) may be a mechanism of interferon action against both DNA and RNA viruses in which mRNAs derived from them are capped.

  4. Regulation and organization of adenylyl cyclases and cAMP.

    PubMed Central

    Cooper, Dermot M F

    2003-01-01

    Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments. PMID:12940771

  5. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    PubMed

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  6. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    PubMed Central

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  7. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex.

    PubMed

    Rosenberg, P A; Li, Y

    1995-09-18

    We have previously shown that stimulation of cortical cultures containing both neurons and astrocytes with the beta-adrenergic agonist isoproterenol (ISO) results in transport of cAMP from astrocytes followed by extracellular hydrolysis to adenosine [Rosenberg et al. J. Neurosci. 14 (1994) 2953-2965]. In this study we found that the endogenous catecholamines epinephrine (EPI) and norepinephrine (NE), but not dopamine, serotonin, or histamine, all at 10 microM, significantly stimulated intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation in cortical cultures. Detailed dose-response experiments were performed for NE and EPI, as well as ISO. For each catecholamine, the potencies in evoking intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation were similar. These data provide additional evidence that a single common mechanism, namely beta-adrenergic mediated activation of adenylyl cyclase, underlies intracellular cAMP accumulation, cAMP transport, and extracellular adenosine accumulation. It appears that regulation of extracellular adenosine levels via cAMP transport and extracellular hydrolysis to adenosine may be a final common pathway of neuromodulation in cerebral cortex for catecholamines, and, indeed, any substance whose receptors are coupled to adenylyl cyclase.

  8. Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis.

    PubMed

    McCue, L A; McDonough, K A; Lawrence, C E

    2000-02-01

    We have analyzed the cyclic nucleotide (cNMP)-binding protein and nucleotide cyclase superfamilies using Bayesian computational methods of protein family identification and classification. In addition to the known cNMP-binding proteins (cNMP-dependent kinases, cNMP-gated channels, cAMP-guanine nucleotide exchange factors, and bacterial cAMP-dependent transcription factors), new functional groups of cNMP-binding proteins were identified, including putative ABC-transporter subunits, translocases, and esterases. Classification of the nucleotide cyclases revealed subtle differences in sequence conservation of the active site that distinguish the five classes of cyclases: the multicellular eukaryotic adenylyl cyclases, the eukaryotic receptor-type guanylyl cyclases, the eukaryotic soluble guanylyl cyclases, the unicellular eukaryotic and prokaryotic adenylyl cyclases, and the putative prokaryotic guanylyl cyclases. Phylogenetic distribution of the cNMP-binding proteins and cyclases was analyzed, with particular attention to the 22 complete archaeal and eubacterial genome sequences. Mycobacterium tuberculosis H37Rv and Synechocystis PCC6803 were each found to encode several more putative cNMP-binding proteins than other prokaryotes; many of these proteins are of unknown function. M. tuberculosis also encodes several more putative nucleotide cyclases than other prokaryotic species. PMID:10673278

  9. Primary structure of maize chloroplast adenylate kinase.

    PubMed

    Schiltz, E; Burger, S; Grafmüller, R; Deppert, W R; Haehnel, W; Wagner, E

    1994-06-15

    This paper describes the sequence of adenylate kinase (Mg-ATP+AMP<-->Mg-ADP+ADP) from maize chloroplasts. This light-inducible enzyme is important for efficient CO2 fixation in the C4 cycle, by removing and recycling AMP produced in the reversible pyruvate phosphate dikinase reaction. The complete sequence was determined by analyzing peptides from cleavages with trypsin, AspN protease and CNBr and subcleavage of a major CNBr peptide with chymotrypsin. N-terminal Edman degradation and carboxypeptidase digestion established the terminal residues. Electrospray mass spectrometry confirmed the final sequence of 222 residues (M(r) = 24867) including one cysteine and one tryptophan. The sequence shows this enzyme to be a long-variant-type adenylate kinase, the nearest relatives being adenylate kinases from Enterobacteriaceae. Alignment of the sequence with the adenylate kinase from Escherichia coli reveals 44% identical residues. Since the E. coli structure has been published recently at 0.19-nm resolution with the inhibitor adenosine(5')pentaphospho(5')adenosine (Ap5A) [Müller, C. W. & Schulz, G. E. (1992) J. Mol. Biol. 224, 159-177], catalytically essential residues could be compared and were found to be mostly conserved. Surprisingly, in the nucleotide-binding Gly-rich loop Gly-Xaa-Pro-Gly-Xaa-Gly-Lys the middle Gly is replaced by Ala. This is, however, compensated by an Ile-->Val exchange in the nearest spatial neighborhood. A Thr-->Ala exchange explains the unusual tolerance of the enzyme for pyrimidine nucleotides in the acceptor site. PMID:8026505

  10. General base-general acid catalysis by terpenoid cyclases.

    PubMed

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  11. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  12. Tocopherol Cyclases-Substrate Specificity and Phylogenetic Relations.

    PubMed

    Dłużewska, Jolanta; Szymańska, Renata; Gabruk, Michal; Kós, Peter B; Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    In the present studies, we focused on substrate specificity of tocopherol cyclase, the key enzyme in the biosynthesis of the tocopherols and plastochromanol-8, the main plant lipid antioxidants, with special emphasis on the preference for tocopherols and plastochromanol-8 precursors, taking advantage of the recombinant enzyme originating from Arabidopsis thaliana and isolated plastoglobules, thylakoids and various model systems like micelles and thylakoids. Plastoglobules and triacylglycerol micelles were the most efficient reaction environment for the cyclase. In various investigated systems, synthesis of γ-tocopherol proceeded considerably faster than that of plastochromanol-8, probably mainly due to different localization of the corresponding substrates in the analyzed lipid structures. Moreover, our study was complemented by bioinformatics analysis of the phylogenetic relations of the cyclases and sequence motifs, crucial for the enzyme activity, were proposed. The analysis revealed also a group of tocopherol cyclase-like proteins in a number of heterotrophic bacterial species, with a conserved region common with photosynthetic organisms, that might be engaged in the catalytic activity of both groups of organisms. PMID:27462710

  13. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels.

    PubMed

    Qi, Zhi; Verma, Rajeev; Gehring, Chris; Yamaguchi, Yube; Zhao, Yichen; Ryan, Clarence A; Berkowitz, Gerald A

    2010-12-01

    A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca(2+) permeable channels in mesophyll cells, resulting in cytosolic Ca(2+) elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca(2+) elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca(2+) signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca(2+) conductance and resulting cytosolic Ca(2+) elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca(2+)-dependent manner.

  14. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    PubMed Central

    Holubova, Jana; Jelinek, Jiri; Tomala, Jakub; Masin, Jiri; Kosova, Martina; Stanek, Ondrej; Bumba, Ladislav; Michalek, Jaroslav; Kovar, Marek; Sebo, Peter

    2012-01-01

    The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the cell-invasive capacity of the AC domain. This has repeatedly been exploited for delivery of heterologous antigens into the cytosolic pathway of CD11b-expressing dendritic cells by CyaA/AC− toxoids, thus enabling their processing and presentation on major histocompatibility complex (MHC) class I molecules to cytotoxic CD8+ T lymphocytes (CTLs). We produced a set of toxoids with overlapping deletions within the first 371 residues of CyaA and showed that the structure of the AC enzyme does not contain any sequences indispensable for its translocation across target cell membrane. Moreover, replacement of the AC domain (residues 1 to 371) with heterologous polypeptides of 40, 146, or 203 residues yielded CyaAΔAC constructs that delivered passenger CTL epitopes into antigen-presenting cells (APCs) and induced strong antigen-specific CD8+ CTL responses in vivo in mice and ex vivo in human peripheral blood mononuclear cell cultures. This shows that the RTX (repeats in toxin) hemolysin moiety, consisting of residues 374 to 1706 of CyaA, harbors all structural information involved in translocation of the N-terminal AC domain across target cell membranes. These results decipher the extraordinary capacity of the AC domain of CyaA to transport large heterologous cargo polypeptides into the cytosol of CD11b+ target cells and pave the way for the construction of CyaAΔAC-based polyvalent immunotherapeutic T cell vaccines. PMID:22215742

  15. Structural Basis of the Interaction of MbtH-like Proteins, Putative Regulators of Nonribosomal Peptide Biosynthesis, with Adenylating Enzymes*

    PubMed Central

    Herbst, Dominik A.; Boll, Björn; Zocher, Georg; Stehle, Thilo; Heide, Lutz

    2013-01-01

    The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes. PMID:23192349

  16. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes.

    PubMed

    Herbst, Dominik A; Boll, Björn; Zocher, Georg; Stehle, Thilo; Heide, Lutz

    2013-01-18

    The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes.

  17. Rat muscle 5'-adenylic acid aminohydrolase. Role of K+ and adenylate energy charge in expression of kinetic and regulatory properties.

    PubMed

    Coffee, C J; Solano, C

    1977-03-10

    The kinetic and regulatory properties of homogeneous AMP deaminase from rat skeletal muscle have ben examined with particular emphasis on (a) the role of potassium ions in the expression of these properties and (b) the role of the adenylate energy charge in the regulation of AMP deaminase activity. Although the enzyme has an absolute requirement for K+, the concentration required for maximum activation is dependent on the concentration of substrate. At saturating levels of AMP (greater than or equal 2.0 mM) maximum activation is observed with 25 mM KCl, whereas at lower substrate concentrations (0.2 mM) approximately 50 mM KCl is needed for maximum activation. Conversely, the response of enzyme activity ot increasing levels of substrate is dependent on the level of potassium ions. At substrating concentrations of K+, the saturation curve for AMP is highly sigmoidal (nh=3.2) whereas at higher KCl concentrations, the apparent cooperativity between AMP sites is almost completely abolished (nh=1.5). The inhibition by a number of phosphorylated metabolites, including ATP, GTP, creatine-P, and P1, is likewise sensitive to the concentration of K+. These results suggest that a significant amount of interaction between K+ sites and both substrate and effector sites is required for the expression of the catalytic and regulatory properties of the enzyme. The specific effects of ATP, creatine-P, and P1 on the parameters of Km and Vmax indicate that each of these profile of AMP deaminase activity generated in response to variations in the adenylate energy charge shows that within the physiological range of energy charge (0.75 to 0.95), the activity increases linearly with decreasesing energy charge and is insensitive to both the total adenylate pool size and the presence of P1 and creatine-P. These data suggest that the most important factor in the regulation of AMP deaminase activity is the state of the energy charge rather than the absolute concentrations of the individual

  18. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis

    PubMed Central

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M.; Meng, Fantao; Wu, Qi; Wemmie, John A.; Fisher, Rory A.

    2014-01-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT1ARs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT1AR-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT1AR-expressing cells implicated in mood disorders. RGS6−/− mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT1AR blockade. Effects of the SSRI fluvoxamine and 5-HT1AR agonist 8-OH-DPAT were also potentiated in RGS6+/− mice. The phenotype of RGS6−/− mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gαi-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6−/− animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents.—Stewart, A., Maity, B., Wunsch, A. M., Meng, F., Wu, Q., Wemmie, J. A., Fisher, R. A. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT1A receptor-adenylyl cyclase axis. PMID:24421401

  19. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    PubMed Central

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  20. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    PubMed

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.

  1. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    PubMed

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin. PMID:22642150

  2. Soluble variants of human recombinant glutaminyl cyclase.

    PubMed

    Castaldo, Cristiana; Ciambellotti, Silvia; de Pablo-Latorre, Raquel; Lalli, Daniela; Porcari, Valentina; Turano, Paola

    2013-01-01

    Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of (1)H-(15)N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer's disease. PMID:23977104

  3. Soluble Variants of Human Recombinant Glutaminyl Cyclase

    PubMed Central

    Castaldo, Cristiana; Ciambellotti, Silvia; de Pablo-Latorre, Raquel; Lalli, Daniela; Porcari, Valentina; Turano, Paola

    2013-01-01

    Recombinant human Glutaminyl Cyclase expressed in E. coli is produced as inclusion bodies. Lack of glycosylation is the main origin of its accumulation in insoluble aggregates. Mutation of single isolated hydrophobic amino acids into negative amino acids was not able to circumvent inclusion bodies formation. On the contrary, substitution with carboxyl-terminal residues of two or three aromatic residues belonging to extended hydrophobic patches on the protein surface provided soluble but still active forms of the protein. These mutants could be expressed in isotopically enriched forms for NMR studies and the maximal attainable concentration was sufficient for the acquisition of 1H-15N HSQC spectra that represent the starting point for future drug development projects targeting Alzheimer’s disease. PMID:23977104

  4. A lycopene β-cyclase/lycopene ε-cyclase/light-harvesting complex-fusion protein from the green alga Ostreococcus lucimarinus can be modified to produce α-carotene and β-carotene at different ratios.

    PubMed

    Blatt, Andreas; Bauch, Matthias E; Pörschke, Yvonne; Lohr, Martin

    2015-05-01

    Biosynthesis of asymmetric carotenoids such as α-carotene and lutein in plants and green algae involves the two enzymes lycopene β-cyclase (LCYB) and lycopene ε-cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C-terminal light-harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α-carotene and β-carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C-terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α-carotene-to-β-carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α-carotene or lutein in bacteria or fungi.

  5. The Structure of PA1221, a Non-Ribosomal Peptide Synthetase containing Adenylation and Peptidyl Carrier Protein Domains

    PubMed Central

    Mitchell, Carter A.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M.

    2012-01-01

    Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Non-Ribosomal Peptide Synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain. Our lab recently determined the structure of an engineered two-domain NRPS containing fused adenylation and carrier domains. This structure adopted a domain swapped dimer that illustrated the interface between these two domains. To continue our investigation, we now examine PA1221, a natural two-domain protein from Pseudomonas aeruginosa. We have determined the amino acid specificity of this new enzyme and used domain specific mutations to demonstrate that loading the downstream carrier domain within a single protein molecule occurs more quickly than loading of a non-fused carrier domain inter-molecularly. Finally, we have determined crystal structures of both the apo- and holo-PA1221 protein, the latter using a valine-adenosine vinylsulfonamide inhibitor that traps the adenylation-carrier domain interaction. The protein adopts a similar interface to that seen with the prior adenylation-carrier protein construct. A comparison of these structures with previous structures of multidomain NRPSs suggests that a large conformational change within the NRPS adenylation domains guides the carrier domain into the active site for thioester formation. PMID:22452656

  6. [The influence of two-month treatment with bromocryptine on activity of the adenylyl cyclase signaling system in the myocardium and testes of rats with type 2 diabetes mellitus].

    PubMed

    Derkach, K V; Bondareva, V M; Moyseyuk, I V; Shpakov, A O

    2014-01-01

    One of the common complications of type 2 diabetes mellitus (DM2) are cardiovascular diseases and dysfunctions of the reproductive system, indicating the urgency of developing new approaches to their correction. Last years for the treatment of DM2 began to use bromocryptine (BC), the agonist of type 2 dopamine receptors, which not only restores the energy metabolism, but also prevents the development of cardiovascular diseases. However, the mechanisms and targets of BC action are poorly understood. The purpose of this study was to investigate the effect of BC treatment on functional activity of adenylyl cyclase signaling system (ACSS) in the myocardium and testes of male rats with DM2, which is caused by high-fat diet and treatment with streptozotocin (25 mg/kg). The treatment with BC (60 days, orally at a dose of 0.6 mg/kg once every two days) was started 90 days after the beginning of high-fat diet. Diabetic rats had an increased body weight, elevated triglycerides level, impaired glucose tolerance, and insulin resistance. The treatment with BC resulted in the restoration of glycometabolic indicators and in the improvement of insulin sensitivity. Adenylyl cyclase (AC) stimulating effects of guanylylimidodiphosphate (GppNHp), relaxin, and agonists of β-adrenergic receptors (β3-AR)--isoproterenol and norepinephrine were decreased in the miocardium of the diabetic rats. The corresponding effects of the β-agonists BRL-37344 and CL-316243 was preserved. The inhibitory effect of somatostatin on forskolin-stimulated AC activity was attenuated, while the inhibitory effect of noradrenaline mediated through α2-AR increased. The treatment with BC resulted in the normalization of the adrenergic signaling in the myocardium and partially restoration of AC effects of relaxin and somatostatin. In the testes of diabetic rats, the basal and stimulated by GppNHp, forskolin, human chorionic gonadotropin and pituitary AC-activating polypeptide AC activity were decreased, and the

  7. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    SciTech Connect

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  8. [THE EFFECTS OF LONG-TERM METFORMIN TREATMENT ON THE ACTIVITY OF ADENYLYL CYCLASE SYSTEM AND NO-SYNTHASES IN THE BRAIN AND THE MYOCARDIUM OF RATS WITH OBESITY].

    PubMed

    Derkach, K V; Kuznetsova, L A; Sharova, T S; Ignatieva, P A; Bondareva, V M; Shpakov, A O

    2015-01-01

    Biguanide metformin, which is widely used for the treatment of type 2 diabetes mellitus, improves carbohydrate and lipid metabolism and shows a pronounced cardio- and neuroprotective effects. It is assumed that an important role in these effects of metformin plays its ability to positively influence the activity of NO-synthase catalyzing the synthesis of NO, the most important vasodilator, and the activity of hormone-sensitive adenylyl cyclase signaling system (ACSS. To prove this, we have carried out a study whose purpose was to study the effect of long-term metformin treatment on the metabolic rates in obese rats, as well as on the activity of ACSS and NO-synthase in the myocardium and the brain of these animals. The metformin treatment of Wistar rats with obesity induced by high-fat diet was carried out for 2 months (daily dose of 200 mg/kg). The treatment with metformin led to a decrease in body weight and body fat, reduced glucose and insulin levels as well as reduced insulin resistance index HOMA-IR, improved glucose tolerance, and decreased the level of atherogenic forms of cholesterol. In the myocardium of obese rats, the attenuation of ACSS stimulation induced by the agonists of β1/β2-adrenergic receptors (AR) and the strengthening of β3-AR signaling has been found. At the same time, in the myocardium of animals treated with metformin, the regulation of ACSS by adrenergic agonists was restored, and the ratio of β-AR-signaling pathways returned to normal. In the brain of rats treated with metformin, adenylyl cyclase stimulating effects of serotonin and agonists of type 4 melanocortin receptors, which had been weakenend for obesity, were restored. Metformin treatment completely restored activity of total and endothelial NO-synthase in the myocardium decreased in obesity. It as also shown that metformin treatment induced hyperactivation of NO-synthase in the myocardium and brain of healthy animals. Thus, we conclude that the effects of metformin

  9. [THE EFFECTS OF LONG-TERM METFORMIN TREATMENT ON THE ACTIVITY OF ADENYLYL CYCLASE SYSTEM AND NO-SYNTHASES IN THE BRAIN AND THE MYOCARDIUM OF RATS WITH OBESITY].

    PubMed

    Derkach, K V; Kuznetsova, L A; Sharova, T S; Ignatieva, P A; Bondareva, V M; Shpakov, A O

    2015-01-01

    Biguanide metformin, which is widely used for the treatment of type 2 diabetes mellitus, improves carbohydrate and lipid metabolism and shows a pronounced cardio- and neuroprotective effects. It is assumed that an important role in these effects of metformin plays its ability to positively influence the activity of NO-synthase catalyzing the synthesis of NO, the most important vasodilator, and the activity of hormone-sensitive adenylyl cyclase signaling system (ACSS. To prove this, we have carried out a study whose purpose was to study the effect of long-term metformin treatment on the metabolic rates in obese rats, as well as on the activity of ACSS and NO-synthase in the myocardium and the brain of these animals. The metformin treatment of Wistar rats with obesity induced by high-fat diet was carried out for 2 months (daily dose of 200 mg/kg). The treatment with metformin led to a decrease in body weight and body fat, reduced glucose and insulin levels as well as reduced insulin resistance index HOMA-IR, improved glucose tolerance, and decreased the level of atherogenic forms of cholesterol. In the myocardium of obese rats, the attenuation of ACSS stimulation induced by the agonists of β1/β2-adrenergic receptors (AR) and the strengthening of β3-AR signaling has been found. At the same time, in the myocardium of animals treated with metformin, the regulation of ACSS by adrenergic agonists was restored, and the ratio of β-AR-signaling pathways returned to normal. In the brain of rats treated with metformin, adenylyl cyclase stimulating effects of serotonin and agonists of type 4 melanocortin receptors, which had been weakenend for obesity, were restored. Metformin treatment completely restored activity of total and endothelial NO-synthase in the myocardium decreased in obesity. It as also shown that metformin treatment induced hyperactivation of NO-synthase in the myocardium and brain of healthy animals. Thus, we conclude that the effects of metformin

  10. Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange.

    PubMed

    Siedenburg, Gabriele; Breuer, Michael; Jendrossek, Dieter

    2013-02-01

    Squalene-hopene cyclases (SHCs) are prokaryotic enzymes that catalyse the cyclisation of the linear precursor squalene to pentacyclic hopene. Recently, we discovered that a SHC cloned from Zymomonas mobilis (ZMO-1548 gene product) has the unique property to cyclise the monoterpenoid citronellal to isopulegol. In this study, we performed saturation mutagenesis of three amino acids of the catalytic centre of ZMO-1548 (F428, F486 and W555), which had been previously identified to interact with enzyme-bound substrate. Replacement of F428 by tyrosine increased hopene formation from squalene, but isopulegol-forming activity was strongly reduced or abolished in all muteins of position 428. W555 was essential for hopene formation; however, three muteins (W555Y, W428F or W555T) revealed enhanced cyclisation efficiency with citronellal. The residue at position 486 turned out to be the most important for isopulegol-forming activity. While the presence of phenylalanine or tyrosine favoured cyclisation activity with squalene, several small and/or hydrophobic residues such as cysteine, alanine or isoleucine and others reduced activity with squalene but greatly enhanced isopulegol formation from citronellal. Replacement of the conserved aromatic residue corresponding to F486 to cysteine in other SHCs cloned from Z. mobilis (ZMO-0872), Alicyclobacillus acidocaldarius (SHC(Aac)), Acetobacter pasteurianus (SHC(Apa)), Streptomyces coelicolor (SHC(Sco)) and Bradyrhizobium japonicum (SHC(Bja)) resulted in more or less strong isopulegol-forming activities from citronellal. In conclusion, many SHCs can be converted to citronellal cyclases by mutagenesis of the active centre thus broadening the applicability of this interesting class of biocatalyst. PMID:22526778

  11. Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange.

    PubMed

    Siedenburg, Gabriele; Breuer, Michael; Jendrossek, Dieter

    2013-02-01

    Squalene-hopene cyclases (SHCs) are prokaryotic enzymes that catalyse the cyclisation of the linear precursor squalene to pentacyclic hopene. Recently, we discovered that a SHC cloned from Zymomonas mobilis (ZMO-1548 gene product) has the unique property to cyclise the monoterpenoid citronellal to isopulegol. In this study, we performed saturation mutagenesis of three amino acids of the catalytic centre of ZMO-1548 (F428, F486 and W555), which had been previously identified to interact with enzyme-bound substrate. Replacement of F428 by tyrosine increased hopene formation from squalene, but isopulegol-forming activity was strongly reduced or abolished in all muteins of position 428. W555 was essential for hopene formation; however, three muteins (W555Y, W428F or W555T) revealed enhanced cyclisation efficiency with citronellal. The residue at position 486 turned out to be the most important for isopulegol-forming activity. While the presence of phenylalanine or tyrosine favoured cyclisation activity with squalene, several small and/or hydrophobic residues such as cysteine, alanine or isoleucine and others reduced activity with squalene but greatly enhanced isopulegol formation from citronellal. Replacement of the conserved aromatic residue corresponding to F486 to cysteine in other SHCs cloned from Z. mobilis (ZMO-0872), Alicyclobacillus acidocaldarius (SHC(Aac)), Acetobacter pasteurianus (SHC(Apa)), Streptomyces coelicolor (SHC(Sco)) and Bradyrhizobium japonicum (SHC(Bja)) resulted in more or less strong isopulegol-forming activities from citronellal. In conclusion, many SHCs can be converted to citronellal cyclases by mutagenesis of the active centre thus broadening the applicability of this interesting class of biocatalyst.

  12. Role of MbtH-like Proteins in the Adenylation of Tyrosine during Aminocoumarin and Vancomycin Biosynthesis*

    PubMed Central

    Boll, Björn; Taubitz, Tatjana; Heide, Lutz

    2011-01-01

    MbtH-like proteins consist of ∼70 amino acids and are encoded in the biosynthetic gene clusters of non-ribosomally formed peptides and other secondary metabolites derived from amino acids. Recently, several MbtH-like proteins have been shown to be required for the adenylation of amino acid in non-ribosomal peptide synthesis. We now investigated the role of MbtH-like proteins in the biosynthesis of the aminocoumarin antibiotics novobiocin, clorobiocin, and simocyclinone D8 and of the glycopeptide antibiotic vancomycin. The tyrosine-adenylating enzymes CloH, SimH, and Pcza361.18, involved in the biosynthesis of clorobiocin, simocyclinone D8, and vancomycin, respectively, required the presence of MbtH-like proteins in a 1:1 molar ratio, forming heterotetrameric complexes. In contrast, NovH, involved in novobiocin biosynthesis, showed activity in the absence of MbtH-like proteins. Comparison of the active centers of CloH and NovH showed only one amino acid to be different, i.e. Leu-383 versus Met-383. Mutation of this amino acid in CloH (L383M) indeed led to MbtH-independent adenylating activity. All investigated tyrosine-adenylating enzymes exhibited remarkable promiscuity for MbtH-like proteins from different pathways and organisms. YbdZ, the MbtH-like protein from the expression host Escherichia coli, was found to bind to adenylating enzymes during expression and to influence their biochemical properties markedly. Therefore, the use of ybdZ-deficient expression hosts is important in biochemical studies of adenylating enzymes. PMID:21890635

  13. [Reactivity of the adenylyl cyclase system in rat tissues to biogenic amines and peptide hormones under starvation condition].

    PubMed

    Shpakov, A O; Kuznetsova, L A; Plesneva, S A; Pertseva, M N

    2007-04-01

    Under starvation condition, sensitivity of the adenylyl cyclase system to regulatory action of biogenic amines and peptide hormones in rat tissues are changed. In the myocardium and skeletal muscles, after 2 and 4 days of starvation, the regulatory effects of isoproterenol and relaxin acting via G,-proteins on the adenylyl cyclase activity and the G-protein GTP-binding are significantly increased compared with control. At the same time, regulatory effects ofsomatostatin which are realized via Gi-proteins, on adenylyl cyclase system in the myocardium are decreased. Under prolonged starvation consisting of two consecutive 4-days periods, the effects of hormones acting via Gs-proteins on the adenylyl cyclase activity in muscle tissues are decreased to control value levels. The effects of hormones acting via Gi-proteins are largely reduced. In the brain, intensification of adenylyl cyclase stimulating hormonal effects was late and only observed after a 4-day starvation. Unlike muscle tissues, the increase of adenylyl cyclase stimulating effects in the brain is preserved after two-period starvation. The weakening of adenylyl cyclase inhibiting hormonal signals both in the brain and muscles is observed after a 2-day starvation and then the weakening is intensified. Possible role of glucose level and basal adenylyl cyclase activity in determination of the sensitivity of the adenylyl cyclase system to hormones under study is discussed. It is suggested that one of the key causes of physiological changes in animal organism under starvation involves alteration of hormonal signalling systems sensitivity, in particular that of the adenylyl cyclase system, to hormone regulatory action.

  14. Effect of high potassium on dopamine receptor activity in bovine retina

    SciTech Connect

    Ackerman, J.M.

    1989-01-01

    In the present study, the hypothesis that dopamine released by light caused a subsensitivity of the dopamine receptor was investigated. Bovine eyes were obtained from a slaughterhouse, and retinas were dissected in a dark room. Filter binding assays were developed to measure agonist and antagonist binding to the dopamine receptor using ({sup 3}H)dopamine and ({sup 3}H)SCH 23390, respectively, in a retinal membrane fraction. Adenylate cyclase activation was measured by the production of ({sup 32}P)cyclic AMP from {sup 32}ATP. In desensitization experiments, bovine retinas were incubated for fifteen minutes with 56 mM potassium, which also causes a release of dopamine in retinas were washed, and membranes were prepared. The stimulation of adenylate cyclase evoked by dopamine and radiolabeled agonist and antagonist binding were measured. In the receptor binding characterization studies, the dissociation constant and the maximum number of binding sites were obtained for ({sup 3}H)dopamine and ({sup 3}H)SCH 23390 binding.

  15. Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase

    SciTech Connect

    Villacres, E.C.; Xia, Z.; Bookbinder, L.H.; Edelhoff, S.; Disteche, C.M.; Storm, D.R.

    1993-05-01

    The neural-specific calmodulin-sensitive adenylyl cyclase (type I), which was first cloned from bovine brain, has been implicated in learning and memory. The objective of this study was to clone and determine the chromosomal localization of human fetal brain type I adenylyl cyclase. A 3.8-kb cDNA clone was isolated that contained sequence coinciding with the 3{prime} end 2553 nucleotides of the bovine open reading frame. This clone shows 87% nucleotide and 92% translated amino acid sequence identity to the bovine clone. The most significant sequence differences were in the carboxy-terminal 100 amino acid residues. This region contains one of several possible calmodulin binding domains and the only putative cAMP-dependent protein kinase A phosphorylation site. A chimera was constructed that contained the 5{prime} half of the bovine type I adenylyl cyclase and the 3{prime} half of the human type I adenylyl cyclase. The activity of the chimeric gene product and its sensitivity to calmodulin and calcium were indistinguishable from those of the bovine type I adenylyl cyclase. In situ hybridization was used to localize the human type I adenylyl cyclase gene to the proximal portion of the short arm of chromosome 7. 36 refs., 4 figs.

  16. Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain.

    PubMed

    Wang, Hansen; Xu, Hui; Wu, Long-Jun; Kim, Susan S; Chen, Tao; Koga, Kohei; Descalzi, Giannina; Gong, Bo; Vadakkan, Kunjumon I; Zhang, Xuehan; Kaang, Bong-Kiun; Zhuo, Min

    2011-01-12

    Neuropathic pain, often caused by nerve injury, is commonly observed among patients with different diseases. Because its basic mechanisms are poorly understood, effective medications are limited. Previous investigations of basic pain mechanisms and drug discovery efforts have focused mainly on early sensory neurons such as dorsal root ganglion and spinal dorsal horn neurons, and few synaptic-level studies or new drugs are designed to target the injury-related cortical plasticity that accompanies neuropathic pain. Our previous work has demonstrated that calcium-stimulated adenylyl cyclase 1 (AC1) is critical for nerve injury-induced synaptic changes in the anterior cingulate cortex. Through rational drug design and chemical screening, we have identified a lead candidate AC1 inhibitor, NB001, which is relatively selective for AC1 over other adenylate cyclase isoforms. Using a variety of behavioral tests and toxicity studies, we have found that NB001, when administered intraperitoneally or orally, has an analgesic effect in animal models of neuropathic pain, without any apparent side effects. Our study thus shows that AC1 could be a productive therapeutic target for neuropathic pain and describes a new agent for the possible treatment of neuropathic pain.

  17. Dephosphorylation of sperm guanylate cyclase during sea urchin fertilization

    SciTech Connect

    Ward, G.E.

    1985-01-01

    When intact Arbacia punctulata spermatozoa are exposed to solubilized egg jelly, the electrophoretic mobility of an abundant sperm flagellar membrane protein changes from an apparent molecular mass of 160 kDa to 150 kDa. A. punctulata spermatozoa can be labeled in vivo with /sup 32/P-labeled cells it was demonstrated that the mobility shift of the 160-kDa protein is due to dephosphorylation. The peptide resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH/sub 2/) is the component of egg jelly which is responsible for inducing the dephosphorylation. The 160/150-kdal sperm membrane protein has been purified to homogeneity by affinity chromatography on concanavalin A-agarose, and identified as sperm guanylate cyclase. The enzymatic activity of the guanylate cyclase is tightly coupled to its phosphorylation state. Resact has been shown to act as a potent chemoattractant for A. punctulata spermatozoa. The chemotactic response is concentration-dependent, is abolished by pretreatment of the spermatozoa with resact, and shows an absolute requirement for external calcium. This work represents the first demonstration of animal sperm chemotaxis in response to a precisely-defined molecule of egg origin. The results established a new, biologically meaningful function for resact, and may implicate sperm guanylate cyclase and cGMP in flagellar function and the chemotactic response.

  18. Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation.

    PubMed

    Bayewitch, M L; Nevo, I; Avidor-Reiss, T; Levy, R; Simonds, W F; Vogel, Z

    2000-04-01

    Prolonged G(i/o) protein-coupled receptor activation has been shown to lead to receptor internalization and receptor desensitization. In addition, it is well established that although acute activation of these receptors leads to inhibition of adenylyl cyclase (AC), long-term activation results in increased AC activity (especially evident on removal of the inhibitory agonist), a phenomenon defined as AC superactivation or sensitization. Herein, we show that chronic exposure to agonists of G(i)-coupled receptors also leads to a decrease in cholate detergent solubility of G protein subunits, and that antagonist treatment after such chronic agonist exposure leads to a time-dependent reversal of the cholate insolubility. With Chinese hamster ovary and COS cells transfected with several G(i/o)-coupled receptors (i.e., mu- and kappa-opioid, and m(4)-muscarinic), we observed that although no overall change occurred in total content of G(alphai)- and beta(1)-subunits, chronic agonist treatment led to a marked reduction in the ability of 1% cholate to solubilize G(betagamma) as well as G(alphai). This solubility shift is exclusively observed with G(alphai), and was not seen with G(alphas). The disappearance and reappearance of G(alphai) and G(betagamma) subunits from and to the detergent-soluble fractions occur with similar time courses as observed for the onset and disappearance of AC superactivation. Lastly, pertussis toxin, which blocks acute and chronic agonist-induced AC inhibition and superactivation, also blocks the shift in detergent solubility. These results suggest a correlation between the solubility shift of the heterotrimeric G(i) protein and the generation of AC superactivation.

  19. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis.

    PubMed

    Tükenmez, Hasan; Magnussen, Helge Magnus; Kovermann, Michael; Byström, Anders; Wolf-Watz, Magnus

    2016-01-01

    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies. PMID:27642758

  20. Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis

    PubMed Central

    Tükenmez, Hasan; Magnussen, Helge Magnus; Kovermann, Michael; Byström, Anders; Wolf-Watz, Magnus

    2016-01-01

    Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies. PMID:27642758

  1. Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide.

    PubMed

    Severina, I S

    1998-07-01

    In this review the molecular mechanisms underlying the antihypertensive and antiaggregatory actions of nitric oxide (NO) are discussed. It has been shown that these effects are directly connected with the activation of soluble guanylate cyclase and the accumulation of cyclic 3;,5;-guanosine monophosphate (cGMP). The mechanism of guanylate cyclase activation by NO is analyzed, especially the role and biological significance of the nitrosyl--heme complex formed as a result of interaction of guanylate cyclase heme with NO and the role of sulfhydryl groups of the enzyme in this process. Using new approaches for studying the antihypertensive and antiaggregatory actions of nitric oxide in combination with the newly obtained data on the regulatory role of guanylate cyclase in the platelet aggregation process, the most important results were obtained regarding the molecular bases providing for a directed search for and creation of new effective antihypertensive and antiaggregatory preparations. In studying the molecular mechanism for directed activation of soluble guanylate cyclase by new NO donors, a series of hitherto unknown enzyme activators generating NO and involved in the regulation of hemostasis and vascular tone were revealed. PMID:9721331

  2. Forskolin activation of an identified peptide-sensitive motoneurone in Aplysia.

    PubMed Central

    Ram, J. L.

    1983-01-01

    Activation of a physiological response by the adenylate cyclase activator, forskolin, has been suggested as a new criterion for testing the role of cyclic AMP. In Aplysia, motoneurone B16, which innervates muscle 15, is activated by the peptide egg-laying hormone (ELH). In high magnesium-low calcium medium, used to block synaptic activity, forskolin produced a similar response to ELH. Forskolin, at a concentration of 100 microM, consistently activated the ELH-sensitive neurone; vehicle produced no response while 30 microM forskolin usually produced lower levels of activity than 100 microM. The data are consistent with cyclic AMP mediation of the ELH response. PMID:6317117

  3. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    PubMed

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field. PMID:27030537

  4. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor.

    PubMed

    Sorrentino, Luca; Calogero, Alessandra Maria; Pandini, Vittorio; Vanoni, Maria Antonietta; Sevrioukova, Irina F; Aliverti, Alessandro

    2015-12-01

    Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide.

  5. Ser⁄ Thr residues at α3⁄β5 loop of Gαs are important in morphine-induced adenylyl cyclase sensitization but not mitogen-activated protein kinase phosphorylation

    PubMed Central

    Seyedabadi, Mohammad; Ostad, Seyed Nasser; Albert, Paul R.; Dehpour, Ahmad R.; Rahimian, Reza; Ghazi-Khansari, Mahmoud; Ghahremani, Mohammad H.

    2015-01-01

    The signaling switch of β2-adrenergic and μ1-opioid receptors from stimulatory G-protein (Gαs) to inhibitory G-protein (Gαi) (and vice versa) influences adenylyl cyclase (AC) and extracellular-regulated kinase (ERK)1 ⁄ 2 activation. Post-translational modifications, including dephosphorylation of Gαs, enhance opioid receptor coupling to Gαs. In the present study, we substituted the Ser ⁄ Thr residues of Gαs at the α3 ⁄ β5 and α4 ⁄ β6 loops aiming to study the role of Gαs lacking Ser ⁄ Thr phosphorylation with respect to AC sensitization and mitogen-activated protein kinase activation. Isoproterenol increased the cAMP concentration (EC50 = 22.8 ± 3.4 μM) in Gαs-transfected S49 cyc– cells but not in nontransfected cells. However, there was no significant difference between the Gαs-wild-type (wt) and mutants. Morphine (10 μM) inhibited AC activity more efficiently in cyc– compared to Gαs-wt introduced cells (P < 0.05); however, we did not find a notable difference between Gαs-wt and mutants. Interestingly, Gαs-wt transfected cells showed more sensitization with respect to AC after chronic morphine compared to nontransfected cells (101 ± 12% versus 34 ± 6%; P < 0.001); μ1-opioid receptor interacted with Gαs, and both co-immunoprecipitated after chronic morphine exposure. Furthermore, mutation of T270A and S272A (P < 0.01), as well as T270A, S272A and S261A (P < 0.05), in α3 ⁄ β5, resulted in a higher level of AC supersensitization. ERK1⁄ 2 phosphorylation was rapidly induced by isoproterenol (by 9.5 ± 2.4-fold) and morphine (22 ± 2.2-fold) in Gαs-transfected cells; mutations of α3 ⁄ β5 and α4 ⁄ β6 did not affect the pattern or extent of mitogen-activated protein kinase activation. The findings of the present study show that Gαs interacts with the μ1-opioid receptor, and the Ser ⁄ Thr mutation to Ala at the α3 ⁄ β5 loop of Gαs enhances morphine-induced AC sensitization. In addition, Gαs was required for

  6. A new small molecule inhibitor of soluble guanylate cyclase

    PubMed Central

    Mota, Filipa; Gane, Paul; Hampden-Smith, Kathryn; Allerston, Charles K.; Garthwaite, John; Selwood, David L.

    2015-01-01

    Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 μM in a SPR assay. PMID:26264842

  7. Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco.

    PubMed

    Hohn, T M; Ohlrogge, J B

    1991-09-01

    The complete coding sequence for the trichodiene synthase gene from Fusarium sporotrichioides was introduced into tobacco (Nicotiana tabacum) under the regulation of the cauliflower mosiac virus 35S promoter. Expression of trichodiene synthase was demonstrated in the leaves of transformed plants. Leaf homogenates incubated with [(3)H]farnesyl pyrophosphate produced trichodiene as a major product. Trichodiene was detected in the leaves of a transformed plant at a level of 5 to 10 nanograms per gram fresh weight. The introduction of a fungal sesquiterpene cyclase gene into tobacco has resulted in the expression of an active enzyme and the accumulation of low levels of its sesquiterpenoid product. PMID:16668409

  8. Overexpression and characterization of lycopene cyclase (CrtY) from marine bacterium Paracoccus haeundaensis.

    PubMed

    Jeong, Tae Hyug; Ji, Keunho; Kim, Young Tae

    2013-02-01

    Lycopene cyclase converts lycopene to beta-carotene by catalyzing the formation of two beta-rings at each end of the linear carotene structure. This reaction takes place as a two-step reaction in which both sides of of the lycopene molecule are cyclized into beta-carotene rings via the monocyclic gamma-carotene as an intermediate. The crtY gene coding for lycopene cyclase from Paracoccus haeundaensis consists of 1,158 base pairs encoding 386 amino acids residues. An expression plasmid containing the crtY gene (pET44a-CrtY) was constructed and expressed in Escherichia coli, and produced a recombinant protein of approximately 43 kDa, corresponding to the molecular mass of lycopene cyclase. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to lycopene cyclase. We also determined the lycopene substrate specificity and NADPH cofactor requirements of the purified protein. The Km values for lycopene and NADPH were 3.5 microM and 2 mM, respectively. The results obtained from this study will provide a wider base of knowledge on the enzyme characterization of lycopene cyclase at the molecular level.

  9. Mutations That Affect Transcription and Cyclic Amp-Crp Regulation of the Adenylate Cyclase Gene (Cya) of Salmonella Typhimurium

    PubMed Central

    Fandl, J. P.; Thorner, L. K.; Artz, S. W.

    1990-01-01

    We studied the expression of the cya promoter(s) in cya-lac fusion strains of Salmonella typhimurium and demonstrated cAMP receptor protein (CRP)-dependent repression by cAMP. Expression of cya was reduced about fourfold in cultures grown in acetate minimal medium as compared to cultures grown in glucose-6-phosphate minimal medium. Expression of cya was also reduced about fourfold by addition of 5 mM cAMP to cultures grown in glucose minimal medium. We constructed in vitro deletion and insertion mutations altering a major cya promoter (P2) and a putative CRP binding site overlapping P2. These mutations were recombined into the chromosome by allele replacement with M13mp::cya recombinant phages and the regulation of the mutant promoters was analyzed. A 4-bp deletion of the CRP binding site and a 4-bp insertion in this site nearly eliminated repression by cAMP. A mutant with the P2 promoter and the CRP binding site both deleted exhibited an 80% reduction in cya expression; the 20% residual expression was insensitive to cAMP repression. This mutant retained a Cya(+) phenotype. Taken together, the results establish that the cya gene is transcribed from multiple promoters one of which, P2, is negatively regulated by the cAMP-CRP complex. Correction for the contribution to transcription by the cAMP-CRP nonregulated cya promoters indicates that the P2 promoter is repressed at least eightfold by cAMP-CRP. PMID:2168849

  10. The crystal structure of human adenylate kinase 6: An adenylate kinase localized to the cell nucleus.

    PubMed

    Ren, Hui; Wang, Liya; Bennett, Matthew; Liang, Yuhe; Zheng, Xiaofeng; Lu, Fei; Li, Lanfen; Nan, Jie; Luo, Ming; Eriksson, Staffan; Zhang, Chuanmao; Su, Xiao-Dong

    2005-01-11

    Adenylate kinases (AKs) play important roles in nucleotide metabolism in all organisms and in cellular energetics by means of phosphotransfer networks in eukaryotes. The crystal structure of a human AK named AK6 was determined by in-house sulfur single-wavelength anomalous dispersion phasing methods and refined to 2.0-A resolution with a free R factor of 21.8%. Sequence analyses revealed that human AK6 belongs to a distinct subfamily of AKs present in all eukaryotic organisms sequenced so far. Enzymatic assays show that human AK6 has properties similar with other AKs, particularly with AK5. Fluorescence microscopy showed that human AK6 is localized predominantly to the nucleus of HeLa cells. The identification of a nuclear-localized AK sheds light on nucleotide metabolism in the nucleus and the energetic communication between mitochondria and nucleus by means of phosphotransfer networks.

  11. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase

    PubMed Central

    Purohit, Rahul; Weichsel, Andrzej; Montfort, William R

    2013-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ∼150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction. PMID:23934793

  12. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.

    PubMed

    Zeiders, J L; Seidler, F J; Slotkin, T A

    1997-02-01

    Fetal and neonatal tissues are resistant to catecholamine-induced desensitization of essential physiological responses. We examined the mechanisms underlying the ontogeny of desensitization in neonatal rat heart for the beta-adrenergic receptor/adenylyl cyclase signaling cascade. Animals of different ages received isoproterenol daily or 4 days and cardiac membrane preparations were evaluated on the 5th day (6, 15, 25 days old and adults). Measurements were made of basal activity, activity stimulated by two agonists (isoproterenol or glucagon) that operate at different receptors but that share Gs as the transduction intermediate, or by forskolin-Mn' to assess total catalytic capacity of the cyclase subunit; we also assessed inhibition of activity by carbachol which acts via muscarinic cholinergic receptors and G. Adult rats exhibited robust desensitization of the adenylyl cyclase response but the effect was heterologous in that equivalent loss of activity was seen for basal, isoproterenol- and glucagon-stimulated activity forskolin-Mn(2+)-stimulated activity was also decreased. Two factors contributed to desensitization; generalized reduction in membrane protein concentrations caused by cell enlargement (reduced surface-to-volume ratio), and specific interference with the G-protein component that couples receptors to the cyclase. Thus, after adjustment for changes in membrane protein, the desensitization of the forskolin-Mn2, response was no longer evident, but the effects on the other measures were still present. In addition, isoproterenol treatment produced crosstalk with the carbachol/Gi signaling pathway, with significant reductions in the ability of carbachol to inhibit adenylyl cyclase activity. Heterologous desensitization by isoproterenol was also present in 15 and 25 day old rats, but involved only selective components of the effects seen in adults. At 25 days, uncoupling of signals operating through Gs and Gi was obtained without a reduction in forskolin

  13. Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine.

    PubMed

    Katsuki, S; Arnold, W; Mittal, C; Murad, F

    1977-02-01

    Sodium nitroprusside, nitroglycerin, sodium azide and hydroxylamine increased guanylate cyclase activity in particulate and/or soluble preparations from various tissues. While sodium nitroprusside increased guanylate cyclase activity in most of the preparations examined, the effects of sodium azide, hydroxylamine and nitroglycerin were tissue specific. Nitroglycerin and hydroxylamine were also less potent. Neither the protein activator factor nor catalase which is required for sodium azide effects altered the stimulatory effect of sodium nitroprusside. In the presence of sodium azide, sodium nitroprusside or hydroxylamine, magnesium ion was as effective as manganese ion as a sole cation cofactor for guanylate cyclase. With soluble guanylate cyclase from rat liver and bovine tracheal smooth muscle the concentrations of sodium nitroprusside that gave half-maximal stimulation with Mn2+ were 0.1 mM and 0.01 mM, respectively. Effective concentrations were slightly less with Mg2+ as a sole cation cofactor. The ability of these agents to increase cyclic GMP levels in intact tissues is probably due to their effects on guanylate cyclase activity. While the precise mechanism of guanylate cyclase activation by these agents is not known, activation may be due to the formation of nitric oxide or another reactive material since nitric oxide also increased guanylate cyclase activity. PMID:14978

  14. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress

    PubMed Central

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-01-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages. PMID:22379133

  15. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress.

    PubMed

    Servant, Géraldine; Pinson, Benoit; Tchalikian-Cosson, Aurélie; Coulpier, Fanny; Lemoine, Sophie; Pennetier, Carole; Bridier-Nahmias, Antoine; Todeschini, Anne Laure; Fayol, Hélène; Daignan-Fornier, Bertrand; Lesage, Pascale

    2012-07-01

    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages. PMID:22379133

  16. Evaluation of Cytotoxicity and Hypoxic Effect of Nitroimidazole Embedded Nanoparticles.

    PubMed

    Sharma, Rakesh; Kwon, Soonjo

    2016-05-01

    Adenylate cyclase is a key intracellular enzyme involved in energy imbalance leading to tumor hypoxia and cytotoxicity. In this study, adenylate cyclase activities in isolated hepatocytes and Kupffer cells were compared in the presence of several metabolic stimulators. In cultured hepatocyte cells, adenylate cyclase was stimulated by guanylyl imidotriphosphate (GITP), guanosine triphosphate (GTP), progesterone and nitroimidazole embedded nanoparticle (NNP) effectors, while prostaglandin E2 and F2α were used as effectors in cultured Kupffer cells. The results showed that NNPs decreased adenylate cyclase specific activity in a dose-dependent manner after preincubation of hepatocytes with NNPs. The NNPs stimulated adenylate cyclase activities in hepatocytes were evaluated based on measurement of cyclic adenosine monophosphate (cAMP). The stimulatory effects of NNPs on adenylate cyclase were independent of the presence of GTP and may have been due to a direct effect on the catalytic subunit of adenylate cyclase. In addition, basal cAMP generation in hepatocyte cells was efficiently suppressed by the NNPs. In conclusion, NNPs exerted direct effects on the catalytic subunit of the adenylate cyclase system, and adenylate cyclase was hormone sensitive in liver cells. PMID:27483789

  17. Structural analysis of an oxygen-regulated diguanylate cyclase.

    PubMed

    Tarnawski, Miroslaw; Barends, Thomas R M; Schlichting, Ilme

    2015-11-01

    Cyclic di-GMP is a bacterial second messenger that is involved in switching between motile and sessile lifestyles. Given the medical importance of biofilm formation, there has been increasing interest in understanding the synthesis and degradation of cyclic di-GMPs and their regulation in various bacterial pathogens. Environmental cues are detected by sensing domains coupled to GGDEF and EAL or HD-GYP domains that have diguanylate cyclase and phosphodiesterase activities, respectively, producing and degrading cyclic di-GMP. The Escherichia coli protein DosC (also known as YddV) consists of an oxygen-sensing domain belonging to the class of globin sensors that is coupled to a C-terminal GGDEF domain via a previously uncharacterized middle domain. DosC is one of the most strongly expressed GGDEF proteins in E. coli, but to date structural information on this and related proteins is scarce. Here, the high-resolution structural characterization of the oxygen-sensing globin domain, the middle domain and the catalytic GGDEF domain in apo and substrate-bound forms is described. The structural changes between the iron(III) and iron(II) forms of the sensor globin domain suggest a mechanism for oxygen-dependent regulation. The structural information on the individual domains is combined into a model of the dimeric DosC holoprotein. These findings have direct implications for the oxygen-dependent regulation of the activity of the cyclase domain.

  18. Diterpene Cyclases and the Nature of the Isoprene Fold

    PubMed Central

    Cao, Rong; Zhang, Yonghui; Mann, Francis M.; Huang, Cancan; Mukkamala, Dushyant; Hudock, Michael P.; Mead, Matthew; Prisic, Sladjana; Wang, Ke; Lin, Fu-Yang; Chang, Ting-Kai; Peters, Reuben; Oldfield, Eric

    2013-01-01

    The structures and mechanism of action of many terpene cyclases are known, but there are no structures of diterpene cyclases. Here, we propose structural models based on bioinformatics, site-directed mutagenesis, domain swapping, enzyme inhibition and spectroscopy that help explain the nature of diterpene cyclase structure, function, and evolution. Bacterial diterpene cyclases contain ∼20 α-helices and the same conserved “QW” and DxDD motifs as in triterpene cyclases, indicating the presence of a βγ barrel structure. Plant diterpene cyclases have a similar catalytic motif and βγ-domain structure together with a third, α-domain, forming an αβγ structure, and in H+-initiated cyclases, there is an EDxxD-like Mg2+/diphosphate binding motif located in the γ-domain. The results support a new view of terpene cyclase structure and function and suggest evolution from ancient (βγ) bacterial triterpene cyclases to (βγ) bacterial and thence to (αβγ) plant diterpene cyclases. PMID:20602361

  19. Adenylate Energy Pool and Energy Charge in Maturing Rape Seeds 1

    PubMed Central

    Ching, Te May; Crane, Jim M.; Stamp, David L.

    1974-01-01

    A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number. PMID:16658964

  20. Pseudomonas aeruginosa Exotoxin Y Is a Promiscuous Cyclase That Increases Endothelial Tau Phosphorylation and Permeability*

    PubMed Central

    Ochoa, Cristhiaan D.; Alexeyev, Mikhail; Pastukh, Viktoriya; Balczon, Ron; Stevens, Troy

    2012-01-01

    Exotoxin Y (ExoY) is a type III secretion system effector found in ∼ 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases. PMID:22637478

  1. Membrane guanylyl cyclase receptors: an update

    PubMed Central

    Garbers, David L.; Chrisman, Ted D.; Wiegn, Phi; Katafuchi, Takeshi; Albanesi, Joseph P.; Bielinski, Vincent; Barylko, Barbara; Redfield, Margaret M.; Burnett, John C.

    2007-01-01

    Recent studies have demonstrated key roles for several membrane guanylyl cyclase receptors in the regulation of cell hyperplasia, hypertrophy, migration and extracellular matrix production, all of which having an impact on clinically relevant diseases, including tissue remodeling after injury. Additionally, cell differentiation, and even tumor progression, can be profoundly influenced by one or more of these receptors. Some of these receptors also mediate important communication between the heart and intestine, and the kidney to regulate blood volume and Na+ balance. PMID:16815030

  2. Cyclic AMP level of lymphocytes in patients with systemic lupus erythematosus and its relation to disease activity.

    PubMed

    Phi, N C; Takáts, A; Binh, V H; Vien, C V; González-Cabello, R; Gergely, P

    1989-11-01

    The basal and stimulated intracellular cyclic AMP (cAMP) levels of peripheral blood mononuclear cells (PBMC) of 16 control subjects and 14 patients with systemic lupus erythematosus (SLE), all fulfilling the ARA criteria, were studied. No significant difference in basal cAMP level was observed between SLE patients and controls. SLE lymphocytes (both active and inactive) elicited a diminished response to aminophylline and prostaglandin E2 (PGE2). No correlation was seen between disease activity and either baseline cAMP levels or response to these stimulators. We suggest an intrinsic (not disease activity-related) impairment of the adenylate cyclase-dependent regulatory mechanism in the PBMC of SLE patients, which may result in a defective IL-2 production and IL-2 dependent biological functions. PMID:2558072

  3. [A role of some intracellular signaling cascades in planarian regeneration activated under irradiation with low-temperature argon plasma].

    PubMed

    Ermakov, A M; Ermakova, O N; Maevskiĭ, E I

    2014-01-01

    Using inhibitory analysis the role of some intracellular signaling pathways in activation of planarian regeneration under the influence of low-temperature argon plasma (LTAP) has been investigated. Inactivation of specific inhibitors of intracellular signaling enzymes such as the receptor tyrosine kinase (EGFR), TGF β receptor, calmodulin, adenylate cyclase, phospholipase A2, phospholipase C, cyclin-dependent protein kinase, JAK2-protein kinase, JNK-protein kinase MEK-protein kinase led to inhibition of the head growth during its regeneration in planarians. Pretreatment with LTAP irradiation provided no inhibitory action of some cascades regulating proliferation. However, the inhibitors of the key regulators of regeneration: TGF β receptor, calmodulin and MEK-protein kinase completely suppressed the activating effect of plasma. Thus, by the example of regenerating planarians it is shown, that biological activity of low-temperature argon plasma LTAP is caused by modulation of a plurality of cellular signaling systems.

  4. Prostaglandin E2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages.

    PubMed

    Sokolowska, Milena; Chen, Li-Yuan; Liu, Yueqin; Martinez-Anton, Asuncion; Qi, Hai-Yan; Logun, Carolea; Alsaaty, Sara; Park, Yong Hwan; Kastner, Daniel L; Chae, Jae Jin; Shelhamer, James H

    2015-06-01

    PGE2 is a potent lipid mediator involved in maintaining homeostasis but also promotion of acute inflammation or immune suppression in chronic inflammation and cancer. Nucleotide-binding domain, leucine-rich repeat-containing protein (NLR)P3 inflammasome plays an important role in host defense. Uncontrolled activation of the NLRP3 inflammasome, owing to mutations in the NLRP3 gene, causes cryopyrin-associated periodic syndromes. In this study, we showed that NLRP3 inflammasome activation is inhibited by PGE2 in human primary monocyte-derived macrophages. This effect was mediated through PGE2 receptor subtype 4 (EP4) and an increase in intracellular cAMP, independently of protein kinase A or exchange protein directly activated by cAMP. A specific agonist of EP4 mimicked, whereas its antagonist or EP4 knockdown reversed, PGE2-mediated NLRP3 inhibition. PGE2 caused an increase in intracellular cAMP. Blockade of adenylate cyclase by its inhibitor reversed PGE2-mediated NLRP3 inhibition. Increase of intracellular cAMP by an activator of adenylate cyclase or an analog of cAMP, or a blockade of cAMP degradation by phosphodiesterase inhibitor decreased NLRP3 activation. Protein kinase A or exchange protein directly activated by cAMP agonists did not mimic, and their antagonists did not reverse, PGE2-mediated NLRP3 inhibition. Additionally, constitutive IL-1β secretion from LPS-primed PBMCs of cryopyrin-associated periodic fever syndromes patients was substantially reduced by high doses of PGE2. Moreover, blocking cytosolic phospholipase A2α by its inhibitor or small interfering RNA or inhibiting cyclooxygenase 2, resulting in inhibition of endogenous PGE2 production, caused an increase in NLRP3 inflammasome activation. Our results suggest that PGE2 might play a role in maintaining homeostasis during the resolution phase of inflammation and might serve as an autocrine and paracrine regulator.

  5. Upregulation of cAMP-specific PDE-4 activity following ligation of the TCR complex on thymocytes is blocked by selective inhibitors of protein kinase C and tyrosyl kinases.

    PubMed

    Michie, A M; Rena, G; Harnett, M M; Houslay, M D

    1998-01-01

    We have previously shown that the major cAMP phosphodiesterase (PDE) isoforms present in murine thymocytes are the cGMP-stimulated PDE activity (PDE-2) and the cAMP-specific PDE activity (PDE-4), and that these isoforms are differentially regulated following ligation of the TCR (Michie, A.M., Lobban, M. D., Mueller, T., Harnett, M. M., and Houslay, M.D. [1996] Cell. Signalling 8, 97-110). We show here that the anti-CD3-stimulated elevation in PDE-4 activity in murine thymocytes is dependent on protein tyrosine kinase and protein kinase C (PKC)-mediated signals as the TCR-coupled increase in PDE-4 activity can be abrogated by both the tyrosine kinase inhibitor, genistein, and the PKC selective inhibitors chelerythrine and staurosporine. Moreover, the PKC-activating phorbol ester, phorbol-12-myristate, 13-acetate (PMA) caused an increase in PDE-4 activity, similar to that observed in cells challenged with anti-CD3 monoclonal antibodies and which was not additive with cochallenge using anti-CD3 antibodies. Both the PMA- and the anti-CD3 antibody-mediated increases in PDE-4 activity were blocked by treatment with either cycloheximide or actinomycin D. Despite the upregulation of PDE-4 activity consequent to TCR ligation, intracellular cAMP levels increased on challenge of thymocytes with anti-CD3 antibody, indicating that adenylate cyclase activity was also increased by TCR ligation. It is suggested that the anti-CD3-mediated increase in PDE-4 activity was owing to a rapid PKC-dependent induction of PDE-4 activity following crosslinking of the TCR complex. This identifies "crosstalk" occurring between the PKA and PKC signaling pathways initiated by ligation of the antigen receptor in murine thymocytes. That both adenylate cyclase and PDE-4 activities were increased may indicate the presence of compartmentalized cAMP responses present in these cells. PMID:9515165

  6. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cAMP in human macrophages

    PubMed Central

    Liu, Yueqin; Martinez-Anton, Asuncion; Qi, Hai-Yan; Logun, Carolea; Alsaaty, Sara; Park, Yong Hwan; Kastner, Daniel L.; Chae, Jae Jin; Shelhamer, James H.

    2015-01-01

    Prostaglandin E2 (PGE2) is a potent lipid mediator involved in maintaining homeostasis but also promotion of acute inflammation or immune suppression in chronic inflammation and cancer. NLRP3 inflammasome plays an important role in host defense. Uncontrolled activation of NLRP3 inflammasome, due to mutations in the NLRP3 gene causes cryopyrin-associated periodic syndromes (CAPS). Here, we showed that NLRP3 inflammasome activation is inhibited by PGE2 in human primary monocyte-derived macrophages. This effect was mediated through prostaglandin E receptor 4 (EP4) and an increase in intracellular cAMP, independently of protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac). A specific agonist of EP4 mimicked, while its antagonist or EP4 knockdown reversed PGE2-mediated NLRP3 inhibition. PGE2 caused an increase in intracellular cAMP. Blockade of adenylate cyclase by its inhibitor reversed PGE2-mediated NLRP3 inhibition. Increase of intracellular cAMP by an activator of adenylate cyclase or an analog of cAMP, or a blockade of cAMP degradation by phosphodiesterase inhibitor decreased NLRP3 activation. PKA or Epac agonists did not mimic and their antagonists did not reverse PGE2-mediated NLRP3 inhibition. In addition, constitutive IL-1β secretion from LPS-primed PBMCs of CAPS patients was substantially reduced by high doses of PGE2. Moreover, blocking cytosolic phospholipase A2α by its inhibitor or siRNA or inhibiting cyclooxygenase 2, resulting in inhibition of endogenous PGE2 production, caused an increase in NLRP3 inflammasome activation. Our results suggest that PGE2 might play a role in maintaining homeostasis during the resolution phase of inflammation and might serve as an autocrine and paracrine regulator. PMID:25917098

  7. RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis.

    PubMed

    Loc'h, Jérôme; Blaud, Magali; Réty, Stéphane; Lebaron, Simon; Deschamps, Patrick; Bareille, Joseph; Jombart, Julie; Robert-Paganin, Julien; Delbos, Lila; Chardon, Florian; Zhang, Elodie; Charenton, Clément; Tollervey, David; Leulliot, Nicolas

    2014-05-01

    During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53-MDM2 pathway. This work presents the functional and structural characterization of the Fap7-Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation.

  8. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    SciTech Connect

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  9. Aminoacyl transfer from an adenylate anhydride to polyribonucleotides

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Lacey, J. C., Jr.

    1975-01-01

    Imidazole catalysis of phenylalanyl transfer from phenylalanine adenylate to hydroxyl groups of homopolyribonucleotides is studied as a possible chemical model of biochemical aminoacylation of transfer RNA (tRNA). The effect of pH on imidazole-catalyzed transfer of phenylalanyl residues to poly(U) and poly(A) double helix strands, the number of peptide linkages and their lability to base and neutral hydroxylamine, and the nature of adenylate condensation products are investigated. The chemical model entertained exhibits a constraint by not acylating the hydroxyl groups of polyribonucleotides in a double helix. The constraint is consistent with selective biochemical aminoacylation at the tRNA terminus. Interest in imidazole as a model of histidine residue in protoenzymes participating in prebiotic aminoacyl transfer to polyribonucleotides, and in rendering the tRNA a more efficient adaptor, is indicated.

  10. Solid phase synthesis of somatostatin-28 II. A new biologically active octacosapeptide from anglerfish pancreatic islets.

    PubMed

    Nicolas, P; Delfour, A; Boussetta, H; Morel, A; Rholam, M; Cohen, P

    1986-10-30

    Somatostatin-28 II, an octacosapeptide recently isolated from anglerfish pancreatic islets, was synthetized by the solid phase method along with its somatostatin-14 II and somatostatin-28 II-(1-12) corresponding domains. Homogeneity of the synthetic peptides was demonstrated by analytical RP-HPLC, thin layer chromatography and electrophoresis. The peptides were further characterized by amino acids analysis, fast atomic bombarding mass spectrometry and/or 252Cf plasma desorption mass spectrometry. Synthetic somatostatin-28 II and somatostatin-14 II displace equally well the potent agonist (Tyr0,D-Trp8)-somatostatin-14 from its specific binding sites on anterior pituitary cells membranes. Both peptides activate adenylate cyclase from dispersed rat anterior pituitary cells. PMID:2877662

  11. Amarogentin, a Secoiridoid Glycoside, Abrogates Platelet Activation through PLCγ2-PKC and MAPK Pathways

    PubMed Central

    Yen, Ting-Lin; Lu, Wan-Jung; Lien, Li-Ming; Thomas, Philip Aloysius; Lee, Tzu-Yin; Chiu, Hou-Chang; Sheu, Joen-Rong

    2014-01-01

    Amarogentin, an active principle of Gentiana lutea, possess antitumorigenic, antidiabetic, and antioxidative properties. Activation of platelets is associated with intravascular thrombosis and cardiovascular diseases. The present study examined the effects of amarogentin on platelet activation. Amarogentin treatment (15~60 μM) inhibited platelet aggregation induced by collagen, but not thrombin, arachidonic acid, and U46619. Amarogentin inhibited collagen-induced phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs). It also inhibits in vivo thrombus formation in mice. In addition, neither the guanylate cyclase inhibitor ODQ nor the adenylate cyclase inhibitor SQ22536 affected the amarogentin-mediated inhibition of platelet aggregation, which suggests that amarogentin does not regulate the levels of cyclic AMP and cyclic GMP. In conclusion, amarogentin prevents platelet activation through the inhibition of PLCγ2-PKC cascade and MAPK pathway. Our findings suggest that amarogentin may offer therapeutic potential for preventing or treating thromboembolic disorders. PMID:24868545

  12. Comparative analysis of plant lycopene cyclases.

    PubMed

    Koc, Ibrahim; Filiz, Ertugrul; Tombuloglu, Huseyin

    2015-10-01

    Carotenoids are essential isoprenoid pigments produced by plants, algae, fungi and bacteria. Lycopene cyclase (LYC) commonly cyclize carotenoids, which is an important branching step in the carotenogenesis, at one or both end of the backbone. Plants have two types of LYC (β-LCY and ϵ-LCY). In this study, plant LYCs were analyzed. Based on domain analysis, all LYCs accommodate lycopene cyclase domain (Pf05834). Furthermore, motif analysis indicated that motifs were conserved among the plants. On the basis of phylogenetic analysis, β-LCYs and ϵ-LCYs were classified in β and ϵ groups. Monocot and dicot plants separated from each other in the phylogenetic tree. Subsequently, Oryza sativa Japonica Group and Zea mays of LYCs as monocot plants and Vitis vinifera and Solanum lycopersicum of LYCs as dicot plants were analyzed. According to nucleotide diversity analysis of β-LCY and ϵ-LCY genes, nucleotide diversities were found to be π: 0.30 and π: 0.25, respectively. The result highlighted β-LCY genes showed higher nucleotide diversity than ϵ-LCY genes. LYCs interacting genes and their co-expression partners were also predicted using String server. The obtained data suggested the importance of LYCs in carotenoid metabolism. 3D modeling revealed that depicted structures were similar in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs. Likewise, the predicted binding sites were highly similar between O. sativa, Z mays, S. lycopersicum, and V. vinifera LCYs. Most importantly, analysis elucidated the V/IXGXGXXGXXXA motif for both type of LYC (β-LCY and ϵ-LCY). This motif related to Rossmann fold domain and probably provides a flat platform for binding of FAD in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs with conserved structure. In addition to lycopene cyclase domain, the V/IXGXGXXGXXXA motif can be used for exploring LYCs proteins and to annotate the function of unknown proteins containing lycopene cyclase

  13. Comparative analysis of plant lycopene cyclases.

    PubMed

    Koc, Ibrahim; Filiz, Ertugrul; Tombuloglu, Huseyin

    2015-10-01

    Carotenoids are essential isoprenoid pigments produced by plants, algae, fungi and bacteria. Lycopene cyclase (LYC) commonly cyclize carotenoids, which is an important branching step in the carotenogenesis, at one or both end of the backbone. Plants have two types of LYC (β-LCY and ϵ-LCY). In this study, plant LYCs were analyzed. Based on domain analysis, all LYCs accommodate lycopene cyclase domain (Pf05834). Furthermore, motif analysis indicated that motifs were conserved among the plants. On the basis of phylogenetic analysis, β-LCYs and ϵ-LCYs were classified in β and ϵ groups. Monocot and dicot plants separated from each other in the phylogenetic tree. Subsequently, Oryza sativa Japonica Group and Zea mays of LYCs as monocot plants and Vitis vinifera and Solanum lycopersicum of LYCs as dicot plants were analyzed. According to nucleotide diversity analysis of β-LCY and ϵ-LCY genes, nucleotide diversities were found to be π: 0.30 and π: 0.25, respectively. The result highlighted β-LCY genes showed higher nucleotide diversity than ϵ-LCY genes. LYCs interacting genes and their co-expression partners were also predicted using String server. The obtained data suggested the importance of LYCs in carotenoid metabolism. 3D modeling revealed that depicted structures were similar in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs. Likewise, the predicted binding sites were highly similar between O. sativa, Z mays, S. lycopersicum, and V. vinifera LCYs. Most importantly, analysis elucidated the V/IXGXGXXGXXXA motif for both type of LYC (β-LCY and ϵ-LCY). This motif related to Rossmann fold domain and probably provides a flat platform for binding of FAD in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs with conserved structure. In addition to lycopene cyclase domain, the V/IXGXGXXGXXXA motif can be used for exploring LYCs proteins and to annotate the function of unknown proteins containing lycopene cyclase

  14. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    PubMed

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  15. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    SciTech Connect

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt; Pfizer

    2010-09-17

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  16. The triterpene cyclase protein family: a systematic analysis.

    PubMed

    Racolta, Silvia; Juhl, P Benjamin; Sirim, Demet; Pleiss, Jürgen

    2012-08-01

    Triterpene cyclases catalyze a broad range of cyclization reactions to form polycyclic triterpenes. Triterpene cyclases that convert squalene to hopene are named squalene-hopene cyclases (SHC) and triterpene cyclases that convert oxidosqualene are named oxidosqualene cyclases (OSC). Many sequences have been published, but there is only one structure available for each of SHCs and OSCs. Although they catalyze a similar reaction, the sequence similarity between SHCs and OSCs is low. A family classification based on phylogenetic analysis revealed 20 homologous families which are grouped into two superfamilies, SHCs and OSCs. Based on this family assignment, the Triterpene Cyclase Engineering Database (TTCED) was established. It integrates available information on sequence and structure of 639 triterpene cyclases as well as on structurally and functionally relevant amino acids. Family specific multiple sequence alignments were generated to identify the functionally relevant residues. Based on sequence alignments, conserved residues in SHCs and OSCs were analyzed and compared to experimentally confirmed mutational data. Functional schematic models of the central cavities of OSCs and SHCs were derived from structure comparison and sequence conservation analysis. These models demonstrate the high similarity of the substrate binding cavity of SHCs and OSCs and the equivalences of the respective residues. The TTCED is a novel source for comprehensive information on the triterpene cyclase family, including a compilation of previously described mutational data. The schematic models present the conservation analysis in a readily available fashion and facilitate the correlation of residues to a specific function or substrate interaction.

  17. Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer's disease.

    PubMed

    Taylor, D L; Diemel, L T; Cuzner, M L; Pocock, J M

    2002-09-01

    Regulation of microglial reactivity and neurotoxicity is critical for neuroprotection in neurodegenerative diseases. Here we report that microglia possess functional group II metabotropic glutamate receptors, expressing mRNA and receptor protein for mGlu2 and mGlu3, negatively coupled to adenylate cyclase. Two different agonists of these receptors were able to induce a neurotoxic microglial phenotype which was attenuated by a specific antagonist. Chromogranin A, a secretory peptide expressed in amyloid plaques in Alzheimer's disease, activates microglia to a reactive neurotoxic phenotype. Chromogranin A-induced microglial activation and subsequent neurotoxicity may also involve an underlying stimulation of group II metabotropic glutamate receptors since their inhibition reduced chromogranin A-induced microglial reactivity and neurotoxicity. These results show that selective inhibition of microglial group II metabotropic glutamate receptors has a positive impact on neuronal survival, and may prove a therapeutic target in Alzheimer's disease. PMID:12358765

  18. G-protein-mediated activation of turkey erythrocyte phospholipase C by beta-adrenergic and P2y-purinergic receptors.

    PubMed Central

    Vaziri, C; Downes, C P

    1992-01-01

    Isoprenaline, previously known only to stimulate adenylate cyclase via the stimulatory G-protein, Gs, activates turkey erythrocyte ghost phospholipase C (PLC) in a dose-dependent manner when GTP or guanosine 5'-[gamma-thio]triphosphate (GTP[S]) is present. The effect is specific in that it is abolished by beta-adrenergic-receptor antagonists. Stimulation of adenosine receptors, which also couple to adenylate cyclase via Gs in turkey erythrocytes, does not activate PLC, indicating that the stimulation observed in the presence of isoprenaline is not due to Gs activation. Furthermore, the stimulation seen is independent of cyclic AMP production. Purified turkey erythrocyte PLC is activated in an adenosine 5'-[beta-thio]diphosphate (ADP[S]; a P2y-purinergic-receptor agonist)- or isoprenaline-regulated manner when reconstituted with turkey erythrocyte ghosts, demonstrating that a single species of PLC effector enzyme can be regulated by both the purinergic and the beta-adrenergic receptor populations present in turkey erythrocyte membranes. Pretreatment of intact turkey erythrocytes with the P2y agonist ADP[S] causes decreased PLC responsiveness of subsequent ghost preparations to ADP[S] stimulation, although responses to isoprenaline are unaffected (homologous desensitization). In contrast, pretreatment of intact erythrocytes with isoprenaline results in heterologous desensitization of both the P2y and the beta-adrenergic receptors. These effects occur at the level of receptor-G-protein coupling, since PLC stimulation by GTP[S] (which directly activates G-proteins) in the absence of agonists is unaffected. PMID:1352448

  19. Control of the Diadenylate Cyclase CdaS in Bacillus subtilis

    PubMed Central

    Mehne, Felix M. P.; Schröder-Tittmann, Kathrin; Eijlander, Robyn T.; Herzberg, Christina; Hewitt, Lorraine; Kaever, Volkhard; Lewis, Richard J.; Kuipers, Oscar P.; Tittmann, Kai; Stülke, Jörg

    2014-01-01

    The Gram-positive bacterium Bacillus subtilis encodes three diadenylate cyclases that synthesize the essential signaling nucleotide cyclic di-AMP. The activities of the vegetative enzymes DisA and CdaA are controlled by protein-protein interactions with their conserved partner proteins. Here, we have analyzed the regulation of the unique sporulation-specific diadenylate cyclase CdaS. Very low expression of CdaS as the single diadenylate cyclase resulted in the appearance of spontaneous suppressor mutations. Several of these mutations in the cdaS gene affected the N-terminal domain of CdaS. The corresponding CdaS mutant proteins exhibited a significantly increased enzymatic activity. The N-terminal domain of CdaS consists of two α-helices and is attached to the C-terminal catalytically active diadenylate cyclase (DAC) domain. Deletion of the first or both helices resulted also in strongly increased activity indicating that the N-terminal domain serves to limit the enzyme activity of the DAC domain. The structure of YojJ, a protein highly similar to CdaS, indicates that the protein forms hexamers that are incompatible with enzymatic activity of the DAC domains. In contrast, the mutations and the deletions of the N-terminal domain result in conformational changes that lead to highly increased enzymatic activity. Although the full-length CdaS protein was found to form hexamers, a truncated version with a deletion of the first N-terminal helix formed dimers with high enzyme activity. To assess the role of CdaS in sporulation, we assayed the germination of wild type and cdaS mutant spores. The results indicate that cyclic di-AMP formed by CdaS is required for efficient germination. PMID:24939848

  20. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Munakata, K.; Murakami, Y.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was applied twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.

  1. Soluble guanylate cyclase as a novel treatment target for osteoporosis.

    PubMed

    Joshua, Jisha; Schwaerzer, Gerburg K; Kalyanaraman, Hema; Cory, Esther; Sah, Robert L; Li, Mofei; Vaida, Florin; Boss, Gerry R; Pilz, Renate B

    2014-12-01

    Osteoporosis is a major health problem leading to fractures that cause substantial morbidity and mortality. Current osteoporosis therapies have significant drawbacks, creating a need for novel bone-anabolic agents. We previously showed that the nitric oxide/cyclic GMP (cGMP)/protein kinase G pathway mediates some of the anabolic effects of estrogens and mechanical stimulation in osteoblasts and osteocytes, leading us to hypothesize that cGMP-elevating agents may have bone-protective effects. We tested cinaciguat, a prototype of a novel class of soluble guanylate cyclase activators, in a mouse model of estrogen deficiency-induced osteoporosis. Compared with sham-operated mice, ovariectomized mice had lower serum cGMP concentrations, which were largely restored to normal by treatment with cinaciguat or low-dose 17β-estradiol. Microcomputed tomography of tibiae showed that cinaciguat significantly improved trabecular bone microarchitecture in ovariectomized animals, with effect sizes similar to those obtained with estrogen replacement therapy. Cinaciguat reversed ovariectomy-induced osteocyte apoptosis as efficiently as estradiol and enhanced bone formation parameters in vivo, consistent with in vitro effects on osteoblast proliferation, differentiation, and survival. Compared with 17β-estradiol, which completely reversed the ovariectomy-induced increase in osteoclast number, cinaciguat had little effect on osteoclasts. Direct guanylate cyclase stimulators have been extremely well tolerated in clinical trials of cardiovascular diseases, and our findings provide proof-of-concept for this new class of drugs as a novel, anabolic treatment strategy for postmenopausal osteoporosis, confirming an important role of nitric oxide/cGMP/protein kinase G signaling in bone. PMID:25188528

  2. Tetrahydrobiopterin protects soluble guanylate cyclase against oxidative inactivation.

    PubMed

    Schmidt, Kurt; Neubauer, Andrea; Kolesnik, Bernd; Stasch, Johannes-Peter; Werner, Ernst R; Gorren, Antonius C F; Mayer, Bernd

    2012-09-01

    Tetrahydrobiopterin (BH4) is a major endogenous vasoprotective agent that improves endothelial function by increasing nitric oxide (NO) synthesis and scavenging of superoxide and peroxynitrite. Therefore, administration of BH4 is considered a promising therapy for cardiovascular diseases associated with endothelial dysfunction and oxidative stress. Here we report on a novel function of BH4 that might contribute to the beneficial vascular effects of the pteridine. Treatment of cultured porcine aortic endothelial cells with nitroglycerin (GTN) or 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) resulted in heme oxidation of soluble guanylate cyclase (sGC), as evident from diminished NO-induced cGMP accumulation that was paralleled by increased cGMP response to a heme- and NO-independent activator of soluble guanylate cyclase [4-([(4-carboxybutyl)[2-(5-fluoro-2-([4'-(trifluoromethyl)biphenyl-4-yl]methoxy)phenyl)ethyl]amino]methyl)benzoic acid (BAY 60-2770)]. Whereas scavenging of superoxide and/or peroxynitrite with superoxide dismutase, tiron, Mn(III)tetrakis(4-benzoic acid)porphyrin, and urate had no protective effects, supplementation of the cells with BH4, either by application of BH4 directly or of its precursors dihydrobiopterin or sepiapterin, completely prevented the inhibition of NO-induced cGMP accumulation by GTN and ODQ. Tetrahydroneopterin had the same effect, and virtually identical results were obtained with RFL-6 fibroblasts, suggesting that our observation reflects a general feature of tetrahydropteridines that is unrelated to NO synthase function and not limited to endothelial cells. Protection of sGC against oxidative inactivation may contribute to the known beneficial effects of BH4 in cardiovascular disorders associated with oxidative stress. PMID:22648973

  3. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    PubMed Central

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  4. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    PubMed

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  5. Interaction of GCAP1 with retinal guanylyl cyclase and calcium: sensitivity to fatty acylation

    PubMed Central

    Peshenko, Igor V.; Olshevskaya, Elena V.; Dizhoor, Alexander M.

    2012-01-01

    Guanylyl cyclase activating proteins (GCAPs) are calcium/magnesium binding proteins within neuronal calcium sensor proteins group (NCS) of the EF-hand proteins superfamily. GCAPs activate retinal guanylyl cyclase (RetGC) in vertebrate photoreceptors in response to light-dependent fall of the intracellular free Ca2+ concentrations. GCAPs consist of four EF-hand domains and contain N-terminal fatty acylated glycine, which in GCAP1 is required for the normal activation of RetGC. We analyzed the effects of a substitution prohibiting N-myristoylation (Gly2 → Ala) on the ability of the recombinant GCAP1 to co-localize with its target enzyme when heterologously expressed in HEK293 cells. We also compared Ca2+ binding and RetGC-activating properties of the purified non-acylated G2A mutant and C14:0 acylated GCAP1 in vitro. The G2A GCAP1 expressed with a C-terminal GFP tag was able to co-localize with the cyclase, albeit less efficiently than the wild type, but much less effectively stimulated cyclase activity in vitro. Ca2+ binding isotherm of the G2A GCAP1 was slightly shifted toward higher free Ca2+ concentrations and so was Ca2+ sensitivity of RetGC reconstituted with the G2A mutant. At the same time, myristoylation had little effect on the high-affinity Ca2+-binding in the EF-hand proximal to the myristoyl residue in three-dimensional GCAP1 structure. These data indicate that the N-terminal fatty acyl group may alter the activity of EF-hands in the distal portion of the GCAP1 molecule via presently unknown intramolecular mechanism. PMID:22371697

  6. Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases.

    PubMed

    Wintjens, René; Belrhali, Hassan; Clantin, Bernard; Azarkan, Mohamed; Bompard, Coralie; Baeyens-Volant, Danielle; Looze, Yvan; Villeret, Vincent

    2006-03-24

    Glutaminyl cyclases (QCs) (EC 2.3.2.5) catalyze the intramolecular cyclization of protein N-terminal glutamine residues into pyroglutamic acid with the concomitant liberation of ammonia. QCs may be classified in two groups containing, respectively, the mammalian enzymes, and the enzymes from plants, bacteria, and parasites. The crystal structure of the QC from the latex of Carica papaya (PQC) has been determined at 1.7A resolution. The structure was solved by the single wavelength anomalous diffraction technique using sulfur and zinc as anomalous scatterers. The enzyme folds into a five-bladed beta-propeller, with two additional alpha-helices and one beta hairpin. The propeller closure is achieved via an original molecular velcro, which links the last two blades into a large eight stranded beta-sheet. The zinc ion present in the PQC is bound via an octahedral coordination into an elongated cavity located along the pseudo 5-fold axis of the beta-propeller fold. This zinc ion presumably plays a structural role and may contribute to the exceptional stability of PQC, along with an extended hydrophobic packing, the absence of long loops, the three-joint molecular velcro and the overall folding itself. Multiple sequence alignments combined with structural analyses have allowed us to tentatively locate the active site, which is filled in the crystal structure either by a Tris molecule or an acetate ion. These analyses are further supported by the experimental evidence that Tris is a competitive inhibitor of PQC. The active site is located at the C-terminal entrance of the PQC central tunnel. W83, W110, W169, Q24, E69, N155, K225, F22 and F67 are highly conserved residues in the C-terminal entrance, and their putative role in catalysis is discussed. The PQC structure is representative of the plants, bacterial and parasite enzymes and contrasts with that of mammalian enzymes, that may possibly share a conserved scaffold of the bacterial aminopeptidase.

  7. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  8. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-01

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2).

  9. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-01

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2). PMID:21173231

  10. Overexpression of the type 1 adenylyl cyclase in the forebrain leads to deficits of behavioral inhibition.

    PubMed

    Chen, Xuanmao; Cao, Hong; Saraf, Amit; Zweifel, Larry S; Storm, Daniel R

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition.

  11. The magnesium-protoporphyrin IX (oxidative) cyclase system. Studies on the mechanism and specificity of the reaction sequence.

    PubMed

    Walker, C J; Mansfield, K E; Rezzano, I N; Hanamoto, C M; Smith, K M; Castelfranco, P A

    1988-10-15

    Mg-protoporphyrin IX monomethyl ester cyclase activity was assayed in isolated developing cucumber (Cucumis sativus L. var. Beit Alpha) chloroplasts [Chereskin, Wong & Castelfranco (1982) Plant Physiol. 70, 987-993]. The presence of both 6- and 7-methyl esterase activities was detected, which permitted the use of diester porphyrins in a substrate-specificity study. It was found that: (1) the 6-methyl acrylate derivative of Mg-protoporphyrin monomethyl ester was inactive as a substrate for cyclization; (2) only one of the two enantiomers of 6-beta-hydroxy-Mg-protoporphyrin dimethyl ester had detectable activity as a substrate for the cyclase; (3) the 2-vinyl-4-ethyl-6-beta-oxopropionate derivatives of Mg-protoporphyrin mono- or di-methyl ester were approx. 4 times more active as substrates for cyclization than the corresponding divinyl forms; (4) at the level of Mg-protoporphyrin there was no difference in cyclase activity between the 4-vinyl and 4-ethyl substrates; (5) reduction of the side chain of Mg-protoporphyrin in the 2-position from a vinyl to an ethyl resulted in a partial loss of cyclase activity. This work suggests that the original scheme for cyclization proposed by Granick [(1950) Harvey Lect. 44, 220-245] should now be modified by the omission of the 6-methyl acrylate derivative of Mg-protoporphyrin monomethyl ester and the introduction of stereo-specificity at the level of the hydroxylated intermediate.

  12. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains

    PubMed Central

    Sundlov, Jesse A.; Shi, Ce; Wilson, Daniel J.; Aldrich, Courtney C.; Gulick, Andrew M.

    2012-01-01

    Summary Non-ribosomal peptide synthetases (NRPSs) are modular proteins that produce peptide antibiotics and siderophores. These enzymes act as catalytic assembly lines where substrates, covalently bound to integrated carrier domains, are delivered to adjacent catalytic domains. The carrier domains are initially loaded by adenylation domains, which use two distinct conformations to catalyze sequentially the adenylation of the substrate and the thioesterification of the pantetheine cofactor. We have used a mechanism-based inhibitor to determine the crystal structure of an engineered adenylation-carrier domain protein illustrating the intermolecular interaction between the adenylation and carrier domains. This structure enabled directed mutations to improve the interaction between non-native partner proteins. Comparison with prior NRPS adenylation domain structures provides insights into the assembly line dynamics of these modular enzymes. PMID:22365602

  13. Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons.

    PubMed

    Fukuchi, Mamoru; Tabuchi, Akiko; Kuwana, Yuki; Watanabe, Shinjiro; Inoue, Minami; Takasaki, Ichiro; Izumi, Hironori; Tanaka, Ayumi; Inoue, Ran; Mori, Hisashi; Komatsu, Hidetoshi; Takemori, Hiroshi; Okuno, Hiroyuki; Bito, Haruhiko; Tsuda, Masaaki

    2015-04-01

    Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline β, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated.

  14. Evidence for an essential histidine residue in 4S-limonene synthase and other terpene cyclases.

    PubMed

    Rajaonarivony, J I; Gershenzon, J; Miyazaki, J; Croteau, R

    1992-11-15

    (4S)-Limonene synthase, isolated from glandular trichome secretory cell preparations of Mentha x piperita (peppermint) leaves, catalyzes the metal ion-dependent cyclization of geranyl pyrophosphate, via 3S-linalyl pyrophosphate, to (-)-(4S)-limonene as the principal product. Treatment of this terpene cyclase with the histidine-directed reagent diethyl pyrocarbonate at a concentration of 0.25 mM resulted in 50% loss of enzyme activity, and this activity could be completely restored by treatment of the preparation with 5 mM hydroxylamine. Inhibition with diethyl pyrocarbonate was distinguished from inhibition with thiol-directed reagents by protection studies with histidine and cysteine carried out at varying pH. Inactivation of the cyclase by dye-sensitized photooxidation in the presence of rose bengal gave further indication of the presence of a readily modified histidine residue. Protection of the enzyme against inhibition with diethyl pyrocarbonate was afforded by the substrate geranyl pyrophosphate in the presence of Mn2+, and by the sulfonium ion analog of the linalyl carbocation intermediate of the reaction in the presence of inorganic pyrophosphate plus Mn2+, suggesting that an essential histidine residue is located at or near the active site. Similar studies on the inhibition of other monoterpene and sesquiterpene cyclases with diethyl pyrocarbonate suggest that a histidine residue (or residues) may play an important role in catalysis by this class of enzymes. PMID:1444454

  15. Cyanobacteriochrome SesA Is a Diguanylate Cyclase That Induces Cell Aggregation in Thermosynechococcus*♦

    PubMed Central

    Enomoto, Gen; Nomura, Ryouhei; Shimada, Takashi; Ni-Ni-Win; Narikawa, Rei; Ikeuchi, Masahiko

    2014-01-01

    Cyanobacteria have unique photoreceptors, cyanobacteriochromes, that show diverse spectral properties to sense near-UV/visible lights. Certain cyanobacteriochromes have been shown to regulate cellular phototaxis or chromatic acclimation of photosynthetic pigments. Some cyanobacteriochromes have output domains involved in bacterial signaling using a second messenger cyclic dimeric GMP (c-di-GMP), but its role in cyanobacteria remains elusive. Here, we characterize the recombinant Tlr0924 from a thermophilic cyanobacterium Thermosynechococcus elongatus, which was expressed in a cyanobacterial system. The protein reversibly photoconverts between blue- and green-absorbing forms, which is consistent with the protein prepared from Escherichia coli, and has diguanylate cyclase activity, which is enhanced 38-fold by blue light compared with green light. Therefore, Tlr0924 is a blue light-activated diguanylate cyclase. The protein's relatively low affinity (10.5 mm) for Mg2+, which is essential for diguanylate cyclase activity, suggests that Mg2+ might also regulate c-di-GMP signaling. Finally, we show that blue light irradiation under low temperature is responsible for Thermosynechococcus vulcanus cell aggregation, which is abolished when tlr0924 is disrupted, suggesting that Tlr0924 mediates blue light-induced cell aggregation by producing c-di-GMP. Given our results, we propose the name “sesA (sessility-A)” for tlr0924. This is the first report for cyanobacteriochrome-dependent regulation of a sessile/planktonic lifestyle in cyanobacteria via c-di-GMP. PMID:25059661

  16. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin

    PubMed Central

    Ravichandran, Akshaya; Gu, Ganyu; Escano, Jerome; Lu, Shi-En; Smith, Leif

    2014-01-01

    Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides. PMID:23394257

  17. Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum.

    PubMed

    Back, K; He, S; Kim, K U; Shin, D H

    1998-09-01

    Sesquiterpene cyclase, a branch point enzyme in the general isoprenoid pathway for the synthesis of phytoalexin capsidiol, was induced in detached leaves of Capsicum annuum (pepper) by UV treatment. The inducibility of cyclase enzyme activities paralleled the absolute amount of cyclase protein(s) of pepper immunodetected by monoclonal antibodies raised against tobacco sesquiterpene cyclase. A cDNA library was constructed with poly(A)+ RNA isolated from 24 h UV-challenged leaves of pepper. A cDNA clone for sesquiterpene cyclase in pepper was isolated by using a tobacco 5-epi aristolochene synthase gene as a heterologous probe. The predicted protein encoded by this cDNA was comprised of 559 amino acids and had a relative molecular mass of 65,095. The primary structural information from the cDNA clone revealed that it shared 77%, 72% and 49% identity with 5-epi aristolochene, vetispiradiene, and cadinene synthase, respectively. The enzymatic product catalyzed by the cDNA clone in bacteria was identified as 5-epi aristolochene, as judged by argentation TLC. RNA blot hybridization demonstrated the induction of an mRNA consistent with the induction of cyclase enzyme activity in UV-treated pepper. PMID:9816674

  18. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    NASA Astrophysics Data System (ADS)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  19. Adenylate Energy Charge in Escherichia coli During Growth and Starvation

    PubMed Central

    Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.

    1971-01-01

    The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317

  20. Effects of activation of protein kinase C (PKC) on the hormonal stimulation and inhibition of cAMP formation in intact human platelets

    SciTech Connect

    Williams, K.A.; Haslam, R.J.

    1986-05-01

    Washed platelets, labelled by preincubation with (/sup 3/H)adenine and (/sup 32/P)P/sub i/, were studied in the presence of indomethacin, phosphocreatine and creatine phosphokinase to block thromboxane A/sub 2/ formation and inhibitory effects of released ADP. Addition of phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoyl-glycerol (diC/sub 8/) decreased the initial rate of accumulation of (/sup 3/H)cAMP observed with PGE/sub 1/ and 3-isobutyl 1- methylxanthine. Maximal decreases of 31% (1 ..mu..M PMA) and 42% (100 ..mu..M diC/sub 8/) were obtained. Also, the inhibition of (/sup 3/H)cAMP formation by epinephrine (5 ..mu..M) was decreased from 68% to 16% and 31% by 1..mu..M PMA and 100 ..mu..M diC/sub 8/, respectively. The effects of increasing concentrations of PMA and diC/sub 8/ on the stimulation of (/sup 3/H)cAMp formation by PGE/sub 1/ and on the inhibitory action of epinephrine correlated with increases in /sup 32/P incorporation into the major substrate of PKC (P47) and into two other polypeptides (P41 and P20). These results suggested that activation of PKC might explain the failure of some aggregating agents (e.g. PAF and vasopressin) to inhibit adenylate cyclase in intact platelets, although they are inhibitory with isolated membranes. However, comparison of the effects of PMA and these aggregating agents on the phosphorylation of platelet polypeptides indicated that activation of PKC by aggregating agents is inadequate to block their inhibitory effects on adenylate cyclase, when PGE/sub 1/ is present.

  1. Opposing effects of ethanol on pig ovarian adenylyl cyclase desensitized by human choriogonadotropin or isoproterenol.

    PubMed

    Ekstrom, R C; Hunzicker-Dunn, M

    1990-11-01

    Pig ovarian follicular membranes contain a gonadotropin-responsive adenylyl cyclase, which becomes partially desensitized (approximately 40%) upon a 40-min incubation with a saturating concentration of human (h) CG. This in vitro desensitization is time and hormone dependent and also requires the presence of micromolar concentrations of GTP. In this report we show that 10% ethanol present during the desensitization phase of the incubation increases the extent of hCG-induced desensitization of adenylyl cyclase by 2-fold. Ethanol shortened the time necessary to reach maximal hCG-induced desensitization from 20 to 10 min, but had no effect on the dose dependency for GTP. In addition, ethanol had no effect on the affinity of the LH/hCG receptor for 125I-hCG but did cause an increase in the ED50 of hCG for inducing desensitization from 0.25 to 0.75 nM. Interestingly, ethanol decreased the apparent number of LH/hCG-receptor sites by 55%, yet the control hCG-sensitive adenylyl cyclase activity was not reduced. The "hyperdesensitized" state achieved in the presence of ethanol could not be reversed by washing the membranes and incubating them in ethanol-free medium. NaF-sensitive adenylyl cyclase was also not impaired in hCG-desensitized membranes from control or ethanol-treated samples. Thus, hCG-induced desensitization was not due to a defect in the functioning of the stimulatory guanine nucleotide-binding regulatory protein (G8) or catalytic subunits, but rather was caused by an impairment of the coupling of the lutropin (LH)/hCG receptor with G8, which was exacerbated further by ethanol. In spite of the effect of ethanol on hCG-induced desensitization, this agent had an inhibitory effect on isoproterenol-induced desensitization of isoproterenol-responsive luteal adenylyl cyclase. These results indicate that membrane fluidity is important in modulating the structure and functional interaction of the LH/hCG receptor with G8 because ethanol is a well known lipid

  2. Respiration in postharvest sugarbeet roots is not limited by respiratory capacity or adenylates.

    PubMed

    Klotz, Karen L; Finger, Fernando L; Anderson, Marc D

    2008-09-29

    Control of respiration has largely been studied with growing and/or photosynthetic tissues or organs, but has rarely been examined in harvested and stored plant products. As nongrowing, heterotrophic organs that are reliant on respiration to provide all of their metabolic needs, harvested plant products differ dramatically in their metabolism and respiratory needs from growing and photosynthetically active plant organs, and it cannot be assumed that the same mechanism controls respiration in both actively growing and harvested plant organs. To elucidate mechanisms of respiratory control for a harvested and stored plant product, sugarbeet (Beta vulgaris L.) root respiration was characterized with respect to respiratory capacity, adenylate levels and cellular energy status in roots whose respiration was altered by wounding or cold treatment (1 degrees C) and in response to potential effectors of respiration. Respiration rate was induced by wounding in roots stored at 10 degrees C and by cold temperature in roots stored at 1 degrees C for 11-13d. Alterations in respiration rate due to wounding or storage temperature were unrelated to changes in total respiratory capacity, the capacities of the cytochrome c oxidase (COX) or alternative oxidase (AOX) pathways, adenylate concentrations or cellular energy status, measured by the ATP:ADP ratio. In root tissue, respiration was induced by exogenous NADH indicating that respiratory capacity was capable of oxidizing additional electrons fed into the electron transport chain via an external NADH dehydrogenase. Respiration was not induced by addition of ADP or a respiratory uncoupler. These results suggest that respiration rate in stored sugarbeet roots is not limited by respiratory capacity, ADP availability or cellular energy status. Since respiration in plants can be regulated by substrate availability, respiratory capacity or energy status, it is likely that a substrate, other than ADP, limits respiration in stored sugarbeet

  3. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  4. Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi.

    PubMed

    Burkhardt, Immo; Siemon, Thomas; Henrot, Matthias; Studt, Lena; Rösler, Sarah; Tudzynski, Bettina; Christmann, Mathias; Dickschat, Jeroen S

    2016-07-18

    Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers.

  5. Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi.

    PubMed

    Burkhardt, Immo; Siemon, Thomas; Henrot, Matthias; Studt, Lena; Rösler, Sarah; Tudzynski, Bettina; Christmann, Mathias; Dickschat, Jeroen S

    2016-07-18

    Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers. PMID:27294564

  6. The first structure of a bacterial diterpene cyclase: CotB2.

    PubMed

    Janke, Ronja; Görner, Christian; Hirte, Max; Brück, Thomas; Loll, Bernhard

    2014-06-01

    Sesquiterpenes and diterpenes are a diverse class of secondary metabolites that are predominantly derived from plants and some prokaryotes. The properties of these natural products encompass antitumor, antibiotic and even insecticidal activities. Therefore, they are interesting commercial targets for the chemical and pharmaceutical industries. Owing to their structural complexity, these compounds are more efficiently accessed by metabolic engineering of microbial systems than by chemical synthesis. This work presents the first crystal structure of a bacterial diterpene cyclase, CotB2 from the soil bacterium Streptomyces melanosporofaciens, at 1.64 Å resolution. CotB2 is a diterpene cyclase that catalyzes the cyclization of the linear geranylgeranyl diphosphate to the tricyclic cyclooctat-9-en-7-ol. The subsequent oxidation of cyclooctat-9-en-7-ol by two cytochrome P450 monooxygenases leads to bioactive cyclooctatin. Plasticity residues that decorate the active site of CotB2 have been mutated, resulting in alternative monocyclic, dicyclic and tricyclic compounds that show bioactivity. These new compounds shed new light on diterpene cyclase reaction mechanisms. Furthermore, the product of mutant CotB2(W288G) produced the new antibiotic compound (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene, which acts specifically against multidrug-resistant Staphylococcus aureus. This opens a sustainable route for the industrial-scale production of this bioactive compound.

  7. HAMP domain-mediated signal transduction probed with a mycobacterial adenylyl cyclase as a reporter.

    PubMed

    Mondéjar, Laura García; Lupas, Andrei; Schultz, Anita; Schultz, Joachim E

    2012-01-01

    HAMP domains, ∼55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function.

  8. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway.

    PubMed

    Li, Sen; Ping, Na-Na; Cao, Lei; Mi, Yan-Ni; Cao, Yong-Xiao

    2015-12-15

    Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway.

  9. The polymerization of amino acid adenylates on sodium-montmorillonite with preadsorbed polypeptides

    NASA Astrophysics Data System (ADS)

    Paecht-Horowitz, Mella; Eirich, Frederick R.

    1988-12-01

    We studied the spontaneous polymerization of amino acid adenylates on Na-montmorillonite in dilute, neutral suspension, after polypeptides were adsorbed on the clay. This led to the unexpected finding that the degrees of polymerization (DP's) of the oligo- and poly-peptides obtained depended on the amounts of polypeptides that were preadsorbed. Plotting average molecular weights obtained against c-spacings of the clay platelet aggregates which widened as a result of polypeptide addition and adsorption before the polymerization, does not permit an obvious explanation of these observations. The best correlation assigns a role to the fractional occupation of the individual intercalation layers of the polypeptides, as the adsorption increases towards a first complete mono-interlayer, then to an incipient and eventually to a complete double layer on to a third interlayer, after which the clay stacking breaks up. Spacings which correspond to an intermediate occupation of any of the three successive interlayers favor amino acids self-addition to polymers. The opposite is true for nearly empty or filled intercalation layers. We hypothesize and describe, how a catalytic activity may derive from c-spacings that offer adsorption sites for the reagent amino acid adenylate within the peripheral recesses of irregularly stacked clay platelets by bringing the anhydride bonds and neutral amino groups into favorable reaction distances. Moderately filled intercalation spaces may also act as sinks for the newly formed oligomers and facilitate the freeing of reaction sites for the occupation by fresh reagent. The c-spacings required for these mechanisms are the result of the intercalation of the preadsorbed polymer, but similar conditions prevail when polymers are adsorbed as they are generated during polymerization.

  10. Novel hopanoid cyclases from the environment.

    PubMed

    Pearson, Ann; Flood Page, Sarah R; Jorgenson, Tyler L; Fischer, Woodward W; Higgins, Meytal B

    2007-09-01

    Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record.

  11. Novel hopanoid cyclases from the environment.

    PubMed

    Pearson, Ann; Flood Page, Sarah R; Jorgenson, Tyler L; Fischer, Woodward W; Higgins, Meytal B

    2007-09-01

    Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record. PMID:17686016

  12. Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases.

    PubMed

    Giorio, Giovanni; Yildirim, Arzu; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2013-11-01

    Lutein is becoming increasingly important in preventive medicine due to its possible role in maintaining good vision and in preventing age-related maculopathy. Average daily lutein intake in developed countries is often below suggested daily consumption levels, and lutein supplementation could be beneficial. Lutein is also valuable in the food and feed industries and is emerging in nutraceutical and pharmaceutical markets. Currently, lutein is obtained at high cost from marigold petals, and synthesis alternatives are thus desirable. Tomato constitutes a promising starting system for production as it naturally accumulates high levels of lycopene. To develop tomato for lutein synthesis, the tomato Red Setter cultivar was transformed with the tomato lycopene ε-cyclase-encoding gene under the control of a constitutive promoter, and the HighDelta (HD) line, characterised by elevated lutein and δ-carotene content in ripe fruits, was selected. HD was crossed to the transgenic HC line and to RS(B) with the aim of converting all residual fruit δ-carotene to lutein. Fruits of both crosses were enriched in lutein and presented unusual carotenoid profiles. The unique genetic background of the crosses used in this study permitted an unprecedented analysis of the role and regulation of the lycopene cyclase enzymes in tomato. A new defined biochemical index, the relative cyclase activity ratio, was used to discern post-transcriptional regulation of cyclases, and will help in the study of carotenoid biosynthesis in photosynthetic plant species and particularly in those, like tomato, that have been domesticated for the production of food, feed or useful by-products.

  13. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light. PMID:24201148

  14. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  15. Different effect of prostaglandin E2 on B-cell activation by two distinct B-cell differentiation factors, B151-TRF1/IL-5 and B151-TRF2: selective inhibition of B151-TRF2-induced antibody response through increases in intracellular cyclic AMP levels

    PubMed Central

    Ishihara, K.; Ono, S.; Takahama, Y.; Hirayama, F.; Hirano, H.; Itoh, K.; Dobashi, K.; Murakami, S.; Katoh, Y.; Yamaguchi, M.; Hamaoka, T.

    1989-01-01

    Effects of prostaglandin E2 (PGE2) on murine B-cell activation induced by two distinct B-cell differentiation factors, B151-TRF1/IL-5 and B151-TRF2, were examined. A final differentiation of unprimed B cells into IgM-producing cells induced by B151-TRF2 was markedly inhibited by PGE2 at physiological concentrations (around 10-8 M), whereas B151-TRF1/IL-5-induced antibody responses of unprimed as well as activated B cells were not affected by PGE2, even at 10-6 M. B-cell responses induced by B151-TRF2-like factors from autoimmune-prone MRL/1pr mice were also inhibited by PGE2. Biphasic increases in intracellular cyclic AMP (cAMP) levels were induced by culturing B cells with 10-6 or 10-8 M PGE2: rapid increases within 8 min and delayed increases around 16 hr. The direct addition of dibutyryl cAMP to cultures of B cells resulted in marked inhibition of antibody responses when stimulated with B151-TRF2 but not with B151-TRF1/IL-5. The B151-TRF2-induced antibody responses were also inhibited by cAMP-elevating reagents such as forskolin, cholera toxin and theophyline. Furthermore, 2′, 5′-dideoxyadenosine, which is an inhibitor of adenylate cyclase, prevented the PGE2-mediated cAMP accumulation in unprimed B cells as well as the PGE2-mediated inhibition of B151-TRF2-induced B-cell responses when added at the initiation of culture. These results suggest that PGE2 inhibits B151-TRF2-induced antibody responses through the activation of adenylate cyclase and subsequent accumulation of intracellular cAMP, whereas B151-TRF1/IL-5-responsive B cells a