Science.gov

Sample records for activating braf mutations

  1. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2.

    PubMed

    Foster, Scott A; Whalen, Daniel M; Özen, Ayşegül; Wongchenko, Matthew J; Yin, JianPing; Yen, Ivana; Schaefer, Gabriele; Mayfield, John D; Chmielecki, Juliann; Stephens, Philip J; Albacker, Lee A; Yan, Yibing; Song, Kyung; Hatzivassiliou, Georgia; Eigenbrot, Charles; Yu, Christine; Shaw, Andrey S; Manning, Gerard; Skelton, Nicholas J; Hymowitz, Sarah G; Malek, Shiva

    2016-04-11

    Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy. PMID:26996308

  2. BRAF mutation in papillary thyroid carcinoma.

    PubMed

    Cohen, Yoram; Xing, Mingzhao; Mambo, Elizabeth; Guo, Zhongmin; Wu, Guogun; Trink, Barry; Beller, Uziel; Westra, William H; Ladenson, Paul W; Sidransky, David

    2003-04-16

    The BRAF gene has been found to be activated by mutation in human cancers, predominantly in malignant melanoma. We tested 476 primary tumors, including 214 lung, 126 head and neck, 54 thyroid, 27 bladder, 38 cervical, and 17 prostate cancers, for the BRAF T1796A mutation by polymerase chain reaction (PCR)-restriction enzyme analysis of BRAF exon 15. In 24 (69%) of the 35 papillary thyroid carcinomas examined, we found a missense thymine (T)-->adenine (A) transversion at nucleotide 1796 in the BRAF gene (T1796A). The T1796A mutation was detected in four lung cancers and in six head and neck cancers but not in bladder, cervical, or prostate cancers. Our data suggest that activating BRAF mutations may be an important event in the development of papillary thyroid cancer.

  3. Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib.

    PubMed

    Sen, Banibrata; Peng, Shaohua; Tang, Ximing; Erickson, Heidi S; Galindo, Hector; Mazumdar, Tuhina; Stewart, David J; Wistuba, Ignacio; Johnson, Faye M

    2012-05-30

    During a clinical trial of the tyrosine kinase inhibitor dasatinib for advanced non-small cell lung cancer (NSCLC), one patient responded dramatically and remains cancer-free 4 years later. A comprehensive analysis of his tumor revealed a previously undescribed, kinase-inactivating BRAF mutation ((Y472C)BRAF); no inactivating BRAF mutations were found in the nonresponding tumors taken from other patients. Cells transfected with (Y472C)BRAF exhibited CRAF, MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), and ERK (extracellular signal-regulated kinase) activation-characteristics identical to signaling changes that occur with previously known kinase-inactivating BRAF mutants. Dasatinib selectively induced senescence in NSCLC cells with inactivating BRAF mutations. Transfection of other NSCLC cells with these BRAF mutations also increased these cells' dasatinib sensitivity, whereas transfection with an activating BRAF mutation led to their increased dasatinib resistance. The sensitivity induced by (Y472C)BRAF was reversed by the introduction of a BRAF mutation that impairs RAF dimerization. Dasatinib inhibited CRAF modestly, but concurrently induced RAF dimerization, resulting in ERK activation in NSCLC cells with kinase-inactivating BRAF mutations. The sensitivity of NSCLC with kinase-impaired BRAF to dasatinib suggested synthetic lethality of BRAF and an unknown dasatinib target. Inhibiting BRAF in NSCLC cells expressing wild-type BRAF likewise enhanced these cells' dasatinib sensitivity. Thus, the patient's BRAF mutation was likely responsible for his tumor's marked response to dasatinib, suggesting that tumors bearing kinase-impaired BRAF mutations may be exquisitely sensitive to dasatinib. Moreover, the potential synthetic lethality of combination therapy including dasatinib and BRAF inhibitors may lead to additional therapeutic options against cancers with wild-type BRAF. PMID:22649091

  4. BRAF Mutation in Colorectal Cancer: An Update

    PubMed Central

    Barras, David

    2015-01-01

    Colorectal cancer (CRC) is still one of the deadliest cancer-related diseases. About 10% of CRC patients are characterized by a mutation in the B-Raf proto-oncogene serine/threonine kinase (BRAF) gene resulting in a valine-to-glutamate change at the residue 600 (V600E). This mutation is also present in more than 60% of melanoma patients. BRAF inhibitors were developed and found to improve patient survival; however, most patients at the end of the track ultimately develop resistance to these inhibitors. Melanoma patients benefit from the combination of BRAF inhibitors with mitogen/extracellular signal-regulated kinase (MEK) inhibitors, among others. Unfortunately, colorectal patients do not respond much efficiently, which suggests different resistance mechanisms between the two cancer types. This review aims at shedding light on recent discoveries that improve our understanding of the BRAF mutation biology in CRC. PMID:26396549

  5. BRAF mutations in non-small cell lung cancer: has finally Janus opened the door?

    PubMed

    Caparica, Rafael; de Castro, Gilberto; Gil-Bazo, Ignacio; Caglevic, Christian; Calogero, Raffaele; Giallombardo, Marco; Santos, Edgardo S; Raez, Luis E; Rolfo, Christian

    2016-05-01

    B-Raf mutations occur in about 1-2% of non-small cell lung cancers (NSCLC). These mutations generate a permanent activation of the mitogen activated protein kinase (MAPK) pathway, which promotes tumor growth and proliferation. In the present review, we discuss B-Raf mutation epidemiology, diagnostic methods to detect B-Raf mutations, the role of B-Raf as a driver mutation and a potential therapeutic target in NSCLC. The results of clinical trials involving B-Raf or MAPK pathway inhibitors for the treatment of NSCLC are also discussed. Clinical trials evaluating B-Raf inhibitors in BRAF mutated NSCLC patients have shown promising results, and larger prospective studies are warranted to validate these findings. Enrollment of these patients in clinical trials is an interesting strategy to offer a potentially more effective and less toxic targeted therapy.

  6. BRAF mutations in non-small cell lung cancer: has finally Janus opened the door?

    PubMed

    Caparica, Rafael; de Castro, Gilberto; Gil-Bazo, Ignacio; Caglevic, Christian; Calogero, Raffaele; Giallombardo, Marco; Santos, Edgardo S; Raez, Luis E; Rolfo, Christian

    2016-05-01

    B-Raf mutations occur in about 1-2% of non-small cell lung cancers (NSCLC). These mutations generate a permanent activation of the mitogen activated protein kinase (MAPK) pathway, which promotes tumor growth and proliferation. In the present review, we discuss B-Raf mutation epidemiology, diagnostic methods to detect B-Raf mutations, the role of B-Raf as a driver mutation and a potential therapeutic target in NSCLC. The results of clinical trials involving B-Raf or MAPK pathway inhibitors for the treatment of NSCLC are also discussed. Clinical trials evaluating B-Raf inhibitors in BRAF mutated NSCLC patients have shown promising results, and larger prospective studies are warranted to validate these findings. Enrollment of these patients in clinical trials is an interesting strategy to offer a potentially more effective and less toxic targeted therapy. PMID:26960735

  7. [Treatment of BRAF-mutated metastatic melanoma].

    PubMed

    Boyles, Tessa Bystrup; Svane, Inge Marie; Bastholt, Lars; Schmidt, Henrik

    2016-08-29

    Melanoma is an aggressive form of skin cancer which is the cause of a great number of skin cancer-related deaths worldwide and about 300 deaths in Denmark. After several years of failure of treatment of metastatic melanoma, the development of BRAF- and later MEK inhibitors was considered revolutionary. Treatment with BRAF inhibitors alone and especially in combination with a MEK inhibitor improves outcome for patients with BRAF V600-mutated metastatic melanoma. However, even when treated with the combination of the inhibitors, many patients develop acquired resistance within a year. PMID:27592869

  8. Electrochemotherapy with bleomycin is effective in BRAF mutated melanoma cells and interacts with BRAF inhibitors

    PubMed Central

    Dolinsek, Tanja; Prosen, Lara; Cemazar, Maja; Potocnik, Tjasa

    2016-01-01

    Abstract Background The aim of the study was to explore the effectiveness of electrochemotherapy (ECT) during the treatment of melanoma patients with BRAF inhibitors. Its effectiveness was tested on BRAF mutated and non-mutated melanoma cells in vitro and in combination with BRAF inhibitors. Materials and methods ECT with bleomycin was performed on two human melanoma cell lines, with (SK-MEL-28) or without (CHL-1) BRAF V600E mutation. Cell survival was determined using clonogenic assay to determine the effectiveness of ECT in melanoma cells of different mutation status. Furthermore, the effectiveness of ECT in concomitant treatment with BRAF inhibitor vemurafenib was also determined in BRAF mutated cells SK-MEL-28 with clonogenic assay. Results The survival of BRAF V600E mutated melanoma cells was even lower than non-mutated cells, indicating that ECT is effective regardless of the mutational status of melanoma cells. Furthermore, the synergistic interaction between vemurafenib and ECT with bleomycin was demonstrated in the BRAF V600E mutated melanoma cells. Conclusions The effectiveness of ECT in BRAF mutated melanoma cells as well as potentiation of its effectiveness during the treatment with vemurafenib in vitro implies on clinical applicability of ECT in melanoma patients with BRAF mutation and/or during the treatment with BRAF inhibitors.

  9. Electrochemotherapy with bleomycin is effective in BRAF mutated melanoma cells and interacts with BRAF inhibitors

    PubMed Central

    Dolinsek, Tanja; Prosen, Lara; Cemazar, Maja; Potocnik, Tjasa

    2016-01-01

    Abstract Background The aim of the study was to explore the effectiveness of electrochemotherapy (ECT) during the treatment of melanoma patients with BRAF inhibitors. Its effectiveness was tested on BRAF mutated and non-mutated melanoma cells in vitro and in combination with BRAF inhibitors. Materials and methods ECT with bleomycin was performed on two human melanoma cell lines, with (SK-MEL-28) or without (CHL-1) BRAF V600E mutation. Cell survival was determined using clonogenic assay to determine the effectiveness of ECT in melanoma cells of different mutation status. Furthermore, the effectiveness of ECT in concomitant treatment with BRAF inhibitor vemurafenib was also determined in BRAF mutated cells SK-MEL-28 with clonogenic assay. Results The survival of BRAF V600E mutated melanoma cells was even lower than non-mutated cells, indicating that ECT is effective regardless of the mutational status of melanoma cells. Furthermore, the synergistic interaction between vemurafenib and ECT with bleomycin was demonstrated in the BRAF V600E mutated melanoma cells. Conclusions The effectiveness of ECT in BRAF mutated melanoma cells as well as potentiation of its effectiveness during the treatment with vemurafenib in vitro implies on clinical applicability of ECT in melanoma patients with BRAF mutation and/or during the treatment with BRAF inhibitors. PMID:27679543

  10. BRAF V600E mutation detection by immunohistochemistry in colorectal carcinoma.

    PubMed

    Affolter, Kajsa; Samowitz, Wade; Tripp, Sheryl; Bronner, Mary P

    2013-08-01

    The serine/threonine-protein kinase B-raf (BRAF) is an oncogene mutated in various neoplasms, including 5-15% of colorectal carcinomas. The T1799A point mutation, responsible for a large majority of these alterations, results in an amino acid substitution (V600E) causing the constitutive activation of a protein kinase cascade. BRAF V600E in MLH1 deficient tumors implicates somatic tumor-only methylation of the MLH1 promoter region instead of a germline MLH1 mutation. BRAF V600E also predicts poor prognosis in microsatellite stable colorectal cancers and may be a marker of resistance to anti-EGFR therapy in metastatic disease. Currently, only molecular methods are available for assessing BRAF mutational status. An immunohistochemical approach is evaluated here. Colon cancers from 2008 to 2012 tested by pyrosequencing for BRAF V600E mutation were selected. A total of 31 tumors with (n = 14) and without (n = 17) the BRAF V600E mutation were analyzed by immunohistochemistry using a commercially available antibody specific to the V600E-mutated protein. All 14 colorectal carcinomas with the BRAF V600E mutation demonstrated cytoplasmic positivity in tumor cells with the anti-BRAF antibody. In a minority of cases, staining intensity for the mutated tumor samples was weak (n = 2) or heterogeneous (n = 4); however, the majority of cases showed diffuse, strong cytoplasmic positivity (8 of 14 cases). None of the 17 BRAF wild-type colorectal cancers showed immunoreactivity to the antibody. The overall sensitivity and specificity of the immunohistochemical BRAF V600E assay was 100%. Detection of the BRAF V600E mutation in colorectal cancer by immunohistochemistry is a viable alternative to molecular methods.

  11. Two Case Reports of Rare BRAF Mutations in Exon 11 and Exon 15 with Discussion of Potential Treatment Options

    PubMed Central

    Richtig, Georg; Aigelsreiter, Ariane; Kashofer, Karl; Talakic, Emina; Kupsa, Romana; Schaider, Helmut; Richtig, Erika

    2016-01-01

    BRAF mutations occur in up to 50% of melanomas. Mutations in the BRAF gene directly influence the patient's treatment because several inhibitors are available that only target BRAFV600 mutations. Herein, we describe two cases of patients with metastatic melanomas, each carrying a ‘nonstandard’ mutation in the BRAF gene: BRAFK601E and BRAFG466E, respectively. The first patient was treated with a MEK inhibitor and the second one with ipilimumab. However, not all BRAF mutations result in increased BRAF kinase activity, and clinical data for ‘nonstandard’ mutations, such as those described in our case report, are sparse. Therefore, treatment with MEK inhibitors can be helpful in cases where BRAF mutations result in increased activity, whereas immune checkpoint inhibitors might be used in cases where the mutations lead to activity levels below those of the wild type. PMID:27790118

  12. Are KRAS/BRAF mutations potent prognostic and/or predictive biomarkers in colorectal cancers?

    PubMed

    Yokota, Tomoya

    2012-02-01

    KRAS and BRAF mutations lead to the constitutive activation of EGFR signaling through the oncogenic Ras/Raf/Mek/Erk pathway. Currently, KRAS is the only potential biomarker for predicting the efficacy of anti-EGFR monoclonal antibodies (mAb) in colorectal cancer (CRC). However, a recent report suggested that the use of cetuximab was associated with survival benefit among patients with p.G13D-mutated tumors. Furthermore, although the presence of mutated BRAF is one of the most powerful prognostic factors for advanced and recurrent CRC, it remains unknown whether patients with BRAF-mutated tumors experience a survival benefit from treatment with anti-EGFR mAb. Thus, the prognostic or predictive relevance of the KRAS and BRAF genotype in CRC remains controversial despite several investigations. Routine KRAS/BRAF screening of pathological specimens is required to promote the appropriate clinical use of anti-EGFR mAb and to determine malignant phenotypes in CRC. The significance of KRAS/BRAF mutations as predictive or prognostic biomarkers should be taken into consideration when selecting a KRAS/BRAF screening assay. This article will review the spectrum of KRAS/BRAF genotype and the impact of KRAS/BRAF mutations on the clinicopathological features and prognosis of patients with CRC, particularly when differentiating between the mutations at KRAS codons 12 and 13. Furthermore, the predictive role of KRAS/BRAF mutations in treatments with anti-EGFR mAb will be verified, focusing on KRAS p.G13D and BRAF mutations.

  13. [BRAF V600E mutation in thyroid nodules in Argentina].

    PubMed

    Ilera, Verónica; Dourisboure, Ricardo; Colobraro, Antonio; Silva Croome, María Del Carmen; Olstein, Gustavo; Gauna, Alicia

    2016-01-01

    This prospective study analyzed the frequency of V600E mutation of oncogene BRAF in patients operated for benign thyroid nodules and for papillary thyroid cancer in an Argentine population. In patients with papillary thyroid cancer we compared clinicopathological characteristics between those harboring BRAF mutation and those without it. Twenty five consecutive patients operated for benign nodules and for papillary carcinoma were prospectively included. Fresh tissue samples of thyroid nodules and of adjacent thyroid parenchyma were obtained. DNA was extracted and amplified by amplification refractory mutation system polymerase chain reaction (ARMS PCR). Direct sequencing was performed in four samples. Of those patients operated for papillary thyroid cancer, 77% harbored BRAF mutation. All samples from adjacent thyroid parenchyma and from patients operated for benign nodules tested negative for the mutation. Direct sequencing confirmed the results obtained by ARMS PCR. Patients with BRAF mutation were significantly older at the time of diagnosis (BRAF+ 47.7 ± 12.7 years vs. BRAF- 24.7 ± 8.1 years, p < 0.01). Nine out of ten papillary carcinomas with BRAF mutation corresponded to the classic histological subtype, which was not observed in BRAF negative tumors (p < 0.02). In conclusion, we found a high frequency of BRAF V600E mutation in this population of patients operated for papillary thyroid carcinoma in Argentina. These results are consistent with those reported in the literature. PMID:27576281

  14. Potential clinical implications of BRAF mutations in histiocytic proliferations

    PubMed Central

    Bubolz, Anna-Maria; Weissinger, Stephanie E.; Stenzinger, Albrecht; Arndt, Annette; Steinestel, Konrad; Brüderlein, Silke; Cario, Holger; Lubatschofski, Anneli; Welke, Claudia; Anagnostopoulos, Ioannis; Barth, Thomas F. E.; Beer, Ambros J.; Möller, Peter; Gottstein, Martin

    2014-01-01

    For a growing number of tumors the BRAF V600E mutation carries therapeutic relevance. In histiocytic proliferations the distribution of BRAF mutations and their relevance has not been clarified. Here we present a retrospective genotyping study and a prospective observational study of a patient treated with a BRAF inhibitor. Genotyping of 69 histiocytic lesions revealed that 23/48 Langerhans cell lesions were BRAF-V600E-mutant whereas all non-Langerhans cell lesions (including dendritic cell sarcoma, juvenile xanthogranuloma, Rosai-Dorfman disease, and granular cell tumor) were wild-type. A metareview of 29 publications showed an overall mutation frequency of 48.5%; and with N=653 samples, this frequency is well defined. The BRAF mutation status cannot be predicted based on clinical parameters and outcome analysis showed no difference. Genotyping identified a 45 year-old woman with an aggressive and treatment-refractory, ultrastructurally confirmed systemic BRAF-mutant LCH. Prior treatments included glucocorticoid/vinblastine and cladribine-monotherapy. Treatment with vemurafenib over 3 months resulted in a dramatic metabolic response by FDG-PET and stable radiographic disease; the patient experienced progression after 6 months. In conclusion, BRAF mutations in histiocytic proliferations are restricted to lesions of the Langerhans-cell type. While for most LCH-patients efficient therapies are available, patients with BRAF mutations may benefit from the BRAF inhibitor vemurafenib. PMID:24938183

  15. MicroRNA-3151 inactivates TP53 in BRAF-mutated human malignancies

    PubMed Central

    Lankenau, Malori A.; Patel, Ravi; Liyanarachchi, Sandya; Maharry, Sophia E.; Hoag, Kevin W.; Duggan, Megan; Walker, Christopher J.; Markowitz, Joseph; Carson, William E.; Eisfeld, Ann-Kathrin; de la Chapelle, Albert

    2015-01-01

    The B-Raf proto-oncogene serine/threonine kinase (BRAF) gene is the most frequently mutated gene in malignant melanoma (MM) and papillary thyroid cancer (PTC) and is causally involved in malignant cell transformation. Mutated BRAF is associated with an aggressive disease phenotype, thus making it a top candidate for targeted treatment strategies in MM and PTC. We show that BRAF mutations in both MM and PTC drive increased expression of oncomiR-3151, which is coactivated by the SP1/NF-κB complex. Knockdown of microRNA-3151 (miR-3151) with short hairpin RNAs reduces cell proliferation and increases apoptosis of MM and PTC cells. Using a targeted RNA sequencing approach, we mechanistically determined that miR-3151 directly targets TP53 and other members of the TP53 pathway. Reducing miR-3151’s abundance increases TP53’s mRNA and protein expression and favors its nuclear localization. Consequently, knockdown of miR-3151 also leads to caspase-3–dependent apoptosis. Simultaneous inhibition of aberrantly activated BRAF and knockdown of miR-3151 potentiates the effects of sole BRAF inhibition with the BRAF inhibitor vemurafenib and may provide a novel targeted therapeutic approach in BRAF-mutated MM and PTC patients. In conclusion, we identify miR-3151 as a previously unidentified player in MM and PTC pathogenesis, which is driven by BRAF-dependent and BRAF-independent mechanisms. Characterization of TP53 as a downstream effector of miR-3151 provides evidence for a causal link between BRAF mutations and TP53 inactivation. PMID:26582795

  16. The Crystal Structure of BRAF in Complex with an Organoruthenium Inhibitor Reveals a Mechanism for Inhibition of an Active Form of BRAF Kinase

    SciTech Connect

    Xie, Peng; Streu, Craig; Qin, Jie; Bregman, Howard; Pagano, Nicholas; Meggers, Eric; Marmorstein, Ronen

    2012-06-19

    Substitution mutations in the BRAF serine/threonine kinase are found in a variety of human cancers. Such mutations occur in 70% of human malignant melanomas, and a single hyperactivating V600E mutation is found in the activation segment of the kinase domain and accounts for more than 90% of these mutations. Given this correlation, the molecular mechanism for BRAF regulation as well as oncogenic activation has attracted considerable interest, and activated forms of BRAF, such as BRAF{sup V600E}, have become attractive targets for small molecule inhibition. Here we report on the identification and subsequent optimization of a potent BRAF inhibitor, CS292, based on an organometallic kinase inhibitor scaffold. A cocrystal structure of CS292 in complex with the BRAF kinase domain reveals that CS292 binds to the ATP binding pocket of the kinase and is an ATP competitive inhibitor. The structure of the kinase-inhibitor complex also demonstrates that CS292 binds to BRAF in an active conformation and suggests a mechanism for regulation of BRAF by phosphorylation and BRAF{sup V600E} oncogene-induced activation. The structure of CS292 bound to the active form of the BRAF kinase also provides a novel scaffold for the design of BRAF{sup V600E} oncogene selective BRAF inhibitors for therapeutic application.

  17. B-RAF mutations are a rare event in pituitary adenomas.

    PubMed

    De Martino, I; Fedele, M; Palmieri, D; Visone, R; Cappabianca, P; Wierinckx, A; Trouillas, J; Fusco, A

    2007-01-01

    Pituitary tumors are a relatively common neoplasia whose pathogenesis is still largely unknown. Recent studies have revealed frequent activating mutations of the gene for B-RAF, an effector of Ras protein in the mitogen-activated protein kinase pathway, in several malignancies, including melanoma, thyroid, colorectal and ovarian cancer. However, analyses of B-RAF mutations in pituitary tumors have not been reported so far. Therefore, in the present study we have investigated the presence of the B-RAF mutations, by polymerase chain reaction (PCR) amplification of the hot spot exons 11 and 15, followed by direct sequencing, in 50 human pituitary adenomas, including 25 NFPA and 25 secreting adenomas (10 GH, 5 PRL, 6 LH and/or FSH, 4 GH/PRL). We found only one V600E mutation in a NFPA sample, suggesting that B-RAF mutations are a rare event in pituitary tumorigenesis. PMID:17318013

  18. Clinicopathologic and prognostic associations of KRAS and BRAF mutations in small intestinal adenocarcinoma.

    PubMed

    Jun, Sun-Young; Kim, Misung; Jin Gu, Mi; Kyung Bae, Young; Chang, Hee-Kyung; Sun Jung, Eun; Jang, Kee-Taek; Kim, Jihun; Yu, Eunsil; Woon Eom, Dae; Hong, Seung-Mo

    2016-04-01

    Activating KRAS and/or BRAF mutations have been identified as predictors of resistance to anti-epidermal growth factor receptor (EGFR) chemotherapy in colorectal cancer. But the status of KRAS and BRAF mutations and their clinicopathologic and prognostic significance has not been extensively evaluated in small intestinal adenocarcinomas. In this work, the KRAS and BRAF genes in 190 surgically resected small intestinal adenocarcinoma cases were sequenced and their association with various clinicopathologic variables, including survival of the patients, was analyzed. KRAS or BRAF mutations were observed in 63 (33%) cases. Sixty-one cases had KRAS mutations and 2 had BRAF mutations and the two types of mutation were mutually exclusive. The majority of KRAS mutations were G>A transition (43/61 cases, 71%) or p.G12D (31/61 cases, 51%). The patients with mutant KRAS tended to have higher pT classifications (P=0.034) and more frequent pancreatic invasion (P=0.020) than those with wild-type KRAS. Multivariate logistic regression analysis showed that certain mutated KRAS subtypes (G>A transitions and G12D mutations) were significantly correlated with higher pT classification (P=0.015 and 0.004, respectively) than wild-type KRAS and other KRAS mutations. The patients with KRAS or BRAF mutation had a tendency to shorter overall survival than those with wild-type KRAS and BRAF (P=0.148), but subgroup analysis demonstrated the patients with KRAS mutations showed worse survival (median, 46.0 months; P=0.046) than those with wild-type KRAS (85.4 months) in lower pT classification (pT1-pT3) group. In summary, KRAS and, infrequently, BRAF mutations are observed in a subset of small intestinal adenocarcinomas, and are associated with higher pT classification and more frequent pancreatic invasion. KRAS mutation is a poor prognostic predictor in patients with lower pT classification tumors. Anti-EGFR targeted therapy could be applied to about two-thirds of small intestinal

  19. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors.

    PubMed

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J; Modlin, Robert L; Herschman, Harvey R; Lo, Roger S; McBride, William H; Segura, Tatiana; Ribas, Antoni

    2016-08-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAF(V600)-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds.

  20. ENDOCRINE TUMORS: BRAF V600E mutations in papillary craniopharyngioma.

    PubMed

    Brastianos, Priscilla K; Santagata, Sandro

    2016-04-01

    Papillary craniopharyngioma (PCP) is an intracranial tumor that results in high levels of morbidity. We recently demonstrated that the vast majority of these tumors harbor the oncogenic BRAF V600E mutation. The pathologic diagnosis of PCP can now be confirmed using mutation specific immunohistochemistry and targeted genetic testing. Treatment with targeted agents is now also a possibility in select situations. We recently reported a patient with a multiply recurrent PCP in whom targeting both BRAF and MEK resulted in a dramatic therapeutic response with a marked anti-tumor immune response. This work shows that activation of the MAPK pathway is the likely principal oncogenic driver of these tumors. We will now investigate the efficacy of this approach in a multicenter phase II clinical trial. Post-treatment resection samples will be monitored for the emergence of resistance mechanisms. Further advances in the non-invasive diagnosis of PCP by radiologic criteria and by cell-free DNA testing could someday allow neo-adjuvant therapy for this disease in select patient populations.

  1. The Crystal Structure of BRAF in Complex with an Organoruthenium Inhibitor Reveals a Mechanism for Inhibition of an Active Form of BRAF Kinase†

    PubMed Central

    Xie, Peng; Streu, Craig; Qin, Jie; Bregman, Howard; Pagano, Nicholas; Meggers, Eric; Marmorstein, Ronen

    2010-01-01

    Substitution mutations in the BRAF serine/threonine kinase are found in a variety of human cancers. Such mutations occur in ∼70% of human malignant melanomas, and a single hyperactivating V600E mutation is found in the activation segment of the kinase domain and accounts for more than 90% of these mutations. Given this correlation, the molecular mechanism for BRAF regulation as well as oncogenic activation has attracted considerable interest, and activated forms of BRAF, such as BRAFV600E, have become attractive targets for small molecule inhibition. Here we report on the identification and subsequent optimization of a potent BRAF inhibitor, CS292, based on an organometallic kinase inhibitor scaffold. A cocrystal structure of CS292 in complex with the BRAF kinase domain reveals that CS292 binds to the ATP binding pocket of the kinase and is an ATP competitive inhibitor. The structure of the kinase–inhibitor complex also demonstrates that CS292 binds to BRAF in an active conformation and suggests a mechanism for regulation of BRAF by phosphorylation and BRAFV600E oncogene-induced activation. The structure of CS292 bound to the active form of the BRAF kinase also provides a novel scaffold for the design of BRAFV600E oncogene selective BRAF inhibitors for therapeutic application. PMID:19371126

  2. BRAF Mutation (V600E) Prevalence in Mexican Patients Diagnosed with Melanoma

    PubMed Central

    Zepeda-Lopez, Priscilla Denise; Salas-Alanis, Julio Cesar; Toussaint-Caire, Sonia; Gutierrez-Mendoza, Daniela; Vega-Memije, Elisa; Silva, Saúl Lino; Fajardo-Ramírez, Oscar Raul; Alcazar, Gregorio; Moreno-Treviño, María Guadalupe; Saldaña, Hugo Alberto Barrera

    2016-01-01

    Background B-Raf is a serine/threonine protein kinase activating the MAP kinase/ERK-signaling pathway. It has been shown that 50% of melanomas harbor activating BRAF mutations, with over 90% being the V600E mutation. Objective The goal of this research was to determine the prevalence of the BRAF V600E mutation in patients from Central Mexico diagnosed with primary melanoma. Methods Skin biopsies from 47 patients with melanoma were obtained from the dermatology department of the Hospital General ‘Dr. Manuel Gea González’ in Mexico City. For BRAF mutation determination, after DNA isolation, the gene region where the mutation occurs was amplified by PCR. Subsequently, the presence or absence of the V600E mutation was detected by Sanger sequencing performed at the private molecular diagnostic laboratory Vitagénesis in Monterrey, Mexico. Results Of the 47 patients sampled, 6.4% harbored the V600E mutation. No statistical significance was found between mutations and the type of tumor. PMID:27194985

  3. B-Raf mutation: a key player in molecular biology of cancer.

    PubMed

    Rahman, M A; Salajegheh, A; Smith, R A; Lam, A K-Y

    2013-12-01

    B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.

  4. Germline BRAF mutations in Noonan, LEOPARD and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum

    PubMed Central

    Sarkozy, Anna; Carta, Claudio; Moretti, Sonia; Zampino, Giuseppe; Digilio, Maria C.; Pantaleoni, Francesca; Scioletti, Anna Paola; Esposito, Giorgia; Cordeddu, Viviana; Lepri, Francesca; Petrangeli, Valentina; Dentici, Maria L.; Mancini, Grazia M.S.; Selicorni, Angelo; Rossi, Cesare; Mazzanti, Laura; Marino, Bruno; Ferrero, Giovanni B.; Silengo, Margherita Cirillo; Memo, Luigi; Stanzial, Franco; Faravelli, Francesca; Stuppia, Liborio; Puxeddu, Efisio; Gelb, Bruce D.; Dallapiccola, Bruno; Tartaglia, Marco

    2014-01-01

    Noonan, LEOPARD and cardiofaciocutaneous syndromes (NS, LS and CFCS) are developmental disorders with overlapping features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal and ectodermal anomalies, and variable cognitive deficits. Dysregulated RAS-mitogen-activated protein kinase (MAPK) signal traffic has been established to represent the molecular pathogenic cause underlying these conditions. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting BRAF, which encodes a serine/threonine kinase functioning as a RAS effector frequently mutated in CFCS, subjects with a diagnosis of NS (N= 270), LS (N= 6) and CFCS (N= 33), and no mutation in PTPN11, SOS1, KRAS, RAF1, MEK1 or MEK2, were screened for the entire coding sequence of the gene. Besides the expected high prevalence of mutations observed among CFCS patients (52%), a de novo heterozygous missense change was identified in one subject with LS (17%) and 5 individuals with NS (1.9%). Mutations mapped to multiple protein domains and largely did not overlap with cancer-associated defects. NS-causing mutations had not been documented in CFCS, suggesting that the phenotypes arising from germline BRAF defects might be allele specific. Selected mutant BRAF proteins promoted variable gain of function of the kinase, but appeared less activating compared than the recurrent cancer-associated p.Val600Glu mutant. Our findings provide evidence for a wide phenotypic diversity associated with mutations affecting BRAF, and occurrence of a clinical continuum associated with these molecular lesions. PMID:19206169

  5. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors

    PubMed Central

    Escuin-Ordinas, Helena; Li, Shuoran; Xie, Michael W.; Sun, Lu; Hugo, Willy; Huang, Rong Rong; Jiao, Jing; de-Faria, Felipe Meira; Realegeno, Susan; Krystofinski, Paige; Azhdam, Ariel; Komenan, Sara Marie D.; Atefi, Mohammad; Comin-Anduix, Begoña; Pellegrini, Matteo; Cochran, Alistair J.; Modlin, Robert L.; Herschman, Harvey R.; Lo, Roger S.; McBride, William H.; Segura, Tatiana; Ribas, Antoni

    2016-01-01

    BRAF inhibitors are highly effective therapies for the treatment of BRAFV600-mutated melanoma, with the main toxicity being a variety of hyperproliferative skin conditions due to paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in BRAF wild-type cells. Most of these hyperproliferative skin changes improve when a MEK inhibitor is co-administered, as it blocks paradoxical MAPK activation. Here we show how the BRAF inhibitor vemurafenib accelerates skin wound healing by inducing the proliferation and migration of human keratinocytes through extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle progression. Topical treatment with vemurafenib in two wound-healing mice models accelerates cutaneous wound healing through paradoxical MAPK activation; addition of a mitogen-activated protein kinase kinase (MEK) inhibitor reverses the benefit of vemurafenib-accelerated wound healing. The same dosing regimen of topical BRAF inhibitor does not increase the incidence of cutaneous squamous cell carcinomas in mice. Therefore, topical BRAF inhibitors may have clinical applications in accelerating the healing of skin wounds. PMID:27476449

  6. Fast Diagnostics of BRAF Mutations in Biopsies from Malignant Melanoma.

    PubMed

    Huber, François; Lang, Hans Peter; Glatz, Katharina; Rimoldi, Donata; Meyer, Ernst; Gerber, Christoph

    2016-09-14

    According to the American skin cancer foundation, there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate, lung, and colon each year, and malignant melanoma represents its deadliest form. About 50% of all cases are characterized by a particular mutation BRAF(V600E) in the BRAF (Rapid Acceleration of Fibrosarcoma gene B) gene. Recently developed highly specific drugs are able to fight BRAF(V600E) mutated tumors but require diagnostic tools for fast and reliable mutation detection to warrant treatment efficiency. We completed a preliminary clinical trial applying cantilever array sensors to demonstrate identification of a BRAF(V600E) single-point mutation using total RNA obtained from biopsies of metastatic melanoma of diverse sources (surgical material either frozen or fixated with formalin and embedded in paraffin). The method is faster than the standard Sanger or pyrosequencing methods and comparably sensitive as next-generation sequencing. Processing time from biopsy to diagnosis is below 1 day and does not require PCR amplification, sequencing, and labels. PMID:27490749

  7. Nivolumab for Metastatic Melanoma without a BRAF Mutation

    Cancer.gov

    A summary of results from an international phase III trial show that nivolumab (Opdivo®) improves overall survival compared with the chemotherapy drug dacarbazine in patients with metastatic melanoma whose tumors do not have a mutation in the BRAF gene.

  8. Phase II Pilot Study of Vemurafenib in Patients With Metastatic BRAF-Mutated Colorectal Cancer

    PubMed Central

    Kopetz, Scott; Desai, Jayesh; Chan, Emily; Hecht, Joel Randolph; O'Dwyer, Peter J.; Maru, Dipen; Morris, Van; Janku, Filip; Dasari, Arvind; Chung, Woonbook; Issa, Jean-Pierre J.; Gibbs, Peter; James, Brian; Powis, Garth; Nolop, Keith B.; Bhattacharya, Suman; Saltz, Leonard

    2015-01-01

    Purpose BRAF V600E mutation is seen in 5% to 8% of patients with metastatic colorectal cancer (CRC) and is associated with poor prognosis. Vemurafenib, an oral BRAF V600 inhibitor, has pronounced activity in patients with metastatic melanoma, but its activity in patients with BRAF V600E–positive metastatic CRC was unknown. Patients and Methods In this multi-institutional, open-label study, patients with metastatic CRC with BRAF V600 mutations were recruited to an expansion cohort at the previously determined maximum-tolerated dose of 960 mg orally twice a day. Results Twenty-one patients were enrolled, of whom 20 had received at least one prior metastatic chemotherapy regimen. Grade 3 toxicities included keratoacanthomas, rash, fatigue, and arthralgia. Of the 21 patients treated, one patient had a confirmed partial response (5%; 95% CI, 1% to 24%) and seven other patients had stable disease by RECIST criteria. Median progression-free survival was 2.1 months. Patterns of concurrent mutations, microsatellite instability status, CpG island methylation status, PTEN loss, EGFR expression, and copy number alterations were not associated with clinical benefit. In contrast to prior expectations, concurrent KRAS and NRAS mutations were detected at low allele frequency in a subset of the patients' tumors (median, 0.21% allele frequency) and were apparent mechanisms of acquired resistance in vemurafenib-sensitive patient-derived xenograft models. Conclusion In marked contrast to the results seen in patients with BRAF V600E–mutant melanoma, single-agent vemurafenib did not show meaningful clinical activity in patients with BRAF V600E mutant CRC. Combination strategies are now under development and may be informed by the presence of intratumor heterogeneity of KRAS and NRAS mutations. PMID:26460303

  9. Biological insights into BRAF(V600) mutations in melanoma patient: Not mere therapeutic targets.

    PubMed

    Improta, Giuseppina; Pelosi, Giuseppe; Tamborini, Elena; Donia, Marco; Santinami, Mario; de Braud, Filippo; Fraggetta, Filippo

    2013-08-01

    Some experimental evidence indicates that uncommon BRAF mutations consisting in the substitution of 2 adjacent nucleotides within codon 600 are in a cis configuration and associate with BRAF gene amplification. These findings suggest that BRAF(V600) mutations are unlikely to occur as homozygous alterations in clinical melanoma samples, with gene amplification perhaps contributing to mask the heterozygous state. PMID:24179707

  10. Comparative safety of BRAF and MEK inhibitors (vemurafenib, dabrafenib and trametinib) in first-line therapy for BRAF-mutated metastatic melanoma

    PubMed Central

    Cebollero, Ana; Puértolas, Teresa; Pajares, Isabel; Calera, Lourdes; Antón, Antonio

    2016-01-01

    A retrospective observational study was conducted on patients diagnosed with serine/threonine-protein kinase B-Raf (BRAF)-mutated metastatic melanoma, who underwent first-line therapy with BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors (vemurafenib, dabrafenib or a combination of dabrafenib and trametinib) at the Miguel Servet University Hospital (Zaragoza, Spain) between November, 2011 and August, 2015. The aim of this study was to analyse the toxicity produced by BRAF and MEK inhibitors. The most common toxicities were similar to those published in clinical trials, particularly arthralgia, alopecia and photosensitivity in the vemurafenib group; asthenia, hyperkeratosis and dry skin in the dabrafenib group; and diarrhoea and dry skin in the dabrafenib plus trametinib group. Toxicities that had not been described in clinical trials were also identified. Thus, the present study confirmed that the results obtained in clinical trials are similar to those obtained in clinical practice. PMID:27699043

  11. Comparative safety of BRAF and MEK inhibitors (vemurafenib, dabrafenib and trametinib) in first-line therapy for BRAF-mutated metastatic melanoma

    PubMed Central

    Cebollero, Ana; Puértolas, Teresa; Pajares, Isabel; Calera, Lourdes; Antón, Antonio

    2016-01-01

    A retrospective observational study was conducted on patients diagnosed with serine/threonine-protein kinase B-Raf (BRAF)-mutated metastatic melanoma, who underwent first-line therapy with BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors (vemurafenib, dabrafenib or a combination of dabrafenib and trametinib) at the Miguel Servet University Hospital (Zaragoza, Spain) between November, 2011 and August, 2015. The aim of this study was to analyse the toxicity produced by BRAF and MEK inhibitors. The most common toxicities were similar to those published in clinical trials, particularly arthralgia, alopecia and photosensitivity in the vemurafenib group; asthenia, hyperkeratosis and dry skin in the dabrafenib group; and diarrhoea and dry skin in the dabrafenib plus trametinib group. Toxicities that had not been described in clinical trials were also identified. Thus, the present study confirmed that the results obtained in clinical trials are similar to those obtained in clinical practice.

  12. TRAP1 is involved in BRAF regulation and downstream attenuation of ERK phosphorylation and cell-cycle progression: a novel target for BRAF-mutated colorectal tumors.

    PubMed

    Condelli, Valentina; Piscazzi, Annamaria; Sisinni, Lorenza; Matassa, Danilo Swann; Maddalena, Francesca; Lettini, Giacomo; Simeon, Vittorio; Palladino, Giuseppe; Amoroso, Maria Rosaria; Trino, Stefania; Esposito, Franca; Landriscina, Matteo

    2014-11-15

    Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e., protection from apoptosis, drug resistance, metabolic regulation, and protein quality control/ubiquitination. The hypothesis that TRAP1 plays a regulatory function on the BRAF pathway, arising from the observation that BRAF levels are decreased upon TRAP1 interference, was tested in human breast and colorectal carcinoma in vitro and in vivo. This study shows that TRAP1 is involved in the regulation of BRAF synthesis/ubiquitination, without affecting its stability. Indeed, BRAF synthesis is facilitated in a TRAP1-rich background, whereas increased ubiquitination occurs upon disruption of the TRAP1 network that correlates with decreased protein levels. Remarkably, BRAF downstream pathway is modulated by TRAP1 regulatory activity: indeed, TRAP1 silencing induces (i) ERK phosphorylation attenuation, (ii) cell-cycle inhibition with cell accumulation in G0-G1 and G2-M transitions, and (iii) extensive reprogramming of gene expression. Interestingly, a genome-wide profiling of TRAP1-knockdown cells identified cell growth and cell-cycle regulation as the most significant biofunctions controlled by the TRAP1 network. It is worth noting that TRAP1 regulation on BRAF is conserved in human colorectal carcinomas, with the two proteins being frequently coexpressed. Finally, the dual HSP90/TRAP1 inhibitor HSP990 showed activity against the TRAP1 network and high cytostatic potential in BRAF-mutated colorectal carcinoma cells. Therefore, this novel TRAP1 function represents an attractive therapeutic window to target dependency of BRAF-driven tumors on TRAP1 translational/quality control machinery. PMID:25239454

  13. TRAP1 is involved in BRAF regulation and downstream attenuation of ERK phosphorylation and cell-cycle progression: a novel target for BRAF-mutated colorectal tumors.

    PubMed

    Condelli, Valentina; Piscazzi, Annamaria; Sisinni, Lorenza; Matassa, Danilo Swann; Maddalena, Francesca; Lettini, Giacomo; Simeon, Vittorio; Palladino, Giuseppe; Amoroso, Maria Rosaria; Trino, Stefania; Esposito, Franca; Landriscina, Matteo

    2014-11-15

    Human BRAF-driven tumors are aggressive malignancies with poor clinical outcome and lack of sensitivity to therapies. TRAP1 is a HSP90 molecular chaperone deregulated in human tumors and responsible for specific features of cancer cells, i.e., protection from apoptosis, drug resistance, metabolic regulation, and protein quality control/ubiquitination. The hypothesis that TRAP1 plays a regulatory function on the BRAF pathway, arising from the observation that BRAF levels are decreased upon TRAP1 interference, was tested in human breast and colorectal carcinoma in vitro and in vivo. This study shows that TRAP1 is involved in the regulation of BRAF synthesis/ubiquitination, without affecting its stability. Indeed, BRAF synthesis is facilitated in a TRAP1-rich background, whereas increased ubiquitination occurs upon disruption of the TRAP1 network that correlates with decreased protein levels. Remarkably, BRAF downstream pathway is modulated by TRAP1 regulatory activity: indeed, TRAP1 silencing induces (i) ERK phosphorylation attenuation, (ii) cell-cycle inhibition with cell accumulation in G0-G1 and G2-M transitions, and (iii) extensive reprogramming of gene expression. Interestingly, a genome-wide profiling of TRAP1-knockdown cells identified cell growth and cell-cycle regulation as the most significant biofunctions controlled by the TRAP1 network. It is worth noting that TRAP1 regulation on BRAF is conserved in human colorectal carcinomas, with the two proteins being frequently coexpressed. Finally, the dual HSP90/TRAP1 inhibitor HSP990 showed activity against the TRAP1 network and high cytostatic potential in BRAF-mutated colorectal carcinoma cells. Therefore, this novel TRAP1 function represents an attractive therapeutic window to target dependency of BRAF-driven tumors on TRAP1 translational/quality control machinery.

  14. Clinicopathological characteristics associated with BRAF(K601E) and BRAF(L597) mutations in melanoma.

    PubMed

    Voskoboynik, Mark; Mar, Victoria; Mailer, Sonia; Colebatch, Andrew; Fennessy, Anne; Logan, Aleksandra; Hewitt, Chelsee; Cebon, Jonathon; Kelly, John; McArthur, Grant

    2016-03-01

    BRAF mutations at codons L597 and K601 occur uncommonly in melanoma. Clinical and pathological associations of these mutations were investigated in a cohort of 1119 patients with known BRAF mutation status. A BRAF mutation was identified in 435 patients; Mutations at L597 and the K601E mutation were seen in 3.4 and 3.2% of these, respectively. K601E melanomas tended to occur in male patients, a median age of 58 yr, were generally found on the trunk (64%) and uncommonly associated with chronically sun-damaged (CSD) skin. BRAF L597 melanomas occurred in older patients (median 66 yr), but were associated with CSD skin (extremities or head and neck location - 73.3%, P = 0.001). Twenty-three percent of patients with V600E- and 43% of patients with K601E-mutant melanomas presented with nodal disease at diagnosis compared to just 14% of patients with BRAF wild-type tumors (P = 0.001 and 0.006, respectively). Overall, these mutations represent a significant minority of BRAF mutations, but have distinct clinicopathological phenotypes and clinical behaviors. PMID:26643848

  15. Association of CDK4 germline and BRAF somatic mutations in a patient with multiple primary melanomas and BRAF inhibitor resistance.

    PubMed

    Governa, Maurizio; Caprarella, Evelina; Dalla Pozza, Edoardo; Vigato, Enrico; Maritan, Monia; Caputo, Glenda G; Zannoni, Marina; Rosina, Paolo; Elefanti, Lisa; Stagni, Camilla; Menin, Chiara

    2015-10-01

    Many genetic alterations, including predisposing or somatic mutations, may contribute toward the development of melanoma. Although CDKN2A and CDK4 are high-penetrance genes for melanoma, MC1R is a low-penetrance gene that has been associated most consistently with the disease. Moreover, BRAF is the most frequently somatically altered oncogene and is a validated therapeutic target in melanoma. This paper reports a case of multiple primary melanoma with germline CDK4 mutation, MC1R variant, and somatic BRAF mutation in nine out of 10 melanomas, indicating that a common pathogenesis, because of a predisposing genetic background, may be shared among distinct subsequent melanomas of probable clonal origin. After 3 months of targeted therapy with BRAF inhibitor, our patient developed resistance with rapid progression of the disease leading to death. This is the first case in which early resistance to BRAF inhibitor has been reported in a patient with CDK4 germline mutation.

  16. Association of CDK4 germline and BRAF somatic mutations in a patient with multiple primary melanomas and BRAF inhibitor resistance.

    PubMed

    Governa, Maurizio; Caprarella, Evelina; Dalla Pozza, Edoardo; Vigato, Enrico; Maritan, Monia; Caputo, Glenda G; Zannoni, Marina; Rosina, Paolo; Elefanti, Lisa; Stagni, Camilla; Menin, Chiara

    2015-10-01

    Many genetic alterations, including predisposing or somatic mutations, may contribute toward the development of melanoma. Although CDKN2A and CDK4 are high-penetrance genes for melanoma, MC1R is a low-penetrance gene that has been associated most consistently with the disease. Moreover, BRAF is the most frequently somatically altered oncogene and is a validated therapeutic target in melanoma. This paper reports a case of multiple primary melanoma with germline CDK4 mutation, MC1R variant, and somatic BRAF mutation in nine out of 10 melanomas, indicating that a common pathogenesis, because of a predisposing genetic background, may be shared among distinct subsequent melanomas of probable clonal origin. After 3 months of targeted therapy with BRAF inhibitor, our patient developed resistance with rapid progression of the disease leading to death. This is the first case in which early resistance to BRAF inhibitor has been reported in a patient with CDK4 germline mutation. PMID:26110554

  17. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation.

    PubMed

    Lochhead, Pamela A; Clark, Jonathan; Wang, Lan-Zhen; Gilmour, Lesley; Squires, Matthew; Gilley, Rebecca; Foxton, Caroline; Newell, David R; Wedge, Stephen R; Cook, Simon J

    2016-01-01

    ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRAS(G12C/G13D) or BRAF(V600E). Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.

  18. BRAF Mutations in an Italian Regional Population: Implications for the Therapy of Thyroid Cancer

    PubMed Central

    Monti, Eleonora; Bovero, Michela; Mortara, Lorenzo; Pera, Giorgia; Zupo, Simonetta; Gugiatti, Elena; Dono, Mariella; Massa, Barbara; Ansaldo, Gian Luca; Massimo, Giusti

    2015-01-01

    Background. Molecular diagnostics has offered new techniques for searching for mutations in thyroid indeterminate lesions. The study's aim was to evaluate the BRAF mutations' incidence in an Italian regional population. Subjects and Methods. 70 Caucasian patients born in Liguria with indeterminate or suspicious cytological diagnoses. Results. A BRAF gene mutation was successfully analyzed in 56/70 patients. The mutation was BRAF V600E in 12/56 cases (21%) and BRAF K601E in 2/56 (4%). Of the BRAF mutated samples on cytological diagnosis (14/56 cases), 2/14 cases (14%) were benign on final histology and 12/14 (86%) were malignant. All BRAF-mutated cases on cytology that were found to be benign on histological examination carried the K601E mutation. Of the nonmutated BRAF cases (42/56, 75%) which were later found to be malignant on definitive histology, 5 cases were follicular carcinomas (36%), 3 cases were incidentally found to be papillary microcarcinomas (22%), 2 were cases papillary carcinomas (14%), 1 was case follicular variant of papillary carcinoma (7%), 1 was case medullary carcinoma (7%), 1 case was Hurtle cell tumor (7%), and 1 case was combined cell carcinoma and papillary oncocytic carcinoma (7%). Conclusions. The presence of the BRAF V600E mutation may suggest a more aggressive surgical approach. BRAF K601E mutation did not correlate with malignancy indexes. PMID:26693224

  19. BRAF mutation analysis in circulating free tumor DNA of melanoma patients treated with BRAF inhibitors.

    PubMed

    Gonzalez-Cao, Maria; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; De Mattos-Arruda, Leticia; Muñoz-Couselo, Eva; Manzano, Jose L; Cortes, Javier; Berros, Jose P; Drozdowskyj, Ana; Sanmamed, Miguel; Gonzalez, Alvaro; Alvarez, Carlos; Viteri, Santiago; Karachaliou, Niki; Martin Algarra, Salvador; Bertran-Alamillo, Jordi; Jordana-Ariza, Nuria; Rosell, Rafael

    2015-12-01

    BRAFV600E is a unique molecular marker for metastatic melanoma, being the most frequent somatic point mutation in this malignancy. Detection of BRAFV600E in blood could have prognostic and predictive value and could be useful for monitoring response to BRAF-targeted therapy. We developed a rapid, sensitive method for the detection and quantification of BRAFV600E in circulating free DNA (cfDNA) isolated from plasma and serum on the basis of a quantitative 5'-nuclease PCR (Taqman) in the presence of a peptide-nucleic acid. We validated the assay in 92 lung, colon, and melanoma archival serum and plasma samples with paired tumor tissue (40 wild-type and 52 BRAFV600E). The correlation of cfDNA BRAFV600E with clinical parameters was further explored in 22 metastatic melanoma patients treated with BRAF inhibitors. Our assay could detect and quantify BRAFV600E in mixed samples with as little as 0.005% mutant DNA (copy number ratio 1 : 20 000), with a specificity of 100% and a sensitivity of 57.7% in archival serum and plasma samples. In 22 melanoma patients treated with BRAF inhibitors, the median progression-free survival was 3.6 months for those showing BRAFV600E in pretreatment cfDNA compared with 13.4 months for those in whom the mutation was not detected (P=0.021). Moreover, the median overall survival for positive versus negative BRAFV600E tests in pretreatment cfDNA differed significantly (7 vs. 21.8 months, P=0.017). This finding indicates that the sensitive detection and accurate quantification of low-abundance BRAFV600E alleles in cfDNA using our assay can be useful for predicting treatment outcome.

  20. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation

    PubMed Central

    Lochhead, Pamela A.; Clark, Jonathan; Wang, Lan-Zhen; Gilmour, Lesley; Squires, Matthew; Gilley, Rebecca; Foxton, Caroline; Newell, David R.; Wedge, Stephen R.; Cook, Simon J.

    2016-01-01

    Abstract ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRASG12C/G13D or BRAFV600E. Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target. PMID:26959608

  1. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines.

    PubMed

    Xu, Xiulong; Quiros, Roderick M; Gattuso, Paolo; Ain, Kenneth B; Prinz, Richard A

    2003-08-01

    The RAS-RAF-MEK-ERK-MAP kinase pathway mediates the cellular response to extracellular signals that regulate cell proliferation, differentiation, and apoptosis. Mutation of the RAS proto-oncogene occurs in various thyroid neoplasms such as papillary thyroid carcinomas (PTCs), follicular thyroid adenomas and carcinomas. A second genetic alteration frequently involved in PTC is RET/PTC rearrangements. Recent studies have shown that BRAF, which is a downstream signaling molecule of RET and RAS, is frequently mutated in melanomas. This study tests whether BRAF is also mutated in thyroid tumors and cell lines. We analyzed BRAF gene mutation at codon 599 in thyroid tumors using mutant-allele-specific PCR and in 10 thyroid tumor cell lines by DNA sequencing of the PCR-amplified exon 15. We found that BRAF was mutated in 8 of 10 thyroid tumor cell lines, including 2 of 2 papillary carcinoma cell lines, 4 of 5 anaplastic carcinoma cell lines, 1 of 2 follicular carcinoma cell lines, and 1 follicular adenoma cell line. BRAF mutation at codon 599 was detected in 21 of 56 PTC (38%) but not in 18 follicular adenomas and 6 goiters. BRAF mutation occurred in PTC at a significantly higher frequency in male patients than in female patients. To test whether BRAF mutation may cooperate with RET/PTC rearrangements in the oncogenesis of PTC, we tested whether BRAF-mutated PTCs were also positive for RET/PTC rearrangements. Immunohistochemical staining was conducted to evaluate RET/PTC rearrangements by using two different anti-RET antibodies. Surprisingly, we found that a large number of BRAF-mutated PTCs (8 of 21) also expressed RET, indicating that the RET proto-oncogene is rearranged in these BRAF-mutated PTCs. These observations suggest that mutated BRAF gene may cooperate with RET/PTC to induce the oncogenesis of PTC.

  2. Utility of BRAF V600E Immunohistochemistry Expression Pattern as a Surrogate of BRAF Mutation Status in 154 Patients with Advanced Melanoma.

    PubMed

    Tetzlaff, Michael T; Pattanaprichakul, Penvadee; Wargo, Jennifer; Fox, Patricia S; Patel, Keyur P; Estrella, Jeannelyn S; Broaddus, Russell R; Williams, Michelle D; Davies, Michael A; Routbort, Mark J; Lazar, Alexander J; Woodman, Scott E; Hwu, Wen-Jen; Gershenwald, Jeffrey E; Prieto, Victor G; Torres-Cabala, Carlos A; Curry, Jonathan L

    2015-08-01

    Successful BRAF inhibitor therapy depends on the accurate assessment of the mutation status of the BRAF V600 residue in tissue samples. In melanoma, immunohistochemical (IHC) analysis with monoclonal anti-BRAF V600E has emerged as a sensitive and specific surrogate of BRAF V600E mutation, particularly when BRAF V600E protein expression is homogeneous and strong. A subset of melanomas exhibit heterogeneous labeling for BRAF V600E, but our understanding of the significance of heterogeneous BRAF V600E IHC expression is limited. We used next-generation sequencing to compare BRAF V600E IHC staining patterns in 154 melanomas: 79 BRAF(WT) and 75 BRAF (including 53 V600E) mutants. Agreement among dermatopathologists on tumor morphology, IHC expression, and intensity was excellent (ρ = 0.99). A predominantly epithelioid cell phenotype significantly correlated with the BRAF V600E mutation (P = .0085). Tumors demonstrating either heterogeneous or homogeneous IHC expression were significantly associated with the BRAF V600E mutation (P < .0001), as was increased intensity of staining (P < .0001). The positive predictive value was 98% for homogenous IHC expression compared with 70% for heterogeneous labeling. Inclusion of both heterogeneous and homogeneous BRAF V600E IHC expression as a positive test significantly improved IHC test sensitivity from 85% to 98%. However, this reduced BRAF V600E IHC test specificity from 99% to 96%. Cautious evaluation of heterogeneous BRAF V600E IHC expression is warranted and comparison with sequencing results is critical, given its reduced test specificity and positive predictive value for detecting the BRAF V600E mutation.

  3. Impact of BRAF mutation status in the prognosis of cutaneous melanoma: an area of ongoing research

    PubMed Central

    Bhatia, Parisha; Friedlander, Paul; Zakaria, Elmageed A.

    2015-01-01

    This review is intended to provide an updated role of molecular genetics and various targeted therapies that have been developed to treat advanced stages of melanoma. Because of the declining success in melanoma therapy, the curative treatment for advanced stage melanoma has been a challenge for clinicians. Several mutations such as N-RAS, p53, BRAF including mutant-BRAF that lead to activation of kinase pathway, are implicated in the development of malignant melanoma. However, the current literature depicts that the prognostic role of BRAF mutation in disease progression is still controversial. While its higher level in advanced stage disease is associated with decreased overall survival (OS), some studies show that it failed to confer as an independent prognostic predictor of the disease. This has also led researchers to accomplish newer therapeutic strategies that lead to improved disease-response and grant survival benefits. Vemurafenib, a BRAF inhibitor agent, is one of the few available targeted therapies that is FDA approved and provides promising results in metastatic disease. However, its resistance at an early stage is of great concern. Recent implementation of combinational therapies including “targeted therapy”, immunotherapy, and biological agents has appealed many researchers to define the adjunctive role of available therapies and their limitations in advanced stage and metastatic melanoma. This commends the need for future multi-institutional studies to confirm the clinical validity of different therapeutic strategies on a large scale population. PMID:25738144

  4. Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis.

    PubMed

    Xing, Mingzhao; Cohen, Yoram; Mambo, Elizabeth; Tallini, Giovanni; Udelsman, Robert; Ladenson, Paul W; Sidransky, David

    2004-03-01

    Follicular epithelial cell-derived thyroid tumors are common neoplasms comprised mainly of benign thyroid adenomas, follicular thyroid cancers, and papillary thyroid cancers (PTCs). Hypermethylation of the tumor suppressor gene RASSF1A and activating mutation of BRAF gene have been reported recently in thyroid cancers. To additionally investigate the roles of these two epigenetic/genetic alterations in thyroid tumor progression, we examined their occurrences and relationship in both benign and malignant thyroid neoplasms. With real-time quantitative methylation-specific PCR, we found that 4 of 9 (44%) benign adenomas, 9 of 12 (75%) follicular thyroid cancers tumors, and 6 of 30 (20%) of PTC tumors harbored promoter methylation in > or = 25% of RASSF1A alleles. Additional quantitative analysis revealed RASSF1A methylation only in BRAF mutation-negative PTCs. A similar inverse correlation of RASSF1A methylation with BRAF mutation was seen in thyroid tumor cell lines. Our results, therefore, suggest that epigenetic inactivation of RASSF1A through aberrant methylation is an early step in thyroid tumorigenesis. Like the previously reported mutually exclusive relationship between BRAF mutation and other Ras pathway components such as RET/PTC rearrangement, a mutually exclusive relationship also exists between BRAF mutation and RASSF1A methylation in thyroid tumorigenesis.

  5. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    PubMed

    Piton, Nicolas; Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer.

  6. BRAF mutation is not predictive of long-term outcome in papillary thyroid carcinoma.

    PubMed

    Henke, Lauren E; Pfeifer, John D; Ma, Changquing; Perkins, Stephanie M; DeWees, Todd; El-Mofty, Samir; Moley, Jeffrey F; Nussenbaum, Brian; Haughey, Bruce H; Baranski, Thomas J; Schwarz, Julie K; Grigsby, Perry W

    2015-06-01

    The BRAF mutation occurs commonly in papillary thyroid carcinoma (PTC). Previous investigations of its utility to predict recurrence-free survival (RFS) and disease-specific survival (DSS) have reported conflicting results and its role remains unclear. The purpose of this retrospective study was to determine the incidence of the BRAF mutation and analyze its relationship to clinicopathologic risk factors and long-term outcomes in the largest, single-institution American cohort to date. BRAF mutational status was determined in 508 PTC patients using RFLP analysis. The relationships between BRAF mutation status, patient and tumor characteristics, RFS, and DSS were analyzed. The BRAF mutation was present in 67% of patients. On multivariate analysis, presence of the mutation predicted only for capsular invasion (HR, 1.7; 95% CI, 1.1-2.6), cervical lymph node involvement (HR, 1.7; 95% CI, 1.1-2.7), and classic papillary histology (HR, 1.8; 95% CI 1.1-2.9). There was no significant relationship between the BRAF mutation and RFS or DSS, an observation that was consistent across univariate, multivariate, and Kaplan-Meier analyses. This is the most extensive study to date in the United States to demonstrate that BRAF mutation is of no predictive value for recurrence or survival in PTC. We found correlations of BRAF status and several clinicopathologic characteristics of high-risk disease, but limited evidence that the mutation correlates with more extensive or aggressive disease. This analysis suggests that BRAF is minimally prognostic in PTC. However, prevalence of the BRAF mutation is 70% in the general population, providing the opportunity for targeted therapy.

  7. Concordance of KRAS/BRAF Mutation Status in Metastatic Colorectal Cancer before and after Anti-EGFR Therapy.

    PubMed

    Gattenlöhner, S; Etschmann, B; Kunzmann, V; Thalheimer, A; Hack, M; Kleber, G; Einsele, H; Germer, C; Müller-Hermelink, H-K

    2009-01-01

    Anti-EGFR targeted therapy is a potent strategy in the treatment of metastatic colorectal cancer (mCRC) but activating mutations in the KRAS gene are associated with poor response to this treatment. Therefore, KRAS mutation analysis is employed in the selection of patients for EGFR-targeted therapy and various studies have shown a high concordance between the mutation status in primary CRC and corresponding metastases. However, although development of therapy related resistance occurs also in the context of novel drugs such as tyrosine kinase-inhibitors the effect of the anti-EGFR treatment on the KRAS/BRAF mutation status itself in recurrent mCRC has not yet been clarified. Therefore, we analyzed 21 mCRCs before/after anti-EGFR therapy and found a pre-/posttherapeutic concordance of the KRAS/BRAF mutation status in 20 of the 21 cases examined. In the one discordant case, further analyses revealed that a tumor mosaicism or multiple primary tumors were present, indicating that anti-EGFR therapy has no influence on KRAS/BRAF mutation status in mCRC. Moreover, as the preselection of patients with a KRAS(wt) genotype for anti-EGFR therapy has become a standard procedure, sample sets such ours might be the basis for future studies addressing the identification of potential anti-EGFR therapy induced genetic alterations apart from KRAS/BRAF mutations.

  8. BRAF Kinase Domain Mutations are Common in RASwt Chronic Myelomonocytic Leukemia

    PubMed Central

    Zhang, Liping; Singh, Rajesh R.; Patel, Keyur P.; Stingo, Francesco; Routbort, Mark; You, M. James; Miranda, Roberto N.; Kantarjian, Hagop M.; Medeiros, L. Jeffrey; Luthra, Raja; Khoury, Joseph D.

    2014-01-01

    Purpose The frequency of RAS mutations in chronic myelomonocytic leukemia (CMML) suggests that activation of the MAPK pathway is important in CMML pathogenesis. Accordingly, we hypothesized that mutations in other members of the MAPK pathway might be overrepresented in RASwt CMML. Methods We performed next generation sequencing analysis on 70 CMML patients with known RAS mutation status using the TruSeq Amplicon Cancer Panel kit (Illumina, San Diego, CA). Results The study group included 37 men and 33 women with a median age of 67.8 years (range, 28–86 years). Forty patients were RASwt and 30 were RASmut; the latter included KRAS=17; NRAS=12; KRAS+NRAS=1. Next-generation sequencing showed 5 patients (7.1% of total group; 12.5% of RASwt group) with RASwt who had BRAF mutations. All BRAFmut patients had CMML-1; 2 (40%) with MPN-CMML and 3 with MDS-CMML. The BRAF mutations were of missense type and involved exon 11 in 1 patient and exon 15 in 4 patients. All BRAFmut patients had CMML-1 with low-risk cytogenetic findings, and none of the BRAFmut CMML cases were therapy-related. Two (40%) of the 5 patients with BRAFmut patients transformed to acute myeloid leukemia during follow up. Multivariate Cox proportional hazard regression modeling suggests that BRAFmut status is associated with overall survival (p=0.04). Additionally, the RASmut group tended to have worse OS compared to the RASwt group. Conclusion In summary, we demonstrate that a subset of patients with RASwt CMML harbors BRAF kinase domain mutations that are potentially capable of activating the MAPK signaling pathway. PMID:24446311

  9. KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas.

    PubMed

    Becker, Aline Paixão; Scapulatempo-Neto, Cristovam; Carloni, Adriana C; Paulino, Alessandra; Sheren, Jamie; Aisner, Dara L; Musselwhite, Evelyn; Clara, Carlos; Machado, Hélio R; Oliveira, Ricardo S; Neder, Luciano; Varella-Garcia, Marileila; Reis, Rui M

    2015-07-01

    Up to 20% of patients with pilocytic astrocytoma (PA) experience a poor outcome. BRAF alterations and Fibroblast growth factor receptor 1 (FGFR1) point mutations are key molecular alterations in Pas, but their clinical implications are not established. We aimed to determine the frequency and prognostic role of these alterations in a cohort of 69 patients with PAs. We assessed KIAA1549:BRAF fusion by fluorescence in situ hybridization and BRAF (exon 15) mutations by capillary sequencing. In addition, FGFR1 expression was analyzed using immunohistochemistry, and this was compared with gene amplification and hotspot mutations (exons 12 and 14) assessed by fluorescence in situ hybridization and capillary sequencing. KIAA1549:BRAF fusion was identified in almost 60% of cases. Two tumors harbored mutated BRAF. Despite high FGFR1 expression overall, no cases had FGFR1 amplifications. Three cases harbored a FGFR1 p.K656E point mutation. No correlation was observed between BRAF and FGFR1 alterations. The cases were predominantly pediatric (87%), and no statistical differences were observed in molecular alterations-related patient ages. In summary, we confirmed the high frequency of KIAA1549:BRAF fusion in PAs and its association with a better outcome. Oncogenic mutations of FGFR1, although rare, occurred in a subset of patients with worse outcome. These molecular alterations may constitute alternative targets for novel clinical approaches, when radical surgical resection is unachievable. PMID:26083571

  10. Ultra-deep sequencing confirms immunohistochemistry as a highly sensitive and specific method for detecting BRAF V600E mutations in colorectal carcinoma.

    PubMed

    Rössle, Matthias; Sigg, Michèle; Rüschoff, Jan H; Wild, Peter J; Moch, Holger; Weber, Achim; Rechsteiner, Markus P

    2013-11-01

    The activating BRAF (V600) mutation is a well-established negative prognostic biomarker in metastatic colorectal carcinoma (CRC). A recently developed monoclonal mouse antibody (clone VE1) has been shown to detect reliably BRAF (V600E) mutated protein by immunohistochemistry (IHC). In this study, we aimed to compare the detection of BRAF (V600E) mutations by IHC, Sanger sequencing (SaS), and ultra-deep sequencing (UDS) in CRC. VE1-IHC was established in a cohort of 68 KRAS wild-type CRCs. The VE1-IHC was only positive in the three patients with a known BRAF (V600E) mutation as assessed by SaS and UDS. The test cohort consisted of 265 non-selected, consecutive CRC samples. Thirty-nine out of 265 cases (14.7%) were positive by VE1-IHC. SaS of 20 randomly selected IHC negative tumors showed BRAF wild-type (20/20). Twenty-four IHC-positive cases were confirmed by SaS (24/39; 61.5%) and 15 IHC-positive cases (15/39; 38.5%) showed a BRAF wild-type by SaS. UDS detected a BRAF (V600E) mutation in 13 of these 15 discordant cases. In one tumor, the mutation frequency was below our threshold for UDS positivity, while in another case, UDS could not be performed due to low DNA amount. Statistical analysis showed sensitivities of 100% and 63% and specificities of 95 and 100% for VE1-IHC and SaS, respectively, compared to combined results of SaS and UDS. Our data suggests that there is high concordance between UDS and IHC using the anti-BRAF(V600E) (VE1) antibody. Thus, VE1 immunohistochemistry is a highly sensitive and specific method in detecting BRAF (V600E) mutations in colorectal carcinoma.

  11. Clinicopathologic findings and BRAF mutation in cutaneous melanoma in young adults.

    PubMed

    Estrozi, Bruna; Machado, Juliana; Rodriguez, Rubens; Bacchi, Carlos E

    2014-01-01

    Cutaneous melanoma in young patients is rare with increasing incidence. It is not clear whether the etiology and clinical outcome are similar to cutaneous melanoma in the elderly. Mutations in BRAF gene in patients with cutaneous melanoma, in general, range in frequency from 20% to 80%; however, the status and clinical significance of BRAF mutations in the young population have not been evaluated. We investigated 132 cases of primary cutaneous melanoma in patients aged between 18 and 30 years with emphasis on clinical characteristics, pathologic features, and molecular evaluation of mutation in the BRAF gene (BRAF(V600E)). It was predominantly seen in female individuals (61.4%), trunk was the most common site of involvement (40.4%), and superficially spreading melanoma was the predominant histologic type (79.5%). Mutation in BRAF(V600E) was analyzed successfully in 93 cases using an RT-PCR. The BRAF(V600E) mutation was identified in 38.7% (36/93) and was associated with vertical growth phase (P=0.01) and mild inflammatory infiltrate (P=0.02). No case of melanoma with regression phenomenon presented with BRAF(V600E) mutation (P<0.05). There was no significant association between BRAF(V600E) mutation and sex, histologic type, the Clark level, the Breslow index, solar elastosis, angiolymphatic and perineural invasion, satellitosis, and coexisting nevus. As in melanomas in older patients, these results probably indicate that BRAF mutation may not be the only key factor in melanoma tumorigenesis, and that there should be multiple alternative genetic pathways related to melanoma.

  12. MicroRNA expression in BRAF-mutated and wild-type metastatic melanoma and its correlation with response duration to BRAF inhibitors.

    PubMed

    Pinto, Rosamaria; Strippoli, Sabino; De Summa, Simona; Albano, Anna; Azzariti, Amalia; Guida, Gabriella; Popescu, Ondina; Lorusso, Vito; Guida, Michele; Tommasi, Stefania

    2015-01-01

    Objective: Currently, the treatment of BRAF V600-mutated metastatic melanoma with BRAF inhibitors gives a response rate of ~ 50% with a progression-free survival of ~ 6 -- 7 months. In order to identify predictive biomarkers capable of stratifying BRAF-mutated patients at high risk of shorter response duration to anti-BRAF therapy, the authors analyzed the expression of 15 microRNAs (miRNAs) targeting crucial genes involved in melanoma biology and drug response.Research design and methods: A total of 15 miRNAs and target gene expression were investigated in 43 patients (30 BRAF-mutated, and 13 BRAF wild-type). Moreover, 20 BRAF-mutated patients treated with vemurafenib were analyzed for miRNA expression in respect to time-to-progression.Results: All miRNAs except miR-192 showed low expression in BRAF-mutated as compared with BRAF wild-type patients. In particular, miR-101, miR-221,miR-21, miR-338-3p and miR-191 resulted in significant downregulation inBRAF-mutated patients. Moreover, high expression of miR-192 and miR-193b* and low expression of miR-132 resulted in significant association with shorter progression.Conclusion: Three miRNAs were significantly associated with clinical outcome in metastatic melanoma patients. An increased understanding of the molecular assessment of BRAF-mutated melanomas could allow development of specific molecular tests able to predict response duration.

  13. Predictive and Prognostic Roles of BRAF Mutation in Stage III Colon Cancer: Results from Intergroup Trial CALGB 89803

    PubMed Central

    Ogino, Shuji; Shima, Kaori; Meyerhardt, Jeffrey A.; McCleary, Nadine J.; Ng, Kimmie; Hollis, Donna; Saltz, Leonard B.; Mayer, Robert J.; Schaefer, Paul; Whittom, Renaud; Hantel, Alexander; Benson, Al B.; Spiegelman, Donna; Goldberg, Richard M.; Bertagnolli, Monica M.; Fuchs, Charles S.

    2011-01-01

    Purpose Alterations in the RAS-RAF-MAP2K (MEK)-MAPK signaling pathway are major drivers in colon and rectal carcinogenesis. In colorectal cancer, BRAF mutation is associated with microsatellite instability (MSI), and typically predicts inferior prognosis. We examined the effect of BRAF mutation on survival and treatment efficacy in patients with stage III colon cancer. Methods We assessed status of BRAF c.1799T>A (p.V600E) mutation and MSI in 506 stage III colon cancer patients enrolled in a randomized adjuvant chemotherapy trial [5-fluorouracil and leucovorin (FU/LV) vs. irinotecan (CPT11), FU and LV (IFL); CALGB 89803]. Cox proportional hazards model was used to assess the prognostic role of BRAF mutation, adjusting for clinical features, adjuvant chemotherapy arm and MSI status. Results Compared to 431 BRAF-wild-type patients, 75 BRAF-mutated patients experienced significantly worse overall survival [OS; log-rank p=0.015; multivariate hazard ratio (HR)=1.66; 95% confidence interval (CI), 1.05-2.63]. By assessing combined status of BRAF and MSI, it appeared that BRAF-mutated MSS (microsatellite stable) tumor was an unfavorable subtype, while BRAF-wild-type MSI-high tumor was a favorable subtype, and BRAF-mutated MSI-high tumor and BRAF-wild-type MSS tumor were intermediate subtypes. Among patients with BRAF-mutated tumors, a non-significant trend toward improved OS was observed for IFL vs. FU/LV arm (multivariate HR=0.52; 95% CI, 0.25-1.10). Among patients with BRAF-wild-type cancer, IFL conferred no suggestion of benefit beyond FU/LV alone (multivariate HR=1.02; 95% CI, 0.72-1.46). Conclusions BRAF mutation is associated with inferior survival in stage III colon cancer. Additional studies are necessary to assess whether there is any predictive role of BRAF mutation for irinotecan-based therapy. PMID:22147942

  14. BRAF mutation testing with a rapid, fully integrated molecular diagnostics system

    PubMed Central

    Huang, Helen J.; Falchook, Gerald S.; Devogelaere, Benoit; Kockx, Mark; Bempt, Isabelle Vanden; Reijans, Martin; Naing, Aung; Fu, Siqing; Piha-Paul, Sarina A.; Hong, David S.; Holley, Veronica R.; Tsimberidou, Apostolia M.; Stepanek, Vanda M.; Patel, Sapna P.; Kopetz, E. Scott; Subbiah, Vivek; Wheler, Jennifer J.; Zinner, Ralph G.; Karp, Daniel D.; Luthra, Rajyalakshmi; Roy-Chowdhuri, Sinchita; Sablon, Erwin; Meric-Bernstam, Funda; Maertens, Geert; Kurzrock, Razelle

    2015-01-01

    Fast and accurate diagnostic systems are needed for further implementation of precision therapy of BRAF-mutant and other cancers. The novel IdyllaTM BRAF Mutation Test has high sensitivity and shorter turnaround times compared to other methods. We used Idylla to detect BRAF V600 mutations in archived formalin-fixed paraffin-embedded (FFPE) tumor samples and compared these results with those obtained using the cobas 4800 BRAF V600 Mutation Test or MiSeq deep sequencing system and with those obtained by a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory employing polymerase chain reaction–based sequencing, mass spectrometric detection, or next-generation sequencing. In one set of 60 FFPE tumor samples (15 with BRAF mutations per Idylla), the Idylla and cobas results had an agreement of 97%. Idylla detected BRAF V600 mutations in two additional samples. The Idylla and MiSeq results had 100% concordance. In a separate set of 100 FFPE tumor samples (64 with BRAF mutation per Idylla), the Idylla and CLIA-certified laboratory results demonstrated an agreement of 96% even though the tests were not performed simultaneously and different FFPE blocks had to be used for 9 cases. The IdyllaTM BRAF Mutation Test produced results quickly (sample to results time was about 90 minutes with about 2 minutes of hands on time) and the closed nature of the cartridge eliminates the risk of PCR contamination. In conclusion, our observations demonstrate that the Idylla test is rapid and has high concordance with other routinely used but more complex BRAF mutation–detecting tests. PMID:26330075

  15. BRAF Mutation Is Rare in Advanced-Stage Low-Grade Ovarian Serous Carcinomas

    PubMed Central

    Wong, Kwong-Kwok; Tsang, Yvonne T.M.; Deavers, Michael T.; Mok, Samuel C.; Zu, Zhifei; Sun, Charlotte; Malpica, Anais; Wolf, Judith K.; Lu, Karen H.; Gershenson, David M.

    2010-01-01

    Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. PMID:20802181

  16. Mutational analyses of the BRAF, KRAS, and PIK3CA genes in oral squamous cell carcinoma

    PubMed Central

    Bruckman, Karl C.; Schönleben, Frank; Qiu, Wanglong; Woo, Victoria L.; Su, Gloria H.

    2010-01-01

    OBJECTIVES The development of oral squamous cell carcinoma (OSCC) is a complex, multistep process. To date, numerous oncogenes and tumor-suppressor genes have been implicated in oral carcinogenesis. Of particular interest in this regard are genes involved in cell cycling and apoptosis, such BRAF, KRAS, and PIK3CA genes. STUDY DESIGN Mutations of BRAF, KRAS, and PIK3CA were evaluated by direct genomic sequencing of exons 1 of KRAS, 11 and 15 of BRAF, and 9 and 20 of PIK3CA in OSCC specimens. RESULTS Both BRAF and KRAS mutations were detected with a mutation frequency of 2% (1/42). PIK3CA mutations were detected at 3% (1/35). CONCLUSIONS This is the first report implicating BRAF mutation in OSCC. Our study supports that mutations in the BRAF, KRAS, and PIK3CA genes make at least a minor contribution to OSCC tumorigenesis, and pathway-specific therapies targeting these two pathways should be considered for OSCC in a subset of patients with these mutations. PMID:20813562

  17. Validation of the VE1 Immunostain for the BRAF V600E Mutation in Melanoma

    PubMed Central

    Pearlstein, Michelle V.; Zedek, Daniel C.; Ollila, David W.; Treece, Amanda; Gulley, Margaret L.; Groben, Pamela A.; Thomas, Nancy E.

    2014-01-01

    BACKGROUND BRAF mutation status, and therefore eligibility for BRAF inhibitors, is currently determined by sequencing methods. We assessed the validity of VE1, a monoclonal antibody against the BRAF V600E mutant protein, in the detection of mutant BRAF V600E melanomas as classified by DNA pyrosequencing. METHODS The cases were 76 metastatic melanoma patients with only one known primary melanoma who had had BRAF codon 600 pyrosequencing of either their primary (n=19), metastatic (n=57) melanoma, or both (n=17). All melanomas (n=93) were immunostained with the BRAF VE1 antibody using a red detection system. The staining intensity of these specimens was scored from 0 – 3+ by a dermatopathologist. Scores of 0 and 1+ were considered as negative staining while scores of 2+ and 3+ were considered positive. RESULTS The VE1 antibody demonstrated a sensitivity of 85% and a specificity of 100% as compared to DNA pyrosequencing results. There was 100% concordance between VE1 immunostaining of primary and metastatic melanomas from the same patient. V600K, V600Q, and V600R BRAF melanomas did not positively stain with VE1. CONCLUSIONS This hospital-based study finds high sensitivity and specificity for the BRAF VE1 immunostain in comparison to pyrosequencing in detection of BRAF V600E in melanomas. PMID:24917033

  18. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    PubMed

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation. PMID:26343583

  19. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    PubMed

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.

  20. The BRAF{sup T1799A} mutation confers sensitivity of thyroid cancer cells to the BRAF{sup V600E} inhibitor PLX4032 (RG7204)

    SciTech Connect

    Xing, Joanna; Liu, Ruixin; Xing, Mingzhao; Trink, Barry

    2011-01-28

    Research highlights: {yields} Exciting therapeutic potential has been recently reported for the BRAF{sup V600E} inhibitor PLX4032 in melanoma. {yields} We tested the effects of PLX4032 on the growth of thyroid cancer cells which often harbor the BRAF{sup V600E} mutation. {yields} We observed a potent BRAF{sup V600E}-dependent inhibition of thyroid cancer cells by PLX4032. {yields} We thus demonstrated an important therapeutic potential of PLX4032 for thyroid cancer. -- Abstract: Aberrant signaling of the Ras-Raf-MEK-ERK (MAP kinase) pathway driven by the mutant kinase BRAF{sup V600E}, as a result of the BRAF{sup T1799A} mutation, plays a fundamental role in thyroid tumorigenesis. This study investigated the therapeutic potential of a BRAF{sup V600E}-selective inhibitor, PLX4032 (RG7204), for thyroid cancer by examining its effects on the MAP kinase signaling and proliferation of 10 thyroid cancer cell lines with wild-type BRAF or BRAF{sup T1799A} mutation. We found that PLX4032 could effectively inhibit the MAP kinase signaling, as reflected by the suppression of ERK phosphorylation, in cells harboring the BRAF{sup T1799A} mutation. PLX4032 also showed a potent and BRAF mutation-selective inhibition of cell proliferation in a concentration-dependent manner. PLX4032 displayed low IC{sub 50} values (0.115-1.156 {mu}M) in BRAF{sup V600E} mutant cells, in contrast with wild-type BRAF cells that showed resistance to the inhibitor with high IC{sub 50} values (56.674-1349.788 {mu}M). Interestingly, cells with Ras mutations were also sensitive to PLX4032, albeit moderately. Thus, this study has confirmed that the BRAF{sup T1799A} mutation confers cancer cells sensitivity to PLX4032 and demonstrated its specific potential as an effective and BRAF{sup T1799A} mutation-selective therapeutic agent for thyroid cancer.

  1. BRAF inhibitor therapy-associated melanocytic lesions lack the BRAF V600E mutation and show increased levels of cyclin D1 expression.

    PubMed

    Mudaliar, Kumaran; Tetzlaff, Michael T; Duvic, Madeleine; Ciurea, Ana; Hymes, Sharon; Milton, Denái R; Tsai, Kenneth Y; Prieto, Victor G; Torres-Cabala, Carlos A; Curry, Jonathan L

    2016-04-01

    Newly appearing or changing melanocytic lesions (MLs) are a recently reported toxicity of BRAF inhibitor (BRAFi) therapy. Morphologically, MLs associated with BRAFi therapy (BRAFi-MLs) may demonstrate alarming features of melanoma with an epithelioid cell phenotype with notable cytologic atypia. We sought to characterize the clinicopathological and molecular features of BRAFi-MLs. A retrospective review over a 4-year period revealed 20 patients in which 44 MLs (including 11 control nevi) were characterized by histopathology, review of clinical medical records, and immunohistochemical (IHC) studies (with anti-BRAF V600E, anti-BAP1, anti-cyclin D1, and anti-p16); the percentage of IHC+ cells was scored. Of the 20 patients, 3 (15%) whose BRAFi-MLs were biopsied had a second primary cutaneous melanoma. Of the 44 BRAFi-MLs tested, 37 (100%) of 37 MLs available for BRAF V600E testing lacked expression in contrast to 1 (9%) of 11 control nevi (lesions not associated with targeted therapy). A significantly higher level of cyclin D1 expression (>50% IHC+ cells) was more commonly seen in BRAFi-MLs (44%) than in control nevi (9%). No difference in p16 expression in melanocytes was seen between the 2 groups. BRAF mutation status distinctly differs between BRAFi-MLs from melanomas and nevi biopsied in patients who do not receive BRAFi therapy. Morphologically, BRAFi-MLs demonstrate a greater degree of atypia than do control nevi. Furthermore, BRAFi-MLs with coexisting cutaneous keratinocyte toxicity developed during fewer days of targeted therapy. Paradoxical activation of the MAPK pathway in BRAF(WT) melanocytes may account for ~15% to 21% of patients developing a second new primary melanoma within a year of starting BRAFi therapy; thus, close clinical surveillance is warranted.

  2. Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients

    PubMed Central

    Hsu, Hung-Chih; Thiam, Tan Kien; Lu, Yen-Jung; Yeh, Chien Yuh; Tsai, Wen-Sy; You, Jeng Fu; Hung, Hsin Yuan; Tsai, Chi-Neu; Hsu, An; Chen, Hua-Chien; Chen, Shu-Jen; Yang, Tsai-Sheng

    2016-01-01

    Approximately 45% of metastatic colorectal cancer (mCRC) patients with wild-type KRAS exon 2 are resistant to cetuximab treatment. We set out to identify additional genetic markers that might predict the response to cetuximab treatment. Fifty-three wild-type KRAS exon 2 mCRC patients were treated with cetuximab/irinotecan-based chemotherapy as a first- or third-line therapy. The mutational statuses of 10 EGFR pathway genes were analyzed in primary tumors using next-generation sequencing. BRAF, PIK3CA, KRAS (exons 3 and 4), NRAS, PTEN, and AKT1 mutations were detected in 6, 6, 5, 4, 1, and 1 patient, respectively. Four of the BRAF mutations were non-V600 variants. Four tumors harbored multiple co-existing (complex) mutations. All patients with BRAF mutations or complex mutation patterns were cetuximab non-responders. All patients but one harboring KRAS, NRAS, or BRAF mutations were non-responders. Mutations in any one of these three genes were associated with a poor response rate (7.1%) and reduced survival (PFS = 8.0 months) compared to wild-type patients (74.4% and 11.6 months). Our data suggest that KRAS, NRAS, and BRAF mutations predict response to cetuximab treatment in mCRC patients. PMID:26989027

  3. Detection of BRAF mutation in Chinese tumor patients using a highly sensitive antibody immunohistochemistry assay

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Lu, Haizhen; Guo, Lei; Huang, Wenting; Ling, Yun; Shan, Ling; Li, Wenbin; Ying, Jianming; Lv, Ning

    2015-03-01

    BRAF mutations can be found in various solid tumors. But accurate and reliable screening for BRAF mutation that is compatible for clinical application is not yet available. In this study, we used an automated immunohistochemistry (IHC) staining coupled with mouse monoclonal anti-BRAF V600E (VE1) primary antibody to screen the BRAF V600E mutation in 779 tumor cases, including 611 colorectal carcinomas (CRC), 127 papillary thyroid carcinomas (PTC) and 41 malignant melanomas. Among the 779 cases, 150 cases were positive for BRAF (V600E) staining, including 38 (of 611, 6%) CRCs, 102 (of 127, 80%) PTCs and 10 (of 41, 24%) malignant melanomas. Sanger sequencing and real-time PCR confirmed the sensitivity and specificity of IHC staining for the V600E mutation are 100% and 99%, respectively. Therefore, our study demonstrates that the fully automated IHC is a reliable tool to determine BRAF mutation status in CRC, PTC and melanoma and can be used for routine clinical screen.

  4. BRAF mutation in multiple primary cancer with colorectal cancer and stomach cancer

    PubMed Central

    Lee, Seung-Hyun; Ahn, Byung-Kwon; Baek, Sung-Uhn; Chang, Hee-Kyung

    2013-01-01

    Aims: Recently, BRAF mutation testing has been introduced as a marker in differentiating Lynch syndrome from sporadic colorectal cancers or in predicting colorectal cancers with worse prognosis. Individuals with hereditary predisposition to cancer development are at an increased risk of developing multiple primary cancers. The purpose of this study is to identify mutation in the BRAF gene in multiple primary cancers with colorectal cancer and stomach cancer. Methods: BRAF mutation was analysed in 45 patients with colorectal cancer and stomach cancer, synchronously or metachronously. Results: Mean age was 64.07 years (range: 47–83 years). For the colorectal cancer, tumors were located at the sigmoid colon in eight patients (17.8%) and at the rectum in 22 patients (48.9%). Twenty-three patients (51.1%) had synchronous cancer. Four patients (8.9%) had family members with cancer. BRAF mutation was identified in three patients (6.7%). All three of these patients had metachronous cancers. The colorectal cancers were located in the sigmoid colon (1 patient) and the rectum (2 patients). Conclusions: BRAF mutation rate was low in the multiple primary cancer with colorectal cancer and stomach cancer. With only BRAF gene study, it was not possible to identify any correlation with family history of colorectal cancer. Further study means considering other genes – MSI, MSH2, MLH1, MSH6. PMID:24759670

  5. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, Ch.

    2013-02-01

    Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl-1 of RNA material, without prior PCR amplification and use of labels.

  6. Distribution of KRAS and BRAF mutations in Moroccan patients with advanced colorectal cancer.

    PubMed

    Marchoudi, N; Amrani Hassani Joutei, H; Jouali, F; Fekkak, J; Rhaissi, H

    2013-12-01

    Targeted therapies have an increasing importance in digestive oncology. To our knowledge, we are the first to report the distribution of KRAS and BRAF mutations in Moroccan patients with advanced colorectal cancer (CRC) in order to introduce targeted therapy in the arsenal of therapeutic modalities for management of this cancer in Morocco. In this study, 92 samples obtained from patients with CRC were tested for the presence of the nine most common mutations in the KRAS gene and BRAF gene. Among the tested patients, 76.09% of patients had wt-KRAS genotype and 23.91% were KRAS mutants and the majority of mutations would result in an amino acid substitution of glycine by aspartic acid (68.2%) The predominant mutations are G>A transitions and G>T transversions. Around 5% (5.43%) of the tested patients bore the V600E mutation in BRAF gene. Only one patient showing to have the V600E mutation in BRAF was also mutated-KRAS. Summing up the results about the KRAS and the BRAF mutation carriers from our study, the portion of potentially non responsive patients for the anti-EGFR treatment is 28.26%.

  7. Low prevalence of K-RAS, EGF-R and BRAF mutations in sinonasal adenocarcinomas. Implications for anti-EGFR treatments.

    PubMed

    Franchi, Alessandro; Innocenti, Duccio Rossi Degli; Palomba, Annarita; Miligi, Lucia; Paiar, Fabiola; Franzese, Ciro; Santucci, Marco

    2014-07-01

    We have previously shown that a subset of sinonasal intestinal-type adenocarcinomas (ITAC) shows activation of the epidermal growth factor-receptor (EGFR) pathway. In this study we examine the status of the EGFR, KRAS and BRAF genes in a series of sinonasal intestinal (ITAC) and non-intestinal type adenocarcinomas (non-ITAC). Eighteen ITACs and 12 non-ITACs were studied immunohistochemically for EGFR expression. Point mutations were analyzed for EGFR exons 19 and 21, KRAS exon 2 and BRAF exon 15 by direct sequencing. Non-ITACs showed significantly higher expression of EGFR (p = 0.015). Mutation analysis revealed one ITAC with EGFR and one ITAC with KRAS mutation, while two non-ITACs presented mutation of BRAF. We conclude that a subset of sinonasal adenocarcinomas shows overexpression of EGFR, while activating mutations of the signaling cascade downstream of EGFR are rare, suggesting that these tumors could be good candidates for anti-EGFR therapies.

  8. BRAF mutation testing with a rapid, fully integrated molecular diagnostics system.

    PubMed

    Janku, Filip; Claes, Bart; Huang, Helen J; Falchook, Gerald S; Devogelaere, Benoit; Kockx, Mark; Bempt, Isabelle Vanden; Reijans, Martin; Naing, Aung; Fu, Siqing; Piha-Paul, Sarina A; Hong, David S; Holley, Veronica R; Tsimberidou, Apostolia M; Stepanek, Vanda M; Patel, Sapna P; Kopetz, E Scott; Subbiah, Vivek; Wheler, Jennifer J; Zinner, Ralph G; Karp, Daniel D; Luthra, Rajyalakshmi; Roy-Chowdhuri, Sinchita; Sablon, Erwin; Meric-Bernstam, Funda; Maertens, Geert; Kurzrock, Razelle

    2015-09-29

    Fast and accurate diagnostic systems are needed for further implementation of precision therapy of BRAF-mutant and other cancers. The novel IdyllaTMBRAF Mutation Test has high sensitivity and shorter turnaround times compared to other methods. We used Idylla to detect BRAF V600 mutations in archived formalin-fixed paraffin-embedded (FFPE) tumor samples and compared these results with those obtained using the cobas 4800 BRAF V600 Mutation Test or MiSeq deep sequencing system and with those obtained by a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory employing polymerase chain reaction-based sequencing, mass spectrometric detection, or next-generation sequencing. In one set of 60 FFPE tumor samples (15 with BRAF mutations per Idylla), the Idylla and cobas results had an agreement of 97%. Idylla detected BRAF V600 mutations in two additional samples. The Idylla and MiSeq results had 100% concordance. In a separate set of 100 FFPE tumor samples (64 with BRAF mutation per Idylla), the Idylla and CLIA-certified laboratory results demonstrated an agreement of 96% even though the tests were not performed simultaneously and different FFPE blocks had to be used for 9 cases. The IdyllaTMBRAF Mutation Test produced results quickly (sample to results time was about 90 minutes with about 2 minutes of hands on time) and the closed nature of the cartridge eliminates the risk of PCR contamination. In conclusion, our observations demonstrate that the Idylla test is rapid and has high concordance with other routinely used but more complex BRAF mutation-detecting tests.

  9. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation.

    PubMed

    Milewska, Malgorzata; Romano, David; Herrero, Ana; Guerriero, Maria Luisa; Birtwistle, Marc; Quehenberger, Franz; Hatzl, Stefan; Kholodenko, Boris N; Segatto, Oreste; Kolch, Walter; Zebisch, Armin

    2015-01-01

    BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed

  10. BRAF mutation detection in hairy cell leukaemia from archival haematolymphoid specimens.

    PubMed

    Thomas, Carla; Amanuel, Benhur; Finlayson, Jill; Grieu-Iacopetta, Fabienne; Spagnolo, Dominic V; Erber, Wendy N

    2015-06-01

    Hairy cell leukaemia (HCL) is a rare, indolent chronic B-cell leukaemia accounting for approximately 2% of all adult leukaemias. The recent association of the BRAF p.Val600Glu (V600E) mutation in HCL makes it a valuable molecular diagnostic marker. We compared the ability of Sanger sequencing, fluorescent single-strand conformational polymorphism (F-SSCP) and high resolution melting (HRM) analysis to detect BRAF mutations in 20 cases of HCL consisting of four archival Romanowsky stained air-dried peripheral blood and bone marrow aspirate smears, 12 mercury fixed decalcified bone marrow trephine biopsies, three formalin fixed, paraffin embedded (FFPE) splenectomy samples and one fresh peripheral blood sample. DNA was amplified and BRAF mutation status determined by the three methods above. V600E mutation was identified in 94%, 89% and 72% of HCL cases by F-SSCP, HRM and Sanger sequencing, respectively. In one case, in addition to the p.Val600Glu mutation, a p.Lys601Thr (K601T) mutation was identified. DNA from archival slide scrapings, mercury-fixed and FFPE tissue can be used to identify BRAF mutations with high sensitivity, especially using HRM/F-SSCP. The V600E mutation can be used as a supplementary molecular marker to aid in the diagnosis of HCL and the presence of the mutation may provide a target for therapy.

  11. Extended RAS and BRAF Mutation Analysis Using Next-Generation Sequencing.

    PubMed

    Sakai, Kazuko; Tsurutani, Junji; Yamanaka, Takeharu; Yoneshige, Azusa; Ito, Akihiko; Togashi, Yosuke; De Velasco, Marco A; Terashima, Masato; Fujita, Yoshihiko; Tomida, Shuta; Tamura, Takao; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-01-01

    Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10(-5)). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.

  12. Activating BRAF Mutations Detected in Mixed Hürthle Cell Carcinoma and Multifocal Papillary Carcinoma of the Thyroid Gland: Report of an Unusual Case and Review of the Literature.

    PubMed

    Sinno, Sara; Choucair, Mahmoud; Nasrallah, Mona; Wadi, Lara; Jabbour, Mark N; Nassif, Samer

    2016-09-01

    Despite the increase in the incidence of thyroid carcinomas, the occurrence of collision tumors in the thyroid remains a rare event. We present the case of a 69-year-old female who presented to the emergency department with a chief complaint of painful neck swelling. Imaging revealed a large right hemithyroid mass and a left hemithyroid nodule. Fine needle aspiration of the lesions and subsequent total thyroidectomy revealed a Hürthle cell carcinoma in the right lobe and bilateral multicentric papillary carcinoma foci, including 2 foci with a classical pattern and 1 encapsulated follicular variant in the isthmus. BRAF gene mutation analysis revealed V600E gene mutation in the classical variants of papillary carcinoma and in the Hürthle cell carcinoma. The focus of follicular variant of papillary carcinoma in the isthmus and a sample from normal thyroid tissue did not harbor BRAF mutations. This case is remarkable in being an unusual report of a follicular Hürthle cell carcinoma harboring the BRAF V600E mutation and occurring in collision with multifocal papillary carcinoma. Documentation of such cases is important as it helps better understand the pathogenesis, clinical behavior, and radiologic findings of such rare lesions and to determine the optimal treatment modalities.

  13. Correlation between the BRAF V600E mutation status and the clinicopathologic features of papillary thyroid carcinoma.

    PubMed

    Shi, C L; Sun, Y; Ding, C; Lv, Y C; Qin, H D

    2015-07-03

    This study sought to investigate the correlations of V-raf murine sarcoma viral oncogene homolog B1 (BRAF) gene mutations with the clinicopathologic features of papillary thyroid carcinoma and central lymph node metastasis. We retrospectively analyzed the 2-year medical records of patients who underwent surgery for papillary thyroid carcinoma. After screening, the records of 126 patients who met the study requirements were used to assess the characteristics associated with the BRAF V600E gene mutation. The BRAF mutation incidence rate among patients with papillary thyroid carcinoma was 69.0% (87/126). Univariate analysis revealed that the BRAF mutation status was correlated significantly with both tumor size and lymph node metastasis (P < 0.05). Multivariate analysis revealed a significant correlation between lymph node metastasis and BRAF mutation status (P < 0.05). When the tumor diameter was ≤10 mm, the BRAF mutation status had no effect on lymph node metastasis (P > 0.05). When the tumor diameter was >10 mm, the incidence of lymph node metastasis was significantly higher among BRAF mutation-positive patients than among BRAF mutation-negative patients (P < 0.05). BRAF gene mutations independently predicted central lymph node metastasis in patients with papillary thyroid carcinoma. For patients preoperatively diagnosed to be BRAF mutation-positive, the importance of central lymph node dissection should be emphasized because the tumor diameter increases; regional lymphatic and adipose tissue dissection should be routinely conducted. However, in mutation-negative patients with tumor diameters of ≤5 mm, the need for central lymph node dissection should be re-examined.

  14. Identification of the BRAF V600E mutation in gastroenteropancreatic neuroendocrine tumors.

    PubMed

    Park, Charny; Ha, Sang Yun; Kim, Seung Tae; Kim, Hee Cheol; Heo, Jin Seok; Park, Young Suk; Lauwers, Gregory; Lee, Jeeyun; Kim, Kyoung-Mee

    2016-01-26

    Genomic profiles of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are still insufficiently understood, and the genetic alterations associated with drug responses have not been studied. Here, we performed whole exome sequencing of 12 GEP-NETs from patients enrolled in a nonrandomized, open-labeled, single-center phase II study for pazopanib, and integrated our results with previously published results on pancreas (n = 12) and small intestine NETs (n = 50). The mean numbers of somatic mutations in each case varied widely from 20 to 4682. Among 12 GEP-NETs, eight showed mutations of more than one cancer-related gene, including TP53, CNBD1, RB1, APC, BCOR, BRAF, CTNNB1, EGFR, EP300, ERBB3, KDM6A, KRAS, MGA, MLL3, PTEN, RASA1, SMARCB1, SPEN, TBC1D12, and VHL. TP53 was recurrently mutated in three cases, whereas CNBD1 and RB1 mutations were identified in two cases. Three GEP-NET patients with TP53 mutations demonstrated a durable response and one small intestinal grade (G) 1 NET patient with BRAF V600E mutation showed progression after pazopanib treatment. We found BRAF V600E (G1 NET from rectum and two G3 NETs from colon) and BRAF G593S (G2 NET from pancreas) missense mutations (9.1%) in an independent cohort of 44 GEP-NETs from the rectum (n = 26), colon (n = 7), pancreas (n = 4), small intestine (n = 3), stomach (n = 3) and appendix (n = 1) by Sanger sequencing. All tumor specimens were obtained before chemotherapy. In conclusion, BRAF V600E mutation is likely to result in resistance to pazopanib but may be a potentianally actionable mutation in metastatic GEP-NETs patients. PMID:26684240

  15. A Sensitive Peptide Nucleic Acid Probe Assay for Detection of BRAF V600 Mutations in Melanoma.

    PubMed

    Chen, Tai-Long; Chang, John Wen-Cheng; Hsieh, Jia-Juan; Cheng, Hsin-Yi; Chiou, Chiuan-Chian

    Mutated v-Raf murine sarcoma viral oncogene homolog B (BRAF) is an important biomarker for the prediction of therapeutic efficacy of several anticancer drugs. The detection of BRAF mutation faces two challenges: Firstly, there are multiple types of mutations, and secondly, tumor samples usually contain various amounts of wild-type, normal tissues. Here, we describe a newly established method for sensitive detection of multiple types of BRAF V600 mutations in excess wild-type background. The method introduced a fluorophore-tagged peptide nucleic acid (PNA) to serve as both polymerase chain reaction (PCR) clamp and sensor probe, which inhibited the amplification of wild-type templates during PCR and revealed multiple types of mutant signals during melting analysis. We demonstrated the design and optimization process of the method, and applied it in the detection of BRAF mutations in 49 melanoma samples. This PNA probe assay method detected three types of mutations in 17 samples, and was much more sensitive than conventional PCR plus Sanger sequencing. PMID:27566656

  16. BRAF V600E mutations: a series of case reports in patients with non-small cell lung cancer.

    PubMed

    Goldman, Jamie M; Gray, Jhanelle E

    2015-06-01

    We present a series of five patients with BRAF-mutated non-small cell lung cancer (NSCLC) from the Moffitt Cancer Center and a brief literature review. Information utilized included outside medical records, imaging studies, pathology reports in which simultaneous mutation testing was performed, and clinic visit notes. In addition, we conducted a literature search of background information using the following search terms: "BRAF mutations", "non-small cell lung cancer", and "driver mutations". Several retrospective studies on BRAF mutations in patients with NSCLC found that the majority of these mutations occur in adenocarcinomas and are V600E mutations. From our patients and literature search, we found that BRAF-V600E mutations occur predominantly in female smokers with adenocarcinomas.

  17. Mutated BRAF Emerges as a Major Effector of Recurrence in a Murine Melanoma Model After Treatment With Immunomodulatory Agents

    PubMed Central

    Zaidi, Shane; Blanchard, Miran; Shim, Kevin; Ilett, Elizabeth; Rajani, Karishma; Parrish, Christopher; Boisgerault, Nicolas; Kottke, Tim; Thompson, Jill; Celis, Esteban; Pulido, Jose; Selby, Peter; Pandha, Hardev; Melcher, Alan; Harrington, Kevin; Vile, Richard

    2015-01-01

    We used a VSV-cDNA library to treat recurrent melanoma, identifying immunogenic antigens, allowing us to target recurrences with immunotherapy or chemotherapy. Primary B16 melanoma tumors were induced to regress by frontline therapy. Mice with recurrent tumors were treated with VSV-cDNA immunotherapy. A Th17 recall response was used to screen the VSV-cDNA library for individual viruses encoding rejection antigens, subsequently targeted using immunotherapy or chemotherapy. Recurrent tumors were effectively treated with a VSV-cDNA library using cDNA from recurrent B16 tumors. Recurrence-associated rejection antigens identified included Topoisomerase-IIα, YB-1, cdc7 kinase, and BRAF. Fourteen out of 16 recurrent tumors carried BRAF mutations (595–605 region) following frontline therapy, even though the parental B16 tumors were BRAF wild type. The emergence of mutated BRAF-containing recurrences served as an excellent target for BRAF-specific immune-(VSV-BRAF), or chemo-(PLX-4720) therapies. Successful PLX-4720 therapy of recurrent tumors was associated with the development of a broad spectrum of T-cell responses. VSV-cDNA technology can be used to identify recurrence specific antigens. Emergence of mutated BRAF may be a major effector of melanoma recurrence which could serve as a target for chemo or immune therapy. This study suggests a rationale for offering patients with initially wild-type BRAF melanomas an additional biopsy to screen for mutant BRAF upon recurrence. PMID:25544599

  18. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    PubMed

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  19. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma.

    PubMed

    Hu-Lieskovan, Siwen; Mok, Stephen; Homet Moreno, Blanca; Tsoi, Jennifer; Robert, Lidia; Goedert, Lucas; Pinheiro, Elaine M; Koya, Richard C; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni

    2015-03-18

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAF(V600E)-driven melanoma, SM1, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors, and improved in vivo cytotoxicity. Single-agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and major histocompatibility complex (MHC) expression and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested the combination of dabrafenib, trametinib, and anti-PD1 therapy in SM1 tumors, and observed superior antitumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAF(V600E) mutant metastatic melanoma.

  20. Lys63-linked polyubiquitination of BRAF at lysine 578 is required for BRAF-mediated signaling

    PubMed Central

    An, Lei; Jia, Wei; Yu, Yang; Zou, Ning; Liang, Li; Zhao, Yanling; Fan, Yihui; Cheng, Jin; Shi, Zhongcheng; Xu, Gufeng; Li, Grace; Yang, Jianhua; Zhang, Hong

    2013-01-01

    The RAF kinase family is essential in mediating signal transduction from RAS to ERK. BRAF constitutively active mutations correlate with human cancer development. However, the precise molecular regulation of BRAF activation is not fully understood. Here we report that BRAF is modified by Lys63-linked polyubiquitination at lysine 578 within its kinase domain once it is activated by gain of constitutively active mutation or epidermal growth factor (EGF) stimulation. Substitution of BRAF lysine 578 with arginine (K578R) inhibited BRAF-mediated ERK activation. Furthermore, ectopic expression of BRAF K578R mutant inhibited anchorage-independent colony formation of MCF7 breast cancer cell line. Our studies have identified a previously unrecognized regulatory role of Lys63-linked polyubiquitination in BRAF-mediated normal and oncogenic signalings. PMID:23907581

  1. Variant B Cell Receptor Isotype Functions Differ in Hairy Cell Leukemia with Mutated BRAF and IGHV Genes

    PubMed Central

    Weston-Bell, Nicola J.; Forconi, Francesco; Kluin-Nelemans, Hanneke C.; Sahota, Surinder S.

    2014-01-01

    A functional B-cell receptor (BCR) is critical for survival of normal B-cells, but whether it plays a comparable role in B-cell malignancy is as yet not fully delineated. Typical Hairy Cell Leukemia (HCL) is a rare B-cell tumor, and unique in expressing multiple surface immunoglobulin (sIg) isotypes on individual tumor cells (mult-HCL), to raise questions as to their functional relevance. Typical mult-HCL also displays a mutated BRAF V(600)E lesion. Since wild type BRAF is a primary conduit for transducing normal BCR signals, as revealed by deletion modelling studies, it is as yet not apparent if mutated BRAF alters BCR signal transduction in mult-HCL. To address these questions, we examined BCR signalling in mult-HCL cases uniformly displaying mutated BRAF and IGHV genes. Two apparent functional sets were delineated by IgD co-expression. In sIgD+ve mult-HCL, IgD mediated persistent Ca2+ flux, also evident via >1 sIgH isotype, linked to increased ERK activation and BCR endocytosis. In sIgD−ve mult-HCL however, BCR-mediated signals and downstream effects were restricted to a single sIgH isotype, with sIgM notably dysfunctional and remaining immobilised on the cell surface. These observations reveal discordance between expression and function of individual isotypes in mult-HCL. In dual sIgL expressing cases, only a single sIgL was fully functional. We examined effects of anti-BCR stimuli on mult-HCL survival ex-vivo. Significantly, all functional non-IgD isotypes increased ERK1/2 phosphorylation but triggered apoptosis of tumor cells, in both subsets. IgD stimuli, in marked contrast retained tumor viability. Despite mutant BRAF, BCR signals augment ERK1/2 phosphorylation, but isotype dictates functional downstream outcomes. In mult-HCL, sIgD retains a potential to transduce BCR signals for tumor survival in-vivo. The BCR in mult-HCL emerges as subject to complex regulation, with apparent conflicting signalling by individual isotypes when co-expressed with s

  2. Association between BRAF and RAS mutations, and RET rearrangements and the clinical features of papillary thyroid cancer

    PubMed Central

    Ming, Jie; Liu, Zeming; Zeng, Wen; Maimaiti, Yusufu; Guo, Yawen; Nie, Xiu; Chen, Chen; Zhao, Xiangwang; Shi, Lan; Liu, Chunping; Huang, Tao

    2015-01-01

    Objective: To evaluate the significance of BRAF V600E and Ras mutations, and RET rearrangements in papillary thyroid cancer (PTC) in the South central region of China. Methods: We included patients from Union hospital’s pathology archive diagnosed with PTC and meeting the criteria for BRAF mutation, RAS mutation, and RET rearrangement testing. Medical records were analyzed for BRAF and RAS mutation status, RET rearrangements (positive or negative), and a list of standardized clinicopathologic features. Results: Positive BRAF mutation was found to be significantly associated with age and extrathyroidal extension (P=0.011 and P=0.013, respectively). However, there was no significant association between BRAF mutation and sex, tumor size, histological subtype, multifocality, or accompanying nodular goiter and Hashimoto’s. On the other hand, none of these characteristics of PTC were been found to be associated with RAS mutation. Additionally, the frequency of RET rearrangements was higher in patients ≤45 years old than that in patients >45 years old. Conclusions: We demonstrated that the BRAF V600E mutation slightly correlated with the clinicopathological characteristics of PTC in the Han population. Furthermore, neither RAS mutation nor RET rearrangements were found to be associated with the clinicopathological characteristics of PTCs. Our work provides useful information on somatic mutations to predict the risk of PTC in different ethnic groups. PMID:26823860

  3. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma.

    PubMed

    Bisht, Swati; Ahmad, Firoz; Sawaimoon, Satyakam; Bhatia, Simi; Das, Bibhu Ranjan

    2014-09-01

    Molecular evaluation of KRAS, BRAF, and PIK3CA mutation has become an important part in colorectal carcinoma evaluation, and their alterations may determine the therapeutic response to anti-EGFR therapy. The current study demonstrates the evaluation of KRAS, BRAF, and PIK3CA mutation using direct sequencing in 204 samples. The frequency of KRAS, BRAF, and PIK3CA mutations was 23.5, 9.8, and 5.9 %, respectively. Five different substitution mutations at KRAS codon 12 (G12S, G12D, G12A, G12V, and G12C) and one substitution type at codon 13 (G13D) were observed. KRAS mutations were significantly higher in patients who were >50 years, and were associated with moderate/poorly differentiated tumors and adenocarcinomas. All mutations in BRAF gene were of V600E type, which were frequent in patients who were ≤ 50 years. Unlike KRAS mutations, BRAF mutations were more frequent in well-differentiated tumors and right-sided tumors. PIK3CA-E545K was the most recurrent mutation while other mutations detected were T544I, Q546R, H1047R, G1049S, and D1056N. No significant association of PIK3CA mutation with age, tumor differentiation, location, and other parameters was noted. No concomitant mutation of KRAS and BRAF mutations was observed, while, interestingly, five cases showed concurrent mutation of KRAS and PIK3CA mutations. In conclusion, to our knowledge, this is the first study to evaluate the PIK3CA mutation in Indian CRC patients. The frequency of KRAS, BRAF, and PIK3CA was similar to worldwide reports. Furthermore, identification of molecular markers has unique strengths, and can provide insights into the pathogenic process and help optimize personalized prevention and therapy.

  4. Cost-Effectiveness Analysis of Screening for KRAS and BRAF Mutations in Metastatic Colorectal Cancer

    PubMed Central

    2012-01-01

    Background In 2009, the American Society of Clinical Oncology recommended that patients with metastatic colorectal cancer (mCRC) who are candidates for anti-epidermal growth factor receptor (EGFR) therapy have their tumors tested for KRAS mutations because tumors with such mutations do not respond to anti-EGFR therapy. Limiting anti-EGFR therapy to those without KRAS mutations will reserve treatment for those likely to benefit while avoiding unnecessary costs and harm to those who would not. Similarly, tumors with BRAF genetic mutations may not respond to anti-EGFR therapy, though this is less clear. Economic analyses of mutation testing have not fully explored the roles of alternative therapies and resection of metastases. Methods This paper is based on a decision analytic framework that forms the basis of a cost-effectiveness analysis of screening for KRAS and BRAF mutations in mCRC in the context of treatment with cetuximab. A cohort of 50 000 patients with mCRC is simulated 10 000 times, with attributes randomly assigned on the basis of distributions from randomized controlled trials. Results Screening for both KRAS and BRAF mutations compared with the base strategy (of no anti-EGFR therapy) increases expected overall survival by 0.034 years at a cost of $22 033, yielding an incremental cost-effectiveness ratio of approximately $650 000 per additional year of life. Compared with anti-EGFR therapy without screening, adding KRAS testing saves approximately $7500 per patient; adding BRAF testing saves another $1023, with little reduction in expected survival. Conclusions Screening for KRAS and BFAF mutation improves the cost-effectiveness of anti-EGFR therapy, but the incremental cost effectiveness ratio remains above the generally accepted threshold for acceptable cost effectiveness ratio of $100 000/quality adjusted life year. PMID:23197490

  5. Prognostic value of BRAF and KRAS mutation status in stage II and III microsatellite instable colon cancers.

    PubMed

    de Cuba, E M V; Snaebjornsson, P; Heideman, D A M; van Grieken, N C T; Bosch, L J W; Fijneman, R J A; Belt, E; Bril, H; Stockmann, H B A C; Hooijberg, E; Punt, C J A; Koopman, M; Nagtegaal, I D; Coupé, V H M; Carvalho, B; Meijer, G A

    2016-03-01

    Microsatellite instability (MSI) has been associated with favourable survival in early stage colorectal cancer (CRC) compared to microsatellite stable (MSS) CRC. The BRAF V600E mutation has been associated with worse survival in MSS CRC. This mutation occurs in 40% of MSI CRC and it is unclear whether it confers worse survival in this setting. The prognostic value of KRAS mutations in both MSS and MSI CRC remains unclear. We examined the effect of BRAF and KRAS mutations on survival in stage II and III MSI colon cancer patients. BRAF exon 15 and KRAS exon 2-3 mutation status was assessed in 143 stage II (n = 85) and III (n = 58) MSI colon cancers by high resolution melting analysis and sequencing. The relation between mutation status and cancer-specific (CSS) and overall survival (OS) was analyzed using Kaplan-Meier and Cox regression analysis. BRAF V600E mutations were observed in 51% (n = 73) and KRAS mutations in 16% of cases (n = 23). Patients with double wild-type cancers (dWT; i.e., BRAF and KRAS wild-type) had a highly favourable survival with 5-year CSS of 93% (95% CI 84-100%), while patients with cancers harbouring mutations in either BRAF or KRAS, had 5-year CSS of 76% (95% CI 67-85%). In the subgroup of stage II patients with dWT cancers no cancer-specific deaths were observed. On multivariate analysis, mutation in either BRAF or KRAS vs. dWT remained significantly prognostic. Mutations in BRAF as well as KRAS should be analyzed when considering these genes as prognostic markers in MSI colon cancers.

  6. Mouse models for BRAF-induced cancers.

    PubMed

    Pritchard, C; Carragher, L; Aldridge, V; Giblett, S; Jin, H; Foster, C; Andreadi, C; Kamata, T

    2007-11-01

    Oncogenic mutations in the BRAF gene are detected in approximately 7% of human cancer samples with a particularly high frequency of mutation in malignant melanomas. Over 40 different missense BRAF mutations have been found, but the vast majority (>90%) represent a single nucleotide change resulting in a valine-->glutamate mutation at residue 600 ((V600E)BRAF). In cells cultured in vitro, (V600E)BRAF is able to stimulate endogenous MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK phosphorylation leading to an increase in cell proliferation, cell survival, transformation, tumorigenicity, invasion and vascular development. Many of these hallmarks of cancer can be reversed by treatment of cells with siRNA (small interfering RNA) to BRAF or by inhibiting MEK, indicating that BRAF and MEK are attractive therapeutic targets in cancer samples with BRAF mutations. In order to fully understand the role of oncogenic BRAF in cancer development in vivo as well as to test the in vivo efficacy of anti-BRAF or anti-MEK therapies, GEMMs (genetically engineered mouse models) have been generated in which expression of oncogenic BRaf is conditionally dependent on the Cre recombinase. The delivery/activation of the Cre recombinase can be regulated in both a temporal and spatial manner and therefore these mouse models can be used to recapitulate the somatic mutation of BRAF that occurs in different tissues in the development of human cancer. The data so far obtained following Cre-mediated activation in haemopoietic tissue and the lung indicate that (V600E)BRAF mutation can drive tumour initiation and that its primary effect is to induce high levels of cyclin D1-mediated cell proliferation. However, hallmarks of OIS (oncogene-induced senescence) are evident that restrain further development of the tumour.

  7. BRAF-Directed Therapy in Metastatic Colorectal Cancer.

    PubMed

    Korphaisarn, Krittiya; Kopetz, Scott

    2016-01-01

    Activating BRAF (V-raf murine sarcoma viral oncogene homolog B) mutations occur in approximately 5% to 10% of patients with metastatic colorectal cancer, mostly V600E mutation, and it is associated with distinct clinical and pathological features. To date, there are no approved treatments to target this mutation. BRAF inhibitor monotherapy has limited efficacy, in contrast to metastatic melanoma. Combination strategies that block not only BRAF mutated kinase but other alternative pathways are ongoing and have demonstrated improved activity. This review aims to provide data about new strategies to target to BRAF gene mutation in metastatic colorectal cancer. PMID:27341594

  8. [Advances in the research of BRAF(V600E) gene mutation correlated with papillary thyroid carcinoma].

    PubMed

    Xu, X Q; Wang, X H; Jing, J X

    2016-08-01

    The increase in the incidence of papillary thyroid carcinoma (PTC) is a serious threat to public health. V-raf murine sarcoma viral oncogene homolog B(BRAF)(V600E) gene mutation is not only the common genetics factors, but also is the early event in process of thyroid carcinogenesis. We mainly illustrate the mechanism of BRAF(V600E) gene in genesis and development of PTC and the correlation of BRAF(V600E) gene mutation and the clinicopathological characteristics of PTC. Finally, we briefly summarize some scientific achievements about tyrosine kinase inhibitors targeted for BRAF(V600E) gene and their clinical prospect in terms of translation medicine concept. In summary, BRAF(V600E) gene is expected to be a new molecular marker of PTC, which will take a new hope for individualized precise treatment for patients with PTC. PMID:27625138

  9. Detection of BRAF V600 Mutations in Melanoma: Evaluation of Concordance between the Cobas® 4800 BRAF V600 Mutation Test and the Methods Used in French National Cancer Institute (INCa) Platforms in a Real-Life Setting

    PubMed Central

    Mourah, Samia; Denis, Marc G.; Narducci, Fabienne Escande; Solassol, Jérôme; Merlin, Jean-Louis; Sabourin, Jean-Christophe; Scoazec, Jean-Yves; Ouafik, L’Houcine; Emile, Jean-François; Heller, Remy; Souvignet, Claude; Bergougnoux, Loïc; Merlio, Jean-Philippe

    2015-01-01

    Vemurafenib is approved for the treatment of metastatic melanoma in patients with BRAF V600 mutation. In pivotal clinical trials, BRAF testing has always been done with the approved cobas 4800 BRAF test. In routine practice, several methods are available and are used according to the laboratories usual procedures. A national, multicenter, non-interventional study was conducted with prospective and consecutive collection of tumor samples. A parallel evaluation was performed in routine practice between the cobas 4800 BRAF V600 mutation test and home brew methods (HBMs) of 12 national laboratories, labelled and funded by the French National Cancer Institute (INCa). For 420 melanoma samples tested, the cobas method versus HBM showed a high concordance (93.3%; kappa = 0.86) in BRAF V600 genotyping with similar mutation rates (34.0% versus 35.7%, respectively). Overall, 97.4% and 98.6% of samples gave valid results using the cobas and HBM, respectively. Of the 185 samples strictly fulfilling the cobas guidelines, the concordance rate was even higher (95.7%; kappa = 0.91; 95%CI [0.85; 0.97]). Out of the 420 samples tested, 28 (6.7%) showed discordance between HBM and cobas. This prospective study shows a high concordance rate between the cobas 4800 BRAF V600 test and home brew methods in the routine detection of BRAF V600E mutations. PMID:25789737

  10. Comparison of KRAS/BRAF mutations between primary tumors and serum in colorectal cancer: Biological and clinical implications.

    PubMed

    Pu, Xingxiang; Pan, Zhizhong; Huang, Ying; Tian, Ying; Guo, Hongqiang; Wu, Lin; He, Xuexing; Chen, Xinggui; Zhang, Shaodan; Lin, Tongyu

    2013-01-01

    In colorectal cancer (CRC), KRAS and BRAF mutations in primary tumors are associated with resistance to anti-epidermal growth factor receptor (anti-EGFR)-based therapies. However, the correlation between KRAS/BRAF mutation in primary tumors and serum has not been well studied. To evaluate the degree of concordance of KRAS/BRAF mutations between the primary tumors and the matched serum samples in CRC, serum and tumor tissues were collected from 115 patients with CRC and KRAS/BRAF mutations were examined by nested polymerase chain reaction (PCR) and direct sequencing. BRAF mutations were present in 3.5% (4/115) of the primary tumor tissue samples and 0.87% (1/115) of the serum samples. In the 4 primary tumors with BRAF mutations, identical mutations were not observed in the corresponding serum samples (κ=-0.016). KRAS mutations were observed in 32.2% (37/115) of the primary tumors and 11.3% (13/115) of the serum samples. Of the 37 tumor cases with KRAS mutations, 9 had identical mutations in the corresponding serum sample, with a concordance rate of 24.3% (9/37). Discordance was observed in 32 (27.8%) patients. The concordance between KRAS mutations in the primary tumors and KRAS mutations in the matched serums was low (κ=0.231). The results of the present study suggest that the possibility of differences in the mutational status of KRAS/BRAF between primary tumors and matched serum samples should be considered when patients are selected for anti-EGFR-based therapies.

  11. Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers

    PubMed Central

    Jang, Jin Sung; Lee, Adam; Li, Jun; Liyanage, Hema; Yang, Yanan; Guo, Lixia; Asmann, Yan W.; Li, Peter W.; Erickson-Johnson, Michele; Sakai, Yuta; Sun, ZhiFu; Jeon, Hyo-Sung; Hwang, Hayoung; Bungum, Aaron O.; Edell, Eric S.; Simon, Vernadette A.; Kopp, Karla J.; Eckloff, Bruce; Oliveira, Andre M.; Wieben, Eric; Aubry, Marie Christine; Yi, Eunhee; Wigle, Dennis; Diasio, Robert B.; Yang, Ping; Jen, Jin

    2015-01-01

    Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1–9 of SND1 and exons 2 to 3′ end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy. PMID:25985019

  12. Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers.

    PubMed

    Jang, Jin Sung; Lee, Adam; Li, Jun; Liyanage, Hema; Yang, Yanan; Guo, Lixia; Asmann, Yan W; Li, Peter W; Erickson-Johnson, Michele; Sakai, Yuta; Sun, ZhiFu; Jeon, Hyo-Sung; Hwang, Hayoung; Bungum, Aaron O; Edell, Eric S; Simon, Vernadette A; Kopp, Karla J; Eckloff, Bruce; Oliveira, Andre M; Wieben, Eric; Aubry, Marie Christine; Yi, Eunhee; Wigle, Dennis; Diasio, Robert B; Yang, Ping; Jen, Jin

    2015-05-18

    Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1-9 of SND1 and exons 2 to 3' end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy.

  13. KRAS and BRAF Mutations and PTEN Expression Do Not Predict Efficacy of Cetuximab-Based Chemoradiotherapy in Locally Advanced Rectal Cancer

    SciTech Connect

    Erben, Philipp; Stroebel, Philipp; Horisberger, Karoline; Popa, Juliana; Bohn, Beatrice; Hanfstein, Benjamin; Kaehler, Georg; Kienle, Peter; Post, Stefan; Wenz, Frederik; Hochhaus, Andreas

    2011-11-15

    Purpose: Mutations in KRAS and BRAF genes as well as the loss of expression of phosphatase and tensin homolog (PTEN) (deleted on chromosome 10) are associated with impaired activity of antibodies directed against epidermal growth factor receptor in patients with metastatic colorectal cancer. The predictive and prognostic value of the KRAS and BRAF point mutations as well as PTEN expression in patients with locally advanced rectal cancer (LARC) treated with cetuximab-based neoadjuvant chemoradiotherapy is unknown. Methods and Materials: We have conducted phase I and II trials of the combination of weekly administration of cetuximab and irinotecan and daily doses of capecitabine in conjunction with radiotherapy (45 Gy plus 5.4 Gy) in patients with LARC (stage uT3/4 or uN+). The status of KRAS and BRAF mutations was determined with direct sequencing, and PTEN expression status was determined with immunohistochemistry testing of diagnostic tumor biopsies. Tumor regression was evaluated by using standardized regression grading, and disease-free survival (DFS) was calculated according to the Kaplan-Meier method. Results: A total of 57 patients were available for analyses. A total of 31.6% of patients carried mutations in the KRAS genes. No BRAF mutations were found, while the loss of PTEN expression was observed in 9.6% of patients. Six patients achieved complete remission, and the 3-year DFS rate was 73%. No correlation was seen between tumor regression or DFS rate and a single marker or a combination of all markers. Conclusions: In the present series, no BRAF mutation was detected. The presence of KRAS mutations and loss of PTEN expression were not associated with impaired response to cetuximab-based chemoradiotherapy and 3-year DFS.

  14. BRAF inhibitors reverse the unique molecular signature and phenotype of hairy cell leukemia and exert potent antileukemic activity

    PubMed Central

    Pettirossi, Valentina; Santi, Alessia; Imperi, Elisa; Russo, Guido; Pucciarini, Alessandra; Bigerna, Barbara; Schiavoni, Gianluca; Fortini, Elisabetta; Spanhol-Rosseto, Ariele; Sportoletti, Paolo; Mannucci, Roberta; Martelli, Maria Paola; Klein-Hitpass, Ludger; Falini, Brunangelo

    2015-01-01

    Hairy cell leukemia (HCL) shows unique clinicopathological and biological features. HCL responds well to purine analogs but relapses are frequent and novel therapies are required. BRAF-V600E is the key driver mutation in HCL and distinguishes it from other B-cell lymphomas, including HCL-like leukemias/lymphomas (HCL-variant and splenic marginal zone lymphoma). The kinase-activating BRAF-V600E mutation also represents an ideal therapeutic target in HCL. Here, we investigated the biological and therapeutic importance of the activated BRAF–mitogen-activated protein kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) pathway in HCL by exposing in vitro primary leukemic cells purified from 26 patients to clinically available BRAF (vemurafenib; dabrafenib) or MEK (trametinib) inhibitors. Results were validated in vivo in samples from vemurafenib-treated HCL patients within a phase 2 clinical trial. BRAF and MEK inhibitors caused, specifically in HCL (but not HCL-like) cells, marked MEK/ERK dephosphorylation, silencing of the BRAF-MEK-ERK pathway transcriptional output, loss of the HCL-specific gene expression signature, downregulation of the HCL markers CD25, tartrate-resistant acid phosphatase, and cyclin D1, smoothening of leukemic cells’ hairy surface, and, eventually, apoptosis. Apoptosis was partially blunted by coculture with bone marrow stromal cells antagonizing MEK-ERK dephosphorylation. This protective effect could be counteracted by combined BRAF and MEK inhibition. Our results strongly support and inform the clinical use of BRAF and MEK inhibitors in HCL. PMID:25480661

  15. Mutational analysis of BRAF and KRAS in ovarian serous borderline (atypical proliferative) tumours and associated peritoneal implants

    PubMed Central

    Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming

    2014-01-01

    There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542

  16. Validation of a Manual Protocol for BRAF V600E Mutation-specific Immunohistochemistry.

    PubMed

    Dinges, Hanns C; Capper, David; Ritz, Olga; Brüderlein, Silke; Marienfeld, Ralf; von Deimling, Andreas; Möller, Peter; Lennerz, Jochen K

    2015-01-01

    Detection of BRAF V600E has diagnostic, prognostic, and therapeutic relevance. The recently developed BRAF V600E mutation-specific antibody has evolved into a feasible alternative to DNA analysis. The plethora of immunohistochemical protocols makes implementation tedious and, here we tested a set of manual and automated protocols and compared test performance with sequencing results. For assays, we employed formalin-fixed, in part decalcified, and paraffin-embedded tissue samples. Empiric testing of manual protocols included 10 variables in 17 protocols. Automated immunohistochemical staining and BRAF pyrosequencing served as independent test methods. Test performance measures were compared without considering 1 method as a standard. Four well-fixed samples (2WT/2Mut) were used for testing of all protocols and indicated 2 correctly classifying procedures. Practical performance assessment employed 33 independent tissue samples, composed of 27 leukemias (by pyrosequencing: 8 wild-type; 18 mutated; 1 noninformative) and 6 melanomas (V600E; V600K; wild-type, 2 each). Manual V600E staining was positive in 20 cases (19 of 20 V600E-containing samples plus the 1 sample that was noninformative), whereas all wild-type and V600K cases were immunonegative. Manual or automated staining as well as pyrosequencing would have missed an equal number of V600E-mutated cases and the correlation coefficient for these methods was 0.75 to 0.93 (substantial to almost perfect); the Youden index was 0.95. Detection of V600E-mutated BRAF at the protein level in routine and decalcified tissue samples is possible, and the presented manual protocols should expedite implementation in routine diagnostic practice. Our results indicate that both molecular techniques should be considered complementary.

  17. Comparative Methods to Improve the Detection of BRAF V600 Mutations in Highly Pigmented Melanoma Specimens

    PubMed Central

    Frouin, Eric; Maudelonde, Thierry; Senal, Romain; Larrieux, Marion; Costes, Valérie; Godreuil, Sylvain

    2016-01-01

    Genotyping BRAF in melanoma samples is often challenging. The presence of melanin greatly interferes with thermostable DNA polymerases and/or nucleic acids in traditional polymerase chain reaction (PCR)-based methods. In the present work, we evaluated three easy-to-use strategies to improve the detection of pigmented DNA refractory to PCR amplification. These pre-PCR processing methods include the addition of bovine serum albumin (BSA), the dilution of DNA, and the purification of DNA using the NucleoSpin® gDNA Clean-up XS Kit. We found that BRAF genotyping in weakly and moderately pigmented samples was more efficient when the sample was processed with BSA or purified with a NucleoSpin® gDNA Clean-up XS Kit prior to PCR amplification. In addition, the combination of both methods resulted in successful detection of BRAF mutation in pigmented specimens, including highly pigmented samples, thereby increasing the chance of patients being elicited for anti-BRAF treatment. These solutions to overcome melanin-induced PCR inhibition are of tremendous value and provide a simple solution for clinical chemistry and routine laboratory medicine. PMID:27466810

  18. Association Between NRAS and BRAF Mutational Status and Melanoma-Specific Survival Among Patients With Higher Risk Primary Melanoma

    PubMed Central

    Thomas, Nancy E.; Edmiston, Sharon N.; Alexander, Audrey; Groben, Pamela A.; Parrish, Eloise; Kricker, Anne; Armstrong, Bruce K.; Anton-Culver, Hoda; Gruber, Stephen B.; From, Lynn; Busam, Klaus J.; Hao, Honglin; Orlow, Irene; Kanetsky, Peter A.; Luo, Li; Reiner, Anne S.; Paine, Susan; Frank, Jill S.; Bramson, Jennifer I.; Marrett, Lorraine D.; Gallagher, Richard P.; Zanetti, Roberto; Rosso, Stefano; Dwyer, Terence; Cust, Anne E.; Ollila, David W.; Begg, Colin B.; Berwick, Marianne; Conway, Kathleen

    2015-01-01

    Importance NRAS and BRAF mutations in melanoma inform current treatment paradigms but their role in survival from primary melanoma has not been established. Identification of patients at high risk of melanoma-related death based on their primary melanoma characteristics before evidence of recurrence could inform recommendations for patient follow-up and eligibility for adjuvant trials. Objective To determine tumor characteristics and survival from primary melanoma by somatic NRAS and BRAF status. Design, Setting, and Participants A population-based study with median follow-up of 7.6 years for 912 patients with first primary cutaneous melanoma analyzed for NRAS and BRAF mutations diagnosed in the year 2000 from the United States and Australia in the Genes, Environment and Melanoma Study and followed through 2007. Main Outcomes and Measures Tumor characteristics and melanoma-specific survival of primary melanoma by NRAS and BRAF mutational status. Results The melanomas were 13% NRAS+, 30% BRAF+, and 57% with neither NRAS nor BRAF mutation (wildtype). In a multivariable model including clinicopathologic characteristics, NRAS+ melanoma was associated (P<.05) with mitoses, lower tumor infiltrating lymphocyte (TIL) grade, and anatomic site other than scalp/neck and BRAF+ melanoma was associated with younger age, superficial spreading subtype, and mitoses, relative to wildtype melanoma. There was no significant difference in melanoma-specific survival for melanoma harboring mutations in NRAS (HR 1.7, 95% CI, 0.8–3.4) or BRAF (HR, 1.5, 95% CI, 0.8–2.9) compared to wildtype melanoma adjusted for age, sex, site, AJCC tumor stage, TIL grade, and study center. However, melanoma-specific survival was significantly poorer for higher risk (T2b or higher stage) tumors with NRAS (HR 2.9; 95% CI 1.1–7.7) or BRAF (HR 3.1; 95% CI 1.2–8.5) mutations but not for lower risk (T2a or lower) tumors (P=.65) adjusted for age, sex, site, AJCC tumor stage, TIL grade, and study center

  19. Histologic and Phenotypic Factors and MC1R Status Associated with BRAF(V600E), BRAF(V600K), and NRAS Mutations in a Community-Based Sample of 414 Cutaneous Melanomas.

    PubMed

    Hacker, Elke; Olsen, Catherine M; Kvaskoff, Marina; Pandeya, Nirmala; Yeo, Abrey; Green, Adèle C; Williamson, Richard M; Triscott, Joe; Wood, Dominic; Mortimore, Rohan; Hayward, Nicholas K; Whiteman, David C

    2016-04-01

    Cutaneous melanomas arise through causal pathways involving interplay between exposure to UV radiation and host factors, resulting in characteristic patterns of driver mutations in BRAF, NRAS, and other genes. To gain clearer insights into the factors contributing to somatic mutation genotypes in melanoma, we collected clinical and epidemiologic data, performed skin examinations, and collected saliva and tumor samples from a community-based series of 414 patients aged 18 to 79, newly diagnosed with cutaneous melanoma. We assessed constitutional DNA for nine common polymorphisms in melanocortin-1 receptor gene (MC1R). Tumor DNA was assessed for somatic mutations in 25 different genes. We observed mutually exclusive mutations in BRAF(V600E) (26%), BRAF(V600K) (8%), BRAF(other) (5%), and NRAS (9%). Compared to patients with BRAF wild-type melanomas, those with BRAF(V600E) mutants were significantly younger, had more nevi but fewer actinic keratoses, were more likely to report a family history of melanoma, and had tumors that were more likely to harbor neval remnants. BRAF(V600K) mutations were also associated with high nevus counts. Both BRAF(V600K) and NRAS mutants were associated with older age but not with high sun exposure. We also found no association between MC1R status and any somatic mutations in this community sample of cutaneous melanomas, contrary to earlier reports.

  20. The influence of the BRAF V600E mutation in thyroid cancer cell lines on the anticancer effects of 5-aminoimidazole-4-carboxamide-ribonucleoside.

    PubMed

    Choi, Hyun-Jeung; Kim, Tae Yong; Chung, Namhyun; Yim, Ji Hye; Kim, Won Gu; Kim, Jin A; Kim, Won Bae; Shong, Young Kee

    2011-10-01

    5-Aminoimidazole-4-carboxamide-ribonucleoside (AICAR) is an activator of 5'-AMP-activated protein kinase (AMPK), which plays a role in the maintenance of cellular energy homeostasis. Activated AMPK inhibits the protein kinase mechanistic target of rapamycin, thereby reducing the extent of protein translation and suppressing both cell growth and cell cycle entry. Recent reports indicate that AMPK-mediated growth inhibition is achieved via an action of the RAF-MEK-ERK mitogen-activated protein kinase pathway in melanoma cells harboring the V600E mutant form of the BRAF oncogene. In this study, we investigated the anti-cancer efficacy of AICAR by measuring its effects on proliferation, apoptosis, and cell cycle progression of BRAF wild-type and V600E-mutant thyroid cancer cell lines. We also explored the mechanism underlying these effects. AICAR inhibited the proliferation of BRAF V600E-mutant thyroid cancer cell lines more strongly than was the case with wild-type cell lines. The suppressive effect of AICAR on cell proliferation was associated with increased S-phase cell cycle arrest and apoptosis. Interestingly, AICAR suppressed phosphorylation of ERK and p70S6K in BRAF V600E-mutant thyroid cancer cells, but rather increased phosphorylation in wild-type cells. Together, the results indicate that AICAR-induced AMPK activation in BRAF V600E-mutant thyroid cancer cell lines resulted in increases in apoptosis and S-phase arrest via downregulation of ERK and p70S6K activity. Thus, regulation of AMPK activity may be potentially useful as a therapy for thyroid cancer if the cancer harbors a BRAF V600E mutation.

  1. Braf Mutations Initiate the Development of Rat Gliomas Induced by Postnatal Exposure to N-Ethyl-N-Nitrosourea.

    PubMed

    Wang, Qi; Satomi, Kaishi; Oh, Ji Eun; Hutter, Barbara; Brors, Benedikt; Diessl, Nicolle; Liu, Hai-Kun; Wolf, Stephan; Wiestler, Otmar; Kleihues, Paul; Koelsch, Bernd; Kindler-Röhrborn, Andrea; Ohgaki, Hiroko

    2016-10-01

    A single dose of N-ethyl-N-nitrosourea (ENU) during late prenatal or early postnatal development induces a high incidence of malignant schwannomas and gliomas in rats. Although T->A mutations in the transmembrane domain of the Neu (c-ErbB-2) gene are the driver mutations in ENU-induced malignant schwannomas, the molecular basis of ENU-induced gliomas remains enigmatic. We performed whole-genome sequencing of gliomas that developed in three BDIV and two BDIX rats exposed to a single dose of 80 mg ENU/kg body weight on postnatal day one. T:A->A:T and T:A->C:G mutations, which are typical for ENU-induced mutagenesis, were predominant (41% to 55% of all somatic single nucleotide mutations). T->A mutations were identified in all five rat gliomas at Braf codon 545 (V545E), which corresponds to the human BRAF V600E. Additional screening revealed that 33 gliomas in BDIV rats and 12 gliomas in BDIX rats all carried a Braf V545E mutation, whereas peritumoral brain tissue of either strain had the wild-type sequence. The gliomas were immunoreactive to BRAF V600E antibody. These results indicate that Braf mutation is a frequent early event in the development of rat gliomas caused by a single dose of ENU. PMID:27658714

  2. Braf mutation in interdigitating dendritic cell sarcoma: a case report and review of the literature

    PubMed Central

    Di Liso, Elisabetta; Pennelli, Natale; Lodovichetti, Gigliola; Ghiotto, Cristina; Dei Tos, Angelo Paolo; Conte, PierFranco; Bonanno, Laura

    2015-01-01

    Interdigitating dendritic cell sarcoma is an extremely rare tumor. The diagnosis is difficult and is based on clinical, pathological and immunohistochemical evaluation. Differential diagnosis includes melanoma, mesenchymal and hematological malignancies. The mainstay of treatment is surgery for limited disease and different chemotherapy combinations have been tested for advanced disease. No evidence from prospective trials is currently available. We report the case of a 59 year-old male patient who experienced axillary lymphadenopathy with initial diagnosis of large-cell lung cancer on tumor biopsy. He underwent surgical resection with radical intent. Pathological diagnosis of interdigitating dendritic cell sarcoma was obtained on surgical samples. Nine months after radical surgery, he experienced systemic recurrence of disease and underwent chemotherapy with epirubicin and ifosfamide for 4 courses. During chemotherapy, he developed brain disease progression and underwent whole-brain radiotherapy. Systemic progression was then observed and molecular characterization was performed. B-RAF evaluation resulted positive for V600E mutation and the patient was treated with Vemurafenib according to molecular findings. He thus obtained initial clinical benefit but eventually died of brain hemorrhage. In conclusion, we report a case of B-RAF mutation detected in an interdigitating dendritic cell sarcoma patient treated with targeted therapy. B-RAF pathway could have a role in pathogenesis and evolution of this rare disease and could open new perspectives of treatment. PMID:26047060

  3. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    SciTech Connect

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  4. EBI-907, a novel BRAF(V600E) inhibitor, has potent oral anti-tumor activity and a broad kinase selectivity profile.

    PubMed

    Zhang, Jiayin; Lu, Biao; Liu, Dong; Shen, Ru; Yan, Yinfa; Yang, Liuqing; Zhang, Minsheng; Zhang, Lei; Cao, Guoqing; Cao, Hu; Fu, Beibei; Gong, Aishen; Sun, Qiming; Wan, Hong; Zhang, Lianshan; Tao, Weikang; Cao, Jingsong

    2016-01-01

    The oncogenic mutation of BRAF(V600E) has been found in approximately 8% of all human cancers, including more than 60% of melanoma and 10% of colorectal cancers. The clinical proof of concept in treating BRAF(V600E)-driving melanoma patients with the BRAF inhibitors has been well established. We have sought to identify and develop novel BRAF(V600E) inhibitors with more favorable profiles. Our chemistry effort has led to the discovery of EBI-907 as a novel BRAF(V600E) inhibitor with potent anti-tumor activity in vitro and in vivo. In a LanthaScreen BRAF(V600E) kinase assay, EBI-907 showed an IC50 of 4.8 nM, which is >10 -fold more potent than Vemurafenib (IC50 = 58.5 nM). In addition, EBI-907 showed a broader kinase selectivity profile, with potent activity against a number of important oncogenic kinases including FGFR1-3, RET, c-Kit, and PDGFRb. Concomitant with such properties, EBI-907 exhibits potent and selective cytotoxicity against a broader range of BRAF(V600E)-dependent cell lines including certain colorectal cancer cell lines with innate resistance to Vemurafenib. In BRAF(V600E)-dependent human Colo-205 and A375 tumor xenograft mouse models, EBI-907 caused a marked tumor regression in a dose-dependent manner, with superior efficacy to Vemurafenib. Our results also showed that combination with EGFR or MEK inhibitor enhanced the potency of EBI-907 in cell lines with innate or acquired resistance to BRAF inhibition alone. Our findings present EBI-907 as a potent and promising BRAF inhibitor, which might be useful in broader indications. PMID:26810733

  5. EBI-907, a novel BRAF(V600E) inhibitor, has potent oral anti-tumor activity and a broad kinase selectivity profile.

    PubMed

    Zhang, Jiayin; Lu, Biao; Liu, Dong; Shen, Ru; Yan, Yinfa; Yang, Liuqing; Zhang, Minsheng; Zhang, Lei; Cao, Guoqing; Cao, Hu; Fu, Beibei; Gong, Aishen; Sun, Qiming; Wan, Hong; Zhang, Lianshan; Tao, Weikang; Cao, Jingsong

    2016-01-01

    The oncogenic mutation of BRAF(V600E) has been found in approximately 8% of all human cancers, including more than 60% of melanoma and 10% of colorectal cancers. The clinical proof of concept in treating BRAF(V600E)-driving melanoma patients with the BRAF inhibitors has been well established. We have sought to identify and develop novel BRAF(V600E) inhibitors with more favorable profiles. Our chemistry effort has led to the discovery of EBI-907 as a novel BRAF(V600E) inhibitor with potent anti-tumor activity in vitro and in vivo. In a LanthaScreen BRAF(V600E) kinase assay, EBI-907 showed an IC50 of 4.8 nM, which is >10 -fold more potent than Vemurafenib (IC50 = 58.5 nM). In addition, EBI-907 showed a broader kinase selectivity profile, with potent activity against a number of important oncogenic kinases including FGFR1-3, RET, c-Kit, and PDGFRb. Concomitant with such properties, EBI-907 exhibits potent and selective cytotoxicity against a broader range of BRAF(V600E)-dependent cell lines including certain colorectal cancer cell lines with innate resistance to Vemurafenib. In BRAF(V600E)-dependent human Colo-205 and A375 tumor xenograft mouse models, EBI-907 caused a marked tumor regression in a dose-dependent manner, with superior efficacy to Vemurafenib. Our results also showed that combination with EGFR or MEK inhibitor enhanced the potency of EBI-907 in cell lines with innate or acquired resistance to BRAF inhibition alone. Our findings present EBI-907 as a potent and promising BRAF inhibitor, which might be useful in broader indications.

  6. Clinical Outcome of Radioiodine Therapy in Low-intermediate Risk Papillary Thyroid Carcinoma with BRAF(V600E) Mutation.

    PubMed

    Jiao, L I; Tao, Yang; Teng, Zhao; Jun, Liang; Yan-Song, Lin

    2016-06-10

    Objective To evaluate the impact of BRAF(V600E) gene status on clinical outcome of radioiodine((131)I) therapy in low-intermediate risk recurrent papillary thyroid carcinoma (PTC). Methods Totally 135 PTC patients were enrolled and divided into two groups according to BRAF(V600E) gene status:BRAF(V600E) mutation group(n=105) and BRAF(V600E) wild group(n=30). The median follow-up time was 2.16 years(1.03-4.06 years),and clinical outcome after initial (131)I ablation therapy was divided into excellent response(ER),acceptable response(AR),and incomplete response(IR) according to the serological and imageological follow-up results. The cinical outcomes were then compared between these two groups. Results There was no significant difference in clinicopathological features and initial radioactive iodine dose between BRAF(V600E) mutation and wild groups (P>0.05). ER,AR,and IR after (131)I ablation therapy accounted for 74.3%,20.0%,and 5.7% in BRAF(V600E) mutation group and 73.3%,20.0%,and 6.7% in BRAF(V600E) wild group,and no statistical difference was found (P=0.891). Conclusion For low-intermediate risk recurrent PTC,BRAF(V600E) gene status may have no impact on the response to (131)I ablation therapy,and thus this molecular feature should not be used as an independent weighting factor for risk assessment in this population. PMID:27544995

  7. The Prognostic Value of Microsatellite Instability, KRAS, BRAF and PIK3CA Mutations in Stage II Colon Cancer Patients

    PubMed Central

    Vogelaar, F Jeroen; N van Erning, Felice; Reimers, Marlies S; van der Linden, Hans; Pruijt, Hans; C van den Brule, Adriaan J; Bosscha, Koop

    2015-01-01

    In the era of personalized cancer medicine, identifying mutations within patient tumors plays an important role in defining high-risk stage II colon cancer patients. The prognostic role of BRAF V600E mutation, microsatellite instability (MSI) status, KRAS mutation and PIK3CA mutation in stage II colon cancer patients is not settled. We retrospectively analyzed 186 patients with stage II colon cancer who underwent an oncological resection but were not treated with adjuvant chemotherapy. KRAS mutations, PIK3CA mutation, V600E BRAF mutation and MSI status were determined. Survival analyses were performed. Mutations were found in the patients with each mutation in the following percentages: 23% (MSI), 35% (KRAS), 19% (BRAF) and 11% (PIK3CA). A trend toward worse overall survival (OS) was seen in patients with an MSI (5-year OS 74% versus 82%, adjusted hazard ratio [HR] 1.8, 95% confidence interval [CI] 0.6–4.9) and a KRAS-mutated tumor (5-year OS 77% versus 82%, adjusted HR 1.7, 95% CI 0.8–3.5). MSI and BRAF-mutated tumors tended to correlate with poorer disease-free survival (DFS) (5-year DFS 60% versus 78%, adjusted HR 1.6, 95% CI 0.5–2.1 and 5-year DFS 57% versus 77%, adjusted HR 1.1, 95% CI 0.4–2.6 respectively). In stage II colon cancer patients not treated with adjuvant chemotherapy, BRAF mutation and MSI status both tended to have a negative prognostic effect on disease-free survival. KRAS and MSI status also tended to be correlated with worse overall survival. PMID:26716438

  8. A new generation of companion diagnostics: cobas BRAF, KRAS and EGFR mutation detection tests.

    PubMed

    Angulo, Barbara; Lopez-Rios, Fernando; Gonzalez, David

    2014-06-01

    The cobas(®) (Roche) portfolio of companion diagnostics in oncology currently has three assays CE-marked for in vitro diagnostics. Two of these (EGFR and BRAF) are also US FDA-approved. These assays detect clinically relevant mutations that are correlated with response (BRAF, EGFR) or lack of response (KRAS) to targeted therapies such as selective mutant BRAF inhibitors in malignant melanoma, tyrosine kinases inhibitor in non-small cell lung cancer and anti-EGFR monoclonal antibodies in colorectal cancer, respectively. All these assays are run on a single platform using DNA extracted from a single 5 µm section of a formalin-fixed paraffin-embedded tissue block. The assays provide an 'end-to-end' solution from extraction of DNA to automated analysis and report on the cobas z 480. The cobas tests have shown robust and reproducible performance, with high sensitivity and specificity and low limit of detection, making them suitable as companion diagnostics for clinical use. PMID:24844134

  9. BRAF V600E mutation and resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer: a meta-analysis.

    PubMed

    Mao, Chen; Liao, Ru-Yan; Qiu, Li-Xin; Wang, Xi-Wen; Ding, Hong; Chen, Qing

    2011-04-01

    Epidemiologic studies have evaluated the association between BRAF mutations and resistance to the treatment of anti-EGFR monoclonal antibodies (MoAb) in patients with metastatic colorectal cancer (mCRC). However, the results are still inconclusive. To derive a more precise estimation of the relationship, we performed this meta-analysis. A total of 11 studies were included in the final meta-analysis. There were seven studies for unselected mCRC patients and four studies for patients with wild type KRAS mCRC. Among unselected mCRC patients, BRAF V600E mutation was detected in 48 of 546 primary tumors (8.8%). The objective response rate (ORR) of patients with mutant BRAF was 29.2% (14/48), whereas the ORR of patients with wild-type BRAF was 33.5% (158/472).The overall RR for ORR of mutant BRAF patients over wild-type BRAF patients was 0.86 (95% CI=0.57-1.30; P=0.48). For patients with KRAS wild-type mCRC, BRAF V600E mutation was detected in 40 of 376 primary tumors (10.6%). The ORR of patients with mutant BRAF was 0.0% (0/40), whereas the ORR of patients with wild-type BRAF was 36.3% (122/336). The pooled RR of mutant BRAF patients over wild-type BRAF patients was 0.14 (95% CI=0.04-0.53; P=0.004). In conclusion, this meta-analysis provides evidence that BRAF V600E mutation is associated with lack of response in wild-type KRAS mCRC treated with anti-EGFR MoAbs. BRAF mutation may be used as an additional biomarker for the selection of mCRC patients who might benefit from anti-EGFR MoAbs therapy.

  10. BRAF p.Val600Glu (V600E) mutation detection in thyroid fine needle aspiration cell block samples: a feasibility study.

    PubMed

    Leslie, Connull; Grieu-Iacopetta, Fabienne; Richter, Anna; Platten, Michael; Murray, Jack; Frost, Felicity A; Amanuel, Benhur; Kumarasinghe, M Priyanthi

    2015-08-01

    Assessing BRAF mutation status in thyroid fine needle aspiration (FNA) cytology samples by both immunohistochemistry (IHC) and molecular methods has been documented in recent literature. We aim to highlight issues relating to quality and quantity of cellular material and DNA extracted from cell block samples.BRAF mutation status was assessed by both molecular and IHC methods in cell block material from thyroid FNA samples over a range of diagnostic categories, and correlated with available follow-up resection specimens.Of 39 samples there were 14 cases with 'inconclusive' cytology (Bethesda diagnostic categories 3, 4 or 5) and 25 cases with malignant cytology. Follow-up information was available in 38 of 39 cases and resection material for comparison in 18 of 39 case. Detection of BRAF mutation in cell block samples by combined molecular and IHC methods showed 100% specificity and 71.4% sensitivity compared to subsequent histologically confirmed BRAF mutated papillary thyroid carcinoma. IHC detected BRAF mutation in two (8.2%) cases which were negative by molecular methods and confirmed mutation positive by IHC and molecular methods on subsequent histology. Low extracted DNA concentration did not appear to preclude detection of BRAF mutation, although cell blocks with lower tumour cell content were over-represented in cases that were wild-type on FNA material and BRAF mutant on subsequent histology.BRAF mutation detection in cell block material is feasible and highly specific for papillary thyroid carcinoma. Best results are obtained by a combination of molecular and IHC methods.

  11. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors.

    PubMed

    Knight, Deborah A; Ngiow, Shin Foong; Li, Ming; Parmenter, Tiffany; Mok, Stephen; Cass, Ashley; Haynes, Nicole M; Kinross, Kathryn; Yagita, Hideo; Koya, Richard C; Graeber, Thomas G; Ribas, Antoni; McArthur, Grant A; Smyth, Mark J

    2013-03-01

    The BRAF mutant, BRAF(V600E), is expressed in nearly half of melanomas, and oral BRAF inhibitors induce substantial tumor regression in patients with BRAF(V600E) metastatic melanoma. The inhibitors are believed to work primarily by inhibiting BRAF(V600E)-induced oncogenic MAPK signaling; however, some patients treated with BRAF inhibitors exhibit increased tumor immune infiltration, suggesting that a combination of BRAF inhibitors and immunotherapy may be beneficial. We used two relatively resistant variants of Braf(V600E)-driven mouse melanoma (SM1 and SM1WT1) and melanoma-prone mice to determine the role of host immunity in type I BRAF inhibitor PLX4720 antitumor activity. We found that PLX4720 treatment downregulated tumor Ccl2 gene expression and decreased tumor CCL2 expression in both Braf(V600E) mouse melanoma transplants and in de novo melanomas in a manner that was coincident with reduced tumor growth. While PLX4720 did not directly increase tumor immunogenicity, analysis of SM1 tumor-infiltrating leukocytes in PLX4720-treated mice demonstrated a robust increase in CD8(+) T/FoxP3(+)CD4(+) T cell ratio and NK cells. Combination therapy with PLX4720 and anti-CCL2 or agonistic anti-CD137 antibodies demonstrated significant antitumor activity in mouse transplant and de novo tumorigenesis models. These data elucidate a role for host CCR2 in the mechanism of action of type I BRAF inhibitors and support the therapeutic potential of combining BRAF inhibitors with immunotherapy.

  12. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System.

    PubMed

    Janku, Filip; Huang, Helen J; Claes, Bart; Falchook, Gerald S; Fu, Siqing; Hong, David; Ramzanali, Nishma M; Nitti, Giovanni; Cabrilo, Goran; Tsimberidou, Apostolia M; Naing, Aung; Piha-Paul, Sarina A; Wheler, Jennifer J; Karp, Daniel D; Holley, Veronica R; Zinner, Ralph G; Subbiah, Vivek; Luthra, Rajyalakshmi; Kopetz, Scott; Overman, Michael J; Kee, Bryan K; Patel, Sapna; Devogelaere, Benoit; Sablon, Erwin; Maertens, Geert; Mills, Gordon B; Kurzrock, Razelle; Meric-Bernstam, Funda

    2016-06-01

    Cell-free (cf) DNA from plasma offers an easily obtainable material for BRAF mutation analysis for diagnostics and response monitoring. In this study, plasma-derived cfDNA samples from patients with progressing advanced cancers or malignant histiocytosis with known BRAF(V600) status from formalin-fixed paraffin-embedded (FFPE) tumors were tested using a prototype version of the Idylla BRAF Mutation Test, a fully integrated real-time PCR-based test with turnaround time about 90 minutes. Of 160 patients, BRAF(V600) mutations were detected in 62 (39%) archival FFPE tumor samples and 47 (29%) plasma cfDNA samples. The two methods had overall agreement in 141 patients [88%; κ, 0.74; SE, 0.06; 95% confidence interval (CI), 0.63-0.85]. Idylla had a sensitivity of 73% (95% CI, 0.60-0.83) and specificity of 98% (95% CI, 0.93-1.00). A higher percentage, but not concentration, of BRAF(V600) cfDNA in the wild-type background (>2% vs. ≤ 2%) was associated with shorter overall survival (OS; P = 0.005) and in patients with BRAF mutations in the tissue, who were receiving BRAF/MEK inhibitors, shorter time to treatment failure (TTF; P = 0.001). Longitudinal monitoring demonstrated that decreasing levels of BRAF(V600) cfDNA were associated with longer TTF (P = 0.045). In conclusion, testing for BRAF(V600) mutations in plasma cfDNA using the Idylla BRAF Mutation Test has acceptable concordance with standard testing of tumor tissue. A higher percentage of mutant BRAF(V600) in cfDNA corresponded with shorter OS and in patients receiving BRAF/MEK inhibitors also with shorter TTF. Mol Cancer Ther; 15(6); 1397-404. ©2016 AACR.

  13. KRAS (but not BRAF) mutations in ovarian serous borderline tumor are associated with recurrent low-grade serous carcinoma

    PubMed Central

    Tsang, Yvonne T.; Deavers, Michael T.; Sun, Charlotte C.; Kwan, Suet-Yan; Kuo, Eric; Malpica, Anais; Mok, Samuel C.; Gershenson, David M.; Wong, Kwong-Kwok

    2014-01-01

    BRAF and KRAS mutations in ovarian serous borderline tumors (OSBTs) and ovarian low-grade serous carcinomas (LGSCs) have been previously described. However, whether those OSBTs would progress to LGSCs or those LGSCs were developed from OSBT precursors in previous studies is unknown. Therefore, we assessed KRAS and BRAF mutations in tumor samples from 23 recurrent LGSC patients with known initial diagnosis of OSBT. Paraffin blocks from both OSBT and LGSC samples were available for 5 patients, and either OSBT or LGSC were available for another 18 patients. Tumor cells from paraffin-embedded tissues were dissected out for mutation analysis by conventional polymerase chain reaction (PCR) and Sanger sequencing. Tumors that appeared to have wild-type KRAS by conventional PCR–Sanger sequencing were further analyzed by full COLD (coamplification at lower denaturation temperature)-PCR and deep sequencing. Full COLD-PCR was able to enrich the amplification of mutated alleles. Deep sequencing was performed with the Ion Torrent personal genome machine (PGM). By conventional PCR–Sanger sequencing, BRAF mutation was detected only in one patient and KRAS mutations were detected in 10 patients. Full COLD-PCR deep sequencing detected low-abundance KRAS mutations in eight additional patients. Three of the five patients with both OSBT and LGSC samples available had the same KRAS mutations detected in both OSBT and LGSC samples. The remaining two patients had only KRAS mutations detected in their LGSC samples. For patients with either OSBT or LGSC samples available, KRAS mutations were detected in 7 OSBT samples and 6 LGSC samples. To our surprise, patients with the KRAS G12V mutation appeared to have shorter survival times. In summary, KRAS mutations are very common in recurrent LGSC, while BRAF mutations are rare. The findings indicate that recurrent LGSC can arise from proliferation of OSBT tumor cells with or without detectable KRAS mutations. PMID:24549645

  14. Homologous Mutation to Human BRAF V600E is Common in Naturally Occurring Canine Bladder Cancer—Evidence for a Relevant Model System and Urine-based Diagnostic Test

    PubMed Central

    Decker, Brennan; Parker, Heidi G.; Dhawan, Deepika; Kwon, Erika M.; Karlins, Eric; Davis, Brian W.; Ramos-Vara, José A.; Bonney, Patty L.; McNiel, Elizabeth A.; Knapp, Deborah W.; Ostrander, Elaine A.

    2015-01-01

    Targeted cancer therapies offer great clinical promise, but treatment resistance is common, and basic research aimed at overcoming this challenge is limited by reduced genomic and biological complexity in artificially induced rodent tumors compared to their human counterparts. Animal models that more faithfully recapitulate genotype-specific human pathology could improve the predictive value of these investigations. Here, a newly identified animal model for oncogenic BRAF-driven cancers is described. With 20,000 new cases in the United States each year, canine invasive transitional cell carcinoma of the bladder (InvTCC) is a common, naturally occurring malignancy that shares significant histological, biological, and clinical phenotypes with human muscle invasive bladder cancer. In order to identify somatic drivers of canine InvTCC, the complete transcriptome for multiple tumors was determined by RNAseq. All tumors harbored a somatic mutation that is homologous to the human BRAF(V600E) mutation, and an identical mutation was present in 87% of 62 additional canine InvTCC tumors. The mutation was also detectable in the urine sediments of all dogs tested with mutation-positive tumors. Functional experiments suggest that, like human tumors, canine activating BRAF mutations potently stimulate the mitogen activated protein kinase (MAPK) pathway. Cell lines with the mutation have elevated levels of phosphorylated MEK, compared to a line with wild type BRAF. This effect can be diminished through application of the BRAF(V600E) inhibitor vemurafenib. These findings set the stage for canine InvTCC as a powerful system to evaluate BRAF-targeted therapies, as well as therapies designed to overcome resistance, which could enhance treatment of both human and canine cancers PMID:25767210

  15. BRAF Mutation and CDKN2A Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma

    PubMed Central

    Mistry, Matthew; Zhukova, Nataliya; Merico, Daniele; Rakopoulos, Patricia; Krishnatry, Rahul; Shago, Mary; Stavropoulos, James; Alon, Noa; Pole, Jason D.; Ray, Peter N.; Navickiene, Vilma; Mangerel, Joshua; Remke, Marc; Buczkowicz, Pawel; Ramaswamy, Vijay; Guerreiro Stucklin, Ana; Li, Martin; Young, Edwin J.; Zhang, Cindy; Castelo-Branco, Pedro; Bakry, Doua; Laughlin, Suzanne; Shlien, Adam; Chan, Jennifer; Ligon, Keith L.; Rutka, James T.; Dirks, Peter B.; Taylor, Michael D.; Greenberg, Mark; Malkin, David; Huang, Annie; Bouffet, Eric; Hawkins, Cynthia E.; Tabori, Uri

    2015-01-01

    Purpose To uncover the genetic events leading to transformation of pediatric low-grade glioma (PLGG) to secondary high-grade glioma (sHGG). Patients and Methods We retrospectively identified patients with sHGG from a population-based cohort of 886 patients with PLGG with long clinical follow-up. Exome sequencing and array CGH were performed on available samples followed by detailed genetic analysis of the entire sHGG cohort. Clinical and outcome data of genetically distinct subgroups were obtained. Results sHGG was observed in 2.9% of PLGGs (26 of 886 patients). Patients with sHGG had a high frequency of nonsilent somatic mutations compared with patients with primary pediatric high-grade glioma (HGG; median, 25 mutations per exome; P = .0042). Alterations in chromatin-modifying genes and telomere-maintenance pathways were commonly observed, whereas no sHGG harbored the BRAF-KIAA1549 fusion. The most recurrent alterations were BRAF V600E and CDKN2A deletion in 39% and 57% of sHGGs, respectively. Importantly, all BRAF V600E and 80% of CDKN2A alterations could be traced back to their PLGG counterparts. BRAF V600E distinguished sHGG from primary HGG (P = .0023), whereas BRAF and CDKN2A alterations were less commonly observed in PLGG that did not transform (P < .001 and P < .001 respectively). PLGGs with BRAF mutations had longer latency to transformation than wild-type PLGG (median, 6.65 years [range, 3.5 to 20.3 years] v 1.59 years [range, 0.32 to 15.9 years], respectively; P = .0389). Furthermore, 5-year overall survival was 75% ± 15% and 29% ± 12% for children with BRAF mutant and wild-type tumors, respectively (P = .024). Conclusion BRAF V600E mutations and CDKN2A deletions constitute a clinically distinct subtype of sHGG. The prolonged course to transformation for BRAF V600E PLGGs provides an opportunity for surgical interventions, surveillance, and targeted therapies to mitigate the outcome of sHGG. PMID:25667294

  16. Cytomorphologic features in thyroid nodules read as "suspicious for malignancy" on cytology may predict thyroid cancers with the BRAF mutation.

    PubMed

    Kwon, Hyeong Ju; Kim, Eun-Kyung; Kwak, Jin Young

    2015-09-01

    Some morphologic parameters have been studied to help predict the BRAF(V600E) mutation using cytopathologic specimens, which can indicate which nodules should undergo further testing. The aim of this study was to investigate the value of cytomorphologic parameters to predict the BRAF(V600E) mutation in nodules read as "suspicious for malignancy" on cytology. This study included 142 resected nodules which were diagnosed as "suspicious for malignancy" on cytology in 142 patients. At our institution, BRAF(V600E) mutation analysis was performed at the request of the referring clinicians based on the clinical features of the patients, or the judgment of the radiologists performing US-FNA because suspicious US features were observed on the targeted nodule during this study period. Cytology smears were re-reviewed to assess the presence and amount of polygonal eosinophilic (plump) cells and microfollicles, and the presence of intranuclear pseudoinclusions, irregular nuclear membranes, nuclear grooves, sickles cells, psammoma bodies, and cystic changes. We evaluated the diagnostic performances of the cytomorphologic features to predict the BRAF(V600E) mutation. Polygonal eosinophilic (plump) cells, microfollicles, intranuclear pseudoinclusions, sickle cells, and cystic changes were significantly associated with the BRAF(V600E) mutation. The mutation was not present in all 6 thyroid nodules with microfollicles larger than 20% on cytology. Additionally, polygonal eosinophilic (plump) cells larger than 20%, cystic changes, and sickle cells on cytology had a high specificity of 95%, 96.7%, and 81.7%, respectively. Excluding 6 nodules with microfollicles larger than 20% on cytology, there were 82 (60.3%) nodules with the BRAF(V600E) mutation among the 136 nodules. Among the 136 nodules, there were 95 nodules with polygonal eosinophilic (plump) cells larger than 20%, cystic changes, or sickle cells on cytology. Of the 95 nodules, 69 (72.6%) had the mutation. Cytomorphologic

  17. Melanoma-Derived BRAF(V600E) Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion.

    PubMed

    Kurgyis, Zsuzsanna; Kemény, Lajos V; Buknicz, Tünde; Groma, Gergely; Oláh, Judit; Jakab, Ádám; Polyánka, Hilda; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-01-01

    Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell's phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAF(V600E) melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAF(V600E) protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAF(V600E) with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAF(V600E) mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAF(V600E) mutation or protein in the peritumoral stroma of BRAF(WT) melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome. PMID:27338362

  18. The yin–yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF

    PubMed Central

    Kiel, Christina; Benisty, Hannah; Lloréns-Rico, Veronica; Serrano, Luis

    2016-01-01

    Many driver mutations in cancer are specific in that they occur at significantly higher rates than – presumably – functionally alternative mutations. For example, V600E in the BRAF hydrophobic activation segment (AS) pocket accounts for >95% of all kinase mutations. While many hypotheses tried to explain such significant mutation patterns, conclusive explanations are lacking. Here, we use experimental and in silico structure-energy statistical analyses, to elucidate why the V600E mutation, but no other mutation at this, or any other positions in BRAF’s hydrophobic pocket, is predominant. We find that BRAF mutation frequencies depend on the equilibrium between the destabilization of the hydrophobic pocket, the overall folding energy, the activation of the kinase and the number of bases required to change the corresponding amino acid. Using a random forest classifier, we quantitatively dissected the parameters contributing to BRAF AS cancer frequencies. These findings can be applied to genome-wide association studies and prediction models. DOI: http://dx.doi.org/10.7554/eLife.12814.001 PMID:26744778

  19. Impact of MAPK Pathway Activation in BRAF(V600) Melanoma on T Cell and Dendritic Cell Function.

    PubMed

    Ott, Patrick A; Bhardwaj, Nina

    2013-10-28

    Constitutive upregulation of the MAPK pathway by a BRAF(V600) mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAF(V600) mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs) are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAF(V600E) melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  20. Assessment of epigenetic alterations in early colorectal lesions containing BRAF mutations

    PubMed Central

    Nojima, Masanori; Harada, Taku; Maruyama, Reo; Ashida, Masami; Aoki, Hironori; Matsushita, Hiro-o; Yoshikawa, Kenjiro; Harada, Eiji; Tanaka, Yoshihito; Wakita, Shigenori; Niinuma, Takeshi; Kai, Masahiro; Eizuka, Makoto; Sugai, Tamotsu; Suzuki, Hiromu

    2016-01-01

    To clarify the molecular and clinicopathological characteristics of colorectal serrated lesions, we assessed the DNA methylation of cancer-associated genes in a cohort of BRAF-mutant precancerous lesions from 94 individuals. We then compared those results with the lesions' clinicopathological features, especially colorectal subsites. The lesions included hyperplastic polyps (n = 16), traditional serrated adenomas (TSAs) (n = 15), TSAs with sessile serrated adenomas (SSAs) (n = 6), SSAs (n = 49) and SSAs with dysplasia (n = 16). The prevalence of lesions exhibiting the CpG island methylator phenotype (CIMP) was lower in the sigmoid colon and rectum than in other bowel subsites, including the cecum, ascending, transverse and descending colon. In addition, several cancer-associated genes showed higher methylation levels within lesions in the proximal to sigmoid colon than in the sigmoid colon and rectum. These results indicate that the methylation status of lesions with BRAF mutation is strongly associated with their location, histological findings and neoplastic pathways. By contrast, no difference in aberrant DNA methylation was observed in normal-appearing background colonic mucosa along the bowel subsites, which may indicate the absence of an epigenetic field defect. PMID:27145369

  1. Survival advantage combining a BRAF inhibitor and radiation in BRAF V600E-mutant glioma.

    PubMed

    Dasgupta, Tina; Olow, Aleksandra K; Yang, Xiaodong; Hashizume, Rintaro; Nicolaides, Theodore P; Tom, Maxwell; Aoki, Yasuyuki; Berger, Mitchel S; Weiss, William A; Stalpers, Lukas J A; Prados, Michael; James, C David; Mueller, Sabine; Haas-Kogan, Daphne A

    2016-02-01

    Radiation (RT) is critical to the treatment of high-grade gliomas (HGGs) but cures remain elusive. The BRAF mutation V600E is critical to the pathogenesis of 10-20% of pediatric gliomas, and a small proportion of adult HGGs. Here we aim to determine whether PLX4720, a specific BRAF V600E inhibitor, enhances the activity of RT in human HGGs in vitro and in vivo. Patient-derived HGG lines harboring wild-type BRAF or BRAF V600E were assessed in vitro to determine IC50 values, cell cycle arrest, apoptosis and senescence and elucidate mechanisms of combinatorial activity. A BRAF V600E HGG intracranial xenograft mouse model was used to evaluate in vivo combinatorial efficacy of PLX4720+RT. Tumors were harvested for immunohistochemistry to quantify cell cycle arrest and apoptosis. RT+PLX4720 exhibited greater anti-tumor effects than either monotherapy in BRAF V600E but not in BRAF WT lines. In vitro studies showed increased Annexin V and decreased S phase cells in BRAF V600E gliomas treated with PLX4720+RT, but no significant changes in β-galactosidase levels. In vivo, concurrent and sequential PLX4720+RT each significantly prolonged survival compared to monotherapies, in the BRAF V600E HGG model. Immunohistochemistry of in vivo tumors demonstrated that PLX4720+RT decreased Ki-67 and phospho-MAPK, and increased γH2AX and p21 compared to control mice. BRAF V600E inhibition enhances radiation-induced cytotoxicity in BRAF V600E-mutated HGGs, in vitro and in vivo, effects likely mediated by apoptosis and cell cycle, but not senescence. These studies provide the pre-clinical rationale for clinical trials of concurrent radiotherapy and BRAF V600E inhibitors.

  2. The role of BRAF V600E mutation as a potential marker for prognostic stratification of papillary thyroid carcinoma: a long-term follow-up study.

    PubMed

    Daliri, Mahdi; Abbaszadegan, Mohammad Reza; Bahar, Mostafa Mehrabi; Arabi, Azadeh; Yadollahi, Mona; Ghafari, Azar; Taghehchian, Negin; Zakavi, Seyed Rasoul

    2014-01-01

    Abstract Papillary carcinoma is the most prevalent malignancy of thyroid gland, and its incidence has been recently increased. The BRAF(V600E) mutation is the most frequent genetic alteration in papillary thyroid carcinoma (PTC). The role of BRAF(V600E) mutation as a potential prognostic factor has been controversially reported in different studies, with short-term follow-up. In this study, we evaluated the role of BRAF(V600E) mutation as a potential marker for prognostic stratification of patients with PTC in long-term follow-up. We studied 69 PTC patients with a mean follow-up period of 63.9 months (median: 60 m). The BRAF(V600E) mutation was analyzed by PCR-single-strand conformational polymorphism and sequencing. The correlation between the presence or absence of the BRAF(V600E) mutation, clinicopathological features and prognosis of PTC patients were studied. The BRAF(V600E) mutation was found in 28 of 69 (40.6%) PTC patients, and it was significantly more frequent in older patients (p < 0.001), in advanced tumor stages (p = 0.006) and in patients with history of radiation exposure (p = 0.037). Incomplete response to treatment in PTC patients was significantly correlated with certain clinicopathological characteristics (follow-up time, distant metastases, advanced stage, first thyroglobulin (fTg) level, history of reoperation and external radiotherapy and delay in iodine therapy) but it was not related to the presence of BRAF(V600E) mutation. Prevalence of BRAF(V600E) mutation was 40.6% in patients with papillary thyroid cancer in northeast of Iran. The BRAF(V600E) mutation was associated with older age and advanced tumor stage but was not correlated with incomplete response during follow-up.

  3. Evaluation of clinicopathologic characteristics and the BRAF V600E mutation in Erdheim-Chester disease among Chinese adults.

    PubMed

    Cao, Xin-Xin; Sun, Jian; Li, Jian; Zhong, Ding-Rong; Niu, Na; Duan, Ming-Hui; Liang, Zhi-Yong; Zhou, Dao-Bin

    2016-04-01

    Erdheim-Chester disease (ECD) is a rare form of histiocytosis with a broad, non-specific clinical spectrum. Here, we retrospectively evaluated the clinical and pathologic characteristics, presence of the BRAF V600E mutation, treatment options, and outcomes of Chinese patients diagnosed with ECD at our center. Patients diagnosed with ECD between January 2010 and April 2015 at Peking Union Medical College Hospital were included for study. We evaluated baseline characteristics, reviewed histological material, and tested for the presence of the BRAF V600E mutation using immunohistochemistry and polymerase chain reaction (PCR). Sixteen patients were diagnosed with ECD. Median disease duration (from the first symptom to diagnosis) was 22.5 months (range, 3-100 months). The main sites of involvement included bone (93.8 %), cardiovascular region (43.8 %), skin (31.3 %), central nervous system (25 %), and "hairy kidney" (25 %). The BRAF V600E mutation was detected in 68.8 % patients using PCR and 50 % patients with immunohistochemistry. Three patients could not be diagnosed using histological analysis owing to similarities with Rosai-Dorfman disease, and diagnosis in these cases was confirmed based on the BRAF V600E mutation status. Ten patients (62.5 %) received IFN-α as first-line treatment. Thirteen patients (81.3 %) were still alive at median follow-up of 14.5 months. ECD remains a largely overlooked disease, and increased recognition by clinicians and pathologists is necessary for effective diagnosis and treatment. The presence of the BRAF V600E mutation may facilitate discrimination of ECD from other non-Langerhans cell histiocytoses.

  4. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer.

    PubMed

    De Roock, Wendy; De Vriendt, Veerle; Normanno, Nicola; Ciardiello, Fortunato; Tejpar, Sabine

    2011-06-01

    The discovery of mutant KRAS as a predictor of resistance to epidermal growth-factor receptor (EGFR) monoclonal antibodies brought a major change in the treatment of metastatic colorectal cancer. This seminal finding also highlighted our sparse knowledge about key signalling pathways in colorectal tumours. Drugs that inhibit oncogenic alterations such as phospho-MAP2K (also called MEK), phospho-AKT, and mutant B-RAF seem promising as single treatment or when given with EGFR inhibitors. However, our understanding of the precise role these potential drug targets have in colorectal tumours, and the oncogenic dependence that tumours might have on these components, has not progressed at the same rate. As a result, patient selection and prediction of treatment effects remain problematic. We review the role of mutations in genes other than KRAS on the efficacy of anti-EGFR therapy, and discuss strategies to target these oncogenic alterations alone or in combination with receptor tyrosine-kinase inhibition.

  5. Effect of BRAF mutational status on expression profiles in conventional papillary thyroid carcinomas

    PubMed Central

    2015-01-01

    Background Whereas 40 % to 70 % of papillary thyroid carcinomas (PTCs) are characterized by a BRAF mutation (BRAFmut), unified biomarkers for the genetically heterogeneous group of BRAF wild type (BRAFwt) PTCs are not established yet. Using state-of-the-art technology we compared RNA expression profiles between conventional BRAFwt and BRAFmut PTCs. Methods Microarrays covering 36,079 reference sequences were used to generate whole transcript expression profiles in 11 BRAFwt PTCs including five micro PTCs, 14 BRAFmut PTCs, and 7 normal thyroid specimens. A p-value with a false discovery rate (FDR) < 0.05 and a fold change > 2 were used as a threshold of significance for differential expression. Network and pathway utilities were employed to interpret significance of expression data. BRAF mutational status was established by direct sequencing the hotspot region of exon 15. Results We identified 237 annotated genes that were significantly differentially expressed between BRAFwt and BRAFmut PTCs. Of these, 110 genes were down- and 127 were upregulated in BRAFwt compared to BRAFmut PTCs. A number of molecules involved in thyroid hormone metabolism including thyroid peroxidase (TPO) were differentially expressed between both groups. Among cancer-associated molecules were ERBB3 that was downregulated and ERBB4 that was upregulated in BRAFwt PTCs. Two microRNAs were significantly differentially expressed of which miR492 bears predicted functions relevant to thyroid-specific molecules. The protein kinase A (PKA) and the G protein-coupled receptor pathways were identified as significantly related signaling cascades to the gene set of 237 genes. Furthermore, a network of interacting molecules was predicted on basis of the differentially expressed gene set. Conclusions The expression study focusing on affected genes that are differentially expressed between BRAFwt and BRAFmut conventional PTCs identified a number of molecules which are connected in a network and affect

  6. Putative BRAF activating fusion in a medullary thyroid cancer.

    PubMed

    Kasaian, Katayoon; Wiseman, Sam M; Walker, Blair A; Schein, Jacqueline E; Hirst, Martin; Moore, Richard A; Mungall, Andrew J; Marra, Marco A; Jones, Steven J M

    2016-03-01

    Medullary thyroid cancer (MTC) is a malignancy of the calcitonin-producing parafollicular cells of the thyroid gland. Surgery is the only curative treatment for this cancer. External beam radiation therapy is reserved for adjuvant treatment of MTC with aggressive features. Targeted therapeutics vandetanib and cabozantinib are approved for the treatment of aggressive and metastatic tumors that are not amenable to surgery. The use of these multikinase inhibitors are supported by the observed overactivation of the RET oncoprotein in a large subpopulation of MTCs. However, not all patients carry oncogenic alterations of this kinase. Hence, there is still a need for comprehensive molecular characterization of MTC utilizing whole-genome and transcriptome-sequencing methodologies with the aim of identifying targetable mutations. Here, we describe the genomic profiles of two medullary thyroid cancers and report the presence of a putative oncogenic BRAF fusion in one. Such alterations, previously observed in other malignancies and known targets of available drugs, can benefit patients who currently have no treatment options. PMID:27148585

  7. Comparative analysis of BRAF, NRAS and c-KIT mutation status between tumor tissues and autologous tumor cell-lines of stage III/IV melanoma.

    PubMed

    Knol, Anne-Chantal; Pandolfino, Marie-Christine; Vallée, Audrey; Nguyen, Frédérique; Lella, Virginie; Khammari, Amir; Denis, Marc; Puaux, Anne-Laure; Dréno, Brigitte

    2015-01-01

    In the last decade, advances in molecular biology have provided evidence of the genotypic heterogeneity of melanoma. We analysed BRAF, NRAS and c-KIT alterations in tissue samples from 63 stage III/IV melanoma patients and autologous cell-lines, using either allele-specific or quantitative PCR. The expression of BRAF V600E protein was also investigated using an anti-BRAF antibody in the same tissue samples. 81% of FFPE samples and tumor cell-lines harboured a genetic alteration in either BRAF (54%) or NRAS (27%) oncogenes. There was a strong concordance (100%) between tissue samples and tumor cell-lines. The BRAF V600E mutant-specific antibody showed high sensitivity (96%) and specificity (100%) for detecting the presence of a BRAF V600E mutation. The correlation was of 98% between PCR and immunohistochemistry results for BRAF mutation. These results suggest that BRAF and NRAS mutation status of tumor cells is not affected by culture conditions.

  8. Immunohistochemistry for BRAF(V600E) antibody VE1 performed in core needle biopsy samples identifies mutated papillary thyroid cancers.

    PubMed

    Crescenzi, A; Guidobaldi, L; Nasrollah, N; Taccogna, S; Cicciarella Modica, D D; Turrini, L; Nigri, G; Romanelli, F; Valabrega, S; Giovanella, L; Onetti Muda, A; Trimboli, P

    2014-05-01

    BRAF(V600E) is the most frequent genetic mutation in papillary thyroid cancer (PTC) and has been reported as an independent predictor of poor prognosis of these patients. Current guidelines do not recommend the use of BRAF(V600E) mutational analysis on cytologic specimens from fine needle aspiration due to several reasons. Recently, immunohistochemistry using VE1, a mouse anti-human BRAF(V600E) antibody, has been reported as a highly reliable technique in detecting BRAF-mutated thyroid and nonthyroid cancers. The aim of this study was to test the reliability of VE1 immunohistochemistry on microhistologic samples from core needle biopsy (CNB) in identifying BRAF-mutated PTC. A series of 30 nodules (size ranging from 7 to 22 mm) from 30 patients who underwent surgery following CNB were included in the study. All these lesions had had inconclusive cytology. In all cases, both VE1 and BRAF(V600E) genotypes were evaluated. After surgery, final histology demonstrated 21 cancers and 9 benign lesions. CNB correctly diagnosed 20/20 PTC and 5/5 adenomatous nodules. One follicular thyroid cancer and 4 benign lesions were assessed at CNB as uncertain follicular neoplasm. VE1 immunohistochemistry revealed 8 mutated PTC and 22 negative cases. A 100% agreement was found when positive and negative VE1 results were compared with BRAF mutational status. These data are the first demonstration that VE1 immunohistochemistry performed on thyroid CNB samples perfectly matches with genetic analysis of BRAF status. Thus, VE1 antibody can be used on thyroid microhistologic specimens to detect BRAF(V600E)-mutated PTC before surgery.

  9. A novel approach to detect KRAS/BRAF mutation for colon cancer: Highly sensitive simultaneous detection of mutations and simple pre-treatment without DNA extraction.

    PubMed

    Suzuki, Shun-Ichi; Matsusaka, Satoshi; Hirai, Mitsuharu; Shibata, Harumi; Takagi, Koichi; Mizunuma, Nobuyuki; Hatake, Kiyohiko

    2015-07-01

    It has been reported that colon cancer patients with KRAS and BRAF mutations that lie downstream of epidermal growth factor receptor (EGFR) acquire resistance against therapy with anti‑EGFR antibodies, cetuximab and panitumumab. On the other hand, some reports say KRAS codon 13 mutation (p.G13D) has lower resistance against anti-EGFR antibodies, thus there is a substantial need for detection of specific KRAS mutations. We have established a state-of-the-art measurement system using QProbe (QP) method that allows simultaneous measurement of KRAS codon 12/13, p.G13D and BRAF mutation, and compared this method against Direct Sequencing (DS) using 182 specimens from colon cancer patients. In addition, 32 biopsy specimens were processed with a novel pre-treatment method without DNA purification in order to detect KRAS/BRAF. As a result of KRAS mutation measurement, concordance rate between the QP method and DS method was 81.4% (144/177) except for the 5 specimens that were undeterminable. Among them, 29 specimens became positive with QP method and negative with DS method. BRAF was measured with QP method only, and the mutation detection rate was 3.9% (6/153). KRAS measurement using a simple new pre-treatment method without DNA extraction resulted in 31 good results out of 32, all of them matching with the DS method. We have established a simple but highly sensitive simultaneous detection system for KRAS/BRAF. Moreover, introduction of the novel pre-treatment technology eliminated the inconvenient DNA extraction process. From this research achievement, we not only anticipate quick and accurate results returned in the clinical field but also contribution in improving the test quality and work efficiency.

  10. A novel approach to detect KRAS/BRAF mutation for colon cancer: Highly sensitive simultaneous detection of mutations and simple pre-treatment without DNA extraction.

    PubMed

    Suzuki, Shun-Ichi; Matsusaka, Satoshi; Hirai, Mitsuharu; Shibata, Harumi; Takagi, Koichi; Mizunuma, Nobuyuki; Hatake, Kiyohiko

    2015-07-01

    It has been reported that colon cancer patients with KRAS and BRAF mutations that lie downstream of epidermal growth factor receptor (EGFR) acquire resistance against therapy with anti‑EGFR antibodies, cetuximab and panitumumab. On the other hand, some reports say KRAS codon 13 mutation (p.G13D) has lower resistance against anti-EGFR antibodies, thus there is a substantial need for detection of specific KRAS mutations. We have established a state-of-the-art measurement system using QProbe (QP) method that allows simultaneous measurement of KRAS codon 12/13, p.G13D and BRAF mutation, and compared this method against Direct Sequencing (DS) using 182 specimens from colon cancer patients. In addition, 32 biopsy specimens were processed with a novel pre-treatment method without DNA purification in order to detect KRAS/BRAF. As a result of KRAS mutation measurement, concordance rate between the QP method and DS method was 81.4% (144/177) except for the 5 specimens that were undeterminable. Among them, 29 specimens became positive with QP method and negative with DS method. BRAF was measured with QP method only, and the mutation detection rate was 3.9% (6/153). KRAS measurement using a simple new pre-treatment method without DNA extraction resulted in 31 good results out of 32, all of them matching with the DS method. We have established a simple but highly sensitive simultaneous detection system for KRAS/BRAF. Moreover, introduction of the novel pre-treatment technology eliminated the inconvenient DNA extraction process. From this research achievement, we not only anticipate quick and accurate results returned in the clinical field but also contribution in improving the test quality and work efficiency. PMID:25936694

  11. Dovitinib (TKI258), a multi-target angiokinase inhibitor, is effective regardless of KRAS or BRAF mutation status in colorectal cancer

    PubMed Central

    Lee, Choong-Kun; Lee, Myung Eun; Lee, Won Suk; Kim, Jeong Min; Park, Kyu Hyun; Kim, Tae Soo; Lee, Kang Young; Ahn, Joong Bae; Chung, Hyun Cheol; Rha, Sun Young

    2015-01-01

    Introduction: We aimed to determine whether KRAS and BRAF mutant colorectal cancer (CRC) cells exhibit distinct sensitivities to the multi-target angiokinase inhibitor, TKI258 (dovitinib). Materials and methods: We screened 10 CRC cell lines by using receptor tyrosine kinase (RTK) array to identify activated RTKs. MTT assays, anchorage-independent colony-formation assays, and immunoblotting assays were performed to evaluate the in vitro anti-tumor effects of TKI258. In vivo efficacy study followed by pharmacodynamic evaluation was done. Results: Fibroblast Growth Factor Receptor 1 (FGFR1) and FGFR3 were among the most highly activated RTKs in CRC cell lines. In in vitro assays, the BRAF mutant HT-29 cells were more resistant to the TKI258 than the KRAS mutant LoVo cells. However, in xenograft assays, TKI258 equally delayed the growth of tumors induced by both cell lines. TUNEL assays showed that the apoptotic index was unchanged following TKI258 treatment, but staining for Ki-67 and CD31 was substantially reduced in both xenografts, implying an anti-angiogenic effect of the drug. TKI258 treatment was effective in delaying CRC tumor growth in vivo regardless of the KRAS and BRAF mutation status. Conclusions: Our results identify FGFRs as potential targets in CRC treatment and suggest that combined targeting of multiple RTKs with TKI258 might serve as a novel approach to improve outcome of patients with CRC. PMID:25628921

  12. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses.

    PubMed

    Haroche, Julien; Charlotte, Frédéric; Arnaud, Laurent; von Deimling, Andreas; Hélias-Rodzewicz, Zofia; Hervier, Baptiste; Cohen-Aubart, Fleur; Launay, David; Lesot, Annette; Mokhtari, Karima; Canioni, Danielle; Galmiche, Louise; Rose, Christian; Schmalzing, Marc; Croockewit, Sandra; Kambouchner, Marianne; Copin, Marie-Christine; Fraitag, Sylvie; Sahm, Felix; Brousse, Nicole; Amoura, Zahir; Donadieu, Jean; Emile, Jean-François

    2012-09-27

    Histiocytoses are rare disorders of unknown origin with highly heterogeneous prognosis. BRAF mutations have been observed in Langerhans cell histiocytosis (LCH). We investigated the frequency of BRAF mutations in several types of histiocytoses. Histology from 127 patients with histiocytoses were reviewed. Detection of BRAF(V600) mutations was performed by pyrosequencing of DNA extracted from paraffin embedded samples. Diagnoses of Erdheim-Chester disease (ECD), LCH, Rosai-Dorfman disease, juvenile xanthogranuloma, histiocytic sarcoma, xanthoma disseminatum, interdigitating dendritic cell sarcoma, and necrobiotic xanthogranuloma were performed in 46, 39, 23, 12, 3, 2, 1, and 1 patients, respectively. BRAF status was obtained in 93 cases. BRAF(V600E) mutations were detected in 13 of 24 (54%) ECD, 11 of 29 (38%) LCH, and none of the other histiocytoses. Four patients with ECD died of disease. The high frequency of BRAF(V600E) in LCH and ECD suggests a common origin of these diseases. Treatment with vemurafenib should be investigated in patients with malignant BRAF(V600E) histiocytosis. PMID:22879539

  13. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas.

    PubMed

    Farchoukh, Lama; Kuan, Shih-Fan; Dudley, Beth; Brand, Randall; Nikiforova, Marina; Pai, Reetesh K

    2016-10-01

    Between 10% and 15% of colorectal carcinomas demonstrate sporadic DNA mismatch-repair protein deficiency as a result of MLH1 promoter methylation and are thought to arise from sessile serrated adenomas, termed the serrated neoplasia pathway. Although the presence of the BRAF V600E mutation is indicative of a sporadic cancer, up to 30% to 50% of colorectal carcinomas with MLH1 promoter hypermethylation will lack a BRAF mutation. We report the clinicopathologic and molecular features of MLH1-deficient colorectal carcinoma with wild-type BRAF and MLH1 promoter hypermethylation (referred to as MLH1-hypermethylated BRAF wild-type colorectal carcinoma, n=36) in comparison with MLH1-deficient BRAF-mutated colorectal carcinoma (n=113) and Lynch syndrome-associated colorectal carcinoma (n=36). KRAS mutations were identified in 31% of MLH1-hypermethylated BRAF wild-type colorectal carcinomas compared with 0% of MLH1-deficient BRAF-mutated colorectal carcinomas and 37% of Lynch syndrome-associated colorectal carcinomas. When a precursor polyp was identified, MLH1-hypermethylated BRAF wild-type colorectal carcinomas arose from precursor polyps resembling conventional tubular/tubulovillous adenomas in contrast to MLH1-deficient BRAF-mutated colorectal carcinomas, which arose from precursor sessile serrated adenomas (P<0.001). Both MLH1-hypermethylated BRAF wild-type colorectal carcinoma and MLH1-deficient BRAF-mutated colorectal carcinoma had a predilection for the right colon compared with Lynch syndrome-associated colorectal carcinoma (86% vs. 92% vs. 49%, P<0.001). There was no significant difference in mucinous differentiation, tumor-infiltrating lymphocytes, Crohn-like reaction, and medullary differentiation between the 3 tumor groups. Using Kaplan-Meier survival functions, there was no significant difference in disease-specific survival between the 3 patient groups (P>0.05). In conclusion, our results indicate that MLH1-hypermethylated BRAF wild-type colorectal carcinomas

  14. MGMT Promoter Methylation and BRAF V600E Mutations Are Helpful Markers to Discriminate Pleomorphic Xanthoastrocytoma from Giant Cell Glioblastoma.

    PubMed

    Lohkamp, Laura-Nanna; Schinz, Maren; Gehlhaar, Claire; Guse, Katrin; Thomale, Ulrich-Wilhelm; Vajkoczy, Peter; Heppner, Frank L; Koch, Arend

    2016-01-01

    Giant Cell Glioblastoma (gcGBM) and Pleomorphic Xanthoastrocytoma (PXA) are rare astroglial tumors of the central nervous system. Although they share certain histomorphological and immunohistochemical features, they are characterized by different clinical behavior and prognosis. Nevertheless, few cases remain uncertain, as their histomorphological hallmarks and immunophenotypes do correspond to the typical pattern neither of gcGBM nor PXA. Therefore, in addition to the routinely used diagnostic histochemical and immunohistochemical markers like Gömöri, p53 and CD34, we analyzed if genetic variations like MGMT promoter methylation, mutations in the IDH1/2 genes, or BRAF mutations, which are actually used as diagnostic, prognostic and predictive molecular markers in anaplastic glial tumors, could be helpful in the differential diagnostic of both tumor entities. We analyzed 34 gcGBM and 20 PXA for genetic variations in the above-named genes and found distinct distributions between both groups. MGMT promoter hypermethylation was observed in 3 out of 20 PXA compared to 14 out of 34 gcGBM (15% vs. 41.2%, p-value 0.09). BRAF V600E mutations were detected in 50% of the PXA but not in any of the gcGBM (50% vs. 0%, p-value < 0.001). IDH1 R132 and IDH R172 mutations were not present in any of the PXA and gcGBM cases. Our data indicate, that in addition to the histological and immunohistochemical evaluation, investigation of MGMT promoter methylation and in particular BRAF V600E mutations represent reliable additional tools to sustain differentiation of gcGBM from PXA on a molecular basis. Based on these data specific BRAF kinase inhibitors could represent a promising agent in the therapy of PXA and their use should be emphasized. PMID:27253461

  15. MGMT Promoter Methylation and BRAF V600E Mutations Are Helpful Markers to Discriminate Pleomorphic Xanthoastrocytoma from Giant Cell Glioblastoma

    PubMed Central

    Lohkamp, Laura-Nanna; Schinz, Maren; Gehlhaar, Claire; Guse, Katrin; Thomale, Ulrich-Wilhelm; Vajkoczy, Peter; Heppner, Frank L.; Koch, Arend

    2016-01-01

    Giant Cell Glioblastoma (gcGBM) and Pleomorphic Xanthoastrocytoma (PXA) are rare astroglial tumors of the central nervous system. Although they share certain histomorphological and immunohistochemical features, they are characterized by different clinical behavior and prognosis. Nevertheless, few cases remain uncertain, as their histomorphological hallmarks and immunophenotypes do correspond to the typical pattern neither of gcGBM nor PXA. Therefore, in addition to the routinely used diagnostic histochemical and immunohistochemical markers like Gömöri, p53 and CD34, we analyzed if genetic variations like MGMT promoter methylation, mutations in the IDH1/2 genes, or BRAF mutations, which are actually used as diagnostic, prognostic and predictive molecular markers in anaplastic glial tumors, could be helpful in the differential diagnostic of both tumor entities. We analyzed 34 gcGBM and 20 PXA for genetic variations in the above-named genes and found distinct distributions between both groups. MGMT promoter hypermethylation was observed in 3 out of 20 PXA compared to 14 out of 34 gcGBM (15% vs. 41.2%, p-value 0.09). BRAF V600E mutations were detected in 50% of the PXA but not in any of the gcGBM (50% vs. 0%, p-value < 0.001). IDH1 R132 and IDH R172 mutations were not present in any of the PXA and gcGBM cases. Our data indicate, that in addition to the histological and immunohistochemical evaluation, investigation of MGMT promoter methylation and in particular BRAF V600E mutations represent reliable additional tools to sustain differentiation of gcGBM from PXA on a molecular basis. Based on these data specific BRAF kinase inhibitors could represent a promising agent in the therapy of PXA and their use should be emphasized. PMID:27253461

  16. A case of osteoclast-like giant cell-rich epithelioid glioblastoma with BRAF V600E mutation.

    PubMed

    Funata, Nobuaki; Nobusawa, Sumihito; Yamada, Ryoji; Shinoura, Nobusada

    2016-01-01

    Epithelioid glioblastomas (E-GBMs) are rare, highly aggressive tumors consisting of closely packed tumor cells with smooth, round cell borders and abundant eosinophilic cytoplasm. They tend to affect younger patients compared with conventional GBM. BRAF V600E mutation is characteristically found in approximately 50% of all E-GBMs, compared with a low frequency of this mutation in conventional GBM. Here, we report an unusual case of glioma involving the right frontal lobe, basal ganglia and thalamus in an HIV-positive 30-year-old man on antiretroviral therapy. The lesion was composed of abundant discohesive, monotonous epithelioid cells with extensive necrosis, spindle and polyhedral cells, low-grade oligoastrocytoma-like areas, sarcomatous components, and numerous osteoclast-like giant cells (OLGCs) intermingled with epithelioid tumor cells. As the epithelioid cells accounted for more than one-third of the tumor, a pathological diagnosis of E-GBM was made. BRAF V600E mutation was detected in both oligoastrocytoma-like and epithelioid cell components. Similar to previously reported findings on E-GBM associated with low-grade glioma, this case suggested that low-grade astrocytic glioma with BRAF V600E mutation progressed to E-GBM. OLGCs are rarely observed in gliomas, and this is the first case report of E-GBM associated with abundant OLGC infiltration.

  17. Impact of KRAS, BRAF, PIK3CA, TP53 status and intraindividual mutation heterogeneity on outcome after liver resection for colorectal cancer metastases

    PubMed Central

    Løes, Inger Marie; Immervoll, Heike; Sorbye, Halfdan; Angelsen, Jon‐Helge; Horn, Arild; Knappskog, Stian

    2016-01-01

    We determined prognostic impact of KRAS, BRAF, PIK3CA and TP53 mutation status and mutation heterogeneity among 164 colorectal cancer (CRC) patients undergoing liver resections for metastatic disease. Mutation status was determined by Sanger sequencing of a total of 422 metastatic deposits. In univariate analysis, KRAS (33.5%), BRAF (6.1%) and PIK3CA (13.4%) mutations each predicted reduced median time to relapse (TTR) (7 vs. 22, 3 vs. 16 and 4 vs. 17 months; p < 0.001, 0.002 and 0.023, respectively). KRAS and BRAF mutations also predicted a reduced median disease‐specific survival (DSS) (29 vs. 51 and 16 vs. 49 months; p <0.001 and 0.008, respectively). No effect of TP53 (60.4%) mutation status was observed. Postoperative, but not preoperative chemotherapy improved both TTR and DSS (p < 0.001 for both) with no interaction with gene mutation status. Among 94 patients harboring two or more metastatic deposits, 13 revealed mutation heterogeneity across metastatic deposits for at least one gene. Mutation heterogeneity predicted reduced median DSS compared to homogeneous mutations (18 vs. 37 months; p = 0.011 for all genes; 16 vs. 26 months; p < 0.001 analyzing BRAF or KRAS mutations separately). In multivariate analyses, KRAS or BRAF mutations consistently predicted poor TRR and DSS. Mutation heterogeneity robustly predicted DSS but not TTR, while postoperative chemotherapy improved both TTR and DSS. Our findings indicate that BRAF and KRAS mutations as well as mutation heterogeneity predict poor outcome in CRC patients subsequent to liver resections and might help guide treatment decisions. PMID:26991344

  18. Recent progress in the identification of BRAF inhibitors as anti-cancer agents.

    PubMed

    El-Nassan, Hala Bakr

    2014-01-24

    The "RAS/BRAF/MEK/ERK" pathway has been associated with human cancers due to the frequent oncogenic mutations identified in its members. In particular, BRAF is mutated at high frequency in many cancers especially melanoma. This mutation leads to activation of the MAPK signaling pathway, inducing uncontrolled cell proliferation, and facilitating malignant transformation. All these facts make BRAF an ideal target for antitumor therapeutic development. Many BRAF inhibitors have been discovered during the last decade and most of them exhibit potent antitumor activity especially on tumors that harbor BRAF(V600E) mutations. Some of these compounds have entered clinical trials and displayed encouraged results. The present review highlights the progress in identification and development of BRAF inhibitors especially during the last five years.

  19. Associations of anthropometric factors with KRAS and BRAF mutation status of primary colorectal cancer in men and women: a cohort study.

    PubMed

    Brändstedt, Jenny; Wangefjord, Sakarias; Nodin, Björn; Eberhard, Jakob; Sundström, Magnus; Manjer, Jonas; Jirström, Karin

    2014-01-01

    Obesity is a well-established risk factor for colorectal cancer (CRC), and accumulating evidence suggests a differential influence of sex and anthropometric factors on the molecular carcinogenesis of the disease. The aim of the present study was to investigate the relationship between height, weight, bodyfat percentage, waist- and hip circumference, waist-hip ratio (WHR), body mass index (BMI) and CRC risk according to KRAS and BRAF mutation status of the tumours, with particular reference to potential sex differences. KRAS and BRAF mutations were analysed by pyrosequencing in tumours from 494 incident CRC cases in the Malmö Diet and Cancer Study. Hazard ratios of CRC risk according to anthropometric factors and mutation status were calculated using multivariate Cox regression models. While all anthropometric measures except height were associated with an increased risk of KRAS-mutated tumours, only BMI was associated with an increased risk of KRAS wild type tumours overall. High weight, hip, waist, WHR and BMI were associated with an increased risk of BRAF wild type tumours, but none of the anthropometric factors were associated with risk of BRAF-mutated CRC, neither in the overall nor in the sex-stratified analysis. In men, several anthropometric measures were associated with both KRAS-mutated and KRAS wild type tumours. In women, only a high WHR was significantly associated with an increased risk of KRAS-mutated CRC. A significant interaction was found between sex and BMI with respect to risk of KRAS-mutated tumours. In men, all anthropometric factors except height were associated with an increased risk of BRAF wild type tumours, whereas in women, only bodyfat percentage was associated with an increased risk of BRAF wild type tumours. The results from this prospective cohort study further support an influence of sex and lifestyle factors on different pathways of colorectal carcinogenesis, defined by KRAS and BRAF mutation status of the tumours.

  20. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation.

    PubMed

    Haroche, Julien; Cohen-Aubart, Fleur; Emile, Jean-François; Arnaud, Laurent; Maksud, Philippe; Charlotte, Frédéric; Cluzel, Philippe; Drier, Aurélie; Hervier, Baptiste; Benameur, Neïla; Besnard, Sophie; Donadieu, Jean; Amoura, Zahir

    2013-02-28

    Histiocytoses are rare disorders of unknown origin with highly heterogeneous prognosis. BRAFV600E gain-of-function mutations have been observed in 57% of cases of Langerhans cell histiocytosis (LCH) and 54% of cases of Erdheim-Chester disease (ECD), but not in other types of histiocytoses. Targeted therapy with an inhibitor of mutated BRAF (vemurafenib) improves survival of patients with melanoma. Here, we report vemurafenib treatment of 3 patients with multisystemic and refractory ECD carrying the BRAFV600E mutation; 2 also had skin or lymph node LCH involvement. The patients were assessed clinically, biologically (CRP values), histologically (skin biopsy), and morphologically (positron emission tomography [PET], computed tomography and magnetic resonance imaging). For all patients, vemurafenib treatment led to substantial and rapid clinical and biologic improvement, and the tumor response was confirmed by PET, computed tomography, and/or magnetic resonance imaging 1 month after treatment initiation. For the first patient treated, the PET response increased between months 1 and 4 of treatment. The treatment remained effective after 4 months of follow-up although persistent disease activity was still observed. Treatment with vemurafenib, a newly approved BRAF inhibitor, should be considered for patients with severe and refractory BRAFV600E histiocytoses, particularly when the disease is life-threatening. PMID:23258922

  1. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis.

    PubMed

    Zeng, Kaixuan; Wang, Zhe; Ohshima, Koichi; Liu, Yixiong; Zhang, Weichen; Wang, Lu; Fan, Linni; Li, Mingyang; Li, Xia; Wang, Yingmei; Yu, Zhou; Yan, Qingguo; Guo, Shuangping; Wei, Jie; Guo, Ying

    2016-07-01

    Langerhans cell histiocytosis (LCH) is a neoplasm of myeloid origin characterized by a clonal proliferation of CD1a(+)/CD207(+) dendritic cells. Recurrent BRAF V600E mutation has been reported in LCH. In the present report, we confirm the feasibility of the high-specificity monoclonal antibody VE1 for detecting BRAF V600E mutation in 36/97 (37.1%) retrospectively enrolled patients with LCH; concordant immunohistochemistry and Sanger sequencing results were seen in 94.8% of cases. We then assessed the tumor immune microenvironment status in LCH, and found that the GATA binding protein 3 (GATA3)(+)/T-bet(+) ratio could distinguish between clinical multi-system/single-system (SS) multifocal and SS unifocal LCH. Notably, we found that BRAF V600E mutation is significantly correlated with increased programmed cell death 1 ligand 1 (PDL1) expression and forkhead box protein 3 (FOXP3)(+) regulatory T cells (p < 0.001, 0.009, respectively). Moreover, Cox multivariate survival analysis showed that BRAF V600E mutation and PDL1 were independent prognostic factors of poor disease-free survival (DFS) in LCH (hazard ratio [HR] = 2.38, 95% confidence interval [CI] 1.02-5.56, p = 0.044; HR = 3.06, 95%CI 1.14-7.14, p = 0.025, respectively), and the superiority of PDL1 in sensitivity and specificity as biomarker for DFS in LCH was demonstrated by receiver operator characteristic (ROC) curves when compared with BRAF V600E and risk category. Collectively, this study identifies for the first time relationship between BRAF V600E mutation and a suppressive tumor immune microenvironment in LCH, resulting in disruption of host-tumor immune surveillance, which is DFS. Our findings may provide a rationale for combining immunotherapy and BRAF-targeted therapy for treating patients with BRAF V600E mutant LCH. PMID:27622040

  2. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis

    PubMed Central

    Zeng, Kaixuan; Wang, Zhe; Ohshima, Koichi; Liu, Yixiong; Zhang, Weichen; Wang, Lu; Fan, Linni; Li, Mingyang; Li, Xia; Wang, Yingmei; Yu, Zhou; Yan, Qingguo; Guo, Shuangping; Wei, Jie; Guo, Ying

    2016-01-01

    ABSTRACT Langerhans cell histiocytosis (LCH) is a neoplasm of myeloid origin characterized by a clonal proliferation of CD1a+/CD207+ dendritic cells. Recurrent BRAF V600E mutation has been reported in LCH. In the present report, we confirm the feasibility of the high-specificity monoclonal antibody VE1 for detecting BRAF V600E mutation in 36/97 (37.1%) retrospectively enrolled patients with LCH; concordant immunohistochemistry and Sanger sequencing results were seen in 94.8% of cases. We then assessed the tumor immune microenvironment status in LCH, and found that the GATA binding protein 3 (GATA3)+/T-bet+ ratio could distinguish between clinical multi-system/single-system (SS) multifocal and SS unifocal LCH. Notably, we found that BRAF V600E mutation is significantly correlated with increased programmed cell death 1 ligand 1 (PDL1) expression and forkhead box protein 3 (FOXP3)+ regulatory T cells (p < 0.001, 0.009, respectively). Moreover, Cox multivariate survival analysis showed that BRAF V600E mutation and PDL1 were independent prognostic factors of poor disease-free survival (DFS) in LCH (hazard ratio [HR] = 2.38, 95% confidence interval [CI] 1.02–5.56, p = 0.044; HR = 3.06, 95%CI 1.14–7.14, p = 0.025, respectively), and the superiority of PDL1 in sensitivity and specificity as biomarker for DFS in LCH was demonstrated by receiver operator characteristic (ROC) curves when compared with BRAF V600E and risk category. Collectively, this study identifies for the first time relationship between BRAF V600E mutation and a suppressive tumor immune microenvironment in LCH, resulting in disruption of host–tumor immune surveillance, which is DFS. Our findings may provide a rationale for combining immunotherapy and BRAF-targeted therapy for treating patients with BRAF V600E mutant LCH.

  3. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis

    PubMed Central

    Zeng, Kaixuan; Wang, Zhe; Ohshima, Koichi; Liu, Yixiong; Zhang, Weichen; Wang, Lu; Fan, Linni; Li, Mingyang; Li, Xia; Wang, Yingmei; Yu, Zhou; Yan, Qingguo; Guo, Shuangping; Wei, Jie; Guo, Ying

    2016-01-01

    ABSTRACT Langerhans cell histiocytosis (LCH) is a neoplasm of myeloid origin characterized by a clonal proliferation of CD1a+/CD207+ dendritic cells. Recurrent BRAF V600E mutation has been reported in LCH. In the present report, we confirm the feasibility of the high-specificity monoclonal antibody VE1 for detecting BRAF V600E mutation in 36/97 (37.1%) retrospectively enrolled patients with LCH; concordant immunohistochemistry and Sanger sequencing results were seen in 94.8% of cases. We then assessed the tumor immune microenvironment status in LCH, and found that the GATA binding protein 3 (GATA3)+/T-bet+ ratio could distinguish between clinical multi-system/single-system (SS) multifocal and SS unifocal LCH. Notably, we found that BRAF V600E mutation is significantly correlated with increased programmed cell death 1 ligand 1 (PDL1) expression and forkhead box protein 3 (FOXP3)+ regulatory T cells (p < 0.001, 0.009, respectively). Moreover, Cox multivariate survival analysis showed that BRAF V600E mutation and PDL1 were independent prognostic factors of poor disease-free survival (DFS) in LCH (hazard ratio [HR] = 2.38, 95% confidence interval [CI] 1.02–5.56, p = 0.044; HR = 3.06, 95%CI 1.14–7.14, p = 0.025, respectively), and the superiority of PDL1 in sensitivity and specificity as biomarker for DFS in LCH was demonstrated by receiver operator characteristic (ROC) curves when compared with BRAF V600E and risk category. Collectively, this study identifies for the first time relationship between BRAF V600E mutation and a suppressive tumor immune microenvironment in LCH, resulting in disruption of host–tumor immune surveillance, which is DFS. Our findings may provide a rationale for combining immunotherapy and BRAF-targeted therapy for treating patients with BRAF V600E mutant LCH. PMID:27622040

  4. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies. PMID:21997758

  5. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  6. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation

    PubMed Central

    Kikuchi, Yasuko; Tsuji, Eiichi; Yagi, Koichi; Matsusaka, Keisuke; Tsuji, Shingo; Kurebayashi, Junichi; Ogawa, Toshihisa; Aburatani, Hiroyuki; Kaneda, Atsushi

    2013-01-01

    Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7) was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2′-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P = 0.04, Fisher's exact test). Thus, we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer. PMID:24367375

  7. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients.

    PubMed

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-12-22

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients' samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAF(V600E) and BRAF(V600K) mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method.

  8. Exome Sequencing in Classic Hairy Cell Leukaemia Reveals Widespread Variation in Acquired Somatic Mutations between Individual Tumours Apart from the Signature BRAF V(600)E Lesion

    PubMed Central

    Weston-Bell, Nicola J.; Tapper, Will; Gibson, Jane; Bryant, Dean; Moreno, Yurany; John, Melford; Ennis, Sarah; Kluin-Nelemans, Hanneke C.; Collins, Andrew R.; Sahota, Surinder S.

    2016-01-01

    In classic Hairy cell leukaemia (HCLc), a single case has thus far been interrogated by whole exome sequencing (WES) in a treatment naive patient, in which BRAF V(600)E was identified as an acquired somatic mutation and confirmed as occurring near-universally in this form of disease by conventional PCR-based cohort screens. It left open however the question whether other genome-wide mutations may also commonly occur at high frequency in presentation HCLc disease. To address this, we have carried out WES of 5 such typical HCLc cases, using highly purified splenic tumour cells paired with autologous T cells for germline. Apart from BRAF V(600)E, no other recurrent somatic mutation was identified in these HCLc exomes, thereby excluding additional acquired mutations as also prevalent at a near-universal frequency in this form of the disease. These data then place mutant BRAF at the centre of the neoplastic drive in HCLc. A comparison of our exome data with emerging genetic findings in HCL indicates that additional somatic mutations may however occur recurrently in smaller subsets of disease. As mutant BRAF alone is insufficient to drive malignant transformation in other histological cancers, it suggests that individual tumours utilise largely differing patterns of genetic somatic mutations to coalesce with BRAF V(600)E to drive pathogenesis of malignant HCLc disease. PMID:26871591

  9. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity.

    PubMed

    Zeng, Lingchun; Ehrenreiter, Karin; Menon, Jyotsana; Menard, Ray; Kern, Florian; Nakazawa, Yoko; Bevilacqua, Elena; Imamoto, Akira; Baccarini, Manuela; Rosner, Marsha Rich

    2013-05-01

    MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.

  10. Multi-center evaluation of the novel fully-automated PCR-based Idylla™ BRAF Mutation Test on formalin-fixed paraffin-embedded tissue of malignant melanoma.

    PubMed

    Melchior, Linea; Grauslund, Morten; Bellosillo, Beatriz; Montagut, Clara; Torres, Erica; Moragón, Ester; Micalessi, Isabel; Frans, Johan; Noten, Veerle; Bourgain, Claire; Vriesema, Renske; van der Geize, Robert; Cokelaere, Kristof; Vercooren, Nancy; Crul, Katrien; Rüdiger, Thomas; Buchmüller, Diana; Reijans, Martin; Jans, Caroline

    2015-12-01

    The advent of BRAF-targeted therapies led to increased survival in patients with metastatic melanomas harboring a BRAF V600 mutation (implicated in 46-48% of malignant melanomas). The Idylla(™) System (Idylla(™)), i.e., the real-time-PCR-based Idylla(™) BRAF Mutation Test performed on the fully-automated Idylla(™) platform, enables detection of the most frequent BRAF V600 mutations (V600E/E2/D, V600K/R/M) in tumor material within approximately 90 min and with 1% detection limit. Idylla(™) performance was determined in a multi-center study by analyzing BRAF mutational status of 148 archival formalin-fixed paraffin-embedded (FFPE) tumor samples from malignant melanoma patients, and comparing Idylla(™) results with assessments made by commercial or in-house routine diagnostic methods. Of the 148 samples analyzed, Idylla(™) initially recorded 7 insufficient DNA input calls and 15 results discordant with routine method results. Further analysis learned that the quality of 8 samples was insufficient for Idylla(™) testing, 1 sample had an invalid routine test result, and Idylla(™) results were confirmed in 10 samples. Hence, Idylla(™) identified all mutations present, including 7 not identified by routine methods. Idylla(™) enables fully automated BRAF V600 testing directly on FFPE tumor tissue with increased sensitivity, ease-of-use, and much shorter turnaround time compared to existing diagnostic tests, making it a tool for rapid, simple and highly reliable analysis of therapeutically relevant BRAF mutations, in particular for diagnostic units without molecular expertise and infrastructure.

  11. Multi-center evaluation of the novel fully-automated PCR-based Idylla™ BRAF Mutation Test on formalin-fixed paraffin-embedded tissue of malignant melanoma.

    PubMed

    Melchior, Linea; Grauslund, Morten; Bellosillo, Beatriz; Montagut, Clara; Torres, Erica; Moragón, Ester; Micalessi, Isabel; Frans, Johan; Noten, Veerle; Bourgain, Claire; Vriesema, Renske; van der Geize, Robert; Cokelaere, Kristof; Vercooren, Nancy; Crul, Katrien; Rüdiger, Thomas; Buchmüller, Diana; Reijans, Martin; Jans, Caroline

    2015-12-01

    The advent of BRAF-targeted therapies led to increased survival in patients with metastatic melanomas harboring a BRAF V600 mutation (implicated in 46-48% of malignant melanomas). The Idylla(™) System (Idylla(™)), i.e., the real-time-PCR-based Idylla(™) BRAF Mutation Test performed on the fully-automated Idylla(™) platform, enables detection of the most frequent BRAF V600 mutations (V600E/E2/D, V600K/R/M) in tumor material within approximately 90 min and with 1% detection limit. Idylla(™) performance was determined in a multi-center study by analyzing BRAF mutational status of 148 archival formalin-fixed paraffin-embedded (FFPE) tumor samples from malignant melanoma patients, and comparing Idylla(™) results with assessments made by commercial or in-house routine diagnostic methods. Of the 148 samples analyzed, Idylla(™) initially recorded 7 insufficient DNA input calls and 15 results discordant with routine method results. Further analysis learned that the quality of 8 samples was insufficient for Idylla(™) testing, 1 sample had an invalid routine test result, and Idylla(™) results were confirmed in 10 samples. Hence, Idylla(™) identified all mutations present, including 7 not identified by routine methods. Idylla(™) enables fully automated BRAF V600 testing directly on FFPE tumor tissue with increased sensitivity, ease-of-use, and much shorter turnaround time compared to existing diagnostic tests, making it a tool for rapid, simple and highly reliable analysis of therapeutically relevant BRAF mutations, in particular for diagnostic units without molecular expertise and infrastructure. PMID:26407762

  12. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells.

    PubMed

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf-mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition.

  13. Molecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis of 1,110 cases

    PubMed Central

    Zhang, Jing; Zheng, Jianming; Yang, Yinghong; Lu, Junliang; Gao, Jie; Lu, Tao; Sun, Jian; Jiang, Hui; Zhu, Yan; Zheng, Yuhui; Liang, Zhiyong; Liu, Tonghua

    2015-01-01

    Mutations in genes such as KRAS, NRAS, BRAF and PIK3CA have become an important part of colorectal carcinoma evaluation. The aim of this study was to screen for mutations in these genes in Chinese patients with colorectal cancer (CRC) and to explore their correlations with certain clinicopathological parameters. We tested mutations in the KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4), PIK3CA (exon 20) and BRAF (exon 15) genes using reverse transcriptase-polymerase chain reaction (RT-PCR) and Sanger sequencing in a large cohort of 1,110 Chinese CRC patients who underwent surgical resection at one of three major teaching hospitals located in different regions of China. The prevalence rates of KRAS, NRAS, BRAF and PIK3CA mutations were 45.4%, 3.9%, 3.1% and 3.5%, respectively. Mutant KRAS was associated with the mucinous subtype and greater differentiation, while mutant BRAF was associated with right-sided tumors and poorer differentiation. Our results revealed differences in the genetic profiles of KRAS, NRAS, PIK3CA and BRAF at mutation hotspots between Chinese CRC patients and those of Western countries, while some of these gene features were shared among patients from other Asian countries. PMID:26691448

  14. Allele frequencies of BRAFV600 mutations in primary melanomas and matched metastases and their relevance for BRAF inhibitor therapy in metastatic melanoma

    PubMed Central

    Satzger, Imke; Marks, Lena; Kerick, Martin; Klages, Sven; Berking, Carola; Herbst, Rudolf; Völker, Bernward; Schacht, Vivien; Timmermann, Bernd; Gutzmer, Ralf

    2015-01-01

    Background The detection of BRAFV600 mutations in patients with metastatic melanoma is important because of the availability of BRAF inhibitor therapy. However, the clinical relevance of the frequency of BRAFV600 mutant alleles is unclear. Patients and Methods Allele frequencies of BRAFV600 mutations were analyzed by ultra-deep next-generation sequencing in formalin-fixed, paraffin-embedded melanoma tissue (75 primary melanomas and 88 matched metastases). In a second study, pretreatment specimens from 76 patients who received BRAF inhibitors were retrospectively analyzed, and BRAFV600 allele frequencies were correlated with therapeutic results. Results Thirty-five patients had concordantly BRAF-positive and 36 (48%) patients had concordantly BRAF-negative primary melanomas and matched metastases, and four patients had discordant samples with low allele frequencies (3.4–5.2%). Twenty-six of 35 patients with concordant samples had BRAFV600E mutations, three of whom had additional mutations (V600K in two patients and V600R in one) and nine patients had exclusively non-V600E mutations (V600K in eight patients and V600E -c.1799_1800TG > AA- in one patient). The frequency of mutated BRAFV600 alleles was similar in the primary melanoma and matched metastasis in 27/35 patients, but differed by >3-fold in 8/35 of samples. BRAFV600E allele frequencies in pretreatment tumor specimens were not significantly correlated with treatment outcomes in 76 patients with metastatic melanoma who were treated with BRAF inhibitors. Conclusions BRAFV600 mutation status and allele frequency is consistent in the majority of primary melanomas and matched metastases. A small subgroup of patients has double mutations. BRAFV600 allele frequencies are not correlated with the response to BRAF inhibitors. PMID:26498143

  15. ErbB-3 activation by NRG-1β sustains growth and promotes vemurafenib resistance in BRAF-V600E colon cancer stem cells (CSCs)

    PubMed Central

    Prasetyanti, Pramudita R.; Capone, Emily; Barcaroli, Daniela; D'Agostino, Daniela; Volpe, Silvia; Benfante, Antonina; van Hooff, Sander; Iacobelli, Valentina; Rossi, Cosmo; Iacobelli, Stefano; Medema, Jan Paul; De Laurenzi, Vincenzo; Sala, Gianluca

    2015-01-01

    Approximately 5-10% of metastatic colorectal cancers harbor a BRAF-V600E mutation, which is correlated with resistance to EGFR-targeted therapies and worse clinical outcome. Vice versa, targeted inhibition of BRAF-V600E with the selective inhibitor PLX 4032 (Vemurafenib) is severely limited due to feedback re-activation of EGFR in these tumors. Mounting evidence indicates that upregulation of the ErbB-3 signaling axis may occur in response to several targeted therapeutics, including Vemurafenib, and NRG-1β-dependent re-activation of the PI3K/AKT survival pathway has been associated with therapy resistance. Here we show that colon CSCs express, next to EGFR and ErbB-2, also significant amounts of ErbB-3 on their membrane. This expression is functional as NRG-1β strongly induces AKT/PKB and ERK phosphorylation, cell proliferation, clonogenic growth and promotes resistance to Vemurafenib in BRAF-V600E mutant colon CSCs. This resistance was completely dependent on ErbB-3 expression, as evidenced by knockdown of ErbB-3. More importantly, resistance could be alleviated with therapeutic antibody blocking ErbB-3 activation, which impaired NRG-1β-driven AKT/PKB and ERK activation, clonogenic growth in vitro and tumor growth in xenograft models. In conclusion, our findings suggest that targeting ErbB-3 receptors could represent an effective therapeutic approach in BRAF-V600E mutant colon cancer. PMID:26160848

  16. Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas.

    PubMed

    Routhier, Caitlin Ann; Mochel, Mark C; Lynch, Kerry; Dias-Santagata, Dora; Louis, David N; Hoang, Mai P

    2013-11-01

    BRAF mutation is seen in a variety of human neoplasms including cutaneous malignant melanoma, papillary thyroid carcinoma, colorectal carcinoma, non-small cell lung carcinoma, pleomorphic xanthoastrocytoma, and others. Currently, there are 2 commercially available monoclonal antibodies for the detection of BRAF V600E mutation; however, a full and practical comparison of their performance in various tumor types on an automated staining platform has not been done. We investigated their sensitivity and specificity in detecting the BRAF V600E mutation in a series of 152 tumors including 31 malignant melanomas, 25 lung carcinomas, 32 gastrointestinal carcinomas, 23 thyroid carcinomas, 35 gliomas, and 6 other malignancies. In this series, the concordance rate between immunohistochemistry (IHC) and mutational analyses was 97% (148/152) for VE1 and 88% (131/149) for anti-B-Raf. The sensitivity and specificity were 98% (60/61) and 97% (88/91) for monoclonal VE1 and 95% (58/61) and 83% (73/88) for anti-B-Raf, respectively. There were 4 cases with discordant IHC and mutational results for monoclonal VE1 in contrast to 18 cases for anti-B-Raf. Our studies showed that IHC with monoclonal VE1 has a better performance compared with anti-B-Raf in an automated staining platform and confirmed that clone VE1 provides excellent sensitivity and specificity for detecting the BRAF V600E mutation in a variety of tumor types in a clinical setting.

  17. BRAF, PIK3CA, and HER2 Oncogenic Alterations According to KRAS Mutation Status in Advanced Colorectal Cancers with Distant Metastasis

    PubMed Central

    Koh, Jiwon; Kwak, Yoonjin; Seo, An Na; Park, Kyoung Un; Kim, Duck-Woo; Kang, Sung-Bum; Kim, Woo Ho; Lee, Hye Seung

    2016-01-01

    Background Anti-EGFR antibody–based treatment is an important therapeutic strategy for advanced colorectal cancer (CRC); despite this, several mutations—including KRAS, BRAF, and PIK3CA mutations, and HER2 amplification—are associated with the mechanisms underlying the development of resistance to anti-EGFR therapy. The aim of our study was to investigate the frequencies and clinical implications of these genetic alterations in advanced CRC. Methods KRAS, BRAF, and PIK3CA mutations were determined by Cobas real-time polymerase chain reaction (PCR) in 191 advanced CRC patients with distant metastasis. Microsatellite instability (MSI) status was determined by a fragmentation assay and HER2 amplification was assessed by silver in situ hybridization. In addition, KRAS mutations were investigated by the Sanger sequencing method in 97 of 191 CRC cases. Results Mutations in KRAS, BRAF, and PIK3CA were found in 104 (54.5%), 6 (3.1%), and 25 (13.1%) cases of advanced CRC, respectively. MSI-high status and HER2 amplification were observed in 3 (1.6%) and 16 (8.4%) cases, respectively. PIK3CA mutations were more frequently found in KRAS mutant type (18.3%) than KRAS wild type (6.9%) (P = 0.020). In contrast, HER2 amplifications and BRAF mutations were associated with KRAS wild type with borderline significance (P = 0.052 and 0.094, respectively). In combined analyses with KRAS, BRAF and HER2 status, BRAF mutations or HER2 amplifications were associated with the worst prognosis in the wild type KRAS group (P = 0.004). When comparing the efficacy of detection methods, the results of real time PCR analysis revealed 56 of 97 (57.7%) CRC cases with KRAS mutations, whereas Sanger sequencing revealed 49 cases (50.5%). Conclusions KRAS mutations were found in 54.5% of advanced CRC patients. Our results support that subgrouping using PIK3CA and BRAF mutation or HER2 amplification status, in addition to KRAS mutation status, is helpful for managing advanced CRC patients. PMID

  18. The distinctive molecular, pathological and clinical characteristics of BRAF-mutant colorectal tumors.

    PubMed

    Scartozzi, Mario; Giampieri, Riccardo; Aprile, Giuseppe; Iacono, Donatella; Santini, Daniele; dell'Aquila, Emanuela; Silvestris, Nicola; Gnoni, Antonio; Bonotto, Marta; Puzzoni, Marco; Demurtas, Laura; Cascinu, Stefano

    2015-01-01

    Several clinical series have demonstrated a notably low overall survival for colorectal cancer patients diagnosed with a BRAF-mutant tumor. A potentially interesting predictive role has also been suggested for BRAF-mutant colorectal cancer receiving anti-EGFR monoclonal antibodies. Although a global consensus exists in indicating BRAF as a prognostic factor with a possible predictive activity, the clinical use of BRAF mutational status in colorectal tumors is still controversial. This article reviews the current knowledge on the use and implications of BRAF mutational status in colorectal tumors, in order to define its present role in the clinical practice. Also suggested are possible treatment strategies in this prognostically challenging group of patients. Finally, a comprehensive outlook on future developments for specifically directed anti-BRAF therapy is illustrated.

  19. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation.

    PubMed

    Kim, Min Hwan; Kim, Jongshin; Hong, Hyowon; Lee, Si-Hyung; Lee, June-Koo; Jung, Eunji; Kim, Joon

    2016-03-01

    The activation of transcriptional coactivators YAP and its paralog TAZ has been shown to promote resistance to anti-cancer therapies. YAP/TAZ activity is tightly coupled to actin cytoskeleton architecture. However, the influence of actin remodeling on cancer drug resistance remains largely unexplored. Here, we report a pivotal role of actin remodeling in YAP/TAZ-dependent BRAF inhibitor resistance in BRAF V600E mutant melanoma cells. Melanoma cells resistant to the BRAF inhibitor PLX4032 exhibit an increase in actin stress fiber formation, which appears to promote the nuclear accumulation of YAP/TAZ. Knockdown of YAP/TAZ reduces the viability of resistant melanoma cells, whereas overexpression of constitutively active YAP induces resistance. Moreover, inhibition of actin polymerization and actomyosin tension in melanoma cells suppresses both YAP/TAZ activation and PLX4032 resistance. Our siRNA library screening identifies actin dynamics regulator TESK1 as a novel vulnerable point of the YAP/TAZ-dependent resistance pathway. These results suggest that inhibition of actin remodeling is a potential strategy to suppress resistance in BRAF inhibitor therapies.

  20. Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling.

    PubMed

    Kang, Hee-Bum; Fan, Jun; Lin, Ruiting; Elf, Shannon; Ji, Quanjiang; Zhao, Liang; Jin, Lingtao; Seo, Jae Ho; Shan, Changliang; Arbiser, Jack L; Cohen, Cynthia; Brat, Daniel; Miziorko, Henry M; Kim, Eunhee; Abdel-Wahab, Omar; Merghoub, Taha; Fröhling, Stefan; Scholl, Claudia; Tamayo, Pablo; Barbie, David A; Zhou, Lu; Pollack, Brian P; Fisher, Kevin; Kudchadkar, Ragini R; Lawson, David H; Sica, Gabriel; Rossi, Michael; Lonial, Sagar; Khoury, Hanna J; Khuri, Fadlo R; Lee, Benjamin H; Boggon, Titus J; He, Chuan; Kang, Sumin; Chen, Jing

    2015-08-01

    Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development. PMID:26145173

  1. Metabolic rewiring by oncogenic BRAF V600E links ketogenesis pathway to BRAF-MEK1 signaling

    PubMed Central

    Elf, Shannon; Ji, Quanjiang; Zhao, Liang; Jin, Lingtao; Seo, Jae Ho; Shan, Changliang; Arbiser, Jack L.; Cohen, Cynthia; Brat, Daniel; Miziorko, Henry M.; Kim, Eunhee; Abdel-Wahab, Omar; Merghoub, Taha; Fröhling, Stefan; Scholl, Claudia; Tamayo, Pablo; Barbie, David A.; Zhou, Lu; Pollack, Brian P.; Fisher, Kevin; Kudchadkar, Ragini R.; Lawson, David H.; Sica, Gabriel; Rossi, Michael; Lonial, Sagar; Khoury, Hanna J.; Khuri, Fadlo R.; Lee, Benjamin H.; Boggon, Titus J.; He, Chuan; Kang, Sumin; Chen, Jing

    2015-01-01

    SUMMARY Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a “synthetic lethal” interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E “rewires” metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development. PMID:26145173

  2. B-Raf and the inhibitors: from bench to bedside

    PubMed Central

    2013-01-01

    The B-Raf protein is a key signaling molecule in the mitogen activated protein kinase (MAPK) signaling pathway and has been implicated in the pathogenesis of a variety of cancers. An important V600E mutation has been identified and can cause constitutive B-Raf activation. Recent studies have evaluated a variety of small molecule inhibitors targeting B-Raf, including PLX4032/vemurafenib, dabrafenib, LGX818, GDC0879, XL281, ARQ736, PLX3603 (RO5212054), and RAF265. Therapeutic resistance has been identified and various mechanisms described. This review also discussed the current understanding of B-Raf signaling mechanism, methods of mutation detection, treatment strategies as well as potential methods of overcoming therapeutic resistance. PMID:23617957

  3. Somatic mutation analysis of KRAS, BRAF, HER2 and PTEN in EGFR mutation-negative non-small cell lung carcinoma: determination of frequency, distribution pattern and identification of novel deletion in HER2 gene from Indian patients.

    PubMed

    Bhaumik, Sangeet; Ahmad, Firoz; Das, Bibhu Ranjan

    2016-10-01

    Somatic mutations of KRAS, BRAF, HER2, PTEN genes are the most important molecular markers after the EGFR gene mutation. The current study evaluated the frequency and distribution pattern of KRAS, BRAF, HER2, PTEN mutation in Indian non-small cell lung carcinoma patients. The frequency of KRAS, BRAF, HER2, PTEN mutations was 6.4 % (14/204), 1.5 % (3/204), 1.5 % (3/204), 0 % (0/204), respectively. KRAS, BRAF, HER2 mutations were more prevalent in males than in females. KRAS and HER2 showed a trend of a higher frequency of mutation in the age group of <60 years, whereas BRAF mutations were more frequent in the age group of ≥60 years. Sequencing analysis of KRAS gene revealed c.34G>T (G12C) (n = 8), c.35G>A (G12D) (n = 3), c.35G>T (G12 V) (n = 1) and c.34G>T (G12C)/c.41T>C (V14A) (n = 2) mutations. Three different BRAF mutations (L584P: n = 1, V600E: n = 1, K601E: n = 1) were detected. Two cases harboured c.2324_2325ins12 (ATACGTGATGGC duplication) in HER2 gene, and one case was positive for NG_007503.2 (NM_001005862.2):c.2218-4del. It is less certain, but still quite possible that this mutation will affect splicing as the deletion of one C actually brings in one additional purine into the region. In conclusion, the present study demonstrates an instance of diverse nature of KRAS, BRAF, HER2 and PTEN gene in Indian patients and confirms that the frequency of these gene mutations varies globally. To the best of our knowledge, this is the first Indian study to evaluate KRAS, BRAF, HER2 and PTEN gene mutations.

  4. Somatic mutation analysis of KRAS, BRAF, HER2 and PTEN in EGFR mutation-negative non-small cell lung carcinoma: determination of frequency, distribution pattern and identification of novel deletion in HER2 gene from Indian patients.

    PubMed

    Bhaumik, Sangeet; Ahmad, Firoz; Das, Bibhu Ranjan

    2016-10-01

    Somatic mutations of KRAS, BRAF, HER2, PTEN genes are the most important molecular markers after the EGFR gene mutation. The current study evaluated the frequency and distribution pattern of KRAS, BRAF, HER2, PTEN mutation in Indian non-small cell lung carcinoma patients. The frequency of KRAS, BRAF, HER2, PTEN mutations was 6.4 % (14/204), 1.5 % (3/204), 1.5 % (3/204), 0 % (0/204), respectively. KRAS, BRAF, HER2 mutations were more prevalent in males than in females. KRAS and HER2 showed a trend of a higher frequency of mutation in the age group of <60 years, whereas BRAF mutations were more frequent in the age group of ≥60 years. Sequencing analysis of KRAS gene revealed c.34G>T (G12C) (n = 8), c.35G>A (G12D) (n = 3), c.35G>T (G12 V) (n = 1) and c.34G>T (G12C)/c.41T>C (V14A) (n = 2) mutations. Three different BRAF mutations (L584P: n = 1, V600E: n = 1, K601E: n = 1) were detected. Two cases harboured c.2324_2325ins12 (ATACGTGATGGC duplication) in HER2 gene, and one case was positive for NG_007503.2 (NM_001005862.2):c.2218-4del. It is less certain, but still quite possible that this mutation will affect splicing as the deletion of one C actually brings in one additional purine into the region. In conclusion, the present study demonstrates an instance of diverse nature of KRAS, BRAF, HER2 and PTEN gene in Indian patients and confirms that the frequency of these gene mutations varies globally. To the best of our knowledge, this is the first Indian study to evaluate KRAS, BRAF, HER2 and PTEN gene mutations. PMID:27637917

  5. BRAF mutation is associated with a specific cell-type with features suggestive of senescence in ovarian serous borderline (atypical proliferative) tumors

    PubMed Central

    Zeppernick, Felix; Ardighieri, Laura; Hannibal, Charlotte G.; Vang, Russell; Junge, Jette; Kjaer, Susanne K.; Zhang, Rugang; Kurman, Robert J.; Shih, Ie-Ming

    2014-01-01

    Serous borderline tumor (SBT) also known as atypical proliferative serous tumor (APST) is the precursor of ovarian low-grade serous carcinoma (LGSC). In this study, we correlated the morphologic and immunohistochemical phenotypes of 71 APSTs and 18 LGSCs with the mutational status of KRAS and BRAF, the most common molecular genetic changes in these neoplasms. A subset of cells characterized by abundant eosinophilic cytoplasm (EC), discrete cell borders and bland nuclei was identified in all (100%) 25 BRAF mutated APSTs but in only 5 (10%) of 46 APSTs without BRAF mutations (p<0.0001). Among the 18 LGSCs, EC cells were found in only 2 and both contained BRAF mutations. The EC cells were present admixed with cuboidal and columnar cells lining the papillae and appeared to be budding from the surface, resulting in individual cells and clusters of detached cells “floating” above the papillae. Immunohistochemistry showed that the EC cells always expressed p16, a senescence-associated marker, and had a significantly lower Ki-67 labeling index than adjacent cuboidal and columnar cells (p=0.02). In vitro studies supported the interpretation that these cells were undergoing senescence as the same morphologic features could be reproduced in cultured epithelial cells by ectopic expression of BRAFV600E. Senescence was further established by markers such as SA-β-gal staining, expression of p16 and p21, and reduction in DNA synthesis. In conclusion, this study sheds light on the pathogenesis of this unique group of ovarian tumors by showing that BRAF mutation is associated with cellular senescence and the presence of a specific cell type characterized by abundant eosinophilic cytoplasm. This “oncogene-induced senescence” phenotype may represent a mechanism that prevents impedes progression of APSTs to LGSC. PMID:25188864

  6. Diagnostic value of fine needle aspiration BRAF(V600E) mutation analysis in papillary thyroid cancer: a systematic review and meta-analysis.

    PubMed

    Fnais, Naif; Soobiah, Charlene; Al-Qahtani, Khalid; Hamid, Jemila S; Perrier, Laure; Straus, Sharon E; Tricco, Andrea C

    2015-10-01

    Fine needle aspiration (FNA) with cytologic analysis is an initial step in diagnosing thyroid nodules that are suspicious for cancer. We systematically reviewed the test accuracy of B-type Raf kinase (BRAF(V600E)) gene mutation analysis plus conventional FNA in the diagnosis of papillary thyroid cancer. We identified studies reporting BRAF(V600E) mutation analysis after FNA for evaluation of thyroid nodules through searching MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials, scanning reference lists of relevant studies, and contacting experts. Two independent reviewers screened literature results, abstracted data, and appraised study quality. When appropriate, bivariate and univariate random-effects meta-analyses of sensitivity and specificity were considered for all outcomes. Forty-seven studies met our inclusion criteria after screening 1560 citations and 169 full-text articles. The included studies enrolled approximately 16170 patients with 9924 FNA samples evaluated for BRAF(V600E) mutation. Univariate pooled sensitivity was 69% (95% confidence interval, 61%-76%) for papillary thyroid cancer. For thyroid nodules that were diagnosed cytologically as suspicious for papillary thyroid cancer, univariate pooled sensitivity using FNA and BRAF(V600E) results was 52% (95% confidence interval, 39%-64%). Despite its high specificity, our meta-analysis shows that BRAF(V600E) mutation analysis has a low sensitivity in diagnosing papillary thyroid cancer in thyroid nodules. The feasibility of this test as a single molecular tool is not well established, which indicates the need for well-designed prospective clinical studies. PMID:26232865

  7. The Increase in Thyroid Cancer Incidence During the Last Four Decades Is Accompanied by a High Frequency of BRAF Mutations and a Sharp Increase in RAS Mutations

    PubMed Central

    Jung, Chan Kwon; Little, Mark P.; Lubin, Jay H.; Brenner, Alina V.; Wells, Samuel A.; Sigurdson, Alice J.

    2014-01-01

    Context: Thyroid cancer incidence rates in the United States and globally have increased steadily over the last 40 years, primarily due to a tripling of the incidence of papillary thyroid carcinoma (PTC). Objective: The purpose of this study was to analyze trends in demographic, clinical, pathologic, and molecular characteristics of PTC from 1974 to 2009. Design and Setting: We identified and histologically reviewed 469 consecutive cases of PTC from one US institution from 4 preselected periods (1974 to 1985, 1990 to 1992, 2000, and 2009) and assessed BRAF and RAS point mutations and RET/PTC rearrangements among 341 tumors ≥0.3 cm in size. Changes over time were analyzed using polytomous and binary logistic regression; all analyses were adjusted for age and sex. Results: During this period, the median age of patients at diagnosis increased from 37 to 53 years (P < .001) and the percentage of microcarcinomas (≤1.0 cm) increased from 33% to 51% (P < .001), whereas extrathyroidal extension and advanced tumor stage decreased from 40% to 21% (P = .005) and from 43% to 28% (P = .036), respectively. Changes in tumor histopathology showed a decrease in classic PTC and an increase in the follicular variant (P < .001). The proportion of tumors with a BRAF mutation was stable (∼46%) but increased from 50% to 77% (P = .008) within classic papillary PTCs. The proportion of tumors with RAS mutations increased from 3% to 25% and within follicular pattern tumors from 18% to 44% (P < .001). The proportion of RET/PTC rearrangements decreased from 11% to 2% (P = .038). Conclusions: Similar to US national trends, we found an increasing age at diagnosis and greater detection of smaller-sized intrathyroidal PTCs. However, the overall proportion of BRAF mutations remained stable. Sharply rising percentages of the follicular variant histology and RAS mutations after 2000 suggest new and more recent etiologic factors. The increased incidence is not likely to be due to environmental

  8. Cutaneous Side Effects of BRAF Inhibitors in Advanced Melanoma: Review of the Literature

    PubMed Central

    Gönül, Müzeyyen

    2016-01-01

    The incidence of melanoma has recently been increasing. BRAF mutations have been found in 40–60% of melanomas. The increased activity of BRAF V600E leads to the activation of downstream signaling through the mitogen-activated protein kinase (MAPK) pathway, which plays a key role as a regulator of cell growth, differentiation, and survival. The use of BRAF inhibitors in metastatic melanoma with BRAF mutation ensures clinical improvement of the disease. Vemurafenib and dabrafenib are two selective BRAF inhibitors approved by the Food and Drug Administration (FDA). Both drugs are well tolerated and successfully used in clinical practice. However, some adverse reactions have been reported in patients in the course of treatment. Cutaneous side effects are the most common adverse events among them with a broad spectrum. Both the case reports and several original clinical trials reported cutaneous reactions during the treatment with BRAF inhibitors. In this review, the common cutaneous side effects of BRAF inhibitors in the treatment of metastatic melanoma with BRAF V600E mutation were reviewed. PMID:27042173

  9. Targeting BRAF in melanoma: biological and clinical challenges.

    PubMed

    Mandalà, Mario; Voit, Christiane

    2013-09-01

    Melanoma is an aggressive form of skin cancer that causes the greatest number of skin cancer-related deaths worldwide. In its early stages malignant melanoma can be cured by surgical resection, but once it has progressed to the metastatic stage it is extremely difficult to treat and does not respond to current therapies. A majority of cutaneous melanomas show activating mutations in the NRAS or BRAF proto-oncogenes, components of the Ras-Raf-Mek-Erk (MAPK) signal transduction pathway. The discovery of activating BRAF mutations in ∼50% of all melanomas has proved to be a turning point in the therapeutic management of the disseminated disease. This review summarizes the critical role of BRAF in melanoma pathophysiology, the clinical and pathological determinants of BRAF mutation status and finally addresses the current state of the art of BRAF inhibitors. We further outline the most recent findings on the mechanisms that underlie intrinsic and acquired BRAF inhibitor resistance and describe ongoing preclinical and clinical studies designed to delay or abrogate the onset of therapeutic escape.

  10. Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma.

    PubMed

    Fattore, Luigi; Malpicci, Debora; Marra, Emanuele; Belleudi, Francesca; Noto, Alessia; De Vitis, Claudia; Pisanu, Maria Elena; Coluccia, Pierpaolo; Camerlingo, Rosa; Roscilli, Giuseppe; Ribas, Antoni; Di Napoli, Arianna; Torrisi, Maria Rosaria; Aurisicchio, Luigi; Ascierto, Paolo Antonio; Mancini, Rita; Ciliberto, Gennaro

    2015-09-22

    Patients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities. Very recently the ErbB3 receptor has been shown to act as a central node promoting survival of BRAF mutated melanoma. In this paper we first demonstrate that ErbB3/AKT hyperphosphorylation occurs in BRAF mutated melanoma cell lines following exposure to BRAF and/or MEK inhibitors. This strongly correlates with increased transcriptional activation of its ligand neuregulin. Anti-ErbB3 antibodies impair the establishment of de novo cell resistance to BRAF inhibition in vitro. In order to more potently ablate ErbB3 activity we used a combination of two anti-ErbB3 antibodies directed against distinct epitopes of its extracellular domain. These two antibodies in combo with BRAF/MEK inhibitors potently inhibit in vitro cell growth and tumor regrowth after drug withdrawal in an in vivo xenograft model. Importantly, residual tumor masses from mice treated by the antibodies and BRAF/ERK inhibitors combo are characterized almost exclusively by large necrotic areas with limited residual areas of tumor growth. Taken together, our findings support the concept that triple therapy directed against BRAF/MEK/ErbB3 may be able to provide durable control of BRAF mutated metastatic melanoma.

  11. Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma

    PubMed Central

    Fattore, Luigi; Malpicci, Debora; Marra, Emanuele; Belleudi, Francesca; Noto, Alessia; De Vitis, Claudia; Pisanu, Maria Elena; Coluccia, Pierpaolo; Camerlingo, Rosa; Roscilli, Giuseppe; Ribas, Antoni; Di Napoli, Arianna; Torrisi, Maria Rosaria; Aurisicchio, Luigi; Ascierto, Paolo Antonio; Mancini, Rita; Ciliberto, Gennaro

    2015-01-01

    Patients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities. Very recently the ErbB3 receptor has been shown to act as a central node promoting survival of BRAF mutated melanoma. In this paper we first demonstrate that ErbB3/AKT hyperphosphorylation occurs in BRAF mutated melanoma cell lines following exposure to BRAF and/or MEK inhibitors. This strongly correlates with increased transcriptional activation of its ligand neuregulin. Anti-ErbB3 antibodies impair the establishment of de novo cell resistance to BRAF inhibition in vitro. In order to more potently ablate ErbB3 activity we used a combination of two anti-ErbB3 antibodies directed against distinct epitopes of its extracellular domain. These two antibodies in combo with BRAF/MEK inhibitors potently inhibit in vitro cell growth and tumor regrowth after drug withdrawal in an in vivo xenograft model. Importantly, residual tumor masses from mice treated by the antibodies and BRAF/ERK inhibitors combo are characterized almost exclusively by large necrotic areas with limited residual areas of tumor growth. Taken together, our findings support the concept that triple therapy directed against BRAF/MEK/ErbB3 may be able to provide durable control of BRAF mutated metastatic melanoma. PMID:26208478

  12. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells.

    PubMed

    Pal, Harish Chandra; Baxter, Ronald D; Hunt, Katherine M; Agarwal, Jyoti; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2015-09-29

    Melanoma is the most deadly form of cutaneous malignancy, and its incidence rates are rising worldwide. In melanoma, constitutive activation of the BRAF/MEK/ERK (MAPK) and PI3K/AKT/mTOR (PI3K) signaling pathways plays a pivotal role in cell proliferation, survival and tumorigenesis. A combination of compounds that lead to an optimal blockade of these critical signaling pathways may provide an effective strategy for prevention and treatment of melanoma. The phytochemical fisetin is known to possess anti-proliferative and pro-apoptotic activities. We found that fisetin treatment inhibited PI3K signaling pathway in melanoma cells. Therefore, we investigated the effect of fisetin and sorafenib (an RAF inhibitor) alone and in combination on cell proliferation, apoptosis and tumor growth. Combination treatment (fisetin + sorafenib) more effectively reduced the growth of BRAF-mutated human melanoma cells at lower doses when compared to individual agents. In addition, combination treatment resulted in enhanced (i) apoptosis, (ii) cleavage of caspase-3 and PARP, (iii) expression of Bax and Bak, (iv) inhibition of Bcl2 and Mcl-1, and (v) inhibition of expression of PI3K, phosphorylation of MEK1/2, ERK1/2, AKT and mTOR. In athymic nude mice subcutaneously implanted with melanoma cells (A375 and SK-MEL-28), we found that combination therapy resulted in greater reduction of tumor growth when compared to individual agents. Furthermore, combination therapy was more effective than monotherapy in: (i) inhibition of proliferation and angiogenesis, (ii) induction of apoptosis, and (iii) inhibition of the MAPK and PI3K pathways in xenograft tumors. These data suggest that simultaneous inhibition of both these signaling pathways using combination of fisetin and sorafenib may serve as a therapeutic option for the management of melanoma.

  13. [Atypical ganglioglioma with BRAF V600E mutation: a case report and review of the literature].

    PubMed

    Martinez-Ricarte, F; Martinez-Saez, E; Cicuendez, M; Cordero, E; Auger, C; Toledo, M; Radoi, A; Sahuquillo, J

    2016-05-16

    Introduccion. Los gangliogliomas son tumores raros que afectan a pacientes jovenes, aparecen predominantemente en el lobulo temporal y suelen comenzar con crisis epilepticas. Histologicamente corresponden a un grado I de malignidad, con una forma anaplasica catalogada como de grado III en la clasificacion de la Organizacion Mundial de la Salud (OMS) de 2007. Sin embargo, existen tumores que no cumplen criterios de uno u otro grado y que presentan claras diferencias pronosticas respecto a los de grado I. Estos tumores corresponderian a gangliogliomas atipicos (grado II), no contemplados en la citada clasificacion. Desde el punto de vista molecular, la alteracion mas conocida en los gangliogliomas es la mutacion de BRAF V600E, que confiere peor pronostico a la lesion. La posibilidad de utilizar tratamientos dirigidos a esta proteina mutada otorga una especial relevancia a esta alteracion. Caso clinico. Varon de 21 años, intervenido de un ganglioglioma en dos ocasiones, en el que el examen neuropatologico objetivo caracteristicas histologicas compatibles con un grado de malignidad intermedio (grado II) con mutacion positiva a BRAF. Conclusiones. El caso presentado, junto con los descritos previamente en la bibliografia, reabre las controversias sobre la definicion de los gangliogliomas en la clasificacion de la OMS de 2007, y apoya el hecho de que la proxima clasificacion de la OMS deberia volver a incluir los gangliogliomas atipicos (grado II) e integrar posibles mutaciones geneticas y alteraciones moleculares.

  14. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  15. Genomically Driven Tumors and Actionability across Histologies: BRAF-Mutant Cancers as a Paradigm.

    PubMed

    Turski, Michelle L; Vidwans, Smruti J; Janku, Filip; Garrido-Laguna, Ignacio; Munoz, Javier; Schwab, Richard; Subbiah, Vivek; Rodon, Jordi; Kurzrock, Razelle

    2016-04-01

    The diagnosis, classification, and management of cancer are traditionally dictated by the site of tumor origin, for example, breast or lung, and by specific histologic subtypes of site-of-origin cancers (e.g., non-small cell versus small cell lung cancer). However, with the advent of sequencing technologies allowing for rapid, low cost, and accurate sequencing of clinical samples, new observations suggest an expanded or different approach to the diagnosis and treatment of cancer-one driven by the unique molecular features of the tumor. We discuss a genomically driven strategy for cancer treatment using BRAF as an example. Several key points are highlighted: (i) molecular aberrations can be shared across cancers; (ii) approximately 15% of all cancers harbor BRAF mutations; and (iii) BRAF inhibitors, while approved only for melanoma, have reported activity across numerous cancers and related disease types bearing BRAF aberrations. However, BRAF-mutated colorectal cancer has shown poor response rate to BRAF inhibitor monotherapy, striking a cautionary note. Yet, even in this case, emerging data suggest BRAF-mutated colorectal cancers can respond well to BRAF inhibitors, albeit when administered in combination with other agents that impact resistance pathways. Taken together, these data suggest that molecular aberrations may be the basis for a new nosology for cancer. Mol Cancer Ther; 15(4); 533-47. ©2016 AACR. PMID:27009213

  16. Lauric acid can improve the sensitization of Cetuximab in KRAS/BRAF mutated colorectal cancer cells by retrievable microRNA-378 expression.

    PubMed

    Weng, Wen-Hui; Leung, Wai-Hung; Pang, Yeu-Jye; Hsu, Hsi-Hsien

    2016-01-01

    EGFR-inhibitor (Cetuximab) is one of the main targeted drugs used for metastatic colorectal carcinoma (CRC). The benefit from Cetuximab appears to be limited to a subtype of patients, not for the patients with tumors harboring mutated BRAF or KRAS genes; unfortunately, it accounts for ~40-50% of CRC cases. Previous studies have connected higher expression levels of miR-378 to be commonly presented in patients without BRAF or KRAS mutants than in mutated CRCs. The microRNA-378 (miR-378) is coexpressed with PGC-1β and can be easily induced by fatty acid, for example lauric acid. Therefore, we hypothesized that elevation of miR-378 expression in mutated CRCs may stimulate the cell response to Cetuximab. Herein, seven CRC cell lines with confirmed mutation status were involved in two parallel experiments; directly in vitro transfected miR-378 mimics, and using lauric acid to indirectly induce the level of miR-378 in cells. After the increase of miR-378 in cells by either direct or indirect approaches, sensitivity to Cetuximab was restored in all BRAF mutants (p-value <0.0001-0.0003), and half of KRAS mutants CRC (p-value 0.039-0.007). Further evidence was gained by decreasing expression of MEK and ERK2 proteins after transfection with miR-378; it was similar to the indirect induction by lauric acid approach. In conclusion, the present study demonstrated that lauric acid may efficiently induce miR-378 expression in CRC mutants, and both BRAF and a subtype of KRAS mutants presented significantly improved sensitivity to Cetuximab. Notably, BRAF mutants could even be inhibited in cell proliferation after elevated concentration of miR-378 in cells without combining with targeted therapy. This new approach may shed new light on BRAF or KRAS mutation in CRC patients for clinical trial, since lauric acid may easily be obtain from natural food, and it is supposed to be harmless to the cardiovascular system. PMID:26496897

  17. Pre-Appointment Testing for BRAF/KIT Mutation in Advanced Melanoma: A Model in Molecular Data Delivery for Individualized Medicine

    PubMed Central

    Mounajjed, Taofic; Brown, Char. L.; Stern, Therese K.; Bjorheim, Annette M.; Bridgeman, Andrew J.; Rumilla, Kandelaria M.; McWilliams, Robert R.; Flotte, Thomas J.

    2015-01-01

    The emergence of individualized medicine is driven by developments in precision diagnostics, epitomized by molecular testing. Because treatment decisions are being made based on such molecular data, data management is gaining major importance. Among data management challenges, creating workflow solutions for timely delivery of molecular data has become pivotal. This study aims to design and implement a scalable process that permits pre-appointment BRAF/KIT mutation analysis in melanoma patients, allowing molecular results necessary for treatment plans to be available before the patient's appointment. Process implementation aims to provide a model for efficient molecular data delivery for individualized medicine. We examined the existing process of BRAF/KIT testing in melanoma patients visiting our institution for oncology consultation. We created five working groups, each designing a specific segment of an alternative process that would allow pre-appointment BRAF/KIT testing and delivery of results. Data was captured and analyzed to evaluate the success of the alternative process. Over one year, 35 of 55 (59%) patients had prior BRAF/KIT testing. The remaining 20 patients went through the new process of pre-appointment testing; results were available at the time of appointment for 12 patients (overall pre-appointment results availability = 85.5%). The overall process averaged 13.4 ± 4.7 days. In conclusion, we describe successful implementation of a scalable workflow solution that permits pre-appointment BRAF/KIT mutation analysis and result delivery in melanoma patients. This sets the stage for further applications of this model to other conditions, answering an increasing demand for robust delivery of molecular data for individualized medicine. PMID:25179409

  18. Multicenter Evaluation of a Novel Automated Rapid Detection System of BRAF Status in Formalin-Fixed, Paraffin-Embedded Tissues.

    PubMed

    Schiefer, Ana-Iris; Parlow, Laura; Gabler, Lisa; Mesteri, Ildiko; Koperek, Oskar; von Deimling, Andreas; Streubel, Berthold; Preusser, Matthias; Lehmann, Annika; Kellner, Udo; Pauwels, Patrick; Lambin, Suzan; Dietel, Manfred; Hummel, Michael; Klauschen, Frederick; Birner, Peter; Möbs, Markus

    2016-05-01

    The mutated BRAF oncogene represents a therapeutic target in malignant melanoma. Because BRAF mutations are also involved in the pathogenesis of other human malignancies, the use of specific BRAF inhibitors might also be extended to other diseases in the future. A prerequisite for the clinical application of BRAF inhibitors is the reliable detection of activating BRAF mutations in routine histopathological samples. In a multicenter approach, we evaluated a novel and fully automated PCR-based system (Idylla) capable of detecting BRAF V600 mutations in formalin-fixed, paraffin-embedded tissue within 90 minutes with high sensitivity. We analyzed a total of 436 samples with the Idylla system. Valid results were obtained in 421 cases (96.56%). Its performance was compared with conventional methods (pyrosequencing or Sanger sequencing). Concordant results were obtained in 406 cases (96.90%). Reanalysis of eight discordant samples by next-generation sequencing and/or pyrosequencing with newly extracted DNA and the BRAF RGQ Kit confirmed the Idylla result in seven cases, resulting in an overall agreement of 98.57%. In conclusion, the Idylla system is a highly reliable and sensitive platform for detection of BRAF V600 mutations in formalin-fixed, paraffin-embedded material, providing an efficient alternative to conventional diagnostic methods, particularly for routine diagnostics laboratories with limited experience in molecular pathology.

  19. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  20. Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation.

    PubMed

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes.

  1. Identification of a Novel Family of BRAF[superscript V600E] Inhibitors

    SciTech Connect

    Qin, Jie; Xie, Peng; Ventocilla, Christian; Zhou, Guoqiang; Vultur, Adina; Chen, Quan; Liu, Qin; Herlyn, Meenhard; Winkler, Jeffrey; Marmorstein, Ronen

    2012-10-24

    The BRAF oncoprotein is mutated in about half of malignant melanomas and other cancers, and a kinase activating single valine to glutamate substitution at residue 600 (BRAF{sup V600E}) accounts for over 90% of BRAF-mediated cancers. Several BRAF{sup V600E} inhibitors have been developed, although they harbor some liabilities, thus motivating the development of other BRAF{sup V600E} inhibitor options. We report here the use of an ELISA based high-throughput screen to identify a family of related quinolol/naphthol compounds that preferentially inhibit BRAF{sup V600E} over BRAF{sup WT} and other kinases. We also report the X-ray crystal structure of a BRAF/quinolol complex revealing the mode of inhibition, employ structure-based medicinal chemistry efforts to prepare naphthol analogues that inhibit BRAF{sup V600E} in vitro with IC{sub 50} values in the 80-200 nM range under saturating ATP concentrations, and demonstrate that these compounds inhibit MAPK signaling in melanoma cells. Prospects for improving the potency and selectivity of these inhibitors are discussed.

  2. Analysis of BRAF and NRAS Mutation Status in Advanced Melanoma Patients Treated with Anti-CTLA-4 Antibodies: Association with Overall Survival?

    PubMed

    Mangana, Joanna; Cheng, Phil F; Schindler, Katja; Weide, Benjamin; Held, Ulrike; Frauchiger, Anna L; Romano, Emanuella; Kähler, Katharina C; Rozati, Sima; Rechsteiner, Markus; Moch, Holger; Michielin, Olivier; Garbe, Claus; Hauschild, Axel; Hoeller, Christoph; Dummer, Reinhard; Goldinger, Simone M

    2015-01-01

    Ipilimumab and tremelimumab are human monoclonal antibodies (Abs) against cytotoxic T-lymphocyte antigen-4 (CTLA-4). Ipilimumab was the first agent to show a statistically significant benefit in overall survival in advanced melanoma patients. Currently, there is no proven association between the BRAFV600 mutation and the disease control rate in response to ipilimumab. This analysis was carried out to assess if BRAFV600 and NRAS mutation status affects the clinical outcome of anti-CTLA-4-treated melanoma patients. This is a retrospective multi-center analysis of 101 patients, with confirmed BRAF and NRAS mutation status, treated with anti-CTLA-4 antibodies from December 2006 until August 2012. The median overall survival, defined from the treatment start date with the anti-CTLA-4. Abs-treatment to death or till last follow up, of BRAFV600 or NRAS mutant patients (n = 62) was 10.12 months (95% CI 6.78-13.2) compared to 8.26 months (95% CI 6.02-19.9) in BRAFV600/NRASwt subpopulation (n = 39) (p = 0.67). The median OS of NRAS mutated patients (n = 24) was 12.1 months and although was prolonged compared to the median OS of BRAF mutated patients (n = 38, mOS = 8.03 months) or BRAFV600/NRASwt patients (n = 39, mOS = 8.26 months) the difference didn't reach statistical significance (p = 0.56). 69 patients were able to complete 4 cycles of anti-CTLA-4 treatment. Of the 24 patients treated with selected BRAF- or MEK-inhibitors, 16 patients received anti-CTLA 4 Abs following either a BRAF or MEK inhibitor with only 8 of them being able to finish 4 cycles of treatment. Based on our results, there is no difference in the median OS in patients treated with anti-CTLA-4 Abs implying that the BRAF/NRAS mutation status alone is not sufficient to predict the outcome of patients treated with anti-CTLA-4 Abs.

  3. MGL ligand expression is correlated to BRAF mutation and associated with poor survival of stage III colon cancer patients

    PubMed Central

    Lenos, Kristiaan; Goos, Jeroen A.C.M.; Vuist, Ilona M.; den Uil, Sjoerd H.; Delis-van Diemen, Pien M.; Belt, Eric J.Th.; Stockmann, Hein B.A.C.; Bril, Herman; de Wit, Meike; Carvalho, Beatriz; Giblett, Susan; Pritchard, Catrin A.; Meijer, Gerrit A.; van Kooyk, Yvette; Fijneman, Remond J.A.; van Vliet, Sandra J.

    2015-01-01

    Colorectal cancer (CRC) is the third most prevalent cancer type worldwide with a mortality rate of approximately 50%. Elevated cell-surface expression of truncated carbohydrate structures such as Tn antigen (GalNAcα-Ser/Thr) is frequently observed during tumor progression. We have previously demonstrated that the C-type lectin macrophage galactose-type lectin (MGL), expressed by human antigen presenting cells, can distinguish healthy tissue from CRC through its specific recognition of Tn antigen. Both MGL binding and oncogenic BRAF mutations have been implicated in establishing an immunosuppressive microenvironment. Here we aimed to evaluate whether MGL ligand expression has prognostic value and whether this was correlated to BRAFV600E mutation status. Using a cohort of 386 colon cancer patients we demonstrate that high MGL binding to stage III tumors is associated with poor disease-free survival, independent of microsatellite instability or adjuvant chemotherapy. In vitro studies using CRC cell lines showed an association between MGL ligand expression and the presence of BRAFV600E. Administration of specific BRAFV600E inhibitors resulted in decreased expression of MGL-binding glycans. Moreover, a positive correlation between induction of BRAFV600E and MGL binding to epithelial cells of the gastrointestinal tract was found in vivo using an inducible BRAFV600E mouse model. We conclude that the BRAFV600E mutation induces MGL ligand expression, thereby providing a direct link between oncogenic transformation and aberrant expression of immunosuppressive glycans. The strong prognostic value of MGL ligands in stage III colon cancer patients, i.e. when tumor cells disseminate to lymph nodes, further supports the putative immune evasive role of MGL ligands in metastatic disease. PMID:26172302

  4. Langerhans cell histiocytosis in Chinese adults: absence of BRAF mutations and increased FOXP3+ regulatory T cells

    PubMed Central

    Tong, Chunguang; Jia, Xingyuan; Jia, Yanjun; He, Yanling

    2014-01-01

    Langerhans cell histiocytosis (LCH) is a rare disorder characterized by the proliferation of abnormal Langerhans cells. Previous studies mainly focused on children with LCH. However, there is limited information on the clinical and pathological aspects of LCH in adults. Therefore, this study aimed to investigate the clinical and pathological aspects of LCH in Chinese adults. The results showed that the average age of 18 LCH patients was 35.22 ± 16.57 years old. The ratio of male to female was 3.5:1.14 patients (77.8%) had single-system involvement and 4 patients (22.2%) had multi-system diseases. The skin (38.9%) and lungs (44.4%) were the mainly affected organs. No BRAF mutations were detected in the lesions of 18 cases. The number of FOXP3+ Tregs was significantly increased in LCH. In conclusion, clinical features of LCH in adults are distinct from those in children. Adult LCH has a relatively good prognosis and presents as a benign disease. Immune regulation plays an important role in the pathogenesis of adult LCH. PMID:25031736

  5. Biological and therapeutic implications of the BRAF pathway in histiocytic disorders.

    PubMed

    Arceci, Robert J

    2014-01-01

    Langerhans cell histiocytosis (LCH) has historically evolved in its classification from a primary immune dysregulatory disorder to what current evidence supports as a dendritic cell neoplasm with an immune-inflammatory component. A key part of the classification of LCH as a neoplasm has been the identification of BRAF V600E mutations in 35% to 60% of cases. Tumor protein p53 (TP53) and RAS mutations have also been identified, albeit in less than 2% of reported cases. Of note, over 50% of patients with another dendritic cell disease, Erdheim-Chester Disease, have also been shown to have BRAF V600E mutations. Although the BRAF mutations have not been shown to be associated with extent of disease, they may still provide a target for a molecularly guided approach to therapy. In cases of LCH in which no BRAF mutations were identified, there was evidence for activation of the RAS-RAF-MEK-extracellular signal-regulated kinases (ERK) pathway, suggesting that similar to other tumors, this pathway may be therapeutically exploitable. Anecdotal responses have been reported in a few patients with LCH and Erdheim-Chester Disease to vemurafenib, a BRAF V600E inhibitor. Although these results pave the way for careful, prospective clinical testing, selection of the optimal groups in which to test such inhibitors, alone or in combination, will be critical based on the toxicity profile thus far observed in adults with melanoma and other BRAF mutated tumors. PMID:24857137

  6. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras.

    PubMed Central

    Jaiswal, R K; Moodie, S A; Wolfman, A; Landreth, G E

    1994-01-01

    Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway. Images PMID:7935411

  7. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein.

    PubMed

    Ohtsuka, T; Shimizu, K; Yamamori, B; Kuroda, S; Takai, Y

    1996-01-19

    Rap1 small GTP-binding protein has the same amino acid sequence at its effector domain as that of Ras. Rap1 has been shown to antagonize the Ras functions, such as the Ras-induced transformation of NIH 3T3 cells and the Ras-induced activation of the c-Raf-1 protein kinase-dependent mitogen-activated protein (MAP) kinase cascade in Rat-1 cells, whereas we have shown that Rap1 as well as Ras stimulates DNA synthesis in Swiss 3T3 cells. We have established a cell-free assay system in which Ras activates bovine brain B-Raf protein kinase. Here we have used this assay system and examined the effect of Rap1 on the B-Raf activity to phosphorylate recombinant MAP kinase kinase (MEK). Recombinant Rap1B stimulated the activity of B-Raf, which was partially purified from bovine brain and immunoprecipitated by an anti-B-Raf antibody. The GTP-bound form was active, but the GDP-bound form was inactive. The fully post-translationally lipid-modified form was active, but the unmodified form was nearly inactive. The maximum B-Raf activity stimulated by Rap1B was nearly the same as that stimulated by Ki-Ras. Rap1B enhanced the Ki-Ras-stimulated B-Raf activity in an additive manner. These results indicate that not only Ras but also Rap1 is involved in the activation of the B-Raf-dependent MAP kinase cascade.

  8. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups.

    PubMed

    Berres, Marie-Luise; Lim, Karen Phaik Har; Peters, Tricia; Price, Jeremy; Takizawa, Hitoshi; Salmon, Hélène; Idoyaga, Juliana; Ruzo, Albert; Lupo, Philip J; Hicks, M John; Shih, Albert; Simko, Stephen J; Abhyankar, Harshal; Chakraborty, Rikhia; Leboeuf, Marylene; Beltrão, Monique; Lira, Sérgio A; Heym, Kenneth M; Bigley, Venetia; Collin, Matthew; Manz, Markus G; McClain, Kenneth; Merad, Miriam; Allen, Carl E

    2014-04-01

    Langerhans cell histiocytosis (LCH) is a clonal disorder with elusive etiology, characterized by the accumulation of CD207(+) dendritic cells (DCs) in inflammatory lesions. Recurrent BRAF-V600E mutations have been reported in LCH. In this study, lesions from 100 patients were genotyped, and 64% carried the BRAF-V600E mutation within infiltrating CD207(+) DCs. BRAF-V600E expression in tissue DCs did not define specific clinical risk groups but was associated with increased risk of recurrence. Strikingly, we found that patients with active, high-risk LCH also carried BRAF-V600E in circulating CD11c(+) and CD14(+) fractions and in bone marrow (BM) CD34(+) hematopoietic cell progenitors, whereas the mutation was restricted to lesional CD207(+) DC in low-risk LCH patients. Importantly, BRAF-V600E expression in DCs was sufficient to drive LCH-like disease in mice. Consistent with our findings in humans, expression of BRAF-V600E in BM DC progenitors recapitulated many features of the human high-risk LCH, whereas BRAF-V600E expression in differentiated DCs more closely resembled low-risk LCH. We therefore propose classification of LCH as a myeloid neoplasia and hypothesize that high-risk LCH arises from somatic mutation of a hematopoietic progenitor, whereas low-risk disease arises from somatic mutation of tissue-restricted precursor DCs.

  9. Dabrafenib for Treating Unresectable, Advanced or Metastatic BRAF V600 Mutation-Positive Melanoma: An Evidence Review Group Perspective.

    PubMed

    Fleeman, Nigel; Bagust, Adrian; Beale, Sophie; Boland, Angela; Dickson, Rumona; Dwan, Kerry; Richardson, Marty; Dundar, Yenal; Davis, Helen; Banks, Lindsay

    2015-09-01

    The National Institute for Health and Care Excellence (NICE) invited GlaxoSmithKline, the manufacturer of dabrafenib, to submit evidence for the clinical and cost effectiveness of dabrafenib for the treatment of unresectable, advanced or metastatic BRAF V600 mutation-positive melanoma in accordance with the Institute's Single Technology Appraisal (STA) process. The Liverpool Reviews and Implementation Group (LRiG) at the University of Liverpool was commissioned to act as the Evidence Review Group (ERG). This article summarizes the ERG's review of the evidence submitted by the company and provides a summary of the Appraisal Committee's (AC) final decision in October 2014. The clinical evidence for dabrafenib was derived from an ongoing phase III, randomized, double-blind, placebo-controlled, international, multicentre clinical trial (BREAK-3) involving 230 patients randomized 2:1 to receive either dabrafenib or dacarbazine. A significant improvement in median progression-free survival (PFS) but not overall survival (OS) was reported in the dabrafenib arm compared with dacarbazine. Vemurafenib is considered a more appropriate comparator than is dacarbazine. The clinical evidence for vemurafenib was derived from a completed phase III, randomized, double-blind, placebo-controlled, international, multicentre clinical trial (BRIM-3) involving 675 patients randomized 1:1 to receive either vemurafenib or dacarbazine. A significant improvement in median PFS and OS was reported in the vemurafenib arm compared with dacarbazine. As there is no direct evidence comparing dabrafenib versus vemurafenib, the company presented an indirect treatment comparison (ITC) that demonstrated no statistical differences between dabrafenib and vemurafenib for PFS or OS. The ERG expressed concerns with the ITC, mainly in relation to the validity of the assumptions underpinning the methodology; the ERG concluded this resulted in findings that are unlikely to be robust or reliable. Dabrafenib and

  10. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl.

    PubMed

    Mitsutake, Norisato; Fukushima, Toshihiko; Matsuse, Michiko; Rogounovitch, Tatiana; Saenko, Vladimir; Uchino, Shinya; Ito, Masahiro; Suzuki, Keiji; Suzuki, Shinichi; Yamashita, Shunichi

    2015-11-20

    After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0-18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAF(V600E) in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAF(V600E) was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAF(V600E) may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs.

  11. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl.

    PubMed

    Mitsutake, Norisato; Fukushima, Toshihiko; Matsuse, Michiko; Rogounovitch, Tatiana; Saenko, Vladimir; Uchino, Shinya; Ito, Masahiro; Suzuki, Keiji; Suzuki, Shinichi; Yamashita, Shunichi

    2015-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0-18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAF(V600E) in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAF(V600E) was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAF(V600E) may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs. PMID:26584635

  12. Increased Levels of β-catenin, LEF-1, and HPA-1 Correlate with Poor Prognosis for Acral Melanoma with Negative BRAF and NRAS Mutation in BRAF Exons 11 and 15 and NRAS Exons 1 and 2

    PubMed Central

    Xu, Sanxiong; Zhang, Jinyu; Jiang, Yongxin; Chen, Yongbin; Li, Hongjun; Liu, Xuefeng; Xu, Da; Chen, Yanjin; Yang, Yihao; Zhang, Ya; Li, Dongxu; Xia, Junfeng

    2015-01-01

    To determine the expression of β-catenin, lymphoid enhancer-binding protein-1 (LEF-1), and heparanase-1 (HPA-1) and to evaluate these proteins' potential prognostic values in malignant acral melanoma without mutations in BRAF exons 11 and 15 and NRAS exons 1 and 2, specimens from 90 patients with wild-type BRAF and NRAS were assessed and analyzed by immunohistochemistry and western blotting. The positive expression of β-catenin, lymphoid enhancer-binding protein-1, and heparanase-1 was observed in 36 (72%), 31 (62%), and 32 (64%) of the detected acral melanomas, respectively. The expression of β-catenin, lymphoid enhancer-binding protein-1, and heparanase-1 was not correlated with gender, age, or diseased body parts (p>0.05), but was significantly positively correlated with the tumor node metastasis (TNM) stage and metastasis (correlation=0.406 and 0.716, 0.397 and 0.582, 0.353 and 0.579; p=0.040 and 0.0001, 0.0040 and 0.0001, 0.0120 and 0.0001, respectively). We also observed that the increased expression of β-catenin, lymphoid enhancer-binding protein-1, and heparanase-1 was significantly correlated with decreased survival and poor prognosis (p=0.001, 0.010, and 0.023, respectively). A multifactorial analysis using Cox's regression model revealed that β-catenin, lymphoid enhancer-binding protein-1, heparanase-1, and the TNM stage were all independent factors in malignant melanoma (risk ratios were 7.294, 5.550, 5.622, and 4.794; p-values were 0.007, 0.018, 0.018, and 0.029, respectively). This study may provide the basis for the use of β-catenin, lymphoid enhancer-binding protein-1, and heparanase-1 as novel targets in the treatment of malignant invasion and metastasis in acral melanoma cancer. The expression of β-catenin, LEF-1, and HPA-1 was assessed and compared in malignant melanoma with that of peritumoral tissue and benign nevus in the patients with negative mutations in BRAF exons 11 and 15 and NRAS exons 1 and 2. The study may provide the basis for

  13. RAS and BRAF in metastatic colorectal cancer management

    PubMed Central

    Gong, Jun; Cho, May

    2016-01-01

    The treatment of metastatic colorectal cancer (mCRC) has been further refined with the development of monoclonal antibodies, cetuximab and panitumumab, towards the epidermal growth factor receptor (EGFR). Anti-EGFR therapy has afforded improved survival in those with wild-type RAS mCRC but provides no benefit and even harm in those with RAS-mutant tumors. BRAF mutations have also been shown to predict lack of clinically meaningful benefit to anti-EGFR therapy in mCRC. Mechanisms of resistance to EGFR blockade in wild-type RAS or BRAF metastatic colorectal tumors appear to converge on the mitogen-activated protein kinase (MAPK) signaling pathway. Clinical trials involving combined BRAF, EGFR, and/or MAPK kinase (MEK) inhibition have shown promising activity in BRAF-mutant mCRC. Here, we review pivotal clinical trials that have redefined our treatment approach in mCRC with respect to anti-EGFR therapy based on RAS and BRAF mutation status. Future studies will likely focus on improving efficacy of anti-EGFR-based therapy in mCRC through sustained MAPK pathway inhibition. PMID:27747083

  14. VE1 immunohistochemistry predicts BRAF V600E mutation status and clinical outcome in colorectal cancer

    PubMed Central

    Schafroth, Christian; Galván, José A.; Centeno, Irene; Koelzer, Viktor H.; Dawson, Heather E.; Sokol, Lena; Rieger, Gregor; Berger, Martin D.; Hädrich, Marion; Rosenberg, Robert; Nitsche, Ulrich; Schnüriger, Beat; Langer, Rupert; Inderbitzin, Daniel; Lugli, Alessandro; Zlobec, Inti

    2015-01-01

    Aim VE1 is a monoclonal antibody detecting mutant BRAFV600E protein by immunohistochemistry. Here we aim to determine the inter-observer agreement and concordance of VE1 with mutational status, investigate heterogeneity in colorectal cancers and metastases and determine the prognostic effect of VE1 in colorectal cancer patients. Methods Concordance of VE1 with mutational status and inter-observer agreement were tested on a pilot cohort of colorectal cancers (n = 34), melanomas (n = 23) and thyroid cancers (n = 8). Two prognostic cohorts were evaluated (n = 259, Cohort 1 and n = 226, Cohort 2) by multiple-punch tissue microarrays. VE1 staining on preoperative biopsies (n = 118 patients) was compared to expression in resections. Primary tumors and metastases from 13 patients were tested for VE1 heterogeneity using a tissue microarray generated from all available blocks (n = 100 blocks). Results Inter-observer agreement was 100% (kappa = 1.0). Concordance between VE1 and V600E mutation was 98.5%. Cohort 1: VE1 positivity (seen in 13.5%) was associated with older age (p = 0.0175) and MLH1 deficiency (p < 0.0001). Cohort 2: VE1 positivity (seen in 12.8%) was associated with female gender (p = 0.0016), right-sided tumor location (p < 0.0001), higher tumor grade (p < 0.0001) and mismatch repair (MMR)-deficiency (p < 0.0001). In survival analysis, MMR status and postoperative therapy were identified as possible confounding factors. Adjusting for these features, VE1 was an unfavorable prognostic factor. Preoperative biopsy staining matched resections in all cases except one. No heterogeneity was found across any primary/metastatic tumor blocks. Conclusion VE1 is highly concordant for V600E and homogeneously expressed suggesting staining can be analysed on resection specimens, preoperative biopsies, metastatic lesions and tissue microarrays. PMID:26496026

  15. Perianal melanoma with a BRAF gene mutation in a young Portuguese Roma native.

    PubMed

    Tan, Jennifer

    2016-01-01

    A case of a young man diagnosed with perianal nodular melanoma with a gene mutation, accompanied by regional and pulmonary metastases on initial presentation, and later on with hepatic and bone involvement, is presented. The patient underwent wide local excision but was unresponsive to dacarbazine. Targeted therapy with vemurafenib had shown clinical improvement for a 5-month duration until he showed signs of disease progression. Just after the shift of adjuvant therapy to ipilimumab, he was diagnosed with multiple cerebral metastases that eventually led to his demise 6 months after initiation of vemurafenib, having had a 12-month survival period from the time of initial melanoma diagnosis. PMID:26880821

  16. Post-translational modification of H-Ras is required for activation of, but not for association with, B-Raf.

    PubMed

    Okada, T; Masuda, T; Shinkai, M; Kariya, K; Kataoka, T

    1996-03-01

    B-Raf is regulated by Ras protein and acts as a mitogen-activated protein (MAP) kinase kinase kinase in PC12 cells and brain. Ras protein undergoes a series of post-translational modifications on its C-terminal CAAX motif, and the modifications are critical for its function. To elucidate the role of the post-translational modifications in interaction with, and activation of, B-Raf, we have analyzed a direct association between H-Ras and B-Raf, and constructed an in vitro system for B-Raf activation by H-Ras. By using methods based on inhibition of yeast adenylyl cyclase or RasGAP activity and by in vitro binding assays, we have shown that the segment of B-Raf corresponding to amino acid 1-326 binds directly to H-Ras with a dissociation constant (Kd) comparable to that of Raf-1 and that the binding is not significantly affected by the post-translational modifications. However, when the activity of B-Raf to stimulate MAP kinase was measured by using a cell-free system derived from rat brain cytosol, we observed that the unmodified form of H-Ras possesses an almost negligible activity to activate B-Raf in vitro compared to the fully modified form. H-RasSer-181,184 mutant, which was farnesylated but not palmitoylated, was equally active as the fully modified form. These results indicate that the post-translational modifications, especially farnesylation, are required for H-Ras to activate B-Raf even though they have no apparent effect on the binding properties of H-Ras to B-Raf.

  17. Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with ganetespib.

    PubMed

    Acquaviva, Jaime; Smith, Donald L; Jimenez, John-Paul; Zhang, Chaohua; Sequeira, Manuel; He, Suqin; Sang, Jim; Bates, Richard C; Proia, David A

    2014-02-01

    Activating BRAF kinase mutations serve as oncogenic drivers in over half of all melanomas, a feature that has been exploited in the development of new molecularly targeted approaches to treat this disease. Selective BRAF(V600E) inhibitors, such as vemurafenib, typically induce initial, profound tumor regressions within this group of patients; however, durable responses have been hampered by the emergence of drug resistance. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90, in melanoma lines harboring the BRAF(V600E) mutation. Ganetespib exposure resulted in the loss of mutant BRAF expression and depletion of mitogen-activated protein kinase and AKT signaling, resulting in greater in vitro potency and antitumor efficacy compared with targeted BRAF and MAP-ERK kinase (MEK) inhibitors. Dual targeting of Hsp90 and BRAF(V600E) provided combinatorial benefit in vemurafenib-sensitive melanoma cells in vitro and in vivo. Importantly, ganetespib overcame mechanisms of intrinsic and acquired resistance to vemurafenib, the latter of which was characterized by reactivation of extracellular signal-regulated kinase (ERK) signaling. Continued suppression of BRAF(V600E) by vemurafenib potentiated sensitivity to MEK inhibitors after acquired resistance had been established. Ganetespib treatment reduced, but not abolished, elevations in steady-state ERK activity. Profiling studies revealed that the addition of a MEK inhibitor could completely abrogate ERK reactivation in the resistant phenotype, with ganetespib displaying superior combinatorial activity over vemurafenib. Moreover, ganetespib plus the MEK inhibitor TAK-733 induced tumor regressions in vemurafenib-resistant xenografts. Overall these data highlight the potential of ganetespib as a single-agent or combination treatment in BRAF(V600E)-driven melanoma, particularly as a strategy to overcome acquired resistance to selective BRAF inhibitors. PMID:24398428

  18. Employing Digital Droplet PCR to Detect BRAF V600E Mutations in Formalin-fixed Paraffin-embedded Reference Standard Cell Lines.

    PubMed

    Rajasekaran, Nirmal; Oh, Myung Ryurl; Kim, Sung-Su; Kim, Si Eun; Kim, Young Deug; Choi, Hyun-Jeung; Byun, Bohyun; Shin, Young Kee

    2015-01-01

    ddPCR is a highly sensitive PCR method that utilizes a water-oil emulsion system. Using a droplet generator, an extracted nucleic acid sample is partitioned into ~20,000 nano-sized, water-in-oil droplets, and PCR amplification occurs in individual droplets. The ddPCR approach is in identifying sequence mutations, copy number alterations, and select structural rearrangements involving targeted genes. Here, we demonstrate the use of ddPCR as a powerful technique for precisely quantitating rare BRAF V600E mutations in FFPE reference standard cell lines, which is helpful in identifying individuals with cancer. In conclusion, ddPCR technique offers the potential to precisely profile the specific rare mutations in different genes in various types of FFPE samples. PMID:26484710

  19. BRAFV600E mutation, TIMP-1 upregulation, and NF-κB activation: closing the loop on the papillary thyroid cancer trilogy.

    PubMed

    Bommarito, Alessandra; Richiusa, Pierina; Carissimi, Elvira; Pizzolanti, Giuseppe; Rodolico, Vito; Zito, Giovanni; Criscimanna, Angela; Di Blasi, Francesco; Pitrone, Maria; Zerilli, Monica; Amato, Marco C; Spinelli, Gaetano; Carina, Valeria; Modica, Giuseppe; Latteri, M Adelfio; Galluzzo, Aldo; Giordano, Carla

    2011-12-01

    BRAF(V600E) is the most common mutation found in papillary thyroid carcinoma (PTC). Tissue inhibitor of metalloproteinases (TIMP-1) and nuclear factor (NF)-κB have been shown to play an important role in thyroid cancer. In particular, TIMP-1 binds its receptor CD63 on cell surface membrane and activates Akt signaling pathway, which is eventually responsible for its anti-apoptotic activity. The aim of our study was to evaluate whether interplay among these three factors exists and exerts a functional role in PTCs. To this purpose, 56 PTC specimens were analyzed for BRAF(V600E) mutation, TIMP-1 expression, and NF-κB activation. We found that BRAF(V600E) mutation occurs selectively in PTC nodules and is associated with hyperactivation of NF-κB and upregulation of both TIMP-1 and its receptor CD63. To assess the functional relationship among these factors, we first silenced BRAF gene in BCPAP cells, harboring BRAF(V600E) mutation. We found that silencing causes a marked decrease in TIMP-1 expression and NF-κB binding activity, as well as decreased invasiveness. After treatment with specific inhibitors of MAPK pathway, we found that only sorafenib was able to increase IκB-α and reduce both TIMP-1 expression and Akt phosphorylation in BCPAP cells, indicating that BRAF(V600E) activates NF-κB and this pathway is MEK-independent. Taken together, our findings demonstrate that BRAF(V600E) causes upregulation of TIMP-1 via NF-κB. TIMP-1 binds then its surface receptor CD63, leading eventually to Akt activation, which in turn confers antiapoptotic behavior and promotion of cell invasion. The recognition of this functional trilogy provides insight on how BRAF(V600E) determines cancer initiation, progression, and invasiveness in PTC, also identifying new therapeutic targets for the treatment of highly aggressive forms.

  20. Identification of frequent BRAF copy number gain and alterations of RAF genes in Chinese prostate cancer.

    PubMed

    Ren, Guoping; Liu, Xiaoyan; Mao, Xueying; Zhang, Yanling; Stankiewicz, Elzbieta; Hylands, Lucy; Song, Rongrong; Berney, Daniel M; Clark, Jeremy; Cooper, Colin; Lu, Yong-Jie

    2012-11-01

    We recently found that TMPRSS2:ERG fusion genes and PTEN loss, which are common in Western prostate cancers are infrequent in Chinese cases. As previous studies indicated a higher frequency of RAS and BRAF mutation rates in Eastern Asian than in Western prostate cancers and fusion genes involving the RAF family genes BRAF and RAF1 were recently identified in prostate cancer in the American population, we investigated BRAF and RAF1 alterations in Chinese prostate cancer. Using fluorescence in situ hybridization, we found that BRAF was truncated in five of 200 informative Chinese cases (2.5%) and that RAF1 was truncated in three of 204 informative cases (1.5%) and genomic rearrangements of these genes were significantly correlated with high Gleason scores (>7; P < 0.01) and have a trend to appear in high clinical stage disease. A high frequency of BRAF and RAF1 copy number gain was found (29 and 15%, respectively). BRAF copy number gain in Chinese cancers was significantly higher than in UK cases (9.2%)(P < 0.001) and correlated with a number of clinical parameters. High-level expression of BRAF was found by immunohistochemistry in Chinese cancer samples compared with adjacent nonmalignant epithelial cells, which was correlated with high BRAF copy number. We also identified KRAS codon 12 mutations in three of 96 Chinese cases, no BRAF V600E mutations were observed. Our finding suggests that the activation of the RAS/RAF/MEK/ERK pathway may be frequent in Chinese prostate cancer, with RAF gene copy number gain potentially being the main contributor.

  1. Effect of BRAF V600E mutation on tumor response of anti-EGFR monoclonal antibodies for first-line metastatic colorectal cancer treatment: a meta-analysis of randomized studies.

    PubMed

    Cui, Dandan; Cao, Dan; Yang, Yu; Qiu, Meng; Huang, Ying; Yi, Cheng

    2014-03-01

    Anti-EGFR monoclonal antibodies (anti-EGFR MoAbs) in metastatic colorectal cancer (mCRC) treatment are still not effective in all patients. This study aimed to evaluate the relationship between BRAF V600E mutation and the tumor response of anti-EGFR MoAbs for first-line treatment in mCRC patients. We searched the MEDLINE and EMBASE databases, using the key words that included colorectal cancer, cetuximab, panitumumab, and BRAF mutation and retrieved 445 articles. Among them four were included in the systematic review. Relative risks (RRs) with 95% confidence intervals (CI) for response rate were calculated. BRAF mutation carriers had worse ORR than non-carriers in mCRC patients with KRAS wild-type in first-line treatment whether adding anti-EGFR MoAb to chemotherapy or not (RR = 0.43, [95% CI 0.16-0.75]; RR = 0.38, [95% CI 0.20-0.73]). But in the unselected patients whose KRAS mutation were unknown, BRAF mutation carriers had similar ORR whether adding cetuximab to chemotherapy or not (RR = 0.45, [95% CI 0.18-1.09]; RR = 0.57, [95% CI 0.15-2.23]). In BRAF mutation carriers adding anti-EGFR MoAb to chemotherapy was similar to chemotherapy alone whether in patients with wild-type KRAS or unselected patients (RR = 1.61, [95% CI 0.57-4.47]; RR = 0.71, [95% CI 0.18-2.77]). But in the BRAF mutation non-carriers, adding anti-EGFR MoAb produced a clear benefit in response rate than chemotherapy alone and this advantage was restricted to KRAS wild-type patients (RR = 1.48, [95% CI 1.28-1.71]). BRAF mutation decreases tumor response in first-line treatment whether cetuximab was given or not in patients with KRAS wild-type, and anti-EGFR MoAb produces a clear benefit in response rate in patients with BRAF and KRAS wild-type.

  2. Primary Meningeal Pleomorphic Xanthoastrocytoma With Anaplastic Features: A Report of 2 Cases, One With BRAFV600E Mutation and Clinical Response to the BRAF Inhibitor Dabrafenib

    PubMed Central

    Usubalieva, Aisulu; Pierson, Christopher R.; Kavran, Christina A.; Huntoon, Kristin; Kryvenko, Oleksandr N.; Mayer, Theodore G.; Zhao, Weiqiang; Rock, Jack; Ammirati, Mario; Puduvalli, Vinay K.; Lehman, Norman L.

    2016-01-01

    Primary meningeal gliomas are rare tumors composed of a heterogeneous group of neoplasms. We present 2 clinically aggressive cases of primary meningeal pleomorphic xanthoastrocytoma that clinically mimicked meningioma. One case presented in the posterior fossa of a 56-year-old woman; the other centered on the left operculum of a 35-year-old woman. These cases showed many of the classic features of pleomorphic xanthoastrocytoma, except that xanthomatous cells were rare and eosinophilic granular bodies were inconspicuous. Both cases exhibited high proliferative indices and superficially invaded the brain. One case harboring a BRAFV600E mutation disseminated to the thecal sac and showed a clinical response to the targeted BRAF inhibitor dabrafenib. These cases seem to represent an unusual primarily extra-axial presentation of pleomorphic xanthoastrocytoma and may account for at least some of the previously reported cases of primary meningeal glioma and/or glial fibrillary acidic protein–immunoreactive meningioma variants. We suggest that BRAF mutation analysis be considered in all meningeal lesions showing atypical histologic or immunohistochemical profiles, particularly those exhibiting glial differentiation, as a diagnostic aid and possible indication for targeted therapy. PMID:26352988

  3. The Droplet Digital PCR: A New Valid Molecular Approach for the Assessment of B-RAF V600E Mutation in Hairy Cell Leukemia

    PubMed Central

    Guerrini, Francesca; Paolicchi, Matteo; Ghio, Francesco; Ciabatti, Elena; Grassi, Susanna; Salehzadeh, Serena; Ercolano, Giacomo; Metelli, Maria R.; Del Re, Marzia; Iovino, Lorenzo; Petrini, Iacopo; Carulli, Giovanni; Cecconi, Nadia; Rousseau, Martina; Cervetti, Giulia; Galimberti, Sara

    2016-01-01

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative B-cell disorder where the B-RAF V600E mutation has been recently detected, as reported for solid neoplasias but not for other B-cell lymphomas. The digital droplet PCR (dd-PCR) is a molecular technique that, without standard references, is able to accurately quantitate DNA mutations. ddPCR could be an useful instrument for the detection of the B-RAF V600E mutation in HCL, where the minimal residual disease monitoring is fundamental for planning a patients-targeted treatment in the era of new anti-CD20 and anti-RAF compounds. This retrospective study enrolled 47 patients observed at the Hematology Unit of the University of Pisa, Italy, from January 2005 to January 2014: 27 patients were affected by “classic” HCL, two by the variant HCL (vHCL), and 18 by splenic marginal zone lymphoma (SMZL). The aim of the study was to compare dd-PCR to “classic” quantitative PCR (QT-PCR) in terms of sensitivity and specificity and to demonstrate its possible use in HCL. Results showed that: (1) the sensitivity of dd-PCR is about half a logarithm superior to QT-PCR (5 × 10-5 vs. 2.5 × 10-4), (2) the specificity of the dd-PCR is comparable to QT-PCR (no patient with marginal splenic lymphoma or HCL variant resulted mutated), (3) its high sensitivity would allow to use dd-PCR in the monitoring of MRD. At the end of treatment, among patients in complete remission, 33% were still MRD-positive by dd-PCR versus 28% by QT-PCR versus 11% by the evaluation of the B-cell clonality, after 12 months, dd-PCR was comparable to QT-PCR and both detected the B-RAF mutation in 15% of cases defined as MRD-negative by IgH rearrangement. Moreover, (4) the feasibility and the costs of dd-PCR are comparable to those of QT-PCR. In conclusion, our study supports the introduction of dd-PCR in the scenario of HCL, also during the follow-up. PMID:27790140

  4. Response of BRAF mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis

    PubMed Central

    Parmenter, Tiffany J.; Kleinschmidt, Margarete; Kinross, Kathryn M.; Bond, Simon T.; Li, Jason; Kaadige, Mohan R.; Rao, Aparna; Sheppard, Karen E.; Hugo, Willy; Pupo, Gulietta M.; Pearson, Richard B.; McGee, Sean L.; Long, Georgina V.; Scolyer, Richard A.; Rizos, Helen; Lo, Roger S.; Cullinane, Carleen; Ayer, Donald E.; Ribas, Antoni; Johnstone, Ricky W.; Hicks, Rodney J.; McArthur, Grant A.

    2014-01-01

    Deregulated glucose metabolism fulfils the energetic and biosynthetic requirements for tumour growth driven by oncogenes. Because inhibition of oncogenic BRAF causes profound reductions in glucose uptake and a strong clinical benefit in BRAF mutant melanoma, we examined the role of energy metabolism in responses to BRAF inhibition. We observed pronounced and consistent decreases in glycolytic activity in BRAF mutant melanoma cells. Moreover, we identified a network of BRAF-regulated transcription factors that control glycolysis in melanoma cells. Remarkably, this network of transcription factors, including HIF1α, c-Myc and MondoA, drives glycolysis downstream of BRAFV600, is critical for responses to BRAF inhibition and is modulated by BRAF inhibition in clinical melanoma specimens. Furthermore, we show that concurrent inhibition of BRAF and glycolysis induces cell death in BRAF inhibitor-resistant melanoma cells. Thus, we provide a proof of principle for treatment of melanoma with combinations of BRAF inhibitors and glycolysis inhibitors. PMID:24469106

  5. [Progress of anti-tumor study based on BRAF].

    PubMed

    Yan, Gui-Rui; Xu, Zhi-Jian; Wang, He-Yao; Zhu, Wei-Liang

    2012-12-01

    BRAF is one of the most important pro-oncogenes, which is mutated in approximately 8% of human tumors. The most common BRAF mutation is a valine-to-glutamate transition (V600E) that is expressed primarily in melanoma, colorectal cancer and thyroid carcinoma. MEK/ERK is constitutively activated in the cells expressing BRAFV600E, leading to tumor development, invasion, and metastasis. Therefore, BRAFV600E is a therapeutic target for melanoma and some other BRAFV600E tumors. Vemurafenib, a BRAFV600E inhibitor, which was approved by FDA for the treatment of late-stage melanoma in 2011, produces improved rates of overall and progression-free survival in patients with the BRAFV600E mutation, making a dramatic breakthrough in melanoma treatment. Vemurafenib is also an individual target drug based on genetic diagnosis. However, its therapeutic success is limited by the emergence of drug resistance. Therefore, it is important to explore the mechanisms underlying the resistance for developing new inhibitor drugs and for preventing or delaying the resistance evolution to BRAF inhibitor drugs. In this review, we described the role of BRAFV600E as an anti-tumor drug target and the development of BRAF inhibitors. We also discussed the mechanisms leading to resistance of BRAFV600E inhibitors. Furthermore, therapeutic strategies that might be employed to overcome acquired resistance were proposed.

  6. Benign serrated colorectal fibroblastic polyps/intramucosal perineuriomas are true mixed epithelial-stromal polyps (hybrid hyperplastic polyp/mucosal perineurioma) with frequent BRAF mutations.

    PubMed

    Agaimy, Abbas; Stoehr, Robert; Vieth, Michael; Hartmann, Arndt

    2010-11-01

    Colorectal fibroblastic polyp and intramucosal perineurioma are 2 synonyms for a recently described benign mucosal lesion with a predilection for the rectosigmoid colon. These lesions are characterized by aggregates of bland spindled cells separating and distorting mucosal crypts. The latter frequently showed a serrated architecture. The pathogenesis of fibroblastic polyp/intramucosal perineurioma and the nature of serrated crypts observed in them are poorly understood. We analyzed the clinicopathological features of 29 fibroblastic polyps and investigated them for the first time for mutations known to be involved in serrated colorectal epithelial polyps (BRAF, KRAS, and PIK3CA). Patients were 23 women and 6 men with a mean age of 64 years (range: 47 to 84 y). All lesions represented asymptomatic solitary polyps (mean size 3.5 mm) localized predominantly in the rectosigmoid colon (81%). Hyperplastic polyps, classical adenoma, and sessile serrated adenoma/lesion coexisted in 12 (44%), 12 (44%), and 5 (17%) patients, respectively. All lesions showed irregular aggregates of bland spindled cells separating and distorting mucosal crypts. Serrated (hyperplastic) crypts were observed on the top or contiguous with the lesion in all cases. Immunohistochemistry revealed expression of at least one perineurial cell marker (epithelial membrane antigen, claudin-1, and glucose transporter-1) in 26 out of 27 lesions (96%), but expression of CD34 was less common (8 of 27; 30%). Immunostaining for hMLH1 showed a normal nuclear expression. Molecular analysis in 22 cases showed V600E BRAF mutation in 14 cases (63%) and KRAS mutation in 1 (4%). The remainder were wild-type for all 3 genes. Our results indicate that serrated fibroblastic polyps/intramucosal perineuriomas represent a unique type of mixed epithelial-stromal polyps (hybrid hyperplastic polyp/mucosal perineurioma). The perineurial stromal component might be derived from modified pericryptic fibroblasts as a consequence

  7. Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations

    PubMed Central

    2014-01-01

    Background The approval of vemurafenib in the US 2011 and in Europe 2012 improved the therapy of not resectable or metastatic melanoma. Patients carrying a substitution of valine to glutamic acid at codon 600 (p.V600E) or a substitution of valine to leucine (p.V600K) in BRAF show complete or partial response. Therefore, the precise identification of the underlying somatic mutations is essential. Herein, we evaluate the sensitivity, specificity and feasibility of six different methods for the detection of BRAF mutations. Methods Samples harboring p.V600E mutations as well as rare mutations in BRAF exon 15 were compared to wildtype samples. DNA was extracted from formalin-fixed paraffin-embedded tissues by manual micro-dissection and automated extraction. BRAF mutational analysis was carried out by high resolution melting (HRM) analysis, pyrosequencing, allele specific PCR, next generation sequencing (NGS) and immunohistochemistry (IHC). All mutations were independently reassessed by Sanger sequencing. Due to the limited tumor tissue available different numbers of samples were analyzed with each method (82, 72, 60, 72, 49 and 82 respectively). Results There was no difference in sensitivity between the HRM analysis and Sanger sequencing (98%). All mutations down to 6.6% allele frequency could be detected with 100% specificity. In contrast, pyrosequencing detected 100% of the mutations down to 5% allele frequency but exhibited only 90% specificity. The allele specific PCR failed to detect 16.3% of the mutations eligible for therapy with vemurafenib. NGS could analyze 100% of the cases with 100% specificity but exhibited 97.5% sensitivity. IHC showed once cross-reactivity with p.V600R but was a good amendment to HRM. Conclusion Therefore, at present, a combination of HRM and IHC is recommended to increase sensitivity and specificity for routine diagnostic to fulfill the European requirements concerning vemurafenib therapy of melanoma patients. PMID:24410877

  8. B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P

    PubMed Central

    Inoue, A; Okamoto, K; Fujino, Y; Nakagawa, T; Muguruma, N; Sannomiya, K; Mitsui, Y; Takaoka, T; Kitamura, S; Miyamoto, H; Okahisa, T; Fujimori, T; Imoto, I; Takayama, T

    2015-01-01

    Background: Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor of colon cancer with microsatellite instability (MSI). However, the developmental mechanism of SSA/P remains unknown. We performed genetic analysis and genome-wide DNA methylation analysis in aberrant crypt foci (ACF), SSA/P, and cancer in SSA/P specimens to show a close association between ACF and the SSA/P-cancer sequence. We also evaluated the prevalence and number of ACF in SSA/P patients. Methods: ACF in the right-side colon were observed in 36 patients with SSA/Ps alone, 2 with cancers in SSA/P, and 20 normal subjects and biopsied under magnifying endoscopy. B-RAF mutation and MSI were analysed by PCR–restriction fragment length polymorphism (RFLP) and PCR–SSCP, respectively, in 15 ACF, 20 SSA/P, and 2 cancer specimens. DNA methylation array analysis of seven ACF, seven SSA/P, and two cancer in SSA/P specimens was performed using the microarray-based integrated analysis of methylation by isochizomers (MIAMI) method. Results: B-RAF mutations were frequently detected in ACF, SSA/P, and cancer in SSA/P tissues. The number of methylated genes increased significantly in the order of ACFB-RAF mutation and methylation of some of the six identified genes and develop into SSA/Ps through accumulated methylation of these genes. PMID

  9. New Therapeutic Opportunities Based on DNA Mismatch Repair and BRAF Status in Metastatic Colorectal Cancer.

    PubMed

    Cohen, Romain; Svrcek, Magali; Dreyer, Chantal; Cervera, Pascale; Duval, Alex; Pocard, Marc; Fléjou, Jean-François; de Gramont, Aimery; André, Thierry

    2016-03-01

    Recently, colorectal cancer (CRC) subtyping consortium identified four consensus molecular subtypes (CMS1-4). CMS1 is enriched for deficient mismatch repair (dMMR) and BRAF (V600E) tumors. Intriguingly, this subtype has better relapse-free survival but worse overall survival after relapse compared with the other subtypes. Growing evidence is accumulating on the benefit of specific therapeutic strategies such as immune checkpoint inhibition therapy in dMMR tumors and mitogen-activated protein kinase (MAPK) pathway targeted therapy in tumors harboring BRAF (V600E) mutation. After reviewing dMMR prognostic value, immune checkpoints as major targets for dMMR carcinomas will be highlighted. Following, BRAF (V600E) prognostic impact will be reviewed and therapeutic strategies with the combination of cytotoxic agents and especially the combinations of BRAF and MAPK inhibitors will be discussed. PMID:26861657

  10. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  11. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells

    PubMed Central

    Melillo, Rosa Marina; Castellone, Maria Domenica; Guarino, Valentina; De Falco, Valentina; Cirafici, Anna Maria; Salvatore, Giuliana; Caiazzo, Fiorina; Basolo, Fulvio; Giannini, Riccardo; Kruhoffer, Mogens; Orntoft, Torben; Fusco, Alfredo; Santoro, Massimo

    2005-01-01

    In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade. PMID:15761501

  12. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges.

    PubMed

    Hu-Lieskovan, Siwen; Robert, Lidia; Homet Moreno, Blanca; Ribas, Antoni

    2014-07-20

    Recent breakthroughs in the treatment of advanced melanoma are based on scientific advances in understanding oncogenic signaling and the immunobiology of this cancer. Targeted therapy can successfully block oncogenic signaling in BRAF(V600)-mutant melanoma with high initial clinical responses, but relapse rates are also high. Activation of an immune response by releasing inhibitory check points can induce durable responses in a subset of patients with melanoma. These advances have driven interest in combining both modes of therapy with the goal of achieving high response rates with prolonged duration. Combining BRAF inhibitors and immunotherapy can specifically target the BRAF(V600) driver mutation in the tumor cells and potentially sensitize the immune system to target tumors. However, it is becoming evident that the effects of paradoxical mitogen-activated protein kinase pathway activation by BRAF inhibitors in non-BRAF-mutant cells needs to be taken into account, which may be implicated in the problems encountered in the first clinical trial testing a combination of the BRAF inhibitor vemurafenib with ipilimumab (anti-CTLA4), with significant liver toxicities. Here, we present the concept and potential mechanisms of combinatorial activity of targeted therapy and immunotherapy, review the literature for evidence to support the combination, and discuss the potential challenges and future directions for rational conduct of clinical trials.

  13. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  14. Breast Cancer Heterogeneity Examined by High-Sensitivity Quantification of PIK3CA, KRAS, HRAS, and BRAF Mutations in Normal Breast and Ductal Carcinomas.

    PubMed

    Myers, Meagan B; Banda, Malathi; McKim, Karen L; Wang, Yiying; Powell, Michael J; Parsons, Barbara L

    2016-04-01

    Mutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs), examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E). As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue. Overall, the mutations were prevalent in normal breast and DCs, with 9/9 DCs having measureable levels of at least three of the five mutations. HRAS G12D was significantly increased in DCs as compared to normal breast. The most frequent point mutation reported in DC by DNA sequencing, PIK3CA H1047R, was detected in all normal breast tissue and DC samples and was present at remarkably high levels (mutant fractions of 1.1 × 10(-3) to 4.6 × 10(-2)) in 4/10 normal breast samples. In normal breast tissue samples, PIK3CA mutation levels were positively correlated with age. However, the PIK3CA H1047R mutant fraction distributions for normal breast tissues and DCs were similar. The results suggest PIK3CA H1047R mutant cells have a selective advantage in breast, contribute to breast cancer susceptibility, and drive tumor progression during breast carcinogenesis, even when present as only a subpopulation of tumor cells. PMID:27108388

  15. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma

    NASA Astrophysics Data System (ADS)

    Sun, Chong; Wang, Liqin; Huang, Sidong; Heynen, Guus J. J. E.; Prahallad, Anirudh; Robert, Caroline; Haanen, John; Blank, Christian; Wesseling, Jelle; Willems, Stefan M.; Zecchin, Davide; Hobor, Sebastijan; Bajpe, Prashanth K.; Lieftink, Cor; Mateus, Christina; Vagner, Stephan; Grernrum, Wipawadee; Hofland, Ingrid; Schlicker, Andreas; Wessels, Lodewyk F. A.; Beijersbergen, Roderick L.; Bardelli, Alberto; di Nicolantonio, Federica; Eggermont, Alexander M. M.; Bernards, Rene

    2014-04-01

    Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors. Using a chromatin-regulator-focused short hairpin RNA (shRNA) library, we find that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes activation of TGF-β signalling, thus leading to upregulation of EGFR and platelet-derived growth factor receptor-β (PDGFRB), which confer resistance to BRAF and MEK inhibitors. Expression of EGFR in melanoma or treatment with TGF-β results in a slow-growth phenotype with cells displaying hallmarks of oncogene-induced senescence. However, EGFR expression or exposure to TGF-β becomes beneficial for proliferation in the presence of BRAF or MEK inhibitors. In a heterogeneous population of melanoma cells having varying levels of SOX10 suppression, cells with low SOX10 and consequently high EGFR expression are rapidly enriched in the presence of drug, but this is reversed when the drug treatment is discontinued. We find evidence for SOX10 loss and/or activation of TGF-β signalling in 4 of the 6 EGFR-positive drug-resistant melanoma patient samples. Our findings provide a rationale for why some BRAF or MEK inhibitor-resistant melanoma patients may regain sensitivity to these drugs after a `drug holiday' and identify patients with EGFR-positive melanoma as a group that may benefit from re-treatment after a drug holiday.

  16. Elimination of B-RAF in Oncogenic C-RAF-expressing Alveolar Epithelial Type II Cells Reduces MAPK Signal Intensity and Lung Tumor Growth*

    PubMed Central

    Zanucco, Emanuele; El-Nikhely, Nefertiti; Götz, Rudolf; Weidmann, Katharina; Pfeiffer, Verena; Savai, Rajkumar; Seeger, Werner; Ullrich, Axel; Rapp, Ulf R.

    2014-01-01

    Tumors are often greatly dependent on signaling cascades promoting cell growth or survival and may become hypersensitive to inactivation of key components within these signaling pathways. Ras and RAF mutations found in human cancer confer constitutive activity to these signaling molecules thereby converting them into an oncogenic state. RAF dimerization is required for normal Ras-dependent RAF activation and is required for the oncogenic potential of mutant RAFs. Here we describe a new mouse model for lung tumor development to investigate the role of B-RAF in oncogenic C-RAF-mediated adenoma initiation and growth. Conditional elimination of B-RAF in C-RAF BxB-expressing embryonic alveolar epithelial type II cells did not block adenoma formation. However, loss of B-RAF led to significantly reduced tumor growth. The diminished tumor growth upon B-RAF inactivation was due to reduced cell proliferation in absence of senescence and increased apoptosis. Furthermore, B-RAF elimination inhibited C-RAF BxB-mediated activation of the mitogenic cascade. In line with these data, mutation of Ser-621 in C-RAF BxB abrogated in vitro the dimerization with B-RAF and blocked the ability to activate the MAPK cascade. Taken together these data indicate that B-RAF is an important factor in oncogenic C-RAF-mediated tumorigenesis. PMID:25096573

  17. Variation in pre-PCR processing of FFPE samples leads to discrepancies in BRAF and EGFR mutation detection: a diagnostic RING trial

    PubMed Central

    Kapp, Joshua R; Diss, Tim; Spicer, James; Gandy, Michael; Schrijver, Iris; Jennings, Lawrence J; Li, Marilyn M; Tsongalis, Gregory J; de Castro, David Gonzalez; Bridge, Julia A; Wallace, Andrew; Deignan, Joshua L; Hing, Sandra; Butler, Rachel; Verghese, Eldo; Latham, Gary J; Hamoudi, Rifat A

    2015-01-01

    Aims Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. Methods 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. Results Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p<0.0001), and yield variation from engineered samples was not significant (p=0.3782). Two laboratories failed DNA extraction from samples that may be attributed to operator error. DNA extraction protocols themselves were not found to contribute significant variation. 10/13 labs reported yields averaging 235.8 ng (95% CI 90.7 to 380.9) from cell-negative samples, which was attributed to issues with spectrophotometry. DNA measurements using Qubit Fluorometry demonstrated a median fivefold overestimation of DNA quantity by Nanodrop Spectrophotometry. DNA integrity and PCR inhibition were factors not found to contribute significant variation. Conclusions In this study, we provide evidence demonstrating that variation in pre-PCR steps is prevalent and may detrimentally affect the patient's ability to receive critical therapy. We provide recommendations for preanalytical workflow optimisation that may reduce errors in down-stream sequencing and for next-generation sequencing library generation. PMID:25430497

  18. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma

    PubMed Central

    WANG, YONG; GUO, QINHAO; ZHAO, YAN; CHEN, JIEJING; WANG, SHUWEI; HU, JUN; SUN, YUEMING

    2014-01-01

    Long non-coding RNAs (lncRNAs) are novel regulators in cancer biology. BRAF-activated lncRNA (BANCR) is overexpressed in melanoma and has a potential functional role in melanoma cell migration. However, little is known about the role of BANCR in the development of papillary thyroid carcinoma (PTC). In the present study, BANCR expression was examined in six pairs of PTC and matched adjacent normal tissues. The results revealed that BANCR levels were significantly higher in the PTC tissues and PTC IHH-4 cells compared with the normal controls. Knockdown of BANCR in the IHH-4 cells inhibited proliferation and increased apoptosis of the cells in vitro. Further investigation of the underlying mechanisms revealed that BANCR markedly activated autophagy. Overexpression of BANCR inhibited apoptosis in the IHH-4 cells, whereas inhibition of autophagy stimulated apoptosis in the BANCR-overexpressed cells. BANCR overexpression also increased cell proliferation and the inhibition of autophagy abrogated BANCR overexpression-induced cell proliferation. In addition, the overexpression of BANCR resulted in an increase in the ratio of LC3-II/LC3-I, a marker for autophagy, while the knockdown of BANCR decreased the ratio of LC3-II/LC3-I. These results revealed that BANCR expression levels are upregulated in PTC. Additionally, BANCR increases PTC cell proliferation, which could activate autophagy. PMID:25289082

  19. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.

    PubMed

    Verkhivker, G M

    2016-10-20

    Protein kinases are central to proper functioning of cellular networks and are an integral part of many signal transduction pathways. The family of protein kinases represents by far the largest and most important class of therapeutic targets in oncology. Dimerization-induced activation has emerged as a common mechanism of allosteric regulation in BRAF kinases, which play an important role in growth factor signalling and human diseases. Recent studies have revealed that most of the BRAF inhibitors can induce dimerization and paradoxically stimulate enzyme transactivation by conferring an active conformation in the second monomer of the kinase dimer. The emerging connections between inhibitor binding and BRAF kinase domain dimerization have suggested a molecular basis of the activation mechanism in which BRAF inhibitors may allosterically modulate the stability of the dimerization interface and affect the organization of residue interaction networks in BRAF kinase dimers. In this work, we integrated structural bioinformatics analysis, molecular dynamics and binding free energy simulations with the protein structure network analysis of the BRAF crystal structures to determine dynamic signatures of BRAF conformations in complexes with different types of inhibitors and probe the mechanisms of the inhibitor-induced dimerization and paradoxical activation. The results of this study highlight previously unexplored relationships between types of BRAF inhibitors, inhibitor-induced changes in the residue interaction networks and allosteric modulation of the kinase activity. This study suggests a mechanism by which BRAF inhibitors could promote or interfere with the paradoxical activation of BRAF kinases, which may be useful in informing discovery efforts to minimize the unanticipated adverse biological consequences of these therapeutic agents.

  20. Natural killer cells are essential for the ability of BRAF inhibitors to control BRAFV600E-mutant metastatic melanoma.

    PubMed

    Ferrari de Andrade, Lucas; Ngiow, Shin F; Stannard, Kimberley; Rusakiewicz, Sylvie; Kalimutho, Murugan; Khanna, Kum Kum; Tey, Siok-Keen; Takeda, Kazuyoshi; Zitvogel, Laurence; Martinet, Ludovic; Smyth, Mark J

    2014-12-15

    BRAF(V600E) is a major oncogenic mutation found in approximately 50% of human melanoma that confers constitutive activation of the MAPK pathway and increased melanoma growth. Inhibition of BRAF(V600E) by oncogene targeting therapy increases overall survival of patients with melanoma, but is unable to produce many durable responses. Adaptive drug resistance remains the main limitation to BRAF(V600E) inhibitor clinical efficacy and immune-based strategies could be useful to overcome disease relapse. Tumor microenvironment greatly differs between visceral metastasis and primary cutaneous melanoma, and the mechanisms involved in the antimetastatic efficacy of BRAF(V600E) inhibitors remain to be determined. To address this question, we developed a metastatic BRAF(V600E)-mutant melanoma cell line and demonstrated that the antimetastatic properties of BRAF inhibitor PLX4720 (a research analogue of vemurafenib) require host natural killer (NK) cells and perforin. Indeed, PLX4720 not only directly limited BRAF(V600E)-induced tumor cell proliferation, but also affected NK cell functions. We showed that PLX4720 increases the phosphorylation of ERK1/2, CD69 expression, and proliferation of mouse NK cells in vitro. NK cell frequencies were significantly enhanced by PLX4720 specifically in the lungs of mice with BRAF(V600E) lung metastases. Furthermore, PLX4720 also increased human NK cell pERK1/2, CD69 expression, and IFNγ release in the context of anti-NKp30 and IL2 stimulation. Overall, this study supports the idea that additional NK cell-based immunotherapy (by checkpoint blockade or agonists or cytokines) may combine well with BRAF(V600E) inhibitor therapy to promote more durable responses in melanoma.

  1. Renal effects of BRAF inhibitors: a systematic review by the Cancer and the Kidney International Network

    PubMed Central

    Wanchoo, Rimda; Jhaveri, Kenar D.; Deray, Gilbert; Launay-Vacher, Vincent

    2016-01-01

    Advanced melanoma has been traditionally unresponsive to standard chemotherapy agents and used to have a dismal prognosis. Genetically targeted small-molecule inhibitors of the oncogenic BRAF V600 mutation or a downstream signaling partner (MEK mitogen-activated protein kinase) are effective treatment options for the 40–50% of melanomas that harbor mutations in BRAF. Selective BRAF and MEK inhibitors induce frequent and dramatic objective responses and markedly improve survival compared with cytotoxic chemotherapy. In the past decade after discovery of this mutation, drugs such as vemurafenib and dabrafenib have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency for the treatment of V600-mutated melanomas. While the initial trials did not signal any renal toxicities with the BRAF inhibitors, recent case reports, case series and FDA adverse reporting systems have uncovered significant nephrotoxicities with these agents. In this article, we systematically review the nephrotoxicities of these agents. Based on recently published data, it appears that there are lower rates of kidney disease and cutaneous lesions seen with dabrafenib compared with vemurafenib. The pathology reported in the few kidney biopsies done so far are suggestive of tubulo interstitial damage with an acute and chronic component. Electrolyte disorders such as hypokalemia, hyponatremia and hypophosphatemia have been reported as well. Routine monitoring of serum creatinine and electrolytes and calculation of glomerular filtration rate prior to the first administration when treating with dabrafenib and vemurafenib are essential. PMID:26985376

  2. PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes.

    PubMed

    Rosenbaum, Matthew W; Bledsoe, Jacob R; Morales-Oyarvide, Vicente; Huynh, Tiffany G; Mino-Kenudson, Mari

    2016-09-01

    Programmed cell death 1 (PD-1) and its ligand (PD-L1) are key suppressors of the cytotoxic immune response. PD-L1 expression on tumor cells may be induced by the immune microenvironment, resulting in immune escape (adaptive immune resistance), and an adverse prognosis in many malignancies. In colorectal carcinoma the response to PD-1/PD-L1 inhibition is correlated with microsatellite instability. However, little is known about the clinicopathologic, molecular, and prognostic characteristics of colorectal carcinoma with PD-L1 expression. We performed immunohistochemistry for PD-L1 on 181 cases of colorectal carcinoma with known microsatellite instability and mutational status, and correlated PD-L1 expression with clinicopathologic features including tumor-infiltrating lymphocyte burden/immunophenotype, tumor mutational profile, and disease-specific survival. PD-L1 was expressed in tumors from 16 patients (9%) who were more often older (P=0.006) and female (P=0.035), with tumors exhibiting a larger size (P=0.013), but lower stage (P<0.001). PD-L1 expression was associated with increased CD8 and TBET-positive tumor-infiltrating lymphocytes, medullary phenotype, poor differentiation, microsatellite instability, BRAF mutation (P<0.001 for each), and a lower frequency of KRAS mutation (P=0.012). On multivariate analysis, PD-L1 expression was associated with medullary morphology and frequent CD8-positive tumor-infiltrating lymphocytes, suggesting adaptive immune resistance. PD-L1 positivity was not predictive of survival in the entire cohort, but it was associated with a lower disease-specific survival within the microsatellite-instability high cohort. PD-L1 expression in colorectal carcinoma is associated with clinicopathologic and molecular features of the serrated pathway of colorectal carcinogenesis, and is associated with a worse outcome within microsatellite-unstable tumors. These findings support the role of PD-L1 expression in providing normally immunogenic

  3. [BRAF-STATUS OF PAPILLARY THYROID CARCINOMAS AND STRATEGY OF SURGICAL TREATMENT].

    PubMed

    Tarashchenko, Yu N; Kovalenko, A E; Bolgov, M Yu; Guda, B B; Shelkovoy, E A; Nekrasov, K A; Mankovskaya, S; Kashuba, V I

    2015-06-01

    Analyzed the presence of BRAF V600E mutation in the focal thyroid gland in the preoperative diagnosis of papillary carcinoma (PC). Molecular genetic testing conducted on puncture aspirates from 26 patients before surgery. The diagnosis was verified according to the morphological investigations. Mutations in BRAF V600E detected only in patients with the thyroid PC. Thus, the definition of BRAF V600E mutation may be a marker in the preoperative diagnosis of thyroid PC. Analyzed the presence of BRAF V600E mutation in the focal thyroid gland in the preoperative diagnosis of papillary carcinoma (PC). Molecular genetic testing conducted on puncture aspirates from 26 patients before surgery. The diagnosis was verified according to the morphological investigations. Mutations in BRAF V600E detected only in patients with the thyroid PC. Thus, the definition of BRAF V600E mutation may be a marker in the preoperative diagnosis of thyroid PC.

  4. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes.

    PubMed

    Josowitz, Rebecca; Mulero-Navarro, Sonia; Rodriguez, Nelson A; Falce, Christine; Cohen, Ninette; Ullian, Erik M; Weiss, Lauren A; Rauen, Katherine A; Sobie, Eric A; Gelb, Bruce D

    2016-09-13

    Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS), whereby 40% of patients develop hypertrophic cardiomyopathy (HCM). As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC) model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα(+)/CD90(-) cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα(-)/CD90(+) cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor β (TGFβ) paracrine signaling. Inhibition of TGFβ or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFβ inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies. PMID:27569062

  5. Saving orphans: BRAF targeting of histiocytosis.

    PubMed

    Heaney, Mark L

    2013-02-28

    In this issue of Blood, Haroche and colleagues report significant therapeutic activity of the BRAF inhibitor, vemurafenib, in 3 patients with rare histiocytic conditions, Erdheim-Chester disease and Langerhans cell histiocytosis. PMID:23449613

  6. Copper is required for oncogenic BRAF signaling and tumorigenesis

    PubMed Central

    Brady, Donita C.; Crowe, Matthew S.; Turski, Michelle L.; Hobbs, G. Aaron; Yao, Xiaojie; Chaikuad, Apirat; Knapp, Stefan; Xiao, Kunhong; Campbell, Sharon L.; Thiele, Dennis J.; Counter, Christopher M.

    2014-01-01

    The BRAF kinase is mutated, typically V600E, to induce an active oncogenic state in a large fraction of melanoma, thyroid, hairy cell leukemia, and to a lesser extent, a wide spectrum of other cancers1,2. BRAFV600E phosphorylates and activates the kinases MEK1 and MEK2, which in turn phosphorylate and activate the kinases ERK1 and ERK2, stimulating the MAPK pathway to promote cancer3. Targeting MEK1/2 is proving to be an important therapeutic strategy, as a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma4, which is increased when co-administered with a BRAFV600E inhibitor5. In this regard, we previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction6. We now show that genetic loss of the high affinity Cu transporter Ctr1 or mutations in MEK1 that disrupt Cu binding reduced BRAFV600E-driven signaling and tumorigenesis. Conversely, a MEK1-MEK5 chimera that phosphorylates ERK1/2 independent of Cu or an active ERK2 restored tumor growth to cells lacking Ctr1. Importantly, Cu chelators used in the treatment of Wilson disease7 reduced tumor growth of both BRAFV600E-transformed cells and cells resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat BRAFV600E mutation-positive cancers. PMID:24717435

  7. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2.

    PubMed

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li

    2016-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis.

  8. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2

    PubMed Central

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li

    2016-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis. PMID:27293997

  9. Rosai-Dorfman Disease Harboring an Activating KRAS K117N Missense Mutation.

    PubMed

    Shanmugam, Vignesh; Margolskee, Elizabeth; Kluk, Michael; Giorgadze, Tamara; Orazi, Attilio

    2016-09-01

    Rosai-Dorfman disease (RDD) or sinus histiocytosis with massive lymphadenopathy is a rare histiocytic proliferation that is generally considered to be reactive with a benign clinical course. The etiology of RDD is very poorly understood. Recent studies have shown frequent BRAF, NRAS, KRAS, and PIK3CA activating mutations in several histiocytic neoplasms highlighting the emerging importance of the RAF/MEK/ERK pathway in the pathogenesis of these diseases. Here we report a case of Rosai-Dorfman disease involving the submandibular salivary gland with a KRAS K117N missense mutation discovered by next-generation sequencing. These results suggest that at least a subset of RDD cases may be clonal processes. Further mutational studies on this rare histiocytic disease should be undertaken to better characterize its pathogenesis as well as open up potential avenues for therapy.

  10. B-RAF Mutant Alleles Associated with Langerhans Cell Histiocytosis, a Granulomatous Pediatric Disease

    PubMed Central

    Lu, Hui-chun; Mian, Sophie; Trouillet, Celine; Mufti, Ghulam; Emile, Jean-Francois; Fraternali, Franca; Donadieu, Jean; Geissmann, Frederic

    2012-01-01

    Background Langerhans cell histiocytosis (LCH) features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or ‘LCH cells’. Badalian-Very et al. recently reported the presence of a canonical V600EB-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients. Methods and Results Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using ‘next generation’ pyrosequencing. In 9 cases the mutation identified was V600EB-RAF. In 2 cases novel polymorphisms were identified. A somatic 600DLATB-RAF insertion mimicked the structural and functional consequences of the V600EB-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The 600DLATB-RAF and V600EB-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%–2% relative mutation abundance. A novel germ line T599AB-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, T599AB-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation. Conclusions Our data confirmed presence of the V600EB-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that V600EB-RAF and 600DLATB-RAF mutations are somatic mutants enriched in LCH CD1a+ cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line T599AB-RAF allele. PMID:22506009

  11. [BRAF Inhibitor-Induced Erythema Nodosum-Like Lesions].

    PubMed

    Shiba, Keiko; Moriuchi, Reine; Morita, Yusuke; Nakamura, Michio; Takigami, Masayoshi; Shimizu, Satoko

    2016-05-01

    BRAF inhibitors have been licensed for the treatment of unresectable or metastatic BRAF-mutated melanomas. In Japan, the BRAF inhibitor vemurafenib has been available since December 2014. Several adverse events induced by BRAF inhibitors have been reported, such as Stevens-Johnson syndrome, toxic epidermal necrosis, squamous cell carcinoma, secondary melanoma, and hand-foot syndrome. Recently, inflammatory skin lesions clinically resembling erythema nodosum have been reported as side effects that may lead to treatment discontinuation. In this report, we described the first Japanese case of erythema nodosum-like lesions induced by vemurafenib and discussed the countermeasures to this adverse reaction. Dose reduction or interruption of BRAF inhibitors should be considered on a case-by-case basis because the condition may resolve spontaneously or under symptomatic treatment. We postulate that erythema nodosum-like lesions can be controlled by careful follow-up and supportive care. PMID:27210102

  12. Up-regulation of BRAF activated non-coding RNA is associated with radiation therapy for lung cancer.

    PubMed

    Chen, Jian-xiang; Chen, Ming; Zheng, Yuan-da; Wang, Sheng-ye; Shen, Zhu-ping

    2015-04-01

    Radiation therapy has become more effective in treating primary tumors, such as lung cancer. Recent evidence suggested that BRAF activated non-coding RNAs (BANCR) play a critical role in cellular processes and are found to be dysregulated in a variety of cancers. The clinical significance of BANCR in radiation therapy, and its molecular mechanisms controlling tumor growth are unclear. In the present study, C57BL/6 mice were inoculated Lewis lung cancer cells and exposed to radiation therapy, then BANCR expression was analyzed using qPCR. Chromatin immunoprecipitation and western blot were performed to calculate the enrichment of histone acetylation and HDAC3 protein levels in Lewis lung cancer cells, respectively. MTT assay was used to evaluate the effects of BANCR on Lewis lung cancer cell viability. Finally, we found that BANCR expression was significantly increased in C57BL/6 mice receiving radiation therapy (P<0.05) compared with control group. Additionally, knockdown of BANCR expression was associated with larger tumor size in C57BL/6 mice inoculated Lewis lung cancer cells. Histone deacetylation was observed to involve in the regulation of BANCR in Lewis lung cancer cells. Moreover, over expression HDAC3 reversed the effect of rays on BANCR expression. MTT assay showed that knockdown of BANCR expression promoted cell viability surviving from radiation. In conclusion, these findings indicated that radiation therapy was an effective treatment for lung cancer, and it may exert function through up-regulation BANCR expression.

  13. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model.

    PubMed

    Perna, Daniele; Karreth, Florian A; Rust, Alistair G; Perez-Mancera, Pedro A; Rashid, Mamunur; Iorio, Francesco; Alifrangis, Constantine; Arends, Mark J; Bosenberg, Marcus W; Bollag, Gideon; Tuveson, David A; Adams, David J

    2015-02-10

    BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes.

  14. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model.

    PubMed

    Perna, Daniele; Karreth, Florian A; Rust, Alistair G; Perez-Mancera, Pedro A; Rashid, Mamunur; Iorio, Francesco; Alifrangis, Constantine; Arends, Mark J; Bosenberg, Marcus W; Bollag, Gideon; Tuveson, David A; Adams, David J

    2015-02-10

    BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼ 80% of BRAF(V600)-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf(V618E) (analogous to the human BRAF(V600E) mutation) led to the development of skin hyperpigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf(V618E) transposon mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thymoma viral oncogene homolog 1), a phenotype reverted by combinatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes. PMID:25624498

  15. Deletion Mutations Keep Kinase Inhibitors in the Loop

    PubMed Central

    Freed, Daniel M.; Park, Jin H.; Radhakrishnan, Ravi; Lemmon, Mark A.

    2016-01-01

    Effective clinical application of conformationally selective kinase inhibitors requires tailoring drug choice to the tumor's activating mutation(s). In this issue of Cancer Cell, Foster et al. (2016) describe how activating deletions in BRAF, EGFR, and HER2 cause primary resistance to common inhibitors, suggesting strategies for improved inhibitor selection. PMID:27070691

  16. Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma

    PubMed Central

    Fang, Minggang; Hutchinson, Lloyd; Deng, April

    2016-01-01

    During cancer development, it is well established that many genes, including tumor suppressor genes, are hypermethylated and transcriptionally repressed, a phenomenon referred to as epigenetic silencing. In general, the factors involved in, and the mechanistic basis of, epigenetic silencing during cancer development are not well understood. We have recently described an epigenetic silencing pathway, directed by the oncogenic B-Raf proto-oncogene (BRAF) variant BRAF(V600E), that mediates widespread epigenetic silencing in colorectal cancer (CRC). Notably, the BRAF(V600E) mutation is also present in 50–70% of melanomas. Here, we show that the same pathway we identified in CRC also directs epigenetic silencing of a similar set of genes in BRAF-positive melanoma. In both CRC and melanoma, BRAF(V600E) promotes epigenetic silencing through up-regulation of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG), a transcriptional repressor with sequence-specific DNA-binding activity. The elevated concentration of MAFG drives DNA binding on the promoter. Promoter-bound MAFG recruits a set of corepressors that includes its heterodimeric partner BTB and CNC homology 1, basic leucine zipper transcription factor 1 (BACH1), the chromatin remodeling factor chromodomain helicase DNA-binding protein 8 (CHD8), and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. Our results reveal a common BRAF(V600E)-directed transcriptional regulatory pathway that mediates epigenetic silencing in unrelated solid tumors and provide strong support for an instructive model of oncoprotein-directed epigenetic silencing. PMID:26787892

  17. Mutation Profile of Well-Differentiated Thyroid Cancer in Asians

    PubMed Central

    Song, Young Shin; Lim, Jung Ah

    2015-01-01

    Recent advances in molecular diagnostics have led to significant insights into the genetic basis of thyroid tumorigenesis. Among the mutations commonly seen in thyroid cancers, the vast majority are associated with the mitogen-activated protein kinase pathway. B-Raf proto-oncogene (BRAF) mutations are the most common mutations observed in papillary thyroid cancers (PTCs), followed by RET/PTC rearrangements and RAS mutations, while follicular thyroid cancers are more likely to harbor RAS mutations or PAX8/peroxisome proliferator-activated receptor γ (PPARγ) rearrangements. Beyond these more common mutations, alterations in the telomerase reverse transcriptase (TERT) promoter have recently been associated with clinicopathologic features, disease prognosis, and tumorigenesis in thyroid cancer. While the mutations underlying thyroid tumorigenesis are well known, the frequency of these mutations is strongly associated with geography, with clear differences reported between Asian and Western countries. Of particular interest is the prevalence of BRAF mutations, with Korean patients exhibiting the highest rate of BRAF-associated thyroid cancers in the world. Here, we review the prevalence of each of the most common mutations in Asian and Western countries, and identify the characteristics of well-differentiated thyroid cancer in Asians. PMID:26435130

  18. BRAF in metastatic colorectal cancer: the future starts now.

    PubMed

    Orlandi, Armando; Calegari, Alessandra; Inno, Alessandro; Berenato, Rosa; Caporale, Marta; Niger, Monica; Bossi, Ilaria; Di Bartolomeo, Maria; de Braud, Filippo; Pietrantonio, Filippo

    2015-12-01

    BRAF mutations are detectable in about 5-15% of metastatic colorectal cancer (mCRC) patients and represent a clear negative prognostic factor. While in BRAF-mutated (BRAFmt) metastatic melanoma TKI target therapies (BRAF and MEK inhibitor), both alone or in combination, have shown significant efficacy, in BRAFmt CRC single-agent BRAF-inhibitors as well as chemotherapy seem to be ineffective. The critical role of EGFR in CRC and its multiple downstreaming pathways seem to be involved in this lack of response. In recent years, preclinical investigations and retrospective studies slowly increased our knowledge on BRAFmt CRC. This review analyses preclinical data and discusses several clinical trials in order to explore new therapeutic strategies targeting BRAFmt mCRC.

  19. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma-superiority of NGS.

    PubMed

    Tuononen, Katja; Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Wirtanen, Aino; Rönty, Mikko; Salmenkivi, Kaisa; Andrews, Jenny M; Telaranta-Keerie, Aino I; Hannula, Sari; Lagström, Sonja; Ellonen, Pekka; Knuuttila, Aija; Knuutila, Sakari

    2013-05-01

    The development of tyrosine kinase inhibitor treatments has made it important to test cancer patients for clinically significant gene mutations that influence the benefit of treatment. Targeted next-generation sequencing (NGS) provides a promising method for diagnostic purposes by enabling the simultaneous detection of multiple mutations in various genes in a single test. The aim of our study was to screen EGFR, KRAS, and BRAF mutations by targeted NGS and commonly used real-time polymerase chain reaction (PCR) methods to evaluate the feasibility of targeted NGS for the detection of the mutations. Furthermore, we aimed to identify potential novel mutations by targeted NGS. We analyzed formalin-fixed, paraffin-embedded (FFPE) tumor tissue specimens from 81 non-small cell lung carcinoma patients. We observed a significant concordance (from 96.3 to 100%) of the EGFR, KRAS, and BRAF mutation detection results between targeted NGS and real-time PCR. Moreover, targeted NGS revealed seven nonsynonymous single-nucleotide variations and one insertion-deletion variation in EGFR not detectable by the real-time PCR methods. The potential clinical significance of these variants requires elucidation in future studies. Our results support the use of targeted NGS in the screening of EGFR, KRAS, and BRAF mutations in FFPE tissue material.

  20. Effect of Interferon-γ on the Basal and the TNFα-Stimulated Secretion of CXCL8 in Thyroid Cancer Cell Lines Bearing Either the RET/PTC Rearrangement Or the BRAF V600e Mutation

    PubMed Central

    Rotondi, Mario; Coperchini, Francesca; Awwad, Oriana; Di Buduo, Christian A.; Abbonante, Vittorio; Magri, Flavia; Balduini, Alessandra

    2016-01-01

    CXCL8 displays several tumor-promoting effects. Targeting and/or lowering CXCL8 concentrations within the tumor microenvironment would produce a therapeutic benefit. Aim of this study was to test the effect of IFNγ on the basal and TNFα-stimulated secretion of CXCL8 in TCP-1 and BCPAP thyroid cancer cell lines (harboring RET/PTC rearrangement and BRAF V600e mutation, resp.). Cells were incubated with IFNγ (1, 10, 100, and 1000 U/mL) alone or in combination with TNF-α (10 ng/mL) for 24 hours. CXCL8 and CXCL10 concentrations were measured in the cell supernatants. IFNγ inhibited in a dose-dependent and significant manner both the basal (ANOVA F: 22.759; p < 0.00001) and the TNFα-stimulated (ANOVA F: 15.309; p < 0.00001) CXCL8 secretions in BCPAP but not in TPC-1 cells (NS). On the other hand, IFNγ and IFNγ + TNF-α induced a significant secretion of CXCL10 in both BCPAP (p < 0.05) and TPC-1 (p < 0.05) cells. Transwell migration assay showed that (i) CXCL8 increased cell migration in both TPC-1 and BCPAP cells; (ii) IFNγ significantly reduced the migration only of BCPAP cells; and (iii) CXCL8 reverted the effect of IFNγ. These results constitute the first demonstration that IFNγ inhibits CXCL8 secretion and in turn the migration of a BRAF V600e mutated thyroid cell line. PMID:27555670

  1. Effect of Interferon-γ on the Basal and the TNFα-Stimulated Secretion of CXCL8 in Thyroid Cancer Cell Lines Bearing Either the RET/PTC Rearrangement Or the BRAF V600e Mutation.

    PubMed

    Rotondi, Mario; Coperchini, Francesca; Awwad, Oriana; Pignatti, Patrizia; Di Buduo, Christian A; Abbonante, Vittorio; Magri, Flavia; Balduini, Alessandra; Chiovato, Luca

    2016-01-01

    CXCL8 displays several tumor-promoting effects. Targeting and/or lowering CXCL8 concentrations within the tumor microenvironment would produce a therapeutic benefit. Aim of this study was to test the effect of IFNγ on the basal and TNFα-stimulated secretion of CXCL8 in TCP-1 and BCPAP thyroid cancer cell lines (harboring RET/PTC rearrangement and BRAF V600e mutation, resp.). Cells were incubated with IFNγ (1, 10, 100, and 1000 U/mL) alone or in combination with TNF-α (10 ng/mL) for 24 hours. CXCL8 and CXCL10 concentrations were measured in the cell supernatants. IFNγ inhibited in a dose-dependent and significant manner both the basal (ANOVA F: 22.759; p < 0.00001) and the TNFα-stimulated (ANOVA F: 15.309; p < 0.00001) CXCL8 secretions in BCPAP but not in TPC-1 cells (NS). On the other hand, IFNγ and IFNγ + TNF-α induced a significant secretion of CXCL10 in both BCPAP (p < 0.05) and TPC-1 (p < 0.05) cells. Transwell migration assay showed that (i) CXCL8 increased cell migration in both TPC-1 and BCPAP cells; (ii) IFNγ significantly reduced the migration only of BCPAP cells; and (iii) CXCL8 reverted the effect of IFNγ. These results constitute the first demonstration that IFNγ inhibits CXCL8 secretion and in turn the migration of a BRAF V600e mutated thyroid cell line. PMID:27555670

  2. Optogenetically controlled RAF to characterize BRAF and CRAF protein kinase inhibitors

    PubMed Central

    Chatelle, Claire V.; Hövermann, Désirée; Müller, Anne; Wagner, Hanna J.; Weber, Wilfried; Radziwill, Gerald

    2016-01-01

    Here, we applied optoRAF, an optogenetic tool for light-controlled clustering and activation of RAF proteins that mimics the natural occurring RAS-mediated dimerization. This versatile tool allows studying the effect on BRAF and CRAF homodimer- as well as heterodimer-induced RAF signaling. Vemurafenib and dabrafenib are two clinically approved inhibitors for BRAF that efficiently suppress the kinase activity of oncogenic BRAF (V600E). However in wild-type BRAF expressing cells, BRAF inhibitors can exert paradoxical activation of wild-type CRAF. Using optoRAF, vemurafenib was identified as paradoxical activator of BRAF and CRAF homo- and heterodimers. Dabrafenib enhanced activity of light-stimulated CRAF at low dose and inhibited CRAF signaling at high dose. Moreover, dabrafenib increased the protein level of CRAF proteins but not of BRAF proteins. Increased CRAF levels correlate with elevated RAF signaling in a dabrafenib-dependent manner, independent of light activation. PMID:27025703

  3. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: A novel strategy for human BRAF-driven colorectal carcinoma

    PubMed Central

    Sisinni, Lorenza; Lettini, Giacomo; Matassa, Danilo Swann; Piscazzi, Annamaria; Palladino, Giuseppe; Amoroso, Maria Rosaria; Esposito, Franca; Landriscina, Matteo

    2015-01-01

    The HSP90 chaperone TRAP1 is translational regulator of BRAF synthesis/ubiquitination, since BRAF down-regulation, ERK signaling inhibition and delay of cell cycle progression occur upon TRAP1 silencing/inhibition. Since TRAP1 is upregulated in human colorectal carcinomas (CRCs) and involved in protection from apoptosis and as human BRAF-driven CRCs are poorly responsive to anticancer therapies, the relationship between TRAP1 regulation of mitochondrial apoptotic pathway and BRAF antiapoptotic signaling has been further evaluated. This study reports that BRAF cytoprotective signaling involves TRAP1-dependent inhibition of the mitochondrial apoptotic pathway. It is worth noting that BRAF and TRAP1 interact and that the activation of BRAF signaling results in enhanced TRAP1 serine-phosphorylation, a condition associated with resistance to apoptosis. Consistently, a BRAF dominant-negative mutant prevents TRAP1 serine phosphorylation and restores drug sensitivity in BRAFV600E CRC drug-resistant cells with high TRAP1 levels. In addition, TRAP1 targeting by the mitochondria-directed HSP90 chaperones inhibitor gamitrinib induces apoptosis and inhibits colony formation in BRAF-driven CRC cells. Thus, TRAP1 is a downstream effector of BRAF cytoprotective pathway in mitochondria and TRAP1 targeting may represent a novel strategy to improve the activity of proapoptotic agents in BRAF-driven CRC cells. PMID:26084290

  4. Targeting TRAP1 as a downstream effector of BRAF cytoprotective pathway: a novel strategy for human BRAF-driven colorectal carcinoma.

    PubMed

    Condelli, Valentina; Maddalena, Francesca; Sisinni, Lorenza; Lettini, Giacomo; Matassa, Danilo Swann; Piscazzi, Annamaria; Palladino, Giuseppe; Amoroso, Maria Rosaria; Esposito, Franca; Landriscina, Matteo

    2015-09-01

    The HSP90 chaperone TRAP1 is translational regulator of BRAF synthesis/ubiquitination, since BRAF down-regulation, ERK signaling inhibition and delay of cell cycle progression occur upon TRAP1 silencing/inhibition. Since TRAP1 is upregulated in human colorectal carcinomas (CRCs) and involved in protection from apoptosis and as human BRAF-driven CRCs are poorly responsive to anticancer therapies, the relationship between TRAP1 regulation of mitochondrial apoptotic pathway and BRAF antiapoptotic signaling has been further evaluated. This study reports that BRAF cytoprotective signaling involves TRAP1-dependent inhibition of the mitochondrial apoptotic pathway. It is worth noting that BRAF and TRAP1 interact and that the activation of BRAF signaling results in enhanced TRAP1 serine-phosphorylation, a condition associated with resistance to apoptosis. Consistently, a BRAF dominant-negative mutant prevents TRAP1 serine phosphorylation and restores drug sensitivity in BRAFV600E CRC drug-resistant cells with high TRAP1 levels. In addition, TRAP1 targeting by the mitochondria-directed HSP90 chaperones inhibitor gamitrinib induces apoptosis and inhibits colony formation in BRAF-driven CRC cells. Thus, TRAP1 is a downstream effector of BRAF cytoprotective pathway in mitochondria and TRAP1 targeting may represent a novel strategy to improve the activity of proapoptotic agents in BRAF-driven CRC cells. PMID:26084290

  5. BRAF analysis on a spectrum of melanocytic neoplasms: an epidemiological study across differing UV regions.

    PubMed

    Saroufim, Maya; Habib, Robert; Karram, Sarah; Youssef Massad, Cleo; Taraif, Suad; Loya, Asif; Houreih, Mohammad Adib; Sheikh, Salwa S; Amr, Samir S; Satti, Mohamed; Oberkanins, Christian; Khalifeh, Ibrahim

    2014-01-01

    BRAF mutation has been linked to the development of melanocytic tumors in homogeneous Caucasian cohorts. The role of solar UV radiation (UVR) in BRAF mutation status is poorly understood. We studied the epidemiology of BRAF mutation across a spectrum of melanocytic neoplasms in populations with differing UVR rates. Extended testing for 9 mutation types was attempted on 600 melanocytic neoplasms including banal nevi (n = 225), dysplastic nevi (n = 113), primary (n = 172), and metastatic melanomas (n = 90). Specimens were collected from 4 countries with increasing UVR rates (in kJ/m/yr): Syria (n = 45; UVR = 93.5), Lebanon (n = 225; UVR = 110), Pakistan (n = 122; UVR = 128), and Saudi Arabia (n = 208; UVR = 139). UVR was estimated from 21-year averages from The National Center for Atmospheric Research database. The overall BRAF mutation rate was 49% (268 of 545) and differed significantly by the geographic location [34% Pakistan, 49% Lebanon, 67% Syria, and 54% Saudi Arabia; P = 0.001], neoplasm type (P < 0.001), and anatomical location (P < 0.001) but not with age (P = 0.07) and gender (P = 1.0). V600E was the predominant mutation type, found in 96.3% of the cases. Incidence of melanoma was significantly greater in BRAF-negative (39%) versus BRAF-positive (17%) groups. For BRAF-positive cases, less severe lesions were systematically more frequent (P < 0.001). Multivariate analysis indicated that BRAF mutation is predicted by neoplasm type, anatomical site, and geographic location. In our Near East cohort, BRAF mutation rates varied by geographic location but not based on UVR. BRAF-positive status was associated with less severe lesions.

  6. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma

    PubMed Central

    Moore, Amanda R; Ceraudo, Emilie; Sher, Jessica J; Guan, Youxin; Shoushtari, Alexander N; Chang, Matthew T; Zhang, Jenny Q; Walczak, Edward G; Kazmi, Manija A; Taylor, Barry S; Huber, Thomas; Chi, Ping; Sakmar, Thomas P; Chen, Yu

    2016-01-01

    Uveal melanomas are molecularly distinct from cutaneous melanomas and lack mutations in BRAF, NRAS, KIT, and NF1. Instead, they are characterized by activating mutations in GNAQ and GNA11, two highly homologous α subunits of Gαq/11 heterotrimeric G proteins, and in PLCB4 (phospholipase C β4), the downstream effector of Gαq signaling 1–3. We analyzed genomics data from 136 uveal melanoma samples and found a recurrent mutation in CYSLTR2 (cysteinyl leukotriene receptor 2) encoding a p.Leu129Gln substitution in 4 of 9 samples that lacked mutations in GNAQ, GNA11, and PLCB4 but in 0 of 127 samples that harbored mutations in these genes. The Leu129Gln CysLT2R mutant protein constitutively activates endogenous Gαq and is unresponsive to stimulation by leukotriene. Expression of Leu129Gln CysLT2R in melanocytes enforces expression of a melanocyte-lineage signature, drives phorbol ester–independent growth in vitro, and promotes tumorigenesis in vivo. Our findings implicate CYSLTR2 as a uveal melanoma oncogene and highlight the critical role of Gαq signaling in uveal melanoma pathogenesis. PMID:27089179

  7. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  8. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

    PubMed Central

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R.; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  9. Detecting mechanisms of acquired BRAF inhibitor resistance in melanoma.

    PubMed

    Lo, Roger S; Shi, Hubing

    2014-01-01

    (V600)BRAF mutation was identified as an ideal target for clinical therapy due to its indispensable roles in supporting melanoma initiation and progression. Despite the fact that BRAF inhibitors (BRAFi) can elicit anti-tumor responses in the majority of treated patients and confer overall survival benefits, acquired drug resistance is a formidable obstacle to long-term management of the disease. Several aberrant events including RTK upregulation, NRAS mutation, mutant BRAF amplification or alternative splicing, and MEK mutation have been reported as acquired BRAFi resistance mechanisms. Clinially, detection of these resistance mechanisms help understand drug response patterns and help guide combinatorial therapeutic strategies. Therefore, quick and accurate diagnosis of the resistant mechanisms in tumor biopsies has become an important starting point for personalized therapy. In this chapter, we review the major acquired BRAFi resistance mechanisms, highlight their therapeutic implications, and provide the diagnostic methods from clinical samples.

  10. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    PubMed

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  11. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy

    PubMed Central

    Johnson, Bryce V.; Gelb, Bruce D.; Costa, Kevin D.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  12. Dabrafenib: a new opportunity for the treatment of BRAF V600-positive melanoma

    PubMed Central

    Banzi, Maria; De Blasio, Simona; Lallas, Aimilios; Longo, Caterina; Moscarella, Elvira; Alfano, Roberto; Argenziano, Giuseppe

    2016-01-01

    Prior to 2011, the 1-year survival rates for patients suffering from advanced or metastatic melanoma was as low as 33%, with a median overall survival of about 9 months. Several chemotherapeutic regimens have been applied, either as monochemotherapy or as polychemotherapy, overall not resulting in an improvement of progression-free or overall survival. Novel insights into the epidemiology and biology of melanoma allowed the development of newer therapies. The discovery of mutations in BRAF, a part of the mitogen-activated protein kinase, allowed the development of two BRAF inhibitors, vemurafenib and dabrafenib, which significantly improved the outcome of metastatic melanoma treatment. This article reviews the mechanism of action, efficacy, and safety profile of dabrafenib. An in-depth knowledge of this medication will encourage clinicians to select the appropriate therapeutic strategy for each patient, as well as to prevent or adequately manage side effects, optimizing, thus, the drug’s applicability. PMID:27226731

  13. B-Raf inhibitors induce epithelial differentiation in BRAF-mutant colorectal cancer cells.

    PubMed

    Herr, Ricarda; Köhler, Martin; Andrlová, Hana; Weinberg, Florian; Möller, Yvonne; Halbach, Sebastian; Lutz, Lisa; Mastroianni, Justin; Klose, Martin; Bittermann, Nicola; Kowar, Silke; Zeiser, Robert; Olayioye, Monilola A; Lassmann, Silke; Busch, Hauke; Boerries, Melanie; Brummer, Tilman

    2015-01-01

    BRAF mutations are associated with aggressive, less-differentiated and therapy-resistant colorectal carcinoma. However, the underlying mechanisms for these correlations remain unknown. To understand how oncogenic B-Raf contributes to carcinogenesis, in particular to aspects other than cellular proliferation and survival, we generated three isogenic human colorectal carcinoma cell line models in which we can dynamically modulate the expression of the B-Raf(V600E) oncoprotein. Doxycyclin-inducible knockdown of endogenous B-Raf(V600E) decreases cellular motility and invasion in conventional and three-dimensional (3D) culture, whereas it promotes cell-cell contacts and induces various hallmarks of differentiated epithelia. Importantly, all these effects are recapitulated by B-Raf (PLX4720, vemurafenib, and dabrafenib) or MEK inhibitors (trametinib). Surprisingly, loss of B-Raf(V600E) in HT29 xenografts does not only stall tumor growth, but also induces glandular structures with marked expression of CDX2, a tumor-suppressor and master transcription factor of intestinal differentiation. By performing the first transcriptome profiles of PLX4720-treated 3D cultures of HT29 and Colo-205 cells, we identify several upregulated genes linked to epithelial differentiation and effector functions, such as claudin-1, a Cdx-2 target gene encoding a critical tight junction component. Thereby, we provide a mechanism for the clinically observed correlation between mutant BRAF and the loss of Cdx-2 and claudin-1. PLX4720 also suppressed several metastasis-associated transcripts that have not been implicated as targets, effectors or potential biomarkers of oncogenic B-Raf signaling so far. Together, we identify a novel facet of clinically applied B-Raf or MEK inhibitors by showing that they promote cellular adhesion and differentiation of colorectal carcinoma cells. PMID:25381152

  14. An open-label phase 2 trial of dabrafenib plus trametinib in patients with previously treated BRAF V600E–mutant metastatic non-small cell lung cancer

    PubMed Central

    Planchard, David; Besse, Benjamin; Groen, Harry J M; Souquet, Pierre-Jean; Quoix, Elisabeth; Baik, Christina S; Barlesi, Fabrice; Kim, Tae Min; Mazieres, Julien; Novello, Silvia; Rigas, James R; Upalawanna, Allison; D’Amelio, Anthony M; Zhang, Pingkuan; Mookerjee, Bijoyesh; Johnson, Bruce E

    2016-01-01

    Background BRAF mutations act as an oncogenic driver via the mitogen-activated protein kinase (MAPK) pathway in non-small cell lung cancer (NSCLC). BRAF inhibition has demonstrated antitumor activity in patients with BRAF V600E (Val600Glu)–mutant NSCLC. Dual MAPK pathway inhibition with BRAF and MEK inhibitors in BRAF V600E–mutant NSCLC may improve efficacy over BRAF-inhibitor monotherapy based on observations in BRAF V600–mutant melanoma. Methods In this phase 2, multicenter, nonrandomized, open-label study of patients with pretreated metastatic BRAF V600E–mutant NSCLC, antitumor activity and safety of oral dabrafenib (150 mg twice daily) plus oral trametinib (2 mg once daily) were evaluated. Adult patients (≥ 18 years) with documented progression following at least one prior platinum-based chemotherapy and no more than three prior systemic anticancer therapies were enrolled. Patients with prior BRAF or MEK inhibitor treatment were ineligible. Patients with brain metastases were permitted to enroll only if the lesions were asymptomatic, untreated (or stable > 3 weeks after local therapy if treated), and measured < 1 cm. The primary endpoint was investigator-assessed overall response, which was assessed by intention-to-treat in the protocol-defined population (≥ second-line); safety was also assessed in this population. The study is ongoing but no longer recruiting patients. This trial is registered with ClinicalTrials.gov, number NCT01336634. Findings Fifty-seven patients previously treated with systemic chemotherapy for metastatic BRAF V600E–mutant NSCLC were enrolled. The investigator-assessed overall response was 63·2% (36 of 57; 95% CI 49·3–75·6). Serious adverse events were reported in 32 (56%) of 57 patients and included pyrexia (16%; 9 of 57), anemia (5%; 3 of 57), confusional state (4%; 2 of 57), decreased appetite (4%; 2 of 57), hemoptysis (4%; 2 of 57), hypercalcemia (4%; 2 of 57), nausea (4%; 2 of 57), and cutaneous squamous cell

  15. Precise Detection of IDH1/2 and BRAF Hotspot Mutations in Clinical Glioma Tissues by a Differential Calculus Analysis of High-Resolution Melting Data.

    PubMed

    Hatae, Ryusuke; Hata, Nobuhiro; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O; Mizoguchi, Masahiro; Iihara, Koji

    2016-01-01

    High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619

  16. Precise Detection of IDH1/2 and BRAF Hotspot Mutations in Clinical Glioma Tissues by a Differential Calculus Analysis of High-Resolution Melting Data.

    PubMed

    Hatae, Ryusuke; Hata, Nobuhiro; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O; Mizoguchi, Masahiro; Iihara, Koji

    2016-01-01

    High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments.

  17. Precise Detection of IDH1/2 and BRAF Hotspot Mutations in Clinical Glioma Tissues by a Differential Calculus Analysis of High-Resolution Melting Data

    PubMed Central

    Hatae, Ryusuke; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O.; Mizoguchi, Masahiro; Iihara, Koji

    2016-01-01

    High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619

  18. Diagnostic Accuracy of BRAF Immunohistochemistry in Colorectal Cancer: a Meta-Analysis and Diagnostic Test Accuracy Review.

    PubMed

    Pyo, Jung-Soo; Sohn, Jin Hee; Kang, Guhyun

    2016-10-01

    The aim of this study was to evaluate the concordance between the BRAF (V600E) mutation test and immunohistochemistry (IHC) and to evaluate the diagnostic accuracy of BRAF IHC for colorectal cancer (CRC) through a systematic review, meta-analysis, and diagnostic test accuracy review. The current study included 1021 CRCs from eight eligible studies. The concordance rates were investigated between BRAF IHC and the mutation test. In addition, diagnostic test accuracy review was conducted and calculated using the value of area under curve (AUC) on the summary receiver operating characteristic (SROC) curve. The positive rate of BRAF IHC was 30.5 % (range; 13.2-66.2 %), and the BRAF mutation was found in 30.2 % (range; 11.7-66.2 %). The overall concordance rate between BRAF IHC and the mutation test was 0.944 (95 % confidence interval (CI) 0.873-0.977). In the BRAF IHC-positive and -negative groups, the concordance rates between BRAF IHC and the mutation test were 0.895 (95 % CI 0.800-0.945) and 0.956 (95 % CI 0.878-0.985), respectively. The pooled sensitivity and specificity were 0.94 (95 % CI 0.91-0.96) and 0.96 (95 % CI 0.95-0.98), respectively. The diagnostic odds ratio was 272.86 (95 % CI 46.11-1614.88), and the value of AUC on SROC curve was 0.9846. Taken together, our results suggest that BRAF IHC is strongly concordant with the BRAF mutation test and has high diagnostic accuracy in BRAF mutation analysis of CRCs. Further cumulative studies on detailed evaluation criteria are needed before application in daily practice.

  19. Concomitant Inhibition of PI3Kβ and BRAF or MEK in PTEN-Deficient/BRAF-Mutant Melanoma Treatment: Preclinical Assessment of SAR260301 Oral PI3Kβ-Selective Inhibitor.

    PubMed

    Bonnevaux, Hélène; Lemaitre, Olivier; Vincent, Loic; Levit, Mikhail N; Windenberger, Fanny; Halley, Frank; Delorme, Cécile; Lengauer, Christoph; Garcia-Echeverria, Carlos; Virone-Oddos, Angela

    2016-07-01

    Class IA PI3K pathway activation resulting from PTEN deficiency has been associated with lack of sensitivity of melanoma to BRAF kinase inhibitors. Although previous studies have shown synergistic activity when pan-PI3K inhibitors were combined with MAPK inhibitors in the treatment of melanoma exhibiting concurrent genetic abnormalities, overlapping adverse events in patients limit optimal dosing and clinical application. With the aim of specifically targeting PTEN-deficient cancers and minimizing the potential for on-target toxicity when inhibiting multiple PI3K isoforms, we developed a program to discover PI3Kβ-selective kinase inhibitors and identified SAR260301 as a potent PI3Kβ-selective, orally available compound, which is now in clinical development. Herein, we provide a detailed biological characterization of SAR260301, and show that this compound has outstanding biochemical and cellular selectivity for the PI3Kβ isoform versus the α, δ, and γ isoforms and a large panel of protein and lipid kinases. We demonstrate that SAR260301 blocks PI3K pathway signaling preferentially in PTEN-deficient human tumor models, and has synergistic antitumor activity when combined with vemurafenib (BRAF inhibitor) or selumetinib (MEK inhibitor) in PTEN-deficient/BRAF-mutated human melanoma tumor models. Combination treatments were very well tolerated, suggesting the potential for a superior safety profile at optimal dosing using selective compounds to inhibit multiple signaling pathways. Together, these experiments provide a preclinical proof-of-concept for safely combining inhibitors of PI3Kβ and BRAF or MEK kinase modulators to improve antitumor activity in PTEN-deficient/BRAF-mutant melanoma, and support the evaluation of SAR260301-based combinations in clinical studies. Mol Cancer Ther; 15(7); 1460-71. ©2016 AACR. PMID:27196754

  20. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies.

    PubMed

    Spagnolo, Francesco; Ghiorzo, Paola; Orgiano, Laura; Pastorino, Lorenza; Picasso, Virginia; Tornari, Elena; Ottaviano, Vincenzo; Queirolo, Paola

    2015-01-01

    BRAF inhibitors vemurafenib and dabrafenib achieved improved overall survival over chemotherapy and have been approved for the treatment of BRAF-mutated metastatic melanoma. More recently, the combination of BRAF inhibitor dabrafenib with MEK inhibitor trametinib has shown improved progression-free survival, compared to dabrafenib monotherapy, in a Phase II study and has received approval by the US Food and Drug Administration. However, even when treated with the combination, most patients develop mechanisms of acquired resistance, and some of them do not achieve tumor regression at all, because of intrinsic resistance to therapy. Along with the development of BRAF inhibitors, immunotherapy made an important step forward: ipilimumab, an anti-CTLA-4 monoclonal antibody, was approved for the treatment of metastatic melanoma; anti-PD-1 agents achieved promising results in Phase I/II trials, and data from Phase III studies will be ready soon. The availability of such drugs, which are effective regardless of BRAF status, has made the therapeutic approach more complex, as first-line treatment with BRAF inhibitors may not be the best choice for all BRAF-mutated patients. The aim of this paper is to review the systemic therapeutic options available today for patients affected by BRAF V600-mutated metastatic melanoma, as well as to summarize the mechanisms of resistance to BRAF inhibitors and discuss the possible strategies to overcome them. Moreover, since the molecular analysis of tumor specimens is now a pivotal and decisional factor in the treatment strategy of metastatic melanoma patients, the advances in the molecular detection techniques for the BRAF V600 mutation will be reported.

  1. Immunohistochemistry with the anti-BRAF V600E (VE1) antibody: impact of pre-analytical conditions and concordance with DNA sequencing in colorectal and papillary thyroid carcinoma.

    PubMed

    Dvorak, Katerina; Aggeler, Birte; Palting, John; McKelvie, Penny; Ruszkiewicz, Andrew; Waring, Paul

    2014-10-01

    The most common of all activating BRAF mutations (T1799A) leads to a substitution of valine (V) to glutamic acid (E) at the position 600 of the amino acid sequence. The major goal of this study was to compare detection of the BRAF V600E mutation by DNA sequencing with immunohistochemistry (IHC) using the anti-BRAF V600E (VE1) antibody. Archival formalin fixed, paraffin embedded tissues from 352 patients with colon adenocarcinoma (n = 279) and papillary thyroid carcinoma (n = 73) were evaluated for the BRAF V600E mutation by sequencing and IHC. The discordant cases were re-evaluated by repeat IHC, SNaPshot and next-generation sequencing (NGS). Furthermore, the effect of pre-analytical variables on the utility of this antibody was evaluated in two xenograft mouse models.After resolving 15 initially discordant cases, 212 cases were negative for the BRAF V600E mutation by IHC. Of these, 210 cases (99.1%) were also negative by sequencing and two cases (0.9%) remained discordant. Of the 140 cases that were IHC positive for BRAF V600E, 138 cases were confirmed by sequencing (98.6%) and two cases remained discordant (1.4%). Overall, the negative predictive value was 99.1%, positive predictive value 98.6%, sensitivity 98.6%, specificity 99.1% and overall percentage agreement 98.9% (348/352 cases). Tissue fixation studies indicated that tissues should be fixed for 12-24 h within 2 h of tissue collection with 10% neutral buffered formalin.

  2. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles

    PubMed Central

    Eisenhardt, Anja E.; Sprenger, Adrian; Röring, Michael; Herr, Ricarda; Weinberg, Florian; Köhler, Martin; Braun, Sandra; Orth, Joachim; Diedrich, Britta; Lanner, Ulrike; Tscherwinski, Natalja; Schuster, Simon; Dumaz, Nicolas; Schmidt, Enrico; Baumeister, Ralf; Schlosser, Andreas

    2016-01-01

    B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map. Importantly, we identify two evolutionary conserved phosphorylation clusters around T401 and S419 in the B-Raf hinge region. SILAC labelling and genetic/biochemical follow-up revealed that these clusters are phosphorylated in the contexts of oncogenic Ras, sorafenib induced Raf dimerization and in the background of the V600E mutation. We further show that the vemurafenib sensitive phosphorylation of the T401 cluster occurs in trans within a Raf dimer. Substitution of the Ser/Thr-residues of this cluster by alanine residues enhances the transforming potential of B-Raf, indicating that these phosphorylation sites suppress its signaling output. Moreover, several B-Raf phosphorylation sites, including T401 and S419, are somatically mutated in tumors, further illustrating the importance of phosphorylation for the regulation of this kinase. PMID:27034005

  3. Tumor homogeneity between primary and metastatic sites for BRAF status in metastatic melanoma determined by immunohistochemical and molecular testing.

    PubMed

    Boursault, Lucile; Haddad, Véronique; Vergier, Béatrice; Cappellen, David; Verdon, Severine; Bellocq, Jean-Pierre; Jouary, Thomas; Merlio, Jean-Philippe

    2013-01-01

    BRAF inhibitors have demonstrated improvement of overall survival in patients with metastatic melanoma and BRAF(V600) mutations. In order to evaluate BRAF tumor heterogeneity between primary and metastatic site, we have evaluated the performance of immunohistochemistry (IHC) with an anti-BRAF(V600E) antibody in both localization by comparison with high resolution melting analysis followed by Sanger sequencing in a parallel blinded study. A total of 230 samples distributed as primary melanoma (n = 88) and different types of metastatic samples (n = 142) were studied in 99 patients with advanced or metastatic melanoma (stage III or IV). The prevalence of each BRAF mutation was c.1799T>A, BRAF(V600E) (45.2%), c.1799_1800TG>AA, BRAF(V600E2) (3.0%), c.1798_1799GT>AA, BRAF(V600K) (3.0%), c.1801 A>G, BRAF(K601E) (1.3%), c.1789_1790CT>TC, BRAF(L597S) (0.4%), c.1780G>A, BRAF(D594N) (0.9%) respectively. IHC was positive in 109/112 samples harboring BRAF(V600E/E2) mutations and negative in other cases. The cytoplasmic staining was either strongly positive in tumor cells of BRAF(V600E) mutated cases. It appeared strong brown, different from the vesicular grey cytoplasmic pigmentation of melanophages. Concordance between the two techniques was 96.4%. Sensitivity of IHC for detecting the BRAF(V600E/E2) mutations was 97.3%, while specificity was 100%. Both our IHC and molecular study demonstrated homogeneity between primary and metastatic sites for BRAF status in melanoma. This study also provides evidence that IHC may be a cost-effective first-line method for BRAF(V600E) detection. Thereafter, molecular techniques should be used in negative, ambiguous or non-contributive cases.

  4. Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib

    PubMed Central

    Sosman, Jeffrey A.; Kim, Kevin B.; Schuchter, Lynn; Gonzalez, Rene; Pavlick, Anna C.; Weber, Jeffrey S.; McArthur, Grant A.; Hutson, Thomas E.; Moschos, Stergios J.; Flaherty, Keith T.; Hersey, Peter; Kefford, Richard; Lawrence, Donald; Puzanov, Igor; Lewis, Karl D.; Amaravadi, Ravi K.; Chmielowski, Bartosz; Lawrence, H. Jeffrey; Shyr, Yu; Ye, Fei; Li, Jiang; Nolop, Keith B.; Lee, Richard J.; Joe, Andrew K.; Ribas, Antoni

    2013-01-01

    BACKGROUND Approximately 50% of melanomas harbor activating (V600) mutations in the serine–threonine protein kinase B-RAF (BRAF). The oral BRAF inhibitor vemurafenib (PLX4032) frequently produced tumor regressions in patients with BRAF V600–mutant metastatic melanoma in a phase 1 trial and improved overall survival in a phase 3 trial. METHODS We designed a multicenter phase 2 trial of vemurafenib in patients with previously treated BRAF V600–mutant metastatic melanoma to investigate the efficacy of vemurafenib with respect to overall response rate (percentage of treated patients with a tumor response), duration of response, and overall survival. The primary end point was the overall response rate as ascertained by the independent review committee; overall survival was a secondary end point. RESULTS A total of 132 patients had a median follow-up of 12.9 months (range, 0.6 to 20.1). The confirmed overall response rate was 53% (95% confidence interval [CI], 44 to 62; 6% with a complete response and 47% with a partial response), the median duration of response was 6.7 months (95% CI, 5.6 to 8.6), and the median progression-free survival was 6.8 months (95% CI, 5.6 to 8.1). Primary progression was observed in only 14% of patients. Some patients had a response after receiving vemurafenib for more than 6 months. The median overall survival was 15.9 months (95% CI, 11.6 to 18.3). The most common adverse events were grade 1 or 2 arthralgia, rash, photosensitivity, fatigue, and alopecia. Cutaneous squamous-cell carcinomas (the majority, keratoacanthoma type) were diagnosed in 26% of patients. CONCLUSIONS Vemurafenib induces clinical responses in more than half of patients with previously treated BRAF V600–mutant metastatic melanoma. In this study with a long follow-up, the median overall survival was approximately 16 months. (Funded by Hoffmann–La Roche; ClinicalTrials.gov number, NCT00949702.) PMID:22356324

  5. IL-12 immunotherapy of Braf(V600E)-induced papillary thyroid cancer in a mouse model.

    PubMed

    Parhar, Ranjit S; Zou, Minjing; Al-Mohanna, Futwan A; Baitei, Essa Y; Assiri, Abdullah M; Meyer, Brian F; Shi, Yufei

    2016-01-01

    Papillary thyroid carcinoma (PTC) accounts for >80% thyroid malignancies, and BRAF(V600E) mutation is frequently found in >40% PTC. Interleukin-12 (IL-12) is a proinflammatory heterodimeric cytokine with strong antitumor activity. It is not known whether IL-12 immunotherapy is effective against Braf(V600E)-induced PTC. In the present study, we investigated the effectiveness of IL-12 immunotherapy against Braf(V600E)-induced PTC in LSL-Braf(V600E)/TPO-Cre mice. LSL-Braf(V600E)/TPO-Cre mice were created for thyroid-specific expression of Braf(V600E) under the endogenous Braf promoter, and spontaneous PTC developed at about 5 weeks of age. The mice were subjected to two treatment regimens: (1) weekly intramuscular injection of 50 μg plasmid DNA expressing a single-chain IL-12 fusion protein (scIL-12/CMVpDNA), (2) daily intraperitoneal injection of mouse recombinant IL-12 protein (mrIL-12, 100 ng per day). The role of T cells, natural killer (NK) cells, and transforming growth factor-β (TGF-β) in IL-12-mediated antitumor effects was determined by a (51)Cr-release cytotoxicity assay. Tumor size and weight were significantly reduced by either weekly intramuscular injection of scIL-12/CMVpDNA or daily intraperitoneal injection of mrIL-12, and tumor became more localized. Survival was significantly increased when treatment started at 1 week of age as compared with that at the 6 weeks of age. Both NK and CD8(+) T cells were involved in the cytotoxicity against tumor cells and their antitumor activity was significantly reduced in tumor-bearing mice. TGF-β also inhibited the antitumor activity of NK and CD8(+) T cells. The immune suppression was completely reversed by IL-12 treatment and partially recovered by anti-TGF-β antibody. We conclude that both IL-12 gene therapy and recombinant protein therapy are effective against PTC. Given that the immune response is significantly suppressed in tumor-bearing mice and can be restored by IL-12, the current study raises a

  6. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma

    PubMed Central

    Capaldo, Brian J.; Roller, Devin; Axelrod, Mark J.; Koeppel, Alex F.; Petricoin, Emanuel F.; Slingluff, Craig L.; Weber, Michael J.; Mackey, Aaron J.; Gioeli, Daniel; Bekiranov, Stefan

    2015-01-01

    Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK) pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK) mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes. PMID:26405815

  7. Detection of Mutant BRAF Alleles in the Plasma of Patients with Metastatic Melanoma

    PubMed Central

    Yancovitz, Molly; Yoon, Joanne; Mikhail, Maryann; Gai, Weiming; Shapiro, Richard L.; Berman, Russell S.; Pavlick, Anna C.; Chapman, Paul B.; Osman, Iman; Polsky, David

    2007-01-01

    Mutations in the BRAF oncogene at amino acid 600 have been reported in 40 to 70% of human metastatic melanoma tissues, and the critical role of BRAF in the biology of melanoma has been established. Sampling the blood compartment to detect the mutational status of a solid tumor represents a highly innovative advance in cancer medicine, and such an approach could have advantages over tissue-based techniques. We report the development of a fluorescence-based polymerase chain reaction (PCR) assay to detect mutant BRAF alleles in plasma. A mutant-specific PCR assay was optimized to specifically amplify the mutant BRAF allele without amplifying the wild-type allele. Experiments mixing DNA from a BRAF mutant melanoma cell line with wild-type human placental DNA in varying proportions were performed to determine the threshold of this assay and to compare it with routine DNA sequencing. The assay was then applied to tissue and plasma specimens from patients with metastatic melanoma. The assay detected 0.1 ng of mutant DNA mixed in 100 ng of wild-type DNA and was 500-fold more sensitive than DNA sequencing. The assay detected mutant BRAF alleles in plasma samples from 14 of 26 (54%) metastatic melanoma patients. These data demonstrate the feasibility of blood-based testing for BRAF mutations in metastatic melanoma patients. PMID:17384209

  8. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma

    PubMed Central

    Welsh, Sarah J.

    2015-01-01

    Following the discovery that nearly half of all cutaneous melanomas harbour a mutation in the BRAF gene, molecular targeted kinase inhibitors have been developed for the treatment of metastatic melanoma and have dramatically improved outcomes for those patients with BRAF mutant disease, achieving high levels of objective response and prolonging survival. Since 2011, the specific BRAF targeted agents, vemurafenib and dabrafenib, and the MEK inhibitor, trametinib, have been licensed for the treatment of patients with unresectable or metastatic BRAF mutant melanoma. As with other biological targeted agents, these drugs are associated with predictable patterns of adverse events. Proactive toxicity management is important to ensure maximum treatment benefit and avoid unnecessary treatment discontinuation. We review the most common and serious adverse events associated with BRAF targeted agents and suggest management algorithms to guide practitioners in using these drugs effectively in the clinic. PMID:25755684

  9. What links BRAF to the heart function? New insights from the cardiotoxicity of BRAF inhibitors in cancer treatment.

    PubMed

    Bronte, Enrico; Bronte, Giuseppe; Novo, Giuseppina; Bronte, Fabrizio; Bavetta, Maria Grazia; Lo Re, Giuseppe; Brancatelli, Giuseppe; Bazan, Viviana; Natoli, Clara; Novo, Salvatore; Russo, Antonio

    2015-11-01

    The RAS-related signalling cascade has a fundamental role in cell. It activates differentiation and survival. It is particularly important one of its molecules, B-RAF. B-RAF has been a central point for research, especially in melanoma. Indeed, it lacked effective therapeutic weapons since the early years of its study. Molecules targeting B-RAF have been developed. Nowadays, two classes of molecules are approved by FDA. Multi-target molecules, such as Sorafenib and Regorafenib, and selective molecules, such as Vemurafenib and Dabrafenib. Many other molecules are still under investigation. Most of them are studied in phase 1 trials. Clinical studies correlate B-RAF inhibitors and QT prolongation. Though this cardiovascular side effect is not common using these drugs, it must be noticed early and recognize its signals. Indeed, Oncologists and Cardiologists should work in cooperation to prevent lethal events, such as fatal arrhythmias or sudden cardiac death. These events could originate from an uncontrolled QT prolongation.

  10. Assessment of BRAF V600E Status in Colorectal Carcinoma: Tissue-Specific Discordances between Immunohistochemistry and Sequencing.

    PubMed

    Estrella, Jeannelyn S; Tetzlaff, Michael T; Bassett, Roland L; Patel, Keyur P; Williams, Michelle D; Curry, Jonathan L; Rashid, Asif; Hamilton, Stanley R; Broaddus, Russell R

    2015-12-01

    Although sequencing provides the gold standard for identifying colorectal carcinoma with BRAF V600E mutation, immunohistochemistry (IHC) with the recently developed mouse monoclonal antibody VE1 for BRAF V600E protein has shown promise as a more widely available and rapid method. However, we identified anecdotal discordance between VE1 IHC and sequencing results and therefore analyzed VE1 staining by two different IHC methods (Leica Bond and Ventana BenchMark) in whole tissue sections from 480 colorectal carcinomas (323 BRAF wild-type, 142 BRAF V600E mutation, and 15 BRAF non-V600E mutation). We also compared the results with melanomas and papillary thyroid carcinomas (PTC). With the Bond method, among 142 BRAF V600E-mutated colorectal carcinomas, 77 (54%) had diffuse VE1 staining and 48 (33%) had heterogeneous staining, but 17 (12%) were negative. Among 323 BRAF wild-type colorectal carcinomas, 196 (61%) were negative, but 127 (39%) had staining, including 7 with diffuse staining. When positivity was defined as staining in ≥ 20% of tumor cells, VE1 IHC had sensitivity of 75% and specificity of 93% for BRAF V600E mutation. With the Ventana method, among 57 BRAF V600E-mutated colorectal carcinomas, 36 (63%) had diffuse VE1 staining, whereas 6 (11%) had no or weak (<20% of tumor cells) staining. Among 33 BRAF wild-type colorectal carcinomas, 16 (48%) had no or weak staining, whereas 15 (45%) had heterogeneous staining. In contrast with colorectal carcinoma, Bond and Ventana VE1 IHC in melanoma and PTC were highly concordant with sequencing results. We conclude that VE1 IHC produces suboptimal results in colorectal carcinoma and should not be used to guide patient management.

  11. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer.

    PubMed

    Hutton, Josiah E; Wang, Xiaojing; Zimmerman, Lisa J; Slebos, Robbert J C; Trenary, Irina A; Young, Jamey D; Li, Ming; Liebler, Daniel C

    2016-09-01

    Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu. PMID:27340238

  12. Rapid KRAS, EGFR, BRAF and PIK3CA Mutation Analysis of Fine Needle Aspirates from Non-Small-Cell Lung Cancer Using Allele-Specific qPCR

    PubMed Central

    Schrumpf, Melanie; Talebian Yazdi, Mehrdad; Ruano, Dina; Forte, Giusi I.; Nederlof, Petra M.; Veselic, Maud; Rabe, Klaus F.; Annema, Jouke T.; Smit, Vincent; Morreau, Hans; van Wezel, Tom

    2011-01-01

    Endobronchial Ultrasound Guided Transbronchial Needle Aspiration (EBUS-TBNA) and Trans-esophageal Ultrasound Scanning with Fine Needle Aspiration (EUS-FNA) are important, novel techniques for the diagnosis and staging of non-small cell lung cancer (NSCLC) that have been incorporated into lung cancer staging guidelines. To guide and optimize treatment decisions, especially for NSCLC patients in stage III and IV, EGFR and KRAS mutation status is often required. The concordance rate of the mutation analysis between these cytological aspirates and histological samples obtained by surgical staging is unknown. Therefore, we studied the extent to which allele-specific quantitative real-time PCR with hydrolysis probes could be reliably performed on EBUS and EUS fine needle aspirates by comparing the results with histological material from the same patient. We analyzed a series of 43 NSCLC patients for whom cytological and histological material was available. We demonstrated that these standard molecular techniques can be accurately applied on fine needle cytological aspirates from NSCLC patients. Importantly, we show that all mutations detected in the histological material of primary tumor were also identified in the cytological samples. We conclude that molecular profiling can be reliably performed on fine needle cytology aspirates from NSCLC patients. PMID:21408138

  13. RNA Sequencing Identifies Multiple Fusion Transcripts, Differentially Expressed Genes, and Reduced Expression of Immune Function Genes in BRAF (V600E) Mutant vs BRAF Wild-Type Papillary Thyroid Carcinoma

    PubMed Central

    Chindris, Ana-Maria; Asmann, Yan W.; Casler, John D.; Serie, Daniel J.; Reddi, Honey V.; Cradic, Kendall W.; Rivera, Michael; Grebe, Stefan K.; Necela, Brian M.; Eberhardt, Norman L.; Carr, Jennifer M.; McIver, Bryan; Copland, John A.; Aubrey Thompson, E.

    2014-01-01

    Context: The BRAF V600E mutation (BRAF-MUT) confers an aggressive phenotype in papillary thyroid carcinoma, but unidentified additional genomic abnormalities may be required for full phenotypic expression. Objective: RNA sequencing (RNA-Seq) was performed to identify genes differentially expressed between BRAF-MUT and BRAF wild-type (BRAF-WT) tumors and to correlate changes to patient clinical status. Design: BRAF-MUT and BRAF-WT tumors were identified in patients with T1N0 and T2–3N1 tumors evaluated in a referral medical center. Gene expression levels were determined (RNA-Seq) and fusion transcripts were detected. Multiplexed capture/detection and digital counting of mRNA transcripts (nCounter, NanoString Technologies) validated RNA-Seq data for immune system-related genes. Patients: BRAF-MUT patients included nine women, three men; nine were TNM stage I and three were stage III. Three (25%) had tumor infiltrating lymphocytes. BRAF-WT included five women, three men; all were stage I, and five (62.5%) had tumor infiltrating lymphocytes. Results: RNA-Seq identified 560 of 13 085 genes differentially expressed between BRAF-MUT and BRAF-WT tumors. Approximately 10% of these genes were related to MetaCore immune function pathways; 51 were underexpressed in BRAF-MUT tumors, whereas 4 (HLAG, CXCL14, TIMP1, IL1RAP) were overexpressed. The four most differentially overexpressed immune genes in BRAF-WT tumors (IL1B; CCL19; CCL21; CXCR4) correlated with lymphocyte infiltration. nCounter confirmed the RNA-Seq expression level data. Eleven different high-confidence fusion transcripts were detected (four interchromosomal; seven intrachromosomal) in 13 of 20 tumors. All in-frame fusions were validated by RT-PCR. Conclusion: BRAF-MUT papillary thyroid cancers have reduced expression of immune/inflammatory response genes compared with BRAF-WT tumors and correlate with lymphocyte infiltration. In contrast, HLA-G and CXCL14 are overexpressed in BRAF-MUT tumors. Sixty-five percent

  14. Dabrafenib in BRAF V600E–Mutant Advanced Non-Small Cell Lung Cancer: an Open-label, Single arm, Multicenter, Phase 2 Trial

    PubMed Central

    Planchard, David; Kim, Tae Min; Mazieres, Julien; Quoix, Elisabeth; Riely, Gregory; Barlesi, Fabrice; Souquet, Pierre-John; Smit, Egbert F.; Groen, Harry J. M.; Kelly, Ronan J.; Cho, B. C.; Socinski, Mark A.; Pandite, Lini; Nase, Christine; Ma, Bo; D’Amelio, Anthony; Mookerjee, Bijoyesh; Curtis, C. Martin; Johnson, Bruce E.

    2016-01-01

    Background Activating BRAF V600E mutations are found in approximately 1–2% of adenocarcinomas of the lung offering an opportunity to test targeted therapy for this disease. Dabrafenib is an oral selective inhibitor of the BRAF kinase. The aim of this study was to assess the clinical activity of dabrafenib in patients with advanced BRAF V600E-mutant non-small cell lung cancer (NSCLC). Methods In this phase 2, multicenter, nonrandomized, open-label study of previously treated and untreated patients with stage IV, metastatic NSCLC and BRAF V600E mutation, we evaluated the antitumor activity and safety of oral dabrafenib (150 mg twice daily). The primary endpoint was investigator-assessed overall response rate (ORR) in patients receiving ≥ 1 dose of study drug. Safety analysis was performed on the all-treated population (all previously treated and untreated patients receiving ≥ 1 dose of study drug). The study is ongoing but not enrolling participants in this cohort. This trial is registered with ClinicalTrials.gov, number NCT01336634. Findings Between August 2011 and February 2014 a total of 84 previously treated and untreated patients were enrolled. Investigator-assessed ORR for 78 pretreated patients was 33% (95% confidence interval [CI], 23·1 to 44·9). Independent review committee assessment of ORR was consistent with investigator-based assessment. Four of the six previously untreated patients had an objective response. One patient died on study due to intracranial hemorrhage that was considered by the investigator to be due to study drug. Serious adverse events were reported in 35 (42%) of 84 patients. The most frequent grade 3 or higher adverse events were cutaneous squamous cell carcinoma (10 [12%] of 84 patients), asthenia (4 [5%] of 84 patients), and basal cell carcinoma (4 [5%] of 84 patients). Interpretation This is, to our knowledge, the first prospective trial focusing on BRAF V600E-mutant NSCLC to show clinical activity of a BRAF inhibitor. The

  15. Mutational dichotomy in desmoplastic malignant melanoma corroborated by multigene panel analysis.

    PubMed

    Jahn, Stephan W; Kashofer, Karl; Halbwedl, Iris; Winter, Gerlinde; El-Shabrawi-Caelen, Laila; Mentzel, Thomas; Hoefler, Gerald; Liegl-Atzwanger, Bernadette

    2015-07-01

    Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway.

  16. Resistant mechanisms to BRAF inhibitors in melanoma

    PubMed Central

    Layos, Laura; Bugés, Cristina; de los Llanos Gil, María; Vila, Laia; Martínez-Balibrea, Eva; Martínez-Cardús, Anna

    2016-01-01

    Patients with advanced melanoma have traditionally had very poor prognosis. However, since 2011 better understanding of the biology and epidemiology of this disease has revolutionized its treatment, with newer therapies becoming available. These newer therapies can be classified into immunotherapy and targeted therapy. The immunotherapy arsenal includes inhibitors of CTLA4, PD-1 and PDL-1, while targeted therapy focuses on BRAF and MEK. BRAF inhibitors (vemurafenib, dabrafenib) have shown benefit in terms of overall survival (OS) compared to chemotherapy, and their combination with MEK inhibitors has recently been shown to improve progression-free survival (PFS), compared with monotherapy with BRAF inhibitors. However, almost 20% of patients initially do not respond, due to intrinsic resistance to therapy and, of those who do, most eventually develop mechanisms of acquired resistance, including reactivation of the MAP kinase pathway, persistent activation of receptor tyrosine kinase (RTKS) receptor, activation of phosphatidyinositol-3OH kinase, overexpression of epidermal growth factor receptor (EGFR), and interactions with the tumor microenvironment. Herein we comment in detail on mechanisms of resistance to targeted therapy and discuss the strategies to overcome them. PMID:27429963

  17. Targeting BRAF aberrations in advanced colorectal carcinoma: from bench to bedside.

    PubMed

    Abdel-Rahman, Omar

    2016-01-01

    Colorectal cancer (CRC) is a global health problem with profound mortality and morbidity effects particularly in the advanced/metastatic setting. Because of the recent understanding of the biology of this disease, many candidate targets have come into light for therapeutic evaluation. The current review is about evaluating the preclinical and clinical aspects of BRAF as a therapeutic target in this disease. The available clinical results suggest that while the use of unselective RAF inhibitors (e.g., sorafenib) has been ineffective in the management of advanced CRC patients with KRAS mutation, combination of selective BRAF inhibitors plus EGFR inhibitors may represent a good therapeutic strategy in BRAF-mutant CRC. PMID:26616508

  18. P2A-Fluorophore Tagging of BRAF Tightly Links Expression to Fluorescence In Vivo

    PubMed Central

    McMahon, Martin

    2016-01-01

    The Braf proto-oncogene is a key component of the mitogen-activated protein kinase signaling cascade and is a critical regulator of both normal development and tumorigenesis in a variety of tissues. In order to elucidate BRAF’s differing roles in varying cell types, it is important to understand both the pattern and timing of BRAF expression. Here we report the production of a mouse model that links the expression of Braf with the bright red fluorescent protein, tdTomato. We have utilized a P2A knock-in strategy, ensuring that BRAF and the fluorophore are expressed from the same endogenous promoter and from the same bicistronic mRNA transcript. This mouse model (BrafTOM) shows bright red fluorescence in organs and cell types known to be sensitive to BRAF perturbation. We further show that on a cell-by-cell basis, fluorescence correlates with BRAF protein levels. Finally, we extend the utility of this mouse by demonstrating that the remnant P2A fragment attached to BRAF acts as a suitable epitope for immunoprecipitation and biochemical characterization of BRAF in vivo. PMID:27348307

  19. Secondary Tumors Arising in Patients Undergoing BRAF Inhibitor Therapy Exhibit Increased BRAF-CRAF Heterodimerization.

    PubMed

    Boussemart, Lise; Girault, Isabelle; Malka-Mahieu, Hélène; Mateus, Christine; Routier, Emilie; Rubington, Margot; Kamsu-Kom, Nyam; Thomas, Marina; Tomasic, Gorana; Agoussi, Sandrine; Breckler, Marie; Laporte, Mélanie; Lacroix, Ludovic; Eggermont, Alexander M; Cavalcanti, Andrea; Grange, Florent; Adam, Julien; Vagner, Stéphan; Robert, Caroline

    2016-03-15

    BRAF inhibitors (BRAFi) elicit therapeutic responses in metastatic melanoma, but alarmingly, also induce the formation of secondary benign and malignant skin tumors. Here, we report the emergence and molecular characterization of 73 skin and extracutaneous tumors in 31 patients who underwent BRAFi therapy. The majority of patients presented with classic epidermal tumors such as verrucous papillomas, keratoacanthomas, and squamous cell carcinomas (SCC). However, 15 patients exhibited new or rapidly progressing tumors distinct from these classic subtypes, such as lymph node metastasis, new melanomas, and genital and oral mucosal SCCs. Genotyping of the tumors revealed that oncogenic RAS mutations were found in 58% of the evaluable tumor samples (38/66) and 49% of the control tumors from patients not treated with BRAFi (30/62). Notably, proximity ligation assays demonstrated that BRAF-CRAF heterodimerization was increased in fixed tumor samples from BRAFi-treated patients compared with untreated patients. Our findings reveal that BRAF-CRAF complex formation is significantly associated with BRAFi treatment, and may therefore serve as a useful biomarker of BRAFi-induced cutaneous and extracutaneous tumor formation.

  20. Activating STAT6 mutations in follicular lymphoma

    PubMed Central

    Yildiz, Mehmet; Li, Hongxiu; Bernard, Denzil; Amin, Nisar A.; Ouillette, Peter; Jones, Siân; Saiya-Cork, Kamlai; Parkin, Brian; Jacobi, Kathryn; Shedden, Kerby; Wang, Shaomeng; Chang, Alfred E.; Kaminski, Mark S.

    2015-01-01

    Follicular lymphoma (FL) is the second most common non-Hodgkin lymphoma in the Western world. FL cell-intrinsic and cell-extrinsic factors influence FL biology and clinical outcome. To further our understanding of the genetic basis of FL, we performed whole-exome sequencing of 23 highly purified FL cases and 1 transformed FL case and expanded findings to a combined total of 114 FLs. We report recurrent mutations in the transcription factor STAT6 in 11% of FLs and identified the STAT6 amino acid residue 419 as a novel STAT6 mutation hotspot (p.419D/G, p.419D/A, and p.419D/H). FL-associated STAT6 mutations were activating, as evidenced by increased transactivation in HEK293T cell–based transfection/luciferase reporter assays, heightened interleukin-4 (IL-4) –induced activation of target genes in stable STAT6 transfected lymphoma cell lines, and elevated baseline expression levels of STAT6 target genes in primary FL B cells harboring mutant STAT6. Mechanistically, FL-associated STAT6 mutations facilitated nuclear residency of STAT6, independent of IL-4–induced STAT6-Y641 phosphorylation. Structural modeling of STAT6 based on the structure of the STAT1-DNA complex revealed that most FL-associated STAT6 mutants locate to the STAT6-DNA interface, potentially facilitating heightened interactions. The genetic and functional data combined strengthen the recognition of the IL-4/JAK/STAT6 axis as a driver of FL pathogenesis. PMID:25428220

  1. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy

    PubMed Central

    Smith, Michael P.; Brunton, Holly; Rowling, Emily J.; Ferguson, Jennifer; Arozarena, Imanol; Miskolczi, Zsofia; Lee, Jessica L.; Girotti, Maria R.; Marais, Richard; Levesque, Mitchell P.; Dummer, Reinhard; Frederick, Dennie T.; Flaherty, Keith T.; Cooper, Zachary A.; Wargo, Jennifer A.; Wellbrock, Claudia

    2016-01-01

    Summary Once melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression. Nelfinavir profoundly sensitizes BRAF and NRAS mutant melanoma cells to MAPK-pathway inhibitors. Moreover, nelfinavir is effective in BRAF and NRAS mutant melanoma cells isolated from patients progressed on MAPK inhibitor (MAPKi) therapy and in BRAF/NRAS/PTEN mutant tumors. We demonstrate that inhibiting a driver of MAPKi-induced drug tolerance could improve current approaches of targeted melanoma therapy. PMID:26977879

  2. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy.

    PubMed

    Smith, Michael P; Brunton, Holly; Rowling, Emily J; Ferguson, Jennifer; Arozarena, Imanol; Miskolczi, Zsofia; Lee, Jessica L; Girotti, Maria R; Marais, Richard; Levesque, Mitchell P; Dummer, Reinhard; Frederick, Dennie T; Flaherty, Keith T; Cooper, Zachary A; Wargo, Jennifer A; Wellbrock, Claudia

    2016-03-14

    Once melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression. Nelfinavir profoundly sensitizes BRAF and NRAS mutant melanoma cells to MAPK-pathway inhibitors. Moreover, nelfinavir is effective in BRAF and NRAS mutant melanoma cells isolated from patients progressed on MAPK inhibitor (MAPKi) therapy and in BRAF/NRAS/PTEN mutant tumors. We demonstrate that inhibiting a driver of MAPKi-induced drug tolerance could improve current approaches of targeted melanoma therapy. PMID:26977879

  3. Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma

    PubMed Central

    Girotti, Maria Romina; Lopes, Filipa; Preece, Natasha; Niculescu-Duvaz, Dan; Zambon, Alfonso; Davies, Lawrence; Whittaker, Steven; Saturno, Grazia; Viros, Amaya; Pedersen, Malin; Suijkerbuijk, Bart M.J.M.; Menard, Delphine; McLeary, Robert; Johnson, Louise; Fish, Laura; Ejiama, Sarah; Sanchez-Laorden, Berta; Hohloch, Juliane; Carragher, Neil; Macleod, Kenneth; Ashton, Garry; Marusiak, Anna A.; Fusi, Alberto; Brognard, John; Frame, Margaret; Lorigan, Paul; Marais, Richard; Springer, Caroline

    2015-01-01

    Summary BRAF and MEK inhibitors are effective in BRAF mutant melanoma, but most patients eventually relapse with acquired resistance, and others present intrinsic resistance to these drugs. Resistance is often mediated by pathway reactivation through receptor tyrosine kinase (RTK)/SRC-family kinase (SFK) signaling or mutant NRAS, which drive paradoxical reactivation of the pathway. We describe pan-RAF inhibitors (CCT196969, CCT241161) that also inhibit SFKs. These compounds do not drive paradoxical pathway activation and inhibit MEK/ERK in BRAF and NRAS mutant melanoma. They inhibit melanoma cells and patient-derived xenografts that are resistant to BRAF and BRAF/MEK inhibitors. Thus, paradox-breaking pan-RAF inhibitors that also inhibit SFKs could provide first-line treatment for BRAF and NRAS mutant melanomas and second-line treatment for patients who develop resistance. PMID:25500121

  4. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects. PMID:25870264

  5. Simultaneous knockdown of BRAF and expression of INK4A in melanoma cells leads to potent growth inhibition and apoptosis

    SciTech Connect

    Zhao Yanhua; Zhang Yan; Yang Zhen; Li, Albert; Dong Jianli

    2008-06-06

    Abnormal BRAF and p16INK4A co-exist in 60% of melanomas. BRAF mutation also occurs in 80% of benign nevi where it turns-on p16INK4A resulting in proliferative senescence; loss of p16INK4A removes the inhibitory block leading to melanoma development. Since only melanomas with wild-type BRAF have amplified CDK4 and cyclin D1 genes, p16INK4A-CDK4/6-cyclin D pathway is viewed as linearly downstream of BRAF. Thus, co-occurrence of aberrant BRAF and INK4A may be remnant of changes during melanoma formation without functional significance. To explore this notion, we simultaneously knocked down BRAF (via siRNA) and expressed INK4A cDNA in melanoma cells and observed enhanced growth inhibition. Notably, although each alone had no statistically significant effect on apoptosis, co-expression of BRAF siRNA and INK4A cDNA caused potent apoptosis, which was associated with up-regulation of BIM and down-regulation of BCL2. Our results suggest that aberrant BRAF and INK4A cooperate to promote proliferation and survival of melanoma cells.

  6. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction.

    PubMed

    Moriceau, Gatien; Hugo, Willy; Hong, Aayoung; Shi, Hubing; Kong, Xiangju; Yu, Clarissa C; Koya, Richard C; Samatar, Ahmed A; Khanlou, Negar; Braun, Jonathan; Ruchalski, Kathleen; Seifert, Heike; Larkin, James; Dahlman, Kimberly B; Johnson, Douglas B; Algazi, Alain; Sosman, Jeffrey A; Ribas, Antoni; Lo, Roger S

    2015-02-01

    Combined BRAF- and MEK-targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. (V600E)BRAF, expressed at supraphysiological levels because of (V600E)BRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with overexpressed (V600E)BRAF via a regulatory interface at R662 of (V600E)BRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity.

  7. Frontline approach to metastatic BRAF-mutant melanoma diagnosis, molecular evaluation, and treatment choice.

    PubMed

    Chapman, Paul B; Hauschild, Axel; Sondak, Vernon K

    2014-01-01

    An estimated 76,100 patients will be diagnosed with invasive melanoma in the United States in 2014, and 9,710 patients will die from the disease. In almost all cases, the cause of death is related to the development of widespread metastatic disease. Although death rates from most types of cancer have steadily decreased in the United States--a 20% decrease during two decades from a peak of 215.1 deaths per 100,000 population in 1991 to 171.8 in 2010--death rates from melanoma have steadily increased during the same time, especially among males. The news regarding melanoma is far from all bad. Increases in our understanding of the human immune system have led to the development of new immunotherapeutic drugs such as ipilimumab, which has been shown to improve survival in phase III trials in metastatic melanoma, and anti-programmed death 1 (anti-PD1) antibodies, recently hailed by ASCO as one of the past year's most noteworthy clinical cancer advances. However, no discovery has influenced and, indeed, transformed the management of metastatic melanoma more than the identifıcation of activating mutations in the BRAF gene in the mitogen-activated protein kinase (MAPK) pathway, which occur in about half of cutaneous melanomas and can be targeted with small molecule inhibitors of the BRAF protein, the downstream MEK protein, or both. This article will address how patients with metastatic melanoma are evaluated for their mutation status and how the presence of a targetable mutation influences therapeutic decisions regarding systemic therapy and even surgery.

  8. Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts.

    PubMed

    Sette, Giovanni; Fecchi, Katia; Salvati, Valentina; Lotti, Fiorenza; Pilozzi, Emanuela; Duranti, Enrico; Biffoni, Mauro; Pagliuca, Alfredo; Martinetti, Daniela; Memeo, Lorenzo; Milella, Michele; De Maria, Ruggero; Eramo, Adriana

    2013-11-16

    One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded in vitro as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable in vitro and in vivo pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets.

  9. Immunohistochemical detection of the BRAF V600E mutant protein in colorectal neoplasms

    PubMed Central

    Vakiani, Efsevia; Yaeger, Rona; Brooke, Sylvester; Zhou, Yi; Klimstra, David S.; Shia, Jinru

    2016-01-01

    Reliable assessment of the BRAF mutation status is becoming increasingly important in the clinical management of colorectal carcinomas (CRC). The aim of this study was to investigate the use of a recently developed mutation-specific antibody (VE1, SpringBio, Pleasanton, CA) to detect the BRAF V600E protein in paraffin tissue. We analyzed by immunohistochemistry (IHC) 117 cases that had been evaluated for BRAF mutation using a MALDI-TOF mass-spectrometry based assay. IHC staining was evaluated without the knowledge of the genetic data and was considered positive when there was distinct homogeneous cytoplasmic staining in the tumor cells. The analyzed cases included 4 polyps, 63 primary and 50 metastatic CRC. Forty-five of the 46 (97.8%) cases that were positive by IHC had a BRAF V600E mutation by genetic analysis; the 1 discordant case was notably of signet ring cell type. Similarly, 66 of the 67 (98.5%) cases that were negative by IHC were also negative by genetic analysis. Four cases that showed weak cytoplasmic staining and/or nuclear staining in the tumor cells were considered to be IHC equivocal; by genetic analysis, 2 of the 4 were positive and 2 were negative. The overall sensitivity and specificity of IHC for the detection of a BRAF V600E mutant tumor was 93.7% and 95.6%, respectively. Our results support the use of VE1 IHC for identification of colorectal neoplasms harboring the BRAF V600E mutation. Difficulties in IHC interpretation may arise in a small number of cases, and in those cases molecular testing is required. PMID:25517872

  10. Inhibition of mutant BRAF splice variant signaling by next-generation, selective RAF inhibitors.

    PubMed

    Basile, Kevin J; Le, Kaitlyn; Hartsough, Edward J; Aplin, Andrew E

    2014-05-01

    Vemurafenib and dabrafenib block MEK-ERK1/2 signaling and cause tumor regression in the majority of advanced-stage BRAF(V600E) melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next-generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAF(V600E) melanoma cells without paradoxical effects in wild-type cells. Furthermore, PLX7904 blocks the growth of vemurafenib-resistant BRAF(V600E) cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAF(V600E) splice variant-mediated vemurafenib-resistant cells. We show that paradox-breaker RAF inhibitors potently block MEK-ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720-resistant cells harboring distinct BRAF(V600E) splice variants. These data support the further investigation of paradox-breaker RAF inhibitors as a second-line treatment option for patients failing on vemurafenib or dabrafenib.

  11. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    SciTech Connect

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei; Yuan, Chuan-Tao; Wang, Ai-Liang

    2015-09-18

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.

  12. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  13. EGFR, KRAS, BRAF, and HER-2 molecular status in brain metastases from 77 NSCLC patients

    PubMed Central

    Villalva, Claire; Duranton-Tanneur, Valérie; Guilloteau, Karline; Burel-Vandenbos, Fanny; Wager, Michel; Doyen, Jérôme; Levillain, Pierre Marie; Fontaine, Denys; Blons, Hélène; Pedeutour, Florence; Karayan-Tapon, Lucie

    2013-01-01

    The aim of this study was to determine the frequency of EGFR, KRAS, BRAF, and HER-2 mutations in brain metastases from non-small cell lung carcinomas (BM-NSCLC). A total of 77 samples of BM-NSCLC were included and 19 samples of BM from breast, kidney, and colorectal tumors were also studied as controls. These samples were collected from patients followed between 2008 and 2011 at Poitiers and Nice University Hospitals in France. The frequencies of EGFR, KRAS, BRAF, and HER-2 mutations in BM-NSCLC were 2.6, 38.5, 0, and 0% respectively. The incidence of KRAS mutation was significantly higher in female and younger patients (P < 0.05). No mutations of the four genes were found in BM from breast or kidney. However, among six BM from colorectal tumors, we identified KRAS mutations in three cases and BRAF mutations in two other cases. This study is the largest analysis on genetic alterations in BM-NSCLC performed to date. Our results suggest a low frequency of EGFR mutations in BM-NSCLC whereas KRAS mutations are as frequent in BM-NSCLC as in primitive NSCLC. These results raise the question of the variability of the brain metastatic potential of NSCLC cells in relation to the mutation pattern. PMID:23930206

  14. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors

    PubMed Central

    Celestino, Ricardo; Lima, Jorge; Faustino, Alexandra; Vinagre, João; Máximo, Valdemar; Gouveia, António; Soares, Paula; Manuel Lopes, José

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney–Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney–Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney–Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred. PMID:22948025

  15. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors.

    PubMed

    Celestino, Ricardo; Lima, Jorge; Faustino, Alexandra; Vinagre, João; Máximo, Valdemar; Gouveia, António; Soares, Paula; Lopes, José Manuel

    2013-05-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney-Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney-Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney-Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred. PMID:22948025

  16. The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts

    SciTech Connect

    Ahn, Jun-Ho; Ahn, Soon Kil; Lee, Michael

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We recently discovered a potent and selective B-Raf inhibitor, UI-152. Black-Right-Pointing-Pointer UI-152 displayed a selective cytotoxicity toward v-Ha-ras transformed cells. Black-Right-Pointing-Pointer UI-152-induced growth inhibition was largely meditated by autophagy. Black-Right-Pointing-Pointer UI-152 induced paradoxical activation of Raf-1. -- Abstract: In human cancers, B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade, making it an important therapeutic target. We recently discovered a potent and selective B-Raf inhibitor, UI-152, by using a structure-based drug design strategy. In this study, we examined whether B-Raf inhibition by UI-152 may be an effective therapeutic strategy for eliminating cancer cells transformed with v-Ha-ras (Ras-NIH 3T3). UI-152 displayed selective cytotoxicity toward Ras-NIH 3T3 cells while having little to no effect on non-transformed NIH 3T3 cells. We found that treatment with UI-152 markedly increased autophagy and, to a lesser extent, apoptosis. However, inhibition of autophagy by addition of 3-MA failed to reverse the cytotoxic effects of UI-152 on Ras-NIH 3T3 cells, demonstrating that apoptosis and autophagy can act as cooperative partners to induce growth inhibition in Ras-NIH 3T3 cells treated with UI-152. Most interestingly, cell responses to UI-152 appear to be paradoxical. Here, we showed that although UI-152 inhibited ERK, it induced B-Raf binding to Raf-1 as well as Raf-1 activation. This paradoxical activation of Raf-1 by UI-152 is likely to be coupled with the inhibition of the mTOR pathway, an intracellular signaling pathway involved in autophagy. We also showed for the first time that, in multi-drug resistant cells, the combination of UI-152 with verapamil significantly decreased cell proliferation and increased autophagy. Thus, our findings suggest that the inhibition of autophagy, in combination with UI-152, offers a more effective

  17. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade.

    PubMed

    Cooper, Zachary A; Juneja, Vikram R; Sage, Peter T; Frederick, Dennie T; Piris, Adriano; Mitra, Devarati; Lo, Jennifer A; Hodi, F Stephen; Freeman, Gordon J; Bosenberg, Marcus W; McMahon, Martin; Flaherty, Keith T; Fisher, David E; Sharpe, Arlene H; Wargo, Jennifer A

    2014-07-01

    BRAF-targeted therapy results in objective responses in the majority of patients; however, the responses are short lived (∼6 months). In contrast, treatment with immune checkpoint inhibitors results in a lower response rate, but the responses tend to be more durable. BRAF inhibition results in a more favorable tumor microenvironment in patients, with an increase in CD8(+) T-cell infiltrate and a decrease in immunosuppressive cytokines. There is also increased expression of the immunomodulatory molecule PDL1, which may contribute to the resistance. On the basis of these findings, we hypothesized that BRAF-targeted therapy may synergize with the PD1 pathway blockade to enhance antitumor immunity. To test this hypothesis, we developed a BRAF(V600E)/Pten(-/-) syngeneic tumor graft immunocompetent mouse model in which BRAF inhibition leads to a significant increase in the intratumoral CD8(+) T-cell density and cytokine production, similar to the effects of BRAF inhibition in patients. In this model, CD8(+) T cells were found to play a critical role in the therapeutic effect of BRAF inhibition. Administration of anti-PD1 or anti-PDL1 together with a BRAF inhibitor led to an enhanced response, significantly prolonging survival and slowing tumor growth, as well as significantly increasing the number and activity of tumor-infiltrating lymphocytes. These results demonstrate synergy between combined BRAF-targeted therapy and immune checkpoint blockade. Although clinical trials combining these two strategies are ongoing, important questions still remain unanswered. Further studies using this new melanoma mouse model may provide therapeutic insights, including optimal timing and sequence of therapy.

  18. Cutaneous toxicities of BRAF inhibitors: clinical and pathological challenges and call to action.

    PubMed

    Mandalà, Mario; Massi, Daniela; De Giorgi, Vincenzo

    2013-11-01

    Somatic mutations in the BRAF gene have been identified as the most frequent and relevant to develop targeted molecular therapies in melanoma. Recently, seminal clinical trials have provided indisputable evidence that BRAF inhibitors improve response rate, progression free and overall survival in BRAFV600 mutated metastatic melanoma patients, thus representing the novel standard of care. Dermatological "off target" effects of these so-called 'targeted therapies' have to be considered, however, and among them the most intriguing are cutaneous adverse reactions. Skin toxicity is of relevance for at least three reasons: (1) it worsens the patient's quality of life and may be difficult to manage, (2) its heterogeneous clinical presentation differs from the clinico-pathological pictures observed in patients who do not receive BRAF inhibitors, and; (3) onset of skin cancer represents a model of carcinogenesis which may help to better understand the potential visceral tumorigenesis induced by BRAF inhibitors. This manuscript summarizes and critically reviews the state of the art of skin toxicity associated with BRAF inhibitors. Special attention will be paid to clinical presentation and histopathological findings, as well as related challenges for clinicians, pathologists, and basic scientists.

  19. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy

    PubMed Central

    Kong, Xiangju; Hong, Aayoung; Koya, Richard C.; Moriceau, Gatien; Chodon, Thinle; Guo, Rongqing; Johnson, Douglas B.; Dahlman, Kimberly B.; Kelley, Mark C.; Kefford, Richard F.; Chmielowski, Bartosz; Glaspy, John A.; Sosman, Jeffrey A.; van Baren, Nicolas; Long, Georgina V.; Ribas, Antoni; Lo, Roger S.

    2013-01-01

    BRAF inhibitors elicit rapid anti-tumor responses in the majority of patients with V600BRAF mutant melanoma, but acquired drug resistance is almost universal. We sought to identify the core resistance pathways and the extent of tumor heterogeneity during disease progression. We show that MAPK reactivation mechanisms were detected among 70% of disease-progressive tissues, with RAS mutations, mutant BRAF amplification and alternative splicing being most common. We also detected PI3K-PTEN-AKT-upregulating genetic alterations among 22% of progressive melanomas. Distinct molecular lesions, in both core drug escape pathways, were commonly detected concurrently in the same tumor or among multiple tumors from the same patient. Beyond harboring extensively heterogeneous resistance mechanisms, melanoma re-growth emerging from BRAF inhibitor selection displayed branched evolution marked by altered mutational spectra/signatures and increased fitness. Thus, melanoma genomic heterogeneity contributes significantly to BRAF inhibitor treatment failure, implying upfront, co-targeting of two core pathways as an essential strategy for durable responses. PMID:24265155

  20. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18.

    PubMed Central

    Le Douarin, B; Zechel, C; Garnier, J M; Lutz, Y; Tora, L; Pierrat, P; Heery, D; Gronemeyer, H; Chambon, P; Losson, R

    1995-01-01

    Nuclear receptors (NRs) bound to response elements mediate the effects of cognate ligands on gene expression. Their ligand-dependent activation function, AF-2, presumably acts on the basal transcription machinery through intermediary proteins/mediators. We have isolated a mouse nuclear protein, TIF1, which enhances RXR and RAR AF-2 in yeast and interacts in a ligand-dependent manner with several NRs in yeast and mammalian cells, as well as in vitro. Remarkably, these interactions require the amino acids constituting the AF-2 activating domain conserved in all active NRs. Moreover, the oestrogen receptor (ER) AF-2 antagonist hydroxytamoxifen cannot promote ER-TIF1 interaction. We propose that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand-dependent AF-2. Interestingly, the TIF1 N-terminal moiety is fused to B-raf in the mouse oncoprotein T18. Images PMID:7744009

  1. Expression of B-RAF V600E in Type II Pneumocytes Causes Abnormalities in Alveolar Formation, Airspace Enlargement and Tumor Formation in Mice

    PubMed Central

    Zanucco, Emanuele; Götz, Rudolf; Potapenko, Tamara; Carraretto, Irene; Ceteci, Semra; Ceteci, Fatih; Seeger, Werner; Savai, Rajkumar; Rapp, Ulf R.

    2011-01-01

    Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation. PMID:22194995

  2. Phosphoproteomic Analysis of Cell-Based Resistance to BRAF Inhibitor Therapy in Melanoma

    PubMed Central

    Parker, Robert; Vella, Laura J.; Xavier, Dylan; Amirkhani, Ardeshir; Parker, Jimmy; Cebon, Jonathan; Molloy, Mark P.

    2015-01-01

    The treatment of melanoma by targeted inhibition of the mutated kinase BRAF with small molecules only temporarily suppresses metastatic disease. In the face of chemical inhibition tumor plasticity, both innate and adaptive, promotes survival through the biochemical and genetic reconfiguration of cellular pathways that can engage proliferative and migratory systems. To investigate this process, high-resolution mass spectrometry was used to characterize the phosphoproteome of this transition in vitro. A simple and accurate, label-free quantitative method was used to localize and quantitate thousands of phosphorylation events. We also correlated changes in the phosphoproteome with the proteome to more accurately determine changes in the activity of regulatory kinases determined by kinase landscape profiling. The abundance of phosphopeptides with sites that function in cytoskeletal regulation, GTP/GDP exchange, protein kinase C, IGF signaling, and melanosome maturation were highly divergent after transition to a drug resistant phenotype. PMID:26029660

  3. Carcinogen-specific mutations in preferred Ras-Raf pathway oncogenes directed by strand bias.

    PubMed

    Keller, Ross R; Gestl, Shelley A; Lu, Amy Q; Hoke, Alicia; Feith, David J; Gunther, Edward J

    2016-08-01

    Carcinogen exposures inscribe mutation patterns on cancer genomes and sometimes bias the acquisition of driver mutations toward preferred oncogenes, potentially dictating sensitivity to targeted agents. Whether and how carcinogen-specific mutation patterns direct activation of preferred oncogenes remains poorly understood. Here, mouse models of breast cancer were exploited to uncover a mechanistic link between strand-biased mutagenesis and oncogene preference. When chemical carcinogens were employed during Wnt1-initiated mammary tumorigenesis, exposure to either 7,12-dimethylbenz(a)anthracene (DMBA) or N-ethyl-N-nitrosourea (ENU) dramatically accelerated tumor onset. Mammary tumors that followed DMBA exposure nearly always activated the Ras pathway via somatic Hras(CAA61CTA) mutations. Surprisingly, mammary tumors that followed ENU exposure typically lacked Hras mutations, and instead activated the Ras pathway downstream via Braf(GTG636GAG) mutations. Hras(CAA61CTA) mutations involve an A-to-T change on the sense strand, whereas Braf(GTG636GAG) mutations involve an inverse T-to-A change, suggesting that strand-biased mutagenesis may determine oncogene preference. To examine this possibility further, we turned to an alternative Wnt-driven tumor model in which carcinogen exposures augment a latent mammary tumor predisposition in Apc(min) mice. DMBA and ENU each accelerated mammary tumor onset in Apc(min) mice by introducing somatic, "second-hit" Apc mutations. Consistent with our strand bias model, DMBA and ENU generated strikingly distinct Apc mutation patterns, including stringently strand-inverse mutation signatures at A:T sites. Crucially, these contrasting signatures precisely match those proposed to confer bias toward Hras(CAA61CTA) versus Braf(GTG636GAG) mutations in the original tumor sets. Our findings highlight a novel mechanism whereby exposure history acts through strand-biased mutagenesis to specify activation of preferred oncogenes. PMID:27207659

  4. What links BRAF to the heart function? new insights from the cardiotoxicity of BRAF inhibitors in cancer treatment

    PubMed Central

    Bronte, Fabrizio; Bavetta, Maria Grazia; Re, Giuseppe Lo; Brancatelli, Giuseppe; Bazan, Viviana; Natoli, Clara; Novo, Salvatore; Russo, Antonio

    2015-01-01

    The RAS-related signalling cascade has a fundamental role in cell. It activates differentiation and survival. It is particularly important one of its molecules, B-RAF. B-RAF has been a central point for research, especially in melanoma. Indeed, it lacked effective therapeutic weapons since the early years of its study. Molecules targeting B-RAF have been developed. Nowadays, two classes of molecules are approved by FDA. Multi-target molecules, such as Sorafenib and Regorafenib, and selective molecules, such as Vemurafenib and Dabrafenib. Many other molecules are still under investigation. Most of them are studied in phase 1 trials. Clinical studies correlate B-RAF inhibitors and QT prolongation. Though this cardiovascular side effect is not common using these drugs, it must be noticed early and recognize its signals. Indeed, Oncologists and Cardiologists should work in cooperation to prevent lethal events, such as fatal arrhythmias or sudden cardiac death. These events could originate from an uncontrolled QT prolongation. PMID:26431495

  5. Biological insights into BRAFV600 mutations in melanoma patient

    PubMed Central

    Improta, Giuseppina; Pelosi, Giuseppe; Tamborini, Elena; Donia, Marco; Santinami, Mario; de Braud, Filippo; Fraggetta, Filippo

    2013-01-01

    Some experimental evidence indicates that uncommon BRAF mutations consisting in the substitution of 2 adjacent nucleotides within codon 600 are in a cis configuration and associate with BRAF gene amplification. These findings suggest that BRAFV600 mutations are unlikely to occur as homozygous alterations in clinical melanoma samples, with gene amplification perhaps contributing to mask the heterozygous state. PMID:24179707

  6. Mutations in PIK3CA are infrequent in neuroblastoma

    PubMed Central

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Background Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Methods Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. Results We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. Conclusion These data

  7. [DNA mismatch repair and BRAF status in colorectal cancer: Interest for the therapeutic management?].

    PubMed

    Cohen, Romain; Cervera, Pascale; Svrcek, Magali; Dumont, Clément; Garcia, Marie-Line; Chibaudel, Benoist; de Gramont, Aimery; Pocard, Marc; Duval, Alex; Fléjou, Jean-François; André, Thierry

    2015-06-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in France. Recently, colorectal cancer subtyping consortium (CRCSC) identified 4 consensus molecular subtypes (CMS). CMS1 is enriched for CRC with deficient DNA mismatch repair system (dMMR) and tumors with mutated BRAF. Intriguingly, CMS1 is characterized by better relapse-free survival but worse survival after relapse, compared with the other subtypes. In this review, we provide a comprehensive overview of prognostic and predictive impacts of MMR and BRAF status. We highlight immune checkpoints inhibitors as potentially future therapeutics for CRC with deficient MMR. We also focus on the management of BRAF mutant metastatic CRC, with a particular interest on targeted therapies. PMID:26118880

  8. Improvement of the quality of BRAF testing in melanomas with nationwide external quality assessment, for the BRAF EQA group

    PubMed Central

    2013-01-01

    Background Knowledge about tumour gene mutation status is essential for the treatment of increasing numbers of cancer patients, and testing quality has a major impact on treatment response and cost. In 2012, 4,629 tests for BRAF p.V600 were performed in France, in patients with melanomas. Methods Two batches of unstained melanoma sections were sent, in May and November 2012, to the 46 laboratories supported by the French National Institute of Cancer (INCa). An external quality assessment (EQA) evaluated mutation status, response times and compliance with INCa recommendations. Results All the French laboratories involved in testing participated in the EQA. Fourteen different methods were used to detect BRAF mutations, most consisting of combinations of in-house techniques. False responses were noted in 25/520 cases (4.8%), 11 of which concerned confusion between p.V600E and p.V600K. Thus, 2.7% of responses would have led to inappropriate treatment. Within six months, mean response times decreased from 22 to 12 days (P<0.001), and the percentage of samples evaluated by a pathologist for tumour cell content increased, from 75.2% to 96.9% (P<0.001). Conclusion Despite the use of non-certified methods, the false response rate was low. Nationwide EQA can improve the quality of molecular pathology tests on tumours. PMID:24119386

  9. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease

    PubMed Central

    Emile, Jean-François; Diamond, Eli L.; Hélias-Rodzewicz, Zofia; Cohen-Aubart, Fleur; Charlotte, Frédéric; Hyman, David M.; Kim, Eunhee; Rampal, Raajit; Patel, Minal; Ganzel, Chezi; Aumann, Shlomzion; Faucher, Gladwys; Le Gall, Catherine; Leroy, Karen; Colombat, Magali; Kahn, Jean-Emmanuel; Trad, Salim; Nizard, Philippe; Donadieu, Jean; Taly, Valérie; Amoura, Zahir; Haroche, Julien

    2014-01-01

    Erdheim-Chester disease (ECD) is a rare histiocytic disorder that is challenging to diagnose and treat. We performed molecular analysis of BRAF in the largest cohort of ECD patients studied to date followed by N/KRAS, PIK3CA, and AKT1 mutational analysis in BRAF wild-type patients. Forty-six of 80 (57.5%) of patients were BRAFV600E-mutant. NRAS mutations were detected in 3 of 17 ECD BRAFV600E wild-type patients. PIK3CA mutations (p.E542K, p.E545K, p.A1046T, and p.H1047R) were detected in 7 of 55 patients, 4 of whom also had BRAF mutations. Mutant NRAS was present in peripheral blood CD14+ cells, but not lymphoid cells, from an NRASQ61R mutant patient. Our results underscore the central role of RAS-RAF-MEK-ERK activation in ECD and identify an important role of activation of RAS-PI3K-AKT signaling in ECD. These results provide a rationale for targeting mutant RAS or PI3K/AKT/mTOR signaling in the subset of ECD patients with NRAS or PIK3CA mutations. PMID:25150293

  10. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease.

    PubMed

    Emile, Jean-François; Diamond, Eli L; Hélias-Rodzewicz, Zofia; Cohen-Aubart, Fleur; Charlotte, Frédéric; Hyman, David M; Kim, Eunhee; Rampal, Raajit; Patel, Minal; Ganzel, Chezi; Aumann, Shlomzion; Faucher, Gladwys; Le Gall, Catherine; Leroy, Karen; Colombat, Magali; Kahn, Jean-Emmanuel; Trad, Salim; Nizard, Philippe; Donadieu, Jean; Taly, Valérie; Amoura, Zahir; Abdel-Wahab, Omar; Haroche, Julien

    2014-11-01

    Erdheim-Chester disease (ECD) is a rare histiocytic disorder that is challenging to diagnose and treat. We performed molecular analysis of BRAF in the largest cohort of ECD patients studied to date followed by N/KRAS, PIK3CA, and AKT1 mutational analysis in BRAF wild-type patients. Forty-six of 80 (57.5%) of patients were BRAFV600E-mutant. NRAS mutations were detected in 3 of 17 ECD BRAFV600E wild-type patients. PIK3CA mutations (p.E542K, p.E545K, p.A1046T, and p.H1047R) were detected in 7 of 55 patients, 4 of whom also had BRAF mutations. Mutant NRAS was present in peripheral blood CD14(+) cells, but not lymphoid cells, from an NRASQ61R mutant patient. Our results underscore the central role of RAS-RAF-MEK-ERK activation in ECD and identify an important role of activation of RAS-PI3K-AKT signaling in ECD. These results provide a rationale for targeting mutant RAS or PI3K/AKT/mTOR signaling in the subset of ECD patients with NRAS or PIK3CA mutations. PMID:25150293

  11. Activating mutations in CTNNB1 in aldosterone producing adenomas

    PubMed Central

    Åkerström, Tobias; Maharjan, Rajani; Sven Willenberg, Holger; Cupisti, Kenko; Ip, Julian; Moser, Ana; Stålberg, Peter; Robinson, Bruce; Alexander Iwen, K.; Dralle, Henning; Walz, Martin K.; Lehnert, Hendrik; Sidhu, Stan; Gomez-Sanchez, Celso; Hellman, Per; Björklund, Peyman

    2016-01-01

    Primary aldosteronism (PA) is the most common cause of secondary hypertension with a prevalence of 5–10% in unreferred hypertensive patients. Aldosterone producing adenomas (APAs) constitute a large proportion of PA cases and represent a surgically correctable form of the disease. The WNT signaling pathway is activated in APAs. In other tumors, a frequent cause of aberrant WNT signaling is mutation in the CTNNB1 gene coding for β-catenin. Our objective was to screen for CTNNB1 mutations in a well-characterized cohort of 198 APAs. Somatic CTNNB1 mutations were detected in 5.1% of the tumors, occurring mutually exclusive from mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. All of the observed mutations altered serine/threonine residues in the GSK3β binding domain in exon 3. The mutations were associated with stabilized β-catenin and increased AXIN2 expression, suggesting activation of WNT signaling. By CYP11B2 mRNA expression, CYP11B2 protein expression, and direct measurement of aldosterone in tumor tissue, we confirmed the ability for aldosterone production. This report provides compelling evidence that aberrant WNT signaling caused by mutations in CTNNB1 occur in APAs. This also suggests that other mechanisms that constitutively activate the WNT pathway may be important in APA formation. PMID:26815163

  12. Somatic Activating PIK3CA Mutations Cause Venous Malformation.

    PubMed

    Limaye, Nisha; Kangas, Jaakko; Mendola, Antonella; Godfraind, Catherine; Schlögel, Matthieu J; Helaers, Raphael; Eklund, Lauri; Boon, Laurence M; Vikkula, Miikka

    2015-12-01

    Somatic mutations in TEK, the gene encoding endothelial cell tyrosine kinase receptor TIE2, cause more than half of sporadically occurring unifocal venous malformations (VMs). Here, we report that somatic mutations in PIK3CA, the gene encoding the catalytic p110α subunit of PI3K, cause 54% (27 out of 50) of VMs with no detected TEK mutation. The hotspot mutations c.1624G>A, c.1633G>A, and c.3140A>G (p.Glu542Lys, p.Glu545Lys, and p.His1047Arg), frequent in PIK3CA-associated cancers, overgrowth syndromes, and lymphatic malformation (LM), account for >92% of individuals who carry mutations. Like VM-causative mutations in TEK, the PIK3CA mutations cause chronic activation of AKT, dysregulation of certain important angiogenic factors, and abnormal endothelial cell morphology when expressed in human umbilical vein endothelial cells (HUVECs). The p110α-specific inhibitor BYL719 restores all abnormal phenotypes tested, in PIK3CA- as well as TEK-mutant HUVECs, demonstrating that they operate via the same pathogenic pathways. Nevertheless, significant genotype-phenotype correlations in lesion localization and histology are observed between individuals with mutations in PIK3CA versus TEK, pointing to gene-specific effects. PMID:26637981

  13. Bi-Directional SIFT Predicts a Subset of Activating Mutations

    PubMed Central

    Lee, William; Lazarus, Robert A.; Zhang, Zemin

    2009-01-01

    Advancements in sequencing technologies have empowered recent efforts to identify polymorphisms and mutations on a global scale. The large number of variations and mutations found in these projects requires high-throughput tools to identify those that are most likely to have an impact on function. Numerous computational tools exist for predicting which mutations are likely to be functional, but none that specifically attempt to identify mutations that result in hyperactivation or gain-of-function. Here we present a modified version of the SIFT (Sorting Intolerant from Tolerant) algorithm that utilizes protein sequence alignments with homologous sequences to identify functional mutations based on evolutionary fitness. We show that this bi-directional SIFT (B-SIFT) is capable of identifying experimentally verified activating mutants from multiple datasets. B-SIFT analysis of large-scale cancer genotyping data identified potential activating mutations, some of which we have provided detailed structural evidence to support. B-SIFT could prove to be a valuable tool for efforts in protein engineering as well as in identification of functional mutations in cancer. PMID:20011534

  14. A metastatic colon adenocarcinoma harboring BRAF V600E has a durable major response to dabrafenib/trametinib and chemotherapy.

    PubMed

    Williams, Casey B; McMahon, Caitlin; Ali, Siraj M; Abramovitz, Mark; Williams, Kirstin A; Klein, Jessica; McKean, Heidi; Yelensky, Roman; George, Thomas J; Elvin, Julia A; Soman, Salil; Lipson, Doron; Chmielecki, Juliann; Morosini, Deborah; Miller, Vincent A; Stephens, Philip J; Ross, Jeffrey S; Leyland-Jones, Brian

    2015-01-01

    The subset of metastatic colorectal adenocarcinomas that harbor BRAF V600E mutations are aggressive tumors with significantly shortened survival and limited treatment options. Here we present a colorectal cancer patient whose disease progressed through standard chemotherapy and who developed liver metastasis. Comprehensive genomic profiling (FoundationOne(®)) identified a BRAF V600E mutation in the liver lesion, as well as other genomic alterations consistent with colorectal cancers. Combination therapy of dabrafenib and trametinib with standard cytotoxic chemotherapy resulted in a durable major ongoing response for the patient. This report illustrates the utility of comprehensive genomic profiling with personalized targeted therapy for aggressive metastatic colorectal adenocarcinomas. PMID:26664139

  15. A metastatic colon adenocarcinoma harboring BRAF V600E has a durable major response to dabrafenib/trametinib and chemotherapy

    PubMed Central

    Williams, Casey B; McMahon, Caitlin; Ali, Siraj M; Abramovitz, Mark; Williams, Kirstin A; Klein, Jessica; McKean, Heidi; Yelensky, Roman; George, Thomas J; Elvin, Julia A; Soman, Salil; Lipson, Doron; Chmielecki, Juliann; Morosini, Deborah; Miller, Vincent A; Stephens, Philip J; Ross, Jeffrey S; Leyland-Jones, Brian

    2015-01-01

    The subset of metastatic colorectal adenocarcinomas that harbor BRAF V600E mutations are aggressive tumors with significantly shortened survival and limited treatment options. Here we present a colorectal cancer patient whose disease progressed through standard chemotherapy and who developed liver metastasis. Comprehensive genomic profiling (FoundationOne®) identified a BRAF V600E mutation in the liver lesion, as well as other genomic alterations consistent with colorectal cancers. Combination therapy of dabrafenib and trametinib with standard cytotoxic chemotherapy resulted in a durable major ongoing response for the patient. This report illustrates the utility of comprehensive genomic profiling with personalized targeted therapy for aggressive metastatic colorectal adenocarcinomas. PMID:26664139

  16. Quantitative analysis of wild-type and V600E mutant BRAF proteins in colorectal carcinoma using immunoenrichment and targeted mass spectrometry.

    PubMed

    Chen, Hang; Hsiao, Yung-Chin; Chiang, Sum-Fu; Wu, Chia-Chun; Lin, Yu-Tsun; Liu, Hsuan; Zhao, Hong; Chen, Jinn-Shiun; Chang, Yu-Sun; Yu, Jau-Song

    2016-08-24

    The BRAF V600E mutation is one of the most common mutations implicated in the development of several types of cancer including colorectal cancer (CRC), where it is associated with aggressive disease phenotypes and poor outcomes. The status of the BRAF V600E mutation is frequently determined by direct DNA sequencing. However, no previous study has sought to quantify the BRAF V600E protein in cancer specimens. Here, we evaluated immunoenrichment coupled with two MS-based quantitative techniques, namely multiple reaction monitoring (MRM) and single ion monitoring conjugated accurate inclusion mass screening (SIM-AIMS), to detect and precisely quantify wild-type (WT) and V600E mutant BRAF proteins in DNA sequence-confirmed CRC tissue specimens. WT and V600E BRAF proteins were immunoprecipitated from a CRC cell line (HT-29), and their representative peptides ((592)IGDFGLATVK(601) and (592)IGDFGLATEK(601), respectively) were confirmed by LC-MS/MS analysis and then quantified by MRM or SIM-AIMS with spiked stable isotope-labeled peptide standards. Both assays worked well for measuring WT BRAF from different amounts of HT-29 cell lysates, but the MRM assay was more sensitive than SIM-AIMS assay for quantifying lower levels of V600E BRAF. In protein extracts (2 mg) from 11 CRC tissue specimens, the MRM assay could measure WT BRAF in all 11 cases (0.32-1.66 ng) and the V600E BRAF in two cases (0.1-0.13 ng; mutant-to-WT ratio, 0.16-0.17). The SIM-AIMS assay could also detect WT and V600E BRAF in CRC specimens, but the measured levels of both targets were lower than those determined by MRM assay. Collectively, this study provides an effective method to precisely quantify WT and V600E BRAF proteins in complex biological samples using immunoenrichment-coupled targeted MS. Since the V600E BRAF protein has emerged as an important therapeutic target for cancer, the developed assay should facilitate future BRAF-related basic and clinical studies. PMID:27497007

  17. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    SciTech Connect

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P.; Cheng, Elaine; Davis, Matthew J.; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C.; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M.; Brash, Douglas E.; Stern, David F.; Materin, Miguel A.; Lo, Roger S.; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K.; Hayward, Nicholas K.; Lifton, Richard P.; Schlessinger, Joseph; Boggon, Titus J.; Halaban, Ruth

    2012-10-11

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

  18. TERT promoter mutations and monoallelic activation of TERT in cancer

    PubMed Central

    Huang, F W; Bielski, C M; Rinne, M L; Hahn, W C; Sellers, W R; Stegmeier, F; Garraway, L A; Kryukov, G V

    2015-01-01

    Here we report that promoter mutations in telomerase (TERT), the most common noncoding mutations in cancer, give rise to monoallelic expression of TERT. Through deep RNA sequencing, we find that TERT activation in human cancer cell lines can occur in either mono- or biallelic manner. Without exception, hotspot TERT promoter mutations lead to the re-expression of only one allele, accounting for approximately half of the observed cases of monoallelic TERT expression. Furthermore, we show that monoallelic TERT expression is highly prevalent in certain tumor types and widespread across a broad spectrum of cancers. Taken together, these observations provide insights into the mechanisms of TERT activation and the ramifications of noncoding mutations in cancer. PMID:26657580

  19. BRAF inhibitor resistance enhances vulnerability to arginine deprivation in melanoma

    PubMed Central

    Li, Ying-Ying; Wu, Chunjing; Chen, Shu-Mei; Shah, Sumedh S.; Wangpaichitr, Medhi; Feun, Lynn G.; Kuo, Macus T.; Suarez, Miguel; Prince, Jeffrey; Savaraj, Niramol

    2016-01-01

    BRAF inhibitor (BRAFi) has been used for treatment of melanomas harboring V600E mutation. Despite a high initial response rate, resistance to BRAFi is inevitable. Here, we demonstrate that BRAFi-resistant (BR) melanomas are susceptible to arginine deprivation due to inability to initiate re-expression of argininosuccinate synthetase (ASS1, a key enzyme for arginine synthesis) as well as ineffective autophagy. Autophagy and ASS1 re-expression are known to protect melanoma cells from cell death upon arginine deprivation. When melanoma cells become BR cells by long-term in vitro incubation with BRAFi, c-Myc-mediated ASS1 re-expression and the levels of autophagy-associated proteins (AMPK-α1 and Atg5) are attenuated. Furthermore, our study uncovers that downregulation of deubiquitinase USP28 which results in more active c-Myc degradation via ubiquitin-proteasome machinery is the primary mechanism for inability to re-express ASS1 upon arginine deprivation in BR cells. Overexpression of USP28 in BR cells enhances c-Myc expression and hence increases ASS1 transcription upon arginine deprivation, and consequently leads to cell survival. On the other hand, overexpression of Atg5 or AMPK-α1 in BR cells can redirect arginine deprivation-induced apoptosis toward autophagy. The xenograft models also confirm that BR tumors possess lower expression of ASS1 and are hypersensitive to arginine deprivation. These biochemical changes in BRAFi resistance which make them vulnerable to arginine deprivation can be exploited for the future treatment of BR melanoma patients. PMID:26771234

  20. Cellular apoptosis susceptibility (CAS) is overexpressed in thyroid carcinoma and maintains tumor cell growth: A potential link to the BRAFV600E mutation.

    PubMed

    Holzer, Kerstin; Drucker, Elisabeth; Oliver, Scott; Winkler, Juliane; Eiteneuer, Eva; Herpel, Esther; Breuhahn, Kai; Singer, Stephan

    2016-04-01

    Thyroid carcinoma is among the most common malignant endocrine neoplasms with a rising incidence. Genetic alterations occurring in thyroid cancer frequently affect the RAS/RAF/MEK/ERK-pathway such as the oncogenic, kinase-activating BRAF(V600E) mutation. Nuclear transport receptors including importins and exportins represent an important part of the nuclear transport machinery providing nucleo-cytoplasmic exchange of macromolecules. The role of nuclear transport receptors in the development and progression of thyroid carcinomas is largely unknown. Here, we studied the expression and function of the exportin cellular apoptosis susceptibility (CAS) in thyroid carcinogenesis and its link to the BRAF(V600E) mutation. By using immunohistochemistry (IHC) we found significantly increased IHC scores of CAS in primary papillary (PTC) and medullary (MTC), but not in follicular (FTC) thyroid carcinoma compared to non-tumorous (NT) thyroid tissue. Interestingly, metastases of the aforementioned subtypes including FTC showed a strong CAS positivity. Among PTCs we observed that CAS immunoreactivity was significantly higher in the tumors harboring the BRAF(V600E) mutation. Furthermore, depletion of CAS by RNAi in the BRAF(V600E)-positive PTC cell line B-CPAP led to reduced tumor cell growth measured by crystal violet assays. This phenotype could be attributed to reduced proliferation and increased cell death as assayed by BrdU ELISAs and immunoblotting for PARP-cleavage, respectively. Finally, we found additive effects of CAS siRNA and vemurafenib treatment in B-CPAP cells. Collectively, these data suggest that CAS overexpression in thyroid carcinoma depends on the subtype and the disease stage. Our findings also indicate that CAS maintains PTC cell proliferation and survival. Targeting CAS could represent a potential therapeutic approach particularly in combination with BRAF inhibitors such as vemurafenib in BRAF(V600E)-positive tumors. PMID:26892809

  1. Glucocerebrosidase activity in Parkinson's disease with and without GBA mutations.

    PubMed

    Alcalay, Roy N; Levy, Oren A; Waters, Cheryl C; Fahn, Stanley; Ford, Blair; Kuo, Sheng-Han; Mazzoni, Pietro; Pauciulo, Michael W; Nichols, William C; Gan-Or, Ziv; Rouleau, Guy A; Chung, Wendy K; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Marder, Karen; Zhang, Xiaokui

    2015-09-01

    Glucocerebrosidase (GBA) mutations have been associated with Parkinson's disease in numerous studies. However, it is unknown whether the increased risk of Parkinson's disease in GBA carriers is due to a loss of glucocerebrosidase enzymatic activity. We measured glucocerebrosidase enzymatic activity in dried blood spots in patients with Parkinson's disease (n = 517) and controls (n = 252) with and without GBA mutations. Participants were recruited from Columbia University, New York, and fully sequenced for GBA mutations and genotyped for the LRRK2 G2019S mutation, the most common autosomal dominant mutation in the Ashkenazi Jewish population. Glucocerebrosidase enzymatic activity in dried blood spots was measured by a mass spectrometry-based assay and compared among participants categorized by GBA mutation status and Parkinson's disease diagnosis. Parkinson's disease patients were more likely than controls to carry the LRRK2 G2019S mutation (n = 39, 7.5% versus n = 2, 0.8%, P < 0.001) and GBA mutations or variants (seven homozygotes and compound heterozygotes and 81 heterozygotes, 17.0% versus 17 heterozygotes, 6.7%, P < 0.001). GBA homozygotes/compound heterozygotes had lower enzymatic activity than GBA heterozygotes (0.85 µmol/l/h versus 7.88 µmol/l/h, P < 0.001), and GBA heterozygotes had lower enzymatic activity than GBA and LRRK2 non-carriers (7.88 µmol/l/h versus 11.93 µmol/l/h, P < 0.001). Glucocerebrosidase activity was reduced in heterozygotes compared to non-carriers when each mutation was compared independently (N370S, P < 0.001; L444P, P < 0.001; 84GG, P = 0.003; R496H, P = 0.018) and also reduced in GBA variants associated with Parkinson's risk but not with Gaucher disease (E326K, P = 0.009; T369M, P < 0.001). When all patients with Parkinson's disease were considered, they had lower mean glucocerebrosidase enzymatic activity than controls (11.14 µmol/l/h versus 11.85 µmol/l/h, P = 0.011). Difference compared to controls persisted in patients with

  2. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  3. Single-molecule force measurement via optical tweezers reveals different kinetic features of two BRaf mutants responsible for cardio-facial-cutaneous (CFC) syndrome.

    PubMed

    Wen, Cheng; Ye, Anpei

    2013-01-01

    BRaf (B- Rapid Accelerated Fibrosarcoma) protein is an important serine/threonine-protein kinase. Two domains on BRaf can independently bind its upstream kinase, Ras (Rat Sarcoma) protein. These are the Ras binding domain (RBD) and cysteine-rich-domain (CRD). Herein we use customized optical tweezers to compare the Ras binding process in two pathological mutants of BRaf responsible for CFC syndrome, abbreviated BRaf (A246P) and BRaf (Q257R). The two mutants differ in their kinetics of Ras-binding, though both bind Ras with similar increased overall affinity. BRaf (A246P) exhibits a slightly higher Ras/CRD unbinding force and a significantly higher Ras/RBD unbinding force versus the wild type. The contrary phenomenon is observed in the Q257R mutation. Simulations of the unstressed-off rate, koff (0), yield results in accordance with the changes revealed by the mean unbinding force. Our approach can be applied to rapidly assess other mutated proteins to deduce the effects of mutation on their kinetics compared to wild type proteins and to each other. PMID:24409384

  4. Transposon mutagenesis identifies genetic drivers of Braf(V600E) melanoma.

    PubMed

    Mann, Michael B; Black, Michael A; Jones, Devin J; Ward, Jerrold M; Yew, Christopher Chin Kuan; Newberg, Justin Y; Dupuy, Adam J; Rust, Alistair G; Bosenberg, Marcus W; McMahon, Martin; Print, Cristin G; Copeland, Neal G; Jenkins, Nancy A

    2015-05-01

    Although nearly half of human melanomas harbor oncogenic BRAF(V600E) mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in Braf(V600E) mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAF(V600E) melanoma and discover new genes with potential clinical importance in human melanoma. PMID:25848750

  5. Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma.

    PubMed

    Hooijkaas, Anna; Gadiot, Jules; Morrow, Michelle; Stewart, Ross; Schumacher, Ton; Blank, Christian U

    2012-08-01

    The development of targeted therapies and immunotherapies has markedly advanced the treatment of metastasized melanoma. While treatment with selective BRAF(V600E) inhibitors (like vemurafenib or dabrafenib) leads to high response rates but short response duration, CTLA-4 blocking therapies induce sustained responses, but only in a limited number of patients. The combination of these diametric treatment approaches may further improve survival, but pre-clinical data concerning this approach is limited. We investigated, using Tyr::CreER(T2)PTEN(F-/-)BRAF(F-V600E/+) inducible melanoma mice, whether BRAF(V600E) inhibition can synergize with anti-CTLA-4 mAb treatment, focusing on the interaction between the BRAF(V600E) inhibitor PLX4720 and the immune system. While PLX4720 treatment strongly decreased tumor growth, it did not induce cell death in BRAF(V600E)/PTEN(-/-) melanomas. More strikingly, PLX4720 treatment led to a decreased frequency of tumor-resident T cells, NK-cells, MDSCs and macrophages, which could not be restored by the addition of anti-CTLA-4 mAb. As this effect was not observed upon treatment of BRAF wild-type B16F10 tumors, we conclude that the decreased frequency of immune cells correlates to BRAF(V600E) inhibition in tumor cells and is not due to an off-target effect of PLX4720 on immune cells. Furthermore, anti-CTLA-4 mAb treatment of inducible melanoma mice treated with PLX4720 did not result in enhanced tumor control, while anti-CTLA-4 mAb treatment did improve the effect of tumor-vaccination in B16F10-inoculated mice. Our data suggest that vemurafenib may negatively affect the immune activity within the tumor. Therefore, the potential effect of targeted therapy on the tumor-microenvironment should be taken into consideration in the design of clinical trials combining targeted and immunotherapy.

  6. A correction to the research article titled: "Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells" by A. S. Little, K. Balmanno, M. J. Sale, S. Newman, J. R. Dry, M. Hampson, P. A. W. Edwards, P. D. Smith, S. J. Cook.

    PubMed

    Little, Annette S; Balmanno, Kathryn; Sale, Matthew J; Newman, Scott; Dry, Jonathan R; Hampson, Mark; Edwards, Paul A W; Smith, Paul D; Cook, Simon J

    2011-01-01

    The acquisition of resistance to protein kinase inhibitors is a growing problem in cancer treatment. We modeled acquired resistance to the MEK1/2 (mitogen-activated or extracellular signal–regulated protein kinase kinases 1 and 2) inhibitor selumetinib (AZD6244) in colorectal cancer cell lines harboring mutations in BRAF (COLO205 and HT29 lines) or KRAS (HCT116 and LoVo lines). AZD6244-resistant derivatives were refractory to AZD6244-induced cell cycle arrest and death and exhibited a marked increase in ERK1/2 (extracellular signal–regulated kinases 1 and 2) pathway signaling and cyclin D1 abundance when assessed in the absence of inhibitor. Genomic sequencing revealed no acquired mutations in MEK1 or MEK2, the primary target of AZD6244. Rather, resistant lines showed a marked up-regulation of their respective driving oncogenes, BRAF600E or KRAS13D, due to intrachromosomal amplification. Inhibition of BRAF reversed resistance to AZD6244 in COLO205 cells, which suggested that combined inhibition of MEK1/2 and BRAF may reduce the likelihood of acquired resistance in tumors with BRAF600E. Knockdown of KRAS reversed AZD6244 resistance in HCT116 cells as well as reduced the activation of ERK1/2 and protein kinase B; however, the combined inhibition of ERK1/2 and phosphatidylinositol 3-kinase signaling had little effect on AZD6244 resistance, suggesting that additional KRAS effector pathways contribute to this process. Microarray analysis identified increased expression of an 18-gene signature previously identified as reflecting MEK1/2 pathway output in resistant cells. Thus, amplification of the driving oncogene (BRAF600E or KRAS13D) can drive acquired resistance to MEK1/2 inhibitors by increasing signaling through the ERK1/2 pathway. However, up-regulation of KRAS13D leads to activation of multiple KRAS effector pathways, underlining the therapeutic challenge posed by KRAS mutations. These results may have implications for the use of combination therapies.

  7. BRAF inhibitors in colorectal cancer: Toward a differentiation therapy?

    PubMed Central

    Herr, Ricarda; Brummer, Tilman

    2015-01-01

    BRAF inhibitor monotherapy appears to be ineffective in BRAFV600E-positive colorectal cancer (CRC) as a result of inherent EGFR-mediated resistance mechanisms. This concept initiated combinatorial treatment approaches. Nevertheless, BRAF inhibition in isogenic CRC cell lines induced enhanced cell-cell adhesion and differentiation, underlining a potential benefit of BRAF inhibitors in CRC. PMID:27308494

  8. Identification of an active new mutator transposable element in maize.

    PubMed

    Tan, Bao-Cai; Chen, Zongliang; Shen, Yun; Zhang, Yafeng; Lai, Jinsheng; Sun, Samuel S M

    2011-09-01

    Robertson's Mutator (Mu) system has been used in large scale mutagenesis in maize, exploiting its high mutation frequency, controllability, preferential insertion in genes, and independence of donor location. Eight Mutator elements have been fully characterized (Mu1, Mu2 /Mu1.7, Mu3, Mu4, Mu5, Mu6/7, Mu8, MuDR), and three are defined by TIR (Mu10, Mu11 and Mu12). The genome sequencing revealed a complex family of Mu-like-elements (MULEs) in the B73 genome. In this article, we report the identification of a new Mu element, named Mu13. Mu13 showed typical Mu characteristics by having a ∼220 bp TIR, creating a 9 bp target site duplication upon insertion, yet the internal sequence is completely different from previously identified Mu elements. Mu13 is not present in the B73 genome or a Zea mays subsp. parviglumis accession, but in W22 and several inbreds that found the Robertson's Mutator line. Analysis of mutants isolated from the UniformMu mutagenic population indicated that the Mu13 element is active in transposition. Two novel insertions were found in expressed genes. To test other unknown Mu elements, we selected six new Mu elements from the B73 genome. Southern analysis indicated that most of these elements were present in the UniformMu lines. From these results, we conclude that Mu13 is a new and active Mu element that significantly contributed to the mutagenesis in the UniformMu population. The Robertson's Mutator line may harbor other unknown active Mu elements.

  9. Oncogenically active MYD88 mutations in human lymphoma

    PubMed Central

    Ngo, Vu N.; Young, Ryan M.; Schmitz, Roland; Jhavar, Sameer; Xiao, Wenming; Lim, Kian-Huat; Kohlhammer, Holger; Xu, Weihong; Yang, Yandan; Zhao, Hong; Shaffer, Arthur L.; Romesser, Paul; Wright, George; Powell, John; Rosenwald, Andreas; Muller-Hermelink, Hans Konrad; Ott, German; Gascoyne, Randy D.; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Fisher, Richard I.; Braziel, Rita M.; Tubbs, Raymond R.; Cook, J. R.; Weisenburger, Denny D.; Chan, Wing C.; Staudt, Louis M.

    2016-01-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) remains the least curable form of this malignancy despite recent advances in therapy1. Constitutive nuclear factor (NF)-κB and JAK kinase signalling promotes malignant cell survival in these lymphomas, but the genetic basis for this signalling is incompletely understood. Here we describe the dependence of ABC DLBCLs on MYD88, an adaptor protein that mediates toll and interleukin (IL)-1 receptor signalling2,3, and the discovery of highly recurrent oncogenic mutations affecting MYD88 in ABC DLBCL tumours. RNA interference screening revealed that MYD88 and the associated kinases IRAK1 and IRAK4 are essential for ABC DLBCL survival. High-throughput RNA resequencing uncovered MYD88 mutations in ABC DLBCL lines. Notably, 29% of ABC DLBCL tumours harboured the same amino acid substitution, L265P, in the MYD88 Toll/IL-1 receptor (TIR) domain at an evolutionarily invariant residue in its hydrophobic core. This mutation was rare or absent in other DLBCL subtypes and Burkitt’s lymphoma, but was observed in 9% of mucosa-associated lymphoid tissue lymphomas. At a lower frequency, additional mutations were observed in the MYD88 TIR domain, occurring in both the ABC and germinal centre B-cell-like (GCB) DLBCL subtypes. Survival of ABC DLBCL cells bearing the L265P mutation was sustained by the mutant but not the wild-type MYD88 isoform, demonstrating that L265P is a gain-of-function driver mutation. The L265P mutant promoted cell survival by spontaneously assembling a protein complex containing IRAK1 and IRAK4, leading to IRAK4 kinase activity, IRAK1 phosphorylation, NF-κB signalling, JAK kinase activation of STAT3, and secretion of IL-6, IL-10 and interferon-β. Hence, theMYD88 signalling pathway is integral to the pathogenesis of ABC DLBCL, supporting the development of inhibitors of IRAK4 kinase and other components of this pathway for the treatment of tumours bearing oncogenic MYD88 mutations

  10. Analysis of the B-RafV600E mutation in cutaneous melanoma patients with occupational sun exposure.

    PubMed

    Candido, Saverio; Rapisarda, Venerando; Marconi, Andrea; Malaponte, Grazia; Bevelacqua, Valentina; Gangemi, Pietro; Scalisi, Aurora; McCubrey, James A; Maestro, Roberta; Spandidos, Demetrios A; Fenga, Concettina; Libra, Massimo

    2014-03-01

    Sun-exposure is one of the risk factors associated with the development of a cutaneous neoplasm. In melanoma, the Ras-Raf-MEK-ERK (MAPK) signaling pathway is constitutively activated through multiple mechanisms, including B-Raf mutation. It has been hypothesized that B-Raf mutations in melanocytic lesions arise from DNA damage induced by ultraviolet (UV) radiation. However, it is still discussed if B-Raf mutations are associated with melanoma patients exposed to the sun. Therefore, in the present study, the known B-RafV600E mutation was analysed in melanoma samples from 30 indoor and 38 outdoor workers. B-RafV600E mutation was detected in 52 and 73% of outdoor workers and indoor workers, respectively. Of note, this mutation was identified in 12 of 14 (85%) melanoma of the trunk diagnosed in indoor workers and in 9 of 19 (47%) samples from outdoor workers (p=0.03). By analyzing melanomas of other body sites, no statistical difference in the frequency of B-RafV600E mutation was identified between the groups of workers. It appears that the mutation detected among indoor workers may be associated with a recreational or intermittent exposure to the sun, as usually the trunk is a sun-protected body site. Overall, these data indicate that the B-RafV600E mutation detected in melanoma is not associated with a chronic exposure to the sun. Mutations detected in other genes may also contribute to melanoma development in the subset of patients exposed to UV radiation.

  11. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma

    PubMed Central

    Hutchinson, Katherine E.; Johnson, Douglas B.; Johnson, Adam S.; Sanchez, Violeta; Kuba, Maria; Lu, Pengcheng; Chen, Xi; Kelley, Mark C.; Wang, Qingguo; Zhao, Zhongming; Kris, Mark; Berger, Michael F.; Sosman, Jeffrey A.; Pao, William

    2015-01-01

    Melanomas are characterized by activating “driver” mutations in BRAF, NRAS, KIT, GNAQ, and GNA11. Resultant mitogen-activated protein kinase (MAPK) pathway signaling makes some melanomas susceptible to BRAF (BRAF V600 mutations), MEK1/2 (BRAF V600, L597, fusions; NRAS mutations), or other kinase inhibitors (KIT), respectively. Among driver-negative (“pan-negative”) patients, an unexplained heterogeneity of response to MEK1/2 inhibitors has been observed. Analysis of 16 pan-negative melanoma cell lines revealed that 8 (50%; termed Class I) are sensitive to the MEK1/2 inhibitor, trametinib, similar to BRAF V600E melanomas. A second set (termed Class II) display reduced trametinib sensitivity, paradoxical activation of MEK1/2 and basal activation of ERBBs 1, 2, and 3 (4 lines, 25%). In 3 of these lines, PI3K/AKT and MAPK pathway signaling is abrogated using the ERBB inhibitor, afatinib, and proliferation is even further reduced upon the addition of trametinib. A potential mechanism of ERBB activation in Class II melanomas is minimal expression of the ERK1/2 phosphatase, DUSP4, as ectopic restoration of DUSP4 attenuated ERBB signaling through potential modulation of the ERBB ligand, amphiregulin (AREG). Consistent with these data, immunohistochemical analysis of patient melanomas revealed a trend towards lower overall DUSP4 expression in pan-negative versus BRAF- and NRAS-mutant tumors. This study is the first to demonstrate that differential ERBB activity in pan-negative melanoma may modulate sensitivity to clinically-available MEK1/2 inhibitors and provides rationale for the use of ERBB inhibitors, potentially in combination with MEK1/2 inhibitors, in subsets of this disease. PMID:26084293

  12. Effects of AKT inhibitor therapy in response and resistance to BRAF inhibition in melanoma

    PubMed Central

    2014-01-01

    Background The clinical use of BRAF inhibitors for treatment of metastatic melanoma is limited by the development of drug resistance. In this study we investigated whether co-targeting the MAPK and the PI3K-AKT pathway can prevent emergence of resistance or provide additional growth inhibitory effects in vitro. Methods Anti-tumor effects of the combination of the BRAF inhibitor (BRAFi) dabrafenib and GSK2141795B (AKTi) in a panel of 23 BRAF mutated melanoma cell lines were evaluated on growth inhibition by an ATP-based luminescent assay, on cell cycle and apoptosis by flow cytometry and on cell signaling by western blot. Moreover, we investigated the possibilities of delaying or reversing resistance or achieving further growth inhibition by combining AKTi with dabrafenib and/or the MEK inhibitor (MEKi) trametinib by using long term cultures. Results More than 40% of the cell lines, including PTEN-/- and AKT mutants showed sensitivity to AKTi (IC50 < 1.5 μM). The combination of dabrafenib and AKTi synergistically potentiated growth inhibition in the majority of cell lines with IC50 > 5 nM dabrafenib. Combinatorial treatment induced apoptosis only in cell lines sensitive to AKTi. In long term cultures of a PTEN-/- cell line, combinatorial treatment with the MAPK inhibitors, dabrafenib and trametinib, and AKTi markedly delayed the emergence of drug resistance. Moreover, combining AKTi with the MAPK inhibitors from the beginning provided superior growth inhibitory effects compared to addition of AKTi upon development of resistance to MAPK inhibitors in this particular cell line. Conclusions AKTi combined with BRAFi-based therapy may benefit patients with tumors harboring BRAF mutations and particularly PTEN deletions or AKT mutations. PMID:24735930

  13. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis.

    PubMed

    Bennett, James T; Tan, Tiong Yang; Alcantara, Diana; Tétrault, Martine; Timms, Andrew E; Jensen, Dana; Collins, Sarah; Nowaczyk, Malgorzata J M; Lindhurst, Marjorie J; Christensen, Katherine M; Braddock, Stephen R; Brandling-Bennett, Heather; Hennekam, Raoul C M; Chung, Brian; Lehman, Anna; Su, John; Ng, SuYuen; Amor, David J; Majewski, Jacek; Biesecker, Les G; Boycott, Kym M; Dobyns, William B; O'Driscoll, Mark; Moog, Ute; McDonell, Laura M

    2016-03-01

    Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis. PMID:26942290

  14. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis

    PubMed Central

    Bennett, James T.; Tan, Tiong Yang; Alcantara, Diana; Tétrault, Martine; Timms, Andrew E.; Jensen, Dana; Collins, Sarah; Nowaczyk, Malgorzata J.M.; Lindhurst, Marjorie J.; Christensen, Katherine M.; Braddock, Stephen R.; Brandling-Bennett, Heather; Hennekam, Raoul C.M.; Chung, Brian; Lehman, Anna; Su, John; Ng, SuYuen; Amor, David J.; Majewski, Jacek; Biesecker, Les G.; Boycott, Kym M.; Dobyns, William B.; O’Driscoll, Mark; Moog, Ute; McDonell, Laura M.

    2016-01-01

    Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis. PMID:26942290

  15. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype.

    PubMed

    Fang, Minggang; Ou, Jianhong; Hutchinson, Lloyd; Green, Michael R

    2014-09-18

    Most colorectal cancers (CRCs) containing activated BRAF (BRAF[V600E]) have a CpG island methylator phenotype (CIMP) characterized by aberrant hypermethylation of many genes, including the mismatch repair gene MLH1. MLH1 silencing results in microsatellite instability and a hypermutable phenotype. Through an RNAi screen, here we identify the transcriptional repressor MAFG as the pivotal factor required for MLH1 silencing and CIMP in CRCs containing BRAF(V600E). In BRAF-positive human CRC cell lines and tumors, MAFG is bound at the promoters of MLH1 and other CIMP genes, and recruits a corepressor complex that includes its heterodimeric partner BACH1, the chromatin remodeling factor CHD8, and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. BRAF(V600E) increases BRAF/MEK/ERK signaling resulting in phosphorylation and elevated levels of MAFG, which drives DNA binding. Analysis of transcriptionally silenced CIMP genes in KRAS-positive CRCs indicates that different oncoproteins direct the assembly of distinct repressor complexes on common promoters.

  16. A mutation spectrum that includes GNAS, KRAS and TP53 may be shared by mucinous neoplasms of the appendix.

    PubMed

    Hara, Kieko; Saito, Tsuyoshi; Hayashi, Takuo; Yimit, Alkam; Takahashi, Michiko; Mitani, Keiko; Takahashi, Makoto; Yao, Takashi

    2015-09-01

    Appendiceal mucinous tumors (AMTs) are classified as low-grade appendiceal mucinous neoplasms (LAMNs) or mucinous adenocarcinomas (MACs), although their carcinogenesis is not well understood. As somatic activating mutations of GNAS are considered to be characteristic of LAMNs while TP53 mutations have been shown to be specific to MACs, MACs are unlikely to result from transformation of LAMNs. However, emerging evidence also shows the presence of GNAS mutations in MACs. We examined 16 AMTs (11 LAMNs and 5 MACs) for genetic alterations of GNAS, KRAS, BRAF, TP53, CTNNB1, and TERT promoter in order to elucidate the possibility of a shared genetic background in the two tumor types. Extensive histological examination revealed the presence of a low-grade component in all cases of MAC. GNAS mutations were detected in two LAMNs and in one MAC, although the GNAS mutation in this MAC was a nonsense mutation (Q227X) expected not to be activating mutation. TP53 mutations were detected in three LAMNs; they were frequently detected in MACs. KRAS mutations were detected in three LAMNs and three MACs, and CTNNB1 mutations were detected in two LAMNs. KRAS mutation and activating mutation of GNAS occurred exclusively in AMTs. BRAF and TERT mutations were not detected. Overexpression of p53 was observed in only two MACs, and p53 immunostaining clearly discriminated the high-grade lesion from a low-grade component in one. These findings suggest that p53 overexpression plays an important role in the carcinogenesis of AMTs and that, in addition to mutations of GNAS, KRAS and TP53 alterations might be shared by AMTs, thus providing evidence for the possible progression of LAMNs to MAC.

  17. Frequent PTPRK-RSPO3 fusions and RNF43 mutations in colorectal traditional serrated adenoma.

    PubMed

    Sekine, Shigeki; Yamashita, Satoshi; Tanabe, Taro; Hashimoto, Taiki; Yoshida, Hiroshi; Taniguchi, Hirokazu; Kojima, Motohiro; Shinmura, Kazuya; Saito, Yutaka; Hiraoka, Nobuyoshi; Ushijima, Toshikazu; Ochiai, Atsushi

    2016-06-01

    The molecular mechanisms underlying the serrated pathway of colorectal tumourigenesis, particularly those related to traditional serrated adenomas (TSAs), are still poorly understood. In this study, we analysed genetic alterations in 188 colorectal polyps, including hyperplastic polyps, sessile serrated adenomas/polyps (SSA/Ps), TSAs, tubular adenomas, and tubulovillous adenomas by using targeted next-generation sequencing and reverse transcription-PCR. Our analyses showed that most TSAs (71%) contained genetic alterations in WNT pathway components. In particular, PTPRK-RSPO3 fusions (31%) and RNF43 mutations (24%) were frequently and almost exclusively observed in TSAs. Consistent with the WNT pathway activation, immunohistochemical analysis showed diffuse and focal nuclear accumulation of β-catenin in 53% and 30% of TSAs, respectively. APC mutations were observed in tubular and tubulovillous adenomas and in a subset of TSAs. BRAF mutations were exclusively and frequently encountered in serrated lesions. KRAS mutations were observed in all types of polyps, but were most commonly encountered in tubulovillous adenomas and TSAs. This study has demonstrated that TSAs frequently harbour genetic alterations that lead to WNT pathway activation, in addition to BRAF and KRAS mutations. In particular, PTPRK-RSPO3 fusions and RNF43 mutations were found to be characteristic genetic features of TSAs. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Frequent PTPRK-RSPO3 fusions and RNF43 mutations in colorectal traditional serrated adenoma.

    PubMed

    Sekine, Shigeki; Yamashita, Satoshi; Tanabe, Taro; Hashimoto, Taiki; Yoshida, Hiroshi; Taniguchi, Hirokazu; Kojima, Motohiro; Shinmura, Kazuya; Saito, Yutaka; Hiraoka, Nobuyoshi; Ushijima, Toshikazu; Ochiai, Atsushi

    2016-06-01

    The molecular mechanisms underlying the serrated pathway of colorectal tumourigenesis, particularly those related to traditional serrated adenomas (TSAs), are still poorly understood. In this study, we analysed genetic alterations in 188 colorectal polyps, including hyperplastic polyps, sessile serrated adenomas/polyps (SSA/Ps), TSAs, tubular adenomas, and tubulovillous adenomas by using targeted next-generation sequencing and reverse transcription-PCR. Our analyses showed that most TSAs (71%) contained genetic alterations in WNT pathway components. In particular, PTPRK-RSPO3 fusions (31%) and RNF43 mutations (24%) were frequently and almost exclusively observed in TSAs. Consistent with the WNT pathway activation, immunohistochemical analysis showed diffuse and focal nuclear accumulation of β-catenin in 53% and 30% of TSAs, respectively. APC mutations were observed in tubular and tubulovillous adenomas and in a subset of TSAs. BRAF mutations were exclusively and frequently encountered in serrated lesions. KRAS mutations were observed in all types of polyps, but were most commonly encountered in tubulovillous adenomas and TSAs. This study has demonstrated that TSAs frequently harbour genetic alterations that lead to WNT pathway activation, in addition to BRAF and KRAS mutations. In particular, PTPRK-RSPO3 fusions and RNF43 mutations were found to be characteristic genetic features of TSAs. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26924569

  19. Inhibition of HSP90 by AT13387 delays the emergence of resistance to BRAF inhibitors and overcomes resistance to dual BRAF and MEK inhibition in melanoma models.

    PubMed

    Smyth, Tomoko; Paraiso, Kim H T; Hearn, Keisha; Rodriguez-Lopez, Ana M; Munck, Joanne M; Haarberg, H Eirik; Sondak, Vernon K; Thompson, Neil T; Azab, Mohammad; Lyons, John F; Smalley, Keiran S M; Wallis, Nicola G

    2014-12-01

    Emergence of clinical resistance to BRAF inhibitors, alone or in combination with MEK inhibitors, limits clinical responses in melanoma. Inhibiting HSP90 offers an approach to simultaneously interfere with multiple resistance mechanisms. Using the HSP90 inhibitor AT13387, which is currently in clinical trials, we investigated the potential of HSP90 inhibition to overcome or delay the emergence of resistance to these kinase inhibitors in melanoma models. In vitro, treating vemurafenib-sensitive cells (A375 or SK-MEL-28) with a combination of AT13387 and vemurafenib prevented colony growth under conditions in which vemurafenib treatment alone generated resistant colonies. In vivo, when AT13387 was combined with vemurafenib in a SK-MEL-28, vemurafenib-sensitive model, no regrowth of tumors was observed over 5 months, although 2 of 7 tumors in the vemurafenib monotherapy group relapsed in this time. Together, these data suggest that the combination of these agents can delay the emergence of resistance. Cell lines with acquired vemurafenib resistance, derived from these models (A375R and SK-MEL-28R) were also sensitive to HSP90 inhibitor treatment; key clients were depleted, apoptosis was induced, and growth in 3D culture was inhibited. Similar effects were observed in cell lines with acquired resistance to both BRAF and MEK inhibitors (SK-MEL-28RR, WM164RR, and 1205LuRR). These data suggest that treatment with an HSP90 inhibitor, such as AT13387, is a potential approach for combating resistance to BRAF and MEK inhibition in melanoma. Moreover, frontline combination of these agents with an HSP90 inhibitor could delay the emergence of resistance, providing a strong rationale for clinical investigation of such combinations in BRAF-mutated melanoma.

  20. Evaluation of germline CDKN2A, ARF, CDK4, PTEN, and BRAF alterations in atypical mole syndrome.

    PubMed

    Celebi, J T; Ward, K M; Wanner, M; Polsky, D; Kopf, A W

    2005-01-01

    Atypical mole syndrome is a sporadic or an inherited condition with an increased risk of melanoma. Germline mutations in the CDKN2A, ARF, CDK4 and somatic mutations in the PTEN and BRAF genes have been associated with melanoma. In this study, we evaluated genes associated with familial and sporadic melanoma for mutations in 28 probands with the atypical mole syndrome. No sequence alterations in the coding regions or in the splice junctions of CDKN2A, ARF, CDK4, PTEN or BRAF were identified. These data suggest that genes evaluated in this study are unlikely to be candidate genes for atypical mole syndrome and support the notion that unknown susceptibility gene/s for this disease exist.

  1. Registered report: Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF

    PubMed Central

    Bhargava, Ajay; Anant, Madan; Mack, Hildegard

    2016-01-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from "Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF" by Heidorn and colleagues, published in Cell in 2010 (Heidorn et al., 2010). The experiments to be replicated are those reported in Figures 1A, 1B, 3A, 3B, and 4D. Heidorn and colleagues report that paradoxical activation of the RAF-RAS-MEK-ERK pathway by BRAF inhibitors when applied to BRAFWT cells is a result of BRAF/CRAF heterodimer formation upon inactivation of BRAF kinase activity, and occurs only in the context of active RAS. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife. DOI: http://dx.doi.org/10.7554/eLife.11999.001 PMID:26885666

  2. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor Dabrafenib (GSK2118436)

    PubMed Central

    Nathanson, Katherine L.; Martin, Anne-Marie; Wubbenhorst, Bradley; Greshock, Joel; Letrero, Richard; D’Andrea, Kurt; O’Day, Steven; Infante, Jeffrey R.; Falchook, Gerald S.; Arkenau, Hendrik-Tobias; Millward, Michael; Brown, Michael P.; Pavlick, Anna; Davies, Michael A.; Ma, Bo; Gagnon, Robert; Curtis, Martin; Lebowitz, Peter F.; Kefford, Richard; Long, Georgina V.

    2014-01-01

    Purpose Dabrafenib is a selective inhibitor of V600-mutant BRAF kinase, which recently demonstrated improved progression free survival (PFS) as compared with dacarbazine, in metastatic melanoma patients. The current study examined potential genetic markers associated with response and PFS in the phase I study of dabrafenib. Experimental Design Baseline (pre-treatment or archival) melanoma samples were evaluated in 41 patients using a custom genotyping melanoma-specific assay, sequencing of PTEN, and copy number analysis using multiplex ligation amplification and array based comparative genomic hybridization. Nine patients had on-treatment and/or progression samples available. Results All baseline patient samples had BRAFV600E/K confirmed. Baseline PTEN loss/mutation was not associated with best overall response (BOR) to dabrafenib, but it showed a trend for shorter median progression free survival (PFS) (18.3 [95% confidence interval (CI) 9.1–24.3] vs. 32.1 weeks [95% CI 24.1–33], p=0.059). Higher copy number of CCND1 (p=0.009) and lower copy number of CDKN2A (p=0.012) at baseline were significantly associated with decreased PFS. Although no melanomas had high level amplification of BRAF, the two patients with progressive disease as their best response had BRAF copy gain in their tumors. Conclusions Copy number changes in CDKN2A, CCND1, and mutation/copy number changes in PTEN correlated with the duration of PFS in patients treated with dabrafenib. The results suggest that these markers should be considered in the design and interpretation of future trials with selective BRAF inhibitors in advanced melanoma patients. PMID:23833299

  3. Performance characteristics of next-generation sequencing in clinical mutation detection of colorectal cancers.

    PubMed

    Haley, Lisa; Tseng, Li-Hui; Zheng, Gang; Dudley, Jonathan; Anderson, Derek A; Azad, Nilofer S; Gocke, Christopher D; Eshleman, James R; Lin, Ming-Tseh

    2015-10-01

    Activating mutations in downstream genes of the epidermal growth factor receptor (EGFR) pathway may cause anti-EGFR resistance in patients with colorectal cancers. We present performance characteristics of a next-generation sequencing assay designed to detect such mutations. In this retrospective quality assessment study, we analyzed mutation detected in the KRAS, NRAS, BRAF, and PIK3CA genes by a clinically validated next-generation sequencing assay in 310 colorectal cancer specimens. Tumor cellularity and mutant allele frequency were analyzed to identify tumor heterogeneity and mutant allele-specific imbalance. Next-generation sequencing showed precise measurement of mutant allele frequencies and detected 23% of mutations with 2-20% mutant allele frequencies. Of the KRAS mutations detected, 17% were outside of codons 12 and 13. Among PIK3CA mutations, 48% were outside of codons 542, 545, and 1047. The percentage of tumors with predicted resistance to anti-EGFR therapy increased from 40% when testing for only mutations in KRAS exon 2 to 47% when testing for KRAS exons 2-4, 48% when testing for KRAS and NRAS exons 2-4, 58% when including BRAF codon 600 mutations, and 59% when adding PIK3CA exon 20 mutations. Right-sided colorectal cancers carried a higher risk of predicted anti-EGFR resistance. A concomitant KRAS mutation was detected in 51% of PIK3CA, 23% of NRAS, and 33% of kinase-impaired BRAF-mutated tumors. Lower than expected mutant allele frequency indicated tumor heterogeneity, while higher than expected mutant allele frequency indicated mutant allele-specific imbalance. Two paired neuroendocrine carcinomas and adjacent adenomas showed identical KRAS mutations, but only PIK3CA mutations in neuroendocrine carcinomas. Next-generation sequencing is a robust tool for mutation detection in clinical laboratories. It demonstrates high analytic sensitivity and broad reportable range, and it provides simultaneous detection of concomitant mutations and a quantitative

  4. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells

    PubMed Central

    Goulielmaki, Maria; Koustas, Evangelos; Moysidou, Eirini; Vlassi, Margarita; Sasazuki, Takehiko; Shirasawa, Senji; Zografos, George; Oikonomou, Eftychia; Pintzas, Alexander

    2016-01-01

    Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer – both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene. PMID:26802026

  5. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells.

    PubMed

    Goulielmaki, Maria; Koustas, Evangelos; Moysidou, Eirini; Vlassi, Margarita; Sasazuki, Takehiko; Shirasawa, Senji; Zografos, George; Oikonomou, Eftychia; Pintzas, Alexander

    2016-02-23

    Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer--both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene.

  6. BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma.

    PubMed

    Paoluzzi, Luca; Hanniford, Douglas; Sokolova, Elena; Osman, Iman; Darvishian, Farbod; Wang, Jinhua; Bradner, James E; Hernando, Eva

    2016-06-01

    Despite major advances in the treatment of metastatic melanoma, treatment failure is still inevitable in most cases. Manipulation of key epigenetic regulators, including inhibition of Bromodomain and extra-terminal domain (BET) family members impairs cell proliferation in vitro and tumor growth in vivo in different cancers, including melanoma. Here, we investigated the effect of combining the BET inhibitor JQ1 with the BRAF inhibitor Vemurafenib in in vitro and in vivo models of BRAF-mutant melanoma. We performed cytotoxicity and apoptosis assays, and a xenograft mouse model to determine the in vitro and in vivo efficacy of JQ1 in combination with Vemurafenib against BRAF-mutant melanoma cell lines. Further, to investigate the molecular mechanisms underlying the effects of combined treatment, we conducted antibody arrays of in vitro drug-treated cell lines and RNA sequencing of drug-treated xenograft tumors. The combination of JQ1 and Vemurafenib acted synergistically in BRAF-mutant cell lines, resulting in marked apoptosis in vitro, with upregulation of proapoptotic proteins. In vivo, combination treatment suppressed tumor growth and significantly improved survival compared to either drug alone. RNA sequencing of tumor tissues revealed almost four thousand genes that were uniquely modulated by the combination, with several anti-apoptotic genes significantly down-regulated. Collectively, our data provide a rationale for combined BET and BRAF inhibition as a novel strategy for the treatment of melanoma.

  7. BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma.

    PubMed

    Paoluzzi, Luca; Hanniford, Douglas; Sokolova, Elena; Osman, Iman; Darvishian, Farbod; Wang, Jinhua; Bradner, James E; Hernando, Eva

    2016-06-01

    Despite major advances in the treatment of metastatic melanoma, treatment failure is still inevitable in most cases. Manipulation of key epigenetic regulators, including inhibition of Bromodomain and extra-terminal domain (BET) family members impairs cell proliferation in vitro and tumor growth in vivo in different cancers, including melanoma. Here, we investigated the effect of combining the BET inhibitor JQ1 with the BRAF inhibitor Vemurafenib in in vitro and in vivo models of BRAF-mutant melanoma. We performed cytotoxicity and apoptosis assays, and a xenograft mouse model to determine the in vitro and in vivo efficacy of JQ1 in combination with Vemurafenib against BRAF-mutant melanoma cell lines. Further, to investigate the molecular mechanisms underlying the effects of combined treatment, we conducted antibody arrays of in vitro drug-treated cell lines and RNA sequencing of drug-treated xenograft tumors. The combination of JQ1 and Vemurafenib acted synergistically in BRAF-mutant cell lines, resulting in marked apoptosis in vitro, with upregulation of proapoptotic proteins. In vivo, combination treatment suppressed tumor growth and significantly improved survival compared to either drug alone. RNA sequencing of tumor tissues revealed almost four thousand genes that were uniquely modulated by the combination, with several anti-apoptotic genes significantly down-regulated. Collectively, our data provide a rationale for combined BET and BRAF inhibition as a novel strategy for the treatment of melanoma. PMID:27169980

  8. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation.

    PubMed

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  9. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation

    PubMed Central

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  10. Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity

    PubMed Central

    Sarrabayrouse, Guillaume; Gallardo, Franck; Gence, Rémi; Tilkin-Mariamé, Anne-Françoise

    2016-01-01

    CD70 is a costimulatory molecule member of the Tumor Necrosis Factor family that is expressed on activated immune cells. Its ectopic expression has been described in several types of cancer cells including lymphomas, renal cell carcinomas and glioblastomas. We have recently described its expression in a part of tumor cells from the vast majority of melanoma biopsies and human melanoma cell lines, and found that CD70 expression decreased over time as the disease progressed. Here, we show that RhoA, BRAF and Mitogen Activating Protein Kinase pathways are involved in the positive transcriptional regulation of CD70 expression in melanomas. Interestingly, the clinical inhibitor of the common BRAF V600E/D variants, Vemurafenib (PLX-4032), which is currently used to treat melanoma patients with BRAF V600E/D-mutated metastatic melanomas, decreased CD70 expression in human CD70+ melanoma cell lines. This decrease was seen in melanoma cells both with and without the BRAFV600E/D mutation, although was less efficient in those lacking the mutation. But interestingly, by silencing CD70 in CD70+ melanoma cell lines we show that PLX-4032-induced melanoma cell killing and its inhibitory effect on MAPK pathway activation are unaffected by CD70 expression. Consequently, our work demonstrates that CD70 ectopic expression in melanomas is not a valuable biomarker to predict tumor cells sensitivity to BRAF V600 inhibitors. PMID:26828592

  11. Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity.

    PubMed

    Pich, Christine; Teiti, Iotefa; Sarrabayrouse, Guillaume; Gallardo, Franck; Gence, Rémi; Tilkin-Mariamé, Anne-Françoise

    2016-01-01

    CD70 is a costimulatory molecule member of the Tumor Necrosis Factor family that is expressed on activated immune cells. Its ectopic expression has been described in several types of cancer cells including lymphomas, renal cell carcinomas and glioblastomas. We have recently described its expression in a part of tumor cells from the vast majority of melanoma biopsies and human melanoma cell lines, and found that CD70 expression decreased over time as the disease progressed. Here, we show that RhoA, BRAF and Mitogen Activating Protein Kinase pathways are involved in the positive transcriptional regulation of CD70 expression in melanomas. Interestingly, the clinical inhibitor of the common BRAF V600E/D variants, Vemurafenib (PLX-4032), which is currently used to treat melanoma patients with BRAF V600E/D-mutated metastatic melanomas, decreased CD70 expression in human CD70+ melanoma cell lines. This decrease was seen in melanoma cells both with and without the BRAFV600E/D mutation, although was less efficient in those lacking the mutation. But interestingly, by silencing CD70 in CD70+ melanoma cell lines we show that PLX-4032-induced melanoma cell killing and its inhibitory effect on MAPK pathway activation are unaffected by CD70 expression. Consequently, our work demonstrates that CD70 ectopic expression in melanomas is not a valuable biomarker to predict tumor cells sensitivity to BRAF V600 inhibitors. PMID:26828592

  12. JAK-2 V617F mutation increases heparanase procoagulant activity.

    PubMed

    Kogan, Inna; Chap, Dafna; Hoffman, Ron; Axelman, Elena; Brenner, Benjamin; Nadir, Yona

    2016-01-01

    Patients with polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF) are at increased risk of arterial and venous thrombosis. In patients with ET a positive correlation was observed between JAK-2 V617F mutation, that facilitates erythropoietin receptor signalling, and thrombotic events, although the mechanism involved is not clear. We previously demonstrated that heparanase protein forms a complex and enhances the activity of the blood coagulation initiator tissue factor (TF) which leads to increased factor Xa production and subsequent activation of the coagulation system. The present study was aimed to evaluate heparanase procoagulant activity in myeloproliferative neoplasms. Forty bone marrow biopsies of patients with ET, PV, PMF and chronic myelogenous leukaemia (CML) were immunostained to heparanase, TF and TF pathway inhibitor (TFPI). Erythropoietin receptor positive cell lines U87 human glioma and MCF-7 human breast carcinoma were studied. Heparanase and TFPI staining were more prominent in ET, PV and PMF compared to CML. The strongest staining was in JAK-2 positive ET biopsies. Heparanase level and procoagulant activity were higher in U87 cells transfected to over express JAK-2 V617F mutation compared to control and the effect was reversed using JAK-2 inhibitors (Ruxolitinib, VZ3) and hydroxyurea, although the latter drug did not inhibit JAK-2 phosphorylation. Erythropoietin increased while JAK-2 inhibitors decreased the heparanase level and procoagulant activity in U87 and MCF-7 parental cells. In conclusion, JAK-2 is involved in heparanase up-regulation via the erythropoietin receptor. The present findings may potentially point to a new mechanism of thrombosis in JAK-2 positive ET patients. PMID:26489695

  13. Driver Gene Mutations in Stools of Colorectal Carcinoma Patients Detected by Targeted Next-Generation Sequencing.

    PubMed

    Armengol, Gemma; Sarhadi, Virinder K; Ghanbari, Reza; Doghaei-Moghaddam, Masoud; Ansari, Reza; Sotoudeh, Masoud; Puolakkainen, Pauli; Kokkola, Arto; Malekzadeh, Reza; Knuutila, Sakari

    2016-07-01

    Detection of driver gene mutations in stool DNA represents a promising noninvasive approach for screening colorectal cancer (CRC). Amplicon-based next-generation sequencing (NGS) is a good option to study mutations in many cancer genes simultaneously and from a low amount of DNA. Our aim was to assess the feasibility of identifying mutations in 22 cancer driver genes with Ion Torrent technology in stool DNA from a series of 65 CRC patients. The assay was successful in 80% of stool DNA samples. NGS results showed 83 mutations in cancer driver genes, 29 hotspot and 54 novel mutations. One to five genes were mutated in 75% of cases. TP53, KRAS, FBXW7, and SMAD4 were the top mutated genes, consistent with previous studies. Of samples with mutations, 54% presented concomitant mutations in different genes. Phosphatidylinositol 3-kinase/mitogen-activated protein kinase pathway genes were mutated in 70% of samples, with 58% having alterations in KRAS, NRAS, or BRAF. Because mutations in these genes can compromise the efficacy of epidermal growth factor receptor blockade in CRC patients, identifying mutations that confer resistance to some targeted treatments may be useful to guide therapeutic decisions. In conclusion, the data presented herein show that NGS procedures on stool DNA represent a promising tool to detect genetic mutations that could be used in the future for diagnosis, monitoring, or treating CRC. PMID:27155048

  14. Extrinsic factors can mediate resistance to BRAF inhibition in central nervous system melanoma metastases.

    PubMed

    Seifert, Heike; Hirata, Eishu; Gore, Martin; Khabra, Komel; Messiou, Christina; Larkin, James; Sahai, Erik

    2016-01-01

    Here, we retrospectively review imaging of 68 consecutive unselected patients with BRAF V600-mutant metastatic melanoma for organ-specific response and progression on vemurafenib. Complete or partial responses were less often seen in the central nervous system (CNS) (36%) and bone (16%) compared to lung (89%), subcutaneous (83%), spleen (71%), liver (85%) and lymph nodes/soft tissue (83%), P < 0.001. CNS was also the most common site of progression. Based on this, we tested in vitro the efficacy of the BRAF inhibitors PLX4720 and dabrafenib in the presence of cerebrospinal fluid (CSF). Exogenous CSF dramatically reduced cell death in response to both BRAF inhibitors. Effective cell killing was restored by co-administration of a PI-3 kinase inhibitor. We conclude that the efficacy of vemurafenib is variable in different organs with CNS being particularly prone to resistance. Extrinsic factors, such as ERK- and PI3K-activating factors in CSF, may mediate BRAF inhibitor resistance in the CNS.

  15. Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial-mesenchymal transition

    PubMed Central

    2014-01-01

    Background Recent evidence indicates that long noncoding RNAs (lncRNAs) play a critical role in the regulation of cellular processes, such as differentiation, proliferation and metastasis. These lncRNAs are found to be dysregulated in a variety of cancers. BRAF activated non-coding RNA (BANCR) is a 693-bp transcript on chromosome 9 with a potential functional role in melanoma cell migration. The clinical significance of BANCR, and its’ molecular mechanisms controlling cancer cell migration and metastasis are unclear. Methods Expression of BANCR was analyzed in 113 non-small cell lung cancer (NSCLC) tissues and seven NSCLC cell lines using quantitative polymerase chain reaction (qPCR) assays. Gain and loss of function approaches were used to investigate the biological role of BANCR in NSCLC cells. The effects of BANCR on cell viability were evaluated by MTT and colony formation assays. Apoptosis was evaluated by Hoechst staining and flow cytometry. Nude mice were used to examine the effects of BANCR on tumor cell metastasis in vivo. Protein levels of BANCR targets were determined by western blotting and fluorescent immunohistochemistry. Results BANCR expression was significantly decreased in 113 NSCLC tumor tissues compared with normal tissues. Additionally, reduced BANCR expression was associated with larger tumor size, advanced pathological stage, metastasis distance, and shorter overall survival of NSCLC patients. Reduced BANCR expression was found to be an independent prognostic factor for NSCLC. Histone deacetylation was involved in the downregulation of BANCR in NSCLC cells. Ectopic expression of BANCR impaired cell viability and invasion, leading to the inhibition of metastasis in vitro and in vivo. However, knockdown of BANCR expression promoted cell migration and invasion in vitro. Overexpression of BANCR was found to play a key role in epithelial-mesenchymal transition (EMT) through the regulation of E-cadherin, N-cadherin and Vimentin expression

  16. Predictive and Prognostic Analysis of PIK3CA Mutation in Stage III Colon Cancer Intergroup Trial

    PubMed Central

    Liao, Xiaoyun; Imamura, Yu; Yamauchi, Mai; McCleary, Nadine J.; Ng, Kimmie; Niedzwiecki, Donna; Saltz, Leonard B.; Mayer, Robert J.; Whittom, Renaud; Hantel, Alexander; Benson, Al B.; Mowat, Rex B.; Spiegelman, Donna; Goldberg, Richard M.; Bertagnolli, Monica M.; Meyerhardt, Jeffrey A.; Fuchs, Charles S.

    2013-01-01

    Background Somatic mutations in PIK3CA (phosphatidylinositol-4,5-bisphosphonate 3-kinase [PI3K], catalytic subunit alpha gene) activate the PI3K-AKT signaling pathway and contribute to pathogenesis of various malignancies, including colorectal cancer. Methods We examined associations of PIK3CA oncogene mutation with relapse, survival, and treatment efficacy in 627 stage III colon carcinoma case subjects within a randomized adjuvant chemotherapy trial (5-fluorouracil and leucovorin [FU/LV] vs irinotecan [CPT11], fluorouracil and leucovorin [IFL]; Cancer and Leukemia Group B 89803 [Alliance]). We detected PIK3CA mutation in exons 9 and 20 by polymerase chain reaction and pyrosequencing. Cox proportional hazards model was used to assess prognostic and predictive role of PIK3CA mutation, adjusting for clinical features and status of routine standard molecular pathology features, including KRAS and BRAF mutations and microsatellite instability (mismatch repair deficiency). All statistical tests were two-sided. Results Compared with PIK3CA wild-type cases, overall status of PIK3CA mutation positivity or the presence of PIK3CA mutation in either exon 9 or 20 alone was not statistically significantly associated with recurrence-free, disease-free, or overall survival (log-rank P > .70; P > .40 in multivariable regression models). There was no statistically significant interaction between PIK3CA and KRAS (or BRAF) mutation status in survival analysis (P interaction > .18). PIK3CA mutation status did not appear to predict better or worse response to IFL therapy compared with FU/LV therapy (P interaction > .16). Conclusions Overall tumor PIK3CA mutation status is not associated with stage III colon cancer prognosis. PIK3CA mutation does not appear to serve as a predictive tumor molecular biomarker for response to irinotecan-based adjuvant chemotherapy. PMID:24231454

  17. B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS

    PubMed Central

    O’Donovan, Kevin J.; Ma, Kaijie; Guo, Hengchang; Wang, Chen; Sun, Fang; Han, Seung Baek; Kim, Hyukmin; Wong, Jamie K.; Charron, Jean; Zou, Hongyan; Son, Young-Jin; He, Zhigang

    2014-01-01

    Activation of intrinsic growth programs that promote developmental axon growth may also facilitate axon regeneration in injured adult neurons. Here, we demonstrate that conditional activation of B-RAF kinase alone in mouse embryonic neurons is sufficient to drive the growth of long-range peripheral sensory axon projections in vivo in the absence of upstream neurotrophin signaling. We further show that activated B-RAF signaling enables robust regenerative growth of sensory axons into the spinal cord after a dorsal root crush as well as substantial axon regrowth in the crush-lesioned optic nerve. Finally, the combination of B-RAF gain-of-function and PTEN loss-of-function promotes optic nerve axon extension beyond what would be predicted for a simple additive effect. We conclude that cell-intrinsic RAF signaling is a crucial pathway promoting developmental and regenerative axon growth in the peripheral and central nervous systems. PMID:24733831

  18. Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG.

    PubMed Central

    Pazour, G J; Ta, C N; Das, A

    1992-01-01

    The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmids are positively regulated by virG in conjunction with virA and plant-derived inducing molecules. A procedure that utilizes both genetic selection and a genetic screen was developed to isolate mutations in virG that led to elevated levels of vir gene expression in the absence of virA and plant phenolic inducers. Mutants were isolated at a frequency of 1 in 10(7) to 10(8). Substitution mutations at two positions in the virG coding region were found to result in the desired phenotype. One mutant had an asparagine-to-aspartic acid substitution at residue 54, and the other contained an isoleucine-to-leucine substitution at residue 106. In both cases, the mutant phenotype required the presence of the active-site aspartic acid residue at position 52. Further analysis showed that no other substitution at residue 54 resulted in a constitutive phenotype. In contrast, several substitutions at residue 106 led to a constitutive phenotype. The possible roles of the residues at positions 54 and 106 in VirG function are discussed. PMID:1597431

  19. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-11-16

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  20. Synthesis, biological evaluation and 3D-QSAR studies of novel 4,5-dihydro-1H-pyrazole niacinamide derivatives as BRAF inhibitors.

    PubMed

    Li, Cui-Yun; Li, Qing-Shan; Yan, Li; Sun, Xiao-Guang; Wei, Ran; Gong, Hai-Bin; Zhu, Hai-Liang

    2012-06-15

    A series of novel 4,5-dihydropyrazole derivatives containing niacinamide moiety as potential V600E mutant BRAF kinase (BRAF(V600E)) inhibitors were designed and synthesized. Results of the bioassays against BRAF(V600E) and WM266.4 human melanoma cell line showed several compounds to be endowed potent activities with IC(50) and GI(50) value in low micromolar range, among which compound 27e, (5-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)6-methylpyridin-3-yl methanone (IC(50)=0.20 μM, GI(50)=0.89 μM) was bearing the best bioactivity comparable with the positive control Sorafenib. Docking simulation was performed to determine the probable binding model and 3D-QSAR model was built to provide more pharmacophore understanding that could use to design new agents with more potent BRAF(V600E) inhibitory activity.

  1. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies.

    PubMed

    Boussemart, Lise; Malka-Mahieu, Hélène; Girault, Isabelle; Allard, Delphine; Hemmingsson, Oskar; Tomasic, Gorana; Thomas, Marina; Basmadjian, Christine; Ribeiro, Nigel; Thuaud, Frédéric; Mateus, Christina; Routier, Emilie; Kamsu-Kom, Nyam; Agoussi, Sandrine; Eggermont, Alexander M; Désaubry, Laurent; Robert, Caroline; Vagner, Stéphan

    2014-09-01

    In BRAF(V600)-mutant tumours, most mechanisms of resistance to drugs that target the BRAF and/or MEK kinases rely on reactivation of the RAS-RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signal transduction pathway, on activation of the alternative, PI(3)K-AKT-mTOR, pathway (which is ERK independent) or on modulation of the caspase-dependent apoptotic cascade. All three pathways converge to regulate the formation of the eIF4F eukaryotic translation initiation complex, which binds to the 7-methylguanylate cap (m(7)G) at the 5' end of messenger RNA, thereby modulating the translation of specific mRNAs. Here we show that the persistent formation of the eIF4F complex, comprising the eIF4E cap-binding protein, the eIF4G scaffolding protein and the eIF4A RNA helicase, is associated with resistance to anti-BRAF, anti-MEK and anti-BRAF plus anti-MEK drug combinations in BRAF(V600)-mutant melanoma, colon and thyroid cancer cell lines. Resistance to treatment and maintenance of eIF4F complex formation is associated with one of three mechanisms: reactivation of MAPK signalling, persistent ERK-independent phosphorylation of the inhibitory eIF4E-binding protein 4EBP1 or increased pro-apoptotic BCL-2-modifying factor (BMF)-dependent degradation of eIF4G. The development of an in situ method to detect the eIF4E-eIF4G interactions shows that eIF4F complex formation is decreased in tumours that respond to anti-BRAF therapy and increased in resistant metastases compared to tumours before treatment. Strikingly, inhibiting the eIF4F complex, either by blocking the eIF4E-eIF4G interaction or by targeting eIF4A, synergizes with inhibiting BRAF(V600) to kill the cancer cells. eIF4F not only appears to be an indicator of both innate and acquired resistance but also is a promising therapeutic target. Combinations of drugs targeting BRAF (and/or MEK) and eIF4F may overcome most of the resistance mechanisms arising in BRAF(V600)-mutant cancers.

  2. [Increasing activity of a monoamine oxidase by random mutation].

    PubMed

    Chen, Xuejun; Ma, Yuanhui; Shao, Jianhua; Lai, Dunyue; Wang, Zhiguo; Chen, Zhenming

    2014-01-01

    The monoamine oxidase mutant A-1 (F210V/L213C) from Aspergillus niger showed some catalytic activity on mexiletine. To futher improve its activity, the mutant was subjected to directed evolution with MegaWHOP PCR (Megaprimer PCR of Whole Plasmid) and selection employing a high-throughput agar plate-based colorimetric screen. This approach led to the identification of a mutant ep-1, which specific activity was 189% of that for A-1. The ep-1 also showed significantly improved enantioselectivity, with the E value increased from 101 to 282; its kinetic k(cat)/K(m) value increased from 0.001 51 mmol/(L x s) to 0.002 89 mmol/(L x s), suggesting that catalytic efficiency of ep-1 had been improved. The mutant showed obviously higher specific activities on 7 of all tested 11 amines substrates, and the others were comparable. Sequence analysis revealed that there was a new mutation T162A on ep-1. The molecular dynamics simulation indicated that T162A may affect the secondary structure of the substrate channel and expand the binding pocket. PMID:24818485

  3. Overcoming acquired resistance to kinase inhibition: the cases of EGFR, ALK and BRAF.

    PubMed

    Giroux, Simon

    2013-01-15

    In the past decade, several kinase inhibitors have been approved based on their clinical benefit for cancer patients. Unfortunately, in many cases, patients develop resistance to these agents via secondary mutations and alternative mechanisms. This review will focus on the cases of acquired resistance to EGFR and ALK inhibitors for non-small cell lung cancer patients and BRAF inhibitors for melanoma patients. I will overview the main causes of acquired resistance, and explore the chemical scaffolds as well as combination of drugs, used to tackle these major causes of resistance. PMID:23245516

  4. The next generation of metastatic melanoma: uncovering the genetic variants for anti-BRAF therapy response.

    PubMed

    Pinto, Rosamaria; De Summa, Simona; Strippoli, Sabino; Pilato, Brunella; Azzariti, Amalia; Guida, Gabriella; Guida, Michele; Tommasi, Stefania

    2016-05-01

    Metastatic melanoma (MM) is a highly aggressive cancer with a median overall survival of 6-9 months, notwithstanding the numerous efforts in development of new therapeutic approaches. To this aim we tested the clinical applicability of the Ion Torrent Personal Genome Machine to simultaneously screen MM patients in order to individuate new or already known SNPs and mutations able to predict the duration of response to BRAF inhibitors. An Ampliseq Custom Panel, including 11 crucial full length genes involved in melanoma carcinogenesis and therapy response pathways, was created and used to analyze 25 MM patients. We reported BRAFV600 and NRASQ61 mutations in 68% and 24% of samples, respectively. Moreover, we more frequently identified the following alterations related to BRAF status: PIK3CAI391M (44%) and KITD737N (36%) mutations, CTLA4T17A (52%), MC1RV60L (32%) and MITFS473A (60%) polymorphisms. Considering the progression free survival (PFS), statistical analyses showed that BRAFV600 patients without any of these more frequent alterations had a higher median PFS. Protein structure changes seem to be due to these variants by in silico analysis. In conclusion, a Next-Generation Sequencing approach with custom panel may provide new information to evaluate tumor-specific therapeutic susceptibility and individual prognosis to improve the care of MM patients.

  5. The next generation of metastatic melanoma: uncovering the genetic variants for anti-BRAF therapy response

    PubMed Central

    Pinto, Rosamaria; De Summa, Simona; Strippoli, Sabino; Pilato, Brunella; Azzariti, Amalia; Guida, Gabriella; Guida, Michele; Tommasi, Stefania

    2016-01-01

    Metastatic melanoma (MM) is a highly aggressive cancer with a median overall survival of 6–9 months, notwithstanding the numerous efforts in development of new therapeutic approaches. To this aim we tested the clinical applicability of the Ion Torrent Personal Genome Machine to simultaneously screen MM patients in order to individuate new or already known SNPs and mutations able to predict the duration of response to BRAF inhibitors. An Ampliseq Custom Panel, including 11 crucial full length genes involved in melanoma carcinogenesis and therapy response pathways, was created and used to analyze 25 MM patients. We reported BRAFV600 and NRASQ61 mutations in 68% and 24% of samples, respectively. Moreover, we more frequently identified the following alterations related to BRAF status: PIK3CAI391M (44%) and KITD737N (36%) mutations, CTLA4T17A (52%), MC1RV60L (32%) and MITFS473A (60%) polymorphisms. Considering the progression free survival (PFS), statistical analyses showed that BRAFV600 patients without any of these more frequent alterations had a higher median PFS. Protein structure changes seem to be due to these variants by in silico analysis. In conclusion, a Next-Generation Sequencing approach with custom panel may provide new information to evaluate tumor-specific therapeutic susceptibility and individual prognosis to improve the care of MM patients. PMID:26863566

  6. Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance.

    PubMed

    Cerezo, Michaël; Lehraiki, Abdelali; Millet, Antoine; Rouaud, Florian; Plaisant, Magali; Jaune, Emilie; Botton, Thomas; Ronco, Cyril; Abbe, Patricia; Amdouni, Hella; Passeron, Thierry; Hofman, Veronique; Mograbi, Baharia; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Alcor, Damien; Rabhi, Nabil; Annicotte, Jean-Sébastien; Héliot, Laurent; Gonzalez-Pisfil, Mariano; Robert, Caroline; Moréra, Solange; Virougoux, Armelle; Gual, Philippe; Ali, Maruf M U; Bertolotto, Corine; Hofman, Paul; Ballotti, Robert; Benhida, Rachid; Rocchi, Stéphane

    2016-06-13

    We have discovered and developed a series of molecules (thiazole benzenesulfonamides). HA15, the lead compound of this series, displayed anti-cancerous activity on all melanoma cells tested, including cells isolated from patients and cells that developed resistance to BRAF inhibitors. Our molecule displayed activity against other liquid and solid tumors. HA15 also exhibited strong efficacy in xenograft mouse models with melanoma cells either sensitive or resistant to BRAF inhibitors. Transcriptomic, proteomic, and biochemical studies identified the chaperone BiP/GRP78/HSPA5 as the specific target of HA15 and demonstrated that the interaction increases ER stress, leading to melanoma cell death by concomitant induction of autophagic and apoptotic mechanisms.

  7. Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance.

    PubMed

    Cerezo, Michaël; Lehraiki, Abdelali; Millet, Antoine; Rouaud, Florian; Plaisant, Magali; Jaune, Emilie; Botton, Thomas; Ronco, Cyril; Abbe, Patricia; Amdouni, Hella; Passeron, Thierry; Hofman, Veronique; Mograbi, Baharia; Dabert-Gay, Anne-Sophie; Debayle, Delphine; Alcor, Damien; Rabhi, Nabil; Annicotte, Jean-Sébastien; Héliot, Laurent; Gonzalez-Pisfil, Mariano; Robert, Caroline; Moréra, Solange; Virougoux, Armelle; Gual, Philippe; Ali, Maruf M U; Bertolotto, Corine; Hofman, Paul; Ballotti, Robert; Benhida, Rachid; Rocchi, Stéphane

    2016-06-13

    We have discovered and developed a series of molecules (thiazole benzenesulfonamides). HA15, the lead compound of this series, displayed anti-cancerous activity on all melanoma cells tested, including cells isolated from patients and cells that developed resistance to BRAF inhibitors. Our molecule displayed activity against other liquid and solid tumors. HA15 also exhibited strong efficacy in xenograft mouse models with melanoma cells either sensitive or resistant to BRAF inhibitors. Transcriptomic, proteomic, and biochemical studies identified the chaperone BiP/GRP78/HSPA5 as the specific target of HA15 and demonstrated that the interaction increases ER stress, leading to melanoma cell death by concomitant induction of autophagic and apoptotic mechanisms. PMID:27238082

  8. Enhancing Human Spermine Synthase Activity by Engineered Mutations

    PubMed Central

    Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil

    2013-01-01

    Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. PMID:23468611

  9. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.

    PubMed

    Yang, Gloria; Hong, Nansook; Baier, Florian; Jackson, Colin J; Tokuriki, Nobuhiko

    2016-08-16

    How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.

  10. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.

    PubMed

    Yang, Gloria; Hong, Nansook; Baier, Florian; Jackson, Colin J; Tokuriki, Nobuhiko

    2016-08-16

    How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution. PMID:27444875

  11. Error-prone polymerase activity causes multinucleotide mutations in humans

    PubMed Central

    Nielsen, Rasmus

    2014-01-01

    About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes, demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived alleles, with GC → AA, GA → TT, and their reverse complements making up 27% of the total. These mutations have been previously shown to dominate the spectrum of the error-prone polymerase Pol ζ, suggesting that low-fidelity DNA replication by Pol ζ is at least partly responsible for the MNMs that are segregating in the human population. We develop statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the presence of complex mutations. PMID:25079859

  12. Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells

    PubMed Central

    Yun, Jihye; Rago, Carlo; Cheong, Ian; Pagliarini, Ray; Angenendt, Philipp; Rajagopalan, Harith; Schmidt, Kerstin; Wilson, James K. V.; Markowitz, Sandy; Zhou, Shibin; Diaz, Luis A.; Velculescu, Victor; Lengauer, Christoph; Kinzler, Kenneth W.; Vogelstein, Bert; Papadopoulos, Nickolas

    2010-01-01

    Tumor progression is driven by genetic mutations, but little is known about the environmental conditions that select for these mutations. Studying the transcriptomes of paired colorectal cancer cell lines that differed only in the mutational status of their KRAS or BRAF genes, we found that GLUT1, encoding glucose transporter-1, was one of three genes consistently upregulated in cells with KRAS or BRAF mutations. The mutant cells exhibited enhanced glucose uptake and glycolysis and survived in low glucose conditions, phenotypes that all required GLUT1 expression. In contrast, when cells with wild-type KRAS alleles were subjected to a low glucose environment, very few cells survived. Most surviving cells expressed high levels of GLUT1 and 4% of these survivors had acquired new KRAS mutations. The glycolysis inhibitor, 3-bromopyruvate preferentially suppressed the growth of cells with KRAS or BRAF mutations. Together, these data suggest that glucose deprivation can drive the acquisition of KRAS pathway mutations in human tumors. PMID:19661383

  13. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib.

    PubMed

    Sinnberg, Tobias; Makino, Elena; Krueger, Marcel A; Velic, Ana; Macek, Boris; Rothbauer, Ulrich; Groll, Nicola; Pötz, Oliver; Czemmel, Stefan; Niessner, Heike; Meier, Friedegund; Ikenberg, Kristian; Garbe, Claus; Schittek, Birgit

    2016-06-01

    Acquired resistance to second generation BRAF inhibitors (BRAFis), like vemurafenib is limiting the benefits of long term targeted therapy for patients with malignant melanomas that harbor BRAF V600 mutations. Since many resistance mechanisms have been described, most of them causing a hyperactivation of the MAPK- or PI3K/AKT signaling pathways, one potential strategy to overcome BRAFi resistance in melanoma cells would be to target important common signaling nodes. Known factors that cause secondary resistance include the overexpression of receptor tyrosine kinases (RTKs), alternative splicing of BRAF or the occurrence of novel mutations in MEK1 or NRAS. In this study we show that β-catenin is stabilized and translocated to the nucleus in approximately half of the melanomas that were analyzed and which developed secondary resistance towards BRAFi. We further demonstrate that β-catenin is involved in the mediation of resistance towards vemurafenib in vitro and in vivo. Unexpectedly, β-catenin acts mainly independent of the TCF/LEF dependent canonical Wnt-signaling pathway in resistance development, which partly explains previous contradictory results about the role of β-catenin in melanoma progression and therapy resistance. We further demonstrate that β-catenin interacts with Stat3 after chronic vemurafenib treatment and both together cooperate in the acquisition and maintenance of resistance towards BRAFi. PMID:27428425

  14. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  15. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity.

  16. Clinical, molecular and immune analysis of dabrafenib and trametinib in metastatic melanoma patients that progressed on BRAF inhibitor monotherapy: a phase II clinical trial

    PubMed Central

    Chen, Guo; McQuade, Jennifer L.; Panka, David J.; Hudgens, Courtney W.; Amin-Mansour, Ali; Mu, Xinmeng Jasmine; Bahl, Samira; Jane-Valbuena, Judit; Wani, Khalida M.; Reuben, Alexandre; Creasy, Caitlyn A.; Jiang, Hong; Cooper, Zachary A.; Roszik, Jason; Bassett, Roland L.; Joon, Aron Y.; Simpson, Lauren M.; Mouton, Rosalind D.; Glitza, Isabella C.; Patel, Sapna P.; Hwu, Wen-Jen; Amaria, Rodabe N.; Diab, Adi; Hwu, Patrick; Lazar, Alexander J.; Wargo, Jennifer A.; Garraway, Levi A.; Tetzlaff, Michael T.; Sullivan, Ryan J.; Kim, Kevin B.; Davies, Michael A.

    2016-01-01

    Importance Combined treatment with dabrafenib and trametinib (CombiDT) achieves clinical responses in only ~15% of BRAF inhibitor (BRAFi)-refractory metastatic melanoma patients, in contrast to the high activity observed in BRAFi-naïve patients. Identifying correlates of response and mechanisms of resistance in this population will facilitate clinical management and rational therapeutic development. Objective To determine correlates of benefit from CombiDT therapy in BRAFi-refractory metastatic melanoma patients. Design Single-center, single-arm prospective phase II study of CombiDT in patients with BRAFV600 metastatic melanoma resistant to BRAFi monotherapy conducted between September 2012 and October 2014. Setting University of Texas MD Anderson Cancer Center. Participants 28 patients were screened and 23 enrolled. Key eligibility criteria included: BRAFV600 metastatic melanoma, prior BRAFi monotherapy, measurable disease (RECIST 1.1), and accessible tumor for biopsy. Intervention Patients were treated with dabrafenib (150 mg twice daily) and trametinib (2 mg daily) continuously until disease progression or intolerance. All participants underwent a mandatory baseline biopsy, and optional biopsies were performed on-treatment and at progression. Whole-exome sequencing, RT-PCR for BRAF splicing, RNAseq and IHC were performed on tumor samples, and blood was analyzed for levels of circulating BRAFV600. Main outcome measures Primary endpoint was overall response rate (ORR). Progression-free survival (PFS) and overall survival (OS) were secondary clinical endpoints. Results Among evaluable patients, the confirmed ORR was 10%, disease control rate (DCR) was 45%, and median PFS was 13 weeks. Clinical benefit was associated with duration of prior BRAFi >6 months (DCR 73% vs. 11% for ≤6 months, p=0.02) and decrease in circulating BRAFV600 at day 8 of cycle 1 (DCR 75% vs. 18% for no decrease, p=0.015), but not by pre-treatment MAPK pathway mutations or activation. On

  17. G2385R and I2020T Mutations Increase LRRK2 GTPase Activity

    PubMed Central

    Jang, Jihoon; Joe, Eun-hye; Son, Ilhong; Seol, Wongi

    2016-01-01

    The LRRK2 mutation is a major causal mutation in familial Parkinson's disease. Although LRRK2 contains functional GTPase and kinase domains and their activities are altered by pathogenic mutations, most studies focused on LRRK2 kinase activity because the most prevalent mutant, G2019S, enhances kinase activity. However, the G2019S mutation is extremely rare in the Asian population. Instead, the G2385R mutation was reported as a major risk factor in the Asian population. Similar to other LRRK2 studies, G2385R studies have also focused on kinase activity. Here, we investigated GTPase activities of G2385R with other LRRK2 mutants, such as G2019S, R1441C, and I2020T, as well as wild type (WT). Our results suggest that both I2020T and G2385R contain GTPase activities stronger than that of WT. A kinase assay using the commercial recombinant proteins showed that I2020T harbored stronger activity, whereas G2385R had weaker activity than that of WT, as reported previously. This is the first report of LRRK2 I2020T and G2385R GTPase activities and shows that most of the LRRK2 mutations that are pathogenic or a risk factor altered either kinase or GTPase activity, suggesting that their physiological consequences are caused by altered enzyme activities. PMID:27314038

  18. Familial adult onset hyperinsulinism due to an activating glucokinase mutation: Implications for pharmacological glucokinase activation

    PubMed Central

    Challis, Benjamin G.; Harris, Julie; Sleigh, Alison; Isaac, Iona; Orme, Steve M.; Seevaratnam, Nandini; Dhatariya, Ketan; Simpson, Helen L.; Semple, Robert K.

    2016-01-01

    Context Glucokinase (GCK) phosphorylates and thereby “traps” glucose in cells, thus serving as a gatekeeper for cellular glucose metabolism, particularly in hepatocytes and pancreatic beta cells. In humans, activating GCK mutations cause familial hyperinsulinaemic hypoglycaemia (GCK-HH), leading to keen interest in the potential of small molecule glucokinase activators (GKAs) as treatments for diabetes mellitus. Many such agents have been developed, however observation of side effects including hypertriglyceridaemia and hepatic steatosis have delayed their clinical development. Objective To describe the clinical presentation and metabolic profiles of affected family members in a kindred with familial hyperinsulinism of adult presentation due to a known activating mutation in GCK. Design Clinical, biochemical and metabolic assessment, and GCK sequencing in affected family members. Results In the 60 year-old female proband, hyperinsulinaemic hypoglycaemia (blood glucose 2.1mmol/mol, insulin 18pmol/l) was confirmed following 34 hours of fasting, however abdominal computed tomography (CT), pancreatic MRI, endoscopic ultrasound, octreotide scintigraphy and selective arterial calcium stimulation failed to localise an insulinoma. A prolonged OGTT revealed fasting hypoglycaemia that was exacerbated after glucose challenge, consistent with dysregulated glucose-stimulated insulin release. A heterozygous activating mutation, p.Val389Leu, in the glucokinase gene (GCK) was found in the proband and four other family members. Of these, two had been investigated elsewhere for recurrent hypoglycaemia in adulthood, while the other two adult relatives were asymptomatic despite profound hypoglycaemia. All three of the available family members with the p.Val389Leu mutation had normal serum lipid profiles, normal rates of fasting hepatic de novo lipogenesis and had hepatic triglyceride levels commensurate with their degree of adiposity. Conclusion Activating GCK mutations may

  19. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency.

  20. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency. PMID:26168032

  1. Activation of Developmentally Mutated Human Globin Genes by Cell Fusion

    NASA Astrophysics Data System (ADS)

    Papayannopoulou, Thalia; Enver, Tariq; Takegawa, Susumu; Anagnou, Nicholas P.; Stamatoyannopoulos, George

    1988-11-01

    Human fetal globin genes are not expressed in hybrid cells produced by the fusion of normal human lymphocytes with mouse erythroleukemia cells. In contrast, when lymphocytes from persons with globin gene developmental mutations (hereditary persistence of fetal hemoglobin) are used for these fusions, fetal globin is expressed in the hybrid cells. Thus, mutations of developmental origin can be reconstituted in vitro by fusing mutant lymphoid cells with differentiated cell lines of the proper lineage. This system can readily be used for analyses, such as globin gene methylation, that normally require large numbers of pure nucleated erythroid cells, which are difficult to obtain.

  2. Combined treatment with dabrafenib and trametinib with immune-stimulating antibodies for BRAF mutant melanoma.

    PubMed

    Homet Moreno, Blanca; Mok, Stephen; Comin-Anduix, Begonya; Hu-Lieskovan, Siwen; Ribas, Antoni

    2016-07-01

    The combination of targeted therapy with BRAF and MEK inhibitors has become the standard of care in patients with BRAF (V600E) mutant melanoma, but responses are not durable. In addition, the impressive clinical benefits with anti-PD-1 and anti-PD-L1 antibodies (Ab) in patients with heavily pretreated metastatic melanoma and the synergistic effect of dabrafenib, trametinib and anti-PD-1 compared with single therapy alone groups support the idea that combining dabrafenib, trametinib and immunotherapy based on PD-1 blockade could be an interesting approach in the treatment of metastatic melanoma. With our mouse model of syngeneic BRAF (V600E) driven melanoma (SM1), we tested whether the addition of an immunostimulatory Ab targeting CD137 (4-1BB) and/or CD134 (OX40) would enhance the antitumor effect of dabrafenib, trametinib and anti-PD-1 or anti-PD-L1 therapy. In vitro studies showed that the combination group of dabrafenib, trametinib and anti-PD-1 increases CD8(+) tumor infiltrating lymphocytes (TILs), as well as CD4(+) T cells and tumor-associated macrophages (TAMs). An upregulation of PD-L1 was observed in the combination of dabrafenib, trametinib and anti-PD-1 therapy. Combination of dabrafenib, trametinib and anti-PD-1, with either anti-CD137 or anti-CD134, showed a superior antitumor effect, but the five-agent combination was not superior to the four-agent combinations. In conclusion, the combination of dabrafenib, trametinib, anti-PD1 or anti-PD-L1 therapy results in robust antitumor activity, which is further improved by adding the immune-stimulating Ab anti-CD137 or anti-CD134. Our findings support the testing of these combinations in patients with BRAF (V600E) mutant metastatic melanoma.

  3. Combined treatment with dabrafenib and trametinib with immune-stimulating antibodies for BRAF mutant melanoma.

    PubMed

    Homet Moreno, Blanca; Mok, Stephen; Comin-Anduix, Begonya; Hu-Lieskovan, Siwen; Ribas, Antoni

    2016-07-01

    The combination of targeted therapy with BRAF and MEK inhibitors has become the standard of care in patients with BRAF (V600E) mutant melanoma, but responses are not durable. In addition, the impressive clinical benefits with anti-PD-1 and anti-PD-L1 antibodies (Ab) in patients with heavily pretreated metastatic melanoma and the synergistic effect of dabrafenib, trametinib and anti-PD-1 compared with single therapy alone groups support the idea that combining dabrafenib, trametinib and immunotherapy based on PD-1 blockade could be an interesting approach in the treatment of metastatic melanoma. With our mouse model of syngeneic BRAF (V600E) driven melanoma (SM1), we tested whether the addition of an immunostimulatory Ab targeting CD137 (4-1BB) and/or CD134 (OX40) would enhance the antitumor effect of dabrafenib, trametinib and anti-PD-1 or anti-PD-L1 therapy. In vitro studies showed that the combination group of dabrafenib, trametinib and anti-PD-1 increases CD8(+) tumor infiltrating lymphocytes (TILs), as well as CD4(+) T cells and tumor-associated macrophages (TAMs). An upregulation of PD-L1 was observed in the combination of dabrafenib, trametinib and anti-PD-1 therapy. Combination of dabrafenib, trametinib and anti-PD-1, with either anti-CD137 or anti-CD134, showed a superior antitumor effect, but the five-agent combination was not superior to the four-agent combinations. In conclusion, the combination of dabrafenib, trametinib, anti-PD1 or anti-PD-L1 therapy results in robust antitumor activity, which is further improved by adding the immune-stimulating Ab anti-CD137 or anti-CD134. Our findings support the testing of these combinations in patients with BRAF (V600E) mutant metastatic melanoma. PMID:27622011

  4. GNA14 Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation.

    PubMed

    Lim, Young H; Bacchiocchi, Antonella; Qiu, Jingyao; Straub, Robert; Bruckner, Anna; Bercovitch, Lionel; Narayan, Deepak; McNiff, Jennifer; Ko, Christine; Robinson-Bostom, Leslie; Antaya, Richard; Halaban, Ruth; Choate, Keith A

    2016-08-01

    Vascular tumors are among the most common neoplasms in infants and children; 5%-10% of newborns present with or develop lesions within the first 3 months of life. Most are benign infantile hemangiomas that typically regress by 5 years of age; other vascular tumors include congenital tufted angiomas (TAs), kaposiform hemangioendotheliomas (KHEs), and childhood lobular capillary hemangiomas (LCHs). Some of these lesions can become locally invasive and unresponsive to pharmacologic intervention, leading to significant complications. Recent investigation has revealed that activating mutations in HRAS, KRAS, NRAS, GNAQ, and GNA11 can cause certain types of rare childhood vascular tumors, and we have now identified causal recurrent somatic activating mutations in GNA14 by whole-exome and targeted sequencing. We found somatic activating GNA14 c.614A>T (p.Gln205Leu) mutations in one KHE, one TA, and one LCH and a GNA11 c.547C>T (p.Arg183Cys) mutation in two LCH lesions. We examined mutation pathobiology via expression of mutant GNA14 or GNA11 in primary human endothelial cells and melanocytes. GNA14 and GNA11 mutations induced changes in cellular morphology and rendered cells growth-factor independent by upregulating the MAPK pathway. Our findings identify GNA14 mutations as a cause of childhood vascular tumors, offer insight into mechanisms of oncogenic transformation by mutations affecting Gaq family members, and identify potential targets for therapeutic intervention. PMID:27476652

  5. UV Signature Mutations

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  6. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis

    PubMed Central

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-01-01

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  7. No evidence of oncogenic KRAS mutations in squamous cell carcinomas of the anogenital tract and head and neck region independent of human papillomavirus and p16(INK4a) status.

    PubMed

    Prigge, Elena-Sophie; Urban, Katharina; Stiegler, Sandrine; Müller, Meike; Kloor, Matthias; Mai, Sabine; Ottstadt, Martine; Lohr, Frank; Wenz, Frederik; Wagner, Steffen; Wittekindt, Claus; Klussmann, Jens Peter; Hampl, Monika; von Knebel Doeberitz, Magnus; Reuschenbach, Miriam

    2014-11-01

    Carcinogenesis of squamous cell carcinomas (SCCs) in the anogenital tract and head and neck region is heterogeneous. A substantial proportion of SCC in the vulva, anus, and head and neck follows a human papillomavirus (HPV)-induced carcinogenic pathway. However, the molecular pathways of carcinogenesis in the HPV-independent lesions are not completely understood. We hypothesized that oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations might represent a carcinogenic mechanism in a proportion of those HPV-negative cancers. Considering the repeated observation of KRAS-associated p16(INK4a) overexpression in human tumors, it was assumed that KRAS mutations might be particularly present in the group of HPV-negative, p16(INK4a)-positive cancers. To test this hypothesis, we analyzed 66 anal, vulvar, and head and neck SCC with known immunohistochemical p16(INK4a) and HPV DNA status for KRAS mutations in exon 2 (codons 12, 13, and 15). We enriched the tumor collection with HPV DNA-negative, p16(INK4a)-positive cancers. A subset of 37 cancers was also analyzed for mutations in the B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene. None of the 66 tumors harbored mutations in KRAS exon 2, thus excluding KRAS mutations as a common event in SCC of the anogenital and head and neck region and as a cause of p16(INK4a) expression in these tumors. In addition, no BRAF mutations were detected in the 37 analyzed tumors. Further studies are required to determine the molecular events underlying HPV-negative anal, vulvar, and head and neck carcinogenesis. Considering HPV-independent p16(INK4a) overexpression in some of these tumors, particular focus should be placed on alternative upstream activators and potential downstream disruption of the p16(INK4a) pathway.

  8. Requisite analytic and diagnostic performance characteristics for the clinical detection of BRAF V600E in hairy cell leukemia: a comparison of 2 allele-specific PCR assays.

    PubMed

    Brown, Noah A; Weigelin, Helmut C; Bailey, Nathanael; Laliberte, Julie; Elenitoba-Johnson, Kojo S J; Lim, Megan S; Betz, Bryan L

    2015-09-01

    Detection of high-frequency BRAF V600E mutations in hairy cell leukemia (HCL) has important diagnostic utility. However, the requisite analytic performance for a clinical assay to routinely detect BRAF V600E mutations in HCL has not been clearly defined. In this study, we sought to determine the level of analytic sensitivity needed for formalin-fixed, paraffin-embedded (FFPE) and frozen samples and to compare the performance of 2 allele-specific polymerase chain reaction (PCR) assays. Twenty-nine cases of classic HCL, including 22 FFPE bone marrow aspirates and 7 frozen specimens from blood or bone marrow were evaluated using a laboratory-developed allele-specific PCR assay and a commercially available allele-specific quantitative PCR assay-myT BRAF Ultra. Also included were 6 HCL variant and 40 non-HCL B-cell lymphomas. Two cases of classic HCL, 1 showing CD5 expression, were truly BRAF V600E-negative based on negative results by PCR and sequencing despite high-level leukemic involvement. Among the remaining 27 specimens, V600E mutations were detected in 88.9% (17/20 FFPE; 7/7 frozen) and 81.5% (15/20 FFPE; 7/7 frozen), for the laboratory-developed and commercial assays, respectively. No mutations were detected among the 46 non-HCL lymphomas. Both assays showed an analytic sensitivity of 0.3% involvement in frozen specimens and 5% in FFPE tissue. On the basis of these results, an assay with high analytic sensitivity is required for the clinical detection of V600E mutations in HCL specimens. Two allele-specific PCR assays performed well in both frozen and FFPE bone marrow aspirates, although detection in FFPE tissue required 5% or more involvement.

  9. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  10. Nanofluidic Digital PCR and Extended Genotyping of RAS and BRAF for Improved Selection of Metastatic Colorectal Cancer Patients for Anti-EGFR Therapies.

    PubMed

    Azuara, Daniel; Santos, Cristina; Lopez-Doriga, Adriana; Grasselli, Julieta; Nadal, Marga; Sanjuan, Xavier; Marin, Fátima; Vidal, Joana; Montal, Robert; Moreno, Victor; Bellosillo, Beatriz; Argiles, Guillem; Elez, Elena; Dienstmann, Rodrigo; Montagut, Clara; Tabernero, Josep; Capellá, Gabriel; Salazar, Ramon

    2016-05-01

    The clinical significance of low-frequent RAS pathway-mutated alleles and the optimal sensitivity cutoff value in the prediction of response to anti-EGFR therapy in metastatic colorectal cancer (mCRC) patients remains controversial. We aimed to evaluate the added value of genotyping an extended RAS panel using a robust nanofluidic digital PCR (dPCR) approach. A panel of 34 hotspots, including RAS (KRAS and NRAS exons 2/3/4) and BRAF (V600E), was analyzed in tumor FFPE samples from 102 mCRC patients treated with anti-EGFR therapy. dPCR was compared with conventional quantitative PCR (qPCR). Response rates, progression-free survival (PFS), and overall survival (OS) were correlated to the mutational status and the mutated allele fraction. Tumor response evaluations were not available in 9 patients and were excluded for response rate analysis. Twenty-two percent of patients were positive for one mutation with qPCR (mutated alleles ranged from 2.1% to 66.6%). Analysis by dPCR increased the number of positive patients to 47%. Mutated alleles for patients only detected by dPCR ranged from 0.04% to 10.8%. An inverse correlation between the fraction of mutated alleles and radiologic response was observed. ROC analysis showed that a fraction of 1% or higher of any mutated alleles offered the best predictive value for all combinations of RAS and BRAF analysis. In addition, this threshold also optimized prediction both PFS and OS. We conclude that mutation testing using an extended gene panel, including RAS and BRAF with a threshold of 1% improved prediction of response to anti-EGFR therapy. Mol Cancer Ther; 15(5); 1106-12. ©2016 AACR.

  11. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    PubMed Central

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G.; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W.; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P.; Jaiswal, Siddhartha; Ebert, Benjamin L.; Rodig, Scott J.; Tyner, Jeffrey W.; Marto, Jarrod A.; Weinstock, David M.; Lane, Andrew A.

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 7 of 8 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  12. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity

    PubMed Central

    Pinto, Yishay; Gabay, Orshay; Arbiza, Leonardo; Sams, Aaron J.; Keinan, Alon

    2016-01-01

    The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce—in multiple types of cancer—enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3—following its rapid expansion in primates—can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences. PMID:27056836

  13. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma.

    PubMed

    Regairaz, Marie; Munier, Fabienne; Sartelet, Hervé; Castaing, Marine; Marty, Virginie; Renauleaud, Céline; Doux, Camille; Delbé, Jean; Courty, José; Fabre, Monique; Ohta, Shigeru; Viehl, Philippe; Michiels, Stefan; Valteau-Couanet, Dominique; Vassal, Gilles

    2016-02-01

    Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma. PMID:26687816

  14. Activating PI3Kδ mutations in a cohort of 669 patients with primary immunodeficiency.

    PubMed

    Elgizouli, M; Lowe, D M; Speckmann, C; Schubert, D; Hülsdünker, J; Eskandarian, Z; Dudek, A; Schmitt-Graeff, A; Wanders, J; Jørgensen, S F; Fevang, B; Salzer, U; Nieters, A; Burns, S; Grimbacher, B

    2016-02-01

    The gene PIK3CD codes for the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), and is expressed solely in leucocytes. Activating mutations of PIK3CD have been described to cause an autosomal dominant immunodeficiency that shares clinical features with common variable immunodeficiency (CVID). We screened a cohort of 669 molecularly undefined primary immunodeficiency patients for five reported mutations (four gain-of-function mutations in PIK3CD and a loss of function mutation in PIK3R1) using pyrosequencing. PIK3CD mutations were identified in three siblings diagnosed with CVID and two sporadic cases with a combined immunodeficiency (CID). The PIK3R1 mutation was not identified in the cohort. Our patients with activated PI3Kδ syndrome (APDS) showed a range of clinical and immunological findings, even within a single family, but shared a reduction in naive T cells. PIK3CD gain of function mutations are more likely to occur in patients with defective B and T cell responses and should be screened for in CVID and CID, but are less likely in patients with a pure B cell/hypogammaglobulinaemia phenotype. PMID:26437962

  15. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma.

    PubMed

    Okosun, Jessica; Wolfson, Rachel L; Wang, Jun; Araf, Shamzah; Wilkins, Lucy; Castellano, Brian M; Escudero-Ibarz, Leire; Al Seraihi, Ahad Fahad; Richter, Julia; Bernhart, Stephan H; Efeyan, Alejo; Iqbal, Sameena; Matthews, Janet; Clear, Andrew; Guerra-Assunção, José Afonso; Bödör, Csaba; Quentmeier, Hilmar; Mansbridge, Christopher; Johnson, Peter; Davies, Andrew; Strefford, Jonathan C; Packham, Graham; Barrans, Sharon; Jack, Andrew; Du, Ming-Qing; Calaminici, Maria; Lister, T Andrew; Auer, Rebecca; Montoto, Silvia; Gribben, John G; Siebert, Reiner; Chelala, Claude; Zoncu, Roberto; Sabatini, David M; Fitzgibbon, Jude

    2016-02-01

    Follicular lymphoma is an incurable B cell malignancy characterized by the t(14;18) translocation and mutations affecting the epigenome. Although frequent gene mutations in key signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined, the spectrum of these mutations typically overlaps with that in the closely related diffuse large B cell lymphoma (DLBCL). Using a combination of discovery exome and extended targeted sequencing, we identified recurrent somatic mutations in RRAGC uniquely enriched in patients with follicular lymphoma (17%). More than half of the mutations preferentially co-occurred with mutations in ATP6V1B2 and ATP6AP1, which encode components of the vacuolar H(+)-ATP ATPase (V-ATPase) known to be necessary for amino acid-induced activation of mTORC1. The RagC variants increased raptor binding while rendering mTORC1 signaling resistant to amino acid deprivation. The activating nature of the RRAGC mutations, their existence in the dominant clone and their stability during disease progression support their potential as an excellent candidate for therapeutic targeting. PMID:26691987

  16. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma

    PubMed Central

    Wang, Jun; Araf, Shamzah; Wilkins, Lucy; Castellano, Brian M.; Escudero-Ibarz, Leire; Al Seraihi, Ahad Fahad; Richter, Julia; Bernhart, Stephan H.; Efeyan, Alejo; Iqbal, Sameena; Matthews, Janet; Clear, Andrew; Guerra-Assunção, José Afonso; Bödör, Csaba; Quentmeier, Hilmar; Mansbridge, Christopher; Johnson, Peter; Davies, Andrew; Strefford, Jonathan C.; Packham, Graham; Barrans, Sharon; Jack, Andrew; Du, Ming-Qing; Calaminici, Maria; Lister, T. Andrew; Auer, Rebecca; Montoto, Silvia; Gribben, John G.; Siebert, Reiner; Chelala, Claude; Zoncu, Roberto; Sabatini, David M.; Fitzgibbon, Jude

    2015-01-01

    Follicular lymphoma is an incurable B-cell malignancy1 characterized by the t(14;18) and mutations in one or more components of the epigenome2,3. Whilst frequent gene mutations in signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined2-7, the spectrum of these mutations typically overlap with the closely-related diffuse large B cell lymphoma (DLBCL)6-13. A combination of discovery exome and extended targeted sequencing revealed recurrent somatic mutations in RRAGC uniquely enriched in FL patients (17%). More than half of the mutations preferentially co-occurred with ATP6V1B2 and ATP6AP1 mutations, components of the vacuolar H+-adenosine triphosphate ATPase (v-ATPase) known to be necessary for amino acid-induced mTORC1 activation. The RagC mutants increased raptor binding whilst rendering mTORC1 signaling resistant to amino acid deprivation. Collectively, the activating nature of the RRAGC mutations, their existence within the dominant clone and stability during disease progression supports their potential as an excellent candidate to be therapeutically exploited. PMID:26691987

  17. Active-to-absorbing-state phase transition in an evolving population with mutation

    NASA Astrophysics Data System (ADS)

    Sarkar, Niladri

    2015-10-01

    We study the active to absorbing phase transition (AAPT) in a simple two-component model system for a species and its mutant. We uncover the nontrivial critical scaling behavior and weak dynamic scaling near the AAPT that shows the significance of mutation and highlights the connection of this model with the well-known directed percolation universality class. Our model should be a useful starting point to study how mutation may affect extinction or survival of a species.

  18. Impact of kinase activating and inactivating patient mutations on binary PKA interactions

    PubMed Central

    Röck, Ruth; Mayrhofer, Johanna E.; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions. PMID:26347651

  19. Management of a patient with advanced BRAF-mutant melanoma.

    PubMed

    Ashworth, Michelle T; Daud, Adil

    2014-03-01

    A 49-year-old man initially diagnosed in 1995 with cutaneous melanoma presented to the authors' institution in 2009 with metastatic, BRAF V600E-mutant melanoma. His treatment course to date has included surgery, adjuvant radiotherapy, and interferon, metastasectomies, granulocyte-macrophage colony-stimulating factors, a clinical trial with the BRAF inhibitor vemurafenib (PLX-4032), clinical trial with combination BRAF plus MEK inhibition with vemurafenib plus GDC-0973, and combination targeted and immune therapy with vemurafenib plus the anti-CTLA4 antibody ipilimumab. This case report illustrates the long-term management of a patient with metastatic melanoma using targeted and immune therapy, evolution in treatment guidelines, next directions in research, and the critical role of clinical trials in advancement of patient care.

  20. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.

  1. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo

    PubMed Central

    Bonner, Michael Y.; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S.; Vergani, Elisabetta; Arbiser, Jack L.

    2016-01-01

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo. PMID:26871475

  2. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo.

    PubMed

    Bonner, Michael Y; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S; Vergani, Elisabetta; Arbiser, Jack L

    2016-03-15

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo. PMID:26871475

  3. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  4. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    PubMed

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  5. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms

    PubMed Central

    Tian, Ruiyuan; Chang, Jianmei; Li, Jianlan; Tan, Yanhong; Xu, Zhifang; Ren, Fanggang; Zhao, Junxia; Pan, Jie; Zhang, Na; Wang, Xiaojuan; He, Jianxia; Yang, Wanfang; Wang, Hongwei

    2015-01-01

    Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs). In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL). CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET) and 5.3% of cases with primary myelofibrosis (PMF). Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR). Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP) expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F. PMID:26375990

  6. Tunable-combinatorial Mechanisms of Acquired Resistance Limit the Efficacy of BRAF/MEK Co-targeting but Result in Melanoma Drug Addiction

    PubMed Central

    Moriceau, Gatien; Hugo, Willy; Hong, Aayoung; Shi, Hubing; Kong, Xiangju; Yu, Clarissa C.; Koya, Richard C.; Samatar, Ahmed A.; Khanlou, Negar; Braun, Jonathan; Ruchalski, Kathleen; Seifert, Heike; Larkin, James; Dahlman, Kimberly B.; Johnson, Douglas B.; Algazi, Alain; Sosman, Jeffrey A.; Ribas, Antoni; Lo, Roger S.

    2014-01-01

    SUMMARY Combined BRAF and MEK targeted therapy improves upon BRAF inhibitor (BRAFi) therapy but is still beset by acquired resistance. We show that melanomas acquire resistance to combined BRAF and MEK inhibition by augmenting or combining mechanisms of single-agent BRAFi resistance. These double-drug resistance-associated genetic configurations significantly altered molecular interactions underlying MAPK pathway reactivation. V600EBRAF, expressed at supra-physiological levels because of V600EBRAF ultra-amplification, dimerized with and activated CRAF. In addition, MEK mutants enhanced interaction with over-expressed V600EBRAF via a regulatory interface at R662 of V600EBRAF. Importantly, melanoma cell lines selected for resistance to BRAFi+MEKi, but not those to BRAFi alone, displayed robust drug addiction, providing a potentially exploitable therapeutic opportunity. PMID:25600339

  7. Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma

    PubMed Central

    Mann, Michael B; Black, Michael A; Jones, Devin J; Ward, Jerrold M; Yew, Christopher Chin Kuan; Newberg, Justin Y; Dupuy, Adam J; Rust, Alistair G; Bosenberg, Marcus W; McMahon, Martin; Print, Cristin G; Copeland, Neal G; Jenkins, Nancy A

    2016-01-01

    Although nearly half of human melanomas harbor oncogenic BRAFV600E mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in BrafV600E mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAFV600E melanoma and discover new genes with potential clinical importance in human melanoma. PMID:25848750

  8. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    PubMed

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s).

  9. Segmental basal cell naevus syndrome caused by an activating mutation in smoothened.

    PubMed

    Khamaysi, Z; Bochner, R; Indelman, M; Magal, L; Avitan-Hersh, E; Sarig, O; Sprecher, E; Bergman, R

    2016-07-01

    Aberrant sonic hedgehog signalling, mostly due to PTCH1 mutations, has been shown to play a central role in the pathogenesis of basal cell carcinoma (BCC), as well as in basal cell naevus syndrome (BCNS). Mutations in smoothened (SMO) encoding a receptor for sonic hedgehog have been reported in sporadic BCCs but not in BCNS. We report a case with multiple BCCs, pits and comedones in a segmental distribution over the upper part of the body, along with other findings compatible with BCNS. Histopathologically, there were different types of BCC. A heterozygous mutation (c.1234C>T, p.L412F) in SMO was detected in three BCCs but not in peripheral blood lymphocytes or the uninvolved skin. These were compatible with the type 1 mosaic form of BCNS. The p.L412F mutation was found experimentally to result in increased SMO transactivating activity, and the patient responded to vismodegib therapy. Activating mutations in SMO may cause BCNS. The identification of a gain-of-function mutation in SMO causing a type 1 mosaic form of BCNS further expands our understanding of the pathogenesis of BCC, with implications for the treatment of these tumours, whether sporadic or inherited. PMID:26822128

  10. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations.

    PubMed

    Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo

    2016-01-01

    Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs.

  11. Novel mutations in dihydrolipoamide dehydrogenase deficiency in two cousins with borderline-normal PDH complex activity.

    PubMed

    Cameron, Jessie M; Levandovskiy, Valeriy; Mackay, Neviana; Raiman, Julian; Renaud, Deborah L; Clarke, Joe T R; Feigenbaum, Annette; Elpeleg, Orly; Robinson, Brian H

    2006-07-15

    We have diagnosed dihydrolipoamide dehydrogenase (DLD) deficiency in two male second cousins, who presented with markedly different clinical phenotypes. Patient 1 had a recurrent encephalopathy, and patient 2 had microcephaly and lactic acidosis. Their presentation is unusual, in that the DLD subunit deficiency had little effect on pyruvate dehydrogenase complex activity, but caused a severe reduction in the activities of other enzymes that utilize this subunit. We have identified two mutations in the DLD gene in each patient. The second cousins have one novel mutation in common resulting in a substitution of isoleucine for threonine (I47T), which has not been previously reported in the literature. Patient 1 has a second mutation that has been reported to be common in the Ashkenazi Jewish population, G229C. Patient 2 has a second mutation, E375K, which has also been previously reported in the literature. Enzyme kinetic measurements on patient fibroblasts show that under certain conditions, one heteroallelic mutation may have a higher K(m). This may account for the differing clinical phenotypes. These findings have important repercussions for other patients with similar clinical phenotypes, as DLD activity is not normally measured in cases with normal PDHc activity.

  12. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site.

    PubMed Central

    Weaver, T.; Lees, M.; Banaszak, L.

    1997-01-01

    Two mutant forms of fumarase C from E. co