Science.gov

Sample records for activating cell surface

  1. Rapidly rendering cells phagocytic through a cell surface display technique and concurrent Rac activation.

    PubMed

    Onuma, Hiroki; Komatsu, Toru; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo; Inoue, Takanari

    2014-07-15

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a time scale of minutes. We simultaneously induced the cell surface display of the C2 domain of milk fat globule epidermal growth factor factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  2. Rapidly rendering cells phagocytic through a cell-surface display technique and concurrent Rac activation

    PubMed Central

    Onuma, Hiroki; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo

    2014-01-01

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well-characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a timescale of minutes. We simultaneously induced the cell-surface display of the C2 domain of milk fat globule-EGF factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell-surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell-surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  3. Cutting edge: cell surface linker for activation of T cells is recruited to microclusters and is active in signaling.

    PubMed

    Balagopalan, Lakshmi; Barr, Valarie A; Kortum, Robert L; Park, Anna K; Samelson, Lawrence E

    2013-04-15

    A controversy has recently emerged regarding the location of the cellular pool of the adapter linker for activation of T cells (LAT) that participates in propagation of signals downstream of the TCR. In one model phosphorylation and direct recruitment of cell surface LAT to activation-induced microclusters is critical for T cell activation, whereas in the other model vesicular, but not surface, LAT participates in these processes. By using a chimeric version of LAT that can be tracked via an extracellular domain, we provide evidence that LAT located at the cell surface can be recruited efficiently to activation-induced microclusters within seconds of TCR engagement. Importantly, we also demonstrate that this pool of LAT at the plasma membrane is rapidly phosphorylated. Our results provide support for the model in which the cell utilizes LAT from the cell surface for rapid responses to TCR stimulation. PMID:23487428

  4. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells

    PubMed Central

    Zhuang, Hanyi; Matsunami, Hiroaki

    2009-01-01

    A fundamental question in olfaction is which odorant receptors (ORs) are activated by a given odorant. A major roadblock to investigate odorant-OR relationship in mammals has been an inability to express ORs in heterologous cells suitable for screening active ligands for ORs. The discovery of the receptor-transporting protein (RTP) family has facilitated the effective cell-surface expression of ORs in heterologous cells. The establishment of a robust heterologous expression system for mammalian ORs facilitates the high-throughput “deorphanization” of these receptors by matching them to their cognate ligands. This protocol details the method used for evaluating the cell-surface expression and measuring the functional activation of ORs of transiently-expressed mammalian odorant receptors in HEK293T cells. The stages of odorant receptor cell-surface expression include cell culture preparation, transfer of cells, transfection, and immunocytochemistry/flow cytometry, odorant stimulation, and luciferase assay. This protocol can be completed in a period of 3 days from transfer of cells to cell-surface expression detection and/or measurement of functional activation. PMID:18772867

  5. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  6. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic

    PubMed Central

    Thavarajah, Thanusi; Medvedev, Sergei; Bowden, Peter; Marshall, John G.; Antonescu, Costin N.

    2015-01-01

    The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute

  7. Minor Role of Plasminogen in Complement Activation on Cell Surfaces

    PubMed Central

    Hyvärinen, Satu; Jokiranta, T. Sakari

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare, but severe thrombotic microangiopathy. In roughly two thirds of the patients, mutations in complement genes lead to uncontrolled activation of the complement system against self cells. Recently, aHUS patients were described with deficiency of the fibrinolytic protein plasminogen. This zymogen and its protease form plasmin have both been shown to interact with complement proteins in the fluid phase. In this work we studied the potential of plasminogen to restrict complement propagation. In hemolytic assays, plasminogen inhibited complement activation, but only when it had been exogenously activated to plasmin and when it was used at disproportionately high concentrations compared to serum. Addition of only the zymogen plasminogen into serum did not hinder complement-mediated lysis of erythrocytes. Plasminogen could not restrict deposition of complement activation products on endothelial cells either, as was shown with flow cytometry. With platelets, a very weak inhibitory effect on deposition of C3 fragments was observed, but it was considered too weak to be significant for disease pathogenesis. Thus it was concluded that plasminogen is not an important regulator of complement on self cells. Instead, addition of plasminogen was shown to clearly hinder platelet aggregation in serum. This was attributed to plasmin causing disintegration of formed platelet aggregates. We propose that reduced proteolytic activity of plasmin on structures of growing thrombi, rather than on complement activation fragments, explains the association of plasminogen deficiency with aHUS. This adds to the emerging view that factors unrelated to the complement system can also be central to aHUS pathogenesis and suggests that future research on the mechanism of the disease should expand beyond complement dysregulation. PMID:26637181

  8. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  9. Anti-epidermal-cell-surface pemphigus antibody detaches viable epidermal cells from culture plates by activation of proteinase.

    PubMed Central

    Farb, R M; Dykes, R; Lazarus, G S

    1978-01-01

    Immunoglobulin from pemphigus patients binds to the surface of mouse epidermal cells in culture. Cells incubated with the pemphigus antibody are easily detached from culture plates whereas cells incubated with serum from normal patients remain on the plate. Pemphigus antibody-mediated cell detachment is blocked by the addition of the proteinase inhibitors soybean trypsin inhibitor and alpha2-macroglobulin to the culture media. Detachable cells are viable, and activation of the complement cascade is not necessary for cell detachment. The anti-cell-surface antibody of pemphigus appears to disrupt adhesion between viable epidermal cells by activation of proteinase. Images PMID:272663

  10. Characterization of fucosyltransferase activity during mouse spermatogenesis: Evidence for a cell surface fucosyltransferase

    SciTech Connect

    Cardullo, R.A.; Armant, D.R.; Millette, C.F. )

    1989-02-21

    Fucosyltransferase activity was quantified in mouse germ cells at different stages of spermatogenesis. Specifically, fucosyltransferase activities of pachytene spermatocytes, round spermatids, and cauda epididymal sperm were compared. Fucosyltranferase activity of mixed germ cells displayed an apparent V{sub max} of 17 pmol (mg of protein){sup {minus}1} min{sup {minus}1} and an apparent K{sub m} of approximately 13 {mu}M for GDP-L-({sup 14}C)fucose in the presence of saturating amounts of asialofetuin at 33{degree}C. Under these conditions, cellular fucosyltransferase activity was found to increase during spermatogenesis. In agreement with assays of intact cells, examination of subcellular fractions indicated that a large fraction of fucosyltransferase activity was associated with the cell surface. The fraction of fucosyltransferase activity that was associated with the cell surface progressively increased throughout spermatogenesis and epididymal maturation so that nearly all of the fucosyltransferase in epididymal sperm was on the cell surface. Specifically, by comparison of activities in the presence and absence of the detergent NP-40, the fraction of fucosyltransferase activity that was associated with the cell surface in pachytene spermatocytes, round spermatids, and epididymal sperm was 0.36, 0.5, and 0.85, respectively. These results suggest that a cell surface fucosyltransferase may be important during differentiation of spermatogenic cells in the testis as well as during epididymal maturation and fertilization.

  11. Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3.

    PubMed

    Yao, Xiaoli; Liu, Hua; Zhang, Xinghua; Zhang, Liang; Li, Xiang; Wang, Changhua; Sun, Shengrong

    2015-01-01

    High levels of cell surface glucose regulated protein 78 (sGRP78) have been implicated in cancer growth, survival, metastasis, and chemotherapy resistance. However, the underlying mechanism remains largely unknown. Here we report that the level of sGRP78 expression in human breast tumors gradually increases during cancer progression. Overexpression of GRP78 significantly enhanced its membrane distribution in human MCF-7 breast cancer cells, but had no effect on endoplasmic reticulum (ER) stress. High levels of sGRP78 facilitated cell proliferation and migration, as well as suppressed cell apoptosis. Neutralization of sGRP78 by a specific antibody against GRP78 alleviated sGRP78-induced cell growth and migration. Importantly, high phosphorylation levels of the signal transducer and activator of transcription 3 (STAT3) were found in human breast tumors that express sGRP78 and MCF-7 cells infected with adenovirus encoding human GRP78. Pretreatment with a GRP78 antibody suppressed STAT3 phosphorylation. Furthermore, genetic and pharmacological inhibition of STAT3 reversed the impacts of GRP78 on cell proliferation, apoptosis, and migration. These findings indicate that STAT3 mediates sGRP78-promoted breast cancer cell growth and migration. PMID:25973748

  12. Lipopolysaccharide increases cell surface P-glycoprotein that exhibits diminished activity in intestinal epithelial cells.

    PubMed

    Mishra, Jayshree; Zhang, Qiuye; Rosson, Jessica L; Moran, John; Dopp, John M; Neudeck, Brien L

    2008-10-01

    Increasingly, it is recognized that commensal microflora regulate epithelial cell processes through the dynamic interaction of pathogen-associated molecular patterns and host pattern recognition receptors such as Toll-like receptor 4 (TLR4). We therefore investigated the effects of bacterial lipopolysaccharide (LPS) on intestinal P-glycoprotein (P-gp) expression and function. Human SW480 (P-gp+/TLR4+) and Caco-2 (P-gp+/TLR4-) cells were treated with medium control or LPS (100 ng/ml) for 24 h prior to study. P-gp function was assessed by measuring the intracellular concentration of rhodamine 123 (Rh123). To confirm P-gp-specific effects, breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 2 (MRP-2/ABCC2) were also analyzed. Treatment of SW480 cells with LPS led to diminished P-gp activity, which could be prevented with polymyxin B (control: 207+/-16 versus LPS: 402+/-22 versus LPS+polymyxin B: 238+/-26 pmoles Rh123/mg protein, p<0.05 control versus LPS). These effects could be blocked by using polymyxin B and were not seen in the P-gp+/TLR4--Caco-2 cell line (control: 771+/-28 versus LPS: 775+/-59 pmoles Rh123/mg protein). Total cellular levels of P-gp did not change in LPS-treated SW480 cells; however, a significant increase in cell surface P-gp was detected. No change in activity, total protein, or apically located MRP-2 was detected following LPS treatment. Sequence analysis confirmed wild-type status of SW480 cells. These data suggest that activation of TLR4 in intestinal epithelial cells leads to an increase in plasma membrane P-gp that demonstrates a diminished capacity to transport substrate. PMID:18687802

  13. NREL Team Creates High-Activity, Durable Platinum Extended Surface Catalyst for Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers with NREL's Fuel Cell team showed that platinum can replace copper nanowires in such a way that high-surface-area and high-specific-activity catalysts are produced, potentially allowing for lower-cost catalysts.

  14. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces

    SciTech Connect

    Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man

    2009-08-28

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21{sup cip1} and p27{sup kip1} and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  15. Protein Kinase C Regulates the Cell Surface Activity of Endothelin-Converting Enzyme-1.

    PubMed

    Smith, A Ian; Lew, Rebecca A; Thomas, Walter G; Tochon-Danguy, Nathalie

    2006-09-01

    The potent vasoconstrictor endothelin is a 21 amino acid peptide whose principal physiological function is to regulate vascular tone. The generation of endothelin is crucially dependent on the local presence and activity of endothelin converting enzyme-1 (ECE-1) expressed on the surface of vascular endothelial cells. In this study, we have shown in endothelial cells that the enzyme is phosphorylated, and that phosphorylation is increased by phorbol ester stimulation of protein kinase C (PKC). Furthermore, by monitoring specific ECE-1 activity on the surface of live cells, we also show that following PKC activation, enzyme activity is significantly increased at the cell surface, where it is positioned to catalyse the generation of active endothelin. We believe this novel finding is unprecedented for a peptide processing enzyme. Indeed, this new knowledge regarding the control of endothelin production by regulating ECE-1 activity at the cell surface opens up a new area of endothelin biology and will provide novel insights into the physiology and pathophysiology of endothelin and endothelin-associated diseases. In addition, the information generated in these studies may provide valuable new insights into potential extra- and intracellular targets for the pharmacological and perhaps even therapeutic regulation of endothelin production and thus vascular tone. PMID:19617920

  16. Cell surface nucleolin is crucial in the activation of the CXCL12/CXCR4 signaling pathway.

    PubMed

    Yang, Xiangshan; Xu, Zhongfa; Li, Daotang; Cheng, Shaomei; Fan, Kaixi; Li, Chengjun; Li, Aiping; Zhang, Jing; Feng, Man

    2014-01-01

    Recently, CXCL12-CXCR4 has been focused on therapeutic strategies for papillary thyroid carcinoma (PTC) and other cancers. At the same time, cell surface nucleolin is also over-expressed in PTC and others. Interestingly, a few reports suggest that either CXCR4 or cell surface nucleolin is a co-receptor for HIV-1 entry into CD4+ T cells, which indicates that there is a relationship between CXCR4 and nucleolin. In this study, antibody and siRNA were used to identify effects of cell surface nucleolin and CXCR4 on cell signaling; soft-agar colony formation assay and Transwell assay were used to determine roles of nucleolin and CXCR4 in cell proliferation and migration. Importantly, co-immunoprecipitation was used to demonstrate the relationship between CXCR4 and nucleolin. Results showed CXCR4 and nucleolin were co-expressed in PTC cell line K1, B-CPAP, and TPC-1. Either cell surface nucleolin or CXCR4 was necessary to prompt extracellular signal-regulated kinase phosphorylation. When blocked, CXCR4 or nucleolin can significantly affect TPC-1 proliferation and migration (p < 0.01). Co-immunoprecipitation analysis identified that nucleolin can bind and interact with CXCR4 to activate CXCR4 signaling. This study suggests that nucleolin is crucial in the activation of CXCR4 signaling, which affects cell growth, migration, and invasiveness. Further, nucleolin may interact with other receptors. Our study also offers new ideas for cancer therapy. PMID:23918302

  17. Spatiotemporal regulation of chemical reaction kinetics of cell surface molecules by active remodeling of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Mayor, Satyajit; Rao, Madan

    2010-03-01

    Cell surface proteins such as lipid tethered GPI-anchored proteins and Ras-proteins are distributed as monomers and nanoclusters on the surface of living cells. Recent work from our laboratory suggests that the spatial distribution and dynamics of formation and breakup of these nanoclusters is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we propose a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. Here we study the consequences of such active actin based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that active remodeling of cortical actin, can give rise to a dramatic increase in the reaction efficiency and output levels. In general, such actin driven clustering of membrane proteins could be a cellular mechanism to spatiotemporally regulate and amplify local chemical reaction rates, in the context of signalling and endocytosis.

  18. Active screen plasma surface modification of polycaprolactone to improve cell attachment.

    PubMed

    Fu, Xin; Sammons, Rachel L; Bertóti, Imre; Jenkins, Mike J; Dong, Hanshan

    2012-02-01

    To tailor polycaprolactone (PCL) surface properties for biomedical applications, film samples of PCL were surface modified by the active screen plasma nitriding (ASPN) technique. The chemical composition and structure were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The wettability of the surface modified polymers was investigated by contact angle and surface energy methods. Biocompatibility of the prepared PCL samples was evaluated in vitro using MC3T3-E1 osteoblast-like cells. The degradability was assessed by determining the self-degradation rate (catalyzed by lipase). The results show that ASPN surface modification can effectively improve osteoblast cell adhesion and spreading on the surface of PCL. The main change in chemical composition is the exchange of some carboxyl groups on the surface for hydroxyl groups. The active-screen plasma nitriding technique has been found to be an effective and practical method to effectively improve osteoblast cell adhesion and spreading on the PCL surface. Such changes have been attributed to the increase in wettablity and generation of new hydroxyl groups by plasma treatment. After active-screen plasma treatment, the PCL film is still degradable, but the enzymatic degradation rate is slower compared with untreated PCL film. PMID:22179939

  19. Bound plasminogen is rate-limiting for cell-surface-mediated activation of plasminogen by urokinase.

    PubMed Central

    Namiranian, S; Naito, Y; Kakkar, V V; Scully, M F

    1995-01-01

    The ability of U937 monocyte-like cells and KATO III cells (a human gastric carcinoma line) to potentiate activation of plasminogen by single-chain urokinase-type plasminogen activator (scu-PA), as mediated by the cell receptor for urokinase (u-PAR), was compared. It was observed that, although the concentration of u-PAR on these cell lines differed considerably (U937 cells: 5000 receptors/cell, Kd 0.35 nM; KATO III cells: 400 receptors/cell, Kd 0.85 nM), the rate of activation of plasminogen by scu-PA in the presence of the same density of each cell line was equivalent. From data generated in the presence of increasing concentrations of scu-PA, the kcat, for plasminogen activation in the presence of each cell line was calculated and found to differ by 26-fold (0.36 s-1 on U937 cells; 9.25 s-1 on KATO III cells). However, the Km for plasminogen with respect to the rate of formation of plasmin was lower than the Kd for binding (0.2 microM compared with 0.5 microM on U937 cells; 0.34 microM compared with 1.6 microM on KATO III cells). A rapid transformation from Glu-plasminogen (native plasminogen with N-terminal Glu) to Lys-plasminogen (plasmin-degraded plasminogen with primarily N-terminal Lys-77) occurred on the surface of U937 cells (unlike KATO III cells), but this transition did not coincide with faster rates of plasminogen activation. From this evidence it is concluded that the accessibility of bound plasminogen acts to limit the rate of activation by cell-bound urokinase. The significance of this proposal is that the proteolytic potential of the cell-mediated activation of plasminogen would be controlled by the accessibility of plasminogen for activation rather than by the concentration of u-PAR (the latter may act to localize proteolysis to appropriate domains on the surface of the cell). PMID:7639718

  20. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    NASA Astrophysics Data System (ADS)

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  1. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    PubMed Central

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna M.; Nowakowska, Maria; Szczubiałka, Krzysztof

    2015-01-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2. PMID:25629028

  2. The mycotoxin deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages.

    PubMed

    Waché, Yann J; Hbabi-Haddioui, Laila; Guzylack-Piriou, Laurence; Belkhelfa, Haouaria; Roques, Christine; Oswald, Isabelle P

    2009-08-21

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. It exhibits several toxic effects including impaired growth and immune dysregulation. Macrophages play pivotal role in the host defense; upon activation, they express several specific cell surface receptors that are important in adhesion and cell signaling. Several studies have demonstrated that DON can affect macrophages, however, very few data are available concerning the effect of DON on human macrophages, and the effect on macrophage cell surface receptors is unknown. In the present study, human blood monocytes, differentiated in vitro into macrophages, were activated with IFN-gamma, in the presence or absence of low concentrations of DON. The expression of CD11c, CD13, CD14, CD18, CD33, CD35, CD54, CD119 and HLA-DP/DQ/DR was analyzed by flow cytometry. As expected, macrophage activation by IFN-gamma upregulated the expression of CD54, CD14, CD119 and HLA-DP/DQ/DR. Incubation with DON decrease the cell surface expression of these activation markers in a dose-dependent manner. When cells were treated with 5muM DON, the mean fluorescence intensity measured for the expression of these receptors was the same as that observed in non-activated macrophages. This inhibitory effect of DON was only observed when the mycotoxin was applied before the activation signal. Taken together, our results suggest that low concentration of DON alter macrophage activation as measured by the expression of cell surface markers. This may have implications for human health when consuming DON contaminated feed. PMID:19549553

  3. Atrial natriuretic peptide degradation by CPA47 cells - Evidence for a divalent cation-independent cell-surface proteolytic activity

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Chen, Y. M.; Whitson, P. A.

    1992-01-01

    Atrial natriuretic peptide (ANP) is rapidly cleared and degraded in vivo. Nonguanylate-cyclase receptors (C-ANPR) and a metalloproteinase, neutral endopeptidase (EC 3.4.24.11) (NEP 24.11), are thought to be responsible for its metabolism. We investigated the mechanisms of ANP degradation by an endothelial-derived cell line, CPA47. CPA47 cells degraded 88 percent of 125I-ANP after 1 h at 37 degrees C as determined by HPLC. Medium preconditioned by these cells degraded 41 percent of the 125I-ANP, and this activity was inhibited by a divalent cation chelator, EDTA. Furthermore, a cell-surface proteolytic activity degraded 125I-ANP in the presence of EDTA when receptor-mediated endocytosis was inhibited either by low temperature (4 degrees C) or by hyperosmolarity at 37 degrees C. The metalloproteinase, NEP 24.11, is unlikely to be the cell-surface peptidase because 125I-ANP is degraded by CPA47 cells at 4 degrees C in the presence of 5 mM EDTA. These data indicate that CPA47 cells can degrade ANP by a novel divalent cation-independent cell-surface proteolytic activity.

  4. Organ transplantation: modulation of T-cell activation pathways initiated by cell surface receptors to suppress graft rejection.

    PubMed

    Weatherly, Kathleen; Braun, Michel Y

    2011-01-01

    T-cell activation depends upon two types of signals: a T-cell-receptor-mediated antigen-specific signal and several non-antigen-specific ones provided by the engagement of costimulatory and/or inhibitory T-cell surface molecules. In clinical transplantation, T-cell costimulatory/inhibitory molecules are involved in determining cytokine production, vascular endothelial cell damage, and induction of transplant rejection. Several of the latest new immunotherapeutic strategies being currently developed to control graft rejection aim at inhibiting alloreactive T-cell function by regulating activating and costimulatory/inhibitory signals to T cells. This article describes the recent development and potential application of these therapies in experimental and pre-clinical transplantation. PMID:20941624

  5. Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63

    NASA Astrophysics Data System (ADS)

    Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V.; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula

    2014-04-01

    To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.

  6. Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration.

    PubMed

    Shiozaki, Kazuhiro; Takahashi, Kohta; Hosono, Masahiro; Yamaguchi, Kazunori; Hata, Keiko; Shiozaki, Momo; Bassi, Rosaria; Prinetti, Alessandro; Sonnino, Sandro; Nitta, Kazuo; Miyagi, Taeko

    2015-05-01

    The plasma membrane-associated sialidase NEU3 plays crucial roles in regulation of transmembrane signaling, and its aberrant up-regulation in various cancers contributes to malignancy. However, it remains uncertain how NEU3 is naturally activated and locates to plasma membranes, because of its Triton X-100 requirement for the sialidase activity in vitro and its often changing subcellular location. Among phospholipids examined, we demonstrate that phosphatidic acid (PA) elevates its sialidase activity 4 to 5 times at 50 μM in vitro at neutral pH and promotes translocation to the cell surface and cell migration through Ras-signaling in HeLa and COS-1 cells. NEU3 was found to interact selectively with PA as assessed by phospholipid array, liposome coprecipitation, and ELISA assays and to colocalize with phospholipase D (PLD) 1 in response to epidermal growth factor (EGF) or serum stimulation. Studies using tagged NEU3 fragments with point mutations identified PA- and calmodulin (CaM)-binding sites around the N terminus and confirmed its participation in translocation and catalytic activity. EGF induced PLD1 activation concomitantly with enhanced NEU3 translocation to the cell surface, as assessed by confocal microscopy. These results suggest that interactions of NEU3 with PA produced by PLD1 are important for regulation of transmembrane signaling, this aberrant acceleration probably promoting malignancy in cancers. PMID:25678627

  7. Activated α2-Macroglobulin Regulates Transcriptional Activation of c-MYC Target Genes through Cell Surface GRP78 Protein.

    PubMed

    Gopal, Udhayakumar; Gonzalez-Gronow, Mario; Pizzo, Salvatore Vincent

    2016-05-13

    Activated α2-macroglobulin (α2M*) signals predominantly through cell surface GRP78 (CS-GRP78) to promote proliferation and survival of cancer cells; however, the molecular mechanism remains obscure. c-MYC is an essential transcriptional regulator that controls cell proliferation. We hypothesize that α2M*/CS-GRP78-evoked key signaling events are required for transcriptional activation of c-MYC target genes. Activation of CS-GRP78 by α2M* requires ligation of the GRP78 primary amino acid sequence (Leu(98)-Leu(115)). After stimulation with α2M*, CS-GRP78 signaling activates 3-phosphoinositide-dependent protein kinase-1 (PDK1) to induce phosphorylation of PLK1, which in turn induces c-MYC transcription. We demonstrate that PLK1 binds directly to c-MYC and promotes its transcriptional activity by phosphorylating Ser(62) Moreover, activated c-MYC is recruited to the E-boxes of target genes FOSL1 and ID2 by phosphorylating histone H3 at Ser(10) In addition, targeting the carboxyl-terminal domain of CS-GRP78 with a mAb suppresses transcriptional activation of c-MYC target genes and impairs cell proliferation. This work demonstrates that α2M*/CS-GRP78 acts as an upstream regulator of the PDK1/PLK1 signaling axis to modulate c-MYC transcription and its target genes, suggesting a therapeutic strategy for targeting c-MYC-associated malignant progression. PMID:27002159

  8. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor regulates cell surface plasminogen activator activity on human trophoblast cells.

    PubMed

    Zhang, J C; Sakthivel, R; Kniss, D; Graham, C H; Strickland, D K; McCrae, K R

    1998-11-27

    The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP/alpha2MR) mediates the internalization of numerous ligands, including prourokinase (pro-UK) and complexes between two-chain urokinase (tc-u-PA) and plasminogen activator inhibitor type-1 (PAI-1). It has been suggested that through its ability to internalize these ligands, LRP/alpha2MR may regulate the expression of plasminogen activator activity on cell surfaces; this hypothesis, however, has not been experimentally confirmed. To address this issue, we assessed the ability of LRP/alpha2MR to regulate plasminogen activator activity on human trophoblast cells, which express both LRP/alpha2MR and the urokinase receptor (uPAR). Trophoblasts internalized and degraded exogenous 125I-pro-UK (primarily following its conversion to tc-u-PA and incorporation into tc-u-PA.PAI complexes) in an LRP/alpha2MR-dependent manner, which was inhibited by the LRP/alpha2MR receptor-associated protein. Receptor-associated protein also caused a approximately 50% reduction in cell surface plasminogen activator activity and delayed the regeneration of unoccupied uPAR by cells on which uPAR were initially saturated with pro-UK. Identical effects were caused by anti-LRP/alpha2MR antibodies. These results demonstrate that LRP/alpha2MR promotes the expression of cell surface plasminogen activator activity on trophoblasts by facilitating the clearance of tc-u-PA.PAI complexes and regeneration of unoccupied cell surface uPAR. PMID:9822706

  9. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.

    PubMed

    Heckmann, M; Douwes, K; Peter, R; Degitz, K

    1998-01-10

    During cutaneous inflammatory reactions the recruitment of circulating leukocytes into the tissue critically depends on the regulated expression of endothelial cell adhesion molecules (CAMs). Various proinflammatory stimuli upregulate endothelial CAMs, including cytokines and UV irradiation. We have investigated the effects of ionizing radiation (IR) on endothelial CAM expression. Organ cultures of normal human skin as well as cultured human dermal microvascular endothelial cells (HDMEC) were exposed to IR. Expression of three major endothelial CAMs was studied in skin organ cultures by immunohistochemistry and in cell culture by Northern blot analysis and flow cytometry. In skin organ cultures vascular immunoreactivity for ICAM-1, E-selectin, and VCAM-1 was strongly induced 24 h after exposure to 5 or 10 Gy of IR, while immunoreactivity for CD31/PECAM-1, a constitutively expressed endothelial cell adhesion molecule, remained unchanged. In cultured HDMEC IR upregulated ICAM-1, VCAM-1, and E-selectin mRNAs and cell surface expression in a time- and dose-dependent fashion. Cellular morphology and viability remained unaltered by IR up to 24 h postirradiation. This study characterizes microvascular activation of adhesion molecule expression in response to ionizing radiation in a clinically relevant IR dose range. The findings also underscore the ability of endothelial cells to integrate environmental electromagnetic stimuli. PMID:9457067

  10. Active Currents and Stresses on the cell surface: Clustering, Instabilities and Budding

    NASA Astrophysics Data System (ADS)

    Rao, Madan

    2011-03-01

    We study the contractile dynamics of a collection of active polar filaments, such as actin, on a two dimensional substrate, using a continuum hydrodynamic description in the presence of spatiotemporal noise. The steady states, characterized by a variety of phases generically consisting of a transient collection of inward pointing asters. We next study the dynamics of particles advected along these active filaments. This is relevant to the dynamics and organization of a large class of cell surface molecules. We make several predictions regarding the statistics of fluctuations of these passive advective particles which we confirm using fluorescence based experiments. We then show how such active patterning of filaments can give rise to membrane stresses leading to membrane shape deformations. In collaboration with Kripa Gowrishankar and Satyajit Mayor.

  11. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation*

    PubMed Central

    Graessel, Anke; Hauck, Stefanie M.; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B.; Suttner, Kathrin

    2015-01-01

    Naive CD4+ T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4+ T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4+ T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4+ T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4+ T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. PMID:25991687

  12. Optimization of permeabilization process of yeast cells for catalase activity using response surface methodology

    PubMed Central

    Trawczyńska, Ilona; Wójcik, Marek

    2015-01-01

    Biotransformation processes accompanied by whole yeast cells as biocatalyst are a promising area of food industry. Among the chemical sanitizers currently used in food technology, hydrogen peroxide is a very effective microbicidal and bleaching agent. In this paper, permeabilization has been applied to Saccharomyces cerevisiae yeast cells aiming at increased intracellular catalase activity for decomposed H2O2. Ethanol, which is non-toxic, biodegradable and easily available, has been used as permeabilization factor. Response surface methodology (RSM) has been applied in determining the influence of different parameters on permeabilization process. The aim of the study was to find such values of the process parameters that would yield maximum activity of catalase during decomposition of hydrogen peroxide. The optimum operating conditions for permeabilization process obtained by RSM were as follows: 53% (v/v) of ethanol concentration, temperature of 14.8 °C and treatment time of 40 min. After permeabilization, the activity of catalase increased ca. 40 times and its maximum value equalled to 4711 U/g. PMID:26019618

  13. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    PubMed

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  14. CD26 surface molecule involvement in T cell activation and lymphokine synthesis in rheumatoid and other inflammatory synovitis.

    PubMed

    Gerli, R; Muscat, C; Bertotto, A; Bistoni, O; Agea, E; Tognellini, R; Fiorucci, G; Cesarotti, M; Bombardieri, S

    1996-07-01

    T cell surface expression and the functional role of CD26 antigen (Ag), a surface ectoenzyme involved in T cell activation and migration across the extracellular matrix, were analyzed in the peripheral blood (PB) and synovial fluid (SF) from patients with inflammatory arthritides. CD26 membrane expression on T cells was detected by cytofluorometry using two different monoclonal antibodies, anti-Ta1 and anti-1F7, while cell proliferation and both IL-2 and IFN-gamma production were evaluated in anti-CD3- or anti-CD2-stimulated cell cultures after Ag surface modulation with anti-1F7. The results showed that Ta1 and 1F7 Ag expression were increased on T cells from PB of patients with active, but not inactive, rheumatoid arthritis (RA). Most SF T cells from RA or other inflammatory arthritides displayed the memory marker CD45R0 and the Ta1 Ag, but lacked the 1F7 molecule. In addition, in vitro 1F7 modulation, which enhanced RA PB T cell proliferation and both IL-2 and IFN-gamma synthesis, did not synergize with anti-CD3 or anti-CD2 in inducing IL-2-dependent activation of SF T cells, but reduced IFN-gamma production. A spontaneous reappearance of 1F7 Ag on the SF T cell surface was seen after 2-5 days in culture. Phorbol myristate acetate, able to accelerate its reexpression, also restored a normal response of SF T cells to anti-1F7 comitogenic effects. These data confirm a role of the CD26 surface molecule in regulating T cell activation and lymphokine synthesis. This observation may have important implications in the regulation of T cell activity at the joint level during chronic inflammatory processes. PMID:8674237

  15. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona. PMID:25961528

  16. Removal of cell surface heparan sulfate increases TACE activity and cleavage of ErbB4 receptor

    PubMed Central

    Määttä, Jorma A; Olli, Kaisa; Henttinen, Tiina; Tuittila, Minna T; Elenius, Klaus; Salmivirta, Markku

    2009-01-01

    Background Nuclear localization of proteolytically formed intracellular fragment of ErbB4 receptor tyrosine kinase has been shown to promote cell survival, and nuclear localization of ErbB4 receptor has been described in human breast cancer. Tumor necrosis factor alpha converting enzyme (TACE) initiates the proteolytic cascade leading to ErbB4 intracellular domain formation. Interactions between matrix metalloproteases and heparan sulfate have been described, but the effect of cell surface heparan sulfate on TACE activity has not been previously described. Results As indicated by immunodetection of increased ErbB4 intracellular domain formation and direct enzyme activity analysis, TACE activity was substantially amplified by enzymatic removal of cell surface heparan sulfate but not chondroitin sulfate. Conclusion In this communication, we suggest a novel role for cell surface heparan sulfate. Removal of cell surface heparan sulfate led to increased formation of ErbB4 intracellular domain. As ErbB4 intracellular domain has previously been shown to promote cell survival this finding may indicate a novel mechanism how HS degradation active in tumor tissue may favor cell survival. PMID:19171023

  17. In vitro activity of subinhibitory concentrations of quinolones on urea-splitting bacteria: effect on urease activity and on cell surface hydrophobicity.

    PubMed

    Ramadan, M A; Tawfik, A F; el-Kersh, T A; Shibl, A M

    1995-02-01

    The effect of subinhibitory concentrations of ciprofloxacin, lomefloxacin, norfloxacin, ofloxacin, and sparfloxacin on urease activity and on cell surface hydrophobicity of urea-splitting bacteria was examined. Quinolones at 0.5 MICs demonstrated variable effects on bacterial-urease activity. Norfloxacin inhibited enzyme activity in Proteus vulgaris and Proteus mirabilis, while other quinolones had no effects. In Morganella morganii, sparfloxacin and ciprofloxacin enhanced urease activity, particularly at the initial phase of growth. All quinolones tested showed no marked effect on urease activity by Providencia rettgeri. Quinolones at the same concentrations induced an increase in the cell surface hydrophobicity, which was strain-dependent. There was no correlation between urease inhibition and cell surface hydrophobicity. Inhibition of urease activity by quinolones, in addition to their antibacterial activities, may prevent the progression of urinary tissue damage and stone formation. PMID:7844396

  18. Hepatic Stellate Cells Inhibit T Cells through Active TGF-β1 from a Cell Surface-Bound Latent TGF-β1/GARP Complex.

    PubMed

    Li, Yan; Kim, Byung-Gyu; Qian, Shiguang; Letterio, John J; Fung, John J; Lu, Lina; Lin, Feng

    2015-09-15

    Hepatic stellate cells (HSCs) inhibit T cells, a process that could help the liver to maintain its immunoprivileged status. HSCs secrete latent TGF-β1, but the detailed mechanisms by which latent TGF-β1 is activated and whether it plays any role in HSC-mediated T cell suppression remain unclear. Glycoprotein A repetitions predominant (GARP) is a surface marker of activated regulatory T cells. GARP binds latent TGF-β1 for its activation, which is critical for regulatory T cells to suppress effector T cells; however, it is still unclear whether GARP is present on HSCs and whether it has any impact on HSC function. In this study, we found that TGF-β1(+/-) HSCs, which produce reduced levels of TGF-β1, showed decreased potency in inhibiting T cells. We also found that pharmaceutical or genetic inhibition of the TGF-β1 signaling pathway reduced the T cell-inhibiting activity of HSCs. Additionally, using isolated primary HSCs, we demonstrated that GARP was constitutively expressed on HSCs. Blocking GARP function or knocking down GARP expression significantly impaired the potency of HSCs to suppress the proliferation of and IFN-γ production from activated T cells, suggesting that GARP is important for HSCs to inhibit T cells. These results demonstrate the unexpected presence of GARP on HSCs and its significance in regard to the ability of HSCs to activate latent TGF-β1 and thereby inhibit T cells. Our study reveals a new mechanism for HSC-mediated immune regulation and potentially for other conditions, such as liver fibrosis, that involve HSC-secreted TGF-β1. PMID:26246140

  19. Investigation of cell proliferative activity on the surface of the nanocomposite material produced by laser radiation

    NASA Astrophysics Data System (ADS)

    Zhurbina, N. N.; Kurilova, U. E.; Ickitidze, L. P.; Podgaetsky, V. M.; Selishchev, S. V.; Suetina, I. A.; Mezentseva, M. V.; Eganova, E. M.; Pavlov, A. A.; Gerasimenko, A. Y.

    2016-04-01

    A new method for the formation of composite nanomaterials based on multi-walled and single-walled carbon nanotubes (CNT) on a silicon substrate has been developed. Formation is carried out by ultrasound coating of a silicon substrate by homogenous dispersion of CNTs in the albumin matrix and further irradiation with the continuous laser beam with a wavelength of 810 nm and power of 5.5 watts. The high electrical conductivity of CNTs provides its structuring under the influence of the laser radiation electric field. The result is a scaffold that provides high mechanical strength of nanocomposite material (250 MPa). For in vitro studies of materials biocompatibility a method of cell growth microscopic analysis was developed. Human embryonic fibroblasts (EPP) were used as biological cells. Investigation of the interaction between nanocomposite material and cells was carried out by optical and atomic force microscopy depending on the time of cells incubation. The study showed that after 3 hours incubation EPP were fixed on the substrate surface, avoiding the surface of the composite material. However, after 24 hours of incubation EPP fix on the sample surface and then begin to grow and divide. After 72 hours of incubation, the cells completely fill the sample surface of nanocomposite material. Thus, a nanocomposite material based on CNTs in albumin matrix does not inhibit cell growth on its surface, and favours their growth. The nanocomposite material can be used for creating soft tissue implants

  20. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes

    PubMed Central

    Ezekwe, Ejiofor A.D.; Weng, Chengyu; Duncan, Joseph A.

    2016-01-01

    The Staphylococcus aureus toxin, α-hemolysin, is an important and well-studied virulence factor in staphylococcal infection. It is a soluble monomeric protein that, once secreted by the bacterium, forms a heptameric pore in the membrane of a broad range of host cell types. Hemolysin was recently discovered to bind and activate a disintegrin and metalloprotease 10 (ADAM10). In epithelial and endothelial cells, ADAM10 activation is required for the toxin’s activity against these cells. In host monocytic cells, α-hemolysin activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome leading to production of pro-inflammatory cytokines and cell death. We now show that ADAM10 is critical for α-hemolysin-mediated activation of the NLRP3 inflammasome in human monocytes as siRNA knockdown or chemical blockade of ADAM10-α-hemolysin interaction leads to diminished inflammasome activation and cell death by reducing the available ADAM10 on the cell surface. Unlike epithelial cell and endothelial cell damage, which requires α-hemolysin induced ADAM10 activation, ADAM10 protease activity was not required for NLRP3 inflammasome activation. This work confirms the importance of ADAM10 in immune activation by α-hemolysin, but indicates that host cell signal induction by the toxin is different between host cell types. PMID:27043625

  1. Surface oxide net charge of a titanium alloy: modulation of fibronectin-activated attachment and spreading of osteogenic cells.

    PubMed

    Rapuano, Bruce E; MacDonald, Daniel E

    2011-01-01

    In the current study, we have altered the surface oxide properties of a Ti6Al4V alloy using heat treatment or radiofrequency glow discharge (RFGD) in order to evaluate the relationship between the physico-chemical and biological properties of the alloy's surface oxide. The effects of surface pretreatments on the attachment of cells from two osteogenic cell lines (MG63 and MC3T3) and a mesenchymal stem cell line (C3H10T1/2) to fibronectin adsorbed to the alloy were measured. Both heat and RFGD pretreatments produced a several-fold increase in the number of cells that attached to fibronectin adsorbed to the alloy at a range of coating concentrations (0.001-10nM FN) for each cell line tested. An antibody (HFN7.1) directed against the central integrin binding domain of fibronectin produced a 65-70% inhibition of cell attachment to fibronectin-coated disks, indicating that cell attachment to the metal discs was dependent on fibronectin binding to cell integrin receptors. Both treatments also accelerated the cell spreading response manifested by extensive flattening and an increase in mean cellular area. The treatment-induced increases in the cell attachment activity of adsorbed fibronectin were correlated with previously demonstrated increases in Ti6Al4V oxide negative net surface charge at physiological pH produced by both heat and RFGD pretreatments. Since neither treatment increased the adsorption mass of fibronectin, these findings suggest that negatively charged surface oxide functional groups in Ti6Al4V can modulate fibronectin's integrin receptor activity by altering the adsorbed protein's conformation. Our results further suggest that negatively charged functional groups in the surface oxide can play a prominent role in the osseointegration of metallic implant materials. PMID:20884181

  2. Cell surface-mediated activation of progelatinase A: demonstration of the involvement of the C-terminal domain of progelatinase A in cell surface binding and activation of progelatinase A by primary fibroblasts.

    PubMed Central

    Ward, R V; Atkinson, S J; Reynolds, J J; Murphy, G

    1994-01-01

    We report that the isolated C-terminal domain of progelatinase A is inhibitory to the activation of this proenzyme by primary skin fibroblast plasma membranes but is unable to inhibit organomercurial-induced self-cleavage and activation. Ligand binding studies demonstrate that fibroblasts stimulated with concanavalin A to activate progelatinase A have a significantly enhanced level of cell surface-associated progelatinase A. Tissue inhibitor of metalloproteinases-2 (TIMP-2), an effective inhibitor of membrane-mediated progelatinase A activation, is able to abolish the enhanced level of cell surface-associated progelatinase A that occurs following stimulation. TIMP-1, a poor inhibitor of membrane activation, is unable to inhibit the cell surface binding of progelatinase A. The enhancement in the binding of 125I-progelatinase A to fibroblasts following concanavalin A stimulation can be blocked by the inclusion of excess C-terminal gelatinase A but not by a truncated form of gelatinase A lacking the C-terminal domain. Scatchard analysis of the binding of 125I-progelatinase A to concanavalin A-stimulated fibroblasts has identified 950,000 gelatinase binding sites per cell with a Kd of 1.3 x 10(-8) M. Analysis of non-stimulated fibroblasts has identified 500,000 sites per cell with a Kd of 2.6 x 10(-8) M. We propose that membrane-mediated activation of progelatinase A involves binding of the proenzyme through its C-terminal domain to the cell surface and that TIMP-2 can inhibit activation by interaction with progelatinase A through the C-terminal domain, thus preventing binding of the proenzyme. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:7998943

  3. Effects of methoxypoly (Ethylene glycol) mediated immunocamouflage on leukocyte surface marker detection, cell conjugation, activation and alloproliferation.

    PubMed

    Kyluik-Price, Dana L; Scott, Mark D

    2016-01-01

    Tissue rejection occurs subsequent to the recognition of foreign antigens via receptor-ligand contacts between APC (antigen presenting cells) and T cells, resulting in initialization of signaling cascades and T cell proliferation. Bioengineering of donor cells by the covalent attachment of methoxypolyethylene glycol (mPEG) to membrane proteins (PEGylation) provides a novel means to attenuate these interactions consequent to mPEG-induced charge and steric camouflage. While previous studies demonstrated that polymer-mediated immunocamouflage decreased immune recognition both in vitro and in vivo, these studies monitored late events in immune recognition and activation such as T cell proliferation. Consequently little information has been provided concerning the early cellular events governing this response. Therefore, the effect of PEGylation was assessed by examining initial cell-cell interactions, changes to activation pathways, and apoptosis to understand the role that each may play in the decreased proliferative response observed in modified cells during the course of a mixed lymphocyte reaction (MLR). The mPEG-modified T cells resulted in significant immunocamouflage of lymphocyte surface proteins and decreased interactions with APC. Furthermore, mPEG-MLR exhibited decreased NFκB pathway activation, while exhibiting no significant differences in degree of cell death compared to the control MLR. These results suggest that PEGylation may prevent the direct recognition of foreign alloantigens by decreasing the stability and duration of initial cell-cell interactions. PMID:26457834

  4. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    PubMed

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-06-01

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm). PMID:27219645

  5. Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surface-Engineered Plasmonic Nanoparticles.

    PubMed

    Nakatsuji, Hirotaka; Numata, Tomohiro; Morone, Nobuhiro; Kaneko, Shuji; Mori, Yasuo; Imahori, Hiroshi; Murakami, Tatsuya

    2015-09-28

    Controlling cell functions using external photoresponsive nanomaterials has enormous potential for the development of cell-engineering technologies and intractable disease therapies, but the former currently requires genetic modification of the target cells. We present a method using plasma-membrane-targeted gold nanorods (pm-AuNRs) prepared with a cationic protein/lipid complex to activate a thermosensitive cation channel, TRPV1, in intact neuronal cells. Highly localized photothermal heat generation mediated by the pm-AuNRs induced Ca(2+) influx solely by TRPV1 activation. In contrast, the use of previously reported cationic AuNRs that are coated with a conventional synthetic polymer also led to photoinduced Ca(2+) influx, but this influx resulted from membrane damage. Our method provides an optogenetic platform without the need for prior genetic engineering of the target cells and might be useful for novel TRPV1-targeted phototherapeutic approaches. PMID:26249533

  6. Infection by HIV-1 blocked by binding of dextrin 2-sulphate to the cell surface of activated human peripheral blood mononuclear cells and cultured T-cells.

    PubMed Central

    Shaunak, S; Gooderham, N J; Edwards, R J; Payvandi, N; Javan, C M; Baggett, N; MacDermot, J; Weber, J N; Davies, D S

    1994-01-01

    1. Structural analogues of a sulphated polysaccharide, dextrin sulphate, were synthesized and tested for their ability to block infection by HIV-1. Using the T-cell lines, C8166 and HPB-ALL, and the laboratory adapted strains of HIV-1.MN, HIV-1.IIIb and HIV-1.RF, dextrin 2-sulphate (D2S) combined the best combination of high anti-HIV-1 activity (95% inhibitory concentration (IC95) = 230 nM) and low anticoagulant activity. It also blocked infection of activated peripheral blood mononuclear (PBMN) cells by five primary viral isolates at an IC95 of 230-3700 nM depending upon the primary viral isolate tested. 2. In saturation binding studies, [3H]-D2S bound to a cell surface protein on HPB-ALL cells in a specific and saturable manner with a Kd of 82 +/- 14 nM and a Bmax of 4.8 +/- 0.3 pmol/10(6) cells. It bound to other human T-cell lines in a similar manner. 3. There was very little binding of [3H]-D2S to freshly isolated PBMN cells (Bmax 0.18 +/- 0.03 pmol/10(6) cells) and these cells could not be infected by HIV-1. Culture of PBMN cells in lymphocyte growth medium (LGM) containing IL-2 did not significantly change the Bmax of [3H]-D2S. In contrast, PBMN cells which had been cultured with phytohaemagglutinin (PHA; 5 micrograms ml-1) for 72 h had a Bmax of [3H]-D2S binding of 7.2 +/- 0.1 pmol/10(6) cells and these cells could be infected by HIV-1. Removal of the PHA and further culture of the PBMN cells in LGM containing IL-2 resulted in a fall in the Bmax to 2.0 +/- 0.1 pmol/10(6) cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7812605

  7. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks

    PubMed Central

    Hsiao, Jordy J.; Ng, Brandon H.; Smits, Melinda M.; Martinez, Harryl D.; Jasavala, Rohini J.; Hinkson, Izumi V.; Fermin, Damian; Eng, Jimmy K.; Nesvizhskii, Alexey I.

    2015-01-01

    The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers. PMID:26181434

  8. Clostridium perfringens Iota Toxin: Binding Studies and Characterization of Cell Surface Receptor by Fluorescence-Activated Cytometry

    PubMed Central

    Stiles, Bradley G.; Hale, Martha L.; Marvaud, Jean-Christophe; Popoff, Michel R.

    2000-01-01

    The binding characteristics of iota toxin, a binary enterotoxin produced by Clostridium perfringens type E, were studied by fluorescence-activated cytometry. The proteolytically activated binding component of iota toxin, iota b (Ib), bound to various cell types when incubated at 4, 25, or 37°C for 10 min. The binding of Ib was inhibited by antisera against C. perfringens type E or Clostridium spiroforme culture supernatants, but not C. perfringens types C or D. Pretreatment of Vero cells with glycosidases or lectins did not affect Ib interactions, while pronase effectively prevented Ib binding to the cell surface. The Ib protomer (Ibp) bound to the cell surface, but trypsinization of Ibp was necessary for docking of the ADP-ribosylating component, iota a (Ia). Ia attached to cell-bound Ib within 10 min at 37°C, but surface levels of Ia decreased 90% after 30 min and were undetectable by 60 min. Detectable surface levels of Ib also diminished over time, and Western blot analysis suggested internalization or embedment of Ib into the membrane. PMID:10816501

  9. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  10. Planar fuel cell utilizing nail current collectors for increased active surface area

    DOEpatents

    George, Thomas J.; Meacham, G. B. Kirby

    2002-03-26

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  11. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface

    PubMed Central

    Ansari, Shabbir A.; Pendurthi, Usha R.; Sen, Prosenjit; Rao, L. Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  12. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface.

    PubMed

    Ansari, Shabbir A; Pendurthi, Usha R; Sen, Prosenjit; Rao, L Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  13. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact

    PubMed Central

    Hari, Aswin; Zhang, Yifei; Tu, Zhongyuan; Detampel, Pascal; Stenner, Melanie; Ganguly, Anutosh; Shi, Yan

    2014-01-01

    Crystalline structures activate the NLRP3 inflammasome, leading to the production of IL-1β, however, the molecular interactions responsible for NLRP3 activation are not fully understood. Cathepsin B release from the ruptured phagolysosome and potassium ion efflux have been suggested to be critical for this activation. Here, we report that Cathepsin B redistribution was not a crucial event in crystal-induced IL-1β production. Silica and monosodium urate crystal-treated macrophages with undisturbed lysosomes demonstrated strong co-localization of ASC and Caspase-1, indicative of NLRP3 inflammasome activation. Importantly, we provided evidence to suggest that macrophage cell membrane binding to immobilized crystals was sufficient to induce IL-1β release, and this activation of the NLRP3 inflammasome was inhibited by blocking potassium efflux. Therefore, this work reveals additional complexity in crystalline structure-mediated NLRP3 inflammasome regulations. PMID:25445147

  14. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles.

    PubMed

    Xie, Yuliang; Zhao, Chenglong; Zhao, Yanhui; Li, Sixing; Rufo, Joseph; Yang, Shikuan; Guo, Feng; Huang, Tony Jun

    2013-05-01

    We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it "optoacoustic tweezers". The optoacoustic tweezers are capable of concentrating particles/cells at any prescribed locations in a microfluidic chamber without the use of permanent structures, rendering it particularly useful for the formation of flexible, complex cell patterns. Additionally, this technique has demonstrated excellent biocompatibility and can be conveniently integrated with other microfluidic units. In our experiments, micro-bubbles were generated by focusing a 405 nm diode laser onto a gold-coated glass chamber. By properly tuning the laser, we demonstrate precise control over the position and size of the generated bubbles. Acoustic waves were then applied to activate the surface bubbles, causing them to oscillate at an optimized frequency. The resulting acoustic radiation force allowed us to locally trap particles/cells, including 15 μm polystyrene beads and HeLa cells, around each bubble. Cell-adhesion tests were also conducted after cell concentrating to confirm the biocompatibility of this technique. PMID:23511348

  15. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications.

    PubMed

    Cui, Chun-Hua; Yu, Shu-Hong

    2013-07-16

    In order for fuel cells to have commercial viability as alternative fuel sources, researchers need to develop highly active and robust fuel cell electrocatalysts. In recent years, the focus has been on the design and synthesis of novel catalytic materials with controlled interface and surface structures. Another goal is to uncover potential catalytic activity and selectivity, as well as understand their fundamental catalytic mechanisms. Scientists have achieved great progress in the experimental and theoretical investigation due to the urgent demand for broad commercialization of fuel cells in automotive applications. However, there are still three main problems: cost, performance, and stability. To meet these targets, the catalyst needs to have multisynergic functions. In addition, the composition and structure changes of the catalysts during the reactions still need to be explored. Activity in catalytic nanomaterials is generally controlled by the size, shape, composition, and interface and surface engineering. As such, one-dimensional nanostructures such as nanowires and nanotubes are of special interest. However, these structures tend to lose the nanoparticle morphology and inhibit the use of catalysts in both fuel cell anodes and cathodes. In 2003, Rubinstein and co-workers proposed the idea of nanoparticle nanotubes (NNs), which combine the geometry of nanotubes and the morphology of nanoparticles. This concept gives both the high surface-to-volume ratio and the size effect, which are both appealing in electrocatalyst design. In this Account, we describe our developments in the construction of highly active NNs with unique surface and heterogeneous interface structures. We try to clarify enhanced activity and stability in catalytic systems by taking into account the activity impact factors. We briefly introduce material structural effects on the electrocatalytic reactivity including metal oxide/metal and metal/metal interfaces, dealloyed pure Pt, and mixed Pt

  16. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

    PubMed

    Dong, Ningzheng; Zhou, Tiantian; Zhang, Yue; Liu, Meng; Li, Hui; Huang, Xiaoyi; Liu, Zhenzhen; Wu, Yi; Fukuda, Koichi; Qin, Jun; Wu, Qingyu

    2014-06-20

    Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients. PMID:24828501

  17. Surface plasmon resonance biosensor detects the downstream events of active PKCbeta in antigen-stimulated mast cells.

    PubMed

    Tanaka, Maiko; Hiragun, Takaaki; Tsutsui, Tomoko; Yanase, Yuhki; Suzuki, Hidenori; Hide, Michihiro

    2008-06-15

    Surface plasmon resonance (SPR) biosensors detect large changes of angle of resonance (AR) when RBL-2H3 mast cells are cultured on a sensor chip and stimulated with antigen. However, the detail of molecular events that are responsible for such large changes of AR remained unknown. In this study, we investigated the relationship between intracellular signaling events induced by antigen and the change of AR, by genetic manipulation of intracellular signaling molecules; spleen tyrosine kinase (Syk), src-like adaptor protein (SLAP), linker for activation of T cells (LAT), growth-factor-receptor-bound protein 2 (Grb2), Grb2-related adaptor protein (Gads), and isotypes of protein kinase C (PKC). RBL-2H3 mast cells overexpressing dominant-negative Syk or SLAP, which both interfere with active Syk, exhibited only minimal increase of AR in response to antigen stimulation. Likewise, the interference of the activation of LAT and Gads, by expressing dominant-negative LAT and Gads, respectively, resulted in nearly complete suppression of the antigen-induced increase of AR. The cells overexpressing PKCs, apart from PKCbeta, showed a reduced extent of increase of AR in response to antigen stimulation. Moreover, the introduction of the small interfering RNA targeted against PKCbeta suppressed the antigen-induced increase of AR. These results indicate that the activation of Syk, LAT, Gads, and subsequent PKCbeta is indispensable for the antigen-induced increase of AR of mast cells detected by SPR biosensors. PMID:18339533

  18. Active particles on curved surfaces

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael

    Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.

  19. Extracellular Glycanases of Rhizobium leguminosarum Are Activated on the Cell Surface by an Exopolysaccharide-Related Component

    PubMed Central

    Zorreguieta, Angeles; Finnie, Christine; Downie, J. Allan

    2000-01-01

    Rhizobium leguminosarum secretes two extracellular glycanases, PlyA and PlyB, that can degrade exopolysaccharide (EPS) and carboxymethyl cellulose (CMC), which is used as a model substrate of plant cell wall cellulose polymers. When grown on agar medium, CMC degradation occurred only directly below colonies of R. leguminosarum, suggesting that the enzymes remain attached to the bacteria. Unexpectedly, when a PlyA-PlyB-secreting colony was grown in close proximity to mutants unable to produce or secrete PlyA and PlyB, CMC degradation occurred below that part of the mutant colonies closest to the wild type. There was no CMC degradation in the region between the colonies. By growing PlyB-secreting colonies on a lawn of CMC-nondegrading mutants, we could observe a halo of CMC degradation around the colony. Using various mutant strains, we demonstrate that PlyB diffuses beyond the edge of the colony but does not degrade CMC unless it is in contact with the appropriate colony surface. PlyA appears to remain attached to the cells since no such diffusion of PlyA activity was observed. EPS defective mutants could secrete both PlyA and PlyB, but these enzymes were inactive unless they came into contact with an EPS+ strain, indicating that EPS is required for activation of PlyA and PlyB. However, we were unable to activate CMC degradation with a crude EPS fraction, indicating that activation of CMC degradation may require an intermediate in EPS biosynthesis. Transfer of PlyB to Agrobacterium tumefaciens enabled it to degrade CMC, but this was only observed if it was grown on a lawn of R. leguminosarum. This indicates that the surface of A. tumefaciens is inappropriate to activate CMC degradation by PlyB. Analysis of CMC degradation by other rhizobia suggests that activation of secreted glycanases by surface components may occur in other species. PMID:10671451

  20. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells.

    PubMed

    Linley, Adam; Krysov, Sergey; Ponzoni, Maurilio; Johnson, Peter W; Packham, Graham; Stevenson, Freda K

    2015-10-15

    The vast majority of cases of follicular lymphoma (FL), but not normal B cells, acquire N-glycosylation sites in the immunoglobulin variable regions during somatic hypermutation. Glycans added to sites are unusual in terminating at high mannoses. We showed previously that the C-type lectins, dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and mannose receptor, bound to FL surface immunoglobulin (sIg), generating an intracellular Ca(2+) flux. We have now mapped further intracellular pathways activated by DC-SIGN in a range of primary FL cells with detection of phosphorylated ERK1/2, AKT, and PLCγ2. The SYK inhibitor (tamatinib) or the BTK inhibitor (ibrutinib) each blocked phosphorylation. Activation by DC-SIGN occurred in both IgM(+) and IgG(+) cases and led to upregulation of MYC expression, with detection in vivo observed in lymph nodes. Unlike cells of chronic lymphocytic leukemia, FL cells expressed relatively high levels of sIg, unchanged by long-term incubation in vitro, indicating no antigen-mediated downregulation in vivo. In contrast, expression of CXCR4 increased in vitro. Engagement of sIg in FL cells or normal B cells by anti-Ig led to endocytosis in vitro as expected, but DC-SIGN, even when cross-linked, did not lead to significant endocytosis of sIg. These findings indicate that lectin binding generates signals via sIg but does not mediate endocytosis, potentially maintaining a supportive antigen-independent signal in vivo. Location of DC-SIGN in FL tissue revealed high levels in sinusoidlike structures and in some colocalized mononuclear cells, suggesting a role for lectin-expressing cells at this site. PMID:26194765

  1. Microparticle Surface Modifications Targeting Dendritic Cells for Non-Activating Applications

    PubMed Central

    Lewis, Jamal S.; Zaveri, Toral D.; Crooks, Charles P.; Keselowsky, Benjamin G.

    2012-01-01

    Microparticulate systems for delivery of therapeutics to DCs for immunotherapy have gained attention recently. However, reports addressing the optimization of DC-targeting microparticle delivery systems are limited, particularly for cases where the goal is to deliver payload to DCs in a non-activating fashion. Here, we investigate targeting DCs using poly (d lactide-co-glycolide) microparticles (MPs) in a non-stimulatory manner and assess efficacy in vitro and in vivo. We modified MPs by surface immobilizing DC receptor targeting molecules – antibodies (anti-CD11c, anti-DEC-205) or peptides (P-D2, RGD), where anti-CD11c antibody, P-D2 and RGD peptides target integrins and anti-DEC-205 antibody targets the c-type lectin receptor DEC-205. Our results demonstrate the modified MPs are neither toxic nor activating, and DC uptake of MPs in vitro is improved by the anti-DEC-205 antibody, the anti-CD11c antibody and the P-D2 peptide modifications. The P-D2 peptide MP modification significantly improved DC antigen presentation in vitro both at immediate and delayed time points. Notably, MP functionalization with P-D2 peptide and anti-CD11c antibody increased the rate and extent of MP translocation in vivo by DCs and MΦs, with the P-D2 peptide modified MPs demonstrating the highest translocation. This work informs the design of non-activating polymeric microparticulate applications such as vaccines for autoimmune diseases. PMID:22796161

  2. Influence of Cu-Ti thin film surface properties on antimicrobial activity and viability of living cells.

    PubMed

    Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila

    2015-11-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90at.% of Cu and 10at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu-Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10-15nm and 25-35nm size were present. High surface active area with a roughness of 8.9nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. PMID:26249564

  3. Effects of DO levels on surface force, cell membrane properties and microbial community dynamics of activated sludge.

    PubMed

    Ma, Si-Jia; Ding, Li-Li; Huang, Hui; Geng, Jin-Ju; Xu, Ke; Zhang, Yan; Ren, Hong-Qiang

    2016-08-01

    In this paper, we employ atomic force microscopy (AFM), fluorescence recovery after photobleaching (FRAP) technique, phospholipid fatty acids (PLFA) and MiSeq analysis to study the effects of traditional dissolved oxygen (DO) levels (0.71-1.32mg/L, 2.13-3.02mg/L and 4.31-5.16mg/L) on surface force, cell membrane properties and microbial community dynamics of activated sludge. Results showed that low DO level enhanced the surface force and roughness of activated sludge; the medium DO level decreased cell membrane fluidity by reducing the synthesis of branched fatty acids in the cell membrane; high DO level resulted in the highest protein content in the effluent by EEM scanning. Abundance of Micropruina, Zoogloea and Nakamurella increased and Paracoccus and Rudaea decreased with the increase of DO levels. RDA analysis suggested that saturated fatty acids (SFA), anteiso-fatty acids (AFA) and iso-fatty acids (IFA) were closely related to effluent quality as well as some genera. PMID:27187569

  4. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection†

    PubMed Central

    Jackson, Joshua M.; Witek, Małgorzata A.; Hupert, Mateusz L.; Brady, Charles; Pullagurla, Swathi; Kamande, Joyce; Aufforth, Rachel D.; Tignanelli, Christopher J.; Torphy, Robert J.; Yeh, Jen Jen

    2014-01-01

    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ∼3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the

  5. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection.

    PubMed

    Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Brady, Charles; Pullagurla, Swathi; Kamande, Joyce; Aufforth, Rachel D; Tignanelli, Christopher J; Torphy, Robert J; Yeh, Jen Jen; Soper, Steven A

    2014-01-01

    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ~3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the

  6. Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors.

    PubMed

    Weaver, Lehn K; Pioli, Patricia A; Wardwell, Kathleen; Vogel, Stefanie N; Guyre, Paul M

    2007-03-01

    The hemoglobin (Hb) scavenger receptor, CD163, is a cell-surface glycoprotein that is expressed exclusively on monocytes and macrophages. It binds and internalizes haptoglobin-Hb complexes and has been implicated in the resolution of inflammation. Furthermore, the regulation of CD163 during an innate immune response implies an important role for this molecule in the host defense against infection. LPS, derived from the outer membrane of Gram-negative bacteria, activates TLR4 to cause acute shedding of CD163 from human monocytes, followed by recovery and induction of surface CD163 to higher levels than observed on untreated monocytes. We now report that the TLR2 and TLR5 agonists--Pam3Cys and bacterial flagellin--have similar effects on CD163 surface expression. Up-regulation of CD163 following treatment of human PBMC with TLR2, TLR4, and TLR5 agonists parallels increased production of IL-6 and IL-10, and neutralization of IL-6 and/or IL-10 blocks CD163 up-regulation. Furthermore, simultaneous stimulation of TLR2 or TLR5 in combination with TLR4 activation results in enhanced up-regulation of CD163. It is notable that exogenous recombinant IFN-gamma (rIFN-gamma) suppresses cell-surface, TLR-mediated IL-10 production as well as CD163 up-regulation. Sustained down-regulation of CD163 mediated by rIFN-gamma can be partially rescued with exogenous rIL-10 but not with exogenous rIL-6. This divergent regulation of CD163 by cytokines demonstrates that human monocytes react differently to infectious signals depending on the cytokine milieu they encounter. Thus, surface CD163 expression on mononuclear phagocytes is a carefully regulated component of the innate immune response to infection. PMID:17164428

  7. Glucose Evokes Rapid Ca2+ and Cyclic AMP Signals by Activating the Cell-Surface Glucose-Sensing Receptor in Pancreatic β-Cells

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Medina, Johan; Kojima, Itaru

    2015-01-01

    Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca2+ concentration ([Ca2+]c); glucose evoked an immediate elevation of [Ca2+]c, which was followed by a decrease in [Ca2+]c, and after a certain lag period it induced large oscillatory elevations of [Ca2+]c. Initial rapid peak and subsequent reduction of [Ca2+]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca2+, glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca2+]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor. PMID:26630567

  8. ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration.

    PubMed

    Liu, Guoquan; Place, Aaron T; Chen, Zhenlong; Brovkovych, Viktor M; Vogel, Stephen M; Muller, William A; Skidgel, Randal A; Malik, Asrar B; Minshall, Richard D

    2012-08-30

    Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)-dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)-mediated transendothelial migration. An important unanswered question is whether ICAM-1-activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1-dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1(-/-) and eNOS(-/-) mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr(518)Phe ICAM-1 mutant, induced SHP-2-dependent Src Tyr530 dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser473) and eNOS (p-Ser1177), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr(518)Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho-ICAM-1 induction of Src signaling induced PECAM-1 Tyr686 phosphorylation and increased EC surface anti-PECAM-1 mAb-binding activity. These results collectively show that ICAM-1-activated Src and eNOS signaling sequentially induce PECAM-1-mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation. PMID:22806890

  9. A dimeric peptide with erythropoiesis-stimulating activity uniquely affects erythropoietin receptor ligation and cell surface expression.

    PubMed

    Verma, Rakesh; Green, Jennifer M; Schatz, Peter J; Wojchowski, Don M

    2016-08-01

    Erythropoiesis-stimulating agents (ESAs) that exert long-acting antianemia effects have been developed recently, but their mechanisms are poorly understood. Analyses reveal unique erythropoietin receptor (EPOR)-binding properties for one such ESA, the synthetic EPOR agonist peginesatide. Compared with recombinant human EPO and darbepoietin, peginesatide exhibited a slow on rate, but sustained EPOR residency and resistant displacement. In EPO-dependent human erythroid progenitor UT7epo cells, culture in peginesatide unexpectedly upmodulated endogenous cell surface EPOR levels with parallel increases in full-length EPOR-68K levels. These unique properties are suggested to contribute to the durable activity of this (and perhaps additional) dimeric peptide hematopoietic growth factor receptor agonist. PMID:27174804

  10. Cell surface engineering of renal cell carcinoma with glycosylphosphatidylinositol-anchored TIMP-1 blocks TGF- β 1 activation and reduces regulatory ID gene expression.

    PubMed

    Notohamiprodjo, Susan; Djafarzadeh, Roghieh; Rieth, Nicole; Hofstetter, Monika; Jaeckel, Carsten; Nelson, Peter J

    2012-12-01

    Tissue inhibitor of metalloproteinase 1 (TIMP-1) controls matrix metalloproteinase activity through 1:1stoichiometric binding. Human TIMP-1 fused to a glycosylphosphatidylinositol(GPI) anchor (TIMP-1 - GPI) shifts the activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1 - GPI treated renal cell carcinoma cells show increased apoptosis and reduced proliferation.Transcriptomic profiling and regulatory pathway mapping were used to identify the potential mechanisms driving these effects. Significant changes in the DNA binding inhibitors, TGF- β 1/SMAD and BMP pathways resulted from TIMP-1 - GPI treatment. These events were linked to reduced TGF- β 1 signaling mediated by inhibition of proteolytic processing of latent TGF- β 1 by TIMP-1 - GPI. PMID:23667903

  11. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  12. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-01

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging. PMID:27385563

  13. Active frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Buchwald, Walter R.; Hendrickson, Joshua; Cleary, Justin W.; Guo, Junpeng

    2013-05-01

    Split ring resonator arrays are investigated for use as active elements for the realization of voltage controllable frequency selective surfaces. Finite difference time domain simulations suggest the absorptive and reflective properties of such surfaces can be externally controlled through modifications of the split ring resonator gap impedance. In this work, such voltage-controlled resonance tuning is obtained through the addition of an appropriately designed high electron mobility transistor positioned across the split ring resonator gap. It is shown that a 0.5μm gate length high electron mobility transistor allows voltage controllable switching between the two resonant conditions associated with a split ring resonator and that of a closed loop geometry when the surface is illuminated with THz radiation. Partial switching between these two resonant conditions is observed at larger gate lengths. Such active frequency selective surfaces are proposed, for example, for use as modulators in THz detection schemes and as RF filters in radar applications when scaled to operate at GHz frequencies.

  14. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters.

    PubMed

    Villanueva-Cabello, Tania M; Mollicone, Rosella; Cruz-Muñoz, Mario E; López-Guerrero, Delia V; Martínez-Duncker, Iván

    2015-12-01

    CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells. PMID:26263924

  15. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    EPA Science Inventory

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  16. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface.

    PubMed

    Jinadasa, Tushare; Szabó, Elöd Z; Numat, Masayuki; Orlowski, John

    2014-07-25

    Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress. PMID:24936055

  17. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells. PMID:27406324

  18. Analysis of Pseudomonas aeruginosa Cell Envelope Proteome by Capture of Surface-Exposed Proteins on Activated Magnetic Nanoparticles

    PubMed Central

    Vecchietti, Davide; Di Silvestre, Dario; Miriani, Matteo; Bonomi, Francesco; Marengo, Mauro; Bragonzi, Alessandra; Cova, Lara; Franceschi, Eleonora; Mauri, Pierluigi; Bertoni, Giovanni

    2012-01-01

    We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT) for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedded in the cell envelope fragments. For a high number of proteins, our analysis strongly indicates either surface exposure or localization in an envelope district. The localization of most identified proteins was only predicted or totally unknown. This novel approach greatly improves the sensitivity and specificity of the previous methods, such as surface shaving with proteases that was also tested on P. aeruginosa. The magneto-capture procedure is simple, safe, and rapid, and appears to be well-suited for envelope studies in highly pathogenic bacteria. PMID:23226459

  19. ACTIVATION OF VANILLOID (VR1) RECEPTORS BY PARTICLE'S SURFACE CHARGE STIMULATES INFLAMMATORY CHANGES IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Previous research from our laboratory indicates that particulate matter air pollutants carry an electronegative surface charge, the degree of which correlates with IL-6 release in human respiratory epithelial cells. This study was designed to test the theory that the positive sur...

  20. Exposure of phosphatidylserine on the cell surface.

    PubMed

    Nagata, S; Suzuki, J; Segawa, K; Fujii, T

    2016-06-01

    Phosphatidylserine (PtdSer) is a phospholipid that is abundant in eukaryotic plasma membranes. An ATP-dependent enzyme called flippase normally keeps PtdSer inside the cell, but PtdSer is exposed by the action of scramblase on the cell's surface in biological processes such as apoptosis and platelet activation. Once exposed to the cell surface, PtdSer acts as an 'eat me' signal on dead cells, and creates a scaffold for blood-clotting factors on activated platelets. The molecular identities of the flippase and scramblase that work at plasma membranes have long eluded researchers. Indeed, their identity as well as the mechanism of the PtdSer exposure to the cell surface has only recently been revealed. Here, we describe how PtdSer is exposed in apoptotic cells and in activated platelets, and discuss PtdSer exposure in other biological processes. PMID:26891692

  1. Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion.

    PubMed

    Narita, Junya; Okano, Kenji; Tateno, Toshihiro; Tanino, Takanori; Sewaki, Tomomitsu; Sung, Moon-Hee; Fukuda, Hideki; Kondo, Akihiko

    2006-05-01

    We have developed a novel Escherichia coli cell surface display system by employing PgsA as an anchoring motif. In our display system, C-terminal fusion to PgsA anchor protein from Bacillus subtilis was used. The enzymes selected for display were alpha-amylase (AmyA) from Streptococcus bovis 148 and lipase B (CALB) from Candida antarctica. The molecular mass values of AmyA and CALB are approximately 77 and 34 kDa, respectively. The enzymes were displayed on the surface as a fusion protein with a FLAG peptide tag at the C terminus. Both the PgsA-AmyA-FLAG and PgsA-CALB-FLAG fusion proteins were shown to be displayed by immunofluorescence labeling using anti-FLAG antibody. The displayed enzymes were active forms, and AmyA and CALB activities reached 990 U/g (dry cell weight) and 4.6 U/g (dry cell weight), respectively. AmyA-displaying E. coli cells grew utilizing cornstarch as the sole carbon source, while CALB-displaying E. coli cells catalyzed enantioselective transesterification, indicating that they are effective whole-cell biocatalysts. Since a target enzyme with a size of 77 kDa and an industrially useful lipase have been successfully displayed on the cell surface of E. coli for the first time, PgsA protein is probably a useful anchoring motif to display various enzymes. PMID:16133338

  2. The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity.

    PubMed

    Hytönen, J; Haataja, S; Gerlach, D; Podbielski, A; Finne, J

    2001-01-01

    The interactions between pathogenic bacteria and the host need to be resolved at the molecular level in order to develop novel vaccines and drugs. We have previously identified strepadhesin, a novel glycoprotein-binding activity in Streptococcus pyogenes, which is regulated by Mga, a regulator of streptococcal virulence factors. We have now identified the protein responsible for the strepadhesin activity and find that (i) strepadhesin activity is carried by SpeB, streptococcal pyrogenic exotoxin with cysteine protease activity; (ii) SpeB carries laminin-binding activity of the bacteria; and (iii) SpeB is not only a secreted molecule but also occurs unexpectedly tightly bound to the bacterial cell surface. Thus, in contrast to the previous view of SpeB as mainly an extracellular protease, it is also present as a streptococcal surface molecule with binding activity to laminin and other glycoproteins. PMID:11136470

  3. M-COPA, a Golgi Disruptor, Inhibits Cell Surface Expression of MET Protein and Exhibits Antitumor Activity against MET-Addicted Gastric Cancers.

    PubMed

    Ohashi, Yoshimi; Okamura, Mutsumi; Hirosawa, Asaka; Tamaki, Naomi; Akatsuka, Akinobu; Wu, Kuo-Ming; Choi, Hyeong-Wook; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo

    2016-07-01

    The Golgi apparatus is responsible for transporting, processing, and sorting numerous proteins in the cell, including cell surface-expressed receptor tyrosine kinases (RTK). The small-molecule compound M-COPA [2-methylcoprophilinamide (AMF-26)] disrupts the Golgi apparatus by inhibiting the activation of Arf1, resulting in suppression of tumor growth. Here, we report an evaluation of M-COPA activity against RTK-addicted cancers, focusing specifically on human gastric cancer (GC) cells with or without MET amplification. As expected, the MET-addicted cell line MKN45 exhibited a better response to M-COPA than cell lines without MET amplification. Upon M-COPA treatment, cell surface expression of MET was downregulated with a concurrent accumulation of its precursor form. M-COPA also reduced levels of the phosphorylated form of MET along with the downstream signaling molecules Akt and S6. Similar results were obtained in additional GC cell lines with amplification of MET or the FGF receptor FGFR2 MKN45 murine xenograft experiments demonstrated the antitumor activity of M-COPA in vivo Taken together, our results offer an initial preclinical proof of concept for the use of M-COPA as a candidate treatment option for MET-addicted GC, with broader implications for targeting the Golgi apparatus as a novel cancer therapeutic approach. Cancer Res; 76(13); 3895-903. ©2016 AACR. PMID:27197184

  4. Terminal deoxynucleotidyl transferase activity and cell surface antigens of two unique cell lines (NALM-1 and BALM-2) of human leukemic origin.

    PubMed

    Sahai Srivastava, B I; Minowada, J

    1977-08-15

    Two unique cell lines, NALM-1 and BALM-2 derived from lymphoblast-like cells of chronic myelogenous leukemia and rare B cell acute lymphoblastic leukemia patients, respectively, were compared with fresh parent cells from the patients and with a Philadelphia chromosome positive K-562 cell line previously established from a chronic myelogenous leukemia patient in blastic phase. NALM-1 resembled the parent cells in the presence of Philadelphia chromosome, non-T/non-B acute lymphoblastic leukemia specific antigens and lack of T or B cell markers, whereas BALB-2, like the parent cells, had two chromosome markers and bore kappa, delta and mu immunoglobulins. NALM-1 lacked Epstein-Barr virus genome, whereas BALM-2 showed the presence of Epstein-Barr virus genome. K-562 cells lacked all the antigen markers examined. All cells had high DNA polymerase alpha activity and low DNA polymerase gamma activity. NALM-1, like the parent cells and unlike K-562 cells, had high terminal deoxynucleotidyl transferase activity of about 200 mu/mg DNA, whereas BALM-2, like its parent cells, had terminal deoxynucleotidyl transferase activity of 1-2 mu/mg DNA (1 u = 1 nmole Mn++-dGTP/h on dA12-18 initiator). Terminal deoxynucleotidyl transferase was characterized by its chromatographic and sedimentation behavior, thermal sensitivity and specific inhibition by streptolydigin and terminal deoxynucleotidyl transferase antisera. These results indicate that NALM-1 and K-562 may represent different phenotypes of cells in CML blastic crisis. Moreover, NALM-1 and BALM-2 seem to have retained the characteristics of original leukemic cells from which they may have been derived. PMID:70413

  5. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

    PubMed

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical-thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm(2) and 80 mW/cm(2) by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  6. Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells

    PubMed Central

    Rau, Lih-Rou; Huang, Wan-Yu; Liaw, Jiunn-Woei; Tsai, Shiao-Wen

    2016-01-01

    The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period. PMID:27555768

  7. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  8. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation.

    PubMed

    Oliveira, Tales Lyra; Candeia-Medeiros, Návylla; Cavalcante-Araújo, Polliane M; Melo, Igor Santana; Fávaro-Pípi, Elaine; Fátima, Luciana Alves; Rocha, Antônio Augusto; Goulart, Luiz Ricardo; Machado, Ubiratan Fabres; Campos, Ruy R; Sabino-Silva, Robinson

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it. PMID:26902517

  9. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation

    PubMed Central

    Oliveira, Tales Lyra; Candeia-Medeiros, Návylla; Cavalcante-Araújo, Polliane M.; Melo, Igor Santana; Fávaro-Pípi, Elaine; Fátima, Luciana Alves; Rocha, Antônio Augusto; Goulart, Luiz Ricardo; Machado, Ubiratan Fabres; Campos, Ruy R.; Sabino-Silva, Robinson

    2016-01-01

    High glucose concentration in the airway surface liquid (ASL) is an important feature of diabetes that predisposes to respiratory infections. We investigated the role of alveolar epithelial SGLT1 activity on ASL glucose concentration and bacterial proliferation. Non-diabetic and diabetic rats were intranasally treated with saline, isoproterenol (to increase SGLT1 activity) or phlorizin (to decrease SGLT1 activity); 2 hours later, glucose concentration and bacterial proliferation (methicillin-resistant Sthaphylococcus aureus, MRSA and Pseudomonas aeruginosa, P. aeruginosa) were analyzed in bronchoalveolar lavage (BAL); and alveolar SGLT1 was analyzed by immunohistochemistry. BAL glucose concentration and bacterial proliferation increased in diabetic animals: isoproterenol stimulated SGLT1 migration to luminal membrane, and reduced (50%) the BAL glucose concentration; whereas phlorizin increased the BAL glucose concentration (100%). These regulations were accompanied by parallel changes of in vitro MRSA and P. aeruginosa proliferation in BAL (r = 0.9651 and r = 0.9613, respectively, Pearson correlation). The same regulations were observed in in vivo P. aeruginosa proliferation. In summary, the results indicate a relationship among SGLT1 activity, ASL glucose concentration and pulmonary bacterial proliferation. Besides, the study highlights that, in situations of pulmonary infection risk, such as in diabetic subjects, increased SGLT1 activity may prevent bacterial proliferation whereas decreased SGLT1 activity can exacerbate it. PMID:26902517

  10. Europa's Active Surface

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A newly discovered impact crater can be seen just right of the center of this image of Jupiter's moon Europa returned by NASA's Galileo spacecraft camera. The crater is about 30 kilometers (18.5 miles) in diameter. The impact excavated into Europa's icy crust, throwing debris (seen as whitish material) across the surrounding terrain. Also visible is a dark band, named Belus Linea, extending east-west across the image. This type of feature, which scientists call a 'triple band,' is characterized by a bright stripe down the middle. The outer margins of this and other triple bands are diffuse, suggesting that the dark material was put there as a result of possible geyser-like activity which shot gas and rocky debris from Europa's interior. The curving 'X' pattern seen in the lower left corner of the image appears to represent fracturing of the icy crust and infilling by slush which froze in place. The crater is centered at about 2 degrees north latitude by 239 degrees west longitude. The image was taken from a distance of 156,000 kilometers (about 96,300 miles) on June 27, 1996, during Galileo's first orbit around Jupiter. The area shown is 860 by 700 kilometers (530 by 430 miles), or about the size of Oregon and Washington combined. The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  11. Titanium surface hydrophilicity enhances platelet activation.

    PubMed

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Titanium implant surface modification is a key strategy used to enhance osseointegration. Platelets are the first cells that interact with the implant surface whereupon they release a wide array of proteins that influence the subsequent healing process. This study therefore investigated the effect of titanium surface modification on the attachment and activation of human platelets. The surface characteristics of three titanium surfaces: smooth (SMO), micro-rough (SLA) and hydrophilic micro-rough (SLActive) and the subsequent attachment and activation of platelets following exposure to these surfaces were determined. The SLActive surface showed the presence of significant nanoscale topographical features. While attached platelets appeared to be morphologically similar, significantly fewer platelets attached to the SLActive surface compared to both the SMO and SLA surfaces. The SLActive surface however induced the release of the higher levels of chemokines β-thromboglobulin and platelet factor 4 from platelets. This study shows that titanium surface topography and chemistry have a significant effect on platelet activation and chemokine release. PMID:25311339

  12. A light-responsive and periodic NADH oxidase activity of the cell surface of Tetrahymena and of human buffy coat cells

    NASA Technical Reports Server (NTRS)

    Peter, A. D.; Morre, D. J.; Morre, D. M.

    2000-01-01

    Oxidation of external NADH (NADH is an impermeant substrate) by cells of Tetrahymena pyriformis oscillated with a period of 24-26 min. The period length in darkness (25.6 min) appeared to be slightly longer than the period in light (approximately 24 min). When Tetrahymena were placed in darkness for 30-50 min and then returned to light, a new maximum in the rate of NADH oxidation was observed 36-38 min (13 + 24) min after the beginning of the light treatment. The cell-surface NADH oxidase of human buffy coats (a mixture of white cells and platelets) also was periodic and light responsive.

  13. KLF8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer

    PubMed Central

    Lu, Heng; Hu, Liu; Yu, Lin; Wang, Xianhui; Urvalek, Alison M.; Li, Tianshu; Shen, Chao; Mukherjee, Debarati; Lahiri, Satadru K.; Wason, Melissa S.; Zhao, Jihe

    2014-01-01

    Krüppel-like factor 8 (KLF8) regulates critical gene transcription associated with cancer. The underlying mechanisms, however, remain largely unidentified. We have recently demonstrated that KLF8 expression enhances the activity but not expression of matrix metalloproteinase-2 (MMP2), the target substrate of MMP14. Here, we report a novel KLF8 to MMP14 signaling that promotes human breast cancer invasion and metastasis. Using cell lines for inducible expression and knockdown of KLF8, we demonstrate that KLF8 promotes MMP14 expression at the transcriptional level. Knocking down KLF8 expression inhibited the breast cancer cell invasion both in vitro and in vivo as well as the lung metastasis in mice, which could be rescued by ectopic expression of MMP14. Promoter reporter assays and oligonucleotide and chromatin immunoprecipitations determined that KLF8 activates the human MMP14 gene promoter by both directly acting on the promoter and indirectly via promoting the nuclear translocation of β-catenin, the expression of T cell factor-1 (TCF1) and subsequent activation of the promoter by the β-catenin/TCF1 complex. Inhibition of focal adhesion kinase (FAK) using pharmacological inhibitor, RNA interference or knockout showed that the cell surface presentation of active MMP14 downstream of KLF8 depends upon FAK expression and activity. Taken together, this work identified novel signaling mechanisms by which KLF8 and FAK work together to promote the extracellular activity of MMP14 critical for breast cancer metastasis. PMID:23812425

  14. Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis.

    PubMed

    Fukuda, Takeshi; Isogawa, Danya; Takagi, Madoka; Kato-Murai, Michiko; Kimoto, Hisashi; Kusaoke, Hideo; Ueda, Mitsuyoshi; Suye, Shin-Ichiro

    2007-11-01

    To produce chitoorigosaccharides using chitosan, we attempted to construct Paenibacillus fukuinensis chitosanase-displaying yeast cells as a whole-cell biocatalyst through yeast cell-surface engineering. The localization of the chitosanase on the yeast cell surface was confirmed by immunofluorescence labeling of cells. The chitosanase activity of the constructed yeast was investigated by halo assay and the dinitrosalicylic acid method. PMID:17986777

  15. Enhancement of Platinum Mass Activity on the Surface of Polymer-wrapped Carbon Nanotube-Based Fuel Cell Electrocatalysts

    PubMed Central

    Hafez, Inas H.; Berber, Mohamed R.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-01-01

    Cost reduction and improved durability are the two major targets for accelerating the commercialization of polymer electrolyte membrane fuel cells (PEFCs). To achieve these goals, the development of a novel method to fabricate platinum (Pt)-based electrocatalysts with a high mass activity, deposited on durable conductive support materials, is necessary. In this study, we describe a facile approach to grow homogeneously dispersed Pt nanoparticles (Pt) with a narrow diameter distribution in a highly controllable fashion on polymer-wrapped carbon nanotubes (CNTs). A PEFC cell employing a composite with the smallest Pt nanoparticle size (2.3 nm diameter) exhibited a ~8 times higher mass activity compared to a cell containing Pt with a 3.7 nm diameter. This is the first example of the diamter control of Pt on polymer-wrapped carbon supporting materials, and the study opens the door for the development of a future-generation of PEFCs using a minimal amount of Pt. PMID:25221915

  16. Expression at the cell surface of biologically active fusion and hemagglutinin/neuraminidase proteins of the paramyxovirus simian virus 5 from cloned cDNA.

    PubMed Central

    Paterson, R G; Hiebert, S W; Lamb, R A

    1985-01-01

    cDNAs encoding the mRNAs for the fusion protein (F) and the hemagglutinin/neuraminidase protein (HN) of the paramyxovirus simian virus 5 have been inserted into a eukaryotic expression vector under the control of the simian virus 40 late promoter. The F and HN proteins synthesized in recombinant infected cells are indistinguishable in terms of electrophoretic mobility and glycosylation from the proteins synthesized in simian virus 5-infected cells. In addition, the expressed F and HN proteins have been shown to be anchored in the plasma membrane in a biologically active form by indirect live cell immunofluorescence, the F-mediated formation of syncytia, and the ability of HN to cause the hemadsorption of erythrocytes to the infected cell surface. Images PMID:3865176

  17. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    PubMed

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity. PMID:7718598

  18. Nitric oxide regulates human eosinophil adhesion mechanisms in vitro by changing integrin expression and activity on the eosinophil cell surface

    PubMed Central

    Conran, N; Ferreira, H H A; Lorand-Metze, I; Thomazzi, S M; Antunes, E; de Nucci, G

    2001-01-01

    The nitric oxide synthase (NOS) inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), inhibits both rat and human eosinophil chemotaxis in vitro. Here, the role of nitric oxide (NO) in human eosinophil cell surface integrin expression and function was investigated. Human peripheral blood eosinophils were treated with L-NAME (0.01 – 1.0 mM) and their adhesion to human fibronectin and serum observed. Adhesion of cells to fibronectin and serum increased by 24.0±4.6 and 43.8±4.7%, respectively, when eosinophils were treated with 1.0 mM L-NAME. Increased adhesion by L-NAME could be abolished when cells were co-incubated with VLA-4- and Mac-1-specific monoclonal antibodies (mAbs). The NO donor, sodium nitroprusside (2.5 mM), significantly inhibited eosinophil adhesion to fibronectin and serum by 34.3±4.5 and 45.2±5.6%, respectively. This inhibition was accompanied by a 4 fold increase in the levels of intracellular cyclic GMP. Flow cytometrical analysis demonstrated that L-NAME induced an increased expression of CD11b (Mac-1) on the eosinophil cell surface of 36.3±7.4%. L-NAME had no effect upon CD49d (VLA-4) expression. Treatment of human eosinophils, in vitro, with H-[1,2,4] oxadiazolo quinoxalin-1-one (ODQ) (0.1 mM), an inhibitor of soluble guanylate cyclase, also significantly increased eosinophil adhesion to fibronectin and serum by 73.5±17.9 and 91.7±12.9%, respectively. This increase in adhesion could also be inhibited by co-incubation with the Mac-1 and VLA-4-specific mAbs. In conclusion, results indicate that NO, via a cyclic GMP-dependent mechanism, inhibits the adhesion of human eosinophils to the extracellular matrix (ECM). This inhibition is accompanied by a decrease in the expression and function of the eosinophil's adhesion molecules, in particular, the expression of the Mac-1 integrin and the function of the VLA-4 integrin. PMID:11588118

  19. Identification and Characterization of CD44RC, a Novel Alternatively Spliced Soluble CD44 Isoform that can Potentiate the Hyaluronan Binding Activity of Cell Surface CD44

    PubMed Central

    Chiu, Roland K; Carpenito, Carmine; Dougherty, Shona T; Hayes, Gregory M; Dougherty, Graeme J

    1999-01-01

    Abstract Soluble CD44 proteins generated by proteolytic cleavage or aberrant intron retention have been shown to antagonize the ligand binding activity of the corresponding cell surface receptor, inducing apoptosis and inhibiting tumor growth. Interestingly, such findings appear to contradict recent studies demonstrating a correlation between the presence of high levels of soluble CD44 in the serum of cancer patients and poor prognosis. In the present study, we report the cloning of a novel, naturally occurring, differentially expressed, soluble CD44 isoform, designated CD44RC, which, in contrast to previously described soluble CD44 proteins, can dramatically enhance the hyaluronan binding activity of cell surface CD44. Sequence analysis suggests that CD44RC is generated by an alternative splicing event in which the 3′ end of CD44 exon 2 is spliced into an internal splice acceptor site present within exon 18, altering reading frame and giving rise to a soluble protein with a unique COOH terminus. Functional studies suggest that CD44RC enhances hyaluronan binding by adhering to chondroitin sulfate side-chains attached to cell surface CD44, generating a multivalent complex with increased avidity for hyaluronan. PMID:10933060

  20. VX-809 and related corrector compounds exhibit secondary activity stabilizing active F508del-CFTR after its partial rescue to the cell surface.

    PubMed

    Eckford, Paul D W; Ramjeesingh, Mohabir; Molinski, Steven; Pasyk, Stan; Dekkers, Johanna F; Li, Canhui; Ahmadi, Saumel; Ip, Wan; Chung, Timothy E; Du, Kai; Yeger, Herman; Beekman, Jeffrey; Gonska, Tanja; Bear, Christine E

    2014-05-22

    The most common mutation causing cystic fibrosis (CF), F508del, impairs conformational maturation of CF transmembrane conductance regulator (CFTR), thereby reducing its functional expression on the surface of epithelia. Corrector compounds including C18 (VRT-534) and VX-809 have been shown to partially rescue misfolding of F508del-CFTR and to enhance its maturation and forward trafficking to the cell surface. Now, we show that there is an additional action conferred by these compounds beyond their role in improving the biosynthetic assembly. In vitro studies show that these compounds bind directly to the metastable, full-length F508del-CFTR channel. Cell culture and patient tissue-based assays confirm that in addition to their cotranslational effect on folding, certain corrector compounds bind to the full-length F508del-CFTR after its partial rescue to the cell surface to enhance its function. These findings may inform the development of alternative compounds with improved therapeutic efficacy. PMID:24726831

  1. Molecular definition of a polymorphic antigen (LA45) of free HLA-A and -B heavy chains found on the surfaces of activated B and T cells.

    PubMed

    Madrigal, J A; Belich, M P; Benjamin, R J; Little, A M; Hildebrand, W H; Mann, D L; Parham, P

    1991-11-01

    A monomoprhic monoclonal antibody (LA45 antibody) reactive with "a new activation-induced surface structure on human T lymphocytes" (LA45 antigen) that resembled free class I heavy chains has recently been described (Schnabl, E., H. Stockinger, O. Majdic, H. Gaugitsch, I.J.D. Lindley, D. Maurer, A. Hajek-Rosenmayr, and W. Knapp. 1990. J. Exp. Med. 171:1431). This antibody was used to clone a class I-like heavy chain (LA45 gene) from the HUT 102 tumor cell, which paradoxically did not give rise to the LA45 antigen on transfection into monkey COS cells. We show here that the LA45 gene is HLA-Aw66.2, a previously uncharacterized allele of the HLA-A locus. The previously determined LA45 sequence differs from that of HLA-Aw66.2, from HUT 102, and the CR-B B cell line derived from the same individual as HUT 102 by substitution of tryptophan for serine at position 4 in the alpha 1 domain. Transfection of HLA-Aw66.2, and of a mutant of this gene with serine 4 substituted for tryptophan, into a human B cell line (C1R) both resulted in expression of the LA45 epitope. Furthermore, we find expression of the LA45 epitope on Epstein Barr virus-transformed B cell lines as well as lectin-activated T cells, but not on long-term T cell lines or unstimulated peripheral blood T cells. The specificity of the LA45 antibody is polymorphic and the presence of the LA45 epitope is precisely correlated with the sequence arginine, asparagine (RN) at residues 62 and 63 of the helix of the alpha 1 domain. The LA45 epitope is broadly distributed, being associated with half the alleles of both HLA-A and -B loci but none of the HLA-C locus. All the results are consistent with the presence of pools of free HLA-A and -B heavy chains at the surfaces of certain cell types but not others. Such molecules are probably responsible for the HLA-associated class I alloantigens of lectin-activated T cells. We hypothesize the free heavy chains result from dissociation of beta 2-microglobulin from

  2. The cell-surface interaction.

    PubMed

    Hayes, J S; Czekanska, E M; Richards, R G

    2012-01-01

    The realm of surface-dependent cell and tissue responses is the foundation of orthopaedic-device-related research. However, to design materials that elicit specific responses from tissues is a complex proposition mainly because the vast majority of the biological principles controlling the interaction of cells with implants remain largely ambiguous. Nevertheless, many surface properties, such as chemistry and topography, can be manipulated in an effort to selectively control the cell-material interaction. On the basis of this information there has been much research in this area, including studies focusing on the structure and composition of the implant interface, optimization of biological and chemical coatings and elucidation of the mechanisms involved in the subsequent cell-material interactions. Although a wealth of information has emerged, it also advocates the complexity and dynamism of the cell-material interaction. Therefore, this chapter aims to provide the reader with an introduction to the basic concepts of the cell-material interaction and to provide an insight into the factors involved in determining the cell and tissue response to specific surface features, with specific emphasis on surface microtopography. PMID:21984613

  3. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  4. A ternary composite based on graphene, hemin, and gold nanorods with high catalytic activity for the detection of cell-surface glycan expression.

    PubMed

    Liu, Jing; Xin, Xiaoyan; Zhou, Hong; Zhang, Shusheng

    2015-01-26

    A novel graphene-family ternary composite with high catalytic activity has been developed by using simple synthetic methods. The graphene-based ternary composite has abundant positively charged Au NRs, which greatly improved the catalytic properties of the graphene-family of peroxidase mimetics, because of the high electron-transfer rate of graphene and the synergistic interaction of three components. Sensitive detection of glycan expression on K562 cell surface can be achieved with a low detection limit of 10 cells. This finding constitutes a novel graphene-family hybrid nanomaterials-based peroxidase mimetic that is expected to be applied widely in the construction of simple, sensitive, and selective biosensors for nucleic acids and proteins both inside and outside of cells through catalytic reaction of H2 O2 . PMID:25418152

  5. Cell surface protein C23 affects EGF-EGFR induced activation of ERK and PI3K-AKT pathways.

    PubMed

    Lv, Shunzeng; Dai, Congxin; Liu, Yuting; Sun, Bowen; Shi, Ranran; Han, Mingzhi; Bian, Ruixiang; Wang, Renzhi

    2015-02-01

    The epidermal growth factor (EGF) pathway has been reported as canonical causes in cancer development. Meanwhile, the involvement of C23 in multiple signaling pathways has been also investigated (Lv et al., 2014). However, the effect of C23 on EGF pathway in glioblastoma is not fully characterized. In the present study, C23 and the epidermal growth factor receptor (EGFR) of U251 cell line were inhibited by C23 and EGFR antibodies, respectively; and then C23 and EGFR siRNAs were used to knock down endogenous C23 and EGFR, respectively. In addition, soft-agar and MTT assay were also introduced. Compared with control, either C23 or EGFR antibodies efficiently repressed the phosphorylation levels of ERK1/2 (p<0.000) and AKT (p<0.000). Similarly, either C23 or EGFR siRNAs indeed resulted in C23 and EGFR knockdown, and further suppressed the expression of p-ERK1/2 and p-AKT. Most importantly, immunoprecipitation revealed C23 interacted with EGFR once U251 was exposed to EGF treatment. In addition, the MTT and soft-agar assay also identified that C23 or EGFR siRNAs could obviously affected cell growth (p=0.004) and invasiveness, as cell viability and colony formation decreased markedly. Our results suggest that C23 plays a crucial role in activation of EGF-induced ERK and PI3K-AKT pathways via interacting with EGFR; furthermore, C23 could be indicative of an important factor in glioblastoma development and a useful target for glioblastoma treatment. PMID:25015231

  6. Ultrafine sputter-deposited Pt nanoparticles for triiodide reduction in dye-sensitized solar cells: impact of nanoparticle size, crystallinity and surface coverage on catalytic activity.

    PubMed

    Mukherjee, Somik; Ramalingam, Balavinayagam; Griggs, Lauren; Hamm, Steven; Baker, Gary A; Fraundorf, Phil; Sengupta, Shramik; Gangopadhyay, Shubhra

    2012-12-01

    This paper presents a detailed electrochemical impedance spectroscopy and cyclic voltammetry (CV) investigation into the electrocatalytic activity of ultrafine (i.e., smaller than 2 nm) platinum (Pt) nanoparticles generated on a fluorine-doped tin oxide (FTO) surface via room temperature tilted target sputter deposition. In particular, the Pt-decorated FTO electrode surfaces were tested as counter electrode candidates for triiodide (I3(-)) reduction in dye-sensitized solar cells (DSSCs). We observed a direct correlation between size-dependent Pt nanoparticle crystallinity and the I3(-) reduction activity underlying DSSC performance. CV analysis confirmed the higher electrocatalytic activities of sputter-deposited crystalline Pt nanoparticles (1-2 nm) compared with either sub-nanometre Pt clusters or a continuous Pt thin film. While the low catalytic activity and DSSC performance of Pt clusters smaller in size than 1 nm is believed to arise from their non-crystalline nature and charge-trapping attributes, we attribute the high catalytic performance of larger Pt nanoparticles in the 1-2 nm regime to their well-defined crystallinity and fast electron transfer kinetics. For DSSC applications, the optimized Pt loading was calculated to be ~2.54 × 10(-7) g cm(-2), which corresponds to surface coverage by ~1.6 nm sized Pt nanoparticles. PMID:23138541

  7. Anti-citrullinated protein antibodies activated ERK1/2 and JNK mitogen-activated protein kinases via binding to surface-expressed citrullinated GRP78 on mononuclear cells.

    PubMed

    Lu, Ming-Chi; Lai, Ning-Sheng; Yin, Wen-Yao; Yu, Hui-Chun; Huang, Hsien-Bin; Tung, Chien-Hsueh; Huang, Kuang-Yung; Yu, Chia-Li

    2013-04-01

    In a previous study, we found that anti-citrullinated protein antibodies (ACPAs) enhance nuclear factor (NF)-κB activity and tumor necrosis factor (TNF)-α production by normal human peripheral blood mononuclear cells (PBMCs) and U937 cells via binding to surface-expressed citrullinated glucose-regulated protein 78 (cit-GRP78). However, the downstream signaling pathways remain unclear after binding. In the present study, we firstly measured the effects of different kinase inhibitors on ACPA-mediated TNF-α production from normal PBMCs and monocytes. Then, the native and phosphorylated mitogen-activated protein kinases (MAPKs) were detected in ACPA-activated U937 cells by Western blotting. We also explored the role of the phosphoinositide 3-kinase (PI3K)-Akt pathway in activating IκB kinase alpha (IKK-α) in ACPA-stimulated U937 cells. Finally, we measured the amount of cit-GRP78 from PBMC membrane extracts in RA patients and controls. We found that MAPK and Akt inhibitors, but not PI3K inhibitor, remarkably suppressed ACPA-mediated TNF-α production. Interestingly, ACPAs selectively activated extracellular signal-regulated kinase 1/2 (ERK1/2) and c-jun N-terminal kinase (JNK), but not p38 MAPK, in U937 cells. This activation was suppressed by cit-GRP78, but not GRP78. The JNK activation further enhanced the phosphorylation of Akt and IKK-α. The expression of cit-GRP78 on cell membrane was higher in RA than normal PBMCs. Taken together; these results suggest that through binding to surface, over-expressed cit-GRP78 on RA PBMCs, ACPAs selectively activate ERK1/2 and JNK signaling pathways to enhance IKK-α phosphorylation, which leads to the activation of NF-κB and the production of TNF-α . PMID:23188524

  8. Teratogen metabolism: activation of thalidomide and thalidomide analogues to products that inhibit the attachment of cells to concanavalin A coated plastic surfaces. Revised version

    SciTech Connect

    Braun, A.G.; Weinreb, S.L.

    1982-01-01

    Thalidomide metabolites inhibit the attachment of tumor cells to concanavalin A coated polyethylene surfaces. Thalidomide, itself, is non-inhibitory. Thalidomide activation to inhibitory products requires hepatic microsomes, an NADPH generating system and molecular oxygen. Production of inhibitory metabolites is unaffected by either epoxide hydrolase or TCPO, an inhibitor of epoxide hydrolase endogenous to hepatic S9 fraction. Therefore the attachment inhibitor is probably not an arene oxide. Inhibition is not accompanied by cytotoxicity as judged by trypan blue exclusion. Although uninduced hepatic microsomes from mice, rats and dogs have similar ability to activate thalidomide, microsomes from Aroclor 1254 induced rats are relatively inactive in the system. Inhibitory metabolites can be generated from the thalidomide analogues EM8, EM12, EM16, EM87, EM136, EM255, E350, phthalimide, phthalimido-phthalimide, indan, 1-indanone and 1,3-indandione. Glutarimide, glutamic acid and phthalic acid do not activate to inhibitory products.

  9. A rare variant in human fibroblast activation protein associated with ER stress, loss of enzymatic function and loss of cell surface localisation.

    PubMed

    Osborne, Brenna; Yao, Tsun-Wen; Wang, Xin Maggie; Chen, Yiqian; Kotan, L Damla; Nadvi, Naveed A; Herdem, Mustafa; McCaughan, Geoffrey W; Allen, John D; Yu, Denise M T; Topaloglu, A Kemal; Gorrell, Mark D

    2014-07-01

    Fibroblast activation protein (FAP) is a focus of interest as a potential cancer therapy target. This membrane bound protease possesses the unique catalytic activity of hydrolysis of the post-proline bond two or more residues from the N-terminus of substrates. FAP is highly expressed in activated fibroblastic cells in tumours, arthritis and fibrosis. A rare, novel, human polymorphism, C1088T, encoding Ser363 to Leu, occurring in the sixth blade of the β propeller domain, was identified in a family. Both in primary human fibroblasts and in Ser363LeuFAP transfected cells, we showed that this single substitution ablates FAP dimerisation and causes loss of enzyme activity. Ser363LeuFAP was detectable only in endoplasmic reticulum (ER), in contrast to the distribution of wild-type FAP on the cell surface. The variant FAP showed decreased conformational antibody binding, consistent with an altered tertiary structure. Ser363LeuFAP expression was associated with upregulation of the ER chaperone BiP/GRP78, ER stress sensor ATF6, and the ER stress response target phospho-eIF2α, all indicators of ER stress. Proteasomal inhibition resulted in accumulation of Ser363LeuFAP, indicating the involvement of ER associated degradation (ERAD). Neither CHOP expression nor apoptosis was elevated, so ERAD is probably important for protecting Ser363LeuFAP expressing cells. These data on the first loss of function human FAP gene variant indicates that although the protein is vulnerable to an amino acid substitution in the β-propeller domain, inactive, unfolded FAP can be tolerated by cells. PMID:24717288

  10. Cell interactions with laser-modified polymer surfaces.

    PubMed

    Ball, M D; Sherlock, R; Glynn, T

    2004-04-01

    The performance of a polymeric biomaterial depends on the bulk and surface properties. Often, however, the suitability of the surface properties is compromised in favour of the bulk properties. Altering the surface properties of these materials will have a profound effect on how cells and proteins interact with them. Here, we have used an excimer laser to modify the surface wettability of nylon 12. The surface treatment is rapid, cost-effective and can cause reproducible changes in the surface structure of the polymers. Polymers were treated with short wavelength ( < 200 nm) UV light. These wavelengths have sufficient photon energy (6.4eV) to cause bond scission at the material surface. This results in a surface reorganisation with incorporation of oxygen. Surface wettability changes were confirmed using contact angle measurements. Cell interactions with the surfaces were examined using 3T3 fibroblast and HUVEC cells. Cells morphology was examined using a confocal laser scanning microscope (CLSM). Cell activity and cell number on the treated nylon were assessed using biochemical assays for up to seven days. Both fibroblasts and endothelial cells initially proliferated better on treated compared with untreated samples. However, over seven days activity decreased for both cell types on the control samples and endothelial cell activity and cell number also decreased on the treated polymer. PMID:15332615

  11. Biomolecular strategies for cell surface engineering

    NASA Astrophysics Data System (ADS)

    Wilson, John Tanner

    backbone molecular weight, PEG chain length, and grafting ratio, PLL-g-PEG copolymers were rendered cytocompatible and used to initiate and propagate the growth of cell surface-supported PEM films. Planar characterization of this novel class of PEM films indicated that film thickness and composition may be tailored through appropriate control of layer number and copolymer properties. Furthermore, these investigations have helped establish a conceptual framework for the rational design of cell surface-supported thin films, with the objective of translating the diverse biomedical and biotechnological applications of PEM films to cellular interfaces. Important to the development of effective conformal islet coatings is an inherent strategy through which to incorporate bioactive molecules for directing desired biochemical or cellular responses. Towards this end, PLL-g-PEG copolymers functionalized with biotin, azide, and hydrazide moieties were synthesized and used, either alone or in combination, to capture streptavidin-, triphenylphosphine-, and aldehyde-labeled probes, respectively, on the islet surface. Additionally, PEM films assembled using alginate chemically modified to contain aldehyde groups could be used to introduce hydrazide-functionalized molecules to the islet surface. Hence, modified film constituents may be used as modular elements for controlling the chemical composition cell and tissue surfaces. Finally, we report a strategy for tethering thrombomodulin (TM) to the islet surface. Through site-specific, C-terminal biotinylation of TM and optimization of cell surface biotinylation, TM could be integrated with the islet surface. Re-engineering of islet surfaces with TM resulted in an increased catalytic capacity of islets to generate the powerful anti-inflammatory agent, activated protein C (APC), thereby providing a facile strategy for increasing the local concentration of APC at the site of transplantation.

  12. Bactericidal activity of biomimetic diamond nanocone surfaces.

    PubMed

    Fisher, Leanne E; Yang, Yang; Yuen, Muk-Fung; Zhang, Wenjun; Nobbs, Angela H; Su, Bo

    2016-03-01

    The formation of biofilms on implant surfaces and the subsequent development of medical device-associated infections are difficult to resolve and can cause considerable morbidity to the patient. Over the past decade, there has been growing recognition that physical cues, such as surface topography, can regulate biological responses and possess bactericidal activity. In this study, diamond nanocone-patterned surfaces, representing biomimetic analogs of the naturally bactericidal cicada fly wing, were fabricated using microwave plasma chemical vapor deposition, followed by bias-assisted reactive ion etching. Two structurally distinct nanocone surfaces were produced, characterized, and the bactericidal ability examined. The sharp diamond nanocone features were found to have bactericidal capabilities with the surface possessing the more varying cone dimension, nonuniform array, and decreased density, showing enhanced bactericidal ability over the more uniform, highly dense nanocone surface. Future research will focus on using the fabrication process to tailor surface nanotopographies on clinically relevant materials that promote both effective killing of a broader range of microorganisms and the desired mammalian cell response. This study serves to introduce a technology that may launch a new and innovative direction in the design of biomaterials with capacity to reduce the risk of medical device-associated infections. PMID:26992656

  13. Surface activity of Acinetobacter calcoaceticus sp. 2CA2

    SciTech Connect

    Neufeld, R.J.; Zajic, J.E.

    1984-01-01

    The hydrocarbon metabolizing Acinetobacter calcoaceticus sp. 2CA2 reduces the surface tension of the culture broth during growth on liquid hydrocarbons. This activity, which is not evident during growth on soluble substrates, is associated with the whole cells. Removing the cells from the culture broth increases the surface tension of the liquid phase. The cells when resuspended in water result in a dramatic lowering of the surface tension. Acinetobacter sp. 2CA2 tends to partition between the two liquid phases during growth on hydrocarbons. Both the hydrocarbon bound and nonadhering cells are equally surface active. The whole cells are also able to form and stabilize kerosene-water emulsions. This ability is not related to the lowering of the liquid surface or interfacial tension, since both surface active and nonsurface active cells demonstrated the same emulsifying properties. An extracellular lipopeptide produced during growth on hydrocarbons is not surface active but effectively forms and stabilizes kerosene-water emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The cells and extracellular lipopeptide are also effective in de-emulsifying surfactant stabilized test emulsions. The lipopeptide product reduced the half-life of a Tween-Span (TS) stabilized kerosene-water emulsion from 650 to 0.4 h at product concentrations of less than 1% (w/v).

  14. Study of levan productivity from Bacillus subtilis Natto by surface response methodology and its antitumor activity against HepG2 cells using metabolomic approach.

    PubMed

    Cabral de Melo, Fernando Cesar Bazani; Borsato, Dionísio; de Macedo Júnior, Fernando César; Mantovani, Mario Sérgio; Luiz, Rodrigo Cabral; Colabone-Celligoi, Maria Antonia-Pedrine

    2015-11-01

    Levan productivity of Bacillus subtilis Natto was evaluated in submerged culture varying the pH, temperature and culture time, using factorial design and response surface methodology. The characterization of levan molecular weight was performed by HPSEC and its antitumor activity against HepG2 cells using metabolomic approach was also evaluated. At first, the variables investigated, as well as their interactions, demonstrated significant effect. Further, a second design using the same variables at different levels was developed. Thus, according to the model, an optimized value corresponding to 5.82 g.L⁻¹.h⁻¹ was achieved at pH 8, 39.5°C in 21 hours, the highest value reported so far. After analysis by HPSEC, two molecular weights were obtained corresponding to 72.37 and 4146 kDa. The levan promoted an increase of acetate, alanine, lactate and phosphocreatine in HepG2 cells suggesting an alteration in the bioenergetics pathways and cellular homeostasis by intracellular accumulation of lactate, justifying its antitumor activity. PMID:26639487

  15. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    PubMed

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-12-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  16. Cell Surface Analysis Techniques: What Do Cell Preparation Protocols Do to Cell Surface Properties?

    PubMed Central

    Pembrey, Richard S.; Marshall, Kevin C.; Schneider, René P.

    1999-01-01

    Cell surface analysis often requires manipulation of cells prior to examination. The most commonly employed procedures are centrifugation at different speeds, changes of media during washing or final resuspension, desiccation (either air drying for contact angle measurements or freeze-drying for sensitive spectroscopic analysis, such as X-ray photoelectron spectroscopy), and contact with hydrocarbon (hydrophobicity assays). The effects of these procedures on electrophoretic mobility, adhesion to solid substrata, affinity to a number of Sepharose columns, structural integrity, and cell viability were systematically investigated for a range of model organisms, including carbon- and nitrogen-limited Psychrobacter sp. strain SW8 (glycocalyx-bearing cells), Escherichia coli (gram-negative cells without a glycocalyx), and Staphylococcus epidermidis (gram-positive cells without a glycocalyx). All of the cell manipulation procedures severely modified the physicochemical properties of cells, but with each procedure some organisms were more susceptible than others. Considerable disruption of cell surfaces occurred when organisms were placed in contact with a hydrocarbon (hexadecane). The majority of cells became nonculturable after air drying and freeze-drying. Centrifugation at a high speed (15,000 × g) modified many cell surface parameters significantly, although cell viability was considerably affected only in E. coli. The type of washing or resuspension medium had a strong influence on the values of cell surface parameters, particularly when high-salt solutions were compared with low-salt buffers. The values for parameters obtained with different methods that allegedly measure similar cell surface properties did not correlate for most cells. These results demonstrate that the methods used to prepare cells for cell surface analysis need to be critically investigated for each microorganism so that the final results obtained reflect the nature of the in situ microbial cell

  17. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  18. Artist's rendering of Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Lunar Surface Activities: Instruments erected on the surface are a seismometer to record any subsurface activity of the Moon, a laser reflector, a solar wind collector, and possibly an antenna for improving communications and television picture transmission.

  19. The monomeric receptor binding domain of tetrameric α2-macroglobulin binds to cell surface GRP78 triggering equivalent activation of signaling cascades.

    PubMed

    Misra, Uma Kant; Payne, Sturgis; Pizzo, Salvatore Vincent

    2013-06-11

    α2-Macroglobulin (α2M) is a broad spectrum proteinase inhibitor that when activated by proteinases (α2M*) undergoes a major conformational change exposing receptor recognition sites in each of its four subunits. These complexes bind to two distinct receptors, namely, the low-density lipoprotein receptor-related protein (LRP) and cell surface glucose-regulated protein [Mr ∼ 78000 (GRP78)]. The latter is a very high affinity receptor (Kd = 50-100 pM) whose ligation triggers pro-proliferative and anti-apoptotic signaling cascades. Despite its four binding sites, Scatchard analysis of binding of α2M* to cells does not yield a cooperative plot. We, therefore, hypothesize that a monomeric cloned and expressed α2M receptor binding domain (RBD) should trigger comparable signaling events. Indeed, RBD or its K1370A mutant that binds to GRP78 but cannot bind to LRP regulates DNA and protein synthesis by human prostate cancer cells in a manner comparable to that of α2M*. Akt and mTORC1 activation and signaling are also comparably upregulated by α2M*, RBD, or mutant K1370A. Antibodies directed against the carboxyl-terminal domain of GRP78 are antagonists that block α2M*-mediated effects on pro-proliferative and anti-apoptotic signaling cascades and protein and DNA synthesis. The effects of RBD and its mutant were similarly blocked by these antibodies. Finally, proteolysis of α2M at pH values from 5.7 to 7.0 causes production of free RBD and RBD-containing fragments. Thus, while α2M* ligates only one GRP78 receptor molecule per α2M*, it may potentially serve as a reservoir for release of up to four binding fragments per molecule. PMID:23721263

  20. Single cell profiling of surface carbohydrates on Bacillus cereus.

    PubMed

    Wang, Congzhou; Ehrhardt, Christopher J; Yadavalli, Vamsi K

    2015-02-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based 'recognition force mapping' as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  1. Single cell profiling of surface carbohydrates on Bacillus cereus

    PubMed Central

    Wang, Congzhou; Ehrhardt, Christopher J.; Yadavalli, Vamsi K.

    2015-01-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based ‘recognition force mapping’ as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  2. Early contacts between T lymphocytes and activating surfaces

    NASA Astrophysics Data System (ADS)

    Cretel, E.; Touchard, D.; Benoliel, A. M.; Bongrand, P.; Pierres, A.

    2010-05-01

    Cells continually probe their environment to adapt their behaviour. A current challenge is to determine how they analyse nearby surfaces and how they process information to take decisions. We addressed this problem by monitoring human T lymphocyte attachment to surfaces coated with activating anti-CD3 or control anti-HLA antibodies. Interference reflection microscopy allowed us to monitor cell-to-surface apposition with a few nanometre vertical resolution during the first minutes following contact. We found that (i) when a cell fell on a surface, contact extension was preceded by a lag of several tens of seconds. (ii) During this lag, vertical membrane undulations seemed to generate transient contacts with underlying surfaces. (iii) After the lag period, the contact area started increasing linearly with a rate of about 1.5 µm2 s - 1 on activating surfaces and about 0.2 µm2 s - 1 on control surfaces. (iv) Concomitantly with lateral surface extension, the apparent distance between cell membranes and surfaces steadily decreased. These results are consistent with the hypothesis that the cell decision to spread rapidly on activating surfaces resulted from the integration of information yielded by transient contacts with these surfaces generated by membrane undulations during a period of about 1 min.

  3. Multitarget magnetic activated cell sorter

    PubMed Central

    Adams, Jonathan D.; Kim, Unyoung; Soh, H. Tom

    2008-01-01

    Magnetic selection allows high-throughput sorting of target cells based on surface markers, and it is extensively used in biotechnology for a wide range of applications from in vitro diagnostics to cell-based therapies. However, existing methods can only perform separation based on a single parameter (i.e., the presence or absence of magnetization), and therefore, the simultaneous sorting of multiple targets at high levels of purity, recovery, and throughput remains a challenge. In this work, we present an alternative system, the multitarget magnetic activated cell sorter (MT-MACS), which makes use of microfluidics technology to achieve simultaneous spatially-addressable sorting of multiple target cell types in a continuous-flow manner. We used the MT-MACS device to purify 2 types of target cells, which had been labeled via target-specific affinity reagents with 2 different magnetic tags with distinct saturation magnetization and size. The device was engineered so that the combined effects of the hydrodynamic force produced from the laminar flow and the magnetophoretic force produced from patterned ferromagnetic structures within the microchannel result in the selective purification of the differentially labeled target cells into multiple independent outlets. We demonstrate here the capability to simultaneously sort multiple magnetic tags with >90% purity and >5,000-fold enrichment and multiple bacterial cell types with >90% purity and >500-fold enrichment at a throughput of 109 cells per hour. PMID:19015523

  4. Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings.

    PubMed

    Kopittke, Peter M; Blamey, F Pax C; Wang, Peng; Menzies, Neal W

    2011-07-01

    Manganese (Mn) is an essential micronutrient for plant growth but is often toxic in acid or waterlogged soils. Using cowpea (Vigna unguiculata L. Walp.) grown with 0.05-1500 μM Mn in solution, two short-term (48 h) solution culture experiments examined if the effects of cations (Ca, Mg, Na, Al, or H) on Mn nutrition are related to the root cells' plasma membrane (PM) surface potential, ψ(0)(0). When grown in solutions containing levels of Mn that were toxic, both relative root elongation rate (RRER) and root tissue Mn concentration were more closely related to the activity of Mn(2+) at the outer surface of the PM, {Mn(2+)}(0)(0) (R(2)=0.812 and 0.871) than to its activity in the bulk solution, {Mn(2+)}(b) (R(2)=0.673 and 0.769). This was also evident at lower levels of Mn (0.05-10 μM) relevant to studies investigating Mn as an essential micronutrient (R(2)=0.791 versus 0.590). In addition, changes in the electrical driving force for ion transport across the PM influenced both RRER and the Mn concentration in roots. The {Mn(2+)}(b) causing a 50% reduction in root growth was found to be c. 500 to >1000 μM (depending upon solution composition), whilst the corresponding value was 3300 μM when related to {Mn(2+)}(0)(0). Although specific effects such as competition are not precluded, the data emphasize the importance of non-specific electrostatic effects in the Mn nutrition of cowpea seedlings over a 1×10(5)-fold range of Mn concentration in solution. PMID:21511910

  5. Do surface active parenteral formulations cause inflammation?

    PubMed

    Söderberg, Lars; Engblom, Johan; Lanbeck, Peter; Wahlgren, Marie

    2015-04-30

    Local irritation and inflammation at the site of administration are a common side effect following administration of parenteral formulations. Biological effects of surface (interfacial) activity in solutions are less well investigated than effects caused by other physico-chemical parameters such as pH and osmolality. The interfacial activity in different systems, including human plasma, typical amphiphilic substances with fundamental biological relevance such as free fatty acids, anesthetic depot formulations and six different antibiotics was measured. The relative interfacial pressure, and/or concentration of active substance, required to obtain 50% of the maximal attainable effect in terms of interfacial pressure were calculated. The aim was to test the hypothesis that these parameters would allow comparison to biological effects reported in in vivo studies on the investigated substances. The highest interfacial activity was found in a triglyceride/plasma system. Among the antibiotic tested, the highest interfacial activities were found in erythromycin and dicloxacillin, which is in accordance with previous clinical findings of a high tendency of infusion phlebitis and cell toxicity. Independently of investigated system, biological effects were minimal below a 15% relative increase of interfacial activity. Above 35-45% the effects were severe. Interfacial activity in parenteral formulations may well cause damages to tissues followed by inflammation. PMID:25708007

  6. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    PubMed

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  7. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    PubMed Central

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  8. Effect of surface roughening on the catalytic activity of Pt-Cr electrocatalysts for the oxygen reduction in phosphoric acid fuel cell

    SciTech Connect

    Kim, K.T.; Kim, Y.G.; Chung, J.S.

    1995-05-01

    A Pt-Cr bimetallic catalyst with an atomic ratio of 3 to 1 was prepared by the impregnation method using a Pt/C catalyst (Pt loading: 10 weight percent). The catalyst was subjected to heat-treatment from 400 to 1,200 C. Its physical properties were characterized by H{sub 2}-O{sub 2} chemisorption, X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy. Changes in the catalytic activity for oxygen reduction in PAFC were also examined. In particular, surface roughening caused by acid pretreatment and/or potential excursion was investigated to see its effect on the activity. Acid treatment (in 1M H{sub 2}SO{sub 4} for 1 day) and/or potential excursion at a mild condition (with a limited upper potential of 0.9 V vs. RHE) effectively created surface roughening without showing particle growth via sintering. The surface roughening increased the Pt surface area and consequently mass activity (catalytic activity based on mass of Pt) of the catalysts due to the selective leaching of surface-enriched chromium species. Concerning the specific activity (catalytic activity based on the Pt surface area), Pt-Cr having a smaller lattice parameter than Pt-Fe or Pt showed better performance, and this rule could be extended for other alloy systems. The mass activity, which is more important for practical applications, could be enhanced substantially when the surface roughening was brought on the catalyst surface while keeping the metal particle size small. The largest enhancement in the mass activity was observed when a partially alloyed or disordered alloy of Pt-Cr catalyst was subjected to the acid treatment or to the potential excursion.

  9. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities. PMID:27098435

  10. Probe microscopy: Scanning below the cell surface

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur

    2008-08-01

    Conventional atomic force microscopy probes only the surface of specimens. A related technique called scanning near-field ultrasonic holography can now image nanoparticles buried below the surfaces of cells, which could prove useful in nanotoxicology.

  11. Plasmids enriched with CpG motifs activate human peripheral blood mononuclear cells in vitro and enhance th-1 immune responses to hepatitis B surface antigen in mice.

    PubMed

    Chen, Zhihui; Cao, Jie; Liao, Xiaoling; Ke, Jinshan; Zhu, Shiying; Zhao, Ping; Qi, Zhongtian

    2011-06-01

    T helper-1 (Th-1)-type immune responses play an important role in viral clearance during infection with hepatitis B virus (HBV). Unmethylated CpG motifs present in bacterial DNA can activate toll-like receptor 9 (TLR9) signals and act as potent adjuvants to induce Th-1-type immune responses. Here, a mini-plasmid with 812 base pairs in length was constructed and used as a vector to prepare a series of plasmids containing 3-21 copies of D-type CpG motifs. In vitro, these CpG-enriched plasmids strongly stimulated proliferation of human peripheral blood mononuclear cells (PBMCs) and enhanced secretion of interferon-γ (IFN-γ) and interleukin-12 (IL-12). The responses of the PBMCs from healthy individuals to the plasmids were stronger than those obtained from HBV-infected individuals. Contrary to the strong Th-2-biased response induced by surface antigen of hepatitis B virus (HBsAg) plus alum adjuvant, immunization of BALB/c mice with HBsAg plus these plasmids induced a strong Th-1-biased response. The plasmids increased the titers of HBsAg-specific total immunoglobulin G (IgG) and IgG(2a). HBsAg-specific IL-2 and IFN-γ production and cytotoxic activity were also enhanced in the presence of the plasmids. The strength of the immune responses positively correlated with the number of CpG motifs in the plasmids. These results indicate that the use of CpG-enriched plasmids as an adjuvant to recombinant HBsAg could provide a promising and cost-effective approach for the development of efficacious therapeutic vaccines against HBV infection. PMID:21668361

  12. Creation of a Cellooligosaccharide-Assimilating Escherichia coli Strain by Displaying Active Beta-Glucosidase on the Cell Surface via a Novel Anchor Protein ▿

    PubMed Central

    Tanaka, Tsutomu; Kawabata, Hitomi; Ogino, Chiaki; Kondo, Akihiko

    2011-01-01

    We demonstrated direct assimilation of cellooligosaccharide using Escherichia coli displaying beta-glucosidase (BGL). BGL from Thermobifida fusca YX (Tfu0937) was displayed on the E. coli cell surface using a novel anchor protein named Blc. This strain was grown successfully on 0.2% cellobiose, and the optical density at 600 nm (OD600) was 1.05 after 20 h. PMID:21742905

  13. Surface Functionalization for Protein and Cell Patterning

    NASA Astrophysics Data System (ADS)

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  14. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  15. Diffusing colloidal probes of cell surfaces.

    PubMed

    Duncan, Gregg A; Fairbrother, D Howard; Bevan, Michael A

    2016-05-25

    Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties. PMID:27117575

  16. Vitronectin-binding staphylococci enhance surface-associated complement activation.

    PubMed Central

    Lundberg, F; Lea, T; Ljungh, A

    1997-01-01

    Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn. PMID:9038294

  17. Roles for SH2 and SH3 Domains in Lyn Kinase Association with Activated FcεRI in RBL Mast Cells Revealed by Patterned Surface Analysis

    PubMed Central

    Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L.; Holowka, David; Baird, Barbara

    2009-01-01

    In mast cells, antigen-mediated cross-linking of IgE bound to its high affinity surface receptor, FcεRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcεRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells. PMID:19427382

  18. B-cell acquisition of antigen: Sensing the surface.

    PubMed

    Knight, Andrew M

    2015-06-01

    B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. PMID:25929718

  19. Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-β (TGF-β) Activation and Fibroblast Differentiation*

    PubMed Central

    Dayer, Cynthia; Stamenkovic, Ivan

    2015-01-01

    Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated. PMID:25825495

  20. The cell surface GRP78 facilitates the invasion of hepatocellular carcinoma cells.

    PubMed

    Zhang, Xiu-Xiu; Li, Hong-Dan; Zhao, Song; Zhao, Liang; Song, Hui-Juan; Wang, Guan; Guo, Qing-Jun; Luan, Zhi-Dong; Su, Rong-Jian

    2013-01-01

    Invasion is a major characteristic of hepatocellular carcinoma and one of the main causes of refractory to treatment. We have previously reported that GRP78 promotes the invasion of hepatocellular carcinoma although the mechanism underlying this change remains uncertain. In this paper, we explored the role of the cell surface GRP78 in the regulation of cancer cell invasion in hepatocellular carcinoma cells. We found that neutralization of the endogenous cell surface GRP78 with the anti-GRP78 antibody inhibited the adhesion and invasion in hepatocellular carcinoma cell lines Mahlavu and SMMC7721. However, forced expression of the cell surface GRP78 facilitated the adhesion and invasion in SMMC7721. We further demonstrated that inhibition of the endogenous cell surface GRP78 specifically inhibited the secretion and activity of MMP-2 but did not affect the secretion and activity of MMP-9. We also found that inhibition of the cell surface GRP78 increased E-Cadherin expression and decreased N-Cadherin level. On the contrary, forced expression of the cell surface GRP78 increased N-Cadherin expression and decreased E-Cadherin level, suggesting that the cell surface GRP78 plays critical role in the regulation of EMT process. These findings suggest that the cell surface GRP78 plays a stimulatory role in the invasion process and may be a potential anti-invasion target for the treatment of hepatocellular carcinoma. PMID:24383061

  1. Cell surface morphology in epithelial malignancy and its precursor lesions.

    PubMed

    Kenemans, P; Davina, J H; de Haan, R W; van der Zanden, P; Vooys, G P; Stolk, J G; Stadhouders, A M

    1981-01-01

    The cell surface organization of cancer cells is of potentially great significance, as it may not only allow (early) diagnosis, but as it may also harbour markers for refined prognosis (degree of oncogenetic and metastatic potential), and targets for selective cancer (chemo- and immuno) therapy. With these aspects in mind, the present review deals with SEM work done on (pre-) malignant cells, both in vivo and in vitro, and in animal models. Attention, however, is focused on human cancer cells. Cancer cells in vitro may lose many of their original malignant characteristics, and show adaptations to culture conditions. Many other factors have been shown to influence cell surface morphology, such as cell cycle, cell contacts, and preparations technique. Cancer cells differ in their surface morphology from normal cells, and have an extra ordinary amount of surface activity. Human malignant epithelial cells show abundant long. pleomorphic microvilli, especially those present in effusions. In squamous epithelium (bladder, cervix) microridge system present on normal superficial cells are progressively replaced by microvilli which increase in number and degree of pleomorphism during experimental and clinical oncogenesis. The question of whether or not the appearance of long. Pleomorphic microvilli reflects an irreversible alteration of the epithelium, and thus provides an early marker of irreversible neoplastic transformation is considered and assessed on the basis of our work with (pre-) malignant cells of the human uterine cervix. Although SEM has contributed significantly to the description of oncogenesis, up to now it has no early diagnostic, prognostic or therapeutic significance. PMID:7199203

  2. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  3. Fluorescence activated cell sorting.

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  4. Solar cell having improved back surface reflector

    NASA Astrophysics Data System (ADS)

    Chai, A. T.

    1982-10-01

    The operating temperature is reduced and the output of a solar cell is increased by using a solar cell which carries electrodes in a grid finger pattern on its back surface. These electrodes are sintered at the proper temperature to provide good ohmic contact. After sintering, a reflective material is deposited on the back surface by vacuum evaporation. Thus, the application of the back surface reflector is separate from the back contact formation. Back surface reflectors formed in conjunction with separate grid finger configuration back contacts are more effective than those formed by full back metallization of the reflector material.

  5. High vacuum cells for classical surface techniques

    SciTech Connect

    Martinez, Imee Su; Baldelli, Steven

    2010-04-15

    Novel glass cells were designed and built to be able to perform surface potential and surface tension measurements in a contained environment. The cells can withstand pressures of approximately 1x10{sup -6} Torr, providing a reasonable level of control in terms of the amounts of volatile contaminants during experimentation. The measurements can take several hours; thus the cells help maintain the integrity of the sample in the course of the experiment. To test for the feasibility of the cell design, calibration measurements were performed. For the surface potential cell, the modified TREK 6000B-7C probe exhibited performance comparable to its unmodified counterpart. The correlation measurements between applied potential on the test surface and the measured potential showed R-values very close to 1 as well as standard deviation values of less than 1. Results also demonstrate improved measurement values for experiments performed in vacuum. The surface tension cell, on the other hand, which was used to perform the pendant drop method, was tested on common liquids and showed percentage errors of 0.5% when compared to literature values. The fabricated cells redefine measurements using classical surface techniques, providing unique and novel methods of sample preparation, premeasurement preparation, and sample analysis at highly beneficial expenditure cost.

  6. Activated α2-macroglobulin binding to cell surface GRP78 induces T-loop phosphorylation of Akt1 by PDK1 in association with Raptor.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2014-01-01

    PDK1 phosphorylates multiple substrates including Akt by PIP3-dependent mechanisms. In this report we provide evidence that in prostate cancer cells stimulated with activated α2-macroglobulin (α2M*) PDK1 phosphorylates Akt in the T-loop at Thr(308) by using Raptor in the mTORC1 complex as a scaffold protein. First we demonstrate that PDK1, Raptor, and mTOR co-immunoprecipitate. Silencing the expression, not only of PDK1, but also Raptor by RNAi nearly abolished Akt phosphorylation at Akt(Thr308) in Raptor-immunoprecipitates of α2M*-stimulated prostate cancer cells. Immunodepleting Raptor or PDK from cell lysates of cells treated with α2M* drastically reduced Akt phosphorylation at Thr(308), which was recovered by adding the supernatant of Raptor- or PDK1-depleted cell lysates, respectively. Studies of insulin binding to its receptor on prostate cancer cells yielded similar results. We thus demonstrate that phosphorylating the T-loop Akt residue Thr(308) by PDK1 requires Raptor of the mTORC1 complex as a platform or scaffold protein. PMID:24516643

  7. Low-Reflectance Surfaces For Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Fatemi, Navid; Jenkins, Phillip P.

    1994-01-01

    Improved method for increasing solar cell efficiency has potential application for space-based and terrestrial solar power systems and optoelectronic devices. Etched low-angle grooves help recover reflected light. Light reflected from v-grooved surface trapped in cover glass and adhesive by total internal reflection. Reflected light redirected onto surface, and greater fraction of incident light absorbed, producing more electrical energy in InP solar photovoltaic cell.

  8. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  9. Surface Charge Visualization at Viable Living Cells.

    PubMed

    Perry, David; Paulose Nadappuram, Binoy; Momotenko, Dmitry; Voyias, Philip D; Page, Ashley; Tripathi, Gyanendra; Frenguelli, Bruno G; Unwin, Patrick R

    2016-03-01

    Scanning ion conductance microscopy (SICM) is demonstrated to be a powerful technique for quantitative nanoscale surface charge mapping of living cells. Utilizing a bias modulated (BM) scheme, in which the potential between a quasi-reference counter electrode (QRCE) in an electrolyte-filled nanopipette and a QRCE in bulk solution is modulated, it is shown that both the cell topography and the surface charge present at cellular interfaces can be measured simultaneously at high spatial resolution with dynamic potential measurements. Surface charge is elucidated by probing the properties of the diffuse double layer (DDL) at the cellular interface, and the technique is sensitive at both low-ionic strength and under typical physiological (high-ionic strength) conditions. The combination of experiments that incorporate pixel-level self-referencing (calibration) with a robust theoretical model allows for the analysis of local surface charge variations across cellular interfaces, as demonstrated on two important living systems. First, charge mapping at Zea mays root hairs shows that there is a high negative surface charge at the tip of the cell. Second, it is shown that there are distinct surface charge distributions across the surface of human adipocyte cells, whose role is the storage and regulation of lipids in mammalian systems. These are new features, not previously recognized, and their implications for the functioning of these cells are highlighted. PMID:26871001

  10. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  11. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  12. Oxidation of cell surface thiol groups by contact sensitizers triggers the maturation of dendritic cells.

    PubMed

    Kagatani, Saori; Sasaki, Yoshinori; Hirota, Morihiko; Mizuashi, Masato; Suzuki, Mie; Ohtani, Tomoyuki; Itagaki, Hiroshi; Aiba, Setsuya

    2010-01-01

    p38 mitogen-activated protein kinase (MAPK) has a crucial role in the maturation of dendritic cells (DCs) by sensitizers. Recently, it has been reported that the oxidation of cell surface thiols by an exogenous impermeant thiol oxidizer can phosphorylate p38 MAPK. In this study, we examined whether sensitizers oxidize cell surface thiols of monocyte-derived DCs (MoDCs). When cell surface thiols were quantified by flow cytometry using Alexa fluor maleimide, all the sensitizers that we examined decreased cell surface thiols on MoDCs. To examine the effects of decreased cell surface thiols by sensitizers on DC maturation, we analyzed the effects of an impermeant thiol oxidizer, o-phenanthroline copper complex (CuPhen). The treatment of MoDCs with CuPhen decreased cell surface thiols, phosphorylated p38 MAPK, and induced MoDC maturation, that is, the augmentation of CD83, CD86, HLA-DR, and IL-8 mRNA, as well as the downregulation of aquaporin-3 mRNA. The augmentation of CD86 was significantly suppressed when MoDCs were pretreated with N-acetyl-L-cystein or treated with SB203580. Finally, we showed that epicutaneous application of 2,4-dinitrochlorobenzene on mouse skin significantly decreased cell surface thiols of Langerhans cells in vivo. These data suggest that the oxidation of cell surface thiols has some role in triggering DC maturation by sensitizers. PMID:19641517

  13. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  14. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  15. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  16. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface.

    PubMed

    Kopittke, Peter M; Kinraide, Thomas B; Wang, Peng; Blamey, F Pax C; Reichman, Suzie M; Menzies, Neal W

    2011-06-01

    Cations, such as Ca and Mg, are generally thought to alleviate toxicities of trace metals through site-specific competition (as incorporated in the biotic ligand model, BLM). Short-term experiments were conducted with cowpea (Vigna unguiculata L. Walp.) seedlings in simple nutrient solutions to examine the alleviation of Cu and Pb toxicities by Al, Ca, H, Mg, and Na. For Cu, the cations depolarized the plasma membrane (PM) and reduced the negativity of ψ(0)(o) (electrical potential at the outer surface of the PM) and thereby decreased {Cu(2+)}(0)(o) (activity of Cu(2+) at the outer surface of the PM). For Pb, root elongation was generally better correlated to the activity of Pb(2+) in the bulk solution than to {Pb(2+)}(0)(o). However, we propose that the addition of cations resulted in a decrease in {Pb(2+)}(0)(o) but a simultaneous increase in the rate of Pb uptake (due to an increase in the negativity of E(m,surf), the difference in potential between the inner and outer surfaces of the PM) thus offsetting the decrease in {Pb(2+)}(0)(o). In addition, Ca was found to alleviate Pb toxicity through a specific effect. Although our data do not preclude site-specific competition (as incorporated in the BLM), we suggest that electrostatic effects have an important role. PMID:21563792

  17. Adjoint active surfaces for localization and imaging.

    PubMed

    Cook, Daniel A; Mueller, Martin Fritz; Fedele, Francesco; Yezzi, Anthony J

    2015-01-01

    This paper addresses the problem of localizing and segmenting regions embedded within a surrounding medium by characterizing their boundaries, as opposed to imaging the entirety of the volume. Active surfaces are used to directly reconstruct the shape of the region of interest. We describe the procedure for finding the optimal surface, which is computed iteratively via gradient descent that exploits the sensitivity of an error minimization functional to changes of the active surface. In doing so, we introduce the adjoint model to compute the sensitivity, and in this respect, the method shares common ground with several other disciplines, such as optimal control. Finally, we illustrate the proposed active surface technique in the framework of wave propagation governed by the scalar Helmholtz equation. Potential applications include electromagnetics, acoustics, geophysics, nondestructive testing, and medical imaging. PMID:25438311

  18. Role of T-helper type 2 cytokines in down-modulation of fas mRNA and receptor on the surface of activated CD4(+) T cells: molecular basis for the persistence of the allergic immune response.

    PubMed

    Spinozzi, F; Agea, E; Fizzotti, M; Bassotti, G; Russano, A; Droetto, S; Bistoni, O; Grignani, F; Bertotto, A

    1998-12-01

    The mechanisms responsible for persistence of T lymphocytes at the sites of allergic inflammation are not completely understood. Activated T cells, usually expressing Fas on their surface, undergo activation-induced apoptotic death, thus limiting the dangerous consequences of a persistent immune reaction. We have previously shown that pulmonary T lymphocytes from untreated asthmatic subjects do not express surface Fas receptors nor do they contain Fas mRNA, yet they display normal levels of Fas ligand. This is not an inherited defect and is confined to mucosal T cells. To gain insights into the mechanism responsible for these findings, we performed a set of experiments with both purified Dermatophagoides pteronyssinus allergen and recombinant human cytokines: interleukin 2 (IL-2), IL-4, IL-5, transforming growth factor beta1, interferon gamma, and granulocyte-macrophage colony-stimulating factor (GM-CSF). In vitro exposure of purified CD4(+) lymphocytes to allergen yielded only transient up-regulation of surface Fas but did not influence susceptibility to Fas-mediated cell death. T-helper type 2 cytokines (IL-4, IL-5, and GM-CSF) had a dose-dependent and specific inhibitory effect on Fas mRNA, suggesting a new fundamental biological role in the survival of inflammatory cells during allergen exposure. PMID:9837865

  19. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  20. Evaluation of Clinical Biomaterial Surface Effects on T Lymphocyte Activation

    PubMed Central

    Rodriguez, Analiz; Anderson, James M.

    2009-01-01

    Previous in vitro studies in our laboratory have shown that lymphocytes can influence macrophage adhesion and fusion on biomaterial surfaces. However, few studies have evaluated how material adherent macrophages can influence lymphocyte behavior, specifically T cells. In this study, we cultured human peripheral blood mononuclear cells from healthy donors on three synthetic non-biodegradable biomedical polymers: Elasthane 80A (PEU), Silicone rubber (SR), or polyethylene terephthalate (PET) and tissue culture polystyrene (TCPS). Upregulation of T cell surface activation markers (CD69 and CD25), lymphocyte proliferation, and interleukin-2 (IL-2) and interferon-γ (IFNγ) concentrations were evaluated by flow cytometry, carboxy-fluorescein diacetate, succinimydyl ester (CFSE) incorporation, and multiplex cytokine immunoassay, respectively, to assess T cell activation. Following 3 and 7 days of culture, CD4+ helper T cells from cultures of any of the material groups did not express the activation markers CD69 and CD25 and lymphocyte proliferation was not present. IL-2 and IFNγ levels were produced, but dependent on donor. These data indicate that T cells are not activated in response to clinically relevant synthetic biomaterials. The data also suggest that lymphocyte subsets exclusive of T cells are the source of the lymphokines, IL-2 and IFN-γ, in certain donors. PMID:19172618

  1. SLC30A10 Is a Cell Surface-Localized Manganese Efflux Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and Efflux Activity

    PubMed Central

    Leyva-Illades, Dinorah; Chen, Pan; Zogzas, Charles E.; Hutchens, Steven; Mercado, Jonathan M.; Swaim, Caleb D.; Morrisett, Richard A.; Bowman, Aaron B.

    2014-01-01

    Manganese (Mn) is an essential metal, but elevated cellular levels are toxic and may lead to the development of an irreversible parkinsonian-like syndrome that has no treatment. Mn-induced parkinsonism generally occurs as a result of exposure to elevated Mn levels in occupational or environmental settings. Additionally, patients with compromised liver function attributable to diseases, such as cirrhosis, fail to excrete Mn and may develop Mn-induced parkinsonism in the absence of exposure to elevated Mn. Recently, a new form of familial parkinsonism was reported to occur as a result of mutations in SLC30A10. The cellular function of SLC30A10 and the mechanisms by which mutations in this protein cause parkinsonism are unclear. Here, using a combination of mechanistic and functional studies in cell culture, Caenorhabditis elegans, and primary midbrain neurons, we show that SLC30A10 is a cell surface-localized Mn efflux transporter that reduces cellular Mn levels and protects against Mn-induced toxicity. Importantly, mutations in SLC30A10 that cause familial parkinsonism blocked the ability of the transporter to traffic to the cell surface and to mediate Mn efflux. Although expression of disease-causing SLC30A10 mutations were not deleterious by themselves, neurons and worms expressing these mutants exhibited enhanced sensitivity to Mn toxicity. Our results provide novel insights into the mechanisms involved in the onset of a familial form of parkinsonism and highlight the possibility of using enhanced Mn efflux as a therapeutic strategy for the potential management of Mn-induced parkinsonism, including that occurring as a result of mutations in SLC30A10. PMID:25319704

  2. Active micromixer using surface acoustic wave streaming

    DOEpatents

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  3. B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity

    PubMed Central

    2009-01-01

    Background The etiology of the neurogenerative disease multiple sclerosis (MS) is unknown. The leading hypotheses suggest that MS is the result of exposure of genetically susceptible individuals to certain environmental factor(s). Herpesviruses and human endogenous retroviruses (HERVs) represent potentially important factors in MS development. Herpesviruses can activate HERVs, and HERVs are activated in MS patients. Results Using flow cytometry, we have analyzed HERV-H Env and HERV-W Env epitope expression on the surface of PBMCs from MS patients with active and stable disease, and from control individuals. We have also analyzed serum antibody levels to the expressed HERV-H and HERV-W Env epitopes. We found a significantly higher expression of HERV-H and HERV-W Env epitopes on B cells and monocytes from patients with active MS compared with patients with stable MS or control individuals. Furthermore, patients with active disease had relatively higher numbers of B cells in the PBMC population, and higher antibody reactivities towards HERV-H Env and HERV-W Env epitopes. The higher antibody reactivities in sera from patients with active MS correlate with the higher levels of HERV-H Env and HERV-W Env expression on B cells and monocytes. We did not find such correlations for stable MS patients or for controls. Conclusion These findings indicate that both HERV-H Env and HERV-W Env are expressed in higher quantities on the surface of B cells and monocytes in patients with active MS, and that the expression of these proteins may be associated with exacerbation of the disease. PMID:19917105

  4. Synergistic fungicidal activity of Cu(2+) and allicin, an allyl sulfur compound from garlic, and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae.

    PubMed

    Ogita, Akira; Hirooka, Kiyoo; Yamamoto, Yoshihiro; Tsutsui, Nobuo; Fujita, Ken-Ichi; Taniguchi, Makoto; Tanaka, Toshio

    2005-11-15

    Cu(2+) showed a dose-dependent fungicidal activity against Saccharomyces cerevisiae cells, and its lethal effect was extremely enhanced in the presence of allicin, an allyl sulfur compound from garlic. The fungicidal activity of Cu(2+) was unaffected or rather attenuated by other sulfur-containing compounds such as N-acetyl-cysteine, l-cysteine or dithiothreitol. Ca(2+) could absolutely protect against the lethal effect of Cu(2+) itself, but showed no protection against the fungicidal activity of Cu(2+) newly generated in combination with allicin. Cu(2+) accelerated an endogenous generation of reactive oxygen species (ROS) in S. cerevisiae cells at a lethal concentration, but such intracellular oxidative stress induction was not observed during cell death progression upon treatment with Cu(2+) and allicin. A surfactant, sodium N-lauroyl sarcosinate (SLS), enhanced the solubilization of a few proteins including alkyl hydroperoxide reductase 1 (AHP1) in intact cells, accounting for the absence of this protein in the extract from allicin-treated cells. Allicin-treated cells were rendered extremely sensitive to the subsequent Cu(2+) treatment as in the case of SLS-treated cells. Allicin-treated cells and SLS-treated cells similarly showed an increased sensitivity to exogenously added tert-butyl hydroperoxide (t-BOOH), an organic peroxide that is detoxified by the action of AHP1. Our study suggests that allicin influences the mode of cell surface localization or the related function of AHP1 as a defense against phospholipid peroxidation by the external action of Cu(2+). PMID:16102883

  5. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  6. Dendritic Cell Responses to Surface Properties of Clinical Titanium Surfaces

    PubMed Central

    Kou, Peng Meng; Schwartz, Zvi; Boyan, Barbara D.

    2010-01-01

    Dendritic cells (DCs) play pivotal roles in responding to foreign entities during an innate immune response and initiating effective adaptive immunity as well as maintaining immune tolerance. The sensitivity of DCs to foreign stimuli also makes them useful cells to assess the inflammatory response to biomaterials. Elucidating the material property-DC phenotype relationships using a well-defined biomaterial system is expected to provide criteria for immuno-modulatory biomaterial design. Clinical titanium (Ti) substrates, including pretreatment (PT), sand-blasted and acid-etched (SLA), and modified SLA (modSLA), with different roughness and surface energy were used to treat DCs and resulted in differential DC responses. PT and SLA induced a mature DC (mDC) phenotype, while modSLA promoted a non-inflammatory environment by supporting an immature DC (iDC) phenotype based on surface marker expression, cytokine production profiles and cell morphology. Principal component analysis (PCA) confirmed these experimental results, and it also indicated that the non-stimulating property of modSLA covaried with certain surface properties, such as high surface hydrophilicity, % oxygen and % Ti of the substrates. In addition to the previous research that demonstrated the superior osteogenic property of modSLA compared to PT and SLA, the result reported herein indicates that modSLA may further benefit implant osteo-integration by reducing local inflammation and its associated osteoclastogenesis. PMID:20977948

  7. Biosensing based on surface plasmon resonance and living cells.

    PubMed

    Chabot, Vincent; Cuerrier, Charles M; Escher, Emanuel; Aimez, Vincent; Grandbois, Michel; Charette, Paul G

    2009-02-15

    We propose the combination of surface plasmon resonance (SPR) with living cells as a biosensing method. Our detection scheme is based on the premise that cellular activity induced by external agents is often associated with changes in cellular morphology, which in turn should lead to a variation of the effective refractive index at the interface between the cell membrane and the metal layer. We monitored surface plasmon resonance signals originating from a gold surface coated with cells on a custom apparatus after injection of various agents known to influence cellular activity and morphology. Specifically, we evaluated three types of stimulation: response to an endotoxin (lipopolysaccharides), a chemical toxin (sodium azide) and a physiological agonist (thrombin). A comparison with phase contrast microscopy reveals that SPR signal variations are associated with the induction of cell death for lipopolysaccharides treatment and a contraction of the cell body for sodium azide. Thrombin-induced cellular response shows a rapid decrease of the measured laser reflectance over 5min followed by a return to the original value. For this treatment, phase contrast micrographs relate the first phase of the SPR variation to cell contraction and increase of the intercellular gaps, whereas the recovery phase can be associated with a spreading of the cell on the sensing surface. Hence, the SPR signal is very consistent with the cellular response normally observed for these treatments. This confirms the validity of the biosensing method, which could be applied to a large variety of cellular responses involving shape remodeling induced by external agents. PMID:18845432

  8. Progenitor cells for ocular surface regenerative therapy.

    PubMed

    Casaroli-Marano, Ricardo P; Nieto-Nicolau, Nuria; Martínez-Conesa, Eva M

    2013-01-01

    The integrity and normal function of the corneal epithelium are essential for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio-replacement, such as cultured limbal epithelial transplantation and cultured oral mucosal epithelial transplantation, present very encouraging clinical results for treating limbal stem cell deficiencies. Another emerging therapeutic strategy consists of obtaining and implementing human progenitor cells of different origins using tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal stromal cells, represents a significant breakthrough in the treatment of certain eye diseases and also offers a more rational, less invasive and more physiological approach to ocular surface regeneration. PMID:23257987

  9. Boltzmann active walkers and rough surfaces

    NASA Astrophysics Data System (ADS)

    Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.

    1993-06-01

    An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.

  10. Activated mast cells promote differentiation of B cells into effector cells

    PubMed Central

    Palm, Anna-Karin E.; Garcia-Faroldi, Gianni; Lundberg, Marcus; Pejler, Gunnar; Kleinau, Sandra

    2016-01-01

    Based on the known accumulation of mast cells (MCs) in B cell-dependent inflammatory diseases, including rheumatoid arthritis, we hypothesized that MCs directly modulate B cells. We show here that degranulated, and to a lesser extent naïve or IgE-sensitized, MCs activate both naïve and B cell receptor-activated B cells. This was shown by increased proliferation, blast formation, and expression of CD19, MHC class II and CD86 in the B cells. Further, MCs stimulated the secretion of IgM and IgG in IgM+ B cells, indicating that MCs can induce class-switch recombination in B cells. We also show that coculture of MCs with B cells promotes surface expression of L-selectin, a homing receptor, on the B cells. The effects of MCs on B cells were partly dependent on cell-cell contact and both follicular and marginal zone B cells could be activated by MCs. Our findings suggest that degranulated MCs support optimal activation of B cells, a finding that is in line with in vivo studies showing that MCs frequently degranulate in the context of B-cell driven pathologies such as arthritis. Together, our findings show that MCs have the capacity to differentiate B cells to effector cells. PMID:26847186

  11. Surface cell immobilization within perfluoroalkoxy microchannels

    NASA Astrophysics Data System (ADS)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  12. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  13. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles.

    PubMed

    Stephan, Matthias T; Moon, James J; Um, Soong Ho; Bershteyn, Anna; Irvine, Darrell J

    2010-09-01

    A major limitation of cell therapies is the rapid decline in viability and function of the transplanted cells. Here we describe a strategy to enhance cell therapy via the conjugation of adjuvant drug-loaded nanoparticles to the surfaces of therapeutic cells. With this method of providing sustained pseudoautocrine stimulation to donor cells, we elicited marked enhancements in tumor elimination in a model of adoptive T cell therapy for cancer. We also increased the in vivo repopulation rate of hematopoietic stem cell grafts with very low doses of adjuvant drugs that were ineffective when given systemically. This approach is a simple and generalizable strategy to augment cytoreagents while minimizing the systemic side effects of adjuvant drugs. In addition, these results suggest therapeutic cells are promising vectors for actively targeted drug delivery. PMID:20711198

  14. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    NASA Astrophysics Data System (ADS)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  15. Identification and Characterization of a Novel 38.5-Kilodalton Cell Surface Protein of Staphylococcus aureus with Extended-Spectrum Binding Activity for Extracellular Matrix and Plasma Proteins

    PubMed Central

    Hussain, Muzaffar; Becker, Karsten; von Eiff, Christof; Schrenzel, Jacques; Peters, Georg; Herrmann, Mathias

    2001-01-01

    The ability to attach to host ligands is a well-established pathogenic factor in invasive Staphylococcus aureus disease. In addition to the family of adhesive proteins bound to the cell wall via the sortase A (srtA) mechanism, secreted proteins such as the fibrinogen-binding protein Efb, the extracellular adhesion protein Eap, or coagulase have been found to interact with various extracellular host molecules. Here we describe a novel protein, the extracellular matrix protein-binding protein (Emp) initially identified in Western ligand blots as a 40-kDa protein due to its broad-spectrum recognition of fibronectin, fibrinogen, collagen, and vitronectin. Emp is expressed in the stationary growth phase and is closely associated with the cell surface and yet is extractable by sodium dodecyl sulfate. The conferring gene emp (1,023 nucleotides) encodes a signal peptide of 26 amino acids and a mature protein of a calculated molecular mass of 35.5 kDa. Using PCR, emp was demonstrated in all 240 S. aureus isolates of a defined clinical strain collection as well as in 6 S. aureus laboratory strains, whereas it is lacking in all 10 S. epidermidis strains tested. Construction of an allelic replacement mutant (mEmp50) revealed the absence of Emp in mEmp50, a significantly decreased adhesion of mEmp50 to immobilized fibronectin and fibrinogen, and restoration of these characteristics upon complementation of mEmp50. Emp expression was also demonstrable upon heterologous complementation of S. carnosus. rEmp expressed in Escherichia coli interacted with fibronectin, fibrinogen, and vitronectin in surface plasmon resonance experiments at a Kd of 21 nM, 91 nM, and 122 pM, respectively. In conclusion, the biologic characterization of Emp suggests that it is a member of the group of secreted S. aureus molecules that interact with an extended spectrum of host ligands and thereby contribute to S. aureus pathogenicity. PMID:11698365

  16. Cell surface recycling in yeast: mechanisms and machineries.

    PubMed

    MacDonald, Chris; Piper, Robert C

    2016-04-15

    Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeastSaccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway. PMID:27068957

  17. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  18. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  19. Kinetic discrimination in T-cell activation.

    PubMed Central

    Rabinowitz, J D; Beeson, C; Lyons, D S; Davis, M M; McConnell, H M

    1996-01-01

    We propose a quantitative model for T-cell activation in which the rate of dissociation of ligand from T-cell receptors determines the agonist and antagonist properties of the ligand. The ligands are molecular complexes between antigenic peptides and proteins of the major histocompatibility complex on the surfaces of antigen-presenting cells. Binding of ligand to receptor triggers a series of biochemical reactions in the T cell. If the ligand dissociates after these reactions are complete, the T cell receives a positive activation signal. However, dissociation of ligand after completion of the first reaction but prior to generation of the final products results in partial T-cell activation, which acts to suppress a positive response. Such a negative signal is brought about by T-cell ligands containing the variants of antigenic peptides referred to as T-cell receptor antagonists. Results of recent experiments with altered peptide ligands compare favorably with T-cell responses predicted by this model. PMID:8643643

  20. Surface texturing and patterning in solar cells

    SciTech Connect

    Green, M.A.

    1993-11-01

    Surface texture can perform a number of functions in modern solar cell design. The most obvious function is in control of reflection from surfaces on which sunlight is incident. However, texture can also be used to influence the fate of light that is refracted into the cell. Light steering by surface texture can ensure this refracted light is absorbed in regions of the cell which are most responsive. When used with rear reflectors, surface texture can help trap weakly absorbed light into the cell, increasing the effective path length or optical thickness of the cell by factors of 30--60. Two general types of texture are considered. One involves macroscopic features of controlled shape designed to control the direction of interacting light. The other is based on the use of irregular features of size comparable to wavelength of the light. These can be very effective in scattering light into a wide range of directions. Non-optical uses of texture are also briefly described. 62 refs., 22 figs.

  1. Green Bank Telescope active surface system

    NASA Astrophysics Data System (ADS)

    Lacasse, Richard J.

    1998-05-01

    During the design phase of the Green Bank Telescope (GBT), various means of providing an accurate surface on a large aperture paraboloid, were considered. Automated jacks supporting the primary reflector were selected as the appropriate technology since they promised greater performance and potentially lower costs than a homologous or carbon fiber design, and had certain advantages over an active secondary. The design of the active surface has presented many challenges. Since the actuators are mounted on a tipping structure, it was required that they support a significant side-load. Such devices were not readily available commercially so they had to be developed. Additional actuator requirements include low backlash, repeatable positioning, and an operational life of at least 230 years. Similarly, no control system capable of controlling the 2209 actuators was commercially available. Again a prime requirement was reliability. Maintaining was also a very important consideration. The system architecture is tree-like. An active surface 'master-computer' controls interaction with the telescope control system, and controls ancillary equipment such as power supplies and temperature monitors. Two slave computers interface with the master- computer, and each closes approximately 1100 position loops. For simplicity, the servo is an 'on/off' type, yet achieves a positioning resolution of 25 microns. Each slave computer interfaces with 4 VME I/O cards, which in turn communicate with 140 control modules. The control modules read out the positions of the actuators every 0.1 sec and control the actuators' DC motors. Initial control of the active surface will be based on an elevation dependant structural model. Later, the model will be improved by holographic observations.Surface accuracy will be improved further by using laser ranging system which will actively measure the surface figure. Several tests have been conducted to assure that the system will perform as desired when

  2. Production of cell surface and secreted glycoproteins in mammalian cells.

    PubMed

    Seiradake, Elena; Zhao, Yuguang; Lu, Weixian; Aricescu, A Radu; Jones, E Yvonne

    2015-01-01

    Mammalian protein expression systems are becoming increasingly popular for the production of eukaryotic secreted and cell surface proteins. Here we describe methods to produce recombinant proteins in adherent or suspension human embryonic kidney cell cultures, using transient transfection or stable cell lines. The protocols are easy to scale up and cost-efficient, making them suitable for protein crystallization projects and other applications that require high protein yields. PMID:25502196

  3. A Generalizable Platform for the Photoactivation of Cell Surface Receptors.

    PubMed

    Duc, Thinh Nguyen; Huse, Morgan

    2015-11-20

    Polarized signal transduction from cell surface receptors plays a central role in the development and homeostasis of multicellular organisms, and it also contributes to cellular dysfunction in many disease states. Understanding the molecular and cellular bases of polarized signaling requires experimental methods that provide precise spatiotemporal control of receptor activation. However, we currently lack strategies for inducing both sustained and spatially constrained signal transduction. In the present study, we combined synthetic and cell biological tools to develop a generalizable photoactivation approach for the stimulation of cell surface receptors. Our system, which is based upon the local decaging of a "universal" peptide ligand, is particularly well suited for the live imaging of single cells. We anticipate that it will greatly facilitate future mechanistic analyses of polarized signal transduction in a variety of cell types. PMID:26295186

  4. Nanovalve Activation by Surface-Attached Photoacids

    PubMed Central

    Guardado-Alvarez, T. M.; Russell, M. M.

    2015-01-01

    Proton transfer caused by excitation of a photoacid attached to the surface of a mesoporous silica nanoparticle activates a nanovalve and causes release of trapped molecules. The protonation of an aniline- based stalk releases a noncovalently bound cyclodextrin molecule that blocked a pore. The results show that pH-responsive molecular delivery systems can be externally controlled using light. PMID:24942753

  5. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Müller, Petra; Bulnheim, Ulrike; Diener, Annette; Lüthen, Frank; Teller, Marianne; Klinkenberg, Ernst-Dieter; Neumann, Hans-Georg; Nebe, Barbara; Liebold, Andreas; Steinhoff, Gustav; Rychly, Joachim

    2008-01-01

    Abstract Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix®, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell–extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix®, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation. PMID:18366455

  6. Glycopeptide Capture for Cell Surface Proteomics

    PubMed Central

    Lee, M. C. Gilbert; Sun, Bingyun

    2014-01-01

    Cell surface proteins, including extracellular matrix proteins, participate in all major cellular processes and functions, such as growth, differentiation, and proliferation. A comprehensive characterization of these proteins provides rich information for biomarker discovery, cell-type identification, and drug-target selection, as well as helping to advance our understanding of cellular biology and physiology. Surface proteins, however, pose significant analytical challenges, because of their inherently low abundance, high hydrophobicity, and heavy post-translational modifications. Taking advantage of the prevalent glycosylation on surface proteins, we introduce here a high-throughput glycopeptide-capture approach that integrates the advantages of several existing N-glycoproteomics means. Our method can enrich the glycopeptides derived from surface proteins and remove their glycans for facile proteomics using LC-MS. The resolved N-glycoproteome comprises the information of protein identity and quantity as well as their sites of glycosylation. This method has been applied to a series of studies in areas including cancer, stem cells, and drug toxicity. The limitation of the method lies in the low abundance of surface membrane proteins, such that a relatively large quantity of samples is required for this analysis compared to studies centered on cytosolic proteins. PMID:24836557

  7. Solar cell having improved front surface metallization

    SciTech Connect

    Lillington, D.R.; Mardesich, N.; Dill, H.G.; Garlick, G.F.J.

    1987-09-15

    This patent describes a solar cell comprising: a first layer of gallium arsenide semiconductor material of an N+ conductivity; a second layer of gallium arsenide semiconductor material of an N conductivity overlying the first layer; a third layer of gallium arsenide semiconductor material of a P conductivity overlying the N conductivity layer and forming a P-N junction therebetween. A layer of aluminium gallium arsenide semiconductor material of a p conductivity overlying the front major surface of the P conductivity third layer and having an exposed surface essentially parallel to the front major surface and at least one edge; a plurality of metallic contact lines made of a first metal alloy composition and being spaced apart by a first predetermined distance traversing the exposed surface and extending through the aluminium gallium arsenide layer to the front major surface and making electrical contact to the third layer; a plurality of longitudinally disposed metallic grid lines made of a second metal alloy composition and being spaced apart by a second predetermined distance located on the exposed surface of the aluminium gallium arsenide layer and which cross the metallic contact lines and make electrical contact to the metallic lines; a flat metallic strip disposed on the aluminium gallium arsenide layer exposed surface near the edge, the strip electrically coupling the metallic grid lines to one another; and a back contact located on the back major surface.

  8. Leukocyte Cell Surface Proteinases: Regulation of Expression, Functions, and Mechanisms of Surface Localization

    PubMed Central

    Owen, Caroline A.

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: 1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinase by cells; 2) the availability of surface binding sites for proteinases; and/or 3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: 1) concentrating the activity of proteinases to the immediate pericellular environment; 2) facilitating pro-enzyme activation; 3) increasing proteinase stability and retention in the extracellular space; 4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and 5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes. PMID:18329945

  9. A Rapid Method for Refolding Cell Surface Receptors and Ligands

    PubMed Central

    Zhai, Lu; Wu, Ling; Li, Feng; Burnham, Robert S.; Pizarro, Juan C.; Xu, Bin

    2016-01-01

    Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches. PMID:27215173

  10. Melittin interaction with sulfated cell surface sugars.

    PubMed

    Klocek, Gabriela; Seelig, Joachim

    2008-03-01

    Melittin is a 26-residue cationic peptide with cytolytic and antimicrobial properties. Studies on the action mechanism of melittin have focused almost exclusively on the membrane-perturbing properties of this peptide, investigating in detail the melittin-lipid interaction. Here, we report physical-chemical studies on an alternative mechanism by which melittin could interact with the cell membrane. As the outer surface of many cells is decorated with anionic (sulfated) glycosaminoglycans (GAGs), a strong Coulombic interaction between the two oppositely charged molecules can be envisaged. Indeed, the present study using isothermal titration calorimetry reveals a high affinity of melittin for several GAGs, that is, heparan sulfate (HS), dermatan sulfate, and heparin. The microscopic binding constant of melittin for HS is 2.4 x 10 (5) M (-1), the reaction enthalpy is Delta H melittin (0) = -1.50 kcal/mol, and the peptide-to-HS stoichiometry is approximately 11 at 10 mM Tris, 100 mM NaCl at pH 7.4 and 28 degrees C. Delta H melittin (0) is characterized by a molar heat capacity of Delta C P (0) = -227 cal mol (-1) K (-1). The large negative heat capacity change indicates that hydrophobic interactions must also be involved in the binding of melittin to HS. Circular dichroism spectroscopy demonstrates that the binding of the peptide to HS induces a conformational change to a predominantly alpha-helical structure. A model for the melittin-HS complex is presented. Melittin binding was compared with that of magainin 2 and nisin Z to HS. Magainin 2 is known for its antimicrobial properties, but it does not cause lysis of the eukaryotic cells. Nisin Z shows activity against various Gram-positive bacteria. Isothermal titration calorimetry demonstrates that magainin 2 and nisin Z do not bind to HS (5-50 degrees C, 10 mM Tris, and 100 mM NaCl at pH 7.4). PMID:18220363

  11. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  12. A biologically active surface enzyme assembly that attenuates thrombus formation

    PubMed Central

    Qu, Zheng; Muthukrishnan, Sharmila; Urlam, Murali K.; Haller, Carolyn A.; Jordan, Sumanas W.; Kumar, Vivek A.; Marzec, Ulla M.; Elkasabi, Yaseen; Lahann, Joerg; Hanson, Stephen R.

    2013-01-01

    Activation of hemostatic pathways by blood-contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. We postulate that surface-induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both clotting and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, we present a molecular engineering and bioorthogonal chemistry approach to site-specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non-human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface-induced thrombus formation. PMID:23532366

  13. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  14. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  15. Asphaltenes as a surface active agent

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.; Storm, D.A.

    1995-12-31

    Asphaltene represents the heavy-end materials of the crude oil, conventionally defined via solvent solubility (either heptane or pentane). Chemically, it consists of polynuclear aromatics with the H/C ratio close to unity. Additionally, it contains a great deal of heteroatoms, such as sulfur, nitrogen, nickel, vanadium, etc. Several experiments have revealed the surface activity of asphaltenes in some selected solvents through measurements of their rheology or critical micelle concentrations in these solvents. The asphaltene micelles were found thermodynamically reversible. In a two phase asphaltene/water system, asphaltenes appear to vary their surface activities depending upon the polarity of the aqueous phase. Our recent experiment further showed that asphaltene/water/toluene may form, water-in-oil emulsion under certain conditions.

  16. Specificity of human galectins on cell surfaces.

    PubMed

    Rapoport, E M; Bovin, N V

    2015-07-01

    Galectins are β-galactoside-binding proteins sharing homology in amino acid sequence of their carbohydrate-recognition domain. Their carbohydrate specificity outside cells has been studied previously. The main conclusion of these studies was that several levels of glycan ligand recognition exist for galectins: (i) disaccharide Galβ1-4GlcNAc (LN, N-acetyllactosamine) binds stronger than β-galactopyranose; (ii) substitution at O-2 and O-3 of galactose residue as well as core fragments ("right" from GlcNAc) provides significant increase in affinity; (iii) similarly glycosylated proteins can differ significantly in affinity to galectins. Information about the natural cellular receptors of galectins is limited. Until recently, it was impossible to study specificity of cell-bound galectins. A model based on controlled incorporation of a single protein into glycocalyx of cells and subsequent interaction of loaded cells with synthetic glycoprobes measured by flow cytometry made this possible recently. In this review, data about glycan specificity of proto-, chimera-, and tandem-repeat type galectins on the cell surface are systematized, and comparative analysis of the results with data on specificity of galectins in artificial systems was performed. The following conclusions from these studies were made: (i) cellular galectins have practically no ability to bind disaccharide LNn, but display affinity to 3'-substituted oligolactosamines and oligomers LNn; (ii) tandem-repeat type galectins recognize another disaccharide, namely Galβ1-3GlcNAc (Le(c)); (iii) on the cell surface, tandem-repeat type galectins conserve the ability to display high affinity to blood group antigens of ABH system; (iv) in general, when galectins are immersed into glycocalyx, they are more selective regarding glycan interactions. Thus, we conclude that competitive interaction of galectins with cell microenvironment (endogenous cell glycans) is the main factor providing selectivity of galectins in

  17. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim; Mahmoudi, Seyed Reza; Abu-Dheir, Numan; Varanasi, Kripa

    2014-11-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  18. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Mahmoudi, Seyed Reza; Abu-dheir, Numan; Varanasi, Kripa K.

    2014-07-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  19. Cell Surface Markers in HTLV-1 Pathogenesis

    PubMed Central

    Kress, Andrea K.; Grassmann, Ralph; Fleckenstein, Bernhard

    2011-01-01

    The phenotype of HTLV-1-transformed CD4+ T lymphocytes largely depends on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we exemplify the expression pattern of characteristic lineage markers, costimulatory receptors and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion molecules on HTLV-1-transformed cells. These molecules may provide survival signals for the transformed cells. Expression of characteristic surface markers might therefore contribute to persistence of HTLV-1-transformed lymphocytes and to the development of HTLV-1-associated disease. PMID:21994790

  20. Osteogenic activity of titanium surfaces with nanonetwork structures

    PubMed Central

    Xing, Helin; Komasa, Satoshi; Taguchi, Yoichiro; Sekino, Tohru; Okazaki, Joji

    2014-01-01

    Background Titanium surfaces play an important role in affecting osseointegration of dental implants. Previous studies have shown that the titania nanotube promotes osseointegration by enhancing osteogenic differentiation. Only relatively recently have the effects of titanium surfaces with other nanostructures on osteogenic differentiation been investigated. Methods In this study, we used NaOH solutions with concentrations of 2.5, 5.0, 7.5, 10.0, and 12.5 M to develop a simple and useful titanium surface modification that introduces the nanonetwork structures with titania nanosheet (TNS) nanofeatures to the surface of titanium disks. The effects of such a modified nanonetwork structure, with different alkaline concentrations on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMMSCs), were evaluated. Results The nanonetwork structures with TNS nanofeatures induced by alkali etching markedly enhanced BMMSC functions of cell adhesion and osteogenesis-related gene expression, and other cell behaviors such as proliferation, alkaline phosphatase activity, extracellular matrix deposition, and mineralization were also significantly increased. These effects were most pronounced when the concentration of NaOH was 10.0 M. Conclusion The results suggest that nanonetwork structures with TNS nanofeatures improved BMMSC proliferation and induced BMMSC osteogenic differentiation. In addition, the surfaces formed with 10.0 M NaOH suggest the potential to improve the clinical performance of dental implants. PMID:24741311

  1. Vibrating surface actuators for active flow control

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Clingman, Dan J.

    2002-07-01

    Current research has shown that aircraft can gain significant aerodynamic performance benefits from active flow control (AFC). AFC seeks to control large scale flows by exploiting natural response triggered by small energy inputs. The principal target application is download alleviation of the V-22 Osprey under the DARPA sponsored Boeing Active Flow Control System program. One method of injecting energy into the flow over the V22 wings is to use an active vibrating surface on the passive seal between the wing and flapperon. The active surface is an oscillating cantilevered beam which injects fluid into the flow, similar to a synthetic jet, and interacts with the flow field. Two types of actuators, or flipperons, are explored. The first is a multilayer piezoelectric polyvinylidene fluoride cantilevered bender. The second is a single crystal piezoelectric (SCP)d31 poled wafer mounted on a cantilevered spring steel substrate. This paper details the development effort including fabrication, mechanical and electrical testing, and modeling for both types of actuators. Both flipperons were mounted on the passive seal between a 1/10th scale V22 wing and flapperon and the aerodynamic performance evaluated in low speed wind tunnel. The SCP flipperon demonstrated significant cruise benefits, with increase of 10 percent lift and 20 percent angle of attack capability. The PVDF flipperon provided a 16 percent drag reduction in the hover mode.

  2. Cell surface expression and biosynthesis of epithelial Na+ channels.

    PubMed Central

    Prince, L S; Welsh, M J

    1998-01-01

    The epithelial Na+ channel (ENaC) complex is composed of three homologous subunits: alpha, beta and gamma. Mutations in ENaC subunits can increase the number of channels on the cell surface, causing a hereditary form of hypertension called Liddle's syndrome, or can decrease channel activity, causing pseudohypoaldosteronism type I, a salt-wasting disease of infancy. To investigate surface expression, we studied ENaC subunits expressed in COS-7 and HEK293 cells. Using surface biotinylation and protease sensitivity, we found that when individual ENaC subunits are expressed alone, they traffic to the cell surface. The subunits are glycosylated with high-mannose oligosaccharides, but seem to have the carbohydrate removed before they reach the cell surface. Moreover, subunits form a complex that cannot be disrupted by several non-ionic detergents. The pattern of glycosylation and detergent solubility/insolubility persists when the N-teminal and C-terminal cytoplasmic regions of ENaC are removed. With co-expression of all three ENaC subunits, the insoluble complex is the predominant species. These results show that ENaC and its family members are unique in their trafficking, biochemical characteristics and post-translational modifications. PMID:9841884

  3. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Deckert, Iliane; Schmidt, Julia; Stroux, Andrea; Afraz, Zahra; Rancan, Fiorenza; Lademann, Jürgen; Combadiere, Behazine; Blume-Peytavi, Ulrike

    2015-01-01

    Transcutaneous immunization (TCI) requires targeting of a maximum number of skin antigen-presenting cells as non-invasive as possible on small skin areas. In two clinical trials, we introduced cyanoacrylate skin surface stripping (CSSS) as a safe method for TCI. Here, using ex vivo human skin, we demonstrate that one CSSS procedure removed only 30% of stratum corneum, but significantly increased the penetration of 200 nm polystyrene particles deep into vellus and intermediate hair follicles from where they could not been retrieved by conventional tape stripping. Two subsequent CSSS had no striking additional effect. CSSS increased particle penetration in superficial stratum corneum and induced Langerhans cell activation. Formulation in amphiphilic ointment or massage did not substantially influences the interfollicular penetration profiles. Hair follicle (HF) targeting by CSSS could become a highly effective tool for TCI when combined with carrier-based delivery and is gaining new attention as our understanding on the HF immune system increases. PMID:25382068

  4. Effects of pH and oil-in-water emulsions on growth and physicochemical cell surface properties of Listeria monocytogenes: Impact on tolerance to the bactericidal activity of disinfectants.

    PubMed

    Naïtali, Murielle; Dubois-Brissonnet, Florence; Cuvelier, Gérard; Bellon-Fontaine, Marie-Noëlle

    2009-03-31

    This study characterizes the effects of an acidic pH and an emulsified oil-in-water phase in a culture medium on the behavior of Listeria monocytogenes. Two strains were tested, Scott A and CIP 78.39, and exhibited similar responses to growth media. First of all, the results showed that the emulsified oil phase had no effect on growth kinetics, whereas acidification of the initial pH (from 7.2 to 5.2) reduced both growth rates and growth yields. Secondly, physicochemical cell surface properties were evaluated. Growth in an emulsion resulted in a more marked increase in hydrophobicity in neutral than in acidic media, whereas the electrical charge remained unchanged. Furthermore, growth in acidic media - emulsified or not - induced a reduction in hydrophobicity as well as in the negative charge of cell surfaces. Thirdly, the results showed that tolerance to the bactericidal activity of didecyl dimethyl ammonium bromide (DDAB) and sodium dichloroisocyanuric acid (NaDCC) was strongly dependent on the pH of the growth phase. Acidic stress during growth increased tolerance to both disinfectants, but to a greater extent with DDAB than with NaDCC. Moreover, the presence of an emulsion during growth at an acidic pH had no effect on subsequent strain tolerance to disinfectants. By contrast, when the pH of the emulsion was neutral, the oil phase induced a more marked reduction in the tolerance of both strains to DDAB, but the reverse applied with NaDCC. Taken together, these results indicate a clear link between modifications to cell surface properties and tolerance to disinfectants, related to the hydrophobicity and electrical charges of both bacterial cells and disinfectants. PMID:19203811

  5. Chronic lymphocytic leukemia: a disease of activated monoclonal B cells

    PubMed Central

    Damle, Rajendra N.; Calissano, Carlo; Chiorazzi, Nicholas

    2010-01-01

    B-cell type chronic lymphocytic leukemia (CLL) has long been considered a disease of resting lymphocytes. However cell surface and intracellular phenotypes suggest that most CLL cells are activated cells, although only a small subset progresses beyond the G1 stage of the cell cycle. In addition, traditional teaching says that CLL cells divide rarely, and therefore the buildup of leukemic cells is due to an inherent defect in cell death. However, in vivo labeling of CLL cells indicates a much more active rate of cell birth than originally estimated, suggesting that CLL is a dynamic disease. Here we review the observations that have led to these altered views of the activation state and proliferative capacities of CLL cells and also provide our interpretation of these observations in light of their potential impact on patients. PMID:20620969

  6. Active mechanics and geometry of adherent cells and cell colonies

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya

    2014-03-01

    Measurements of traction stresses exerted by adherent cells or cell colonies on elastic substrates have yielded new insight on how the mechanical and geometrical properties of the substrate regulate cellular force distribution, mechanical energy, spreading, morphology or stress ber architecture. We have developed a generic mechanical model of adherent cells as an active contractile gel mechanically coupled to an elastic substrate and to neighboring cells in a tissue. The contractile gel model accurately predicts the distribution of cellular and traction stresses as observed in single cell experiments, and captures the dependence of cell shape, traction stresses and stress ber polarization on the substrate's mechanical and geometrical properties. The model further predicts that the total strain energy of an adherent cell is solely regulated by its spread area, in agreement with recent experiments on micropatterned substrates with controlled geometry. When used to describe the behavior of colonies of adherent epithelial cells, the model demonstrates the crucial role of the mechanical cross-talk between intercellular and extracellular adhesion in regulating traction force distribution. Strong intercellular mechanical coupling organizes traction forces to the colony periphery, whereas weaker intercellular coupling leads to the build up of traction stresses at intercellular junctions. Furthermore, in agreement with experiments on large cohesive keratinocyte colonies, the model predicts a linear scaling of traction forces with the colony size. This scaling suggests the emergence of an effective surface tension as a scale-free material property of the adherent tissue, originating from actomyosin contractility.

  7. Heparanase: Busy at the cell surface

    PubMed Central

    Fux, Liat; Ilan, Neta; Sanderson, Ralph D.; Vlodavsky, Israel

    2009-01-01

    Heparanase activity is strongly implicated in structural remodeling of the extracellular matrix underlying tumor and endothelial cells that leads to cellular invasion. In addition, heparanase augments signaling cascades leading to enhanced phosphorylation of selected protein kinases and increased gene transcription associated with aggressive tumor progression. This function is apparently independent of heparan sulfate and enzyme activity and is mediated by a novel protein domain localized at the heparanase C-terminus (C-domain). Moreover, the functional repertoire of heparanase is expanded by its regulation of syndecan clustering, shedding, and mitogen binding. Recently, modified glycol-split heparin that inhibits heparanase activity was demonstrated to profoundly inhibit the progression of tumor xenografts produced by myeloma and carcinoma cells thus moving anti-heparanase therapy closer to reality. PMID:19733083

  8. Motility of active fluid drops on surfaces

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Diana; Alexander, Gareth P.

    2015-12-01

    Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013), 10.1038/nature11591]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.

  9. Elasticity of adherent active cells on a compliant substrate

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Mertz, Aaron F.; Dufresne, Eric R.; Marchetti, M. Cristina

    2012-02-01

    We present a continuum mechanical model of rigidity sensing by livings cells adhering to a compliant substrate. The cell or cell colony is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the substrate induces spatially inhomogeneous contractile stresses and deformations, with a power law dependence of the total traction forces on cell or colony size. This is in agreement with recent experiments on keratinocyte colonies adhered to fibronectin coated surfaces. In the presence of acto-myosin activity, the substrate also enhances the cell polarization, breaking the cell's front-rear symmetry. Maximal polarization is observed when the substrate stiffness matches that of the cell, in agreement with experiments on stem cells.

  10. The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein.

    PubMed Central

    Ratner, N; Hong, D M; Lieberman, M A; Bunge, R P; Glaser, L

    1988-01-01

    The cell surface of embryonic peripheral neurons provides a mitogenic stimulus for Schwann cells. We report (i) the solubilization of this mitogenic activity from rat dorsal root ganglion neurons grown in tissue culture and (ii) the solubilization and partial purification of mitogenic activity from neonatal rat brains. Extracted mitogenic activity is peripheral rather than intrinsic to the membrane, stable after extraction, and active as a mitogen in the absence of serum (the most stringent criterion defining the neuronal mitogen). We have previously provided evidence suggesting that a neuronal cell-surface heparan sulfate proteoglycan is required for expression of the neurons' mitogenic activity. We now show that mitogenic activity can be extracted from the membrane dissociated from proteoglycan as assayed by its ability to bind to immobilized heparin. After dissociation, low concentrations of heparin (1 micrograms/ml) inhibit the ability of the mitogen to stimulate Schwann cell division. Basic fibroblast growth factor (FGF) is weakly mitogenic for Schwann cells, but it is not present in mitogenic brain extracts (based on immunoblotting). Immunodepletion experiments with specific antibodies to FGF indicate that the mitogenic activity extracted from neurons is not a form of this heparin-binding mitogen. Acidic FGF is not mitogenic for Schwann cells and is not present in mitogenic brain extracts. We suggest that these and previous data indicate the neurite mitogen is a proteoglycan-growth factor complex that limits mitogenic activity to the axonal surface, protects mitogen against inactivation by other proteoglycans, and provides for effective presentation of mitogen to the Schwann cell. PMID:3413130

  11. CZTSSe thin film solar cells: Surface treatments

    NASA Astrophysics Data System (ADS)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  12. Expression of the T-cell surface molecule CD2 and an epitope-loss CD2 mutant to define the role of lymphocyte function-associated antigen 3 (LFA-3) in T-cell activation.

    PubMed Central

    Bierer, B E; Peterson, A; Barbosa, J; Seed, B; Burakoff, S J

    1988-01-01

    To define the role of the CD2-lymphocyte function-associated antigen 3 (LFA-3) interaction in T-cell activation, we have expressed a cDNA encoding the human CD2 molecule in a murine antigen-specific T-cell hybridoma. Expression of the CD2 molecule greatly enhances T-cell responsiveness to antigen; this enhancement is inhibited by anti-CD2 and anti-LFA-3 monoclonal antibodies (mAbs). CD2+ hybridomas produce interleukin 2 in response to combinations of anti-CD2 mAbs 9.6 and 9-1 and, in the presence of mAb 9-1, to sheep erythrocytes or to the LFA-3 antigen. Furthermore, hybridomas expressing a mutant CD2 molecule that has lost mAb 9.6 binding do not exhibit the enhanced response to antigen or the ability to respond to LFA-3 plus mAb 9-1, but these hybridomas retain the ability to respond to combinations of anti-CD2 mAbs. The role of the CD2-LFA-3 interaction in T-cell activation and the potential for other physiologic ligands for CD2 are discussed. PMID:2448792

  13. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells

    SciTech Connect

    Losfeld, Marie-Estelle; Khoury, Diala El; Mariot, Pascal; Carpentier, Mathieu; Krust, Bernard; Briand, Jean-Paul; Mazurier, Joel; Hovanessian, Ara G.; Legrand, Dominique

    2009-01-15

    Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [{sup 3}H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca{sup 2+} entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca{sup 2+} fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca{sup 2+} Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca{sup 2+} entry into cells.

  14. Distinguishing Cancerous Liver Cells Using Surface-Enhanced Raman Spectroscopy.

    PubMed

    Huang, Jing; Liu, Shupeng; Chen, Zhenyi; Chen, Na; Pang, Fufei; Wang, Tingyun

    2016-02-01

    Raman spectroscopy has been widely used in biomedical research and clinical diagnostics. It possesses great potential for the analysis of biochemical processes in cell studies. In this article, the surface-enhanced Raman spectroscopy (SERS) of normal and cancerous liver cells incubated with SERS active substrates (gold nanoparticle) was measured using confocal Raman microspectroscopy technology. The chemical components of the cells were analyzed through statistical methods for the SERS spectrum. Both the relative intensity ratio and principal component analysis (PCA) were used for distinguishing the normal liver cells (QSG-7701) from the hepatoma cells (SMMC-7721). The relative intensity ratio of the Raman spectra peaks such as I937/I1209, I1276/I1308, I1342/I1375, and I1402/I1435 was set as the judge boundary, and the sensitivity and the specificity using PCA method were calculated. The results indicated that the surface-enhanced Raman spectrum could provide the chemical information for distinguishing the normal cells from the cancerous liver cells and demonstrated that SERS technology possessed the possible applied potential for the diagnosis of liver cancer. PMID:25432931

  15. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2003-10-31

    Estrogen promotes the growth of some ovarian cancer cells at nanomolar concentrations, but has been shown to inhibit growth of normal ovarian surface epithelial (OSE) cells at micromolar concentrations (1μg/ml). OSE cells express the estrogen receptor (ER)-α, and are the source of 90% of various cancers. The potential sensitivity of OSE cells to estrogen stresses the importance of understanding the estrogen-dependent mechanisms at play in OSE proliferation and transformation, as well as in anticancer treatment. We investigated the effects of estradiol on cell proliferation in vitro, and demonstrate an intracellular locus of action of estradiol in cultured rhesus ovarian surface epithelial (RhOSE) cells. We show that ovarian and breast cells are growth-inhibited by micromolar concentration of estradiol and that this inhibition correlates with estrogen receptor expression. We further show that normal rhesus OSE cells do not activate ERK or Akt in response to estradiol nor does estradiol block the ability of serum to stimulate ERK or induce cyclin D expression. Contrarily, estradiol inhibits serum-dependent retinoblastoma protein (Rb) phosphorylation and blocks DNA synthesis. This inhibition does not formally arrest cells and is reversible within hours of estrogen withdrawal. Our data are consistent with growth inhibition by activation of Rb and indicate that sensitivity to hormone therapy in anticancer treatment can be modulated by cell cycle regulators downstream of the estrogen receptor.

  16. New NSO Solar Surface Activity Maps

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Harvey, J. W.

    2001-05-01

    Using NSO-Kitt Peak Vacuum Telescope (KPVT) synoptic data, we present several new solar surface activity maps. The motivation is to test conventional wisdom about conditions that are likely to produce solar activity such as flares, coronal mass ejections and high speed solar wind streams. The ultimate goal is to improve real-time, observation-based models for the purpose of predicting solar activity. A large number of maps will eventually be produced based on the wide range of ideas and models of the conditions thought to lead to solar activity events. When data from the new SOLIS instruments becomes available, the range of possible models that can be tested will be greatly expanded. At present, the daily maps include ones that show magnetic field complexity, emerging flux and high speed solar wind sources. As a proxy for local magnetic potential energy, each element of the magnetic complexity map is the distance-weighted rms of the opposing ambient magnetic field. The flux emergence map is the difference between the two most recent absolute magnetic flux images. The solar wind source map is produced from coronal hole area data. The new maps are available on the NSO-Kitt Peak World Wide Web page. This research was supported in part by the Office of Navel Research Grant N00014-91-J-1040. The NSO-Kitt Peak data used here are produced cooperatively by NSF/AURA, NASA/GSFC, and NOAA/SEC.

  17. Methods To Identify Aptamers against Cell Surface Biomarkers

    PubMed Central

    Cibiel, Agnes; Dupont, Daniel Miotto; Ducongé, Frédéric

    2011-01-01

    Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  18. Knowledge discovery of cell-cell and cell-surface interactions

    NASA Astrophysics Data System (ADS)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  19. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    steric hindrance. The adhesive capacity of H-ALCL cells is regulated by phosphatidylinositol 3 phosphate kinase (PI3K) and actin cytoskeleton, and the invasive capacity of H-ALCL cells is regulated by PI3K, mitogen-activated protein kinase (MAPK), Rho and actin cytoskeleton. Furthermore, galectin-1-induced cell death in H-ALCL cells was accompanied by inhibition of CD45 protein tyrosine phosphatase (PTP) activity. In conclusion, cell adhesion and invasion to galectin-1 appeared to be regulated by cell surface sialylation and N-glycosylation, and galectin-1 regulates cell death through inhibition of CD45 PTP activity of H-ALCL. PMID:24589677

  20. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  1. Immunization of Mice with a TolA-Like Surface Protein of Trypanosoma cruzi Generates CD4+ T-Cell-Dependent Parasiticidal Activity

    PubMed Central

    Quanquin, Natalie M.; Galaviz, Charles; Fouts, David L.; Wrightsman, Ruth A.; Manning, Jerry E.

    1999-01-01

    The gene family encoding a trypomastigote-specific protein restricted to the part of the flagellum in contact with the cell body of the trypomastigote form of Trypanosoma cruzi has been isolated, characterized, and expressed in a baculovirus expression system. The gene family contains three tandemly repeated members that have 97 to 100% sequence identity. The predicted protein encoded by the gene family has both significant amino acid sequence identity and other physical and biological features in common with the TolA proteins of Escherichia coli and Pseudomonas aeruginosa. Based on these similarities, we have designated this gene family tolT. Immunization of mice with recombinant TolT generates a population of CD4+ T lymphocytes that recognize T. cruzi-infected macrophages, resulting in the production of gamma interferon (IFN-γ), which leads to NO production and a 50 to 60% reduction in parasite numbers compared to that seen with infected macrophages incubated with naive T cells. This population of T cells also produces both IFN-γ and interleukin 2 (IL-2) but not IL-4 or IL-5 when incubated with spleen cells stimulated with TolT antigen, indicating that they are of the T-helper 1 type. T cells from mice chronically infected with T. cruzi also produce significant levels of IFN-γ when cocultured with macrophages and either TolT protein or paraflagellar rod protein, indicating that both of these flagellar proteins produce positive T-cell responses in mice chronically infected with T. cruzi. PMID:10456906

  2. Does Titan have an Active Surface?

    NASA Astrophysics Data System (ADS)

    Nelson, R.

    2009-12-01

    ammonia, a compound expected in Titan’s interior. This, combined with the previous evidence from VIMS and RADAR images, creates a strong case for Titan having a presently active surface, possibly due to cryovolcanism. Cassini encountered Titan at very close range on 2008-11-19-13:58 and again on 2008-12-05-12:38. These epochs are called T47 and T48. Comparison of earlier lower resolution data (T5) with the recent T47 and T48 data reveal changes of the surface reflectance and morphology in the Hotei region. This is the first evidence from VIMS that confirms the RADAR report that Hotei Reggio has morphology consistent with volcanic terrain. It has not escaped our attention that ammonia, in association with methane and nitrogen, the principal species of Titan’s atmosphere, closely replicates the environment at the time that live first emerged on earth. If Titan is currently active then these results raise the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan’s chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? This work done at JPL under contract with NASA. Refs: [1]R. M. Nelson et al., Icarus 199 (2009) 429-441. [2]R. M. Nelson et al., GRL, VOL. 36, L04202, doi:10.1029/2008GL036206, 2009. [3]S. D. Wall GRL, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009

  3. T-Cell Artificial Focal Triggering Tools: Linking Surface Interactions with Cell Response

    PubMed Central

    Carpentier, Benoît; Pierobon, Paolo; Hivroz, Claire; Henry, Nelly

    2009-01-01

    T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy. PMID:19274104

  4. Cell surface lectin array: parameters affecting cell glycan signature.

    PubMed

    Landemarre, Ludovic; Cancellieri, Perrine; Duverger, Eric

    2013-04-01

    Among the "omics", glycomics is one of the most complex fields and needs complementary strategies of analysis to decipher the "glycan dictionary". As an alternative method, which has developed since the beginning of the 21st century, lectin array technology could generate relevant information related to glycan motifs, accessibility and a number of other valuable insights from molecules (purified and non-purified) or cells. Based on a cell line model, this study deals with the key parameters that influence the whole cell surface glycan interaction with lectin arrays and the consequences on the interpretation and reliability of the results. The comparison between the adherent and suspension forms of Chinese Hamster Ovary (CHO) cells, showed respective glycan signatures, which could be inhibited specifically by neoglycoproteins. The modifications of the respective glycan signatures were also revealed according to the detachment modes and cell growth conditions. Finally the power of lectin array technology was highlighted by the possibility of selecting and characterizing a specific clone from the mother cell line, based on the slight difference determination in the respective glycan signatures. PMID:22899543

  5. High cell-surface density of HER2 deforms cell membranes.

    PubMed

    Chung, Inhee; Reichelt, Mike; Shao, Lily; Akita, Robert W; Koeppen, Hartmut; Rangell, Linda; Schaefer, Gabriele; Mellman, Ira; Sliwkowski, Mark X

    2016-01-01

    Breast cancers (BC) with HER2 overexpression (referred to as HER2 positive) progress more aggressively than those with normal expression. Targeted therapies against HER2 can successfully delay the progression of HER2-positive BC, but details of how this overexpression drives the disease are not fully understood. Using single-molecule biophysical approaches, we discovered a new effect of HER2 overexpression on disease-relevant cell biological changes in these BC. We found HER2 overexpression causes deformation of the cell membranes, and this in turn disrupts epithelial features by perturbing cell-substrate and cell-cell contacts. This membrane deformation does not require receptor signalling activities, but results from the high levels of HER2 on the cell surface. Our finding suggests that early-stage morphological alterations of HER2-positive BC cells during cancer progression can occur in a physical and signalling-independent manner. PMID:27599456

  6. Effect of Nd:YAG laser-nitriding-treated titanium nitride surface over Ti6Al4V substrate on the activity of MC3T3-E1 cells.

    PubMed

    Wang, Min; Ning, Yingyuan; Zou, Haixiao; Chen, Si; Bai, Yi; Wang, Aihua; Xia, Haibin

    2014-01-01

    Ti6Al4V discs with a thickness of 2.5 mm and dimensions of 15 × 15 mm2 were fabricated. The titanium nitride (TiN) surface was formed via Nd:YAG laser-nitriding. A sandblast acid-etched (SA) surface was used as a control. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and surface roughness tests were conducted to study the surface and cross-section morphologies as well as the properties of TiN and SA surfaces. MC3T3-E1 osteoblast-like cells were cultured on the TiN and SA surfaces to evaluate the effect of TiN surface on cellular behaviors, including attachment, proliferation and differentiation. Morphological testing results revealed that the cross-section of TiN exhibited dendritic crystallization without cracking. The proliferation and differentiation of MC3T3-E1 cells on the laser-nitriding TiN surface were significantly increased compared to those cultured on SA surface. These findings suggested that the TiN surface generated from Nd:YAG laser-nitriding were favorable for the proliferation and differentiation of MC3T3-E1 cells, which is significant for implant surface modification. PMID:24211949

  7. Calculation of cell volumes and surface areas in MCNP

    SciTech Connect

    Hendricks, J.S.

    1980-01-01

    MCNP is a general Monte Carlo neutron-photon particle transport code which treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces, and some special fourth-degree surfaces. It is necessary to calculate cell volumes and surface areas so that cell masses, fluxes, and other important information can be determined. The volume/area calculation in MCNP computes cell volumes and surface areas for cells and surfaces rotationally symmetric about any arbitrary axis. 5 figures, 1 table.

  8. Surface active properties of chitosan and its derivatives.

    PubMed

    Elsabee, Maher Z; Morsi, Rania Elsayed; Al-Sabagh, A M

    2009-11-01

    This review discusses the definition of surface active agents and specifically natural polymeric surface active agents. Chitosan by itself was found to have weak surface activity since it has no hydrophobic segments. Chemical modifications of chitosan could improve such surface activity. This is achieved by introducing hydrophobic substituents in its glucosidic group. Several examples of chitosan derivatives with surfactant activity have been surveyed. The surface active polymers form micelles and aggregates which have enormous importance in the entrapment of water-insoluble drugs and consequently applications in the controlled drug delivery and many biomedical fields. Chitosan also interacts with several substrates by electrostatic and hydrophobic interactions with considerable biomedical applications. PMID:19682870

  9. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells.

    PubMed

    Morad, Samy A F; Bridges, Lance C; Almeida Larrea, Alex D; Mayen, Anthony L; MacDougall, Matthew R; Davis, Traci S; Kester, Mark; Cabot, Myles C

    2016-07-01

    Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface β1 and β4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVβ6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects. PMID:27045476

  10. Perspective of surface active agents in baking industry: an overview.

    PubMed

    Ahmad, Asif; Arshad, Nazish; Ahmed, Zaheer; Bhatti, Muhammad Shahbaz; Zahoor, Tahir; Anjum, Nomana; Ahmad, Hajra; Afreen, Asma

    2014-01-01

    Different researchers have previously used surfactants for improving bread qualities and revealed that these compounds result in improving the quality of dough and bread by influencing dough strength, tolerance, uniform crumb cell size, and improve slicing characteristics and gas retention. The objective of this review is to highlight the areas where surfactants are most widely used particularly in the bread industries, their role and mechanism of interaction and their contribution to the quality characteristics of the dough and bread. This review reveals some aspects of surface-active agents regarding its role physiochemical properties of dough that in turn affect the bread characteristics by improving its sensory quality and storage stability. PMID:24188269

  11. Tracking and treating activated T cells

    PubMed Central

    Kim, N.H.; Nadithe, V.; Elsayed, M.; Merkel, O.M.

    2014-01-01

    Upon activation, T cells of various subsets are the most important mediators in cell-mediated immune responses. Activated T cells play an important role in immune system related diseases such as chronic inflammatory diseases, viral infections, autoimmune disease, transplant rejection, Crohn disease, diabetes, and many more. Therefore, efforts have been made to both visualize and treat activated T cells specifically. This review summarizes imaging approaches and selective therapeutics for activated T cells and gives an outlook on how tracking and treating can be combined into theragnositc agents for activated T cells. PMID:24660025

  12. Active nematics of flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Dogic, Zvonimir

    2014-03-01

    The laws of equilibrium statistical mechanics impose severe constraints on the properties of conventional materials assembled from inanimate building blocks. Consequently, such materials cannot exhibit spontaneous motion or perform macroscopic work; i.e., a fluid in a beaker remains quiescent unless driven by external forces. Inspired by biological phenomena such as ciliary beating or Drosophila cytoplasmic streaming our aim is to develop a new category of materials assembled from animate, energy-consuming building blocks. Starting from a few well-characterized biochemical components we assemble and study far-from-equilibrium analogs of conventional liquid crystals. Released from the constraints of equilibrium, this internally driven polymeric material exhibits a host of highly-sought after properties including appearance of steady-state streaming flows that are accompanied by the spontaneous unbinding and annihilations of motile defects as well as appearance and subsequent self-healing of fracture lines. Active liquid crystals can serve as a platform for developing novel material applications, testing fundamental theoretical models of far-from-equilibrium active matter and potentially shedding light on self-organization in living cells.

  13. Effect of Surface-Active Pseudomonas spp. on Leaf Wettability

    PubMed Central

    Bunster, Lillian; Fokkema, Nyckle J.; Schippers, Bob

    1989-01-01

    Different strains of Pseudomonas putida and P. fluorescens isolated from the rhizosphere and phyllosphere were tested for surface activity in droplet cultures on polystyrene. Droplets of 6 of the 12 wild types tested spread over the surface during incubation, and these strains were considered surface active; strains not showing this reaction were considered non-surface active. Similar reactions were observed on pieces of wheat leaves. Supernatants from centrifuged broth cultures behaved like droplets of suspensions in broth; exposure to 100°C destroyed the activity. Average contact angles of the supernatants of surface-active and non-surface-active strains on polystyrene were 24° and 72°, respectively. The minimal surface tension of supernatants of the surface-active strains was about 46 mN/m, whereas that of the non-surface-active strains was 64 mN/m (estimations from Zisman plots). After 6 days of incubation, wheat flag leaves sprayed with a dilute suspension of a surface-active strain of P. putida (WCS 358RR) showed a significant increase in leaf wettability, which was determined by contact angle measurements. Increasing the initial concentration of bacteria and the amount of nutrients in the inoculum sprayed on leaves reduced the contact angles from 138° on leaves treated with antibiotics (control) to 43° on leaves treated with surface-active bacteria. A closely related strain with no surface activity on polystyrene did not affect leaf wettability, although it was present in densities similar to those of the surface-active strain. Nutrients alone could occasionally also increase leaf wettability, apparently by stimulating naturally occurring surface-active bacteria. When estimating densities of Pseudomonas spp. underneath droplets with low contact angles, it appeared that populations on leaves treated with a surface-active strain could vary from about 104 to 106 CFU cm−2, suggesting that the surface effect may be prolonged after a decline of the

  14. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis

    PubMed Central

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-01

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450

  15. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability.

    PubMed

    Stamenkovic, Vojislav R; Fowler, Ben; Mun, Bongjin Simon; Wang, Guofeng; Ross, Philip N; Lucas, Christopher A; Marković, Nenad M

    2007-01-26

    The slow rate of the oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cell (PEMFC) is the main limitation for automotive applications. We demonstrated that the Pt3Ni(111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-fold more active than the current state-of-the-art Pt/C catalysts for PEMFC. The Pt3Ni(111) surface has an unusual electronic structure (d-band center position) and arrangement of surface atoms in the near-surface region. Under operating conditions relevant to fuel cells, its near-surface layer exhibits a highly structured compositional oscillation in the outermost and third layers, which are Pt-rich, and in the second atomic layer, which is Ni-rich. The weak interaction between the Pt surface atoms and nonreactive oxygenated species increases the number of active sites for O2 adsorption. PMID:17218494

  16. Viral Evasion of Natural Killer Cell Activation

    PubMed Central

    Ma, Yi; Li, Xiaojuan; Kuang, Ersheng

    2016-01-01

    Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876

  17. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. PMID:27450259

  18. Mechanisms of Cell Propulsion by Active Stresses.

    PubMed

    Carlsson, A E

    2011-07-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  19. Mechanisms of Cell Propulsion by Active Stresses

    PubMed Central

    Carlsson, A. E.

    2011-01-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  20. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    PubMed

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells. PMID:27175912

  1. Cell Surface Differentiation Antigens of the Malignant T Cell in Sezary Syndrome and Mycosis Fungoides

    PubMed Central

    Haynes, Barton F.; Bunn, Paul; Mann, Dean; Thomas, Charles; Eisenbarth, George S.; Minna, John; Fauci, Anthony S.

    1981-01-01

    Using a panel of monoclonal antibodies and rabbit heteroantisera, we have studied the cell surface markers of peripheral blood (PB) Sezary cells from six patients with mycosis fungoides or Sezary syndrome, disease grouped within the spectrum of cutaneous T cell lymphomas (CTCL). Furthermore, we have studied two cell lines (Hut 78 and Hut 102) derived from malignant Sezary T cells from CTCL patients. The monoclonal antibody 3A1 defines a major human PB T cell subset (85% of PB T cells) while the antigen defined by the monoclonal antibody 4F2 is present on a subset (70%) of activated PB T cells and on circulating PB monocytes. In contrast to normal subjects in whom 60-70% of circulating PB mononuclear cells were 3A1+ T cells, PB mononuclear cells from six CTCL patients studied had an average of only 10.6±3.2% 3A1+ T cells. Whereas 85% of E-rosette positive cells from normal individuals were 3A1+, virtually all E-rosette positive T cells from the Sezary patients were 3A1-. Two patients with high numbers of circulating Sezary T cells had both aneuploid and diploid PB T cell populations present; after separation of PB T cells into 3A1+ and 3A1- cell suspensions, all 3A1- cells were found to be aneuploid. In contrast to normal resting PB T cells which were 4F2-, all PB Sezary cells were 4F2+, suggesting a state of activation. The 3A1 antigen was on a variety of acute lymphoblastic leukemia T cell lines (HSB-2, RPMI-8402, MOLT4, CEM) but was absent on the Hut 78 and Hut 102 Sezary T cell lines. Using rabbit anti-human T and anti-human Ia (p23, 30) antisera, we found that all malignant Sezary PB cells tested were killed by anti-T cell antiserum plus complement but not by anti-Ia plus complement. In contrast, Sezary cell lines Hut 78 and 102, were killed by both anti-T cell antiserum and anti-Ia plus complement. Similar to 3A1- normal PB T cells, 3A1- Sezary PB T cells proliferated poorly to phytohemagglutinin and concanavalin A. However, 3A1- Sezary T cells were able to

  2. Facile cell patterning on an albumin-coated surface.

    PubMed

    Yamazoe, Hironori; Uemura, Toshimasa; Tanabe, Toshizumi

    2008-08-19

    Fabrication of micropatterned surfaces to organize and control cell adhesion and proliferation is an indispensable technique for cell-based technologies. Although several successful strategies for creating cellular micropatterns on substrates have been demonstrated, a complex multistep process and requirements for special and expensive equipment or materials limit their prevalence as a general experimental tool. To circumvent these problems, we describe here a novel facile fabrication method for a micropatterned surface for cell patterning by utilizing the UV-induced conversion of the cell adhesive property of albumin, which is the most abundant protein in blood plasma. An albumin-coated surface was prepared by cross-linking albumin with ethylene glycol diglycidyl ether and subsequent casting of the cross-linked albumin solution on the cell culture dish. While cells did not attach to the albumin surface prepared in this way, UV exposure renders the surface cell-adhesive. Thus, surface micropatterning was achieved simply by exposing the albumin-coated surface to UV light through a mask with the desired pattern. Mouse fibroblast L929 cells were inoculated on the patterned albumin substrates, and cells attached and spread in a highly selective manner according to the UV-irradiated pattern. Although detailed investigation of the molecular-level mechanism concerning the change in cell adhesiveness of the albumin-coated surface is required, the present results would give a novel facile method for the fabrication of cell micropatterned surfaces. PMID:18627191

  3. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    PubMed Central

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  4. Basic surface properties of mononuclear cells from Didelphis marsupialis.

    PubMed

    Nacife, V P; de Meirelles, M de N; Silva Filho, F C

    1998-01-01

    The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5 degrees and 40.8 degrees, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis. PMID:9921307

  5. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  6. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    PubMed

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR. PMID:20709949

  7. Surface cell differentiation controls tissue surface tension and tissue positioning during zebrafish gastrulation

    NASA Astrophysics Data System (ADS)

    Krens, S. F. G.

    2011-03-01

    Differences in tissue surface tension (TST) between different tissue types are thought to guide tissue organization and cell sorting in development. Measurements of TST have been useful to predict the outcome of in vitro cell sorting and envelopment experiments. However, the outcome of cell sorting experiments in vitro often substantially differs from tissue positioning in vivo, raising questions as to the actual contribution of TST to tissue positioning within the developing embryo. Here, we show that surface tension of germ layer tissues during zebrafish gastrulation critically relies on the differentiation of their surface cells. We also show that surface differentiation of the different germ layer tissues varies and is considerably different between the situation in vitro and in vivo, explaining the apparent dissimilar outcome of cell segregation between these two situations. To analyze germ layer TST as a function of surface cell differentiation, we interfere with surface cell properties of germ layer aggregates by misexpressing genes involved in surface cell differentiation specifically within surface cells using the GAL4-UAS system, and measure tissue surface tension using both parallel plate compression and micropipette aspiration techniques. Our data provides evidence in favor of a critical function of surface cell differentiation in modulating TST and subsequently tissue positioning within the developing embryo.

  8. Silicon solar cells with polysilicon emitters and back surface fields

    NASA Astrophysics Data System (ADS)

    Du, Jiang; Berndt, Lyall P.; Tarr, N. Garry

    2010-06-01

    The first solar cells using in-situ doped polysilicon contacts to form both emitter and back surface field (BSF) regions are reported. The use of polysilicon contacts permits extremely low thermal budget processing (maximum 850°C 5 sec for dopant activation), preserving substrate properties. The effectiveness of the BSF is best seen with backside illumination, where the photocurrent under natural sunlight is found to be over 30% of that obtained with frontside illumination, even though the substrate thickness is comparable to the minority carrier diffusion length. The applicability of the structure to bifacial operation is considered.

  9. Antibacterial activity of silver nanoparticles grafted on stone surface.

    PubMed

    Bellissima, F; Bonini, M; Giorgi, R; Baglioni, P; Barresi, G; Mastromei, G; Perito, B

    2014-12-01

    Microbial colonization has a relevant impact on the deterioration of stone materials with consequences ranging from esthetic to physical and chemical changes. Avoiding microbial growth on cultural stones therefore represents a crucial aspect for their long-term conservation. The antimicrobial properties of silver nanoparticles (AgNPs) have been extensively investigated in recent years, showing that they could be successfully applied as bactericidal coatings on surfaces of different materials. In this work, we investigated the ability of AgNPs grafted to Serena stone surfaces to inhibit bacterial viability. A silane derivative, which is commonly used for stone consolidation, and Bacillus subtilis were chosen as the grafting agent and the target bacterium, respectively. Results show that functionalized AgNPs bind to stone surface exhibiting a cluster disposition that is not affected by washing treatments. The antibacterial tests on stone samples revealed a 50 to 80 % reduction in cell viability, with the most effective AgNP concentration of 6.7 μg/cm(2). To our knowledge, this is the first report on antimicrobial activity of AgNPs applied to a stone surface. The results suggest that AgNPs could be successfully used in the inhibition of microbial colonization of stone artworks. PMID:24151026

  10. Enzymatic activity induced by interactions with a nanofabricated hydrophobic Si surface

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2013-07-01

    The binding of peptides of 2-10 glycine residues (2-10Gly) to papain on nanofabricated hydrophobic Si surfaces was investigated by molecular dynamics and docking simulations. 5Gly, 7Gly, 9Gly, and 10Gly were distributed on sites near the active center of papain on the Si surface, while 6-10Gly were distributed on sites near the active center of free papain. The Si surface changed the substrate specificity of papain, and modification of this surface should allow full control of substrate specificity. Molecular surgery of proteins in cells may be realized using papain on specially designed surfaces.

  11. Market-based control of active surfaces

    NASA Astrophysics Data System (ADS)

    Berlin, Andrew A.; Hogg, Tad; Jackson, Warren B.

    1998-12-01

    This paper describes a market-based approach to controlling a smart matter-based object transport system, in which an array of distributed air jets applies forces to levitate and control the motion of a planar object. In the smart matter regime, the effects of spatial and temporal variation of operating parameters among a multiplicity of sensor, actuators, and controllers make it desirable for a control strategy to exhibit a minimal dependence on system models, and to be able to arbitrate among conflicting goals. A market-based strategy is introduced that aggregates the control requirements of multiple relatively simple local controllers, each of which seeks to optimize the performance of the system within a limited spatial and temporal range. These local controllers act as the market's consumers, and two sets of distributed air jets act as the producers. Experiments are performed comparing the performance of the market-based strategy to a near-optimal model-derived benchmark, as well as to a hand-tuned PD controller. Results indicate that even though the local controllers in the market are not based on a detailed model of the system dynamics, the market is able to effectively approximate the performance of the model-based benchmark. In certain specialized cases, such as tracking a step trajectory, the performance of the market surpasses the performance of the model-based benchmark by balancing the needs of conflicting control goals. A brief overview of the active surface smart matter prototype being developed at Xerox PARC that is the motivation behind this work is also presented.

  12. Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells.

    PubMed

    Brown, Gabriella K; Tovar, Cesar; Cooray, Anne A; Kreiss, Alexandre; Darby, Jocelyn; Murphy, James M; Corcoran, Lynn M; Bettiol, Silvana S; Lyons, A Bruce; Woods, Gregory M

    2016-08-01

    Devil facial tumour disease (DFTD) is a transmissible cancer that has brought the host species, the Tasmanian devil, to the brink of extinction. The cancer cells avoid allogeneic immune recognition by downregulating cell surface major histocompatibility complex (MHC) I expression. This should prevent CD8(+) T cell, but not natural killer (NK) cell, cytotoxicity. The reason why NK cells, normally reactive to MHC-negative cells, are not activated to kill DFTD cells has not been determined. The immune response of wild devils to DFTD, if it occurs, is uncharacterised. To investigate this, we tested 12 wild devils with DFTD, and found suggestive evidence of low levels of antibodies against DFTD cells in one devil. Eight of these devils were also analysed for cytotoxicity, however, none showed evidence for cytotoxicity against cultured DFTD cells. To establish whether mimicking activation of antitumour responses could induce cytotoxic activity against DFTD, Tasmanian devil peripheral blood mononuclear cells (PBMCs) were treated with either the mitogen Concanavalin A, the Toll-like receptor agonist polyinosinic:polycytidylic acid or recombinant Tasmanian devil IL-2. All induced the PBMC cells to kill cultured DFTD cells, suggesting that activation does not occur after encounter with DFTD cells in vivo, but can be induced. The identification of agents that activate cytotoxicity against DFTD target cells is critical for developing strategies to protect against DFTD. Such agents could function as adjuvants to induce functional immune responses capable of targeting DFTD cells and tumours in vivo. PMID:27089941

  13. Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene.

    PubMed

    Lamichhane, Sujan; Anderson, Jordan A; Remund, Tyler; Sun, Hongli; Larson, Mark K; Kelly, Patrick; Mani, Gopinath

    2016-09-01

    In this study, the effect of different structures (flat, expanded, and electrospun) of polytetrafluoroethylene (PTFE) on the interactions of endothelial cells (ECs), smooth muscle cells (SMCs), and platelets was investigated. In addition, the mechanisms that govern the interactions between ECs, SMCs, and platelets with different structures of PTFE were discussed. The surface characterizations showed that the different structures of PTFE have the same surface chemistry, similar surface wettability and zeta potential, but uniquely different surface topography. The viability, proliferation, morphology, and phenotype of ECs and SMCs interacted with different structures of PTFE were investigated. Expanded PTFE (ePTFE) provided a relatively better surface for the growth of ECs. In case of SMC interactions, although all the different structures of PTFE inhibited SMC growth, a maximum inhibitory effect was observed for ePTFE. In case of platelet interactions, the electrospun PTFE provided a better surface for preventing the adhesion and activation of platelets. Thus, this study demonstrated that the responses of ECs, SMCs, and platelets strongly dependent on the surface topography of the PTFE. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2291-2304, 2016. PMID:27119260

  14. Cholinesterase activity per unit surface area of conducting membranes.

    PubMed

    Brzin, M; Dettbarn, W D; Rosenberg, P; Nachmansohn, D

    1965-08-01

    According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm(2) surface of sensory axons of the walking leg of lobster is 1.2 x 10(-3) microM/hr. (sigma = +/- 0.3 x 10(-3); SE = 0.17 x 10(-3)); the corresponding value for the motor axons isslightly higher: 1.93 x 10(-3) microM/hr. (sigma = +/- 0.41 x 10(-3); SE = +/- 0.14 x 10(-3)). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 microM/hr. (sigma = +/- 73.5; SE = +/- 32.6) versus 111.6 microM/hr. (sigma = +/- 28.3; SE = +/- 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10(-4) microM/mm(2)/hr. (sigma = +/- 0.96 x 10(-4); SE = +/- 0.4 x 10(-4)). (3) The Ch-esterase activity per mm(2) surface of squid giant axon is 9.5 x 10(-5) microM/hr. (sigma = +/- 1.55 x 10(-5); SE = +/- 0.38 x 10(-5)). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10(-5) microM/mm(2)/hr. (sigma = +/- 3.24 x 10(-5); SE = +/- 0.93 x 10(-5)). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm(2) per impulse. PMID:5865929

  15. Cell Surface Markers in Colorectal Cancer Prognosis

    PubMed Central

    Belov, Larissa; Zhou, Jerry; Christopherson, Richard I.

    2011-01-01

    The classification of colorectal cancers (CRC) is currently based largely on histologically determined tumour characteristics, such as differentiation status and tumour stage, i.e., depth of tumour invasion, involvement of regional lymph nodes and the occurrence of metastatic spread to other organs. These are the conventional prognostic factors for patient survival and often determine the requirement for adjuvant therapy after surgical resection of the primary tumour. However, patients with the same CRC stage can have very different disease-related outcomes. For some, surgical removal of early-stage tumours leads to full recovery, while for others, disease recurrence and metastasis may occur regardless of adjuvant therapy. It is therefore important to understand the molecular processes that lead to disease progression and metastasis and to find more reliable prognostic markers and novel targets for therapy. This review focuses on cell surface proteins that correlate with tumour progression, metastasis and patient outcome, and discusses some of the challenges in finding prognostic protein markers in CRC. PMID:21339979

  16. Cell surface nucleolin as a target for anti-cancer therapies.

    PubMed

    Koutsioumpa, Marina; Papadimitriou, Evangelia

    2014-05-01

    A large number of mostly recent reports show enhanced expression of the multi-functional protein nucleolin (NCL) on the surface of activated lymphocytes, angiogenic endothelial and many different types of cancer cells. Translocation of NCL at the external side of the plasma membrane occurs via a secretory pathway independent of the endoplasmic reticulum-Golgi complex, requires intracellular intact actin cytoskeleton, and seems to be mediated by a variety of factors. Cell surface NCL serves as a binding partner of several molecules implicated in cell differentiation, adhesion, and leukocyte trafficking, inflammation, angiogenesis and tumor development, mediating their biological activities and in some cases, leading to their internalization. Accumulating evidence validates cell surface NCL as a strategic target for treatment of cancer, while its property of tumor-specific uptake of targeted ligands seems to be useful for the development of non-invasive imaging tools for the diagnosis of cancer and for the targeted release of chemotherapeutic drugs. The observation that cell surface NCL exists in complexes with several other proteins implicated in tumorigenesis and angiogenesis suggests that targeting cell surface NCL might trigger multi-inhibitory effects, depending on the cell type. This review summarizes papers and patents related to the redistribution and the biological functions of cell surface NCL, with emphasis on the potential importance and advantages of developing efficient anti-cell surface NCL strategies. PMID:24251811

  17. A Mass Spectrometric-Derived Cell Surface Protein Atlas

    PubMed Central

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P.; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L.; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E.; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R.; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  18. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  19. Theory of back-surface-field solar cells

    NASA Technical Reports Server (NTRS)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  20. Morphology and movement of corneal surface cells in humans.

    PubMed

    Mathers, W D; Lemp, M A

    1992-06-01

    We examined the morphology of the corneal surface epithelial cells in 13 eyes of 13 subjects using specular microscopy. We determined cell area, perimeter, and shape comparing the central cornea with the inferior and superior periphery. We found surface epithelial cells are significantly smaller in the central cornea. The cells measured 560 +/- 93 square microns in the central cornea, 850 +/- 135 square microns in the superior cornea and 777 +/- 176 square microns in the inferior cornea (p less than .005). Newly emerged surface cells are smaller and are thought to enlarge with time. We postulate that lid shearing forces are greater in the central cornea and contribute to epithelial cell exfoliation. We further postulate that preferential shearing of central corneal surface cells is an important factor driving the centripetal movement of corneal epithelial cells. PMID:1505196

  1. [CELLS FORM AND THEIR SENSITIVITY TO LYTIC ACTIVITY OF NATURAL KILLER CELLS UNDER THE ANTIOXIDANT ACTION].

    PubMed

    Kirpichnikova, K M; Petrov, Yu P; Filatova, N A; Gamaley, I A

    2015-01-01

    The present paper is an attempt to estimate the influence of cell surface morphology changes to functional activity under the effect of antioxidant, N-acetylcysteine (NAC), and alpha-lipoic asid (ALA). Two experimental parameters were used to characterize transformed fibroblasts 3T3-SV40 status. The functional one was the cell sensitivity to lysis by natural killer (NK) mouse splenocytes, and morphology index (cell form index) was a cell area. We showed that addition of NAC or ALA to the cell medium caused fast decrease of cell area and changes of cell form. On the other hand, their sensitivity to lysis NK cells gradually and significantly decreased. Then we compared NAC or ALA effect with the effects of other substances, which were non-antioxidants but caused cell responses which concurred with of antioxidants, at least partly. They were: latrunculin B, desorganizing actin filaments (as both antioxidants), OTZ reducing ROS level in the cell (as NAC), BSO (inhibitor of glutathione synthesis), increasing ROS level in the cell (as ALA), antibodies to gelatinases, MMP-2 and MMP-9 inactivating their activities (as both antioxidants). The results obtained showed a correlation between changes of morphology index and functional activity, sensitivity to lysis by NK cells. We suppose that geometry of cell surface might be a functional indicator of cell reaction to the antioxidant. PMID:26591569

  2. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  3. Surface Functionalized Graphene Biosensor on Sapphire for Cancer Cell Detection.

    PubMed

    Joe, Daniel J; Hwang, Jeonghyun; Johnson, Christelle; Cha, Ho-Young; Lee, Jo-Won; Shen, Xiling; Spencer, Michael G; Tiwari, Sandip; Kim, Moonkyung

    2016-01-01

    Graphene has several unique physical, optical and electrical properties such as a two-dimensional (2D) planar structure, high optical transparency and high carrier mobility at room temperature. These make graphene interesting for electrical biosensing. Using a catalyst-free chemical vapor deposition (CVD) method, graphene film is grown on a sapphire substrate. There is a single or a few sheets as confirmed by Raman spectroscopy and atomic force microscopy (AFM). Electrical graphene biosensors are fabricated to detect large-sized biological analytes such as cancer cells. Human colorectal carcinoma cells are sensed by the resistance change of an active bio-functionalized graphene device as the cells are captured by the immobilized antibody surface. The functionalized sensors show an increase in resistance as large as ~20% of the baseline with a small number of adhered cells. This study suggests that the bio-functionalized electrical graphene sensors on sapphire, which is a highly transparent material, can potentially detect circulating tumor cells (CTCs) and monitor cellular electrical behavior while being compatible with fluorescence-based optical-detection bioassays. PMID:27398439

  4. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells

    PubMed Central

    Steinmetz, Nicole F; Cho, Choi-Fong; Ablack, Amber; Lewis, John D; Manchester, Marianne

    2011-01-01

    Aims Vimentin, a type III intermediate filament, is upregulated during epithelial–mesenchymal transition and tumor progression. Vimentin is surface-expressed on cells involved in inflammation; the function remains unknown. We investigated the expression of surface vimentin on cancer cells and evaluated targeting nanoparticles to tumors exploiting vimentin. Materials & methods Cowpea mosaic virus nanoparticles that interact with surface vimentin were used as probes. Tumor homing was tested using the chick chorioallantoic membrane model with human tumor xenografts. Results & discussion Surface vimentin levels varied during cell cycle and among the cell lines tested. Surface vimentin expression correlated with cowpea mosaic virus uptake, underscoring the utility of cowpea mosaic virus to detect invasive cancer cells. Targeting to tumor xenografts was observed; homing was based on the enhanced permeability and retention effect. Our data provide novel insights into the role of surface vimentin in cancer and targeting nanoparticles in vivo. PMID:21385137

  5. Active control of compressible flows on a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.; Turkel, E.

    1985-01-01

    The effect of localized, time periodic surface heating and cooling over a curved surface is studied. This is a mechanism for the active control of unstable disturbances by phase cancellation and reinforcement. It is shown that the pressure gradient induced by the curvature significantly enhances the effectiveness of this form of active control. In particular, by appropriate choice of phase, active surface heating can completely stabilize and unstable wave.

  6. Cell membrane mediated (-)-epicatechin effects on upstream endothelial cell signaling: evidence for a surface receptor.

    PubMed

    Moreno-Ulloa, Aldo; Romero-Perez, Diego; Villarreal, Francisco; Ceballos, Guillermo; Ramirez-Sanchez, Israel

    2014-06-15

    The consumption of cacao-derived products, particularly in the form of dark chocolate is known to provide beneficial cardiovascular effects in normal individuals and in those with vascular dysfunction (reduced nitric oxide [NO] bioavailability and/or synthesis). Upstream mechanisms by which flavonoids exert these effects are poorly understood and may involve the participation of cell membrane receptors. We previously demonstrated that the flavanol (-)-epicatechin (EPI) stimulates NO production via Ca(+2)-independent eNOS activation/phosphorylation. We wished to investigate the plausible participation of a cell surface receptor using a novel cell-membrane impermeable EPI-Dextran conjugate (EPI-Dx). Under Ca(2+)-free conditions, human coronary artery endothelial cells (HCAEC) were treated for 10min with EPI or EPI-Dx at equimolar concentrations (100nM). Results demonstrate that both EPI and EPI-Dx induced the phosphorylation/activation of PI3K, PDK-1, AKT and eNOS. Interestingly, EPI-Dx effects were significantly higher in magnitude than those of EPI alone. The capacity of EPI-Dx to stimulate cell responses supports the existence of an EPI cell membrane receptor mediating eNOS activation. PMID:24794111

  7. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    PubMed

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells. PMID:27306974

  8. Biological surface-active compounds from marine bacteria.

    PubMed

    Dang, Nga Phuong; Landfald, Bjarne; Willassen, Nils Peder

    2016-01-01

    Surface-active compounds (SACs) are widely used in different industries as well as in many daily consumption products. However, with the increasing concern for their environmental acceptability, attention has turned towards biological SACs which are biodegradable, less toxic and more environmentally friendly. In this work, 176 marine hydrocarbon-degrading bacterial isolates from petroleum-contaminated sites along the Norwegian coastline were isolated and screened for their capacity to produce biological SACs. Among them, 18 isolates were capable of reducing the surface tension of the culture medium by at least 20 mN m(-1) and/or capable of maintaining more than 40% of the emulsion volume after 24 h when growing on glucose or kerosene as carbon and energy source. These isolates were members of the genera Pseudomonas, Pseudoalteromonas, Rhodococcus, Catenovulum, Cobetia, Glaciecola, Serratia, Marinomonas and Psychromonas. Two isolates, Rhodococcus sp. LF-13 and Rhodococcus sp. LF-22, reduced surface tension of culture medium by more than 40 mN m(-1) when growing on kerosene, n-hexadecane or rapeseed oil. The biosurfactants were produced by resting cells of the two Rhodococcus strains suggesting the biosynthesis of the biosurfactants was not necessarily associated with their growth on hydrocarbons. PMID:26506920

  9. Interaction of Biofunctionalized Nanoparticles with Receptors on Cell Surfaces: MC Simulations

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Shihu

    2015-03-01

    One of the areas of active development of modern nanomedicine is drug/gene delivery and imaging application of nanoparticles functionalized by ligands, aptamers or antibodies capable of specific interactions with cell surface receptors. Being a complex multifunctional system different structural aspects of nanoparticles affect their interactions with cell surfaces and the surface properties of cells can be different (e.g. density, distribution and mobility of receptors). Computer simulations allow a systematic investigation of the influence of multiple factors and provide a unified platform for the comparison. Using Monte Carlo simulations we investigate the influence of the nanoparticle properties (nanoparticle size, polymer tether length, polydispersity, density, ligand energy, valence and density) on nanoparticle-cell surface interactions and make predictions regarding favorable nanoparticle design for achieving multiple ligand-receptor binding. We will also discuss the implications of nanoparticle design on the selectivity of attachment to cells with high receptor density while ``ignoring'' cells with a low density of receptors.

  10. Functional Implications of Plasma Membrane Condensation for T Cell Activation

    PubMed Central

    Quinn, Carmel M.; Engelhardt, Karin; Williamson, David; Grewal, Thomas; Jessup, Wendy; Harder, Thomas; Gaus, Katharina

    2008-01-01

    The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR) triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process. PMID:18509459

  11. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  12. Cell Surface-based Sensing with Metallic Nanoparticles

    PubMed Central

    Jiang, Ziwen; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed. PMID:25853985

  13. Myosin II Activity Softens Cells in Suspension

    PubMed Central

    Chan, Chii J.; Ekpenyong, Andrew E.; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J.; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-01-01

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  14. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  15. Cell surface thiol isomerases may explain the platelet-selective action of S-nitrosoglutathione.

    PubMed

    Xiao, Fang; Gordge, Michael P

    2011-10-30

    S-nitrosoglutathione (GSNO) at low concentration inhibits platelet aggregation without causing vasodilation, suggesting platelet-selective nitric oxide delivery. The mechanism of this selectivity is unknown, but may involve cell surface thiol isomerases, in particular protein disulphide isomerase (csPDI) (EC 5.3.4.1). We have now compared csPDI expression and activity on platelets, endothelial cells and vascular smooth muscle cells, and the dependence on thiol reductase activity of these cell types for NO uptake from GSNO. csPDI expression was measured by flow cytometry and its reductase activity using the pseudosubstrate dieosin glutathione disulphide. This activity assay was adapted and validated for 96-well plate format. Flow cytometry revealed csPDI on all three cell types, but percentage positivity of expression was higher on platelets than on vascular cells. Consistent with this, thiol isomerase-related reductase activity was higher on platelets (P<0.01), and cellular activation (with either phorbol myristate acetate or ionomycin) increased csPDI activity on both platelets and smooth muscle cells, but not on endothelium. Intracellular NO delivery from GSNO was greater in platelets than in vascular cells (P<0.002), and was more sensitive to thiol isomerase inhibition using phenylarsine oxide (P<0.05). Increased surface thiol isomerase activity on platelets, compared with cells of the vascular wall, may explain the platelet-selective actions of GSNO and help define its antithrombotic potential. PMID:21642008

  16. Immunological synapse arrays: Patterned protein surfaces that modulate immunological synapse structure formation in T cells

    PubMed Central

    Doh, Junsang; Irvine, Darrell J.

    2006-01-01

    T cells are activated by recognition of foreign peptides displayed on the surface of antigen presenting cells (APCs), an event that triggers assembly of a complex microscale structure at the T cell–APC interface known as the immunological synapse (IS). It remains unresolved whether the unique physical structure of the synapse itself impacts the functional response of T cells, independent of the quantity and quality of ligands encountered by the T cell. As a first step toward addressing this question, we created multicomponent protein surfaces presenting lithographically defined patterns of tethered T cell receptor (TCR) ligands (anti-CD3 “activation sites”) surrounded by a field of tethered intercellular adhesion molecule-1 (ICAM-1), as a model substrate on which T cells could be seeded to mimic T cell–APC interactions. CD4+ T cells seeded on these surfaces polarized and migrated; on contact with activation sites, T cells assembled an IS with a structure modulated by the physical pattern of ligand encountered. On surfaces patterned with focal spots of TCR ligand, T cells stably interacted with activation sites, proliferated, and secreted cytokines. In contrast, T cells interacting with activation sites patterned to preclude centralized clustering of TCR ligand failed to form stable contacts with activation sites, exhibited aberrant PKC-θ clustering in a fraction of cells, and had significantly reduced production of IFN-γ. These results suggest that focal clustering of TCR ligand characteristic of the “mature” IS may be required under some conditions for full T cell activation. PMID:16585528

  17. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-11-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. PMID:26295436

  18. Investigation of back surface fields effect on bifacial solar cells

    NASA Astrophysics Data System (ADS)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  19. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA.

    PubMed

    Chen, Xuguang; Kube, Dianne M; Cooper, Mark J; Davis, Pamela B

    2008-02-01

    Compacted DNA nanoparticles deliver transgenes efficiently to the lung following intrapulmonary dosing. Here we show that nucleolin, a protein known to shuttle between the nucleus, cytoplasm, and cell surface, is a receptor for DNA nanoparticles at the cell surface. By using surface plasmon resonance (SPR), we demonstrate that nucleolin binds to DNA nanoparticles directly. The presence of nucleolin on the surface of HeLa and 16HBEo- cells was confirmed by surface biotinylation assay and immunofluorescence. Rhodamine-labeled DNA nanoparticles colocalize with nucleolin on the cell surface, as well as in the cytoplasm and nucleus, but not with transferrin or markers of early endosome or lysosome following cellular uptake. Reducing nucleolin on the cell surface by serum-free medium or siRNA against nucleolin treatment leads to significant reduction in luciferase reporter gene activity, while overexpressing nucleolin has the opposite effect. Competition for binding to DNA nanoparticles with exogenous purified nucleolin decreases the transfection efficiency by 60-90% in a dose-dependent manner. Therefore, the data strongly suggest that cell surface nucleolin serves as a receptor for DNA nanoparticles, and that nucleolin is essential for internalization and/or transport of the nanoparticles from cell surface to the nucleus. PMID:18059369

  20. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan

    NASA Astrophysics Data System (ADS)

    Haddadi, Azita; Hamdy, Samar; Ghotbi, Zahra; Samuel, John; Lavasanifar, Afsaneh

    2014-09-01

    Mannan (MN) is the natural ligand for mannose receptors, which are widely expressed on dendritic cells (DCs). The purpose of this study was to assess the effect of formulation parameters on the immunogenicity of MN-decorated poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to stimulate DC phenotypic as well as functional maturation. For this purpose, NPs were formulated from either ester-terminated or COOH-terminated PLGA. Incorporation of MN in NPs was achieved through encapsulation, physical adsorption or chemical conjugation. Murine bone marrow derived DCs (BMDCs) were treated with various NP formulations and assessed for their ability to up-regulate DC cell surface markers, secrete immunostimulatory cytokines and to activate allogenic T cell responses. DCs treated with COOH-terminated PLGA-NPs containing chemically conjugated MN (MN-Cov-COOH) have shown superior performance in improving DC biological functions, compared to the rest of the formulations tested. This may be attributed to the higher level of MN incorporation in the former formulation. Incorporation of MN in PLGA NPs through chemical conjugation can lead to enhanced DC maturation and stimulatory function. This strategy may be used to develop more effective PLGA-based vaccine formulations.

  1. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-01

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. PMID:27052834

  2. Natural killer cell activity during measles.

    PubMed Central

    Griffin, D E; Ward, B J; Jauregui, E; Johnson, R T; Vaisberg, A

    1990-01-01

    Natural killer cells are postulated to play an important role in host anti-viral defences. We measured natural killer cell activity in 30 individuals with acute measles (73 +/- 21 lytic units (LU)/10(7) cells) and 16 individuals with other infectious diseases (149 +/- 95 LU) and found it reduced compared with values for adults (375 +/- 70 LU; P less than 0.001) or children (300 +/- 73 LU, P less than 0.01) without infection. Reduced natural killer cell activity was found in measles patients with (84 +/- 30 LU) and without (55 +/- 18 LU) complications and was present for at least 3 weeks after the onset of the rash. Activity was increased by in vitro exposure of cells to interleukin-2. Depressed natural killer cell activity parallels in time the suppression of other parameters of cell-mediated immunity that occurs during measles. PMID:1696863

  3. Immobilization of microbial cells on cellulose-polymer surfaces by radiation polymerization

    SciTech Connect

    Kumakura, M.; Kaetsu, I.

    1983-12-01

    Streptomyces phaeochromogens cells were immobilized on cellulose-polymer surfaces by radiation polymerization using hydrophilic monomers and paper. The enzyme activity of immobilized cell sheets was higher than that of immobilized cell composites obtained by the usual radiation polymerization technique. The enzyme activity of the sheets was affected by monomer concentration, the thickness of paper, and the degree of polymerization of paper. The copolymerization of hydroxyethyl methacrylate and methoxytetraethyleneglycol methacrylate in the sheets led to a further increase of the enzyme activity due to the increase of the hydrophilicity of the polymer matrix. The Michaelis constant of the sheets from low monomer concentration was close to that of intact cells.

  4. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    PubMed

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  5. Beyond the cell surface: new mechanisms of receptor function.

    PubMed

    Ibáñez, Carlos F

    2010-05-21

    The text book view of cell surface receptors depicts them at the top of a vertical chain of command that starts with ligand binding and proceeds in a lineal fashion towards the cell nucleus. Although pedagogically useful, this view is incomplete and recent findings suggest that the extracellular domain of cell surface receptors can be a transmitter as much as a receiver in intercellular communication. GFRalpha1 is a GPI-anchored receptor for GDNF (glial cell line-derived neurotrophic factor), a neuronal growth factor with widespread functions in the developing and adult nervous system. GFRalpha1 partners with transmembrane proteins, such as the receptor tyrosine kinase RET or the cell adhesion molecule NCAM, for intracellular transmission of the GDNF signal. In addition to this canonical role, GFRalpha1 can also engage in horizontal interactions and thereby modify the function of other cell surface components. GFRalpha1 can also function as a ligand-induced adhesion cell molecule, mediating homophilic cell-cell interactions in response to GDNF. Finally, GFRalpha1 can also be released from the cell surface and act at a distance as a soluble factor together with its ligand. This plethora of unconventional mechanisms is likely to be a feature common to several other receptors and considerably expands our view of cell surface receptor function. PMID:20494105

  6. Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells.

    PubMed

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Diehl-Seifert, Bärbel; Link, Thorben; Wang, Xiaohong

    2014-10-01

    Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell-cell, and cell-substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(ϵ-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicatein synthesizes polymeric biosilica by polycondensation of ortho-silicate that is formed from prehydrolyzed TEOS. Biosilica provides a morphogenetically active matrix for the growth and mineralization of osteoblast-related SaOS-2 cells in vitro. Analysis of the microstructure of the 300-700 nm thick PCL/TEOS nanofibers, incubated with silicatein and prehydrolyzed TEOS, displayed biosilica deposits on the mats formed by the nanofibers. We conclude and propose that electrospun PCL nanofibers mats, coated with biosilica, may represent a morphogenetically active and protective cover for bioprinted cell/tissue-like units with a suitable mechanical stability, even if the cells are embedded in a softer matrix. PMID:24995956

  7. Requirements for extravehicular activities on the lunar and Martian surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Mariann F.; Schentrup, Susan M.

    1990-01-01

    Basic design reference requirements pertinent to EVA equipment on lunar and martian surfaces are provided. Environmental factors affecting surface EVA are analyzed including gravity, dust, atmospheric conditions, thermal gradients, lightning conditions, and radiation effects, and activities associated with surface EVA are outlined. Environmental and activity effects on EVA equipment are assessed, and emphasis is placed on planetary surface portable life support systems (PLSS), suit development, protection from micrometeoroids, dust, and radiation, food and water supplies, and the extravehicular mobility-unit thermal-control system. Environmental and activity impacts on PLSS design are studied, with focus on base self-sufficiency and reduction in resupply logistics.

  8. Substrate recognition by the cell surface palmitoyl transferase DHHC5

    PubMed Central

    Howie, Jacqueline; Reilly, Louise; Fraser, Niall J.; Vlachaki Walker, Julia M.; Wypijewski, Krzysztof J.; Ashford, Michael L. J.; Calaghan, Sarah C.; McClafferty, Heather; Tian, Lijun; Shipston, Michael J.; Boguslavskyi, Andrii; Shattock, Michael J.; Fuller, William

    2014-01-01

    The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme–substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump. PMID:25422474

  9. Surface effects in high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.; Arndt, R. A.

    1982-01-01

    The surface of low-resistivity silicon solar cells appears to be a major source of dark diffusion current. This region, consisting of the interface and the adjacent heavily doped layer, therefore, prevents attainment of the high open-circuit voltages expected from these cells. This paper describes the experimental effort carried out to reduce the various contributions of dark current from the surface. Analysis of results from this effort points to means of improving cell voltages by changing processing and structures.

  10. Analysis of the cell surface expression of cytokine receptors using the surface protein biotinylation method.

    PubMed

    Pavel, Mahmud Arif; Lam, Clarissa; Kashyap, Parul; Salehi-Najafabadi, Zahra; Singh, Gurpreet; Yu, Yong

    2014-01-01

    Cytokines are pleiotropic, low-molecular-weight proteins that regulate the immune responses to infection and inflammation. They stimulate the immune responses by binding to cytokine receptors on the cell plasma membrane. Thus, knowledge of the expression level of particular cytokine receptors on cell surface is crucial for understanding the cytokine function and regulation. One of the techniques to explore the membrane embedded cytokine receptors is cell surface biotinylation. Biotinylated surface proteins can be rapidly purified through the strong interaction between biotin and streptavidin. Here, we describe the procedure for surface biotinylation and purification of biotinylated cytokine receptors for further downstream analysis. PMID:24908305

  11. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    PubMed

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  12. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  13. The effect of plasma-nitrided titanium surfaces on osteoblastic cell adhesion, proliferation, and differentiation.

    PubMed

    Ferraz, Emanuela P; Sa, Juliana C; de Oliveira, Paulo T; Alves, Clodomiro; Beloti, Marcio M; Rosa, Adalberto L

    2014-04-01

    In this study, we evaluated the effect of new plasma-nitrided Ti surfaces on the progression of osteoblast cultures, including cell adhesion, proliferation and differentiation. Ti surfaces were treated using two plasma-nitriding protocols, hollow cathode for 3 h (HC 3 h) and 1 h (HC 1 h) and planar for 1 h. Untreated Ti surfaces were used as control. Cells derived from human alveolar and rat calvarial bones were cultured on Ti surfaces for periods of up to 14 days and the following parameters were evaluated: cell morphology, adhesion, spreading and proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and gene expression of key osteoblast markers. Plasma-nitriding treatments resulted in Ti surfaces with distinct physicochemical characteristics. The cell adhesion and ALP activity were higher on plasma-nitrided Ti surfaces compared with untreated one, whereas cell proliferation and extracellular matrix mineralization were not affected by the treatments. In addition, the plasma-nitrided Ti surfaces increased the ALP, reduced the osteocalcin and did not affect the Runx2 gene expression. We have shown that HC 3 h and planar Ti surfaces slightly favored the osteoblast differentiation process, and then these surfaces should be considered for further investigation using preclinical models. PMID:23625878

  14. Active control technology and the use of multiple control surfaces

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1976-01-01

    Needed criteria for active control technology applications in commercial transports are lacking. Criteria for redundancy requirements, believed to be consistent with certification philosophy, are postulated to afford a discussion of the relative value of multiple control surfaces. The control power and frequency bandpass requirements of various active control technology applications are shown to be such that multiple control surfaces offer advantages in minimizing the hydraulic or auxiliary power for the control surface actuators.

  15. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  16. Cell surface changes associated with cellular immune reactions in Drosophila.

    PubMed

    Nappi, A J; Silvers, M

    1984-09-14

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts. PMID:6433482

  17. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    PubMed Central

    Yanase, Yuhki; Hiragun, Takaaki; Ishii, Kaori; Kawaguchi, Tomoko; Yanase, Tetsuji; Kawai, Mikio; Sakamoto, Kenji; Hide, Michihiro

    2014-01-01

    Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR) sensors detect the refractive index (RI) changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells' reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI) system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques. PMID:24618778

  18. Activation of normal murine B cells by Echinococcus granulosus.

    PubMed Central

    Cox, D A; Marshall-Clarke, S; Dixon, J B

    1989-01-01

    Echinococcus granulosus protoscolex (PSC) infection of BALB/c mice led, after 4 days, to raised numbers of cells forming plaques with trinitrophenyl-treated sheep red cells and bromelain-treated mouse red cells. The findings were similar in athymic and euthymic CBA mice. Activation of B cells was accompanied by secretion of immunoglobulin, as indicated by the reverse plaque technique. In addition, co-culture of PSC with the 7OZ/3 pre-B-cell led to the induction of differentiation, resulting in the expression of surface immunoglobulin (Ig). It is concluded that E. granulosus is a polyclonal activator of B cells inducing both transformation and differentiation, and that the effect is thymus-independent. PMID:2661414

  19. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  20. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  1. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    SciTech Connect

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous {beta}-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in {sup 35}SO{sub 4}-labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed.

  2. Method for measuring surface activity of silicon nitride powder

    NASA Technical Reports Server (NTRS)

    Kanno, Y.; Imai, H.

    1985-01-01

    Amorphous, alpha-, and beta-Si3N4 powders were activated by vibration ball milling in purified MeOH, and the surface activity of ground powders was determined by the temperature programmed desorption (TPD) method using NH3 gas. The concentration of active sites with a potential energy equivalent to the peak temperature in the spectrum increased was markedly by ball milling the amorphous Si3N4. The alpha- and beta-Si3N4 also had active sites produced by ball milling. The concentration of active site increased with increased ball milling time. A method for measuring surface activity of ceramic raw materials by TPD is proposed.

  3. Mitochondrial ROS fire up T cell activation.

    PubMed

    Murphy, Michael P; Siegel, Richard M

    2013-02-21

    Metabolic reprogramming has emerged as an important feature of immune cell activation. Two new studies, including Sena et al. (2013) in this issue of Immunity, identify mitochondrial reactive oxygen species (ROS) arising from metabolic reprogramming as signaling molecules in T cell activation. PMID:23438817

  4. Catalytic activity of baker's yeast in a mediatorless microbial fuel cell.

    PubMed

    Sayed, Enas Taha; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    2012-08-01

    The catalytic activity of baker's yeast, Saccharomyces cerevisiae, as a biocatalyst was investigated in a mediatorless microbial fuel cell. The yeast cells that adhered on the anode surface were the active biocatalyst for glucose oxidation in a mediatorless biofuel cell, suggesting that the electron transfer took place through the surface confined species. The species in the anolyte solution including the dispersed yeast cells did not take a part in the electron transfer and thus in the power generation. PMID:22357359

  5. APOLLO 10: Training for Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts train on a mock-up lunar surface, practicing the procedures they will follow on the real thing, and adjusting to the demands of the workload. From the film documentary 'APOLLO 10: 'Green Light for a Lunar Landing''. Part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 10: Manned lunar orbital flight with Thomas P Stafford, John W. Young, and Eugene A. Cernan to test all aspects of an actual manned lunar landing except the landing. Mission Duration 192hrs 3mins 23 sec

  6. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration.

    PubMed

    Shen, Yang; Gao, Min; Ma, Yunlong; Yu, Hongchi; Cui, Fu-zhai; Gregersen, Hans; Yu, Qingsong; Wang, Guixue; Liu, Xiaoheng

    2015-02-01

    The migration of vascular endothelial cells (ECs) is essential for reendothelialization after implantation of cardiovascular biomaterials. Reendothelialization is largely determined by surface properties of implants. In this study, surfaces modified with various chemical functional groups (CH3, NH2, COOH, OH) prepared by self-assembled monolayers (SAMs) were used as model system. Expressions and distributions of critical proteins in the integrin-induced signaling pathway were examined to explore the mechanisms of surface chemistry regulating EC migration. The results showed that SAMs modulated cell migration were in the order CH3>NH2>OH>COOH, determined by differences in the expressions of focal adhesion components and Rho GTPases. Multiple integrin subunits showed difference in a surface chemistry-dependent manner, which induced a stepwise activation of signaling cascades associated with EC migration. This work provides a broad overview of surface chemistry regulated endothelial cell migration and establishes association among the surface chemistry, cell migration behavior and associated integrin signaling events. Understanding the relationship between these factors will help us to understand the surface/interface behavior between biomaterials and cells, reveal molecular mechanism of cells sensing surface characterization, and guide surface modification of cardiovascular implanted materials. PMID:25575348

  7. Surface passivation of high efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aberle, A.; Warta, W.; Knobloch, J.; Voss, B.

    Theoretically and experimentally determined design guides for significantly reducing recombination at the emitter and rear surfaces of full-area Al-BSF (back-surface region) and oxide-passivated bifacial cells are given. The impact of emitter thickness and surface dopant concentration on emitter saturation current and solar cell efficiency is outlined. A modified emitter structure (locally deep diffused below the metal contacts) is predicted to have superior performance. Measured Voc values reveal the potential of deep emitter cells to achieve efficiencies above 20 percent in spite of high metallization factors. Experimentally, a strong dependence of passivation quality on oxide thickness and base doping concentration is found. The BSF quality of a diffused aluminum layer decreases strongly with increasing drive-in time. For SiO2-passivated rear surfaces of bifacial cells, measurements of the dependence of the surface recombination velocity on the excess carrier concentration are presented.

  8. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  9. Activation of a heat-stable cytolytic protein associated with the surface membrane of Naegleria fowleri.

    PubMed Central

    Lowrey, D M; McLaughlin, J

    1985-01-01

    Surface membrane-enriched fractions of Naegleria fowleri obtained after isopycnic centrifugation experiments contain a potent cytolytic activity as determined by hemolysis and 51Cr release assays. This surface membrane cytolysin was unaffected by a treatment at 75 degrees C for 30 min and accounted for 70 to 90% of cytolysis by whole-cell lysates of amoebae. This heat resistance as well as intimate membrane association distinguished the surface membrane cytolytic activity from a second heat-labile cytolytic activity which appears to be latent within lysosomes. The surface membrane cytolysin was found to be specifically activated by diluted samples of lysosomal fractions. The possible role of this surface membrane cytotoxin in the pathogenicity of N. fowleri is discussed. PMID:4055029

  10. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  11. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  12. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  13. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    PubMed

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry. PMID:23893032

  14. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves.

    PubMed

    Gong, Tao; Zhao, Kun; Yang, Guang; Li, Jinrong; Chen, Hongmei; Chen, Yuping; Zhou, Shaobing

    2014-10-01

    Many studies have demonstrated the potential to modulate stem cell differentiation by using static material substrate surfaces. However, cells actually grow in a dynamically diverse microenvironment in vivo. The regulated signals to the differentiation provided by these materials should not be passive or static but be active and dynamic. To mimic the endogenous cell culture microenvironment, a novel system is designed to realize the dynamic change of the surface geometries as well as a resultant mechanical force using a thermally activated four-stage shape memory polymer. The parallel microgroove surface patterns are fabricated via thermal embossing lithography on the polymer substrate surface. The dynamic microgroove surfaces accompanying with the mechanical force can effectively and significantly regulate the shape and the cytoskeletal arrangement of rBMSC compared with the static patterned and non-patterned surfaces. Cellular and molecular analyses reveal that the spatiotemporally programmed regulation of cell shape is more viable to coax lineage-specific differentiation of stem cell in contrast to the general reports with the static surfaces. Therefore, this study provides a facile strategy in designing and manufacturing an artificial substrate with a mimic natural cellular environment to precisely direct the cell differentiation. PMID:24648133

  15. The endomembrane requirement for cell surface repair

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Miyake, Katsuya; Vogel, Steven S.

    2003-01-01

    The capacity to reseal a plasma membrane disruption rapidly is required for cell survival in many physiological environments. Intracellular membrane (endomembrane) is thought to play a central role in the rapid resealing response. We here directly compare the resealing response of a cell that lacks endomembrane, the red blood cell, with that of several nucleated cells possessing an abundant endomembrane compartment. RBC membrane disruptions inflicted by a mode-locked Ti:sapphire laser, even those initially smaller than hemoglobin, failed to reseal rapidly. By contrast, much larger laser-induced disruptions made in sea urchin eggs, fibroblasts, and neurons exhibited rapid, Ca(2+)-dependent resealing. We conclude that rapid resealing is not mediated by simple physiochemical mechanisms; endomembrane is required.

  16. Pigment Epithelium-derived Factor (PEDF) Binds to Cell-surface F1-ATP Synthase

    PubMed Central

    Notari, Luigi; Arakaki, Naokatu; Mueller, David; Meier, Scott; Amaral, Juan; Becerra, S. Patricia

    2010-01-01

    Pigment epithelium-derived factor (PEDF), a potent blocker of angiogenesis in vivo, and of endothelial cell migration and tubule formation, binds with high affinity to a yet unknown protein on the surface of endothelial cells. Given that protein fingerprinting suggested a match of a ~60-kDa PEDF-binding protein in bovine retina to Bos taurus F1-ATP synthase β-subunit, and that F1F0-ATP synthase components have been identified recently as cell-surface receptors, we examined the direct binding of PEDF to F1. Size-exclusion ultrafiltration assays showed that recombinant human PEDF formed a complex with recombinant yeast F1. Real-time binding by surface plasmon resonance demonstrated that yeast F1 interacted specifically and reversibly with human PEDF. Kinetic evaluations revealed high binding affinity for PEDF, in agreement with PEDF affinities for endothelial cell-surfaces. PEDF blocked interactions between F1 and angiostatin, another antiangiogenic factor, suggesting overlapping PEDF- and angiostatin-binding sites on F1. Surfaces of endothelial cells exhibited affinity for PEDF-binding proteins of ~60-kDa. Antibodies to F1 β-subunit specifically captured PEDF-binding components in endothelial plasma membranes. Extracellular ATP synthesis activity of endothelial cells was examined in the presence of PEDF. PEDF significantly inhibited the extracellular ATP produced by endothelial cells, in agreement with direct interactions between cell-surface ATP synthase and PEDF. In addition to demonstrating that PEDF binds to cell-surface F1, these results show that PEDF is a ligand for endothelial cell-surface F1F0-ATP synthase. They suggest that PEDF-mediated inhibition of ATP synthase may be part of the biochemical mechanisms by which PEDF exerts its antiangiogenic activity. PMID:20412062

  17. Strategies to reduce dendritic cell activation through functional biomaterial design

    PubMed Central

    Hume, Patrick S.; He, Jing; Haskins, Kathryn; Anseth, Kristi S.

    2012-01-01

    Dendritic cells play a key role in determining adaptive immunity, and there is growing interest in characterizing and manipulating the interactions between dendritic cells and biomaterial surfaces. Contact with several common biomaterials can induce the maturation of immature dendritic cells, but substrates that reduce dendritic cell maturation are of particular interest within the field of cell-based therapeutics where the goal is to reduce the immune response to cell-laden material carriers. In this study, we use a materials-based strategy to functionalize poly(ethylene glycol) hydrogels with immobilized immunosuppressive factors (TGF-β1 and IL-10) to reduce the maturation of immature dendritic cells. TGF-β1 and IL-10 are commonly employed as soluble factors to program dendritic cells in vitro, and we demonstrate that these proteins retain bioactivity towards dendritic cells when immobilized on hydrogel surfaces. Following stimulation with lipopolysaccharide (LPS) and/or cytokines, a dendritic cell line interacting with the surfaces of immunosuppressive hydrogels expressed reduced markers of maturation, including IL-12 and MHCII. The bioactivity of these immunomodulatory hydrogels was further confirmed with primary bone marrow dendritic cells (BMDCs) isolated from non-obese diabetic (NOD) mice, as quantified by a decrease in activation markers and a significantly reduced capacity to activate T cells. Furthermore, by introducing a second signal to promote BMDC-material interactions combined with the presentation of tolerizing signals, the mulitfunctional PEG hydrogels were found to further increase signaling towards BMDCs, as evidenced by greater reductions in maturation markers. PMID:22361099

  18. Modelling cell motility and chemotaxis with evolving surface finite elements

    PubMed Central

    Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-01-01

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164

  19. Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation: A Pilot Study

    PubMed Central

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Hyoun Ee

    2009-01-01

    Microarc oxidation (MAO) is a surface treatment that provides nanoporous pits, and thick oxide layers, and incorporates calcium and phosphorus into the coating layer of titanium alloy. We presumed such modification on the surface of titanium alloy by MAO would improve the ability of cementless stems to osseointegrate. We therefore compared the in vitro ability of cells to adhere to MAOed titanium alloy to that of two different types of surface modifications: machined and grit-blasted. We performed energy-dispersive x-ray spectroscopy and scanned electron microscopy investigations to assess the structure and morphology of the surfaces. Biologic and morphologic responses to osteoblast cell lines (SaOS-2) were then examined by measuring cell proliferation, cell differentiation (alkaline phosphatase activity), and αvβ3 integrin. The cell proliferation rate, alkaline phosphatase activity, and cell adhesion in the MAO group increased in comparison to those in the machined and grit-blasted groups. The osteoblast cell lines of the MAO group were also homogeneously spread on the surface, strongly adhered, and well differentiated when compared to the other groups. This method could be a reasonable option for treating the surfaces of titanium alloy for better osseointegration. PMID:19434468

  20. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  1. Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity

    SciTech Connect

    Krishnan,S.; Ward, R.; Hexemer, A.; Sohn, K.; Lee, K.; Angert, E.; Fischer, D.; Kramer, E.; Ober, C.

    2006-01-01

    Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.

  2. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  3. Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering.

    PubMed

    Veiseh, Mandana; Wickes, Bronwyn T; Castner, David G; Zhang, Miqin

    2004-07-01

    We report an effective approach to patterning cells on gold-silicon dioxide substrates with high precision, selectivity, stability, and reproducibility. This technique is based on photolithography and surface molecular engineering and requires no cell positioning or delivery devices, thus significantly reducing the potential damage to cells. The cell patterning was achieved by activating the gold regions of the substrate with functionalized thiols that covalently bind proteins onto the gold regions to guide subsequent cell adhesion while passivating the silicon dioxide background with polyethylene glycol to resist cell adhesion. Fourier transform infrared reflectance spectroscopy verified the successful immobilization of proteins on gold surfaces. Protein patterns were visualized by tagging proteins with Rhodamine fluorescent probes. Time-of-flight secondary ion mass spectrometry was used to characterize the chemistry of both the cell-adhesive and cell-resistant regions of surfaces after each key chemical reaction occurring during the molecular surface engineering. The ability of the engineered surfaces to guide cell adhesion was illustrated by differential interference contrast (DIC) reflectance microscopy. The cell patterning technique introduced in this study is compatible with micro- and photo-electronics, and may have many medical, environmental, and defense applications. PMID:14980426

  4. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    PubMed

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483

  5. Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    PubMed Central

    Hsu, Chih-Jung; Hsieh, Wan-Ting; Waldman, Abraham; Clarke, Fiona; Huseby, Eric S.; Burkhardt, Janis K.; Baumgart, Tobias

    2012-01-01

    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses. PMID:22384241

  6. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    PubMed

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness <0.2 nm, hut-nanostructured surfaces with a height of 2.9 +/- 0.6 nm and a width of 35 +/- 8 nm, and dome structures with a height of 13 +/- 2 nm and a width of 52 +/- 14 nm. Using ellipsometry, the adsorption and the availability of fibronectin cell-binding domains on the tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  7. Surface morphology of hamster (Mesocricetus auratus) decidual cells in vitro.

    PubMed

    Shukla, R; Pande, S; Mehrotra, P K; Maitra, S C; Kamboj, V P

    1995-02-01

    Cell surface morphology of hamster decidual cells isolated from day 8 implantation swellings was studied, using both phase-contrast and scanning electron microscopy. Two kinds of cells, fibroblastic and epithelioid, were identified in cultures examined by phase-contrast microscopy. Fibroblastic cells were spindle-shaped, having pointed or blunt terminals on one end and bifid or webbed projections at the other end. Epithelioid cells, on the other hand, were flat and discoid, having a distinctively ruffled plasma membrane. Further, the plasma membrane of epithelioid cells formed rope-like or flange-like processes. The significance of such adaptations is discussed. PMID:7877182

  8. The cell surface environment for pathogen recognition and entry

    PubMed Central

    Stow, Jennifer L; Condon, Nicholas D

    2016-01-01

    The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection. PMID:27195114

  9. Modulated surface nanostructures for enhanced light trapping and reduced surface reflection of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Hoshi, Yusuke; Hirai, Yuji; Matsuo, Yasutaka; Usami, Noritaka

    2016-05-01

    We demonstrated the fabrication of modulated surface nanostructures as a new surface texture design for thin wafer solar cells. Using a combination of conventional alkali etching and colloidal lithography, we fabricated surface textures with micrometer and nanometre scales on a Si substrate. These modulated surface nanostructures exhibit reduced surface reflection in a broad spectral range, compared with conventional micrometer textures. We investigated optical absorption using a rigorous coupled wave analysis simulation, which revealed a significant reduction in surface reflection over a broad spectral range and efficient light trapping (comparable to that of conventional micrometer-scale textures) for the modulated nanostructures. We found that the modulated surface nanostructures have a high potential of improving the performance of thin wafer crystalline Si solar cells.

  10. Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells

    PubMed Central

    Brunner, Patrick M.; Heier, Patricia C.; Mihaly-Bison, Judit; Priglinger, Ute; Binder, Bernd R.

    2011-01-01

    VEGF165, the major angiogenic growth factor, is known to activate various steps in proangiogenic endothelial cell behavior, such as endothelial cell migration and invasion, or endothelial cell survival. Thereby, the urokinase-type plasminogen activator (uPA) system has been shown to play an essential role not only by its proteolytic capacities, but also by induction of intracellular signal transduction. Therefore, expression of its cell surface receptor uPAR is thought to be an essential regulatory mechanism in angiogenesis. We found that uPAR expression on the surface of confluent endothelial cells was down-regulated compared with subconfluent proliferating endothelial cells. Regulation of uPAR expression was most probably affected by extracellular signal-regulated kinase 1/2 (ERK1/2) activation, a downstream signaling event of the VEGF/VEGF-receptor system. Consistently, the receptor-like protein tyrosine phosphatase DEP-1 (density enhanced phosphatase-1/CD148), which is abundantly expressed in confluent endothelial cells, inhibited the VEGF-dependent activation of ERK1/2, leading to down-regulation of uPAR expression. Overexpression of active ERK1 rescued the DEP-1 effect on uPAR. That DEP-1 plays a biologic role in angiogenic endothelial cell behavior was demonstrated in endothelial cell migration, proliferation, and capillary-like tube formation assays in vitro. PMID:21304107

  11. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis

    PubMed Central

    DUHAIME, MICHAEL J.; PAGE, KHALIPH O.; VARELA, FAUSTO A.; MURRAY, ANDREW S.; SILVERMAN, MICHAEL E.; ZORATTI, GINA L.; LIST, KARIN

    2016-01-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  12. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  13. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction.

    PubMed

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-05-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222

  14. Stochasticity and spatial heterogeneity in T-cell activation.

    PubMed

    Burroughs, Nigel J; van der Merwe, P Anton

    2007-04-01

    Stochastic and spatial aspects are becoming increasingly recognized as an important factor in T-cell activation. Activation occurs in an intrinsically noisy environment, requiring only a handful of agonist peptide-major histocompatibility complex molecules, thus making consideration of signal to noise of prime importance in understanding sensitivity and specificity. Furthermore, it is widely established that surface-bound ligands are more effective at activation than soluble forms, while surface patternation has highlighted the role of spatial relocation in activation. Here we consider the results of a number of models of T-cell activation, from a realistic model of kinetic segregation-induced T-cell receptor (TCR) triggering through to simple queuing theory models. These studies highlight the constraints on cell activation by a surface receptor that recruits kinases. Our analysis shows that TCR triggering based on trapping of bound TCRs in regions of close proximity that exclude large ectodomain-containing molecules, such as the phosphatases CD45 and CD148, can effectively reproduce known signaling characteristics and is a viable 'signal transduction' mechanism distinct from oligomerization and conformation-based mechanisms. A queuing theory analysis shows the interrelation between sensitivity and specificity, emphasizing that these are properties of individual cell functions and need not be, nor are likely to be, uniform across different functions. In fact, threshold-based mechanisms of detection are shown to be poor at ligand discrimination because, although they can be highly specific, that specificity is limited to a small range of peptide densities. Time integration mechanisms however are able to control noise effectively, while kinetic proofreading mechanisms endow them with good specificity properties. Thus, threshold mechanisms are likely to be important for rapidly detecting minimal signaling requirements, thus achieving efficient scanning of antigen

  15. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer.

    PubMed

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton. PMID:27408707

  16. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer

    PubMed Central

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D.

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton. PMID:27408707

  17. Surface characterization, protein adsorption, and initial cell-surface reactions on glutathione and 3-mercapto-1,2,-propanediol immobilized to gold.

    PubMed

    Kanagaraja, S; Alaeddine, S; Eriksson, C; Lausmaa, J; Tengvall, P; Wennerberg, A; Nygren, H

    1999-09-15

    Monolayers of glutathione (GSH) and 3-mercapto-1,2-propanediol (MG) on gold were tested for their bioreactivity by assessing the degree of inflammatory reaction as manifested by the adherence and activation of platelets and white blood cells (wbc) after exposure to blood ex vivo. Surface composition was characterized by XPS, and noncontact optical profilometry was used to determine surface roughness. The thickness and composition of the adsorbed protein layers were measured by ellipsometry/antibody techniques in vitro. Cell adhesion and activation were quantified by acridine orange staining, fluorescein-diacetate staining, and by specific antibodies against cell membrane antigens. Distinct differences among the surfaces were observed relative to the amounts and composition of adsorbed plasma proteins and the adhesion and activation of platelets (CD62P-exposure) and wbc (CD11b/CD18-exposure). GSH surfaces, which adsorbed the least amount of plasma protein, caused the least adherence and activation of platelets (CD62P), followed by the highest activation of wbc (CD11b/18). The MG surfaces caused a rapid recruitment and activation of platelets (CD62P), followed by a lower activation of wbc (CD11b/18). Thus it appears that measurements of the initial adsorption of plasma protein from anticoagulated plasma and of the adhesion and activation of platelets after 8 min of exposure to whole blood cannot be used to predict accurately the adhesion and activation behavior of inflammatory cells after longer periods (2 h) of exposure on different surfaces. PMID:10398020

  18. Hydroxyapatite surface roughness: complex modulation of the osteoclastogenesis of human precursor cells.

    PubMed

    Costa-Rodrigues, João; Fernandes, Anabela; Lopes, Maria A; Fernandes, Maria H

    2012-03-01

    It is recognized that the surface roughness affects osteoblastic differentiation, but little information is available regarding its effect on osteoclastogenesis. With this work, the osteoclastogenic behaviour of human peripheral blood mononuclear cells (PBMCs), cultured isolated (1.5×10(6)cellscm(-2)) or co-cultured with human bone marrow cells (hBMCs; 10(3)cellscm(-2)), was assessed on surface-abraded hydroxyapatite disks with three different surface roughnesses (R(a) 0.0437-0.582 μm). Monocultures and co-cultures were performed for 21 days in the absence or presence of recombinant M-CSF and RANKL. Results showed that PBMCs supplemented with M-CSF and RANKL or co-cultured with hBMCs displayed typical osteoclastic features, i.e. multinucleated cells with actin rings, vitronectin and calcitonin receptors, gene expression of TRAP, cathepsin K, carbonic anhydrase 2, c-myc and c-src, TRAP activity and resorbing activity. The osteoclastogenic response increased with surface roughness in PBMCs cultured with M-CSF and RANKL but decreased in PBMCs co-cultured with hBMCs. However, co-cultures supplemented with the osteoclastogenic inducers displayed high and similar levels of osteoclast differentiation in the three tested surfaces. In conclusion, modulation of osteoclast differentiation by surface roughness seemed to be dependent on the mechanisms subjacent to the osteoclastogenic stimulus, i.e. the presence of soluble factors or direct cell-to-cell contacts between osteoblastic and osteoclastic cells. PMID:22178652

  19. Investigation of the competition between cell/surface and cell/cell interactions during neuronal cell culture on a micro-engineered surface.

    PubMed

    Béduer, Amélie; Gonzales-Calvo, Inès; Vieu, Christophe; Loubinoux, Isabelle; Vaysse, Laurence

    2013-11-01

    To investigate the respective roles of topography and cell/cell interactions in the development of a guided neuronal network on an engineered surface, micropatterned PDMS substrates were generated with different microgrooves geometry and investigated for the influence of cell density on neurite outgrowth and alignment. Through this systematic investigation, using a human neuronal stem cell line, the rules of neuronal network development and guiding could be learned. The results show that when cell density is increased the influence on neuritic outgrowth and alignment is very different for the various grooves geometries. The data emphasized the competition, in neurite development, between physical cues brought by surface topographical features and cell to cell communications. These results can be of particular interest for designing functional neuronal networks with a controlled architecture. PMID:24039002

  20. Remote Control of Tissue Interactions via Engineered Photo-switchable Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M.; Yousaf, Muhammad N.

    2014-09-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies.

  1. Remote control of tissue interactions via engineered photo-switchable cell surfaces.

    PubMed

    Luo, Wei; Pulsipher, Abigail; Dutta, Debjit; Lamb, Brian M; Yousaf, Muhammad N

    2014-01-01

    We report a general cell surface molecular engineering strategy via liposome fusion delivery to create a dual photo-active and bio-orthogonal cell surface for remote controlled spatial and temporal manipulation of microtissue assembly and disassembly. Cell surface tailoring of chemoselective functional groups was achieved by a liposome fusion delivery method and quantified by flow cytometry and characterized by a new cell surface lipid pull down mass spectrometry strategy. Dynamic co-culture spheroid tissue assembly in solution and co-culture tissue multilayer assembly on materials was demonstrated by an intercellular photo-oxime ligation that could be remotely cleaved and disassembled on demand. Spatial and temporal control of microtissue structures containing multiple cell types was demonstrated by the generation of patterned multilayers for controlling stem cell differentiation. Remote control of cell interactions via cell surface engineering that allows for real-time manipulation of tissue dynamics may provide tools with the scope to answer fundamental questions of cell communication and initiate new biotechnologies ranging from imaging probes to drug delivery vehicles to regenerative medicine, inexpensive bioreactor technology and tissue engineering therapies. PMID:25204325

  2. Early cell response to contact with biomaterial's surface.

    PubMed

    Komorowski, Piotr; Walkowiak-Przybyło, Magdalena; Walkowiak, Bogdan

    2016-07-01

    Most biomaterials at present have sufficient mechanical properties; however compliance with standards for biocompatibility is often not sufficient in clinical practice. This may be due to the complexity of biological systems in general and the diversity of individual responses to these materials by implant recipients. Significant improvement of biocompatibility must involve surface modification of implants, which in the future will make it possible to introduce individually selected types of surface modification for individual recipients. The key to this technology seems to be understanding the processes occurring at the site of contact of the implant with the tissue. Processes resulting from the stress generated by the contact of the biomaterial surfaces were observed with endothelial cells line EA.hy926, and it was demonstrated that differently modified surfaces of medical steel (polished medical steel and medical steel coated with Parylene C and nanocrystalline diamond) cause diverse cellular response in cells grown on these surfaces, on both the cellular (cell morphology and cell survival) and molecular (transcriptome and proteome profiles) levels. The herein presented observations are a good starting point not only for further research and the development of far-reaching personalization of medical implants, but also to study the potential use of cells as a specific sensor capable of recognizing different surfaces with which these cells come into contact. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 880-893, 2016. PMID:25951795

  3. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  4. Activity-driven fluctuations in living cells

    NASA Astrophysics Data System (ADS)

    Fodor, É.; Guo, M.; Gov, N. S.; Visco, P.; Weitz, D. A.; van Wijland, F.

    2015-05-01

    We propose a model for the dynamics of a probe embedded in a living cell, where both thermal fluctuations and nonequilibrium activity coexist. The model is based on a confining harmonic potential describing the elastic cytoskeletal matrix, which undergoes random active hops as a result of the nonequilibrium rearrangements within the cell. We describe the probe's statistics and we bring forth quantities affected by the nonequilibrium activity. We find an excellent agreement between the predictions of our model and experimental results for tracers inside living cells. Finally, we exploit our model to arrive at quantitative predictions for the parameters characterizing nonequilibrium activity, such as the typical time scale of the activity and the amplitude of the active fluctuations.

  5. Construction of a starch-utilizing yeast by cell surface engineering.

    PubMed Central

    Murai, T; Ueda, M; Yamamura, M; Atomi, H; Shibasaki, Y; Kamasawa, N; Osumi, M; Amachi, T; Tanaka, A

    1997-01-01

    We have engineered the cell surface of the yeast Saccharomyces cerevisiae by anchoring active glucoamylase protein on the cell wall, and we have endowed the yeast cells with the ability to utilize starch directly as the sole carbon source. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast alpha-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The constructed plasmid containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The glucoamylase activity as not detected in the culture medium, but it was detected in the cell pellet fraction. The glucoamylase protein transferred to the soluble fraction from the cell wall fraction after glucanase treatment but not after sodium dodecyl sulfate treatment, indicating the covalent binding of the fusion protein to the cell wall. Display of the fused protein was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. The transformant cells could surely grow on starch as the sole carbon source. These results showed that the glucoamylase was anchored on the cell wall and displayed as its active form. This is the first example of an application of cell surface engineering to utilize and improve the metabolic ability of cells. PMID:9097432

  6. The microbial cell surface electric field: life in an ion cloud

    NASA Astrophysics Data System (ADS)

    Yee, N.

    2005-05-01

    Electrical charge on microbial cell surfaces arises from the ionization of proton-active functional groups attached to cell wall polymers. In Gram-positive cell walls, ionizable functional groups are associated with peptidoglycan and secondary polymers such as teichoic or teichuronic acids. Carboxyl functional groups attached to the unlinked peptide crosslinks of peptidoglycan and phosphoryl groups associated with the teichoic acids can deprotonate to form negatively charged surface sites. These anionic functional groups generate charge in the cell wall which results in the formation of an electric field that surrounds the entire cell. The cell surface electric field controls the concentration and spatial distribution of ions and counterions at the cell-water interface, and strongly affects microbe-fluid and microbe-mineral interactions. Recently, we have used potentiometric titration, infrared spectroscopy, electrophoretic mobility, metal sorption experiments to characterize the surface electrical potential properties of the various Gram-positive and Gram-negative bacterial species. Potentiometric titration experiments show that the deprotonation of acidic cell wall functional groups generate surface charge density values typically ranging from 1.1 to 2.2 mol sites/g of bacteria. Spectroscopic measurements have confirmed that the dominant proton-active sites in the cell wall are carboxyl functional groups. Electrophoretic mobility experiments show that the magnitude of the electrostatic surface potential increases with increasing pH, and decreases with increasing ionic strength. Metal sorption experiments conducted with Ca(II), Sr(II) and Ba(II) exhibit strong ionic strength dependence, suggesting that high concentrations of metal ions are electrostatically bound to bacterial cell walls via outer-sphere complexation. We demonstrate that the electrostatic potential effects on ion sorption at the cell-water interface can be quantified using the Donnan model.

  7. Surface-active properties of humic and sulfochlorohumic acids

    SciTech Connect

    Ryabova, I.N.; Mustafina, G.A.; Akkulova, Z.G.; Satymbaeva, A.S.

    2009-10-15

    The surface tension of alkaline solutions of humic acids and their sulfochloroderivatives, which are synthesized by sulfonation of chlorohumic acids isolated from coal chlorinated by the electrochemical method, is investigated. It is established that humic compounds possess weak surface activity. Basic adsorption parameters are calculated.

  8. Characterization of surface active materials derived from farm products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...

  9. Surface-Energy Dependent Contact Activation of Blood Factor XII

    PubMed Central

    Golas, Avantika; Parhi, Purnendu; Dimachkie, Ziad O.; Siedlecki, Christopher A.; Vogler, Erwin A.

    2009-01-01

    Contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension τao=γlvocosθ in dyne/cm, where γlvo is water interfacial tension in dyne/cm and θ is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties −36<τao<72 dyne/cm (0° ≤ θ < 120°), falling sharply through a broad minimum within the 20<τao<40 dyne/cm (55° < θ < 75°) range over which activation yield (putatively FXIIa) rises just above detection limits. Activation is very rapid upon contact with all activators tested and did not significantly vary over 30 minutes of continuous FXII-procoagulant contact. Results suggest that materials falling within the 20<τao<40 dyne/cm surface-energy range should exhibit minimal activation of blood-plasma coagulation through the intrinsic pathway. Surface chemistries falling within this range are, however, a perplexingly difficult target for surface engineering because of the critical balance that must be struck between hydrophobicity and hydrophilicity. Results are interpreted within the context of blood plasma coagulation and the role of water and proteins at procoagulant surfaces. PMID:19892397

  10. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  11. Directing neuronal cell growth on implant material surfaces by microstructuring.

    PubMed

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-05-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different methods, either directly, by laser ablation or indirectly, by imprinting using laser-microstructured molds. The influence of surface structuring on neurite outgrowth was investigated utilizing a neuronal-like cell line and primary auditory neurons. The pheochromocytoma cell line PC-12 and primary spiral ganglion cells were cultured on microstructured auditory implant materials. The orientation of neurite outgrowth relative to the microgrooves was determined. Both cell types showed a preferred orientation in parallel to the microstructures on both, platinum and on molded silicone elastomer. Interestingly, microstructures generated by direct laser ablation of silicone did not influence the orientation of either cell type. This shows that differences in the manufacturing procedures can affect the ability of microstructured implant surfaces to guide the growth of neurites. This is of particular importance for clinical applications, since the molding technique represents a reproducible, economic, and commercially feasible manufacturing procedure for the microstructured silicone surfaces of medical implants. PMID:22287482

  12. Expanding the diversity of unnatural cell surface sialic acids

    SciTech Connect

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  13. Surface activity of Corophium volutator: A role for parasites?

    NASA Astrophysics Data System (ADS)

    Damsgaard, Jacob Tørring; Mouritsen, Kim N.; Jensen, K. Thomas

    2005-08-01

    In soft-bottom intertidal habitats, the normally infaunal amphipod Corophium volutator is often found active on the sediment surface during low tide, exposed to desiccation and shorebird predation. Here we examine whether such risky behaviour is related to parasite infections. Surface-active and buried C. volutator were collected during a low tide period in the Danish Wadden Sea, and the infection patterns of the two groups were described in relation to sex and size. Surface-active males and females were more heavily infested by microphallid trematodes (four species) than buried specimens of the same sex and size class. Although the density of surfaced amphipods decreased as a function of exposure time, the mean parasite load of those that remained on the surface increased. A narrow size-specific parasite intensity threshold above which the amphipods were always surface active did not exist: heavily infected individuals were also found buried in the substrate. Although likely to be beneficial to the parasites, this suggests that the behavioural alteration is a side-effect of the infections rather than a consequence of direct parasitic manipulation. Besides the presumed mortality associated with the parasite-related surface activity in a range of size-classes, the intensity-size frequency distribution indicated that larger and hence heavily infected hosts are removed from the population. Together it demonstrates that microphallid trematodes impact the population dynamics of C. volutator.

  14. Photoactive branched and linear surface architectures for functional and patterned immobilization of proteins and cells onto surfaces: a comparative study.

    PubMed

    Stegmaier, Petra; del Campo, Aránzazu

    2009-02-01

    Molecular architecture affects the properties of surface layers. Photosensitive silanes with branched architectures allow patterning and coupling of proteins and cells on surfaces while maintaining their biofunctional state. Attachment can be directed to the activated regions of irradiated substrates with high selectivity (see image of mouse fibroblasts). Novel photosensitive silanes with a branched molecular architecture combining three end-functionalized oligoethylene glycol (OEG) and alkyl arms are presented. These molecules are synthesized and applied to the modification of silica surfaces. The resulting layers are tested in their ability for the selective, patterned and functional immobilization of proteins and cells. The results demonstrate and accurately quantify the benefits of branched OEG structures against linear analogues for preventing non-specific interactions with the biological material. Linear structures guarantee high selectivity for the attachment of proteins, however, they fail in the case of cells. Branched structures provide good antifouling properties in both cases and allow the formation of protein patterns with higher densities of the target protein, as well as cell patterns. The results demonstrate the careful balance between surface functionality, composition and architecture that is required for maximizing the performance of any surface-based assay in biology. PMID:19065686

  15. Cell proliferation-inducing protein 52/mitofilin is a surface antigen on undifferentiated human dental pulp stem cells.

    PubMed

    Hwang, Hyo-In; Lee, Tae-Hyong; Jang, Young-Joo

    2015-06-01

    Dental pulp is a soft tissue located inside the hard part of a tooth and it contains a stem cell population that can regenerate damaged dentin and/or pulp itself. Human dental pulp stem cells (hDPSCs) are multipotent adult stem cells that have the potential to be differentiated into a variety of cell types. Although cells cultured primarily from pulp tissue show heterogeneous phenotypes and variable efficiency in their dentinogenic differentiation, proper selection markers, which are specific to hDPSCs, are essential for the osteo/dentinogenic study of human dental pulp cells. We had previously screened a set of undifferentiation-specific cell surface antibodies of hDPSCs through decoy immunization. In this study, we show that one of these surface monoclonal antibodies, 3C4, is bound to intact pulp cells in a highly undifferentiation-specific manner. The surface antigen protein bound specifically to 3C4 antibody was identified through direct immunoprecipitation and liquid chromatography-tandem mass spectrometry as the cell proliferation-inducing protein 52/Mitofilin, which is a protein of the inner mitochondrial membrane and is a possible antagonist to maintaining mitochondrial activation during differentiation. The expression of mitofilin/3C4 antigen dramatically decreased during differentiation, and the depletion of mitofilin/3C4 antigen induced the expression of osteogenic/dentinogenic markers earlier than during normal differentiation. The 3C4-positive cells isolated by a magnetic-activated cell sorting system were differentiated with a higher efficiency than 3C4-negative cells. These results indicate that finding mitochondria-related stem cell markers is valuable to be able to identify and isolate primitive stem cells. PMID:25590652

  16. Probe for the measurement of cell surface pH in vivo and ex vivo

    PubMed Central

    Anderson, Michael; Moshnikova, Anna; Engelman, Donald M.; Reshetnyak, Yana K.; Andreev, Oleg A.

    2016-01-01

    We have developed a way to measure cell surface pH by positioning a pH-sensitive fluorescent dye, seminaphtharhodafluor (SNARF), conjugated to the pH low insertion peptide (pHLIP). It has been observed that many diseased tissues are acidic and that tumors are especially so. A combination of effects acidifies tumor cell interiors, and cells pump out lactic acid and protons to maintain intracellular pH, acidifying the extracellular space. Overexpression of carbonic anhydrases on cell surfaces further contributes to acidification. Thus, the pH near tumor cell surfaces is expected to be low and to increase with distance from the membrane, so bulk pH measurements will not report surface acidity. Our new surface pH-measurement tool was validated in cancer cells grown in spheroids, in mouse tumor models in vivo, and in excised tumors. We found that the surface pH is sensitive to cell glycolytic activity: the pH decreases in high glucose and increases if glucose is replaced with nonmetabolized deoxyglucose. For highly metastatic cancer cells, the pH measured at the surface was 6.7–6.8, when the surrounding external pH was 7.4. The approach is sensitive enough to detect 0.2–0.3 pH unit changes in vivo in tumors induced by i.p. injection of glucose. The pH at the surfaces of highly metastatic cells within tumors was found to be about 6.1–6.4, whereas in nonmetastatic tumors, it was 6.7–6.9, possibly creating a way to distinguish more aggressive from less aggressive tumors. Other biological roles of surface acidity may be found, now that targeted measurements are possible. PMID:27382181

  17. Probe for the measurement of cell surface pH in vivo and ex vivo.

    PubMed

    Anderson, Michael; Moshnikova, Anna; Engelman, Donald M; Reshetnyak, Yana K; Andreev, Oleg A

    2016-07-19

    We have developed a way to measure cell surface pH by positioning a pH-sensitive fluorescent dye, seminaphtharhodafluor (SNARF), conjugated to the pH low insertion peptide (pHLIP). It has been observed that many diseased tissues are acidic and that tumors are especially so. A combination of effects acidifies tumor cell interiors, and cells pump out lactic acid and protons to maintain intracellular pH, acidifying the extracellular space. Overexpression of carbonic anhydrases on cell surfaces further contributes to acidification. Thus, the pH near tumor cell surfaces is expected to be low and to increase with distance from the membrane, so bulk pH measurements will not report surface acidity. Our new surface pH-measurement tool was validated in cancer cells grown in spheroids, in mouse tumor models in vivo, and in excised tumors. We found that the surface pH is sensitive to cell glycolytic activity: the pH decreases in high glucose and increases if glucose is replaced with nonmetabolized deoxyglucose. For highly metastatic cancer cells, the pH measured at the surface was 6.7-6.8, when the surrounding external pH was 7.4. The approach is sensitive enough to detect 0.2-0.3 pH unit changes in vivo in tumors induced by i.p. injection of glucose. The pH at the surfaces of highly metastatic cells within tumors was found to be about 6.1-6.4, whereas in nonmetastatic tumors, it was 6.7-6.9, possibly creating a way to distinguish more aggressive from less aggressive tumors. Other biological roles of surface acidity may be found, now that targeted measurements are possible. PMID:27382181

  18. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration.

    PubMed

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-01-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration. PMID:27546196

  19. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

    PubMed Central

    Wang, Guifang; Li, Jinhua; Lv, Kaige; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Liu, Xuanyong; Jiang, Xinquan

    2016-01-01

    Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration. PMID:27546196

  20. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    SciTech Connect

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  1. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  2. Transforming ocular surface stem cell research into successful clinical practice

    PubMed Central

    Sangwan, Virender S; Jain, Rajat; Basu, Sayan; Bagadi, Anupam B; Sureka, Shraddha; Mariappan, Indumathi; MacNeil, Sheila

    2014-01-01

    It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed. PMID:24492499

  3. Studies of T-cell activation in chronic inflammation

    PubMed Central

    2002-01-01

    Chapter summary The strong association between specific alleles encoded within the MHC class II region and the development of rheumatoid arthritis (RA) has provided the best evidence to date that CD4+ T cells play a role in the pathogenesis of this chronic inflammatory disease. However, the unusual phenotype of synovial T cells, including their profound proliferative hyporesponsiveness to TCR ligation, has challenged the notion that T-cell effector responses are driven by cognate cartilage antigens in inflamed synovial joints. The hierarchy of T-cell dysfunction from peripheral blood to inflamed joint suggests that these defects are acquired through prolonged exposure to proinflammatory cytokines such as tumour necrosis factor (TNF)-α. Indeed, there are now compelling data to suggest that chronic cytokine activation may contribute substantially to the phenotype and effector function of synovial T cells. Studies reveal that chronic exposure of T cells to TNF uncouples TCR signal transduction pathways by impairing the assembly and stability of the TCR/CD3 complex at the cell surface. Despite this membrane-proximal effect, TNF selectively uncouples downstream signalling pathways, as is shown by the dramatic suppression of calcium signalling responses, while Ras/ERK activation is spared. On the basis of these data, it is proposed that T-cell survival and effector responses are driven by antigen-independent, cytokine-dependent mechanisms, and that therapeutic strategies that seek to restore T-cell homeostasis rather than further depress T-cell function should be explored in the future. PMID:12110140

  4. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  5. Cell-surface nucleolin is involved in lipopolysaccharide internalization and signalling in alveolar macrophages.

    PubMed

    Wang, Yi; Mao, Mei; Xu, Jian-cheng

    2011-07-01

    C23 (nucleolin) shuttling between the nucleus, cytoplasm and cell surface has been implicated in controlling regulatory processes and may play a role in pathogen infection and autoimmune diseases. It has been reported that cell surface-expressed C23 on THP-1 monocytes is involved in the inflammatory response induced by LPS (lipopolysaccharide). This study investigates whether C23 is a membrane receptor for LPS during LPS-induced AMs (alveolar macrophages) activation. First, using immunofluorescence and microscopy, we detected the expression of C23 on the surface of AMs. Second, using LPS affinity columns, we demonstrated that C23 directly binds to LPS. Third, we found that LPS colocalized with C23 on both the cell surface and in the cytoplasm. Finally, knockdown of C23 expression on the cell surface using siRNA (small interfering RNA) led to significant reductions in the internalization of LPS, in LPS-induced NF-κB (nuclear factor κB)-DNA binding and in the protein expression of TNF (tumour necrosis factor)-α and IL-6 (interleukin-6). These findings provide evidence that cell-surface C23 on AMs may serve as a receptor for LPS and are essential for internalization and transport of LPS. Furthermore, C23 participates in the regulation of LPS-induced inflammation of AMs, which indicates that cell-surface C23 is a new and promising therapeutic target for the treatment of bacterial infections. PMID:21309751

  6. Growth factor and matrix molecules preserve cell function on thermally responsive culture surfaces.

    PubMed

    von Recum, H; Kikuchi, A; Yamato, M; Sakurai, Y; Okano, T; Kim, S W

    1999-06-01

    Thermally-responsive culture surfaces were designed using copolymers of N-isopropylacrylamide, 4-(aminomethyl)styrene, and acrylic acid. These surfaces contained functional amine and carboxyl groups, which allowed biomolecules to be grafted by amide formation. Epidermal growth factor (EGF), and extracellular matrix (ECM) molecules (collagen type IV, and chondroitin sulfate) were investigated, as surface-grafted biomolecules, for their ability to stimulate cell attachment, proliferation, and function by signaling only from the basal side of cultured cells. Surface analysis of biomolecule-grafted porous inserts showed covalent binding of biomolecules to either amine or carboxyl groups. Multiple attachment to amine and/or carboxyl groups served as cross-linking points that made the polymer hydrogel permanently adherent to the culture surface. Immunofluorescence microscopy techniques gave positive identification of grafted biomolecules. Grafting of EGF improved cell proliferation versus that on nongrafted controls, or controls grafted only with ECM molecules. ECM grafting induced cell attachment on attachment-resistant surfaces. Analysis of trans-epithelial resistance, fluid transport, and polarized g-glutamyl transpeptidase activity indicated that simultaneous grafting of both EGF and ECM produced better polarized cell function than nongrafted controls, or controls grafted with only one type of biomolecule. Covalent grafting of biomolecules did not interfere with cells ability to detach from thermally responsive surfaces upon temperature decrease. PMID:10434072

  7. Cell surface localization of importin α1/KPNA2 affects cancer cell proliferation by regulating FGF1 signalling

    PubMed Central

    Yamada, Kohji; Miyamoto, Yoichi; Tsujii, Akira; Moriyama, Tetsuji; Ikuno, Yudai; Shiromizu, Takashi; Serada, Satoshi; Fujimoto, Minoru; Tomonaga, Takeshi; Naka, Tetsuji; Yoneda, Yoshihiro; Oka, Masahiro

    2016-01-01

    Importin α1 is involved in nuclear import as a receptor for proteins with a classical nuclear localization signal (cNLS). Here, we report that importin α1 is localized to the cell surface in several cancer cell lines and detected in their cultured medium. We also found that exogenously added importin α1 is associated with the cell membrane via interaction with heparan sulfate. Furthermore, we revealed that the cell surface importin α1 recognizes cNLS-containing substrates. More particularly, importin α1 bound directly to FGF1 and FGF2, secreted cNLS-containing growth factors, and addition of exogenous importin α1 enhanced the activation of ERK1/2, downstream targets of FGF1 signalling, in FGF1-stimulated cancer cells. Additionally, anti-importin α1 antibody treatment suppressed the importin α1−FGF1 complex formation and ERK1/2 activation, resulting in decreased cell growth. This study provides novel evidence that functional importin α1 is located at the cell surface, where it accelerates the proliferation of cancer cells. PMID:26887791

  8. Zinc uptake by brain cells: `surface' versus `bulk'

    NASA Astrophysics Data System (ADS)

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.

    1996-08-01

    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  9. Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis.

    PubMed

    Takahata, Masahiko; Iwasaki, Norimasa; Nakagawa, Hiroaki; Abe, Yuichiro; Watanabe, Takuya; Ito, Manabu; Majima, Tokifumi; Minami, Akio

    2007-07-01

    Sialic acid, which is located at the end of the carbohydrate moiety of cell surface glycoconjugates, is involved in many biologic responses, such as intercellular reactions and virus-cell fusion, especially in hematopoietic cells. Here we provide experimental evidence that the sialic acid of cell surface glycoconjugates has a role in osteoclast differentiation. Lectin histochemical study demonstrated the existence of both alpha (2,3)-linked-sialic acid and alpha (2,6)-linked-sialic acid in mouse bone marrow-derived macrophages and in the RAW264.7 macrophage cell line, which are osteoclast precursors. Flow cytometric analysis of surface lectin staining revealed the kinetics of these sialic acids during osteoclastogenesis: alpha (2,3)-linked-sialic acid was abundantly expressed throughout osteoclastogenesis, whereas alpha (2,6)-linked-sialic acid levels declined at the terminal stage of osteoclast differentiation. To investigate the role of sialic acid in osteoclast differentiation, we performed an osteoclastogenesis assay with or without exogenous sialidase treatment. Desialylated cells formed TRAP-positive mononuclear cells, but did not become multinuclear cells despite the normal expression of osteoclast markers such as cathepsin K, integrin beta3, and nuclear factor-ATc1. Flow cytometric analysis also demonstrated that exogenous sialidase effectively removed alpha (2,6)-linked-sialic acid, but only slightly changed the alpha (2,3)-linked-sialic acid content, suggesting that alpha (2,6)-linked-sialic acid might be involved in osteoclast differentiation. Findings from knockdown analysis using small interfering RNA oligonucleotides against alpha 2,6-sialyltransferase support this idea: alpha (2,6)-linked-sialic acid-deficient cells markedly inhibit the formation of multinuclear osteoclasts. Our findings suggest that alpha (2,6)-linked-sialic acid of cell surface glycoconjugates has a role in osteoclast differentiation, possibly via its role in the cell-cell fusion

  10. Asphaltene surface activity at oil/water interfaces

    SciTech Connect

    Sheu, E.Y.; Shields, M.B.

    1995-11-01

    Small angle neutron scattering (SANS) dynamic surface tension (DST), dynamic interfacial tension (DIFT), and zero shear viscosity were used to study the surface activity of Ratawi asphaltenes in organic solvents, in the asphaltene/water/toluene emulsions and at the toluene/aqueous solution interfaces. In organic solvents, the kinetic process of micellization and the micellar structure are characterized. Their dependence on asphaltene concentration was investigated. The emulsion droplet structure and their capability in water uptake was tested. Also, the enhancement of surface activity of asphaltenes and its potential applications are briefly discussed.

  11. Surface strategies for control of neuronal cell adhesion: A review

    NASA Astrophysics Data System (ADS)

    Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. R.

    2010-06-01

    Material engineering methods have been used for many years to develop biomedical devices for use within the body to augment, repair or replace damaged tissues ranging from contact lenses to heart valves. Here we review the findings gathered from the wide and varied surface analytical approaches applied to study the interaction between biology and man-made materials. The key material characteristics identified to be important for biological recognition are surface chemistry, topography and compliance. Model surfaces with controlled chemistry and topography have provided insight into biological response to various types of topographical features over a wide range of length scales from nano to micrometres, along with 3D matrices that have been used as scaffolds to support cells for tissue formation. The cellular response to surfaces with localised areas of patterned chemistry and to those presenting gradually changing chemistry are discussed. Where previous reviews have been structured around specific classes of surface modification, e.g. self-assembly, or have broadly examined the response of various cells to numerous surfaces, we aim in this article to focus in particular on the tissues involved in the nervous system whilst providing a broad overview of key issues from the field of cell and protein surface interactions with surfaces. The goal of repair and treatment of diseases related to the central and peripheral nervous systems rely on understanding the local interfacial environment and controlling responses at the cellular level. The role of the protein layer deposited from serum containing media onto man-made surfaces is discussed. We highlight the particular problems associated with the repair of the nervous system, and review how neuronal attachment and axon guidance can be accomplished using various surface cues when cultured with single and multiple cell types. We include a brief glossary of techniques discussed in the body of this article aimed at the

  12. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    SciTech Connect

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-04-11

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  13. Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall

    NASA Astrophysics Data System (ADS)

    Sujith, Athiyanathil; Itoh, Tamitake; Abe, Hiroko; Anas, Abdul Aziz; Yoshida, Kenichi; Biju, Vasudevanpillai; Ishikawa, Mitsuru

    2008-03-01

    We labeled the living yeast cell surface (Saccharomyces cerevisiae strain W303-1A) by silver nanoparticles which can form nanoaggregates and found to show surface enhanced Raman scattering (SERS) activity. Blinking of SERS and its polarization dependence reveal that SERS signals are from amplified electromagnetic field at nanometric Ag nanoparticles gaps with single or a few molecules sensitivity. We tentatively assigned SERS spectra from a yeast cell wall to mannoproteins. Nanoaggregate-by-nanoaggregate variations and temporal fluctuations of SERS spectra are discussed in terms of inhomogeneous mannoprotein distribution on a cell wall and possible ways of Ag nanoaggregate adsorption, respectively.

  14. Antifouling property of highly oleophobic substrates for solar cell surfaces

    NASA Astrophysics Data System (ADS)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  15. The role of nitric oxide in ocular surface cells.

    PubMed

    Kim, Jae Chan; Park, Gun Sic; Kim, Jin Kook; Kim, Young Myeong

    2002-06-01

    The role of nitric oxide (NO) in the ocular surface remains unknown. We investigated the conditions leading to an increase of NO generation in tear and the main sources of NO in ocular surface tissue. We evaluated the dual action (cell survival or cell death) of NO depending on its amount. We measured the concentration of nitrite plus nitrate in the tears of ocular surface diseases and examined the main source of nitric oxide synthase (NOS). When cultured human corneal fibroblast were treated with NO producing donor with or without serum, the viabilities of cells was studied. We found that the main sources of NO in ocular surface tissue were corneal epithelium, fibroblast, endothelium, and inflammatory cells. Three forms of NOS (eNOS, bNOS, and iNOS) were expressed in experimentally induced inflammation. In the fibroblast culture system, the NO donor (SNAP, S-nitroso-N-acetyl-D, L-penicillamine) prevented the death of corneal fibroblast cells caused by serum deprivation in a dose dependent manner up to 500 micrometer SNAP, but a higher dose decreased cell viability. This study suggested that NO might act as a double-edged sword in ocular surface diseases depending on the degree of inflammation related with NO concentration. PMID:12068145

  16. Surface activation-based nanobonding and interconnection at room temperature

    NASA Astrophysics Data System (ADS)

    Howlader, M. M. R.; Yamauchi, A.; Suga, T.

    2011-02-01

    Flip chip nanobonding and interconnect system (NBIS) equipment with high precision alignment has been developed based on the surface activated bonding method for high-density interconnection and MEMS packaging. The 3σ alignment accuracy in the IR transmission system was approximately ±0.2 µm. The performance of the NBIS has been preliminarily investigated through bonding between relatively rough surfaces of copper through silicon vias (Cu-TSVs) and gold-stud bumps (Au-SBs), and smooth surfaces of silicon wafers. The Cu-TSVs of 55 µm diameter and the Au-SBs of 35 µm diameter with ~6-10 nm surface roughness (RMS) were bonded at room temperature after surface activation using an argon fast atom beam (Ar-FAB) under 0.16 N per bump. Silicon wafers of 50 mm diameter with ~0.2 nm RMS surface roughness were bonded without heating after surface activation. Void-free interfaces both in Cu-TSV/Au-SB and silicon/silicon with bonding strength equivalent to bulk fracture of Au and silicon, respectively, were achieved. A few nm thick amorphous layers were observed across the silicon/silicon interface that was fabricated by the Ar-FAB. This study in the interconnection and bonding facilitates the required three-dimensional integration on the same surface for high-density electronic and biomedical systems.

  17. Lipolytic activity in adipocyte cell fractions.

    PubMed

    Oschry, Y; Shapiro, B

    1980-05-28

    Adipocytes release only negligible amounts of free fatty acids unless stimulated, but reveal considerable lipolytic activity when homogenized. Epinephrine treatment of the cells caused only a 20-40% increase in the activity of infranatants of homogenates while raising the activity associated with the fat layer up to 10-fold. Full activity (i.e. that of intact-activated cells) could be revealed by epinephrine treatment of the homogenate as well as by sonication of the fat layer in buffer. The combination of both treatments did not yield higher activities. The fat cake contains the bulk of the potential activities which are only realized when dispersed in the aqueous phase by sonication, or upon hormone activation of the whole homogenate. Increase in activity could also be obtained by removal of most of the lipid from the fat layer by extraction with petroleum ether. Re-introduction of extracted lipid inhibited lipolysis. The active enzyme could be separated by flotation at 1.12 specific gravity. The data suggest that the lack of activity in the intact non-stimulated cell may be due to the lack of availability of the aqueous phase to the enzyme. PMID:7378439

  18. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  19. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  20. Surface modification of closed plastic bags for adherent cell cultivation

    NASA Astrophysics Data System (ADS)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  1. Surface-Driven Collagen Self-Assembly Affects Early Osteogenic Stem Cell Signaling.

    PubMed

    Razafiarison, Tojo; Silván, Unai; Meier, Daniela; Snedeker, Jess G

    2016-06-01

    This study reports how extracellular matrix (ECM) ligand self-assembly on biomaterial surfaces and the resulting nanoscale architecture can drive stem cell behavior. To isolate the biological effects of surface wettability on protein deposition, folding, and ligand activity, a polydimethylsiloxane (PDMS)-based platform was developed and characterized with the ability to tune wettability of elastomeric substrates with otherwise equivalent topology, ligand loading, and mechanical properties. Using this platform, markedly different assembly of covalently bound type I collagen monomers was observed depending on wettability, with hydrophobic substrates yielding a relatively rough layer of collagen aggregates compared to a smooth collagen layer on more hydrophilic substrates. Cellular and molecular investigations with human bone marrow stromal cells revealed higher osteogenic differentiation and upregulation of focal adhesion-related components on the resulting smooth collagen layer coated substrates. The initial collagen assembly driven by the PDMS surface directly affected α1β1 integrin/discoidin domain receptor 1 signaling, activation of the extracellular signal-regulated kinase/mitogen activated protein kinase pathway, and ultimately markers of osteogenic stem cell differentiation. We demonstrate for the first time that surface-driven ligand assembly on material surfaces, even on materials with otherwise identical starting topographies and mechanical properties, can dominate the biomaterial surface-driven cell response. PMID:27125602

  2. Development of exosome surface display technology in living human cells.

    PubMed

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy. PMID:26902116

  3. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties. PMID:27612825

  4. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID

  5. Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins

    PubMed Central

    Cooke, M. J.; Phillips, S. R.; Shah, D. S.H.; Athey, D.; Lakey, J. H.

    2008-01-01

    Many factors contribute to the creation and maintenance of a realistic environment for cell growth in vitro, e.g. the consistency of the growth medium, the addition of supplements, and the surface on which the cells grow. The nature of the surface on which cells are cultured plays an important role in their ability to attach, proliferate, migrate and function. Components of the extracellular matrix (ECM) are often used to coat glass or plastic surfaces to enhance cell attachment in vitro. Fragments of ECM molecules can be immobilised on surfaces in order to mimic the effects seen by whole molecules. In this study we evaluate the application of a novel technology for the immobilisation of functional domains of known ECM proteins in a controlled manner on a surface. By examining the adherence of cultured PC12 cells to alternative growth surfaces, we show that surfaces coated with motifs from collagen I, collagen IV, fibronectin and laminin can mimic surfaces coated with the corresponding whole molecules. Furthermore, we show that the adherence of cells can be controlled by modifying the hydropathic properties of the surface to either enhance or inhibit cell attachment. Collectively, these data demonstrate the application of a new technology to enable optimisation of cell growth in the tissue culture laboratory. PMID:19002844

  6. Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins.

    PubMed

    Cooke, M J; Phillips, S R; Shah, D S H; Athey, D; Lakey, J H; Przyborski, S A

    2008-02-01

    Many factors contribute to the creation and maintenance of a realistic environment for cell growth in vitro, e.g. the consistency of the growth medium, the addition of supplements, and the surface on which the cells grow. The nature of the surface on which cells are cultured plays an important role in their ability to attach, proliferate, migrate and function. Components of the extracellular matrix (ECM) are often used to coat glass or plastic surfaces to enhance cell attachment in vitro. Fragments of ECM molecules can be immobilised on surfaces in order to mimic the effects seen by whole molecules. In this study we evaluate the application of a novel technology for the immobilisation of functional domains of known ECM proteins in a controlled manner on a surface. By examining the adherence of cultured PC12 cells to alternative growth surfaces, we show that surfaces coated with motifs from collagen I, collagen IV, fibronectin and laminin can mimic surfaces coated with the corresponding whole molecules. Furthermore, we show that the adherence of cells can be controlled by modifying the hydropathic properties of the surface to either enhance or inhibit cell attachment. Collectively, these data demonstrate the application of a new technology to enable optimisation of cell growth in the tissue culture laboratory. PMID:19002844

  7. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  8. The detection of intestinal spike activity on surface electroenterograms

    NASA Astrophysics Data System (ADS)

    Ye-Lin, Y.; Garcia-Casado, J.; Martinez-de-Juan, J. L.; Prats-Boluda, G.; Ponce, J. L.

    2010-02-01

    Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 ± 0.10 for channel 1 and 0.57 ± 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.

  9. Engineering tandem single-chain Fv as cell surface reporters with enhanced properties of fluorescence detection.

    PubMed

    Gallo, Eugenio; Snyder, Avin C; Jarvik, Jonathan W

    2015-10-01

    A recently described fluorescence biosensor platform utilizes single-chain Fv (scFvs) that selectively bind and activate fluorogen molecules. In this report we investigated the display of tandem scFv biosensors at the surface of mammalian cells with the aim of advancing current fluorescence detection strategies. We initially screened different peptide linkers to separate each scFv unit, and discovered that tandem proteins joined by either flexible or α-helical linkers properly fold and display at the surface of mammalian cells. Accordingly, we performed a combinatorial scFv-dimer study and identified that fluorescence activation correlated with the cellular location (membrane distal versus proximal) and selections of the different scFvs. Furthermore, in vitro measurements showed that the stability of each scFv monomer unit influenced the folding and cell surface activities of tandem scFvs. Additionally, we investigated the absence or poor signals from some scFv-dimer combinations and discovered that intramolecular and intermolecular scFv chain mispairings led to protein misfolding and/or secretory-pathway-mediated degradation. Furthermore, when tandem scFvs were utilized as fluorescence reporter tags with surface receptors, the biosensor unit and target protein showed independent activities. Thus, the live cell application of tandem scFvs permitted advanced detection of target proteins via fluorescence signal amplification, Förster resonance energy transfer resulting in the increase of Stokes shift and multi-color vesicular traffic of surface receptors. PMID:25843939

  10. Influence of anode surface chemistry on microbial fuel cell operation.

    PubMed

    Santoro, Carlo; Babanova, Sofia; Artyushkova, Kateryna; Cornejo, Jose A; Ista, Linnea; Bretschger, Orianna; Marsili, Enrico; Atanassov, Plamen; Schuler, Andrew J

    2015-12-01

    Self-assembled monolayers (SAMs) modified gold anodes are used in single chamber microbial fuel cells for organic removal and electricity generation. Hydrophilic (N(CH3)3(+), OH, COOH) and hydrophobic (CH3) SAMs are examined for their effect on bacterial attachment, current and power output. The different substratum chemistry affects the community composition of the electrochemically active biofilm formed and thus the current and power output. Of the four SAM-modified anodes tested, N(CH3)3(+) results in the shortest start up time (15 days), highest current achieved (225 μA cm(-2)) and highest MFC power density (40 μW cm(-2)), followed by COOH (150 μA cm(-2) and 37 μW cm(-2)) and OH (83 μA cm(-2) and 27 μW cm(-2)) SAMs. Hydrophobic SAM decreases electrochemically active bacteria attachment and anode performance in comparison to hydrophilic SAMs (CH3 modified anodes 7 μA cm(-2) anodic current and 1.2 μW cm(-2) MFC's power density). A consortium of Clostridia and δ-Proteobacteria is found on all the anode surfaces, suggesting a synergistic cooperation under anodic conditions. PMID:26025340

  11. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate.

    PubMed

    Sasaki, Norihiko; Higashi, Nobuaki; Taka, Tomohiro; Nakajima, Motowo; Irimura, Tatsuro

    2004-03-15

    Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regulatory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell surface redistribution of heparanase is involved in monocyte extravasation through basement membranes. PMID:15004189

  12. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis.

    PubMed

    Dhonukshe, Pankaj; Baluska, Frantisek; Schlicht, Markus; Hlavacka, Andrej; Samaj, Jozef; Friml, Jirí; Gadella, Theodorus W J

    2006-01-01

    Dividing plant cells perform a remarkable task of building a new cell wall within the cytoplasm in a few minutes. A long-standing paradigm claims that this primordial cell wall, known as the cell plate, is generated by delivery of newly synthesized material from Golgi apparatus-originated secretory vesicles. Here, we show that, in diverse plant species, cell surface material, including plasma membrane proteins, cell wall components, and exogenously applied endocytic tracers, is rapidly delivered to the forming cell plate. Importantly, this occurs even when de novo protein synthesis is blocked. In addition, cytokinesis-specific syntaxin KNOLLE as well as plasma membrane (PM) resident proteins localize to endosomes that fuse to initiate the cell plate. The rate of endocytosis is strongly enhanced during cell plate formation, and its genetic or pharmacological inhibition leads to cytokinesis defects. Our results reveal that endocytic delivery of cell surface material significantly contributes to cell plate formation during plant cytokinesis. PMID:16399085

  13. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    PubMed Central

    2011-01-01

    Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492

  14. Construction and characterization of a thermostable whole-cell chitinolytic enzyme using yeast surface display.

    PubMed

    Li, Xiaobo; Jin, Xiaobao; Lu, Xuemei; Chu, Fujiang; Shen, Juan; Ma, Yan; Liu, Manyu; Zhu, Jiayong

    2014-10-01

    To develop a novel yeast whole-cell biocatalyst by yeast surface display technology that can hydrolyze chitin, the chitinaseC gene from Serratia marcescens AS1.1652 strain was cloned and subcloned into the yeast surface display plasmid pYD1, and the recombinant plasmid pYD1/SmchiC was electroporated into Saccharomyces cerevisiae EBY100 cell. Aga2p-SmChiC fusion protein was expressed and anchored on the yeast cell surface by induction with galactose, which was verified by indirect immunofluorescence and Western blotting. The chitinolytic activity of the yeast whole-cell biocatalyst or partially purified enzyme was detected by agar plate clear zone test, SDS-PAGE zymography and dinitrosalicylic acid method. The results showed that the chitinaseC gene from S. marcescens AS1.1652 strain was successfully cloned and expressed on the yeast cell surface, Aga2p-SmChiC fusion protein with molecular weight (67 kDa) was determined. Tests on the effect of temperature and pH on enzyme activity and stability revealed that the yeast whole-cell biocatalyst and partially purified enzyme possessed both thermal stability and activity, and even maintained some activity under acidic and weakly alkaline conditions. The optimum reaction temperature and pH value were set at 52 °C and 5.0, respectively. Yeast surface display technology succeeded in preparing a yeast whole-cell biocatalyst with chitinolytic activity, and the utilization of chitin could benefit from this process of enzyme preparation. PMID:24906465

  15. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells

    PubMed Central

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N.

    2016-01-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5–CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  16. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    PubMed

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  17. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    SciTech Connect

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy; Hacke, Peter

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC have low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.

  18. Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2.

    PubMed

    Rong, Yuan; Yuan, Chun-Hui; Qu, Zhen; Zhou, Hu; Guan, Qing; Yang, Na; Leng, Xiao-Hua; Bu, Lang; Wu, Ke; Wang, Fu-Bing

    2016-01-01

    Chemotherapies often induce drug-resistance in cancer cells and simultaneously stimulate proliferation and activation of Myeloid-Derived Suppressor Cells (MDSCs) to inhibit anti-tumor T cells, thus result in poor prognosis of patients with breast cancers. To date, the mechanism underlying the expansion of MDSCs in response to chemotherapies is poorly understood. In the present study, we used in vitro cell culture and in vivo animal studies to demonstrate that doxorubicin-resistant breast cancer cells secret significantly more prostaglandin E2 (PGE2) than their parental doxorubicin-sensitive cells. The secreted PGE2 can stimulate expansion and polymerization of MDSCs by directly target to its receptors, EP2/EP4, on the surface of MDSCs, which consequently triggers production of miR-10a through activating PKA signaling. More importantly, activated MDSCs can inhibit CD4(+)CD25(-) T cells as evidenced by reduced proliferation and IFN-γ release. In order to determine the molecular pathway that involves miR-10a mediated activation of MDSCs, biochemical and pharmacological studies were carried out. We found that miR-10a can activate AMPK signaling to promote expansion and activation of MDSCs. Thus, these results reveal, for the first time, a novel role of PGE2/miR-10a/AMPK signaling axis in chemotherapy-induced immune resistance, which might be targeted for treatment of chemotherapy resistant tumors. PMID:27032536

  19. Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2

    PubMed Central

    Rong, Yuan; Yuan, Chun-Hui; Qu, Zhen; Zhou, Hu; Guan, Qing; Yang, Na; Leng, Xiao-Hua; Bu, Lang; Wu, Ke; Wang, Fu-Bing

    2016-01-01

    Chemotherapies often induce drug-resistance in cancer cells and simultaneously stimulate proliferation and activation of Myeloid-Derived Suppressor Cells (MDSCs) to inhibit anti-tumor T cells, thus result in poor prognosis of patients with breast cancers. To date, the mechanism underlying the expansion of MDSCs in response to chemotherapies is poorly understood. In the present study, we used in vitro cell culture and in vivo animal studies to demonstrate that doxorubicin-resistant breast cancer cells secret significantly more prostaglandin E2 (PGE2) than their parental doxorubicin-sensitive cells. The secreted PGE2 can stimulate expansion and polymerization of MDSCs by directly target to its receptors, EP2/EP4, on the surface of MDSCs, which consequently triggers production of miR-10a through activating PKA signaling. More importantly, activated MDSCs can inhibit CD4+CD25− T cells as evidenced by reduced proliferation and IFN-γ release. In order to determine the molecular pathway that involves miR-10a mediated activation of MDSCs, biochemical and pharmacological studies were carried out. We found that miR-10a can activate AMPK signaling to promote expansion and activation of MDSCs. Thus, these results reveal, for the first time, a novel role of PGE2/miR-10a/AMPK signaling axis in chemotherapy-induced immune resistance, which might be targeted for treatment of chemotherapy resistant tumors. PMID:27032536

  20. B-cell antigens within normal and activated human T cells

    PubMed Central

    Sandilands, G P; Perry, M; Wootton, M; Hair, J; More, I A R

    1999-01-01

    In this study we compared cell surface staining for human peripheral blood lymphocyte (PBL) CD antigens by flow cytometry, with staining obtained following permeabilization of PBL using the Cytoperm method (Serotec). Six CD antigens (CD20, CD21, CD22, CD32, CD35 and major histocompatibility complex class II antigen) normally found on the surface of B cells, were also found to be expressed within T cells. We also showed, by immunoelectron microscopy, that these inappropriately expressed (‘occult’) CD antigens are located within cytoplasmic vesicles or within the rough endoplasmic reticulum. Following in vitro activation of T cells a distinct increase in expression of all of these cytoplasmic antigens was observed but staining at the cell surface was, by comparison, weak. We therefore propose that up-regulation of various B-cell CD antigens occurs within the cytoplasm of T cells following activation and that these antigens may be synthesized and released into the fluid-phase as soluble immunoregulatory molecules. PMID:10233724

  1. B-cell antigens within normal and activated human T cells.

    PubMed

    Sandilands, G P; Perry, M; Wootton, M; Hair, J; More, I A

    1999-03-01

    In this study we compared cell surface staining for human peripheral blood lymphocyte (PBL) CD antigens by flow cytometry, with staining obtained following permeabilization of PBL using the Cytoperm method (Serotec). Six CD antigens (CD20, CD21, CD22, CD32, CD35 and major histocompatibility complex class II antigen) normally found on the surface of B cells, were also found to be expressed within T cells. We also showed, by immunoelectron microscopy, that these inappropriately expressed ('occult') CD antigens are located within cytoplasmic vesicles or within the rough endoplasmic reticulum. Following in vitro activation of T cells a distinct increase in expression of all of these cytoplasmic antigens was observed but staining at the cell surface was, by comparison, weak. We therefore propose that up-regulation of various B-cell CD antigens occurs within the cytoplasm of T cells following activation and that these antigens may be synthesized and released into the fluid-phase as soluble immunoregulatory molecules. PMID:10233724

  2. Diffusive transfer between two intensely interacting cells with limited surface kinetics

    PubMed Central

    Fahmy, T. M.

    2012-01-01

    The diffusive transfer, or paracrine delivery, of chemical factors during the interaction of an emitting cell and a receiving cell is a ubiquitous cellular process that facilitates information exchange between the cells an/or to bystander cells. In the cellular immune response this exchange governs the magnitude and breadth of killing of cellular targets, inflammation or tolerance. Paracrine delivery is examined here by solving the the steady-state diffusion equation for the concentration field surrounding two intensely interacting, equi-sized cells on which surface kinetics limits the rates of factor emission and absorption. These chemical factors may be cytokines, such as Interlukins and Interferons, but the results are presented in a generic form so as to be applicable to any chemical factor and/or cell-type interaction. In addition to providing overall transfer rates and transfer efficiencies, the results also indicate that when the receiving cell is naïve, with few factor receptors on its surface, there may be a significant accumulation of factor in the synaptic region between the cells with a consequent release of factor to the medium where it can signal bystander cells. This factor accumulation may play a critical role in activating a naïve receiving cell. As the receiving cell activates and becomes more absorbent, the factor accumulation diminishes, as does potential bystander signaling. PMID:22485051

  3. Lymphatic endothelial cells actively regulate prostate cancer cell invasion.

    PubMed

    Shah, Tariq; Wildes, Flonne; Kakkad, Samata; Artemov, Dmitri; Bhujwalla, Zaver M

    2016-07-01

    Lymphatic vessels serve as the primary route for metastatic spread to lymph nodes. However, it is not clear how interactions between cancer cells and lymphatic endothelial cells (LECs), especially within hypoxic microenvironments, affect the invasion of cancer cells. Here, using an MR compatible cell perfusion assay, we investigated the role of LEC-prostate cancer (PCa) cell interaction in the invasion and degradation of the extracellular matrix (ECM) by two human PCa cell lines, PC-3 and DU-145, under normoxia and hypoxia, and determined the metabolic changes that occurred under these conditions. We observed a significant increase in the invasion of ECM by invasive PC-3 cells, but not poorly invasive DU-145 cells when human dermal lymphatic microvascular endothelial cells (HMVEC-dlys) were present. Enhanced degradation of ECM by PC-3 cells in the presence of HMVEC-dlys identified interactions between HMVEC-dlys and PCa cells influencing cancer cell invasion. The enhanced ECM degradation was partly attributed to increased MMP-9 enzymatic activity in PC-3 cells when HMVEC-dlys were in close proximity. Significantly higher uPAR and MMP-9 expression levels observed in PC-3 cells compared to DU-145 cells may be one mechanism for increased invasion and degradation of matrigel by these cells irrespective of the presence of HMVEC-dlys. Hypoxia significantly decreased invasion by PC-3 cells, but this decrease was significantly attenuated when HMVEC-dlys were present. Significantly higher phosphocholine was observed in invasive PC-3 cells, while higher glycerophosphocholine was observed in DU-145 cells. These metabolites were not altered in the presence of HMVEC-dlys. Significantly increased lipid levels and lipid droplets were observed in PC-3 and DU-145 cells under hypoxia reflecting an adaptive survival response to oxidative stress. These results suggest that in vivo, invasive cells in or near lymphatic endothelial cells are likely to be more invasive and degrade the ECM

  4. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.

    PubMed

    Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A

    2015-09-30

    Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region. PMID:26372777

  5. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  6. Effects of surface viscoelasticity on cellular responses of endothelial cells

    PubMed Central

    Hosseini, Motahare-Sadat; Katbab, Ali Asghar

    2014-01-01

    Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nanoclay (OC). Methods: The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity. Results: Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM) remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations. Conclusions: The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR. PMID:26989733

  7. Neuropilin-1 expression characterizes T follicular helper (Tfh) cells activated during B cell differentiation in human secondary lymphoid organs.

    PubMed

    Renand, Amédée; Milpied, Pierre; Rossignol, Julien; Bruneau, Julie; Lemonnier, François; Dussiot, Michael; Coulon, Séverine; Hermine, Olivier

    2013-01-01

    T follicular helper (Tfh) cells play an essential role in the development of antigen-specific B cell immunity. Tfh cells regulate the differentiation and survival of activated B cells outside and inside germinal centers (GC) of secondary lymphoid organs. They act through cognate contacts with antigen-presenting B cells, but there is no current marker to specifically identify those Tfh cells which productively interact with B cells. Here we show that neuropilin 1 (Nrp1), a cell surface receptor, is selectively expressed by a subset of Tfh cells in human secondary lymphoid organs. Nrp1 expression on Tfh cells correlates with B cell differentiation in vivo and in vitro, is transient, and can be induced upon co-culture with autologous memory B cells in a cell contact-dependent manner. Comparative analysis of ex vivo Nrp1(+) and Nrp1(-) Tfh cells reveals gene expression modulation during activation. Finally, Nrp1 is expressed by malignant Tfh-like cells in a severe case of angioimmunoblastic T-cell lymphoma (AITL) associated with elevated terminal B cell differentiation. Thus, Nrp1 is a specific marker of Tfh cells cognate activation in humans, which may prove useful as a prognostic factor and a therapeutic target in neoplastic diseases associated with Tfh cells activity. PMID:24386482

  8. Using Surface Curvature to Control the Dimerization of a Surface-Active Protein

    NASA Astrophysics Data System (ADS)

    Kurylowicz, Martin; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    Understanding the influence of surface geometry on adsorbed proteins promises new possibilities in biophysics, such as topographical catalysis, molecular recognition of geometric cues, and modulations of oligomerization or ligand binding. We have created nano-textured hydrophobic surfaces that are stable in buffer by spin coating polystyrene (PS) nanoparticles (NPs) to form patchy NP monolayers on a PS substrate, yielding flat and highly curved areas on the same sample. Moreover, we have separated surface chemistry from texture by floating a 10 nm thick film of monodisperse PS onto the NP-functionalized surface. Using Single Molecule Force Spectroscopy we have compared in situ the distribution of detachment lengths for proteins on curved surfaces to that measured on flat surfaces. We have shown that β-Lactoglobulin (β-LG), a surface-active protein which helps to stabilize oil droplets in milk, forms dimers on both flat PS surfaces and surfaces with a radius of curvature of 100 nm, whereas β-LG monomers exist for more highly curved surfaces with radii of curvature of 25 and 40 nm. It is surprising that rather large radii of curvature have such a strong influence on proteins whose radius is only ˜2 nm. Furthermore, the transition from dimer to monomer with changes in surface curvature offers promising applications for proteins whose function can be modified by their oligomerization state.

  9. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.

    PubMed

    Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  10. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  11. A rapid and selective assay for measuring cell surface hydrophobicity of brewer's yeast cells.

    PubMed

    Straver, M H; Kijne, J W

    1996-03-15

    A rapid and selective assay was developed to measure cell surface hydrophobicity of brewer's yeast cells. During this so-called magnobead assay, bottom-fermenting yeast cells adhere to paramagnetic, polystyrene-coated latex beads which can easily be removed from the cell suspension by using a (samarium-cobalt) magnet. At pH 4 center dot 5, electrostatic repulsion between yeast cells and latex beads was found to be minimal and yeast cell adhesion was predominantly based on hydrophobic interactions. The percentage of cells adhering to the beads could be calculated and provided a measure for cell surface hydrophobicity. Cell surface hydrophobicity measured by the magnobead assay was found to yield similar results, as did determination of contact angles of water droplets on a layer of yeast cells, a standard method for measuring surface hydrophobicity. However, the magnobead assay has the following advantages: (i) it is a quick and simple method, and, more significantly, (ii) hydrophobicity can be measured under physiological conditions. Use of the magnobead assay confirmed that a higher level of cell surface hydrophobicity is correlated with stronger flocculence of brewer's lager yeast cells. PMID:8904332

  12. Study of Cd-chalcogenide/ferri-ferrocyanide photoelectrochemical cells: effect of surface morphology and added salt

    SciTech Connect

    Tenne, R.

    1983-11-01

    The authors carried out an investigation of the Cd-chalcogenide/ferri-ferrocyanide photoelectrochemical cells. In particular, the effect of surface morphology and the effect of added salts upon the characteristics of these cells were investigated. Successive etching with Br/sub 2/ (3%)/methanol, aqua regia, and finally photoetching increases the surface roughness of CdSe (CdS, CdTe) which has a marked effect on the cell characteristics in the ferri-ferrocyanide electrolyte (and polysulfide electrolyte as well). In contrast with polysulfide electrolyte, added salts decrease the output stability of the cell and the onset potential for the photocurrent, which can be explained by the removal of the physiosorbed ferrocyanide ions from the electrode surface by the ions of the salt. On increasing the surface roughness of the electrode, while keeping the salt concentration unchanged, the output stability and the onset potential were increased. A kinetic model is used to explain these phenomena. Thus, added salts can be used to probe the strength of the adsorption of the active electrolyte on the surface of the photoelectrode. Finally, we report on the surface morphology of CdSe and CdTe after irradiation in ferri-ferrocyanide solution and compare our findings to surface morphologies which were observed previously with the help of photoelectrochemical etching (photoetching). It is found that small rectangular crystallites, probably of cadmium ferrocyanide, deposit on the crystal surface during the photocorrosion process in addition to elemental Se(Te).

  13. Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells.

    PubMed

    Du, Xuewen; Zhou, Jie; Xu, Bing

    2015-06-01

    Enzymatic switch, such as phosphorylation and dephosphorylation of proteins, is the most important mechanism for cellular signal transductions. Inspired by Nature and encouraged by our recent unexpected observation of the dephosphorylation of d-tyrosine phosphate-contain small peptides, we modify the surface of magnetic nanoparticles (MNP) with d-tyrosine phosphate that is a substrate of alkaline phosphatase (ALP). Our studies find that ALP is able to remove the phosphate groups from the magnetic nanoparticles. Most importantly, placental alkaline phosphatase (ALPP), an ectoenzyme that locates on cell surface with catalytic domains outside the plasma membrane and is overexpressed on many cancer cells, dephosphorylate the d-tyrosine phosphates on the surface of the magnetic nanoparticle and enable the magnetic nanoparticles to adhere selectively to the cancer cells, such as HeLa cells. Unlikely commonly used antibodies, the selectivity of the magnetic nanoparticles to cancer cells originates from the enzymatic reaction catalyzed by ALPP. The use of enzymatic reaction to modulate the surface of various nanostructures may lead to a general method to broadly target cancer cells without relying on specific ligand-receptor interactions (e.g., antibodies). This work, thus, illustrates a fundamentally new concept to allow cells to actively engineer the surface of colloids materials, such as magnetic nanoparticles, for various applications. PMID:25586118

  14. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions. PMID:23505483

  15. Indium phosphide negative electron affinity photocathodes: Surface cleaning and activation

    NASA Astrophysics Data System (ADS)

    Sun, Yun

    InP(100) is a very important semi-conductor for many applications. When activated by Cs and oxygen, the InP surface achieves the state of Negative Electron Affinity (NEA) making the Cs+O/InP system a very efficient electron source. Despite many years of study, the chemical cleaning and activation of InP are still not well understood. In our work, we have established an understanding of the basic physics and chemistry for the chemical cleaning and activation of the InP(100) surface. Synchrotron Radiation Photoelectron Spectroscopy is the main technique used in this study because of its high surface sensitivity and ability to identify chemical species present on the surface at each stage of our process. A clean, stoichiometric InP(100) surface is crucial for obtaining high performance of NEA photocathodes. Therefore, the first part of our study focused on the chemical cleaning of InP(100). We found that hydrogen peroxide based solutions alone, originally developed to clean GaAs(100) surfaces and widely used for InP(100), do not result in clean InP(I00) surfaces because oxide is left on the surface. A second cleaning step, which uses acid solutions like HCl or H2SO4, can remove all the oxide and leave a 0.4 ML protective layer of elemental phosphorous on the surface. The elemental phosphorous can be removed by annealing at 330°C and a clean InP(100) surface can be obtained. Cs deposition on InP(100) surface shows clear charge transfer from the Cs ad-atoms to the substrate. When the Cs/InP(100) surface is dosed with oxygen, the charge transfer from the Cs to substrate is reduced and substrate is oxidized. The activation of InP as a NEA photocathode is carried out by an alternating series of steps consisting of Cs deposition and Cs+O co-deposition. Two types of oxygen are found after activation. The first is dissociated oxygen and the other is a di-oxygen species (peroxide or superoxide). The decay of quantum-yield with time and with annealing is studied and changes in

  16. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  17. Cell-Surface Marker Signatures for the Isolation of Neural Stem Cells, Glia and Neurons Derived from Human Pluripotent Stem Cells

    PubMed Central

    Yuan, Shauna H.; Martin, Jody; Elia, Jeanne; Flippin, Jessica; Paramban, Rosanto I.; Hefferan, Mike P.; Vidal, Jason G.; Mu, Yangling; Killian, Rhiannon L.; Israel, Mason A.; Emre, Nil; Marsala, Silvia; Marsala, Martin; Gage, Fred H.; Goldstein, Lawrence S. B.; Carson, Christian T.

    2011-01-01

    Background Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS). Methodology/Principal Findings We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184+/CD271−/CD44−/CD24+ from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184−/CD44−/CD15LOW/CD24+ and a population of glia that was CD184+/CD44+ were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo. Conclusions/Significance These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations. PMID

  18. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces.

    PubMed

    Nakahashi-Oda, Chigusa; Udayanga, Kankanam Gamage Sanath; Nakamura, Yoshiyuki; Nakazawa, Yuta; Totsuka, Naoya; Miki, Haruka; Iino, Shuichi; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira

    2016-04-01

    Epithelial tissues continually undergo apoptosis. Commensal organisms that inhabit the epithelium influence tissue homeostasis, in which regulatory T cells (Treg cells) have a central role. However, the physiological importance of epithelial cell apoptosis and how the number of Treg cells is regulated are both incompletely understood. Here we found that apoptotic epithelial cells negatively regulated the commensal-stimulated proliferation of Treg cells. Gut commensals stimulated CX3CR1(+)CD103(-)CD11b(+) dendritic cells (DCs) to produce interferon-β (IFN-β), which augmented the proliferation of Treg cells in the intestine. Conversely, phosphatidylserine exposed on apoptotic epithelial cells suppressed IFN-β production by the DCs via inhibitory signaling mediated by the cell-surface glycoprotein CD300a and thus suppressed Treg cell proliferation. Our findings reveal a regulatory role for apoptotic epithelial cells in maintaining the number of Treg cell and tissue homeostasis. PMID:26855029

  19. The design of efficient surface-plasmon-enhanced ultra-thin polymer-based solar cells

    NASA Astrophysics Data System (ADS)

    Williamson, Adam; McClean, Éadaoin; Leipold, David; Zerulla, Dominic; Runge, Erich

    2011-08-01

    Polymer based solar cells are particularly attractive because of their mechanical flexibility and potential for low-cost fabrication. Although significant progress has been made, their efficiency is reduced strongly due to recombination processes that scale with the thickness of the active layer. A theoretical study of periodic plasmonic solar cell enhancement is presented, including a design for demonstrating high efficiency while using a significantly reduced active layer thicknesses. This is achieved through the superposition of toothgrating structures of multiple periodicities along a silver reflecting layer. Through finite-difference time-domain calculations, it was possible to optimize the overall spectral response of the cell yielding surface plasmon resonances at predetermined wavelengths. The improved solar cell design results in a system with increased absorption, allowing for the desired reduction in active layer thickness while also enhancing the performance of the cell over a wide wavelength range.

  20. Left Ventricle Segmentation Using Model Fitting and Active Surfaces

    PubMed Central

    Tay, Peter C.; Li, Bing; Garson, Chris D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    A method to perform 4D (3D over time) segmentation of the left ventricle of a mouse heart using a set of B mode cine slices acquired in vivo from a series of short axis scans is described. We incorporate previously suggested methods such as temporal propagation, the gradient vector flow active surface, superquadric models, etc. into our proposed 4D segmentation of the left ventricle. The contributions of this paper are incorporation of a novel despeckling method and the use of locally fitted superellipsoid models to provide a better initialization for the active surface segmentation algorithm. Average distances of the improved surface segmentation to a manually segmented surface throughout the entire cardiac cycle and cross-sectional contours are provided to demonstrate the improvements produced by the proposed 4D segmentation. PMID:20300558

  1. Activation of intraislet lymphoid cells causes destruction of islet cells.

    PubMed Central

    Lacy, P. E.; Finke, E. H.

    1991-01-01

    In vitro culture of rat islets at 24 degrees C for 7 days in tissue culture medium CMRL 1066 almost completely eliminated lymphoid cells from the islets. Immunostaining of the islets with monoclonal antibody OX4 for demonstration of class II major histocompatibility complex (MHC)-expressing cells revealed a decrease from 13.1 +/- 0.6 positive cells per islet on day 0 to 0.7 +/- 0.1 cells per islet on day 7. A comparable decrease was found using OX1 for demonstration of all leukocytes. In contrast, culture of rat islets at 24 degrees C for 7 days with tissue culture Roswell Park Memorial Institute (RPMI) 1640 medium was not as effective in eliminating lymphoid cells as in medium CMRL 1066 (3.0 +/- 0.2 class II MHC positive cells per islet at 7 days). Effective elimination of intraislet lymphoid cells apparently is due to the combined effect of low temperature culture and the tissue culture medium CMRL-1066. The second goal of the study was to determine whether the destructive effect of interferon gamma (IFN-gamma) on rat islets in culture was due to intraislet lymphoid cells. In vitro culture of rat islets with IFN-gamma (1000 units/ml) at 37 degrees C caused almost complete destruction of the islets at 7 days. If intraislet lymphoid cells were eliminated from the islets by in vitro culture at 24 degrees C followed by exposure to IFN-gamma (1000 units/ml) for 7 days at 37 degrees C, then IFN-gamma did not cause destruction of the islets and transplants of the treated islets produced normoglycemia in diabetic recipient mice. These findings indicate that intraislet lymphoid cells are responsible for destruction of islet cells when these cells (presumably macrophages) are activated by IFN-gamma. Intraislet lymphoid cells may play a significant role in destroying islet cells in autoimmune diabetes. Images Figure 1 Figure 2 PMID:1902627

  2. Enhanced surface exchange activity and electrode performance of (La2-2xSr2x)(Ni1-xMnx)O4+δ cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan; Guan, Bo; Yan, Jianhua; Zhang, Nan; Zhang, Xinxin; Liu, Xingbo

    2016-06-01

    Surface exchange kinetics of Ruddlesden-Popper (R-P) phase lanthanum nickelates upon Mn doping as an intermediate temperature solid oxide fuel cells (IT-SOFCs) cathode is investigated for the first time in this communication. To promote the exchange rate in oxygen reduction reaction (ORR) on nickelates, Mn is partially substituted for Ni. The oxygen exchange resistance is accurately measured by electrochemical impedance spectroscopy (EIS) with dense thin layer cathode. It is found that Mn substantially promotes the surface kinetics; a surface exchange coefficient (k) of 1.57 × 10-6 cm/s is obtained at 700 °C for La1.8Sr0.2Ni0.9Mn0.1O4+δ (Sr20Mn10), ∼80% higher than that of the undoped La2NiO4+δ (LNO). To our best knowledge, such coefficient is the highest values among the currently available R-P phase IT-SOFC cathodes. The corresponding polarization resistances (Rp) are evaluated on porous electrodes. Rp for LNO is 0.74 Ωcm2 at 750 °C, but decreases significantly to 0.42 Ωcm2 for Sr20Mn10 which is remarkably improved compared to the reported values in the literature for La2MO4+δ materials (M = transition metal). Those promising results demonstrate that Mn-doped LNO is a new excellent cathode material for IT-SOFC.

  3. Influence of surface modification on vitality and differentiation of Caco-2 cells.

    PubMed

    Piana, Claudia; Güll, Iris; Gerbes, Stefan; Gerdes, Ralf; Mills, Chris; Samitier, Josep; Wirth, Michael; Gabor, Franz

    2007-04-01

    It is widely accepted that the functional and morphological differentiation of cells is initiated and determined by the interaction of molecules of the extracellular matrix and adhesion molecules of the cell membrane. To assess the influence of the underlying matrix on the characteristics of cells, enterocyte-like Caco-2 cells were cultivated on substrates commonly used for cell culture as well as on glass coated with hydrophobic layers. Providing the same starting conditions for growth, the parameters investigated on preconfluent Caco-2 cells were the number of adhering cells, the proliferative activity and the degree of differentiation indicated by the expression of three brush border enzymes. Whereas tissue culture treated polystyrene elicited highest rates of adhesion, proliferation, and differentiation, even glass altered the pattern of brush border enzyme expression. The hydrophobic surfaces strongly decreased the adhesion and the proliferation but the surviving cells exhibited a pronounced higher degree of differentiation. Interestingly, each sub-type of hydrophobic matrix triggered a different pattern of brush border enzyme expression. Thus, the development of a certain phenotype of a cell can not only be triggered by certain components of the extracellular matrix but also by artificially prepared surface coatings of the underlying matrix. In the future it seems to be feasible that cells can be programmed by tailoring the surface of the underlying substrate. PMID:17286606

  4. NMR spectroscopy and perfusion of mammalian cells using surface microprobes.

    PubMed

    Ehrmann, Klaus; Pataky, Kristopher; Stettler, Matthieu; Wurm, Florian Maria; Brugger, Jürgen; Besse, Pierre-André; Popovic, Radivoje

    2007-03-01

    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50,000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells' response to environmental change. PMID:17330170

  5. Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface

    PubMed Central

    Osathanon, Thanaphum; Sawangmake, Chenphop; Ruangchainicom, Nanticha; Wutikornwipak, Pavitra; Kantukiti, Panisa; Nowwarote, Nunthawan; Pavasant, Prasit

    2015-01-01

    Aims The present study investigated the surface properties and murine pre-osteoblast cell (MC3T3-E1) responses of phosphoric acid (H3PO4) treated commercially pure titanium. Methods Titanium discs were treated with various concentration of H3PO4 (5%, 10%, and 20%; v/v) at 90 °C for 30 min. Surface properties were evaluated by profilometer, contact angle meter, and scanning electron microscopy (SEM) with energy dispersive X-rays. MC3T3-E1 attachment and spreading were evaluated by SEM and phalloidin immunohistochemistry staining. Results Surface roughness and wettability were not statistically difference among all experimental and control groups. Phosphate and oxygen were detected on H3PO4 treated surfaces. At 20 min, cell attachment was significantly higher in 10% and 20% H3PO4 treated groups compared to the control. Cells exhibited orientated-cytoskeleton fibers on 20% H3PO4 modified titanium surface. Though, there was no difference in cell spreading stage among all treatment groups. Conclusion H3PO4 treatment on titanium may influence early cell response, particularly on attachment and spreading. PMID:26937362

  6. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed. PMID:23915280

  7. Engineering biomaterial surfaces using nanoparticle assemblies: A new paradigm for modulating cell function

    NASA Astrophysics Data System (ADS)

    Lipski, Anna Marie

    Silica nanoparticles (NP) were investigated as a surface modification medium and their impact on cell function was studied. This work has demonstrated that NP assemblies are suitable for the surface modification of both metal and polymer substrates. Additionally, important surface parameters, such as nano-roughness, charge, and chemistry, can be imparted in a predictable manner. More importantly, by varying the NP size, nano-roughness of a surface can be varied independent of chemistry. Two terminally differentiated mammalian cell types, bovine aortic endothelial cells (BAEC) and murine calvarial osteoblast-like cells (MC3T3-E1), were used to probe the effects of nano-topography on cell proliferation, metabolic activity, spreading, cytoskeletal F-actin alignment, and focal adhesion recruitment. Furthermore, the influence of nano-topography on cell migration was studied using BAEC and human fetal osteoblasts (hFOB). The results suggested that surface nano-rugosity affects cell behavior at various levels and that these effects are cell type specific; however, some clear trends were discerned with respect to F-actin alignment and cell migration. In particular, presentation of nano-features resulted in enhancement of cytoskeletal F-actin alignment along the long axis of the cells in comparison to unmodified glass. With respect to cell migration, increased nano-roughness resulted in decreased migration rates for both BAEC and hFOB. Finally, the potential of nano-rugosity as a mediator of cell differentiation was investigated by following the lineage specific differentiation of human marrow-derived mesenchymal progenitor cells (MPC) on NP-modified 316L stainless steel and titanium substrates. It was observed that NP modification enhanced the differentiation of MPC into an osteogenic lineage and that rugosity appeared to be the dominant factor in directing this differentiation. Thus, coatings composed of silica NPs presented a new paradigm that may lend themselves to

  8. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds

    PubMed Central

    Röder, Alexander; García-Gareta, Elena; Theodoropoulos, Christina; Ristovski, Nikola; Blackwood, Keith A.; Woodruff, Maria A.

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either “low-adhesive” non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies. PMID:26703748

  9. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds.

    PubMed

    Röder, Alexander; García-Gareta, Elena; Theodoropoulos, Christina; Ristovski, Nikola; Blackwood, Keith A; Woodruff, Maria A

    2015-01-01

    The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either "low-adhesive" non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies. PMID:26703748

  10. Changes of cell-surface thiols and intracellular signaling in human monocytic cell line THP-1 treated with diphenylcyclopropenone.

    PubMed

    Hirota, Morihiko; Motoyama, Akira; Suzuki, Mie; Yanagi, Masashi; Kitagaki, Masato; Kouzuki, Hirokazu; Hagino, Shigenobu; Itagaki, Hiroshi; Sasa, Hitoshi; Kagatani, Saori; Aiba, Setsuya

    2010-12-01

    Changes of cell-surface thiols induced by chemical treatment may affect the conformations of membrane proteins and intracellular signaling mechanisms. In our previous study, we found that a non-toxic dose of diphenylcyclopropene (DPCP), which is a potent skin sensitizer, induced an increase of cell-surface thiols in cells of a human monocytic cell line, THP-1. Here, we examined the influence of DPCP on intracellular signaling. First, we confirmed that DPCP induced an increase of cell-surface thiols not only in THP-1 cells, but also in primary monocytes. The intracellular reduced-form glutathione/oxidized-form glutathione ratio (GSH/GSSG ratio) was not affected by DPCP treatment. By means of labeling with a membrane-impermeable thiol-reactive compound, Alexa Fluor 488 C5 maleimide (AFM), followed by two-dimensional gel electrophoresis and analysis by liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS), we identified several proteins whose thiol contents were modified in response to DPCP. These proteins included cell membrane components, such as actin and β-tubulin, molecular chaperones, such as heat shock protein 27A and 70, and endoplasmic reticulum (ER) stress-inducible proteins. Next, we confirmed the expression in DPCP-treated cells of spliced XBP1, a known marker of ER stress. We also detected the phosphorylation of SAPK/JNK and p38 MAPK, which are downstream signaling molecules in the IRE1α-ASK1 pathway, which is activated by ER stress. These data suggested that increase of cell-surface thiols might be associated with activation of ER stress-mediated signaling. PMID:21139337

  11. Protrusive Activity Guides Changes in Cell-Cell Tension during Epithelial Cell Scattering

    PubMed Central

    Maruthamuthu, Venkat; Gardel, Margaret L.

    2014-01-01

    Knowing how epithelial cells regulate cell-matrix and cell-cell adhesions is essential to understand key events in morphogenesis as well as pathological events such as metastasis. During epithelial cell scattering, epithelial cell islands rupture their cell-cell contacts and migrate away as single cells on the extracellular matrix (ECM) within hours of growth factor stimulation, even as adhesion molecules such as E-cadherin are present at the cell-cell contact. How the stability of cell-cell contacts is modulated to effect such morphological transitions is still unclear. Here, we report that in the absence of ECM, E-cadherin adhesions continue to sustain substantial cell-generated forces upon hepatocyte growth factor (HGF) stimulation, consistent with undiminished adhesion strength. In the presence of focal adhesions, constraints that preclude the spreading and movement of cells at free island edges also prevent HGF-mediated contact rupture. To explore the role of cell motion and cell-cell contact rupture, we examine the biophysical changes that occur during the scattering of cell pairs. We show that the direction of cell movement with respect to the cell-cell contact is correlated with changes in the average intercellular force as well as the initial direction of cell-cell contact rupture. Our results suggest an important role for protrusive activity resulting in cell displacement and force redistribution in guiding cell-cell contact rupture during scattering. PMID:25099795

  12. Virulent Treponema pallidum activates human vascular endothelial cells.

    PubMed

    Riley, B S; Oppenheimer-Marks, N; Hansen, E J; Radolf, J D; Norgard, M V

    1992-03-01

    Perivascular lymphocytic infiltration, fibrin deposition, and endothelial cell abnormalities consistent with cellular activation are prominent histopathologic features of syphilis, a sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. Because activated endothelial cells play important roles in lymphocyte homing and hemostasis, the ability of virulent T. pallidum to activate cultured human umbilical vein endothelial cells (HUVEC) was investigated. T. pallidum induced the expression of intercellular adhesion molecule-1 (ICAM-1) and procoagulant activity on the surface of HUVEC. Electron microscopy of T. pallidum-stimulated HUVEC revealed extensive networks of fibrin strands not observed in cultures without treponemes. ICAM-1 expression in HUVEC also was promoted by a 47-kDa integral membrane lipoprotein purified from T. pallidum, implicating a role for spirochete membrane lipoproteins in endothelial cell activation. The combined findings are consistent with the pathology of syphilis and provide the first evidence that a pathogenic spirochetal bacterium such as T. pallidum or its constituent integral membrane lipoprotein(s) can activate directly host vascular endothelium. PMID:1347056

  13. Entry Kinetics and Cell-Cell Transmission of Surface-Bound Retroviral Vector Particles

    PubMed Central

    O’Neill, Lee S.; Skinner, Amy M.; Woodward, Josha A.; Kurre, Peter

    2010-01-01

    Background Transduction with recombinant Human Immunodeficiency Virus (HIV) -1 derived lentivirus vectors is a multi-step process initiated by surface attachment and subsequent receptor-directed uptake into the target cell. We previously reported the retention of vesicular stomatitis virus G protein (VSV-G) pseudotyped particles on murine progenitor cells and their delayed cell-cell transfer. Methods To examine the underlying mechanism in more detail we used a combination of approaches focused on investigating the role of receptor-independent factors in modulating attachment. Results Studies of synchronized transduction herein reveal cell-type specific rates of vector particle clearance with substantial delays during particle entry into murine hematopoietic progenitor cells. The observed uptake kinetics from the surface of the 1° cell correlate inversely with the magnitude of transfer to 2° targets, corresponding with our initial observation of preferential cell-cell transfer in the context of brief vector exposures. We further demonstrate that vector particle entry into cells is associated with the cell–type specific abundance of extracellular matrix fibronectin. Residual particle – ECM binding and 2° transfer can be competitively disrupted by heparin exposure without affecting murine progenitor homing and repopulation. Conclusions While cellular attachment factors, including fibronectin, aid gene transfer by colocalizing particles to cells and disfavoring early dissociation from targets, they also appear to stabilize particles on the cell surface. Our study highlights the inadvertent consequences for cell entry and cell-cell transfer. PMID:20440757

  14. Cell-Surface Nucleolin is a Signal Transducing P-Selectin Binding Protein for Human Colon Carcinoma Cells

    PubMed Central

    Reyes-Reyes, E. Merit; Akiyama, Steven K.

    2008-01-01

    We have previously shown that P-selectin binding to Colo-320 human colon carcinoma cells induces specific activation of the α5β1 integrin with a concomitant increase of cell adhesion and spreading on fibronectin substrates in a phosphatidylinositol 3-kinase (PI 3-K) and p38 MAPK-dependent manner. Here, we identified by affinity chromatography and characterized nucleolin as a P-selectin receptor on Colo-320 cells. Nucleolin mAb D3 significantly decreases the Colo-320 cell adhesion to immobilized P-selectin-IgG-Fc. Moreover, nucleolin becomes clustered at the external side of the plasma membrane of living, intact cells when bound to cross-linked P-selectin-IgG-Fc chimeric protein. We have also found P-selectin binding to Colo-320 cells induces tyrosine phosphorylation specifically of cell-surface nucleolin and formation of a signaling complex containing cell surface nucleolin, PI 3-K, and p38 MAPK. Using siRNA approaches, we have found that both P-selectin binding to Colo-320 cells and formation of the P-selectin-mediated p38 MAPK/ PI 3-K signaling complex require nucleolin expression. These results show that nucleolin (or a nucleolin-like protein) is a signaling receptor for P-selectin on Colo-320 cells and suggest a mechanism for linkage of nucleolin to P-selectin-induced signal transduction pathways that regulate the adhesion and the spreading of Colo-320 on fibronectin substrates. PMID:18504038

  15. Activation of radiosensitizers by hypoxic cells.

    PubMed Central

    Olive, P. L.; Durand, R. E.

    1978-01-01

    Hypoxic cells can metabolize nitroheterocyclic compounds to produce toxic intermediates capable of affecting the survival of neighbouring oxygenated cells. Mutagenesis experiments with E. coli WP-2 343 (deficient in nitroreductase) indicated that reduction of nitroheterocyclics outside bacteria causes killing and mutations within bacteria, presumably due to the transfer of the "active" specie (s). Using animal tissue slices to reduce nitrofurans, cultured L-929 cells incubated under aerobic conditions were far more sensitive to the toxic and DNA damaging effects of these drugs. Transfer of the active species also occurs in a tissue-like environment in multicell spheroids where the presence of a hypoxic central core served to convert the nitroheterocyclics to intermediates which also damaged the neighbouring oxygenated cells. PMID:354676

  16. Polyclonal B cell activation in ankylosing spondylitis.

    PubMed Central

    Barbieri, P; Olivieri, I; Benedettini, G; Marelli, P; Ciompi, M L; Pasero, G; Campa, M

    1990-01-01

    The peripheral blood lymphocyte response of patients with ankylosing spondylitis (AS) to several polyclonal B cell activators was investigated. No differences were found in the reactivity to pokeweed mitogen and protein A between patients and controls; in contrast, the peripheral blood lymphocyte response to Staphylococcus aureus strain Cowan I (SAC) was significantly higher in patients with AS than in controls. This responsiveness was not influenced either by the presence of the HLA-B27 antigen or by environmental factors or associated diseases, and it was higher in patients with active AS than in those with inactive disease. The percentage of circulating B cells was normal. The responses to T cell mitogens and the percentages of T cell subpopulations were similar in patients and in controls. The peripheral blood lymphocyte hyperactivity of patients with AS to SAC was associated with an increased in vitro production of immunoglobulins. PMID:2383063

  17. Array of amorphous calcium phosphate particles improves cellular activity on a hydrophobic surface.

    PubMed

    Kim, InAe; Kim, Hyun Jung; Kim, Hyun-Man

    2010-04-01

    Poor interaction between cells and surfaces, especially hydrophobic surfaces, results in delayed proliferation and increased apoptosis due to low cell adhesion signaling. To improve cell adhesion, hydrophilic array of amorphous calcium phosphate (ACP) was fabricated on a surface. A phosphate-buffered solution containing calcium ions was prepared at low temperature to prevent spontaneous precipitation. Then, the ion solution was heated to generate nuclei of ACP nanoparticles. The ACP nanoparticles adhered to the hydrophobic polystyrene surface forming an array composed of ACP particles. Multiple treatments of these nuclei with fresh CaP ion solutions increased the diameter and decreased the solubility of ACP particles enough to mediate cellular adhesion. The particle density in the array was dependent on the ion concentration of the CaP ion solutions. The ACP array improved a wide variety of activities when osteoblastic MC3T3-E1 cells were cultured on the ACP array fabricated on a hydrophobic bacteriological dish surface, compared to those cultured without the ACP array in vitro. The use of ACP array resulted in a lower apoptosis and also increased the spreading of cells to form stress fibers and focal contacts. Cells cultured on the ACP array proliferated more than cells cultured on a hydrophobic surface without the ACP array. The ACP array increased the expression of markers of differentiation in osteoblast. These results indicate that an array of ACP can be used as a coating material for enhancing biocompatibility in tissue engineering or biomaterials rather than modifying the surface with organic molecules. PMID:20119940

  18. Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios

    2015-03-01

    In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.

  19. Autonomous molecular cascades for evaluation of cell surfaces.

    PubMed

    Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler, Vincent P; Rudchenko, Sergei; Stojanovic, Milan N

    2013-08-01

    Molecular automata are mixtures of molecules that undergo precisely defined structural changes in response to sequential interactions with inputs. Previously studied nucleic acid-based automata include game-playing molecular devices (MAYA automata) and finite-state automata for the analysis of nucleic acids, with the latter inspiring circuits for the analysis of RNA species inside cells. Here, we describe automata based on strand-displacement cascades directed by antibodies that can analyse cells by using their surface markers as inputs. The final output of a molecular automaton that successfully completes its analysis is the presence of a unique molecular tag on the cell surface of a specific subpopulation of lymphocytes within human blood cells. PMID:23892986

  20. An electrochemical surface plasmon resonance imaging system targeting cell analysis

    NASA Astrophysics Data System (ADS)

    Zhang, L. L.; Chen, X.; Wei, H. T.; Li, H.; Sun, J. H.; Cai, H. Y.; Chen, J. L.; Cui, D. F.

    2013-08-01

    This paper presents an electrochemical-surface plasmon resonance imaging (EC-SPRI) system, enabling the characterization of optical and electrical properties of cells, simultaneously. The developed surface plasmon resonance (SPR) imaging system was capable of imaging micro cavities with a dimension of 10 μm × 10 μm and differentiated glycerol solutions with a group of refractive indices (RIs). Furthermore, the EC-SPRI system was used to image A549 cells, suggesting corresponding RI and morphology changes during the cell death process. In the end, electrochemical and SPR methods were used in combination, recording oxidation peaks of A549 cells in the cyclic voltage curves and SPR response unit increase, simultaneously.

  1. Role of cell surface oligosaccharides of mouse mammary tumor cell lines in cancer metastasis.

    PubMed

    Zhao, Yunxue; Li, Jing; Wang, Jingjian; Xing, Yanli; Geng, Meiyu

    2007-06-01

    Malignant transformation is associated with changes in the glycosylation of cell surface proteins and lipids. In tumor cells, alterations in cellular glycosylation may play a key role in their metastatic behaviour. In the present study, we have assessed the relationship between cell surface oligosaccharides and the metastasis ability of mouse mammary tumor cell lines 67NR and 4TO7. The cell surface oligosaccharides have been analyzed using specific binding assays with some plant lectins and the metastasis ability has been studied using transwell migration and invasion assays. In addition, we investigated the role of terminal sialic acids in the metastatic potential (cell adhesion on fibronectin, cell migration and invasion) in the 4TO7 cells on treatment with neuraminidase. The cell lines used in study have different metastasis abilities in vivo - the 67NR form primary tumors, but no tumor cells are detectable in any distant tissues, while cells of the 4TO7 line are able to spread to lung. In vitro metastasis experiments have revealed higher ability of adhesion, cell migration and invasion in the 4TO7 cells than the 67NR cells. Specific lectins binding assays show that the 4TO7 cells expressed more high-mannose type, multi-antennary complex-type N-glycans, beta-1,6-GlcNAc-branching, alpha-2,6-linked sialic acids, N-acetylgalactosamine and galactosyl(beta-1,3)-N-acetylgalactosamine. Removal of sialic acids on treatment with neuraminidase decreases adhesion, but increases the migration and has shown no significant change in the invasion ability of the 4TO7 cells. The study suggests that the sialic acids are not crucial for the cell migration and invasion in the 4TO7 cells. The findings provide the new insights in understanding the role of cell surface oligosaccharides in cancer metastasis. PMID:17650582

  2. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  3. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge. PMID:26475923

  4. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; d