Science.gov

Sample records for activating egfr mutations

  1. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations

    PubMed Central

    Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng

    2016-01-01

    Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309

  2. Bisphosphonates enhance EGFR-TKIs efficacy in advanced NSCLC patients with EGFR activating mutation: A retrospective study

    PubMed Central

    Cai, Xiao-Hong; Yao, Wen-Xiu; Xu, Yong; Liu, Xiao-Ke; Zhu, Wen-Jiang; Wang, Yan; Zhou, Jin; Lu, You; Wang, Yong-Sheng

    2016-01-01

    Background Bisphosphonates have exhibited anti-tumor activity in non-small cell lung cancer (NSCLC). We aimed to evaluate whether the combination of bisphosphonates with tyrosine kinase inhibitors of EGFR (EGFR-TKIs) could obtain a synergistic effect on advanced NSCLC patients with EGFR mutations. Methods Between January 2008 and October 2013, 114 advanced EGFR mutations NSCLC patients who received EGFR-TKIs as first-line therapy were recruited from two cancer centers. Patients were separated into EGFR-TKIs alone or EGFR-TKIs plus bisphosphonates (combination) group. Median progression free survival (mPFS), median overall survival (mOS) distributions and survival curves were analyzed. Results Among the 114 patients, 62 had bone metastases (19 patients treated with EGFR-TKIs, 43 patients treated with EGFR-TKIs + bisphosphonates). Median PFS and OS were significantly improved in combination group compared with EGFR-TKIs group (mPFS: 15.0 vs 7.3 months, P = 0.0017; mOS: 25.2 vs 10.4 months, P = 0.0015) in patients with bone metastases. Among the 71 patients (19 patients with bone metastases) treated with EGFR-TKIs alone, patients with bone metastases had poor survival prognosis (mPFS:7.3 vs 12.1 months, P = 0.0434; mOS:10.4 vs 22.0 months, P = 0.0036). The survival of patients with bone metastases who received EGFR-TKIs plus bisphosphonates therapy was non-inferior to patients without bone metastases treated with EGFR-TKIs alone (mPFS: 15.0 vs 12.1 months, p = 0.1871; mOS: 25.2 vs 22.0 months, p = 0.9798). Conclusions Concomitant use of bisphosphonates and EGFR-TKIs improves therapeutic efficacy and brings survival benefits to NSCLC patients with EGFR mutation and bone metastases. PMID:26624882

  3. EGFR-activating mutations, DNA copy number abundance of ErbB family, and prognosis in lung adenocarcinoma.

    PubMed

    Chen, Hsuan-Yu; Liu, Chia-Hsin; Chang, Ya-Hsuan; Yu, Sung-Liang; Ho, Bing-Ching; Hsu, Chung-Ping; Yang, Tsung-Ying; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tseng, Jeng-Sen; Hsia, Jiun-Yi; Chuang, Cheng-Yen; Chang, Chi-Sheng; Li, Yu-Cheng; Li, Ker-Chau; Chang, Gee-Chen; Yang, Pan-Chyr

    2016-02-23

    In this study, EGFR-activating mutation status and DNA copy number abundances of members of ErbB family were measured in 261 lung adenocarcinomas. The associations between DNA copy number abundances of ErbB family, EGFR-activating mutation status, and prognosis were explored. Results showed that DNA copy number abundances of EGFR, ERBB2, ERBB3, and ERBB4 had associations with overall survival in lung adenocarcinoma with EGFR-activating mutations. In the stratification analysis, only ERBB2 showed significant discrepancy in patients carrying wild type EGFR and other members of ErbB family in patients carrying EGFR-activating mutation. This indicated that CNAs of ErbB family had effect modifications of EGFR-activating mutation status. Findings of this study demonstrate potential molecular guidance of patient management of lung adenocarcinoma with or without EGFR-activating mutations.

  4. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  5. Effect of Vandetanib on Lung Tumorigenesis in Transgenic Mice Carrying an Activating Egfr Gene Mutation.

    PubMed

    Osawa, Masahiro; Ohashi, Kadoaki; Kubo, Toshio; Ichihara, Eiki; Takata, Saburo; Takigawa, Nagio; Takata, Minoru; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-08-01

    Vandetanib (ZactimaTM) is a novel, orally available inhibitor of both vascular endothelial growth factor receptor-2 (VEGFR-2) and epidermal growth factor receptor (EGFR) tyrosine kinase. In the present study, a line of transgenic mice with a mouse Egfr gene mutation (delE748-A752) corresponding to a human EGFR mutation (delE746-A750) was established. The transgenic mice developed atypical adenomatous hyperplasia to adenocarcinoma of the lung at around 5 weeks of age and died of lung tumors at approximately 17 weeks of age. In the mice treated with vandetanib (6mg/kg/day), these lung tumors disappeared and the phosphorylations of EGFR and VEGFR-2 were reduced in lung tissues to levels comparable to those of non-transgenic control mice. The median overall survival time of the transgenic mice was 28 weeks in the vandetanib-treated group and 17 weeks in the vehicle-treated group. Vandetanib significantly prolonged the survival of the transgenic mice (log-rank test, p< 0.01); resistance to vandetanib occurred at 20 weeks of age and the animals died from their lung tumors at about 28 weeks of age. These data suggest that vandetanib could suppress the progression of tumors harboring an activating EGFR mutation.

  6. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    PubMed

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  7. EGFR-activating mutations correlate with a Fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity.

    PubMed

    Pfäffle, Heike N; Wang, Meng; Gheorghiu, Liliana; Ferraiolo, Natalie; Greninger, Patricia; Borgmann, Kerstin; Settleman, Jeffrey; Benes, Cyril H; Sequist, Lecia V; Zou, Lee; Willers, Henning

    2013-10-15

    In patients with lung cancer whose tumors harbor activating mutations in the EGF receptor (EGFR), increased responses to platinum-based chemotherapies are seen compared with wild-type cancers. However, the mechanisms underlying this association have remained elusive. Here, we describe a cellular phenotype of cross-linker sensitivity in a subset of EGFR-mutant lung cancer cell lines that is reminiscent of the defects seen in cells impaired in the Fanconi anemia pathway, including a pronounced G2-M cell-cycle arrest and chromosomal radial formation. We identified a defect downstream of FANCD2 at the level of recruitment of FAN1 nuclease and DNA interstrand cross-link (ICL) unhooking. The effect of EGFR mutation was epistatic with FANCD2. Consistent with the known role of FANCD2 in promoting RAD51 foci formation and homologous recombination repair (HRR), EGFR-mutant cells also exhibited an impaired RAD51 foci response to ICLs, but not to DNA double-strand breaks. EGFR kinase inhibition affected RAD51 foci formation neither in EGFR-mutant nor wild-type cells. In contrast, EGFR depletion or overexpression of mutant EGFR in wild-type cells suppressed RAD51 foci, suggesting an EGFR kinase-independent regulation of DNA repair. Interestingly, EGFR-mutant cells treated with the PARP inhibitor olaparib also displayed decreased FAN1 foci induction, coupled with a putative block in a late HRR step. As a result, EGFR-mutant lung cancer cells exhibited olaparib sensitivity in vitro and in vivo. Our findings provide insight into the mechanisms of cisplatin and PARP inhibitor sensitivity of EGFR-mutant cells, yielding potential therapeutic opportunities for further treatment individualization in this genetically defined subset of lung cancer.

  8. Effects of Activating Mutations on EGFR Cellular Protein Turnover and Amino Acid Recycling Determined Using SILAC Mass Spectrometry.

    PubMed

    Greig, Michael J; Niessen, Sherry; Weinrich, Scott L; Feng, Jun Li; Shi, Manli; Johnson, Ted O

    2015-01-01

    Rapid mutations of proteins that are targeted in cancer therapy often lead to drug resistance. Often, the mutation directly affects a drug's binding site, effectively blocking binding of the drug, but these mutations can have other effects such as changing the protein turnover half-life. Utilizing SILAC MS, we measured the cellular turnover rates of an important non-small cell lung cancer target, epidermal growth factor receptor (EGFR). Wild-type (WT) EGFR, EGFR with a single activating mutant (Del 746-750 or L858R), and the drug-resistant double mutant (L858R/T790M) EGFR were analyzed. In non-small cell lung cancer cell lines, EGFR turnover rates ranged from 28 hours in A431 cells (WT) to 7.5 hours in the PC-9 cells (Del 746-750 mutant). The measurement of EGFR turnover rate in PC-9 cells dosed with irreversible inhibitors has additional complexity due to inhibitor effects on cell viability and results were reported as a range. Finally, essential amino acid recycling (K and R) was measured in different cell lines. The recycling was different in each cell line, but the overall inclusion of the effect of amino acid recycling on calculating EGFR turnover rates resulted in a 10-20% reduction in rates.

  9. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation.

    PubMed

    Ymer, Susie I; Greenall, Sameer A; Cvrljevic, Anna; Cao, Diana X; Donoghue, Jacqui F; Epa, V Chandana; Scott, Andrew M; Adams, Timothy E; Johns, Terrance G

    2011-04-18

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation.

  10. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  11. The incidence of EGFR-activating mutations in bone metastases of lung adenocarcinoma.

    PubMed

    Krawczyk, Paweł; Nicoś, Marcin; Ramlau, Rodryg; Powrózek, Tomasz; Wojas-Krawczyk, Kamila; Sura, Sylwia; Jarosz, Bożena; Szumiło, Justyna; Warda, Edward; Mazurkiewicz, Tomasz; Sawicki, Marek; Milanowski, Janusz

    2014-01-01

    Poor prognosis of lung adenocarcinoma is associated with early occurrence of distant metastases. This type of non-small-cell lung carcinoma more frequently involves EGFR gene abnormalities, which determine the efficacy of EGFR tyrosine kinase inhibitor therapies (EGFR TKIs). It is probable that genetic abnormalities present in primary tumor will also be present in metastases. Unfortunately little is known about the incidence of these mutations in the metastases and about the effectiveness of molecularly targeted therapy in such patients. Formalin-fixed, paraffin-embedded tumor tissue was prepared from 431 samples of primary adenocarcinoma, 61 of adenocarcinoma central nervous system (CNS) metastases and 8 of adenocarcinoma bone metastases. The presence of exon 19 deletions was examined using the PCR technique and amplified PCR product fragment length analysis. The ASP-PCR technique was used to evaluate the L858R substitutions in exon 21, and the results were analyzed using ALF Express II sequencer. In the adenocarcinoma metastases to bone obtained from 8 patients, deletions in exon 19 of the EGFR gene were revealed in 3 smoking men and one non-smoking woman, while L858R substitution in exon 21 was found in one smoking woman and one man of unknown smoking status. The incidence of EGFR gene mutations in the bone metastases was 75%, in the primary adenocarcinoma--12.8%, and in the adenocarcinoma metastases to CNS--14.75%. Five patients with EGFR gene mutation revealed in bone metastases were treated with EGFR TKIs; the majority of them had a satisfactory response to therapy.

  12. A comparison of ARMS and mutation specific IHC for common activating EGFR mutations analysis in small biopsy and cytology specimens of advanced non small cell lung cancer.

    PubMed

    Wang, Xueqing; Wang, Guoqing; Hao, Yueyue; Xu, Yinhong; Zhang, Lihua

    2014-01-01

    We have compared mutation analysis by Amplification Refractory Mutation System (ARMS) and epidermal growth factor receptor (EGFR) mutant-specific antibodies for their ability to detect two common activating EGFR mutations in a cohort of 115 advanced non-small cell lung cancer (NSCLC), including cytology material, core biopsy, and bronchoscopic biopsies. Assessment of EGFR mutation status was performed by using antibodies and ARMS assay specific to the two major forms of mutant EGFR, exon 19 deletion E746-A750 (c.2235_2249del15 or c.2236_2250del15, p. Glu746_Ala750 del) and exon 21 L858R point mutation (c.2573T>G, p.Leu858Arg). In this study the optimal buffer for antigen retrieval was sodium citrate (pH 6.0). Q score was used to evaluate the specific mutant EGFR proteins expression. Validation using clinical material showed deletions in exon 19 were detected in 19.1% and L858R mutation in 20% of all cases by ARMS assay. A cutoff value of score 1 was used as positive by IHC. No wild type cases were immuno-reactive. The antibodies performed well in cytology, core biopsies and bronchoscopic biopsies. There were only one false positive case using L858R IHC (sensitivity 100%, specificity 98.5%, positive predictive value 96%, negative predictive value 100%). All 23 E746-A750 exon 19 deletions identified by mutation analysis were positive by IHC. The sensitivity of exon 19 IHC for E746-A750 was 100%, specificity 100%, positive predictive value 100% and negative predictive value 100%. The result of the IHC stains was finely correlated with mutations status determined by ARMS assay. Although inferior to molecular genetic analysis of the EGFR gene, IHC is highly specific and sensitive for the targeted EGFR mutations. The antibodies are likely to be of clinical value in cases especially where limited tumor material is available, or in situations where molecular genetic analysis is not readily available.

  13. EGFR mutation and lobar location of lung adenocarcinoma.

    PubMed

    Tseng, Chien-Hua; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tseng, Jeng-Sen; Ho, Chao-Chi; Hsia, Te-Chun; Su, Kang-Yi; Wu, Ming-Fang; Chiu, Kuo-Liang; Liu, Chien-Ming; Wu, Tzu-Chin; Chen, Hung-Jen; Chen, Hsuan-Yu; Chang, Chi-Sheng; Hsu, Chung-Ping; Hsia, Jiun-Yi; Chuang, Cheng-Yen; Lin, Chin-Hung; Chen, Jeremy J W; Chen, Kuan-Yu; Liao, Wei-Yu; Shih, Jin-Yuan; Yu, Sung-Liang; Yu, Chong-Jen; Yang, Pan-Chyr; Yang, Tsung-Ying; Chang, Gee-Chen

    2016-02-01

    The objective of this study was to investigate the associations among lung cancer location, and epidermal growth factor receptor (EGFR) mutation status. Treatment-naive, pathologically confirmed lung adenocarcinomas with tumor specimens available for genetic analysis were included from 2011 through 2014. Overall, 1771 patients with lung adenocarcinoma were included for analysis, after excluding those with carcinoma not otherwise specified, or synchronous multiple primary lung cancers. The median age was 64 years, and the female:male and never smoker:ever smoker ratios were 930:855 (52:48%) and 1167:604 (65:35%), respectively. The EGFR mutation rate was 56%. Among patients, 1093 (62%) had primary tumors in the upper lobes. Compared with the characteristics of the EGFR wild-type, tumors with EGFR activating mutations were more common in women (P < 0.001), never smokers (P < 0.001), and in the upper lobes (P = 0.004). Among EGFR activating mutations, compared with the EGFR exon 19 deletion, L858R mutation were more common in women (P = 0.002), never smokers (P = 0.038), and the upper lobes P < 0.0005). The present study is the first to address that different pulmonary lobar locations might harbor different EGFR mutation subtypes. We demonstrated that adenocarcinomas with L858R mutation, rather than exon 19 deletion or wild-type EGFR gene, prefer to locate over the upper lungs. This phenomenon was more significant in females and never-smokers, implying the result of complex interactions between genetic susceptibility and environmental factors. Therefore, EGFR L858R mutation and exon 19 deletion may not be identical disease entity from the point of carcinogenesis.

  14. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Zwitter, Matjaz; Rajer, Mirjana; Stanic, Karmen; Vrankar, Martina; Doma, Andrej; Cuderman, Anka; Grmek, Marko; Kern, Izidor; Kovac, Viljem

    2016-01-01

    ABSTRACT Among attempts to delay development of resistance to tyrosine kinase inhibitors (TKIs) in patients with advanced non-small cell lung cancer (NSCLC) with activating mutations of epidermal growth factor receptor (EGFR), intercalated therapy has not been properly evaluated. In a phase II trial, 38 patients with EGFR mutated NSCLC in advanced stage were treated with 4 to 6 3-weekly cycles of intercalated schedule with gemcitabine (1250 mg/m2, days 1 and 4), cisplatin (75 mg/m2, day 2) and erlotinib (150 mg, days 5 – 15), followed by continuous erlotinib as maintenance. In addition to standard radiologic evaluation according to RECIST, PET/CT was done prior to treatment and at 6 months, using PERCIST as a method for assessment of response. The primary endpoint was progression-free survival (PFS). In general, tolerance to treatment was good, even among 8 patients with performance status 2–3 and 13 patients with brain metastases; grade 4 toxicity included 2 cases of neutropenia and 4 thrombo-embolic events. Complete response (CR) or partial response (PR) were seen in 15 (39.5%) and 17 (44.7%) cases, respectively. All cases of CR were confirmed also by PET/CT. Median PFS was 23.4 months and median overall survival (OS) was 38.3  months. After a median follow-up of 35 months, 8 patients are still in CR and on maintenance erlotinib. In conclusion, intercalated treatment for treatment-naive patients with EGFR activating mutations leads to excellent response rate and prolonged PFS and survival. Comparison of the intercalated schedule to monotherapy with TKIs in a randomized trial is warranted. PMID:27261103

  15. Deguelin Potentiates Apoptotic Activity of an EGFR Tyrosine Kinase Inhibitor (AG1478) in PIK3CA-Mutated Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Baba, Yuh; Maeda, Toyonobu; Suzuki, Atsuko; Takada, Satoshi; Fujii, Masato; Kato, Yasumasa

    2017-01-01

    Head and neck squamous cell carcinoma (HNSCC) is known to be intrinsically resistant to inhibitors for epidermal growth factor receptor (EGFR). Until now, clinical outcomes for HNSCC using EGFR inhibitors as single agents have yielded disappointing results. Here, we aimed to study whether combinatorial treatment using AG1478 (EGFR tyrosine kinase inhibitor) and deguelin, which is a rotenoid isolated from the African plant Mundulea sericea, could enhance the anti-tumor effects of AG1478 in HNSCC. For Ca9-22 cells with EGFR, KRAS, and PIK3CA wild types, AG1478 alone suppressed both phosphorylated levels of ERK and AKT and induced apoptosis. On the contrary, for HSC-4 cells with EGFR and KRAS wild types, and a PIK3CA mutant, AG1478 alone did not suppress the phosphorylated level of AKT nor induce apoptosis, while it suppressed ERK phosphorylation. Forced expression of constitutively active PIK3CA (G1633A mutation) significantly reduced the apoptotic effect of AG1478 on the PIK3CA wild-type Ca9-22 cells. When HSC-4 cells with the PIK3CA G1633A mutation were treated with a combination of AG1478 and deguelin, combination effects on apoptosis induction were observed through the inhibition of the AKT pathway. These results suggest that the combination of EGFR tyrosine kinase inhibitor with deguelin is a potential therapeutic approach to treat PIK3CA-mutated HNSCC. PMID:28134774

  16. Construction of a novel cell-based assay for the evaluation of anti-EGFR drug efficacy against EGFR mutation

    PubMed Central

    Hoshi, Hirotaka; Hiyama, Gen; Ishikawa, Kosuke; Inageda, Kiyoshi; Fujimoto, Jiro; Wakamatsu, Ai; Togashi, Takushi; Kawamura, Yoshifumi; Takahashi, Nobuhiko; Higa, Arisa; Goshima, Naoki; Semba, Kentaro; Watanabe, Shinya; Takagi, Motoki

    2016-01-01

    Epidermal growth factor receptor (EGFR) overexpression and EGFR-mediated signaling pathway dysregulation have been observed in tumors from patients with various cancers, especially non-small cell lung cancer. Thus, several anti-EGFR drugs have been developed for cancer therapy. For patients with known EGFR activating mutations (EGFR exon 19 in-frame deletions and exon 21 L858R substitution), treatment with an EGFR tyrosine kinase inhibitor (EGFR TKI; gefitinib, erlotinib or afatinib) represents standard first-line therapy. However, the clinical efficacy of these TKIs is ultimately limited by the development of acquired drug resistance such as by mutation of the gatekeeper T790 residue (T790M). To overcome this acquired drug resistance and develop novel anti-EGFR drugs, a cell-based assay system for EGFR TKI resistance mutant-selective inhibitors is required. We constructed a novel cell-based assay for the evaluation of EGFR TKI efficacy against EGFR mutation. To this end, we established non-tumorigenic immortalized breast epithelial cells that proliferate dependent on EGF (MCF 10A cells), which stably overexpress mutant EGFR. We found that the cells expressing EGFR containing the T790M mutation showed higher resistance against gefitinib, erlotinib and afatinib compared with cells expressing wild-type EGFR. In contrast, L858R mutant-expressing cells exhibited higher TKI sensitivity. The effect of T790M-selective inhibitors (osimertinib and rociletinib) on T790M mutant-expressing cells was significantly higher than gefitinib and erlotinib. Finally, when compared with commercially available isogenic MCF 10A cell lines carrying introduced mutations in EGFR, our EGFR mutant-overexpressing cells exhibited obviously higher responsiveness to EGFR TKIs depending on the underlying mutations because of the higher levels of EGFR phosphorylation in the EGFR mutant-overexpressing cells than in the isogenic cell lines. In conclusion, we successfully developed a novel cell

  17. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    NASA Astrophysics Data System (ADS)

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-03-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR-TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR.

  18. Targeting EGFR T790M mutation in NSCLC: From biology to evaluation and treatment.

    PubMed

    Passaro, Antonio; Guerini-Rocco, Elena; Pochesci, Alessia; Vacirca, Davide; Spitaleri, Gianluca; Catania, Chiara Matilde; Rappa, Alessandra; Barberis, Massimo; de Marinis, Filippo

    2017-03-01

    The identification of EGFR mutations and their respectively tyrosine kinase inhibitors (TKIs), changed dramatically treatment and survival of patients with EGFR-positive lung cancer. Nowadays, different EGFR TKIs as afatinib, erlotinib and gefitinib are approved worldwide for the treatment of NSCLC harbouring EGFR mutations, in particular exon 19 deletions or exon 21 (Leu858Arg) substitution EGFR mutations. In first-line setting, when comparing with platinum-based chemotherapy, these target drugs improves progression-free survival, response rate and quality of life. Unfortunately, the development of different mechanism of resistance, limits the long term efficacy of these agents. The most clear mechanism of resistance is the development of EGFR Thr790Met mutation. Against this new target, different third-generation EGFR-mutant-selective TKIs, such as osimertinib, rociletinib and olmutinib, showed a great activity. In this review, we summarize the scientific evidences about biology, evaluation and treatment on NSCLC with EGFR T790M mutation.

  19. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer.

    PubMed

    Young, Christian D; Zimmerman, Lisa J; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B; Gatza, Michael L; Morrison, Meghan M; Moore, Preston D; Whitwell, Corbin A; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E; Silva, Grace O; Patel, Premal; Brantley-Sieders, Dana M; Levin, Maren; Horiates, Marina; Palma, Norma A; Wang, Kai; Stephens, Philip J; Perou, Charles M; Weaver, Alissa M; O'Shaughnessy, Joyce A; Chang, Jenny C; Park, Ben Ho; Liebler, Daniel C; Cook, Rebecca S; Arteaga, Carlos L

    2015-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR.

  20. Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer

    PubMed Central

    Van Emburgh, Beth O.; Arena, Sabrina; Siravegna, Giulia; Lazzari, Luca; Crisafulli, Giovanni; Corti, Giorgio; Mussolin, Benedetta; Baldi, Federica; Buscarino, Michela; Bartolini, Alice; Valtorta, Emanuele; Vidal, Joana; Bellosillo, Beatriz; Germano, Giovanni; Pietrantonio, Filippo; Ponzetti, Agostino; Albanell, Joan; Siena, Salvatore; Sartore-Bianchi, Andrea; Di Nicolantonio, Federica; Montagut, Clara; Bardelli, Alberto

    2016-01-01

    Blockade of the epidermal growth factor receptor (EGFR) with the monoclonal antibodies cetuximab or panitumumab is effective in a subset of colorectal cancers (CRCs), but the emergence of resistance limits the efficacy of these therapeutic agents. At relapse, the majority of patients develop RAS mutations, while a subset acquires EGFR extracellular domain (ECD) mutations. Here we find that patients who experience greater and longer responses to EGFR blockade preferentially develop EGFR ECD mutations, while RAS mutations emerge more frequently in patients with smaller tumour shrinkage and shorter progression-free survival. In circulating cell-free tumour DNA of patients treated with anti-EGFR antibodies, RAS mutations emerge earlier than EGFR ECD variants. Subclonal RAS but not EGFR ECD mutations are present in CRC samples obtained before exposure to EGFR blockade. These data indicate that clonal evolution of drug-resistant cells is associated with the clinical outcome of CRC patients treated with anti-EGFR antibodies. PMID:27929064

  1. EGFR activating mutations detected by different PCR techniques in Caucasian NSCLC patients with CNS metastases: short report.

    PubMed

    Kamila, Wojas-Krawczyk; Michał, Skroński; Paweł, Krawczyk; Paulina, Jaguś; Tomasz, Kucharczyk; Bożena, Jarosz; Radosław, Mlak; Justyna, Szumiło; Marek, Sawicki; Trojanowski, Tomasz; Janusz, Milanowski; Joanna, Chorostowska-Wynimko

    2013-12-01

    EGFR mutation testing has become an essential determination to decide treatment options for NSCLC. The mutation analysis is often conducted in samples with low percentage of tumour cells from primary tumour biopsies. There is very little evidence that samples from metastatic tissues are suitable for EGFR testing. We had evaluated the frequency of EGFR mutations with three highly sensitive PCR techniques in formalin-fixed, paraffin-embedded samples of 143 NSCLC patients with central nervous system (CNS) metastases. 32 corresponding primary tumours were also examined. We used PCR followed by DNA fragments length analysis (FLA), ASP-PCR and PNA-LNA PCR clamp techniques. We found 9 (6.29 %) EGFR gene mutations in CNS samples: 3 (2.1 %) in exon 19 and 6 (4.2 %) in exon 21. The full concordance between CNS metastases and primary tumour samples was observed. PCR followed by DNA-FLA and PNA-LNA PCR clamp were sensitive enough to detect exon 19 deletions. Two mutations in exon 21 were detected by ASP-PCR only, one L858R substitution was detected only by PNA-LNA PCR clamp. With respect to sensitivity, PCR followed by DNA-FLA achieved a level of detection of at least 10 % of mutated DNA for exon 19 deletion, as for ASP-PCR it was at least 5 % of mutated DNA for L858R substitution. Higher sensitivity of 1 % of mutated DNA was achieved by PNA-LNA PCR clamp technique for both mutations. The use of different methodological techniques authenticates the negative result of molecular tests.

  2. Construction of a novel cell-based assay for the evaluation of anti-EGFR drug efficacy against EGFR mutation.

    PubMed

    Hoshi, Hirotaka; Hiyama, Gen; Ishikawa, Kosuke; Inageda, Kiyoshi; Fujimoto, Jiro; Wakamatsu, Ai; Togashi, Takushi; Kawamura, Yoshifumi; Takahashi, Nobuhiko; Higa, Arisa; Goshima, Naoki; Semba, Kentaro; Watanabe, Shinya; Takagi, Motoki

    2017-01-01

    Epidermal growth factor receptor (EGFR) overexpression and EGFR-mediated signaling pathway dysregulation have been observed in tumors from patients with various cancers, especially non-small cell lung cancer. Thus, several anti-EGFR drugs have been developed for cancer therapy. For patients with known EGFR activating mutations (EGFR exon 19 in-frame deletions and exon 21 L858R substitution), treatment with an EGFR tyrosine kinase inhibitor (EGFR TKI; gefitinib, erlotinib or afatinib) represents standard first-line therapy. However, the clinical efficacy of these TKIs is ultimately limited by the development of acquired drug resistance such as by mutation of the gatekeeper T790 residue (T790M). To overcome this acquired drug resistance and develop novel anti-EGFR drugs, a cell-based assay system for EGFR TKI resistance mutant-selective inhibitors is required. We constructed a novel cell-based assay for the evaluation of EGFR TKI efficacy against EGFR mutation. To this end, we established non-tumorigenic immortalized breast epithelial cells that proliferate dependent on EGF (MCF 10A cells), which stably overexpress mutant EGFR. We found that the cells expressing EGFR containing the T790M mutation showed higher resistance against gefitinib, erlotinib and afatinib compared with cells expressing wild-type EGFR. In contrast, L858R mutant-expressing cells exhibited higher TKI sensitivity. The effect of T790M-selective inhibitors (osimertinib and rociletinib) on T790M mutant-expressing cells was significantly higher than gefitinib and erlotinib. Finally, when compared with commercially available isogenic MCF 10A cell lines carrying introduced mutations in EGFR, our EGFR mutant-overexpressing cells exhibited obviously higher responsiveness to EGFR TKIs depending on the underlying mutations because of the higher levels of EGFR phosphorylation in the EGFR mutant-overexpressing cells than in the isogenic cell lines. In conclusion, we successfully developed a novel

  3. mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy.

    PubMed

    Kim, Eun Ju; Jeong, Jae-Hoon; Bae, Sangwoo; Kang, Seongman; Kim, Cheol Hyeon; Lim, Young-Bin

    2013-06-01

    Clinical resistance to gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), in patients with lung cancer has been linked to acquisition of the T790M resistance mutation in activated EGFR or amplification of MET. Phosphatase and tensin homolog (PTEN) loss has been recently reported as a gefitinib resistance mechanism in lung cancer. The aim of this study was to evaluate the efficacy of radiotherapy in non-small-cell lung cancer (NSCLC) with acquired gefitinib resistance caused by PTEN deficiency to suggest radiotherapy as an alternative to EGFR TKIs. PTEN deficient-mediated gefitinib resistance was generated in HCC827 cells, an EGFR TKI sensitive NSCLC cell line, by PTEN knockdown with a lentiviral vector expressing short hairpin RNA-targeting PTEN. The impact of PTEN knockdown on sensitivity to radiation in the presence or absence of PTEN downstream signaling inhibitors was investigated. PTEN knockdown conferred acquired resistance not only to gefitinib but also to radiation on HCC827 cells. mTOR inhibitors alone failed to reduce HCC827 cell viability, regardless of PTEN expression, but ameliorated PTEN knockdown-induced radioresistance. PTEN knockdown-mediated radioresistance was accompanied by repression of radiation-induced cytotoxic autophagy, and treatment with mTOR inhibitors released the repression of cytotoxic autophagy to overcome PTEN knockdown-induced radioresistance in HCC827 cells. These results suggest that inhibiting mTOR signaling could be an effective strategy to radiosensitize NSCLC harboring the EGFR activating mutation that acquires resistance to both TKIs and radiotherapy due to PTEN loss or inactivation mutations.

  4. A decade of EGFR inhibition in EGFR-mutated non small cell lung cancer (NSCLC): Old successes and future perspectives

    PubMed Central

    Russo, Alessandro; Franchina, Tindara; Rita Ricciardi, Giuseppina Rosaria; Picone, Antonio; Ferraro, Giuseppa; Zanghì, Mariangela; Toscano, Giuseppe; Giordano, Antonio; Adamo, Vincenzo

    2015-01-01

    The discovery of Epidermal Growth Factor Receptor (EGFR) mutations in Non Small Cell Lung Cancer (NSCLC) launched the era of personalized medicine in advanced NSCLC, leading to a dramatic shift in the therapeutic landscape of this disease. After ten years from the individuation of activating mutations in the tyrosine kinase domain of the EGFR in NSCLC patients responding to the EGFR tyrosine kinase inhibitor (TKI) Gefitinib, several progresses have been done and first line treatment with EGFR TKIs is a firmly established option in advanced EGFR-mutated NSCLC patients. During the last decade, different EGFR TKIs have been developed and three inhibitors have been approved so far in these selected patients. However, despite great breakthroughs have been made, treatment of these molecularly selected patients poses novel therapeutic challenges, such as emerging of acquired resistance, brain metastases development or the need to translate these treatments in earlier clinical settings, such as adjuvant therapy. The aim of this paper is to provide a comprehensive review of the major progresses reported so far in the EGFR inhibition in this molecularly-selected subgroup of NSCLC patients, from the early successes with first generation EGFR TKIs, Erlotinib and Gefitinib, to the novel irreversible and mutant-selective inhibitors and ultimately the emerging challenges that we, in the next future, are called to deal with. PMID:26308162

  5. EGFR Promoter Methylation, EGFR Mutation, and HPV Infection in Chinese Cervical Squamous Cell Carcinoma.

    PubMed

    Zhang, Wei; Jiang, Yinghao; Yu, Qingmiao; Qiang, Shaoying; Liang, Ping; Gao, Yane; Zhao, Xingye; Liu, Wenchao; Zhang, Ju

    2015-10-01

    Therapy strategy toward epidermal growth factor receptor (EGFR) inhibition in cervical cancer has been ongoing. EGFR promoter methylation status and EGFR tyrosine kinase inhibitor-sensitive mutations in cervical cancer may be significant for clinical outcome prediction using anti-EGFR treatment. In this study, EGFR tyrosine kinase inhibitor-sensitive mutations, EGFR exons 18, 19, and 21 mutations, were detected by sequencing in a total of 293 Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation status was detected by an EGFR asymmetric PCR and hybridization-fluorescence polarization assay and sequencing in 293 Chinese cervical squamous cell carcinoma tissue samples. High-risk human papillomavirus (HPV) genotypes in 293 Chinese cervical squamous cell carcinoma tissue samples were detected by an asymmetric GP5+/6+ PCR and hybridization-fluorescence polarization assay. No EGFR exons 18, 19, and 21 mutations were detected, EGFR promoter methylation status was identified in 98 samples, and HPV 16 infection was the first frequent HPV genotype. The methylated EGFR promoter was identified most frequently in cervical squamous cell carcinoma samples with HPV 16 infection (53.4%). Statistical significant difference of EGFR promoter methylation prevalence was found between HPV 16 and other HPV genotypes (P<0.01). This study suggested that there was no EGFR tyrosine kinase inhibitor-sensitive mutation in EGFR exons 18, 19, and 21 in Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation was common and it might be associated with HPV 16 infection in Chinese cervical squamous cell carcinoma. The results provided a novel understanding and an applicable pharmacogenomic tool for individualized management of cervical cancer patients.

  6. Brk/PTK6 Sustains Activated EGFR Signaling through Inhibiting EGFR Degradation and Transactivating EGFR

    PubMed Central

    Li, X; Lu, Y; Liang, K; Hsu, J -M.; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2011-01-01

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy. PMID:22231447

  7. Brk/PTK6 sustains activated EGFR signaling through inhibiting EGFR degradation and transactivating EGFR.

    PubMed

    Li, X; Lu, Y; Liang, K; Hsu, J-M; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2012-10-04

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein-tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from casitas B-lineage lymphoma-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy.

  8. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR.

    PubMed

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-08-21

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance.

  9. Comparison of uncommon EGFR exon 21 L858R compound mutations with single mutation.

    PubMed

    Peng, Liang; Song, Zhigang; Jiao, Shunchang

    2015-01-01

    Non-small-cell lung cancer with epidermal growth factor receptor (EGFR) mutation is sensitive to EGFR tyrosine kinase inhibitors (TKIs). But little is known about the response to EGFR TKIs and the prognostic role of compound mutations. This study compared the uncommon EGFR exon 21 L858R compound mutations with single mutation to characterize EGFR compound mutations and investigated their response to EGFR TKI treatment. We retrospectively screened 799 non-small-cell lung cancer patients from August 1, 2009 to June 1, 2012 by EGFR mutation testing. EGFR mutations were detected in 443 patients, with 22 (4.97%) compound mutations. Subsequently, six patients with EGFR exon 21 L858R compound mutations and 18 paired patients with single L858R mutation were well characterized. Finally, we also analyzed the EGFR TKI treatment response and patients' outcomes of compound or single L858R mutations. There was no differential treatment effect on the disease control rate and objective response rate between the L858R compound mutations and single mutation groups. No significant difference in overall survival or progression-free survival of these two groups was found by log-rank test. In conclusion, we demonstrated that no significant difference was detected in the response to EGFR TKIs and patients' outcomes in the compound and single mutation groups.

  10. A Novel Technique to Detect EGFR Mutations in Lung Cancer.

    PubMed

    Liu, Yuanbin; Lei, Ting; Liu, Zhiyu; Kuang, Yanbin; Lyu, Jianxin; Wang, Qi

    2016-05-23

    Epidermal growth factor receptor (EGFR) gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA), recombinase polymerase amplification (RPA), peptide nucleic acid (PNA), and SYBR Green I (SYBR), referred to as the AS-RPA-PNA-SYBR (ARPS) system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs), the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal). Using this method, the EGFR 19Del(2) mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR) and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples.

  11. Pooled analysis of clinical outcome for EGFR TKI-treated patients with EGFR mutation-positive NSCLC.

    PubMed

    Paz-Ares, Luis; Soulières, Denis; Moecks, Joachim; Bara, Ilze; Mok, Tony; Klughammer, Barbara

    2014-08-01

    Patients with non-small-cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation-positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation-positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression-free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6-13.4) for erlotinib-treated patients; 9.4 months (95% AI 9.0-9.8) for gefitinib-treated patients; and 5.6 months (95% AI 5.3-6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time-point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation-positive NSCLC with erlotinib or gefitinib compared with chemotherapy.

  12. [Afatinib as first-line therapy in mutation-positive EGFR. Results by type of mutation].

    PubMed

    Vidal, Óscar Juan

    2016-04-01

    The discovery of endothelial growth factor receptor (EGFR) mutations has laid the foundations for personalized medicine in non-small cell lung carcinoma (NSCLC). In phase III trials, the first-generation tyrosine kinase inhibitors (TKI), gefitinib and erlotinib, demonstrated greater efficacy compared with chemotherapy in patients with EGFR mutations, achieving progression-free survival of 8-13.5 months. Afatinib, a second-generation irreversible pan-ErbB inhibitor, is the first TKI that has shown a benefit in overall survival (OS) compared with chemotherapy in EGFR mutation-positive NSCLC when used as first-line treatment. Exon 19 deletion (Del19) and the single-point substitution mutation (L858R) in exon 21, called activating mutations due to their ability to confer sensitivity to TKI, represent approximately 90% of the EGFR mutations in NSCLC. Distinct sensitivity to TKI has been observed depending on the type of mutation, with greater progression-free survival in patients with the Del19 mutation. The analysis of OS in the LUX-Lung 3 and LUX-Lung 6 trials showed a statistically significant increase in survival in afatinib-treated patients with the Del 19 mutation, but no significant increase in that of patients with the L858R mutation. Direct comparison of afatinib and gefitinib as first-line therapy (LUX-Lung 7 trial) showed a statistically-significant increase in progression-free survival (hazard ratio: 0.73; 95% confidence interval, 0.57-0.95; p=0.0165) with afatinib. In the analysis by type of mutation, this benefit was observed for both the Del19 and the L858R mutations.

  13. EGFR exon 20 insertion mutation in Japanese lung cancer.

    PubMed

    Sasaki, Hidefumi; Endo, Katsuhiko; Takada, Minoru; Kawahara, Masaaki; Kitahara, Naoto; Tanaka, Hisaichi; Okumura, Meinoshin; Matsumura, Akihide; Iuchi, Keiji; Kawaguchi, Tomoya; Kawano, Osamu; Yukiue, Haruhiro; Yokoyama, Tomoki; Yano, Motoki; Fujii, Yoshitaka

    2007-12-01

    Mutations of the epidermal growth factor receptor (EGFR) gene have been reported in non-small cell lung cancer (NSCLC), especially in female, never smoker patients with adenocarcinoma. Some common somatic mutations in EGFR, including deletion mutations in exon 19 and leucine to arginine substitution at amino acid position 858 (L858R) in exon 21, have been examined for their ability to predict sensitivity to gefitinib or erlotinib. On the other hand, previous report has shown that the insertion mutation at exon 20 is related to gefitinib resistance. We investigated the exon 20 EGFR mutation statuses in 322 surgically treated non-small cell lung cancer cases. Two hundred and five adenocarcinoma cases were included. The presence or absence of EGFR mutations of kinase domains was analyzed by direct sequences. EGFR insertion mutations at exon 20 were found from 7 of 322 (2.17%) lung cancer patients. We also detected the 18 deletion type mutations in exon 19, and 25 L858R type mutations in exon 21. There was a tendency towards higher exon 20 insertion ratio in never smoker (never smoker 4.4% versus smoker 1.3%, p=0.0996) and female (female 4.5% versus male 1.3%, p=0.0917). Two exon 20 insertion cases were treated with gefitinib and failed to response. EGFR insertion mutation in exon 20 could not be ignored from Japanese lung cancers.

  14. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications.

    PubMed

    Yasuda, Hiroyuki; Kobayashi, Susumu; Costa, Daniel B

    2012-01-01

    Lung cancer is the leading cause of cancer-related death. The identification of epidermal growth factor receptor (EGFR) somatic mutations defined a new, molecularly classified subgroup of non-small-cell lung cancer (NSCLC). Classic EGFR activating mutations, such as inframe deletions in exon 19 or the Leu858Arg (L858R) point mutation in exon 21 are associated with sensitivity to first generation quinazoline reversible EGFR tyrosine kinase inhibitors (TKIs). EGFR exon 20 insertion mutations, which are typically located after the C-helix of the tyrosine kinase domain of EGFR, may account for up to 4% of all EGFR mutations. Preclinical models have shown that the most prevalent EGFR exon 20 insertion mutated proteins are resistant to clinically achievable doses of reversible (gefitinib, erlotinib) and irreversible (neratinib, afatinib, PF00299804) EGFR TKIs. Growing clinical experience with patients whose tumours harbour EGFR exon 20 insertions corresponds with the preclinical data; very few patients have had responses to EGFR TKIs. Despite the prevalence and biological importance of EEGFR exon 20 insertions, few reports have summarised all preclinical and clinical data on these mutations. Here, we review the literature and provide an update with an emphasis on the structural, molecular, and clinical implications of EGFR exon 20 insertions.

  15. Predictive radiogenomics modeling of EGFR mutation status in lung cancer

    PubMed Central

    Gevaert, Olivier; Echegaray, Sebastian; Khuong, Amanda; Hoang, Chuong D.; Shrager, Joseph B.; Jensen, Kirstin C.; Berry, Gerald J.; Guo, H. Henry; Lau, Charles; Plevritis, Sylvia K.; Rubin, Daniel L.; Napel, Sandy; Leung, Ann N.

    2017-01-01

    Molecular analysis of the mutation status for EGFR and KRAS are now routine in the management of non-small cell lung cancer. Radiogenomics, the linking of medical images with the genomic properties of human tumors, provides exciting opportunities for non-invasive diagnostics and prognostics. We investigated whether EGFR and KRAS mutation status can be predicted using imaging data. To accomplish this, we studied 186 cases of NSCLC with preoperative thin-slice CT scans. A thoracic radiologist annotated 89 semantic image features of each patient’s tumor. Next, we built a decision tree to predict the presence of EGFR and KRAS mutations. We found a statistically significant model for predicting EGFR but not for KRAS mutations. The test set area under the ROC curve for predicting EGFR mutation status was 0.89. The final decision tree used four variables: emphysema, airway abnormality, the percentage of ground glass component and the type of tumor margin. The presence of either of the first two features predicts a wild type status for EGFR while the presence of any ground glass component indicates EGFR mutations. These results show the potential of quantitative imaging to predict molecular properties in a non-invasive manner, as CT imaging is more readily available than biopsies. PMID:28139704

  16. EGFR mutation testing in blood for guiding EGFR tyrosine kinase inhibitor treatment in patients with nonsmall cell lung cancer

    PubMed Central

    Yuan, Jin-Qiu; Zhang, Yue-Lun; Li, Hai-Tao; Mao, Chen

    2017-01-01

    Abstract Background: Epidermal growth factor receptor (EGFR) mutation testing in tumor tissue is now a common practice in selecting non-small cell lung cancer (NSCLC) patients for EGFR tyrosine kinase inhibitor (TKI) treatment. However, tumor tissues are often absent or insufficient for the testing. Blood is a potential substitute providing a noninvasive, easily accessible and repeatedly measureable source of genotypic information. However which is the best blood EGFR mutation testing method remains unclear. We undertake this study to investigate the best blood EGFR mutation testing method for selecting EGFR TKI treatment in patients with NSCLC. Methods: This study was registered in PROSPERO (CRD42017055263). PubMed, EMBASE, Cochrane library, and NIHR Health Technology Assessment program will be searched. Studies fulfill the following criteria will be eligible: (1) randomized controlled trials or cohort studies; (2) included patients with NSCLC; (3) reported response, progression-free survival, or overall survival for EGFR TKI by the EGFR mutation status in blood sample. Diagnostic accuracy of blood EGFR mutation tests for predicting response to TKI will be pooled. Tumor response, progression-free survival, and overall survival according to different blood EGFR mutation testing methods will be evaluated and compared. Results: Based published data and combined analysis, this study will quantitatively compare the blood EGFR mutation testing methods according to their accuracy for predicting treatment response and relationship with clinical outcome in NSCLC patients treated with EGFR TKIs. Conclusion: This protocol will determine the best blood EGFR mutation testing method. PMID:28207548

  17. Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer.

    PubMed

    Castellanos, Emily; Feld, Emily; Horn, Leora

    2016-12-23

    EGFR-mutated NSCLC is a genetically heterogeneous disease that includes more than 200 distinct mutations. The implications of mutational subtype for both prognostic and predictive value are being increasingly understood. Although the most common EGFR mutations-exon 19 deletions or L858R mutations-predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs), it is now being recognized that outcomes may be improved in patients with exon 19 deletions. Additionally, 10% of patients will have an uncommon EGFR mutation, and response to EGFR TKI therapy is highly variable depending on the mutation. Given the growing recognition of the genetic and clinical variation seen in this disease, the development of comprehensive bioinformatics-driven tools to both analyze response in uncommon mutation subtypes and inform clinical decision making will be increasingly important. Clinical trials of novel EGFR TKIs should prospectively account for the presence of uncommon mutation subtypes in study design.

  18. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements

    PubMed Central

    2016-01-01

    The most frequent epidermal growth factor receptor (EGFR) mutations found by traditional or comprehensive molecular profiling of lung adenocarcinomas include indels of exon 19 (the exon 19 deletion delE746_A750 being the most common) and the exon 21 L858R point mutation. The current approval labels for first line palliative gefitinib 250 mg/day, erlotinib 150 mg/day and afatinib 40 mg/day for advanced lung cancers require the presence of the aforementioned classical/sensitizing EGFR mutations. Other gefitinib, erlotinib and afatinib sensitizing mutations include exon 18 indels, G719X, exon 19 insertions, A763_Y764insFQEA, S768I and L861Q; for which off-label EGFR kinase inhibitor use is generally agreed upon by thoracic oncologists. The main biological mechanism of resistance to approved first line EGFR inhibitors is the selection/acquisition of EGFR-T790M that in itself can be inhibited by osimertinib 80 mg/day, a 3rd generation EGFR inhibitor that is bypassed by EGFR-C797X mutations. Another class of de novo inhibitor insensitive mutation includes EGFR exon 20 insertions. More recently, the dichotomy of only point mutations or indels explaining aberrant kinase activation of EGFR plus inhibitor response has been shattered by the discovery of uncommon (<0.5% of all EGFR mutations) genomic events involving exon 18–25 kinase domain duplications (KDD) and rearrangements (EGFR-RAD51 or EGFR-PURB). The latter lead to oncogene addiction, enhanced sensitivity to kinase inhibitors in vitro and clinical responses to approved EGFR inhibitors. The enhanced landscape of EGFR inhibitor-responsive genotypes highlights that comprehensive molecular profiling may be necessary to maximize the identification of all cases that can benefit from precision oncology. PMID:27413714

  19. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements.

    PubMed

    Costa, Daniel B

    2016-06-01

    The most frequent epidermal growth factor receptor (EGFR) mutations found by traditional or comprehensive molecular profiling of lung adenocarcinomas include indels of exon 19 (the exon 19 deletion delE746_A750 being the most common) and the exon 21 L858R point mutation. The current approval labels for first line palliative gefitinib 250 mg/day, erlotinib 150 mg/day and afatinib 40 mg/day for advanced lung cancers require the presence of the aforementioned classical/sensitizing EGFR mutations. Other gefitinib, erlotinib and afatinib sensitizing mutations include exon 18 indels, G719X, exon 19 insertions, A763_Y764insFQEA, S768I and L861Q; for which off-label EGFR kinase inhibitor use is generally agreed upon by thoracic oncologists. The main biological mechanism of resistance to approved first line EGFR inhibitors is the selection/acquisition of EGFR-T790M that in itself can be inhibited by osimertinib 80 mg/day, a 3(rd) generation EGFR inhibitor that is bypassed by EGFR-C797X mutations. Another class of de novo inhibitor insensitive mutation includes EGFR exon 20 insertions. More recently, the dichotomy of only point mutations or indels explaining aberrant kinase activation of EGFR plus inhibitor response has been shattered by the discovery of uncommon (<0.5% of all EGFR mutations) genomic events involving exon 18-25 kinase domain duplications (KDD) and rearrangements (EGFR-RAD51 or EGFR-PURB). The latter lead to oncogene addiction, enhanced sensitivity to kinase inhibitors in vitro and clinical responses to approved EGFR inhibitors. The enhanced landscape of EGFR inhibitor-responsive genotypes highlights that comprehensive molecular profiling may be necessary to maximize the identification of all cases that can benefit from precision oncology.

  20. Identification of a novel HER3 activating mutation homologous to EGFR-L858R in lung cancer

    PubMed Central

    Umelo, Ijeoma; Noeparast, Amir; Chen, Gang; Renard, Marleen; Geers, Caroline; Vansteenkiste, Johan; Giron, Philippe; De Wever, Olivier; Teugels, Erik; De Grève, Jacques

    2016-01-01

    Somatic mutations found within the tyrosine kinase domain (TKD) of the human epidermal growth factor (HER) family of receptors have been implicated in the development and progression of non-small cell lung cancer (NSCLC). However, no conclusive reports have described pathogenic mutations in kinase-impaired HER3. Here, we report a case of an advanced chemotherapy-resistant NSCLC, harboring a novel HER3V855A somatic mutation homologous to the EGFRL858Ractivating mutation. Co-expression of HER3V855A and wild-type HER2 enhances ligand-induced transformation of murine and human cell lines, while HER-targeted inhibitors potently suppress mutant HER3 activity. Consistent with these observations, in silico computational modeling predicts that mutant V855A alters the kinase domain and c-terminal end of the HER3 protein. Taken together, these findings provide a basis for the clinical exploration of targeted therapies in HER3 mutant NSCLC and by extrapolation, in other cancers that more frequently carry somatic HER3 mutations. PMID:26689995

  1. Nickel may contribute to EGFR mutation and synergistically promotes tumor invasion in EGFR-mutated lung cancer via nickel-induced microRNA-21 expression.

    PubMed

    Chiou, Yu-Hu; Liou, Saou-Hsing; Wong, Ruey-Hong; Chen, Chih-Yi; Lee, Huei

    2015-08-19

    We recently reported that nickel accumulation in lung tissues may be associated with an increased in p53 mutation risk via reduced DNA repair activity. Here, we hypothesized that nickel accumulation in lung tissues could contribute to EGFR mutations in never-smokers with lung cancer. We enrolled 76 never-smoking patients to evaluate nickel level in adjacent normal lung tissues by ICP-MS. The prevalence of EGFR mutations was significantly higher in the high-nickel subgroup than in the low-nickel subgroup. Intriguingly, the OR for the occurrence of EGFR mutations in female, adenocarcinoma, and female adenocarcinoma patients was higher than that of all patients. Mechanistically, SPRY2 and RECK expressions were decreased by nickel-induced miR-21 via activation of the EGFR/NF-κB signaling pathway, which promoted invasiveness in lung cancer cells, and particularly in the cells with EGFR L858R expression vector transfection. The patients' nickel levels were associated with miR-21 expression levels. Kaplan-Meier analysis revealed poorer overall survival (OS) and shorter relapse free survival (RFS) in the high-nickel subgroup than in low-nickel subgroup. The high-nickel/high-miR-21 subgroup had shorter OS and RFS periods when compared to the low-nickel/low-miR-21 subgroup. Our findings support previous epidemiological studies indicating that nickel exposure may not only contribute to cancer incidence but also promote tumor invasion in lung cancer.

  2. Pooled analysis of clinical outcome for EGFR TKI-treated patients with EGFR mutation-positive NSCLC

    PubMed Central

    Paz-Ares, Luis; Soulières, Denis; Moecks, Joachim; Bara, Ilze; Mok, Tony; Klughammer, Barbara

    2014-01-01

    Patients with non-small-cell lung cancer (NSCLC) appear to gain particular benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKI) if their disease tests positive for EGFR activating mutations. Recently, several large, controlled, phase III studies have been published in NSCLC patients with EGFR mutation-positive tumours. Given the increased patient dataset now available, a comprehensive literature search for EGFR TKIs or chemotherapy in EGFR mutation-positive NSCLC was undertaken to update the results of a previously published pooled analysis. Pooling eligible progression-free survival (PFS) data from 27 erlotinib studies (n = 731), 54 gefitinib studies (n = 1802) and 20 chemotherapy studies (n = 984) provided median PFS values for each treatment. The pooled median PFS was: 12.4 months (95% accuracy intervals [AI] 11.6–13.4) for erlotinib-treated patients; 9.4 months (95% AI 9.0–9.8) for gefitinib-treated patients; and 5.6 months (95% AI 5.3–6.0) for chemotherapy. Both erlotinib and gefitinib resulted in significantly longer PFS than chemotherapy (permutation testing; P = 0.000 and P = 0.000, respectively). Data on more recent TKIs (afatinib, dacomitinib and icotinib) were insufficient at this time-point to carry out a pooled PFS analysis on these compounds. The results of this updated pooled analysis suggest a substantial clear PFS benefit of treating patients with EGFR mutation-positive NSCLC with erlotinib or gefitinib compared with chemotherapy. PMID:25100284

  3. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer.

    PubMed

    Wang, Shuhang; Cang, Shundong; Liu, Delong

    2016-04-12

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are widely used in patients with non-small cell lung cancer (NSCLC). However, EGFR T790M mutation leads to resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation have been in active clinical development. These agents include osimertinib, rociletinib, HM61713, ASP8273, EGF816, and PF-06747775. Osimertinib and rociletinib have shown clinical efficacy in phase I/II trials in patients who had acquired resistance to first- or second-generation TKIs. Osimertinib (AZD9291, TAGRISSO) was recently approved by FDA for metastatic EGFR T790M mutation-positive NSCLC. HM61713, ASP8237, EGF816, and PF-06747775 are still in early clinical development. This article reviews the emerging data regarding third-generation agents against EGFR T790M mutation in the treatment of patients with advanced NSCLC.

  4. Gene mutation analysis in EGFR wild type NSCLC responsive to erlotinib: are there features to guide patient selection?

    PubMed

    Ulivi, Paola; Delmonte, Angelo; Chiadini, Elisa; Calistri, Daniele; Papi, Maximilian; Mariotti, Marita; Verlicchi, Alberto; Ragazzini, Angela; Capelli, Laura; Gamboni, Alessandro; Puccetti, Maurizio; Dubini, Alessandra; Burgio, Marco Angelo; Casanova, Claudia; Crinò, Lucio; Amadori, Dino; Dazzi, Claudio

    2014-12-31

    Tyrosine kinase inhibitors (TKIs) are very efficacious in non-small-cell lung cancer (NSCLC) patients harboring activating Epidermal Growth Factor Receptor (EGFR) mutations. However, about 10% of EGFR wild type (wt) patients respond to TKI, with unknown molecular mechanisms of sensitivity. We considered a case series of 34 EGFR wt NSCLC patients responsive to erlotinib after at least one line of therapy. Responsive patients were matched with an equal number of non-responsive EGFR wt patients. A panel of 26 genes, for a total of 214 somatic mutations, was analyzed by MassARRAY® System (Sequenom, San Diego, CA, USA). A 15% KRAS mutation was observed in both groups, with a prevalence of G12C in non-responders (80% vs. 40% in responders). NOTCH1, p53 and EGFR-resistance-related mutations were found more frequently in non-responders, whereas EGFR-sensitizing mutations and alterations in genes involved in proliferation pathways were more frequent in responders. In conclusion, our findings indicate that p53, NOTCH1 and exon 20 EGFR mutations seem to be related to TKI resistance. KRAS mutations do not appear to influence the TKI response, although G12C mutation is more frequent in non-responders. Finally, the use of highly sensitive methodologies could lead to the identification of under-represented EGFR mutations potentially associated with TKI sensitivity.

  5. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer.

    PubMed

    Yasuda, Hiroyuki; Park, Eunyoung; Yun, Cai-Hong; Sng, Natasha J; Lucena-Araujo, Antonio R; Yeo, Wee-Lee; Huberman, Mark S; Cohen, David W; Nakayama, Sohei; Ishioka, Kota; Yamaguchi, Norihiro; Hanna, Megan; Oxnard, Geoffrey R; Lathan, Christopher S; Moran, Teresa; Sequist, Lecia V; Chaft, Jamie E; Riely, Gregory J; Arcila, Maria E; Soo, Ross A; Meyerson, Matthew; Eck, Michael J; Kobayashi, Susumu S; Costa, Daniel B

    2013-12-18

    Epidermal growth factor receptor (EGFR) gene mutations (G719X, exon 19 deletions/insertions, L858R, and L861Q) predict favorable responses to EGFR tyrosine kinase inhibitors (TKIs) in advanced non-small cell lung cancer (NSCLC). However, EGFR exon 20 insertion mutations (~10% of all EGFR mutations) are generally associated with insensitivity to available TKIs (gefitinib, erlotinib, and afatinib). The basis of this primary resistance is poorly understood. We studied a broad subset of exon 20 insertion mutations, comparing in vitro TKI sensitivity with responses to gefitinib and erlotinib in NSCLC patients, and found that most are resistant to EGFR TKIs. The crystal structure of a representative TKI-insensitive mutant (D770_N771insNPG) reveals an unaltered adenosine triphosphate-binding pocket, and the inserted residues form a wedge at the end of the C helix that promotes the active kinase conformation. Unlike EGFR-L858R, D770_N771insNPG activates EGFR without increasing its affinity for EGFR TKIs. Unexpectedly, we find that EGFR-A763_Y764insFQEA is highly sensitive to EGFR TKIs in vitro, and patients whose NSCLCs harbor this mutation respond to erlotinib. Analysis of the A763_Y764insFQEA mutant indicates that the inserted residues shift the register of the C helix in the N-terminal direction, altering the structure in the region that is also affected by the TKI-sensitive EGFR-L858R. Our studies reveal intricate differences between EGFR mutations, their biology, and their response to EGFR TKIs.

  6. Synchronous occurrence of squamous-cell carcinoma "transformation" and EGFR exon 20 S768I mutation as a novel mechanism of resistance in EGFR-mutated lung adenocarcinoma.

    PubMed

    Longo, Lucia; Mengoli, Maria Cecilia; Bertolini, Federica; Bettelli, Stefania; Manfredini, Samantha; Rossi, Giulio

    2017-01-01

    The occurrence of secondary EGFR mutation T790M in exon 20 and histologic "transformation" are common mechanisms underlying resistance to EGFR first- or second-generation tyrosine kinase inhibitors (TKI). We describe here on a hitherto unreported mechanism of EGFR TKI resistance synchronously combining squamous-cell carcinoma change and occurrence of the EGFR exon 20 S768I secondary mutation in a 43 year-old woman with stage IV adenocarcinoma harbouring EGFR exon 21 L858R mutation. After 8 months of response to gefitinib, the patient experienced EGFR TKI resistance and died of leptomeningeal neoplastic dissemination.

  7. Should EGFR tyrosine kinase inhibitors be used in non-small cell lung cancer in the absence of EGFR mutations? No, EGFR TKIs should be reserved for patients with EGFR mutations.

    PubMed

    Riely, Gregory J

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) that block epidermal growth factor receptor (EGFR) clearly work best in patients who have non-small cell lung cancer (NSCLC) with EGFR mutations, but are they worth using in patients without these mutations? In this month's Counterpoints, Dr Frances A. Shepherd says that there is a role for EGFR TKIs in patients with wild-type EGFR disease. Dr Gregory J. Riely, however, says that the level of toxicity associated with EGFR TKIs outweighs any slight chance of benefit for these patients, who have multiple other treatment options.

  8. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer

    PubMed Central

    Del Re, Marzia; Danesi, Romano; Tiseo, Marcello

    2015-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are current treatments for advanced non-small cell lung cancer (NSCLC) harboring activating EGFR gene mutations. Histological or cytological samples are the standard tumor materials for EGFR mutation analysis. However, the accessibility of tumor samples is not always possible and satisfactory in advanced NSCLC patients. Moreover, totality of EGFR mutated NSCLC patients will develop resistance to EGFR-TKIs. Repeat biopsies to study genetic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumor heterogeneity. Thus, exploring accurate and less invasive techniques to (I) diagnosis EGFR mutation if tissue is not available or not appropriate for molecular analysis and to (II) monitor EGFR-TKI treatment are needed. Circulating DNA fragments carrying tumor specific sequence alterations [circulating cell-free tumor DNA (cftDNA)] are found in the cell-free fraction of blood, representing a variable and generally small fraction of the total circulating DNA. cftDNA has a high degree of specificity to detect EGFR gene mutations in NSCLC. Studies have shown the feasibility of using cftDNA to diagnosis of EGFR activating gene mutations and also to monitor tumor dynamics in NSCLC patients treated with EGFR-TKIs. These evidences suggested that non-invasive techniques based on blood samples had a great potential in EGFR mutated NSCLC patients. In this review, we summarized these non-invasive approaches and relative scientific data now available, considering their possible applications in clinical practice of NSCLC treatment. PMID:26629427

  9. Activity of pemetrexed and high-dose gefitinib in an EGFR-mutated lung adenocarcinoma with brain and leptomeningeal metastasis after response to gefitinib

    PubMed Central

    2012-01-01

    About 20% to 40% of patients with non-small cell lung cancer (NSCLC) will develop brain metastases during the natural course of their disease. The prognosis for such patients is very poor with limited survival. In addition to the standard whole brain radiation therapy (WBRT), some studies have shown that chemotherapy drugs and/or epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) can improve the outcome of these patients. Here, we report a stage IIIA patient who developed multiple brain metastases one year after operation. Oral gefitinib with concurrent WBRT were given as first-line therapy. Complete response and a 50-month progression-free survival (PFS) were obtained. Double dosage of gefitinib (500 mg per day) together with pemetrexed were given as the second-line therapy after the patient developed new brain lesions and leptomeningeal metastasis during the maintenance therapy of gefitinib. The PFS for the second-line therapy was six months. In total, the patient obtained an overall survival of 59 months since the first diagnosis of brain metastases. Mutational analysis showed a 15-nucleotide deletion and a missense mutation in exon 19 of the EGFR gene, and a missense mutation at codon 12 of the K-ras gene. These underlying genetic changes might partially explain the long-term survival of this patient after brain metastases when treated with concurrent or sequential therapies of EGFR-TKI, radiotherapy and chemotherapy. PMID:23134665

  10. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M.

    PubMed

    Thress, Kenneth S; Paweletz, Cloud P; Felip, Enriqueta; Cho, Byoung Chul; Stetson, Daniel; Dougherty, Brian; Lai, Zhongwu; Markovets, Aleksandra; Vivancos, Ana; Kuang, Yanan; Ercan, Dalia; Matthews, Sarah E; Cantarini, Mireille; Barrett, J Carl; Jänne, Pasi A; Oxnard, Geoffrey R

    2015-06-01

    Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.

  11. LDA-SVM-based EGFR mutation model for NSCLC brain metastases: an observational study.

    PubMed

    Hu, Nan; Wang, Ge; Wu, Yu-Hao; Chen, Shi-Feng; Liu, Guo-Dong; Chen, Chuan; Wang, Dong; He, Zhong-Shi; Yang, Xue-Qin; He, Yong; Xiao, Hua-Liang; Huang, Ding-De; Xiong, Kun-Lin; Wu, Yan; Huang, Ming; Yang, Zhen-Zhou

    2015-02-01

    Epidermal growth factor receptor (EGFR) activating mutations are a predictor of tyrosine kinase inhibitor effectiveness in the treatment of non-small-cell lung cancer (NSCLC). The objective of this study is to build a model for predicting the EGFR mutation status of brain metastasis in patients with NSCLC. Observation and model set-up. This study was conducted between January 2003 and December 2011 in 6 medical centers in Southwest China. The study included 31 NSCLC patients with brain metastases. Eligibility requirements were histological proof of NSCLC, as well as sufficient quantity of paraffin-embedded lung and brain metastases specimens for EGFR mutation detection. The linear discriminant analysis (LDA) method was used for analyzing the dimensional reduction of clinical features, and a support vector machine (SVM) algorithm was employed to generate an EGFR mutation model for NSCLC brain metastases. Training-testing-validation (3 : 1 : 1) processes were applied to find the best fit in 12 patients (validation test set) with NSCLC and brain metastases treated with a tyrosine kinase inhibitor and whole-brain radiotherapy. Primary and secondary outcome measures: EGFR mutation analysis in patients with NSCLC and brain metastases and the development of a LDA-SVM-based EGFR mutation model for NSCLC brain metastases patients. EGFR mutation discordance between the primary lung tumor and brain metastases was found in 5 patients. Using LDA, 13 clinical features were transformed into 9 characteristics, and 3 were selected as primary vectors. The EGFR mutation model constructed with SVM algorithms had an accuracy, sensitivity, and specificity for determining the mutation status of brain metastases of 0.879, 0.886, and 0.875, respectively. Furthermore, the replicability of our model was confirmed by testing 100 random combinations of input values. The LDA-SVM-based model developed in this study could predict the EGFR status of brain metastases in this small cohort of

  12. AC0010, an Irreversible EGFR Inhibitor Selectively Targeting Mutated EGFR and Overcoming T790M-Induced Resistance in Animal Models and Lung Cancer Patients.

    PubMed

    Xu, Xiao; Mao, Long; Xu, Wanhong; Tang, Wei; Zhang, Xiaoying; Xi, Biao; Xu, Rongda; Fang, Xin; Liu, Jia; Fang, Ce; Zhao, Li; Wang, Xiaobo; Jiang, Ji; Hu, Pei; Zhao, Hongyun; Zhang, Li

    2016-11-01

    AC0010 is a pyrrolopyrimidine-based irreversible EGFR inhibitor, structurally distinct from previously reported pyrimidine-based irreversible EGFR inhibitors, such as osimertinib and rociletinib. AC0010 selectively inhibits EGFR-active and T790M mutations with up to 298-fold increase in potency compared with wild-type EGFR. In a xenograft model, oral administration of AC0010 at a daily dose of 500 mg/kg resulted in complete remission of tumors with EGFR-active and T790M mutations for over 143 days with no weight loss. Three major metabolites of AC0010 were tested and showed no wild-type EGFR inhibition or off-target effects, such as inhibition of IGF-1R. AC0010 is safe in non-small cell lung cancer (NSCLC) patients at a dose range between 50 and 550 mg once per day, and no hyperglycemia or other severe adverse effects were detected, such as grade 3 QT prolongation. The objective responses were observed in NSCLC patients with EGFR T790M mutation. Mol Cancer Ther; 15(11); 2586-97. ©2016 AACR.

  13. Unravelling signal escape through maintained EGFR activation in advanced non-small cell lung cancer (NSCLC): new treatment options.

    PubMed

    Remon, Jordi; Besse, Benjamin

    2016-01-01

    The discovery of activating epidermal growth factor receptor (EGFR) mutations has opened up a new era in the development of more effective treatments for patients with non-small cell lung cancer (NSCLC). However, patients with EGFR-activating mutated NSCLC treated with EGFR tyrosine kinase inhibitors (TKIs) ultimately develop acquired resistance (AR). Among known cases of patients with AR, 70% of the mechanisms involved in the development of AR to EGFR TKI have been identified and may be categorised as either secondary EGFR mutations such as the T790M mutation, activation of bypass track signalling pathways such as MET amplification, or histologic transformation. EGFR-mutant NSCLC tumours maintain oncogenic addiction to the EGFR pathway beyond progression with EGFR TKI. Clinical strategies that can be implemented in daily clinical practice to potentially overcome this resistance and prolong the outcome in this subgroup of patients are presented.

  14. Unravelling signal escape through maintained EGFR activation in advanced non-small cell lung cancer (NSCLC): new treatment options

    PubMed Central

    Remon, Jordi; Besse, Benjamin

    2016-01-01

    The discovery of activating epidermal growth factor receptor (EGFR) mutations has opened up a new era in the development of more effective treatments for patients with non-small cell lung cancer (NSCLC). However, patients with EGFR-activating mutated NSCLC treated with EGFR tyrosine kinase inhibitors (TKIs) ultimately develop acquired resistance (AR). Among known cases of patients with AR, 70% of the mechanisms involved in the development of AR to EGFR TKI have been identified and may be categorised as either secondary EGFR mutations such as the T790M mutation, activation of bypass track signalling pathways such as MET amplification, or histologic transformation. EGFR-mutant NSCLC tumours maintain oncogenic addiction to the EGFR pathway beyond progression with EGFR TKI. Clinical strategies that can be implemented in daily clinical practice to potentially overcome this resistance and prolong the outcome in this subgroup of patients are presented. PMID:27843631

  15. Association of EGFR Exon 19 Deletion and EGFR-TKI Treatment Duration with Frequency of T790M Mutation in EGFR-Mutant Lung Cancer Patients

    PubMed Central

    Matsuo, Norikazu; Azuma, Koichi; Sakai, Kazuko; Hattori, Satoshi; Kawahara, Akihiko; Ishii, Hidenobu; Tokito, Takaaki; Kinoshita, Takashi; Yamada, Kazuhiko; Nishio, Kazuto; Hoshino, Tomoaki

    2016-01-01

    The most common event responsible for resistance to first- and second-generation (1st and 2nd) epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) is acquisition of T790M mutation. We examined whether T790M is related to clinicopathologic or prognostic factors in patients with relapse of EGFR mutant non-small cell lung cancer (NSCLC) after treatment with 1st or 2nd EGFR-TKIs. We retrospectively reviewed the T790M status and clinical characteristics of 73 patients with advanced or recurrent NSCLC who had been treated with EGFR-TKIs and undergone rebiopsy at Kurume University Hospital between March 2005 and December 2015. T790M mutation was more frequent in patients with EGFR exon 19 deletion mutation (63%, 26/41) than in those with L858R mutation (38%, 12/32) (p = 0.035). The median total duration of 1st or 2nd EGFR-TKI treatment was significantly longer in patients with T790M mutation than in those without (15.3 months vs 8.1 months, p < 0.001). Multivariate analysis revealed that the type of EGFR mutation and the total duration of EGFR-TKI treatment were significantly associated with T790M prevalence. Patients with EGFR exon 19 deletion mutation who receive long-term EGFR-TKI therapy show a high prevalence of T790M mutation. The present data are potentially important for clinical decision-making in NSCLC patients with EGFR mutation. PMID:27811988

  16. The content of mutant EGFR DNA correlates with response to EGFR-TKIs in lung adenocarcinoma patients with common EGFR mutations.

    PubMed

    Hung, Ming-Szu; Lung, Jr-Hau; Lin, Yu-Ching; Fang, Yu-Hung; Hsieh, Meng-Jer; Tsai, Ying-Huang

    2016-06-01

    This study aimed to elucidate the association of the content of mutant epidermal growth factor receptor (EGFR) deoxyribonucleic acid (DNA) with the treatment response to EGFR-tyrosine kinase inhibitor (TKI) and survival in patients with lung cancer.This retrospective cohort study included 77 lung adenocarcinoma patients with common EGFR mutations from December 2012 to February 2015. The content of mutant EGFR DNA in lung cancer tissues was determined using an Amplification Refractory Mutation System. The association of the amount of mutant EGFR DNA with treatment response, the clinical variables, and the progression-free survival (PFS) after EGFR-TKI therapy were evaluated.Using the amount of mutant EGR DNA above 4.77% as the cut-off value, the sensitivity to predict EGFR-TKI responder is 82.0% and the specificity is 75.0% (area under the curve [AUC]: 0.734, P = 0.003). The high content of mutant EGFR DNA is an independent factor associated with the response to EGFR-TKIs (odds ratio: 13.07, 95% confidence interval [CI]: 3.23-52.11, P = 0.0003). A significantly longer PFS was observed in the group with the high content of mutant EGFR DNA (26.3 months, 95% CI: 12.2-26.3) compared with the low content of mutant EGFR DNA groups (12.3 months, 95% CI: 5.7-14.8, P = 0.0155). A better predictive value of the content of mutant EGFR DNA was noted in patients with exon 19 deletions (AUC: 0.892, P < 0.0001) than exon 21 L858R mutations (AUC: 0.675, P = 0.0856).Our results show that the content of mutant EGFR DNA is associated with the clinical response to EGFR-TKIs, especially in patients with exon 19 deletions mutation.

  17. Next-generation EGFR/HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: a review of the evidence

    PubMed Central

    Wang, Xiaochun; Goldstein, David; Crowe, Philip J; Yang, Jia-Lin

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) against human epidermal growth factor receptor (EGFR/HER) family have been introduced into the clinic to treat cancers, particularly non-small-cell lung cancer (NSCLC). There have been three generations of the EGFR/HER-TKIs. First-generation EGFR/HER-TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR TK domain, show a significant breakthrough treatment in selected NSCLC patients with activating EGFR mutations (actEGFRm) EGFRL858R and EGFRDel19, in terms of safety, efficacy, and quality of life. However, all those responders inevitably develop acquired resistance within 12 months, because of the EGFRT790M mutation, which prevents TKI binding to ATP-pocket of EGFR by steric hindrance. The second-generation EGFR/HER-TKIs were developed to prolong and maintain more potent response as well as overcome the resistance to the first-generation EGFR/HER-TKIs. They are different from the first-generation EGFR/HER-TKIs by covalently binding to the ATP-binding site, irreversibly blocking enzymatic activation, and targeting EGFR/HER family members, including EGFR, HER2, and HER4. Preclinically, these compounds inhibit the enzymatic activation for actEGFRm, EGFRT790M, and wtEGFR. The second-generation EGFR/HER-TKIs improve overall survival in cancer patients with actEGFRm in a modest way. However, they are not clinically active in overcoming EGFRT790M resistance, mainly because of dose-limiting toxicity due to simultaneous inhibition against wtEGFR. The third-generation EGFR/HER-TKIs selectively and irreversibly target EGFRT790M and actEGFRm while sparing wtEGFR. They yield promising efficacy in NSCLC patients with actEGFRm as well as EGFRT790M resistant to the first- and second-generation EGFR-TKIs. They also appear to have a lower incidence of toxicity due to the reduced inhibitory effect on wtEGFR. Currently, the first-generation EGFR/HER-TKIs gefitinib and erlotinib and second-generation EGFR/HER-TKI afatinib have

  18. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations

    PubMed Central

    Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-01-01

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK. PMID:27533086

  19. The epidermal growth factor receptor (EGFR / HER-1) gatekeeper mutation T790M is present in European patients with early breast cancer.

    PubMed

    Bemanian, Vahid; Sauer, Torill; Touma, Joel; Lindstedt, Bjørn Arne; Chen, Ying; Ødegård, Hilde Presterud; Vetvik, Katja Marjaana; Bukholm, Ida Rashida; Geisler, Jürgen

    2015-01-01

    The epidermal growth factor receptor (EGFR) is one of the major oncogenes identified in a variety of human malignancies including breast cancer (BC). EGFR-mutations have been studied in lung cancer for some years and are established as important markers in guiding therapy with tyrosine kinase inhibitors (TKIs). In contrast, EGFR-mutations have been reported to be rare if not absent in human BC, although recent evidence has suggested a significant worldwide variation in somatic EGFR-mutations. Therefore, we investigated the presence of EGFR-mutations in 131 norwegian patients diagnosed with early breast cancer using real-time PCR methods. In the present study we identified three patients with an EGFR-T790M-mutation. The PCR-findings were confirmed by direct Sanger sequencing. Two patients had triple-negative BC (TNBC) while the third was classified as luminal-A subtype. The difference in incidence of T790M mutations comparing the TNBC subgroup with the other BC subgroups was statistical significant (P = 0.023). No other EGFR mutations were identified in the entire cohort. Interestingly, none of the patients had received any previous cancer treatment. To our best knowledge, the EGFR-T790M-TKI-resistance mutation has not been previously detected in breast cancer patients. Our findings contrast with the observations made in lung cancer patients where the EGFR-T790M-mutation is classified as a typical "second mutation"causing resistance to TKI-therapy during ongoing anticancer therapy. In conclusion, we have demonstrated for the first time that the EGFR-T790M-mutation occurs in primary human breast cancer patients. In the present study the EGFR-T790M mutation was not accompanied by any simultaneous EGFR-activating mutation.

  20. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer.

    PubMed

    Hirano, Toshiyuki; Yasuda, Hiroyuki; Tani, Tetsuo; Hamamoto, Junko; Oashi, Ayano; Ishioka, Kota; Arai, Daisuke; Nukaga, Shigenari; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Costa, Daniel B; Kobayashi, Susumu S; Betsuyaku, Tomoko; Soejima, Kenzo

    2015-11-17

    EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the "therapeutic window" of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations.

  1. Afatinib versus cisplatin plus pemetrexed in Japanese patients with advanced non-small cell lung cancer harboring activating EGFR mutations: Subgroup analysis of LUX-Lung 3

    PubMed Central

    Kato, Terufumi; Yoshioka, Hiroshige; Okamoto, Isamu; Yokoyama, Akira; Hida, Toyoaki; Seto, Takashi; Kiura, Katsuyuki; Massey, Dan; Seki, Yoko; Yamamoto, Nobuyuki

    2015-01-01

    In LUX-Lung 3, afatinib significantly improved progression-free survival (PFS) versus cisplatin/pemetrexed in EGFR mutation-positive lung adenocarcinoma patients and overall survival (OS) in Del19 patients. Preplanned analyses in Japanese patients from LUX-Lung 3 were performed. Patients were randomized 2:1 to afatinib or cisplatin/pemetrexed, stratified by mutation type (Del19/L858R/Other). Primary endpoint was PFS (independent review). Secondary endpoints included OS, objective response, and safety. Median PFS (data cut-off: February 2012) for afatinib versus cisplatin/pemetrexed was 13.8 vs 6.9 months (hazard ratio [HR], 0.38; 95% confidence interval [CI], 0.20–0.70; P = 0.0014) in all Japanese patients (N = 83), with more pronounced improvements in those with common mutations (Del19/L858R; HR, 0.28; 95% CI, 0.15–0.52; P < 0.0001) and Del19 mutations (HR, 0.16; 95% CI, 0.06–0.39; P < 0.0001). PFS was also improved in L858R patients (HR, 0.50; 95% CI, 0.20–1.25; P = 0.1309). Median OS (data cut-off: November 2013) with afatinib versus cisplatin/pemetrexed was 46.9 vs 35.8 months (HR, 0.75; 95% CI, 0.40–1.43; P = 0.3791) in all Japanese patients, with greater benefit in patients with common mutations (HR, 0.57; 95% CI, 0.29–1.12; P = 0.0966) and Del19 mutations (HR, 0.34; 95% CI, 0.13–0.87; P = 0.0181); OS was not significantly different in L858R patients (HR, 1.13; 95% CI, 0.40–3.21; P = 0.8212). Following study treatment discontinuation, most patients (93.5%) received subsequent anticancer therapy. The most common treatment-related adverse events were diarrhea, rash/acne, nail effects and stomatitis with afatinib and nausea, decreased appetite, neutropenia, and leukopenia with cisplatin/pemetrexed. Afatinib significantly improved PFS versus cisplatin/pemetrexed in Japanese EGFR mutation-positive lung adenocarcinoma patients and OS in Del19 but not L858R patients (www.clinicaltrials.gov; NCT00949650). PMID:26094656

  2. Impact of bevacizumab in combination with erlotinib on EGFR-mutated non-small cell lung cancer xenograft models with T790M mutation or MET amplification.

    PubMed

    Furugaki, Koh; Fukumura, Junko; Iwai, Toshiki; Yorozu, Keigo; Kurasawa, Mitsue; Yanagisawa, Mieko; Moriya, Yoichiro; Yamamoto, Kaname; Suda, Kenichi; Mizuuchi, Hiroshi; Mitsudomi, Tetsuya; Harada, Naoki

    2016-02-15

    Erlotinib (ERL), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, shows notable efficacy against non-small cell lung cancer (NSCLC) harboring EGFR mutations. Bevacizumab (BEV), a humanized monoclonal antibody to vascular endothelial cell growth factor (VEGF), in combination with ERL (BEV+ERL) significantly extended progression-free survival in patients with EGFR-mutated NSCLC compared with ERL alone. However, the efficacy of BEV+ERL against EGFR-mutated NSCLC harboring T790M mutation or MET amplification, is unclear. Here, we examined the antitumor activity of BEV+ERL in four xenograft models of EGFR-mutated NSCLC (three harboring ERL resistance mutations). In the HCC827 models (exon 19 deletion: DEL), ERL significantly inhibited tumor growth by blocking EGFR signal transduction. Although there was no difference between ERL and BEV+ERL in maximum tumor growth inhibition, BEV+ERL significantly suppressed tumor regrowth during a drug-cessation period. In the HCC827-EPR model (DEL+T790M) and HCC827-vTR model (DEL+MET amplification), ERL reduced EGFR signal transduction and showed less pronounced but still significant tumor growth inhibition than in the HCC827 model. In these models, tumor growth inhibition was significantly stronger with BEV+ERL than with each single agent. In the NCI-H1975 model (L858R+T790M), ERL did not inhibit growth or EGFR signal transduction, and BEV+ERL did not inhibit growth more than BEV. BEV alone significantly decreased microvessel density in each tumor. In conclusion, addition of BEV to ERL did not enhance antitumor activity in primarily ERL-resistant tumors with T790M mutation; however, BEV+ERL enhanced antitumor activity in T790M mutation- or MET amplification-positive tumors as long as their growth remained significantly suppressed by ERL.

  3. Concurrent EGFR Mutation and ALK Translocation in Non-Small Cell Lung Cancer

    PubMed Central

    Thomas, Sachdev; Bank, Bruce; Fishkin, Paul; Mooney, Colin; Salgia, Ravi

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic large-cell lymphoma kinase (ALK) rearrangements are now routine biomarkers that have been incorporated into the practice of managing non-small cell lung cancer (NSCLC). Historically, the two molecular alterations have been viewed as mutually exclusive, but recent identified cases suggest otherwise. In this report, we describe cases of lung cancer with concurrent EGFR mutation and ALK rearrangement and identify their clinical characteristics. Non-small cell lung cancer patients with multiple molecular alterations were retrospectively analyzed from an academic referral center from 2011–2013. An additional review was conducted of reported cases with dual alterations. Four cases of NSCLC with alterations in both EGFR and ALK were identified and evaluated with 16 published cases for a total of 20 cases. The age of patients ranged from 37 to 77 years. Nine patients were never smokers. The disease control rates in patients treated with EGFR inhibitors and ALK inhibitors were 46% (6/13) and 71% (5/7), respectively. This series highlights the importance of comprehensive molecular profiling of newly diagnosed lung cancer, as NSCLC may be driven by concurrent molecular alterations. EGFR- and ALK-targeted therapies appear to have modest activity in patients with tumors possessing both alterations. Dual-altered NSCLC patients may have distinct clinical characteristics warranting further study. Combination targeted therapy or novel multi-targeted tyrosine kinase inhibitors may prove important in these patients, though necessary studies remain ongoing. PMID:27026837

  4. Influence of Chemotherapy on EGFR Mutation Status Among Patients With Non–Small-Cell Lung Cancer

    PubMed Central

    Bai, Hua; Wang, Zhijie; Chen, Keneng; Zhao, Jun; Lee, J. Jack; Wang, Shuhang; Zhou, Qinghua; Zhuo, Minglei; Mao, Li; An, Tongtong; Duan, Jianchun; Yang, Lu; Wu, Meina; Liang, Zhen; Wang, Yuyan; Kang, Xiaozheng; Wang, Jie

    2012-01-01

    Purpose EGFR mutation is a predictor of epidermal growth factor receptor–tyrosine kinase inhibitor treatment response in patients with non–small-cell lung cancer (NSCLC). However, it remains unclear whether chemotherapy affects EGFR mutation status in NSCLC. We investigated the influence of chemotherapy on EGFR mutations in plasma and tumor tissues from patients with NSCLC. Patients and Methods Samples were derived from three cohorts: one, 264 patients with advanced NSCLC who received first-line chemotherapy with matched pre- and postchemotherapy blood samples; two, 63 patients with stages IIb to IIIb disease with pre– and post–neoadjuvant chemotherapy tumor tissues; and three, 79 patients with advanced NSCLC who underwent palliative surgery. EGFR mutation status was determined and analyzed to reveal potential impact of chemotherapy. Results In the first cohort, EGFR mutations were detected in 34.5% of the prechemotherapy plasma samples (91 of 264) but in only 23.1% of the postchemotherapy plasma samples (61 of 264). The decrease in EGFR mutation rate was statistically significant (P < .001). Patients whose EGFR mutations switched from positive to negative after chemotherapy had a better partial response (PR) than patients with a reverse change (P = .037). A similar decrease in EGFR mutation rate was observed in tissues after neoadjuvant chemotherapy in the second cohort (34.9% [22 of 63] v 19.0% [12 of 63]; P = .013). In the third cohort, 38.0% of the tumors (30 of 79) showed an intratumor heterogeneity of EGFR mutation, whereas 62.0% (49 of 79) were homogeneous, either with EGFR mutation or no mutation. Conclusion Our results suggest that chemotherapy may reduce EGFR mutation frequency in patients with NSCLC, likely the result of a preferential response of subclones with EGFR mutations in tumors with heterogeneous tumor cell populations. PMID:22826274

  5. EGFR mutation testing on cytological and histological samples in non-small cell lung cancer: a Polish, single institution study and systematic review of European incidence.

    PubMed

    Szumera-Ciećkiewicz, Anna; Olszewski, Włodzimierz T; Tysarowski, Andrzej; Kowalski, Dariusz M; Głogowski, Maciej; Krzakowski, Maciej; Siedlecki, Janusz A; Wągrodzki, Michał; Prochorec-Sobieszek, Monika

    2013-01-01

    The targeted treatment of advanced non-small-cell lung cancer (NSCLC) depends on confirmation of activating somatic EGFR mutation. The aim of the study was to evaluate the incidence of EGFR mutations in NSCLC detected in cytological and histological material and present literature review on European EGFR mutation incidence. 273 patients with confirmed NSCLC were entered into the study: 189 histological, paraffin-embedded materials, 12 fresh and 72 fixed cytological specimens. DNA was extracted from both types of material and the EGFR mutation in exons 18-21 was analyzed by direct sequencing. In addition the EGFR gene copy number in cases with sufficient histological material (110 patients) was evaluated by fluorescent in situ hybridization (FISH) technique. The percentage of EGFR somatic mutations was 10.62%. FISH positive results (amplification or high polysomy of EGFR gene) were identified in 33 patients (30.0%). The strongest clinicopathological correlation with the EGFR mutation was found for histological type (adenocarcinoma; p < 0.01), gender (females; p < 0.01) and FISH positive result (p < 0.05). This is the first, single institution study that estimates the EGFR mutation incidence in the Polish population. Cytological material recovered from fixed preparations and stained with hematoxylin and eosin showed DNA quality comparable to fresh tumor cells and histological samples.

  6. EGFR and HER2 signals play a salvage role in MEK1-mutated gastric cancer after MEK inhibition.

    PubMed

    Mizukami, Takuro; Togashi, Yosuke; Sogabe, Shunsuke; Banno, Eri; Terashima, Masato; De Velasco, Marco A; Sakai, Kazuko; Fujita, Yoshihiko; Tomida, Shuta; Nakajima, Takako Eguchi; Boku, Narikazu; Nishio, Kazuto

    2015-08-01

    Since the prognosis of unresectable advanced gastric cancer remains poor, novel therapeutic strategies are needed. Somatic MEK1 gene mutations have been reported as oncogenic activating mutations in gastric cancer, and MEK inhibitors can be effective against such gastric cancers. In the present study, however, activated EGFR and HER2 signals after treatment with a MEK inhibitor (trametinib) were found in a MEK1-mutated gastric cancer cell line (OCUM-1 cell line) using a phospho-receptor tyrosine kinase array. The phosphorylation of EGFR and HER2 reactivated ERK1/2, which had been inhibited by trametinib, and EGF stimulation led to resistance to trametinib in this cell line. Lapatinib, an EGFR and an HER2 inhibitor, reversed the activation of ERK1/2 by inhibiting the phosphorylation of EGFR and HER2 and cancelled the resistance. The combination of trametinib and lapatinib synergistically inhibited the cell growth of the OCUM-1 cell line and strongly induced apoptosis by inhibiting the activated EGFR and HER2 signals. These results suggest that the EGFR and HER2 signals play a salvage role and are related to resistance to MEK inhibitors in MEK1‑mutated gastric cancer. Moreover, combination therapy with trametinib and lapatinib can exhibit a synergistic effect and may contribute to overcoming the resistance to MEK inhibitors.

  7. ERβ localization influenced outcomes of EGFR-TKI treatment in NSCLC patients with EGFR mutations

    PubMed Central

    Wang, Zhijie; Li, Zhenxiang; Ding, Xiaosheng; Shen, Zhirong; Liu, Zhentao; An, Tongtong; Duan, Jianchun; Zhong, Jia; Wu, Meina; Zhao, Jun; Zhuo, Minglei; Wang, Yuyan; Wang, Shuhang; Sun, Yu; Bai, Hua; Wang, Jie

    2015-01-01

    Effects of estrogen receptorβ (ERβ) localization on epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in advanced non-small cell lung cancer (NSCLC) are unknown. First, we analyzed the relationship between ERβ localization determined by immunohistochemistry and EGFR-TKI outcomes in 184 patients with advanced NSCLC and found that ERβ expression localized in the cytoplasm and/or nucleus. The frequency of cytoplasmic ERβ (c-ERβ) and nuclear ERβ (n-ERβ) co-expression was 12% (22/184). C-ERβ and n-ERβ co-expression was correlated with poor median progression-free survival compared to patients without co-expression. In subsequent in vitro experiments, PC9 cells transfected with ERβ isoform1 (ERβ1, strong expression of both c-ERβ and n-ERβ) were more resistant to gefitinib than PC9 cells transfected with ERβ isoform2 or 5 (ERβ2 or ERβ5, strong expression of ERβ in cytoplasm but not nucleus). Resistance was identified due to interactions between ERβ1 and other isoforms, and mediated by activation of non-genomic pathways. Moreover, gefitinib resistance was reversed by a combination treatment with gefitinib and fulvestrant, both in cell lines and in one NSCLC patient. These results suggested that c-ERβ and n-ERβ co-expression was a potential molecular indicator of EGFR-TKI resistance, which might be overcome by combining EGFR-TKI and ER antagonist. PMID:26096604

  8. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma

    PubMed Central

    Li, Ming; Deng, Fang; Qian, Li-Ting; Meng, Shui-Ping; Zhang, Yang; Shan, Wu-Lin; Zhang, Xiao-Lei; Wang, Bao-Long

    2016-01-01

    Previous studies have demonstrated an association between human papillomavirus (HPV) and mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer patients; however, few studies have investigated this association in advanced lung adenocarcinoma patients undergoing gefitinib treatment. The present study investigated the association between HPV and EGFR mutations in advanced lung adenocarcinoma patients. A total of 95 advanced lung adenocarcinoma patients were enrolled in the study. The HPV infection status and presence of EGFR mutations in tumor tissue was evaluated. Patient clinical characteristics were also determined and compared with HPV infection and EGFR mutation status to analyze their impact on progression-free survival. HPV DNA was identified in 27/95 (28.4%) lung adenocarcinoma tumors and was most common in patients with lymph node metastasis (P=0.016). A total of 44/95 (46.3%) cases exhibited EGFR mutations, which were predominantly observed in female patients and non-smokers. The presence of HPV DNA was significantly associated with EGFR mutations (P=0.012) and multivariate analysis also revealed that HPV DNA was significantly associated with EGFR mutations (odds ratio=3.971) in advanced lung adenocarcinoma. Patients with both HPV infections and EGFR mutations exhibit a marked decrease in the risk of lung cancer progression when compared with those without HPV infection or EGFR mutations (adjusted HR=0.640; 95% confidence interval: 0.488–0.840; P=0.001). HPV infection was significantly associated with EGFR mutations in advanced lung adenocarcinoma patients. Furthermore, patients with HPV infections exhibited the longest progression-free survival times, which may be due to good response to tyrosine kinase inhibitor- or platinum-based-adjuvant therapy in these patients. Patients with EGFR mutations exhibited a better prognosis when compared with those exhibiting wild-type EGFR, regardless of HPV status. PMID:27602120

  9. [Efficacy of first-line afatinib versus chemotherapy in EGFR mutation positive pulmonary adenocarcinoma].

    PubMed

    Sárosi, Veronika; Balikó, Zoltán

    2014-12-01

    Therapy of patients with advanced NSCLC has lately changed due to the algorithm based on the presence or absence of oncogenic mutations. There is an agreement nowadays that in the presence of activating EGFR mutations, the administration of EGFR TKI (gefitinib, erlotinib, afatinib) is the most efficacious initial treatment. Unlike the first-generation TKIs, afatinib is a new, irreversible ErbB blocker, selectively and effectively blocking signals from the ErbB family receptors. Afatinib's marketing authorization is based on a large, randomized, phase III clinical trial, LUX-Lung 3, where patients in the control arm were treated with the best available chemotherapy (pemetrexed/cisplatin combination). Primary endpoint was progression-free survival (PFS). Patients with common EGFR mutations showed a PFS of 13.6 months when treated with afatinib, while treatment in the control arm resulted in a PFS of 6.9 months. Overall survival (OS) was 31.6 and 28.2 months, respectively. LUX-Lung 3 has been followed by the LUX-Lung 6 trial, comparing afatinib treatment to traditional chemotherapy (gemcitabine/cisplatin) in Asian patients with NSCLC harboring EGFR mutations. This clinical trial has also proved benefit of afatinib: PFS was 11.0 months in the afatinib arm and 5.6 months in the control arm by independent reviewer, while OS was 23.6 months and 23.5 months, respectively. Similarity of the OS values in both trials is explained by the cross-over treatment. When further analyzing OS data, a statistically significant difference between the afatinib and the control arm was seen in the EGFR exon 19 del subgroup (LUX-Lung 3: 33.3 vs. 21.1 months, LUX-Lung 6: 31.4 vs. 18.4 months, respectively).

  10. EGFR and KRAS mutations in Turkish non-small cell lung cancer patients: a pilot study.

    PubMed

    Bircan, Sema; Baloglu, Huseyin; Kucukodaci, Zafer; Bircan, Ahmet

    2014-08-01

    EGFR and KRAS mutation profile in non-small cell lung cancers (NSCLCs) shows wide variations due to geographic and ethnic background. We aimed to determine the frequency and types of EGFR and KRAS mutations in a sample group of Turkish NSCLC cases. The study included 14 adenocarcinomas (ACs), 11 squamous cell carcinoma (SCC) patients selected from archival material including small biopsy or surgical specimens. Their formalin fixed paraffin-embedded tumor tissues were used for genomic DNA extraction for EGFR exon 19 and 21, and KRAS exon 2 mutations. Eleven NSCLCs (44 %) had EGFR mutations. Exon 19 and 21 mutations were found in 8 (32 %) and 5 (20 %) cases. Two cases showed double EGFR mutations. In ACs, 5 (35.7 %) patients had EGFR gene mutation, 3 in exon 19 and 3 in exon 21. In SCCs, 6 (54.5 %) cases had EGFR mutation, 5 in exon 19 and 2 in exon 21. All exon 19 mutations were deletion-type mutations. For exon 21, 3 cases had L858R point mutation (CTG>CGG) and two cases showed deletion-type mutations. Six (24 %) NSCLCs showed KRAS mutations (three ACC, three SCC), 5 codon 12 mutations (G>T, T>C, G>A) and one codon 13 mutation (G>T). Three NSCLC cases showed both EGFR and KRAS mutations together. The profile of KRAS mutation in our AC cases was quite similar to those seen in the Western countries; however, frequency and clustering of EGFR mutations were similar to those seen in the Eastern countries.

  11. Immunostaining with EGFR mutation-specific antibodies: a reliable screening method for lung adenocarcinomas harboring EGFR mutation in biopsy and resection samples.

    PubMed

    Fan, Xiangshan; Liu, Biao; Xu, Haodong; Yu, Bo; Shi, Shanshan; Zhang, Jin; Wang, Xuan; Wang, Jiandong; Lu, Zhenfeng; Ma, Henghui; Zhou, Xiaojun

    2013-08-01

    Mutation analysis of epidermal growth factor receptor (EGFR) is essential in determining the therapeutic strategy for lung adenocarcinoma. Immunohistochemical (IHC) staining with EGFR mutation-specific antibodies of del E746-A750 in exon 19 and L858R in exon 21 has been evaluated in resection specimens in a few studies but rarely in biopsy samples. A total of 169 cases (78 biopsies and 91 resected specimens) of lung adenocarcinoma with EGFR mutation status predefined by direct DNA sequencing were histologically examined, and IHC was performed using EGFR mutation-specific antibodies of del E746-A750 and L858R. The cases with positive results by IHC but negative results by direct DNA sequencing were examined by amplified refractory mutation system. Our results showed that the frequency of EGFR mutations for both E746-A750 deletion and L858R mutation was 38.5% (65/169) by DNA sequencing or amplified refractory mutation system and 34.3% (58/169) by IHC in lung adenocarcinomas. Based on molecular test results, the overall sensitivity, specificity, positive predictive value, and negative predictive value of IHC using these 2 antibodies in all (biopsy/resection) cases were 87.7% (80%/94.3%), 99.0% (97.9%/100%), 98.3% (96%/100%), and 92.8% (88.7%/96.6%), respectively. Lung adenocarcinomas with a predominant acinar, papillary, lepidic, or solid growth pattern more often harbor EGFR mutation of del E746-A750 or L858R. In conclusion, the immunostaining with EGFR del E746-A750 and L858R mutation antibodies is a reliable screening method with high specificity and sensitivity for identifying the EGFR mutation in both resected and biopsied lung adenocarcinomas.

  12. Spectrum of EGFR gene mutations and ALK rearrangements in lung cancer patients in Turkey.

    PubMed

    Sag, Sebnem Ozemri; Gorukmez, Ozlem; Ture, Mehmet; Gorukmez, Orhan; Deligonul, Adem; Sahinturk, Serdar; Topak, Ali; Gulten, Tuna; Kurt, Ender; Yakut, Tahsin

    2016-01-01

    The EGFR gene and ALK rearrangements are two genetic drivers of non-small cell lung cancer (NSCLC). The frequency of EGFR mutations and ALK rearrangement varies according to not only ethnicity but also gender, smoking status and the histological type of NSCLC. In the present study, we demonstrated the distribution of EGFR mutations in 132 NSCLC patients by using a pyrosequencing technique and the distribution of ALK rearrangements in 51 NSCLC patients by using fluorescent in situ hybridization technique in Turkey. Additionally, we compared the clinicopathological data of NSCLC patients with the mutation status of EGFR in their cancerous tissues. Both EGFR mutations and ALK rearrangements were identified in 19 (14.39 %) and 1 (1.96 %) patients, respectively. We found EGFR mutations in codon 861, 719 and 858 with the ratios of 10.52 % (2/19), 10.52 % (2/19) and 31.58 % (6/19), respectively, and deletion of exon 19 in 47.37 % (9/19) of the patients. We found the frequency of EGFR mutations to be significantly higher in female patients and nonsmokers (p = 0.043, p = 0.027, respectively). Consequently, we found EGFR mutations to be more frequent in female patients and nonsmokers. Future studies on larger patient groups would provide more accurate data to exhibit the relationship between EGFR mutations and ALK rearrangements and the clinicopathological status.

  13. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer.

    PubMed

    Gao, Xin; Le, Xiuning; Costa, Daniel B

    2016-01-01

    First- and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for metastatic non-small-cell lung cancers (NSCLCs) that harbor sensitizing EGFR mutations (i.e. exon 19 deletions or L858R). However, acquired resistance to EGFR TKI monotherapy occurs invariably within a median time frame of one year. The most common form of biological resistance is through the selection of tumor clones harboring the EGFR T790M mutation, present in >50% of repeat biopsies. The presence of the EGFR T790M mutation negates the inhibitory activity of gefitinib, erlotinib, and afatinib. A novel class of third-generation EGFR TKIs has been identified by probing a series of covalent pyrimidine EGFR inhibitors that bind to amino-acid residue C797 of EGFR and preferentially inhibit mutant forms of EGFR versus the wild-type receptor. We review the rapid clinical development and approval of the third-generation EGFR TKI osimertinib for treatment of NSCLCs with EGFR-T790M.

  14. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    PubMed

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  15. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies.

    PubMed

    Esposito, Claudia; Rachiglio, Anna Maria; La Porta, Maria Libera; Sacco, Alessandra; Roma, Cristin; Iannaccone, Alessia; Tatangelo, Fabiana; Forgione, Laura; Pasquale, Raffaella; Barbaro, Americo; Botti, Gerardo; Ciardiello, Fortunato; Normanno, Nicola

    2013-12-01

    The activity of the epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab in metastatic colorectal carcinoma (mCRC) is significantly limited by molecular mechanisms leading to intrinsic or acquired resistance. The S492R mutation of the EGFR, which is caused by either the 1476C>A or the 1474A>C substitution, interferes with binding to cetuximab but not to panitumumab, and has been detected in mCRC with acquired resistance to cetuximab. Since mechanisms of acquired and intrinsic resistance to EGFR monoclonal antibodies in CRC significantly overlap, we evaluated the frequency of the S492R mutation in a series of KRAS-exon 2 wild-type CRC patients. Genomic DNA was extracted from formalin fixed paraffin embedded (FFPE) tissues that were obtained from 505 systemic therapy-naïve CRC patients. A PCR/sequencing method for the detection of the S492R mutation was developed, by using as positive control a plasmid in which the 1474A>C mutation was generated by site directed mutagenesis. The lowest level of detection of this assay was approximately 10% mutant DNA in a background of wild-type DNA. PCR sequencing analysis revealed no S492R mutations in any of the analyzed 505 CRC specimens. Our findings suggest that the S492R mutation is not involved in primary resistance to cetuximab in CRC. Therefore, patients with mCRC should not be routinely screened for this mutation prior therapy with cetuximab.

  16. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics.

    PubMed

    Arcila, Maria E; Nafa, Khedoudja; Chaft, Jamie E; Rekhtman, Natasha; Lau, Christopher; Reva, Boris A; Zakowski, Maureen F; Kris, Mark G; Ladanyi, Marc

    2013-02-01

    In contrast to other primary epidermal growth factor receptor (EGFR) mutations in lung adenocarcinomas, insertions in exon 20 of EGFR have been generally associated with resistance to EGFR-tyrosine kinase inhibitors. Their molecular spectrum, clinicopathologic characteristics, and prevalence are not well established. Tumors harboring EGFR exon 20 insertions were identified through an algorithmic screen of 1,500 lung adenocarcinomas. Cases were first tested for common mutations in EGFR (exons 19 and 21) and KRAS (exon 2) and, if negative, further analyzed for EGFR exon 20 insertions. All samples underwent extended genotyping for other driver mutations in EGFR, KRAS, BRAF, ERBB2/HER2, NRAS, PIK3CA, MEK1, and AKT by mass spectrometry; a subset was evaluated for ALK rearrangements. We identified 33 EGFR exon 20 insertion cases [2.2%, 95% confidence interval (CI), 1.6-3.1], all mutually exclusive with mutations in the other genes tested (except PIK3CA). They were more common among never-smokers (P < 0.0001). There was no association with age, sex, race, or stage. Morphologically, tumors were similar to those with common EGFR mutations but with frequent solid histology. Insertions were highly variable in position and size, ranging from 3 to 12 bp, resulting in 13 different insertions, which, by molecular modeling, are predicted to have potentially different effects on erlotinib binding. EGFR exon 20 insertion testing identifies a distinct subset of lung adenocarcinomas, accounting for at least 9% of all EGFR-mutated cases, representing the third most common type of EGFR mutation after exon 19 deletions and L858R. Insertions are structurally heterogeneous with potential implications for response to EGFR inhibitors.

  17. Afatinib increases sensitivity to radiation in non-small cell lung cancer cells with acquired EGFR T790M mutation.

    PubMed

    Zhang, Shirong; Zheng, Xiaoliang; Huang, Haixiu; Wu, Kan; Wang, Bing; Chen, Xufeng; Ma, Shenglin

    2015-03-20

    Afatinib is a second-generation of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and has shown a significant clinical benefit in non-small cell lung cancer (NSCLC) patients with EGFR-activating mutations. However, the potential therapeutic effects of afatinib combining with other modalities, including ionizing radiation (IR), are not well understood. In this study, we developed a gefitinib-resistant cell subline (PC-9-GR) with a secondary EGFR mutation (T790M) from NSCLC PC-9 cells after chronic exposures to increasing doses of gefitinib. The presence of afatinib significantly increases the cell killing effect of radiation in PC-9-GR cells harboring acquired T790M, but not in H1975 cells with de novo T790M or in H460 cells that express wild-type EGFR. In PC-9-GR cells, afatinib remarkable blocks baseline of EGFR and ERK phosphorylations, and causes delay of IR-induced AKT phosphorylation. Afatinib treatment also leads to increased apoptosis and suppressed DNA damage repair in irradiated PC-9-GR cells, and enhanced tumor growth inhibition when combined with IR in PC-9-GR xenografts. Our findings suggest a potential therapeutic impact of afatinib as a radiation sensitizer in lung cancer cells harboring acquired T790M mutation, providing a rationale for a clinical trial with combination of afatinib and radiation in NSCLCs with EGFR T790M mutation.

  18. Detected EGFR mutation in cerebrospinal fluid of lung adenocarcinoma patients with meningeal metastasis

    PubMed Central

    Chunhua, Ma; Yuan, Lv; Ning, Mu; Jinduo, Li; Bin, Wang; Liwei, Sun

    2016-01-01

    Abstract Objective To discuss the application of ARMS method to detect EGFR gene mutation in cerebrospinal fluid of lung adenocarcinoma patients with meningeal metastasis. Methods 5 cases of lung adenocarcinoma were identified with meningeal metastasis that were cleared EGFR gene mutation by gene sequencing method. From each patient 5ml cerebrospinal fluid was obtained by lumbar puncture. ARMS method was used to detect EGFR mutations in cerebrospinal fluid. Results 5 samples of cerebrospinal fluid were successfully detected by ARMS method, 3 samples found that EGFR gene mutations, the mutations in line with direct sequencing method. Conclusion ARMS method can be used to detect EGFR gene mutations of cerebrospinal fluid samples in lung adenocarcinoma with meningeal metastasis. But cerebrospinal fluid specimens from histological specimens, blood samples need to be confirmed by further comparative study whether there is advantage.

  19. RANKL/RANK pathway abrogates cetuximab sensitivity in gastric cancer cells via activation of EGFR and c-Src

    PubMed Central

    Zhang, Xiaomeng; Song, Yongxi; Song, Na; Zhang, Ye; Zhang, Lingyun; Wang, Yan; Wang, Zhenning; Qu, Xiujuan; Liu, Yunpeng

    2017-01-01

    Overexpression of EGFR is commonly seen in gastric cancer (GC). However, patients with GC show resistance to anti-EGFR treatments. RAS mutations are rare in GC and cannot explain de novo resistance to EGFR treatments. Therefore, it is particularly important to explore the mechanisms of resistance to anti-EGFR treatments. The RANKL activates the EGFR pathway in osteoclasts, and the RANK is expressed in gastric carcinoma. Whether the RANKL/RANK pathway has an effect on the EGFR pathway in GC remains unknown. Expressions of EGFR and RANK in GC tissues were detected using immunohistochemical staining. Nineteen patients (28%) showed high-level RANKL expression, and 33 patients (48%) showed high-level RANK expression. There was a positive correlation between expression of EGFR and RANK (P<0.001). In an in vitro study, RANKL induced activation of the EGFR pathway and further abrogated cetuximab sensitivity in GC cells. Knockdown of RANK or use of the RANKL inhibitor enhanced cetuximab effect by decreasing RANKL-induced EGFR activation. Furthermore, we showed that c-SRC mediated the EGFR activation induced by the RANKL/RANK pathway and that c-SRC inhibitor reversed the suppression of RANKL on the effect of cetuximab. In conclusion, our results suggest that in GC cells, the RANKL/RANK pathway activates the EGFR pathway and thereby causes resistance to anti-EGFR treatments. PMID:28123301

  20. NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance.

    PubMed

    Chiu, Ching-Feng; Chang, Yi-Wen; Kuo, Kuang-Tai; Shen, Yu-Shiuan; Liu, Chien-Ying; Yu, Yang-Hao; Cheng, Ching-Chia; Lee, Kang-Yun; Chen, Feng-Chi; Hsu, Min-Kung; Kuo, Tsang-Chih; Ma, Jui-Ti; Su, Jen-Liang

    2016-05-03

    Therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib or erlotinib) significantly prolongs survival time for patients with tumors harboring an activated mutation on EGFR; however, up to 40% of lung cancer patients exhibit acquired resistance to EGFR-TKIs with an unknown mechanism. FOXO3a, a transcription factor of the forkhead family, triggers apoptosis, but the mechanistic details involved in EGFR-TKI resistance and cancer stemness remain largely unclear. Here, we observed that a high level of FOXO3a was correlated with EGFR mutation-independent EGFR-TKI sensitivity, the suppression of cancer stemness, and better progression-free survival in lung cancer patients. The suppression of FOXO3a obviously increased gefitinib resistance and enhanced the stem-like properties of lung cancer cells; consistent overexpression of FOXO3a in gefitinib-resistant lung cancer cells reduced these effects. Moreover, we identified that miR-155 targeted the 3'UTR of FOXO3a and was transcriptionally regulated by NF-κB, leading to repressed FOXO3a expression and increased gefitinib resistance, as well as enhanced cancer stemness of lung cancer in vitro and in vivo. Our findings indicate that FOXO3a is a significant factor in EGFR mutation-independent gefitinib resistance and the stemness of lung cancer, and suggest that targeting the NF-κB/miR-155/FOXO3a pathway has potential therapeutic value in lung cancer with the acquisition of resistance to EGFR-TKIs.

  1. The impact of smoking status on radiologic tumor progression patterns and response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in lung adenocarcinoma with activating EGFR mutations

    PubMed Central

    Cha, Yoon Ki; Ahn, Myung-Ju; Park, Keunchil; Ahn, Jin Seok; Sun, Jong-Mu; Choi, Yoon-La; Lee, Kyung Soo

    2016-01-01

    Background The aim of this study was to evaluate the impact of smoking on the treatment outcome of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in patients with EGFR-mutant lung adenocarcinoma, with consideration of other factors including radiologic tumor progression pattern according to patient smoking status. Methods A total of 224 patients with EGFR mutant lung adenocarcinomas that were treated with EGFR-TKIs were retrospectively reviewed. Radiologic tumor progression pattern and treatment outcomes were evaluated according to smoking history. Results There were no significant differences in radiologic tumor progression pattern based on smoking status. There were no significant differences in survival between never-smokers and smokers or among never-, former-, and current-smokers, but there was a trend of shorter progression free survival (PFS) and poorer overall survival (OS) in smokers compared with never-smokers. In multivariate analysis, long-term smokers had shorter PFS and poorer OS than those who had never smoked. Conclusions A history of smoking had no significant effect on radiologic tumor progression pattern; however, smoking history is a negative predictive factor of survival in patients with EGFR-mutant lung adenocarcinoma undergoing EGFR-TKI therapy. PMID:28066597

  2. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    PubMed Central

    Vatte, Chittibabu; Al Amri, Ali M; Cyrus, Cyril; Chathoth, Shahanas; Acharya, Sadananda; Hashim, Tariq Mohammad; Al Ali, Zhara; Alshreadah, Saleh Tawfeeq; Alsayyah, Ahmed; Al-Ali, Amein K

    2017-01-01

    Background Epidermal growth factor receptor (EGFR) is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC). Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK) domain. Objective The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction. Results The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21), exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively). EGFR mutation status was correlated with the higher grade (P=0.026) and advanced stage (P=0.034) of HNSCC tumors. Conclusion Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests that identification of these mutations might streamline the therapy and provide a better prognosis in HNSCC cases. PMID:28352186

  3. Exome sequencing reveals germline gain-of-function EGFR mutation in an adult with Lhermitte–Duclos disease

    PubMed Central

    Colby, Samantha; Yehia, Lamis; Niazi, Farshad; Chen, JinLian; Ni, Ying

    2016-01-01

    Lhermitte–Duclos disease (LDD) is a rare cerebellar disorder believed to be pathognomonic for Cowden syndrome. Presently, the only known etiology is germline PTEN mutation. We report a 41-yr-old white female diagnosed with LDD and wild-type for PTEN. Exome sequencing revealed a germline heterozygous EGFR mutation that breaks a disulfide bond in the receptor's extracellular domain, resulting in constitutive activation. Functional studies demonstrate activation of ERK/AKT signaling pathways, mimicking PTEN loss-of-function downstream effects. The identification of EGFR as a candidate LDD susceptibility gene contributes to advancement of molecular diagnosis and targeted therapy for this rare condition with limited treatment options. PMID:27900366

  4. A novel point mutation in exon 20 of EGFR showed sensitivity to erlotinib.

    PubMed

    Xing, Kailin; Zhou, Xiaoyan; Zhao, Xinmin; Sun, Si; Luo, Zhiguo; Wang, Huijie; Yu, Hui; Wang, Jialei; Chang, Jianhua; Wu, Xianghua; Hu, Aiqun

    2014-07-01

    Mutations of epidermal growth factor receptor (EGFR) gene are good predictors of response to treatment with EGFR tyrosine kinase inhibitors (TKIs) for non-small cell lung cancer (NSCLC). It is well established that classic mutations, such as in-frame deletions in exon 19 and the point mutation L858R in exon 21, are associated with high sensitivity to EGFR TKIs. Though mutations in exon 20 are almost correlated with EGFR-TKIs resistance, the awareness that they might confer sensitivity to TKI treatment should be emphasized. Herein, we describe a novel mutation in exon 20 of EGFR in a Chinese male non-smoker, who was diagnosed with stage IV lung adenocarcinoma and characterized by the codon 769 point mutation GTG>GCG, which translates into alanine instead of valine (p.V769A). In this case, the patient showed a good clinical response to erlotinib after paclitaxel/cisplatin first-line and docetaxel second-line chemotherapies. Therefore, we suggest that this rare mutation (p.V769A) may be a sensitive EGFR mutation in NSCLC. The identification of novel EGFR mutations provides new predictive biomarkers for TKI treatment and is essential to the successful use of targeted therapies.

  5. Comparison of EGFR mutation rates in lung adenocarcinoma tissue and pleural effusion samples.

    PubMed

    Guan, Y; Wang, Z J; Wang, L Q; Hua, D F; Liu, J

    2016-04-04

    The goal of the current study was to investigate the differences in epidermal growth factor receptor (EGFR) mutation rates in tumor tissue and pleural effusion specimens from patients with lung adenocarcinoma. PCR amplification and gene sequencing were used to detect EGFR mutations in exons 18, 19, 20, and 21 in tumor tissue and pleural effusion samples from 50 patients with advanced lung adenocarcinoma. The EGFR mutation rate was 34.0% in tissue samples from patients with advanced lung adenocarcinoma. There were 11 cases with exon 19 mutations and 6 cases with exon 21 mutations. The EGFR mutation rate was 30.0% in pleural effusion specimens, including 10 cases with exon 19 mutation and 5 cases with exon 21 mutations. Although the tissue samples had a slightly higher mutation rate compared to the pleural effusion samples, the difference was not statistically significant. These results indicate that the EGFR mutation rate detected in pleural effusion specimens from patients with advanced lung adenocarcinoma is similar to that detected in tumor tissue samples. Therefore, pleural effusion specimens can potentially be used for EGFR mutation detection in advanced lung adenocarcinoma.

  6. Rapid intracranial response to osimertinib, without radiotherapy, in nonsmall cell lung cancer patients harboring the EGFR T790M mutation

    PubMed Central

    Koba, Taro; Kijima, Takashi; Takimoto, Takayuki; Hirata, Haruhiko; Naito, Yujiro; Hamaguchi, Masanari; Otsuka, Tomoyuki; Kuroyama, Muneyoshi; Nagatomo, Izumi; Takeda, Yoshito; Kida, Hiroshi; Kumanogoh, Atsushi

    2017-01-01

    Abstract Rationale: Most of nonsmall cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) activating mutations eventually acquire resistance to the first EGFR-tyrosine kinase inhibitors (TKIs) therapy after varying periods of treatment. Of note, approximately one-third of those patients develop brain metastases, which deteriorate their quality of life and survival. The effect of systemic chemotherapy on brain metastases after acquisition of EGFR-TKI resistance is limited, and thus far, whole-brain radiation therapy, which may cause the harmful effect on neurocognitive functions, has been the only established therapeutic option for especially symptomatic brain metastases. Osimertinib is a third-generation oral, potent, and irreversible EGFR-TKI. It can bind to EGFRs with high affinity even when the EGFR T790M mutation exists in addition to the sensitizing mutations. Its clinical efficacy for NSCLC patients harboring the T790M mutation has already been shown; however, the evidence of osimertinib on brain metastases has not been documented well, especially in terms of the appropriate timing for treatment and its response evaluation. Patient concerns, Diagnoses, and Interventions: We experienced 2 NSCLC patients with the EGFR T790M mutation; a 67-year-old woman with symptomatic multiple brain metastases administered osimertinib as seventh-line chemotherapy, and a 76-year old man with an asymptomatic single brain metastasis administered osimertinib as fifth-line chemotherapy. Outcomes: These patients showed great response to osimertinib within 2 weeks without radiation therapy. Lessons: These are the first reports to reveal the rapid response of the brain metastases to osimertinib within 2 weeks. These cases suggest the possibility that preemptive administration of osimertinib may help patients to postpone or avoid radiation exposures. In addition, rapid reassessment of the effect of osimertinib on brain metastases could prevent patients

  7. Higher frequency but random distribution of EGFR mutation subtypes in familial lung cancer patients

    PubMed Central

    Hsu, Kuo-Hsuan; Tseng, Jeng-Sen; Wang, Chih-Liang; Yang, Tsung-Ying; Tseng, Chien-Hua; Chen, Hsuan-Yu; Chen, Kun-Chieh; Tsai, Chi-Ren; Yang, Cheng-Ta; Yu, Sung-Liang; Su, Kang-Yi; Yu, Chong-Jen; Ho, Chao-Chi; Hsia, Te-Chun; Wu, Ming-Fang; Chiu, Kuo-Liang; Liu, Chien-Ming; Yang, Pan-Chyr; Chen, Jeremy J.W.; Chang, Gee-Chen

    2016-01-01

    Despite the advancement of epidermal growth factor receptor (EGFR) inhibitors in lung cancer therapy, it remains unclear whether EGFR mutation status in familial lung cancers is different from that of sporadic cases. In this multicenter retrospective study, we compared both the EGFR mutation frequency and patterns between familial and sporadic cases. The results explored that family history of lung cancer is an independent predictor for higher EGFR mutation rate in 1713 lung adenocarcinoma patients (Odd ratio 1.68, 95% CI 1.06–2.67, P = 0.028). However, the distribution of EGFR mutation subtypes was similar to that of sporadic cases. Part of our study involved 40 lung cancer families with at least 2 tumor tissues available within each single family (n = 88) and there was no familial aggregation pattern in EGFR mutation subtypes. There were two families harboring the YAP1 R331W germline risk allele and EGFR mutation statuses among YAP1 family members also varied. These phenomena may hint at the direction of future research into lung carcinogenesis and EGFR mutagenesis. PMID:27449093

  8. A screen for dominant mutations applied to components in the Drosophila EGF-R pathway

    PubMed Central

    Guichard, Annabel; Srinivasan, Shaila; Zimm, Georgianna; Bier, Ethan

    2002-01-01

    The Drosophila epidermal growth factor receptor (EGF-R) controls many critical cell fate choices throughout development. Several proteins collaborate to promote localized EGF-R activation, such as Star and Rhomboid (Rho), which act sequentially to ensure the maturation and processing of inactive membrane-bound EGF ligands. To gain insights into the mechanisms underlying Rho and Star function, we developed a mutagenesis scheme to isolate novel overexpression activity (NOVA) alleles. In the case of rho, we isolated a dominant neomorphic allele, which interferes with Notch signaling, as well as a dominant-negative allele, which produces RNA interference-like flip-back transcripts that reduce endogenous rho expression. We also obtained dominant-negative and neomorphic Star mutations, which have phenotypes similar to those of rho NOVA alleles, as well as dominant-negative Egf-r alleles. The isolation of dominant alleles in several different genes suggests that NOVA mutagenesis should be widely applicable and emerge as an effective tool for generating dominant mutations in genes of unknown function. PMID:11904431

  9. Micropapillary: A component more likely to harbour heterogeneous EGFR mutations in lung adenocarcinomas

    PubMed Central

    Cai, Yi-Ran; Dong, Yu-Jie; Wu, Hong-Bo; Liu, Zi-Chen; Zhou, Li-Juan; Su, Dan; Chen, Xue-Jing; Zhang, Li; Zhao, Ying-Li

    2016-01-01

    The micropapillary (MP) subtype has recently been established to be a distinct marker of poor prognosis in lung adenocarcinomas (LACs). According to the 2015 WHO classification system, LAC constituents are required to be precisely reported. T790M mutation and an insertion in exon 20 (E20ins) are associated with EGFR-TKI resistance. A total of 211 LAC patients were involved in this study, and EGFR mutations were determined using an amplification refractory mutation system (ARMS). Sex, smoking history, lymph node status, and clinical stage differed significantly between the EGFR wild type and mutant groups (p < 0.05). The EGFR mutation occurred more frequently in female, non-smokers, ACs with papillary (85.7%) or MP components (91.4%) (p < 0.001). Twenty ACs with naïve T790M or E20ins were microdissected. The AC constituents metastasizing to lymph nodes exhibited a phenotype and EGFR status that was consistent with the primary loci constituents. Glomerulus-like solid components exhibited the same EGFR status as the surrounding T790M-mutated MP components. The MP and glomerulus-like portions in AC tumours exhibited a congenial EGFR status, but the acinar cells with papillary cells were heterogeneous. The naïve T790M mutants, although minor in the MP component, dramatically increased after EGFR-TKI therapy and indicate that the MP components feature intrinsic heterogeneity. PMID:27046167

  10. Osimertinib, a third-generation tyrosine kinase inhibitor targeting non-small cell lung cancer with EGFR T790M mutations.

    PubMed

    McCoach, C E; Jimeno, A

    2016-10-01

    Oncogenic driver mutations in the epidermal growth factor receptor (EGFR) gene have provided a focus for effective targeted therapy. Unfortunately, all patients eventually develop resistance to frontline therapy with EGFR tyrosine kinase inhibitors (TKIs). The majority of patients develop a large subclonal population of tumor cells with a T790M mutation that renders these cells resistant to first-generation TKIs. Osimertinib is a third-generation EGFR TKI that was designed to overcome resistance from T790M mutations. This agent has demonstrated strong preclinical activity, and in the clinic it has demonstrated a high objective response rate and progression-free survival in patients with EGFR double mutations (L858R/T790M and exon 19 deletion/T790M). It is now approved by the FDA for patients who have a documented T790M mutation and who have progressed on a prior TKI. Osimertinib is also approved in the E.U. and Japan.

  11. A new mechanism for primary resistance to gefitinib in lung adenocarcinoma: the role of a novel G796A mutation in exon 20 of EGFR.

    PubMed

    Uramoto, Hidetaka; Uchiumi, Takeshi; Izumi, Hiroto; Kohno, Kimitoshi; Oyama, Tsunehiro; Sugio, Kenji; Yasumoto, Kosei

    2007-01-01

    Subsets of non-small cell lung cancer (NSCLC) patients who carry activating somatic mutations of the epidermal growth factor receptor (EGFR) have demonstrated an increased probability of obtaining objective responses to the receptor tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib. However, a substantial proportion of the cases with somatic mutations, which suggest sensitivity to gefitinib, are primary resistant to it. A primary resistant case of lung adenocarcinoma that was found to carry both delE746-A750 and a G796A mutation in the EGFR is reported. In vitro, a stable clone of cells bearing the G796A mutation was approximately 50,000-fold less sensitive to gefitinib in comparison to cells carrying the delE746-A750 mutant EGFR. This study suggests that screening tumour samples for a range of EGFR mutations may improve our ability to identify the patients most likely to benefit from EFGR TKIs.

  12. Lung adenocarcinoma: Sustained subtyping with immunohistochemistry and EGFR, HER2 and KRAS mutational status.

    PubMed

    Sousa, Vitor; Rodrigues, Carolina; Silva, Maria; Alarcão, Ana Maria; Carvalho, Lina

    2015-01-01

    Pulmonary adenocarcinomas are still in the process of achieving morphological, immunohistochemical and genetic standardization. The ATS/ERS/IASLC proposed classification for lung adenocarcinomas supports the value of the identification of histological patterns, specifically in biopsies. Thirty pulmonary adenocarcinomas were subjected to immunohistochemical study (CK7, CK5, 6, 18, CK20, TTF1, CD56, HER2, EGFR and Ki-67), FISH and PCR followed by sequencing and fragment analysis for EGFR, HER2 and KRAS. Solid pattern showed lower TTF1 and higher Ki-67 expression. TTF1 expression was higher in non-mucinous lepidic and micropapillary patterns when compared to acinar and solid and acinar, solid and mucinous respectively. Higher Ki67 expression was present in lepidic and solid patterns compared to mucinous. EGFR membranous staining had increasing expression from non-mucinous lepidic/BA pattern to solid pattern and micropapillary until acinar pattern. EGFR mutations, mainly in exon 19, were more frequent in females, together with non-smoking status, while KRAS exon 2 mutations were statistically more frequent in males, especially in solid pattern. FISH EGFR copy was correlated gross, with mutations. HER2 copy number was raised in female tumours without mutations, in all cases. Although EGFR and KRAS mutations are generally considered mutually exclusive, in rare cases they can coexist as it happened in one of this series, and was represented in acinar pattern with rates of 42.9% and 17.9%, respectively. EGFR mutations were more frequent in lepidic/BA and acinar patterns. Some cases showed different EGFR mutations. The differences identified between the adenocarcinoma patterns reinforce the need to carefully identify the patterns present, with implications in diagnosis and in pathogenic understanding. EGFR and KRAS mutational status can be determined in biopsies representing bronchial pulmonary carcinomas because when a mutation is present it is generally present in all the

  13. Targeted sequencing with enrichment PCR: a novel diagnostic method for the detection of EGFR mutations

    PubMed Central

    Kang, Suki; Kim, Baek Gil; Han, Hyun Ho; Lee, Joo Hyun; Kim, Ji Eun; Shim, Hyo Sup; Cho, Nam Hoon

    2015-01-01

    Epidermal growth factor receptor (EGFR) is an important mediator of tumor cell survival and proliferation. The detection of EGFR mutations can predict prognoses and indicate when treatment with EGFR tyrosine kinase inhibitors should be used. As such, the development of highly sensitive methods for detecting EGFR mutations is important. Targeted next-generation sequencing is an effective method for diagnosing mutations. We compared the abilities of enrichment PCR followed by ultra-deep pyrosequencing (UDP), UDP alone, and PNA-mediated RT-PCR clamping to detect low-frequency EGFR mutations in tumor cell lines and tissue samples. Using enrichment PCR-UDP, we were able to detect the E19del and L858R mutations at minimum frequencies of 0.01% and 0.05%, respectively, in the PC-9 and H197 tumor cell lines. We also confirmed the sensitivity of detecting the E19del mutation by performing a titration analysis in FFPE tumor samples. The lowest mutation frequency detected was 0.0692% in tissue samples. EGFR mutations with frequencies as low as 0.01% were detected using enrichment PCR-UDP, suggesting that this method is a valuable tool for detecting rare mutations, especially in scarce tissue samples or those with small quantities of DNA. PMID:25915533

  14. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  15. The correlation between EGFR mutation status and the risk of brain metastasis in patients with lung adenocarcinoma.

    PubMed

    Li, Bo; Sun, Suo-Zhu; Yang, Ming; Shi, Jian-Ling; Xu, Wei; Wang, Xi-Fan; Song, Mao-Min; Chen, Huo-Ming

    2015-08-01

    To explore the correlation between epidermal growth factor receptor (EGFR) mutation status and the risk of brain metastasis (BM) in patients with lung adenocarcinoma, the clinical data of 100 patients with pathologically confirmed lung adenocarcinoma and known EGFR mutation status at exon 18, 19, 20, or 21 were analyzed retrospectively. The incidence of BM was similar between patients with wild-type EGFR and those with EGFR mutations (p = 0.48). However, among patients with EGFR mutations, the incidence of BM was significantly higher in patients with mutation at exon 19 than in patients with mutation at other sites (p = 0.007). Besides, among patients with heterochronous BM, 66.7 % had EGFR mutations. Regarding brain-metastasis-free survival (BMFS), patients with EGFR sensitive mutations (mutation at exon 19/21/and dual mutation) had significantly shorter BMFS compared with patients with wild-type EGFR (p = 0.018). For patients treated only with chemotherapy, BM was an unfavorable prognostic factor. Patients with BM had worse overall survival compared with those without BM (p = 0.035). However, in patients with BM and EGFR sensitive mutations, those treated with tyrosine kinase inhibitors (TKIs) had significantly longer overall survival compared with those treated with chemotherapy only (p = 0.0081). In conclusion, among patients with EGFR mutations, those mutated at exon 19 had the highest incidence of BM. Furthermore, patients with EGFR mutations are more likely to develop heterochronous BM. The BMFS was significantly shorter in patients with EGFR sensitive mutations. TKIs improved the survival of patients with lung adenocarcinoma and BM who harbored EGFR sensitive mutations.

  16. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02).

    PubMed

    Lee, Ji Yun; Qing, Xu; Xiumin, Wei; Yali, Bai; Chi, Sangah; Bak, So Hyeon; Lee, Ho Yun; Sun, Jong-Mu; Lee, Se-Hoon; Ahn, Jin Seok; Cho, Eun Kyung; Kim, Dong-Wan; Kim, Hye Ryun; Min, Young Joo; Jung, Sin-Ho; Park, Keunchil; Mao, Mao; Ahn, Myung-Ju

    2016-02-09

    We hypothesized that plasma-based EGFR mutation analysis for NSCLC may be feasible for monitoring treatment response to EGFR TKIs and also predict drug resistance.Clinically relevant mutations including exon 19 deletion (ex19del), L858R and T790M were analyzed using droplet digital PCR (ddPCR) in longitudinally collected plasma samples (n = 367) from 81 NSCLC patients treated with EGFR TKI. Of a total 58 baseline cell-free DNA (cfDNA) samples available for ddPCR analysis, 43 (74.1%) had the same mutation in the matched tumors (clinical sensitivity: 70.8% [17/24] for L858R and 76.5% [26/34] for ex19del). The concordance rates of plasma with tissue-based results of EGFR mutations were 87.9% for L858R and 86.2% for ex19del. All 40 patients who were detected EGFR mutations at baseline showed a dramatic decrease of mutant copies (>50%) in plasma during the first two months after treatment. Median progression-free survival (PFS) was 10.1 months for patients with undetectable EGFR v 6.3 months for detectable EGFR mutations in blood after two-month treatment (HR 3.88, 95% CI 1.48-10.19, P = 0.006). We observed emerging resistance with early detection of T790M as a secondary mutation in 14 (28.6%) of 49 patients. Plasma-based EGFR mutation analysis using ddPCR can monitor treatment response to EGFR TKIs and can lead to early detection of EGFR TKIs resistance. Further studies confirming clinical implications of EGFR mutation in plasma are warranted to guide optimal therapeutic strategies upon knowledge of treatment response and resistance.

  17. Impact of Cytological Sampling on EGFR Mutation Testing in Stage III-IV Lung Adenocarcinoma

    PubMed Central

    Smith, Christian; Edwards, Gwenllian; Butler, Rachel; Parry, Diane; Lester, Jason Francis

    2017-01-01

    Objectives. There have been advances in the identification and understanding of molecular subsets of lung cancer, defined by specific oncogenic aberrations. A number of actionable genetic alterations have been identified, such as the epidermal growth factor receptor (EGFR) mutation. We aimed to establish the reasons why patients were not undergoing EGFR mutation testing at the time of histological diagnosis. Methods. The records of 70 patients with advanced adenocarcinoma of the lung managed through a single multidisciplinary team at a single institution were reviewed. Data were collected on method of tumour sample collection, whether this was sent for EGFR testing, and the result. Results. Seventy patients were identified. In 21/25 (84%) cases, cytological sampling was sufficient for EGFR mutation analysis, compared with 40/45 (89%) cases with histological sampling. EGFR mutation testing was not carried out in 22/70 (31.4%) patients. There was insufficient tumour sample for EGFR testing in 9/22 (40.9%) patients. Other reasons for not testing included poor patient fitness and problems in the diagnostic pathway. Conclusions. In this series, cytological tumour sampling was not the predominant reason why cancers failed to have EGFR mutation status established. PMID:28367333

  18. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms

    PubMed Central

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-01-01

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein–protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance. PMID:24189400

  19. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.

  20. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency.

    PubMed

    Shapira, Iuliana; Lee, Annette; Vora, Reena; Budman, Daniel R

    2013-11-01

    There is no available targeted therapy for triple-negative or its more aggressive subtype, basal-like breast cancer. Multiple therapeutic strategies based on translational knowledge have not improved the treatment options for triple negative patients. As understanding of molecular pathways that drive tumor development is rapidly increasing, it is imperative to adapt our treatment strategies to perturbations in molecular pathways driving the malignant process. Basal-like breast cancers over-express EGFR (without mutations or EGFR gene amplifications) and have p53 mutations. While EGFR drives the malignant behavior in triple negative breast cancer (TNBC), anti-EGFR therapies have fallen short of the expected results in clinical trials. Here we bring evidence that the less than optimal results of the anti-EGFR therapies may be explained in part by the increased potency of the EGFR signaling due to increased endosomal recycling. The functional connection between EGFR and endosomal trafficking in TNBC is mutant p53 found in the most aggressive forms of TNBC. Mutant p53 acquires oncogenic functions and binds p63 protein, a member of p53 family with tumor suppressor activities. In the absence of functional p63 there is an upregulation of endosomal recycling EGFR and integrin to the membrane with increased proinvasive abilities of cancer cells. Blocking endosomal trafficking combined with anti-EGFR treatments may result in better clinical outcomes in TNBC.

  1. EGFR regulates macrophage activation and function in bacterial infection.

    PubMed

    Hardbower, Dana M; Singh, Kshipra; Asim, Mohammad; Verriere, Thomas G; Olivares-Villagómez, Danyvid; Barry, Daniel P; Allaman, Margaret M; Washington, M Kay; Peek, Richard M; Piazuelo, M Blanca; Wilson, Keith T

    2016-09-01

    EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.

  2. Evaluation of EGFR, KRAS and BRAF gene mutations in renal cell carcinoma

    PubMed Central

    Sen, Haluk; Bulut, Ersan; Cengiz, Beyhan; Karakok, Metin; Erturhan, Sakip; Seckiner, Ilker

    2014-01-01

    A subset of renal cell carcinoma (RCC) patients has been shown to respond to anti-EGFR therapy. As KRAS and BRAF mutations are associated with poor response to anti-EGFR therapy in some cancers, it has been suggested that screening for KRAS and BRAF mutations in RCC may be a promising strategy to identify patients who might respond to EGFR-targeted therapy. The aim of this study was to investigate the mutation status of EGFR, KRAS and BRAF in RCC patients. Renal tumors and normal renal samples from forty-eight patients who underwent radical or partial nephrectomy for kidney cancer were used in this study. Histological classification of the tumors was performed according to International Union against Cancer (UICC) / American Joint Committee on Cancer (AJCC) classification. Seventeen patients (48%) had clear-cell RCC, 7 (20%) had chromophobe RCC, and 11 patients (32%) had papillary RCC. DNA isolated from the samples was subjected to melting curve mutation analysis for EGFR, BRAF and KRAS using ABI-3130 DNA sequencer. DNA sequencing analysis of RCC samples, when compared with morphologically normal matched regions, did not show any exon mutations. Our results do not support the notion that EGFR, KRAS and BRAF might be mutated in RCC.

  3. Mutation analysis of EGFR and its correlation with the HPV in Indian cervical cancer patients.

    PubMed

    Qureshi, Rehana; Arora, Himanshu; Biswas, Shilpi; Perwez, Ahmad; Naseem, Afreen; Wajid, Saima; Gandhi, Gauri; Rizvi, Moshahid Alam

    2016-07-01

    Cervical cancer is a major cause of morbidity and mortality particularly in developing countries. Somatic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene is associated with increased sensitivity to tyrosine kinase inhibitors (TKIs). In this study, the presence of EGFR mutations in cervical cancer and its correlation with HPV were identified. EGFR mutations were found in 31 out of 95 patients (32.63 %). Results showed the presence of EGFR mutations in 5.263 % of patients in exon 19. In exon 20, mutations were predominant in 25.26 % patients. While in exon 21, 8.421 % of patients had mutations. HPV, which is associated with cervical cancer development, was found in 95.78 % (HPVL1), 92.63 % (HPV16), and 3.15 % (HPV18) of patients. No correlation was found between HPV16 and EGFR mutations (p = 0.0616). Overall, mutations like V742R, Q787Q, Q849H, E866E, T854A, L858R, E872Q, and E688Q were found. Next, impact of TKI inhibitor (gefitinib) was checked with respect to presence or absence of mutation considering Q787Q mutation in exon 20 (G/A genotype) which is present in 25.2 % patients. Mutated cervical cancer cell lines showed higher sensitivity to gefitinib. Overall, this study suggests the importance of mutations in EGFR gene and indicates their relevance with respect to TKIs treatment in Indian cervical cancer patients.

  4. MET Gene Amplification and MET Receptor Activation Are Not Sufficient to Predict Efficacy of Combined MET and EGFR Inhibitors in EGFR TKI-Resistant NSCLC Cells

    PubMed Central

    Presutti, Dario; Santini, Simonetta; Cardinali, Beatrice; Papoff, Giuliana; Lalli, Cristiana; Samperna, Simone; Fustaino, Valentina; Giannini, Giuseppe; Ruberti, Giovina

    2015-01-01

    Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30–40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation

  5. First-line treatment of EGFR-mutated nonsmall cell lung cancer: critical review on study methodology.

    PubMed

    Sebastian, Martin; Schmittel, Alexander; Reck, Martin

    2014-03-01

    Recent advances in understanding the mechanisms of nonsmall cell lung cancer (NSCLC) has led to the development of targeted treatments, including the reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors gefitinib and erlotinib, and the irreversible ErbB family blocker afatinib. Several important activating EGFR mutations have now been identified, which correlate strongly with response to treatment with these agents. Multiple randomised controlled trials have confirmed the association between the presence of activating EGFR mutations and objective response to gefitinib, erlotinib and afatinib, thus demonstrating their superiority over platinum-based chemotherapy as first-line treatment for NSCLC patients with EGFR mutation-positive tumours, and resulting in approval of these agents for use in this setting. It can be tempting to compare outcome data across multiple clinical trials and agents; however, substantial differences in methodology between studies, including investigator versus independent assessment and differences in patient eligibility, makes such comparisons fraught with difficulty. This critical review provides an overview of the evolution of the methodology used in eight phase III trials investigating first-line targeted treatment of NSCLC, identifies key differences in methodology and reporting, and critically assesses how these differences should be taken into account when interpreting the findings from such trials.

  6. Heterogeneity of EGFR Aberrations and Correlation with Histological Structures: Analyses of Therapy-Naive Isogenic Lung Cancer Lesions with EGFR Mutation

    PubMed Central

    Suda, Kenichi; Murakami, Isao; Yu, Hui; Ellison, Kim; Shimoji, Masaki; Genova, Carlo; Rivard, Christopher J.; Mitsudomi, Tetsuya; Hirsch, Fred R.

    2017-01-01

    Introduction EGFR gene somatic mutation is reportedly homogeneous. However, there are few data regarding the heterogeneity of expression of mutant EGFR protein and EGFR gene copy number, especially in extrathoracic lesions. These types of data may enhance our understanding of the biology of EGFR-mutated lung cancer and our understanding of the heterogeneous response patterns to EGFR TKIs. Methods An 81-year-old never-smoking female with lung adenocarcinoma could not receive any systemic therapy because of her poor performance status. After her death, 15 tumor specimens from different sites were obtained by autopsy. Expression of mutant EGFR protein and EGFR gene copy numbers were assessed by immunohistochemical analysis and by silver in situ hybridization, respectively. Heterogeneity in these EGFR aberrations was compared between metastatic sites (distant versus lymph node) or histological structures (micropapillary versus nonmicropapillary). Results All lesions showed positive staining for mutant EGFR protein, except for 40% of the papillary component in one of the pulmonary metastases (weak staining below the 1+ threshold). Expression of mutant-specific EGFR protein, evaluated by H-score, was significantly higher in the micropapillary components than in the nonmicropapillary components (Mann-Whitney U test, p = 0.014). EGFR gene copy number was quite different between lesions but not correlated with histological structure or metastatic form. However, EGFR gene copy numbers were similar between histological structures in each lesion. Conclusion These data indicate that expression of EGFR mutant protein and EGFR gene copy number do not change as a consequence of tumor progression. This also justifies using the biopsy specimens from metastases as a surrogate for primary tumors. PMID:27257133

  7. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer.

    PubMed

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders; Skov, Birgit G

    2014-12-01

    Determination of epidermal growth factor receptor (EGFR) mutations has a pivotal impact on treatment of non-small-cell lung cancer (NSCLC). A standardized test has not yet been approved. So far, Sanger DNA sequencing has been widely used. Its rather low sensitivity has led to the development of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR PCR kit, Qiagen, UK; reference method). For immunohistochemistry, antibodies against exon19 deletions (clone 6B6), exon21 mutations (clone 43B2) from Cell Signaling Technology (Boston, USA) and EGFR variantIII (clone 218C9) from Dako (Copenhagen, DK) were applied. Protein expression was evaluated, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94.4-99.4%). Sensitivity of exon19 antibody was 63.2% (95% confidence interval=38.4-83.7%) and of exon21 antibody was 80.0% (95% confidence interval=44.4-97.5%). Seven exon19 and four exon21 mutations were false negatives (immunohistochemistry negative, RT-PCR positive). Two exon19 and three exon21 mutations were false positive (immunohistochemistry positive, RT-PCR negative). One false positive exon21 mutation had staining score 300. The EGFR variantIII antibody showed no correlation to EGFR mutation status determined by RT-PCR or to EGFR immunohistochemistry. High specificity of the mutation-specific antibodies was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC

  8. Detection of EGFR and KRAS Mutation by Pyrosequencing Analysis in Cytologic Samples of Non-Small Cell Lung Cancer.

    PubMed

    Lee, Seung Eun; Lee, So-Young; Park, Hyung-Kyu; Oh, Seo-Young; Kim, Hee-Joung; Lee, Kye-Young; Kim, Wan-Seop

    2016-08-01

    EGFR and KRAS mutations are two of the most common mutations that are present in lung cancer. Screening and detecting these mutations are of issue these days, and many different methods and tissue samples are currently used to effectively detect these two mutations. In this study, we aimed to evaluate the testing for EGFR and KRAS mutations by pyrosequencing method, and compared the yield of cytology versus histology specimens in a consecutive series of patients with lung cancer. We retrospectively reviewed EGFR and KRAS mutation results of 399 (patients with EGFR mutation test) and 323 patients (patients with KRAS mutation test) diagnosed with lung cancer in Konkuk University Medical Center from 2008 to 2014. Among them, 60 patients had received both EGFR and KRAS mutation studies. We compared the detection rate of EGFR and KRAS tests in cytology, biopsy, and resection specimens. EGFR and KRAS mutations were detected in 29.8% and 8.7% of total patients, and the positive mutation results of EGFR and KRAS were mutually exclusive. The detection rate of EGFR mutation in cytology was higher than non-cytology (biopsy or resection) materials (cytology: 48.5%, non-cytology: 26.1%), and the detection rate of KRAS mutation in cytology specimens was comparable to non-cytology specimens (cytology: 8.3%, non-cytology: 8.7%). We suggest that cytology specimens are good alternatives that can readily substitute tissue samples for testing both EGFR and KRAS mutations. Moreover, pyrosequencing method is highly sensitive in detecting EGFR and KRAS mutations in lung cancer patients.

  9. Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin

    PubMed Central

    Hosur, Vishnu; Johnson, Kenneth R.; Burzenski, Lisa M.; Stearns, Timothy M.; Maser, Richard S.; Shultz, Leonard D.

    2014-01-01

    The rhomboid 5 homolog 2 (Rhbdf2) gene encodes an inactive rhomboid (iRhom) protease, iRhom2, one of a family of enzymes containing a long cytosolic N terminus and a dormant peptidase domain of unknown function. iRhom2 has been implicated in epithelial regeneration and cancer growth through constitutive activation of epidermal growth factor receptor (EGFR) signaling. However, little is known about the physiological substrates for iRhom2 or the molecular mechanisms underlying these functions. We show that iRhom2 is a short-lived protein whose stability can be increased by select mutations in the N-terminal domain. In turn, these stable variants function to augment the secretion of EGF family ligands, including amphiregulin, independent of metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) activity. In vivo, N-terminal iRhom2 mutations induce accelerated wound healing as well as accelerated tumorigenesis, but they do not drive spontaneous tumor development. This work underscores the physiological prominence of iRhom2 in controlling EGFR signaling events involved in wound healing and neoplastic growth, and yields insight into the function of key iRhom2 domains. PMID:24825892

  10. Rhbdf2 mutations increase its protein stability and drive EGFR hyperactivation through enhanced secretion of amphiregulin.

    PubMed

    Hosur, Vishnu; Johnson, Kenneth R; Burzenski, Lisa M; Stearns, Timothy M; Maser, Richard S; Shultz, Leonard D

    2014-05-27

    The rhomboid 5 homolog 2 (Rhbdf2) gene encodes an inactive rhomboid (iRhom) protease, iRhom2, one of a family of enzymes containing a long cytosolic N terminus and a dormant peptidase domain of unknown function. iRhom2 has been implicated in epithelial regeneration and cancer growth through constitutive activation of epidermal growth factor receptor (EGFR) signaling. However, little is known about the physiological substrates for iRhom2 or the molecular mechanisms underlying these functions. We show that iRhom2 is a short-lived protein whose stability can be increased by select mutations in the N-terminal domain. In turn, these stable variants function to augment the secretion of EGF family ligands, including amphiregulin, independent of metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) activity. In vivo, N-terminal iRhom2 mutations induce accelerated wound healing as well as accelerated tumorigenesis, but they do not drive spontaneous tumor development. This work underscores the physiological prominence of iRhom2 in controlling EGFR signaling events involved in wound healing and neoplastic growth, and yields insight into the function of key iRhom2 domains.

  11. The Frequency of EGFR Mutation in Lung Adenocarcinoma and the Efficacy of Tyrosine Kinase Inhibitor Therapy in a Hungarian Cohort of Patients.

    PubMed

    Sárosi, Veronika; Balikó, Zoltán; Smuk, Gábor; László, Terézia; Szabó, Mariann; Ruzsics, István; Mezősi, Emese

    2016-10-01

    In the last decades new therapeutic drugs have been developed for the treatment of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) significantly increase the progression free survival (PFS) of patients with NSCLC carrying epidermal growth factor receptor (EGFR) mutations. This type of lung cancer occurs mainly among non-smoking women and Asian origin. However, the new ESMO guideline recommends EGFR mutation analysis in every patient with NSCLC, because in patients with activating EGFR mutation, TKIs should be considered as first line therapy. In our recent work, we analyzed data of patients with EGFR-mutant adenocarcinoma from January 2009. The number of patients investigated was 446, among them 44 cases were positive for EGFR mutation. The ratio of positive cases was 9.86 % that is lower than the average mutation rate in Europe and much lower than that found in Asia. The exon 19 deletion was detected in 61.4 % of the patients, while L858R point mutation in exon 21 was observed in 34.1 % of them. In one subject, both exon 19 and 21 mutations were present simultaneously. A rare mutation located in exon 21 was found in another patient. TKI therapy was conducted in 38 patients. The disease control rate by TKI therapy was 85.7 %; primary resistance was documented in five subjects. Non-smoking patients with EGFR mutant adenocarcinoma had the highest benefit from TKI treatment. Our data support the recommendation that EGFR mutation status should be defined in all cases of locally advanced or metastatic lung adenocarcinoma.

  12. EGFR mutation specific immunohistochemistry is a useful adjunct which helps to identify false negative mutation testing in lung cancer.

    PubMed

    Houang, Michelle; Sioson, Loretta; Clarkson, Adele; Watson, Nicole; Farzin, Mahtab; Toon, Christopher W; Raut, Aditi; O'Toole, Sandra A; Cooper, Wendy A; Pavlakis, Nick; Mead, Scott; Chou, Angela; Gill, Anthony J

    2014-10-01

    Mutations in EGFR guide treatment in non-small cell lung cancer (NSCLC). The most common mutations, exon 19 (delE746-A750) and exon 21 (L858R), can be identified by mutation specific immunohistochemistry (IHC). We present our prospective experience of universal reflex IHC and molecular testing in non-squamous NSCLC in the routine clinical setting.A total of 411 specimens from 332 patients were encountered over two years. Of these, 326 (98%) patients underwent EGFR IHC, 15 (5%) were positive for exon 19 deletions and 27 (8%) for exon 21 (L858R); 244 (73%) patients underwent molecular testing. Seventy-six mutations in 64 patients (19% of all patients encountered; 26% with sufficient material for testing) were identified. These comprised nine exon 18 (G719X) mutations, three also with exon 20 mutations; 24 exon 19 deletions, six also with exon 20 mutations; 23 exon 21 (L858R), three also with exon 20 mutations; and 8 exon 20 alone.All 15 exon 19 IHC positive patients were proven mutated (100% specificity, 63% sensitivity). Twenty-two of 27 exon 21 IHC positive cases were proven mutated while three patients had insufficient material for molecular testing (92% specificity, 96% sensitivity). The overall specificity and sensitivity of IHC for any EGFR mutation was 95% and 58%. Five patients initially thought to be wild type for EGFR but IHC positive underwent repeat molecular testing because of the discrepancy which confirmed the IHC result in three cases (60%).We conclude IHC is very specific but not sensitive. Whilst IHC cannot replace molecular testing, it is a useful adjunct which requires minimal tissue and identifies false negative molecular results which occurred in 5% of our patients with eventually confirmed EGFR mutations.

  13. Compound EGFR mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma.

    PubMed

    Kim, Eun Young; Cho, Eun Na; Park, Heae Surng; Hong, Ji Young; Lim, Seri; Youn, Jong Pil; Hwang, Seung Yong; Chang, Yoon Soo

    2016-01-01

    Compound EGFR mutations, defined as double or multiple mutations in the EGFR tyrosine kinase domain, are frequently detected with advances in sequencing technology but its clinical significance is unclear. This study analyzed 61 cases of EGFR mutation positive lung adenocarcinoma using next-generation sequencing (NGS) based repeated deep sequencing panel of 16 genes that contain actionable mutations and investigated clinical implication of compound EGFR mutations. Compound EGFR mutation was detected in 15 (24.6%) of 61 cases of EGFR mutation-positive lung adenocarcinoma. The majority (12/15) of compound mutations are combination of the atypical mutation and typical mutations such as exon19 deletion, L858R or G719X substitutions, or exon 20 insertion whereas 3 were combinations of rare atypical mutations. The patients with compound mutation showed shorter overall survival than those with simple mutations (83.7 vs. 72.8 mo; P = 0.020, Breslow test). Among the 115 missense mutations discovered in the tested genes, a few number of actionable mutations were detected irrelevant to the subtype of EGFR mutations, including ALK rearrangement, BCL2L11 intron 2 deletion, KRAS c.35G>A, PIK3CA c.1633G>A which are possible target of crizotinib, BH3 mimetics, MEK inhibitors, and PI3K-tyrosine kinase inhibitors, respectively. 31 missense mutations were detected in the cases with simple mutations whereas 84 in those with compound mutation, showing that the cases with compound missense mutation have higher burden of missense mutations (P = 0.001, independent sample t-test). Compound EGFR mutations are detected at a high frequency using NGS-based repeated deep sequencing. Because patients with compound EGFR mutations showed poor clinical outcomes, they should be closely monitored during follow-up.

  14. The use of a two-tiered testing strategy for the simultaneous detection of small EGFR mutations and EGFR amplification in lung cancer.

    PubMed

    Lewandowska, Marzena Anna; Czubak, Karol; Klonowska, Katarzyna; Jozwicki, Wojciech; Kowalewski, Janusz; Kozlowski, Piotr

    2015-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Recent progress in lung cancer diagnosis and treatment has been achieved due to a better understanding the molecular mechanisms of the disease and the identification of biomarkers that allow more specific cancer treatments. One of the best known examples of personalized therapy is the use of tyrosine kinase inhibitors, such as gefitinib and erlotinib, for the successful treatment of non-small-cell lung cancer patients selected based on the specific EGFR mutations. Therefore, the reliable detection of mutations is critical for the application of appropriate therapy. In this study, we tested a two-tiered mutation detection strategy using real-time PCR assays as a well-validated high-sensitivity method and multiplex ligation-dependent probe amplification (MLPA)-based EGFRmut+ assay as a second-tier standard-sensitivity method. One additional advantage of the applied MLPA method is that it allows the simultaneous detection of EGFR mutations and copy-number alterations (i.e., amplifications) in EGFR, MET and ERBB2. Our analysis showed high concordance between these two methods. With the use of this two-tier strategy, we reliably determined the frequency of EGFR mutations and EGFR, MET and ERBB2 amplifications in over 200 lung cancer samples. Additionally, taking advantage of simultaneous copy number and small mutation analyses, we showed a very strong correlation between EGFR mutations and EGFR amplifications and a mutual exclusiveness of EGFR mutations/amplifications with MET and ERBB2 amplifications. Our results proved the reliability and usefulness of the two-tiered EGFR testing strategy.

  15. Determination of EGFR mutations in single cells microdissected from enriched lung tumor cells in peripheral blood.

    PubMed

    Ran, Ran; Li, Longyun; Wang, Mengzhao; Wang, Shulan; Zheng, Zhi; Lin, Peter Ping

    2013-09-01

    A minimally invasive and repeatable approach for real-time epidermal growth factor receptor (EGFR) mutation surveillance would be highly beneficial for individualized therapy of late stage lung cancer patients whose surgical specimens are often not available. We aim to develop a viable method to detect EGFR mutations in single circulating tumor cells (CTCs). Using a model CTC system of spiked tumor cells in whole blood, we evaluated EGFR mutation determination in single tumor cells enriched from blood. We used magnetic beads labeled with antibody against leukocyte surface antigens to deplete leukocytes and enrich native CTCs independent of epithelial marker expression level. We then used laser cell microdissection (LCM) to isolate individual CTCs, followed by whole-genome amplification of the DNA for exon 19 microdeletion, L858R and T790M mutation detection by PCR sequencing. EGFR mutations were successfully measured in individual spiked tumor cells enriched from 7.5 ml whole blood. Whole-genome amplification provided sufficient DNA for mutation determination at multiple sites. Ninety-five percent of the single CTCs microdissected by LCM (19/20) yielded PCR amplicons for at least one of the three mutation sites. The amplification success rates were 55 % (11/20) for exon 19 deletion, 45 % (9/20) for T790M, and 85 % (17/20) for L858R. Sequencing of the amplicons showed allele dropout in the amplification reactions, but mutations were correctly identified in 80 % of the amplicons. EGFR mutation determination from single captured tumor cells from blood is feasible with the approach described here. However, to overcome allele dropout and to obtain reliable information about the tumor's EGFR status, multiple individual tumor cells should be assayed.

  16. Radiosensitization of EGFR/HER2 positive pancreatic cancer is mediated by inhibition of Akt independent of Ras mutational status

    PubMed Central

    Kimple, Randall J.; Vaseva, Angelina V.; Cox, Adrienne D.; Baerman, Kathryn M.; Calvo, Benjamin F.; Tepper, Joel E.; Shields, Janiel M.; Sartor, Carolyn I.

    2009-01-01

    Purpose Epidermal growth factor receptor family members (e.g., EGFR, HER2, HER3, and HER4) are commonly overexpressed in pancreatic cancer. We investigated the effects of inhibition of EGFR/HER2 signaling on pancreatic cancer to elucidate the role(s) of EGFR/HER2 in radiosensitization and to provide evidence in support of further clinical investigations. Experimental Design Expression of EGFR family members in pancreatic cancer lines was assessed by qRT-PCR. Cell growth inhibition was determined by MTS assay. The effects of inhibition of EGFR family receptors and downstream signaling pathways on in vitro radiosensitivity were evaluated using clonogenic assays. Growth delay was used to evaluate the effects of nelfinavir on in vivo tumor radiosensitivity. Results Lapatinib inhibited cell growth in four pancreatic cancer cell lines, but radiosensitized only wild-type K-ras-expressing T3M4 cells. Akt activation was blocked in a wild-type K-ras cell line, whereas constitutive phosphorylation of Akt and ERK was seen in lines expressing mutant K-ras. Overexpression of constitutively-active K-ras(G12V) abrogated lapatinib-mediated inhibition of both Akt phosphorylation and radiosensitization. Inhibition of MEK/ERK signaling with U0126 had no effect on radiosensitization, whereas inhibition of activated Akt with LY294002 (enhancement ratio 1.2–1.8) or nelfinavir (enhancement ratio 1.2–1.4) radiosensitized cells regardless of K-ras mutation status. Oral nelfinavir administration to mice bearing mutant K-ras-containing Capan-2 xenografts resulted in a greater than additive increase in radiation-mediated tumor growth delay (synergy assessment ratio of 1.5). Conclusions Inhibition of EGFR/HER2 enhances radiosensitivity in wild-type K-ras pancreatic cancer. Nelfinavir, and other PI3K/Akt inhibitors, are effective pancreatic radiosensitizers regardless of K-ras mutation status. PMID:20103665

  17. Prevalence of EGFR Tyrosine Kinase Domain Mutations in Head and Neck Squamous Cell Carcinoma: Cohort Study and Systematic Review

    PubMed Central

    PERISANIDIS, CHRISTOS

    2017-01-01

    Background: Mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain (TKD) are associated with response and resistance to targeted therapy. The EGFR mutation status in patients with advanced oral and oropharyngeal squamous cell carcinoma (OOSCC) was evaluated. A systematic literature review was undertaken to summarize current evidence and estimate the overall prevalence of EGFR TKD mutations in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Genomic DNA was extracted from formalin-fixed, paraffin-embedded tumor samples of 113 patients with OOSCC. Pyrosequencing was performed to investigate mutations in EGFR exons 18 to 21. Medline databases were searched for relevant studies. Studies reporting mutations in the EGFR TKD in HNSCC were eligible for inclusion in the systematic review. Results: No mutations in the EGFR TKD were observed in 113 samples of OOSCC. A total of 53 eligible studies were included in the systematic review. In total, from the review, 117 patients harboring a total of 159 EGFR TKD mutations were reported among 4122 patients with HNSCC. The overall prevalence of EGFR TKD mutations in HNSCC was 2.8%. Conclusion: Large-scale studies are warranted to provide further evidence regarding the mutation status of EGFR in patients with HNSCC. PMID:28064216

  18. Cross-reactivity of EGFR mutation-specific immunohistochemistry assay in HER2-positive tumors.

    PubMed

    Verdu, Montse; Trias, Isabel; Roman, Ruth; Rodon, Natalia; Pubill, Carme; Arraiza, Nuria; Martinez, Begonya; Garcia-Pelaez, Beatriz; Serrano, Teresa; Puig, Xavier

    2015-09-01

    The coexpression of HER2 and EGFR L858R in a solitary nodule removed from the lung, whose mutation was not confirmed by molecular techniques, made us think about the possible existence of a cross-reaction between HER2 and the EGFR L858R-specific antibody. Our study was designed to further analyze the existence of this cross-reaction and stress the need to exclude a metastatic breast cancer when dealing with EGFR L858R-positive cases. The series consists of 42 primary breast carcinomas, 22 HER2 positive for overexpression and amplification, and 20 negative for both. EGFR mutations were studied by immunohistochemistry and confirmed using real-time PCR when positive. Immunohistochemistry assay with EGFR L858R was positive in 19 (86%) of the HER2-positive breast carcinomas and negative in all HER2-negative carcinomas. The EGFR L858R antibody gives false-positive results in most of the breast carcinomas with HER2 overexpression/amplification. As a consequence, it is essential to confirm any EGFR L858R-positive cases by molecular methods or at least discard the presence of HER2 overexpression/amplification before rendering a diagnosis. It is also important to consider that HER2 has been described in other carcinomas such as urothelial, gastric or ovarian, as well as lung, although infrequently.

  19. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  20. An Analysis of EGFR Mutations among 1506 Cases of Non-Small Cell Lung Cancer Patients in Guangxi, China

    PubMed Central

    Li, Ji-Lin; Liu, Hai-Zhou; Xie, Tong; Zhong, Jian-Hong; Feng, Yan; Wei, Chang-Hong; Zhang, Li-Tu

    2016-01-01

    An association between epidermal growth factor receptor (EGFR) and clinical characteristics of non-small cell lung cancer (NSCLC) was reported ten years ago. In addition, a different type of relationship was seen in different ethic races. However, the relationship between these factors is not well understood in the Guangxi province. Up to now, there are only very limited data on the association of TTF1/EGFR protein positivity and EGFR mutation status in NSCLC. This study aims to investigate the role of EGFR gene mutation status on the clinical characteristics and the relationship with TTF-1/EGFR protein positivity of patients with NSCLC in Guangxi, China. 1506 samples from different patients with NSCLC were detected by amplification refractory mutation system for 29 hotspot mutations. Analysis of the relationship between clinical characteristics and EGFR mutation status was performed by using the crosstabs Chi-square and SPSS 21.0 software. Of 1506 samples, 537 (35.7%) revealed tyrosine kinase inhibitor (TKI) sensitive EGFR mutations with 27 (1.8%) cases harboring TKI resistant EGFR mutations or union co-existing EGFR-TKIs sensitive mutations. EGFR-TKIs sensitive mutations were not significantly associated with age and TNM-M stage (P = 0.863; P = 0.572, respectively). However, they were significantly associated with p-stage, TNM-T stage and TNM-N stage (P = 0.011, P < 0.001, P = 0.036, respectively). Immunohistochemical studies revealed that TTF-1 and EGFR protein expression level were all associated with EGFR mutation status (P < 0.001, P = 0.002, respectively). Of the 537 EGFR-TKIs sensitive mutation cases, the rates of exon 19-del, 18 G719X point, exon 21 L858R and L861Q points were 54.6, 0.9, 42.3 and 0.9%, respectively. EGFR TKI-sensitive mutations commonly occur in female, non-smoking and adenocarcinoma patients. The p-stage, TNM-T stage, TNM-N stage, EGFR and TTF-1 protein expression levels have close relationships with EGFR mutation status. PMID:27992557

  1. A Histopathological Feature of EGFR-Mutated Lung Adenocarcinomas with Highly Malignant Potential – An Implication of Micropapillary Element -

    PubMed Central

    Matsumura, Mai; Okudela, Koji; Kojima, Yoko; Umeda, Shigeaki; Tateishi, Yoko; Sekine, Akimasa; Arai, Hiromasa; Woo, Tetsukan; Tajiri, Michihiko; Ohashi, Kenichi

    2016-01-01

    The purpose of this study was to define histological features determining the malignant potential of EGFR-mutated lung adenocarcinoma (LADC). Surgically resected tumors (EGFR-mutated LADCs with (21) and without (79) lymph node metastasis and EGFR wild-type LADCs with (26) and without (108) lymph node metastasis) and biopsy samples from inoperably advanced tumors (EGFR-mutated LADCs (78) and EGFR wild-type LADCs (99)) were examined. In surgically resected tumors, the EGFR-mutated LADCs with lymph node metastasis had the micropapillary element in a significantly greater proportion than others (Mann-Whitney tests P ≤0.026). The proportion of micropapillary element was higher in the EGFR-mutated LADC at the advanced stage (stage II, III, or IV) than in the tumor at the early stage (stage I) (Mann-Whitney test, P<0.0001). In the biopsy samples from inoperably advanced LADCs (177), EGFR-mutated tumors also had micropapillary element at a higher frequency than EGFR-wild type tumors (53/78 (68%), versus 30/99 (30%), Pearson x2 test, P<0.0001). In stage I EGFR-mutated LADCs (84), the tumors with the micropapillary element (34) exhibited a significantly higher recurrence rate than tumors without micropapillary element (50) (5-year Recurrence-free survival 64.4% versus 93.3%, log-rank test P = 0.028). The micropapillary element may be an exclusive determinant of malignant potential in EGFR-mutated LADC. It is suggested that EGFR-mutated LADC may develop through a distinct histogenesis, in which the micropapillary element is important for promoting progression. PMID:27861549

  2. Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions

    PubMed Central

    Liu, Wanqing; He, Lijun; Ramírez, Jacqueline; Krishnaswamy, Soundararajan; Kanteti, Rajani; Wang, Yi-Ching; Salgia, Ravi; Ratain, Mark J

    2011-01-01

    Somatic mutations in the EGFR tyrosine kinase (TK) domain play a critical role in the development and treatment of non-small cell lung cancer (NSCLC). Strong genetic influence on susceptibility to these mutations has been suggested. To identify the genetic factors conferring risk for the EGFR TK mutations in NSCLC, a case-control study was conducted in 141 Taiwanese NSCLC patients by focusing on three functional polymorphisms in the EGFR gene [-216G/T, intron 1(CA)n and R497K]. Allelic imbalance (AI) of the EGFR -216G/T polymorphism was also tested in the heterozygous patients as well as in the NCI-60 cancer cell lines to further verify its function. We found that the frequencies of the alleles -216T and CA-19 are significantly higher in the patients with any mutation (p=0.032 and 0.01, respectively), in particular in those with exon 19 microdeletions (p=0.006 and 0.033, respectively), but not in the patients with L858R mutation. The -216T allele is favored to be amplified in both tumor DNA of lung cancer patients and cancer cell lines. We conclude that the local haplotype structures across the EGFR gene may favor the development of cellular malignancies and thus significantly confer risk to the occurrence of EGFR mutations in NSCLC, particularly the exon 19 microdeletions. PMID:21292812

  3. A systematic profile of clinical inhibitors responsive to EGFR somatic amino acid mutations in lung cancer: implication for the molecular mechanism of drug resistance and sensitivity.

    PubMed

    Ai, Xinghao; Sun, Yingjia; Wang, Haidong; Lu, Shun

    2014-07-01

    Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was preoptimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.

  4. Afatinib induces apoptosis in NSCLC without EGFR mutation through Elk-1-mediated suppression of CIP2A.

    PubMed

    Chao, Ting-Ting; Wang, Cheng-Yi; Chen, Yen-Lin; Lai, Chih-Cheng; Chang, Fang-Yu; Tsai, Yi-Ting; Chao, Chung-Hao H; Shiau, Chung-Wai; Huang, Yuh-Chin T; Yu, Chong-Jen; Chen, Kuen-Feng

    2015-02-10

    Afatinib has anti-tumor effect in non-small cell lung carcinoma (NSCLC) with epidermal growth factor receptor (EGFR) mutation. We found afatinib can also induce apoptosis in NSCLC cells without EGFR mutation through CIP2A pathway. Four NSCLC cell lines (H358 H441 H460 and A549) were treated with afatinib to determine their sensitivity to afatinib-induced cell death and apoptosis. The effects of CIP2A on afatinib-induced apoptosis were confirmed by overexpression and knockdown of CIP2A expression in the sensitive and resistant cells, respectively. Reduction of Elk-1 binding to the CIP2A promoter and suppression of CIP2A transcription were analyzed. In vivo efficacy of afatinib against H358 and H460 xenografts tumors were also determined in nude mice. Afatinib induced significant cell death and apoptosis in H358 and H441 cells, but not in H460 or A549 cells. The apoptotic effect of afatinib in sensitive cells was associated with downregulation of CIP2A, promotion of PP2A activity and decrease in AKT phosphorylation. Afatinib suppressed CIP2A at the gene transcription level by reducing the promoter binding activity of Elk-1. Clinical samples showed that higher CIP2A expression predicted a poor prognosis and Elk-1 and CIP2A expressions were highly correlated. In conclusion, afatinib induces apoptosis in NSCLC without EGFR mutations through Elk-1/CIP2A/PP2A/AKT pathway.

  5. Unique microRNA-profiles in EGFR-mutated lung adenocarcinomas.

    PubMed

    Bjaanaes, Maria Moksnes; Halvorsen, Ann Rita; Solberg, Steinar; Jørgensen, Lars; Dragani, Tommaso A; Galvan, Antonella; Colombo, Francesca; Anderlini, Marco; Pastorino, Ugo; Kure, Elin; Børresen-Dale, Anne-Lise; Brustugun, Odd Terje; Helland, Aslaug

    2014-10-15

    The findings of mutations and the development of targeted therapies have improved lung cancer management. Still, the prognosis remains poor, and we need to know more about the genetic and epigenetic alterations in lung cancer. MicroRNAs are involved in crucial biological processes like carcinogenesis by regulating gene expression at the post-transcriptional level. In this project, we have studied the microRNA expression of lung adenocarcinomas and corresponding normal lung tissue and correlated the expression with clinical data and EGFR- and KRAS-mutational status. Agilent microarrays have been used, examining microRNA expression in 154 surgically resected lung adenocarcinomas and 20 corresponding normal lung tissue samples. Findings were confirmed by RT-qPCR in the same cohort and in an independent cohort of 103 lung cancer patients. EGFR and KRAS mutation analyses were also performed. 129 microRNAs were significantly differentially expressed in lung adenocarcinomas compared with normal lung tissue, and 17 microRNAs were differentially expressed between EGFR-mutated and EGFR wildtype tumors. We identified microRNAs associated with time to progression. We have identified several aberrantly expressed microRNAs that discriminate lung adenocarcinomas from normal lung tissue, and hence may be potential biomarkers for early detection. We have found microRNAs that are differentially expressed between EGFR-mutated and EGFR wildtype lung adenocarcinomas, suggesting that microRNAs can be used as molecular biomarkers in classification. We hypothesize that microRNA expression can be used as biomarkers for clinical course.

  6. Insulin activates EGFR by stimulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells.

    PubMed

    Shin, Miyoung; Yang, Eun Gyeong; Song, Hyun Kyu; Jeon, Hyesung

    2015-06-01

    The expression of epidermal growth factor receptor (EGFR) is an important diagnostic marker for triple-negative breast cancer (TNBC) cells, which lack three hormonal receptors: estrogen and progesterone receptors as well as epidermal growth factor receptor 2. EGFR transactivation can cause drug resistance in many cancers including TNBC, but the mechanism underlying this phenomenon is poorly defined. Here, we demonstrate that insulin treatment induces EGFR activation by stimulating the interaction of EGFR with insulin-like growth factor receptor 1 (IGF-1R) in the MDA-MB-436 TNBC cell line. These cells express low levels of EGFR, while exhibiting high levels of IGF-1R expression and phosphorylation. Low-EGFRexpressing MDA-MB-436 cells show high sensitivity to insulinstimulated cell growth. Therefore, unexpectedly, insulin stimulation induced EGFR transactivation by regulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells.

  7. Biological characteristics and epidermal growth factor receptor tyrosine kinase inhibitors efficacy of EGFR mutation and its subtypes in lung adenocarcinoma.

    PubMed

    Lu, Rong-Li; Hu, Cheng-Ping; Yang, Hua-Ping; Li, Yuan-Yuan; Gu, Qi-Hua; Wu, Lielin

    2014-04-01

    Mutation of epidermal growth factor receptor (EGFR) gene has been reported to be present in lung adenocarcinoma (LAC). In this study, we extensively investigated the impact of patients' biological characteristics on EGFR mutation and the impact of EGFR mutation subtypes on targeted therapy of advanced LAC. We examined EGFR exons18to21status in169 LAC patients by direct sequencing to study the impact of patients' biological characteristics on the EGFR mutational spectrum. And then, 59 patients with advanced LAC harboring EGFR exon 19 deletions(del 19) or exon 21 point mutation(L858R) mutations received first-line treatment of gefitinib or erlotinib, the efficacy of treatment, and the progression-free survival (PFS) of these patients were recorded. The frequency of the EGFR mutation and its subtypes and the variables associated with the EGFR mutation after removing the confound factors were investigated by the logistic analysis using all samples (n = 169). The EGFR mutation was significantly associated with well-differentiated tumor and excessive household cooking fumes(P < 0.05). The deletions in exon 19 were more frequently associated with well-differentiated tumor (P < 0.05). The overall frequency of the EGFR mutation was 49 %. Then the impact of EGFR mutation subtypes on targeted therapy were investigated by the retrospective analysis on 59 advanced LAC patients with del 19 or L858R mutations and treated first-line with erlotinib or gefitinib. The deletions in exon 19 got longer PFS (P < 0.05). But there were no differences in PFS between erlotinib therapy and gefitinib therapy. EGFR mutations were more frequently in high tumor differentiation and excessive household cooking fumes LAC. The del 19 mutation rate is relatively high with a high differentiation degree in advanced lung adenocarcinoma. The deletions in exon 19 may benefit more from first-line targeted therapy of advanced LAC compared with exon 21 point mutation L858R. There was no

  8. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer

    PubMed Central

    Wong; Lin, David T; Huang, Chien-Chung; Wei, Wei-Lun; Su, Fang; Wu-Chou

    2016-01-01

    Summary Advances in target therapies for lung cancer have enabled detection of gene mutations, specifically those of EGFR. Assays largely depend on the acquisition of tumor tissue biopsy, which is invasive and may not reflect the genomic profile of the tumor at treatment due to tumor heterogeneity or changes that occur during treatment through acquired resistance. Liquid biopsy, a blood test that detects evidence of cancer cells or tumor DNA, has generated considerable interest for its ability to detect EGFR mutations, however, its clinical application is limited by complicated collection methods and the need for technique-dependent platforms. Recently, simpler techniques for EGFR mutant detection in in urine or saliva samples have been developed. This review focuses on advances in liquid biopsy and discusses its potential for clinical implementation in lung cancer. PMID:26420338

  9. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer.

    PubMed

    Lin, Chien-Chung; Huang, Wei-Lun; Wei, Fang; Su, Wu-Chou; Wong, David T

    2015-01-01

    Advances in target therapies for lung cancer have enabled detection of gene mutations, specifically those of EGFR. Assays largely depend on the acquisition of tumor tissue biopsy, which is invasive and may not reflect the genomic profile of the tumor at treatment due to tumor heterogeneity or changes that occur during treatment through acquired resistance. Liquid biopsy, a blood test that detects evidence of cancer cells or tumor DNA, has generated considerable interest for its ability to detect EGFR mutations. However, its clinical application is limited by complicated collection methods and the need for technique-dependent platforms. Recently, simpler techniques for EGFR mutant detection in urine or saliva samples have been developed. This review focuses on advances in liquid biopsy and discusses its potential for clinical implementation in lung cancer.

  10. EGFR, p16INK4a and E-cadherin immuno-histochemistry and EGFR point mutations analyses in invasive cervical cancer specimens from Moroccan women.

    PubMed

    El Hamdani, W; Amrani, M; Attaleb, M; Laantri, N; Ennaji, M M; Khyatti, M; El Mzibri, M

    2010-09-11

    The involvement of human papillomavirus in the development of cervical cancer has been firmly established. However, better management of cervical cancer rests on good diagnosis and an effective therapy. In this study we evaluated the frequency of point mutations in epidermal growth factor receptor (EGFR) for future use of tyrosine kinase inhibitors in clinical treatment and to assess the use of EGFR, p16INK4a and E-cadherin as biomarkers in cervical cancer diagnosis with immunohistochemistry. Fifty-three patient specimens of cervical cancer were analysed for HPV infection, for EGFR mutations in exons 18 through 21, and for expression of EGFR, p16INK4a and E-cadherin by immunostaining. Results showed that 79.24% of the cases (42/53) are HPV positive and the HPV types more closely associated with risk are HPV 16 and 18. In all 53 analysed specimens, any mutation affecting the EGFR kinase domain in exons 18 through 21 was observed. Expressions of EGFR, p16INK4a and E-cadherin were detected in 88,67% (47/53), 92,45% (49/53) and 79,24% (42/53) of analysed specimens respectively. Thus, EGFR, p16INK4a and E-cadherin would be excellent tools for IHC analysis during the cervical cancer development. EGFR and p16INK4a can be used for early diagnosis and E-cadherin for cancer progression and cell migration. However, treatment of cervical cancer with TKIs may not be effective and the identification of other EGFR inhibitors is needed.

  11. Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution

    PubMed Central

    Li, Kaidi; Yang, Maojun; Liang, Naixin; Li, Shanqing

    2017-01-01

    Mutations in epidermal growth factor receptor (EGFR) play critical roles in the pathogenesis of non-small cell lung cancer (NSCLC), and they are highly associated with sensitivity to tyrosine kinase inhibitors (TKIs). While the pathogenic and pharmacological characteristics of common mutations in EGFR have been thoroughly investigated, those of uncommon mutations remain to be elucidated. Traditional approaches to study common mutations by randomized controlled trials are not feasible for uncommon mutations owing to their rarity. Therefore, by systematically reviewing laboratory and clinical studies of the G719X mutation, one of the uncommon mutations, we concluded that the G719X mutation was intermediately sensitive to TKIs, with an average response rate of 35.1% (47/134). Moreover, accordingly, we proposed a comprehensive model to investigate uncommon mutations in EGFR. The model involves both basic and clinical components, composed of structural analyses, functional alterations, cell viabilities and animal models with various types of clinical studies. In this review, we systematically reviewed studies of the G719X mutation and put forward a research model that could be generalized to explore uncommon mutations in diseases associated with gene mutations. PMID:28184913

  12. EGFR kinase domain mutation positive lung cancers are sensitive to intrapleural perfusion with hyperthermic chemotherapy (IPHC) complete treatment.

    PubMed

    Zhang, Hongjuan; Zhan, Cheng; Ke, Ji; Xue, Zhiqiang; Zhang, Aiqun; Xu, Kaifeng; Shen, Zhirong; Yu, Lei; Chen, Liang

    2016-01-19

    Lung cancer is the global leading cause of cancer-related deaths. A significant portion of lung cancer patients harbor kinase domain mutations in the epidermal growth factor receptor (EGFR). While EGFR tyrosine kinase inhibitors (TKI) effectively shrink tumors harboring mutant EGFR, clinical efficacy is limited by the development of TKI resistance. Effective alternatives are desperately needed in clinic for treating EGFR kinase domain mutation positive lung cancer. In our clinic in treating M1a lung cancer patients through intrapleural perfusion with hyperthermic chemotherapy (IPHC) followed by cycles of systemic chemotherapy (we termed this procedure IPHC complete treatment, IPHC-CT), we found dramatic tumor shrinkage in mutant EGFR-positive patients. We further confirmed the sensitivity of EGFR mutation-positive lung cancer cell lines derived from patients to HC (hyperthermic chemotherapy) treatment. We found that hyperthermia promoted accumulation of cisplatin in lung cancer cells. Hyperthermia and cisplatin synergistically downregulated the EGFR protein level, leading to quenching of signal from EGFR and induction of apoptosis. Our work therefore showed IPHC-CT is an effective treatment for EGFR kinase domain mutation positive lung cancer patients.

  13. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP

    SciTech Connect

    Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J.

    2008-07-15

    Lung cancers caused by activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to small molecule tyrosine kinase inhibitors (TKIs), but the efficacy of these agents is often limited because of the emergence of drug resistance conferred by a second mutation, T790M. Threonine 790 is the 'gatekeeper' residue, an important determinant of inhibitor specificity in the ATP binding pocket. The T790M mutation has been thought to cause resistance by sterically blocking binding of TKIs such as gefitinib and erlotinib, but this explanation is difficult to reconcile with the fact that it remains sensitive to structurally similar irreversible inhibitors. Here, we show by using a direct binding assay that T790M mutants retain low-nanomolar affinity for gefitinib. Furthermore, we show that the T790M mutation activates WT EGFR and that introduction of the T790M mutation increases the ATP affinity of the oncogenic L858R mutant by more than an order of magnitude. The increased ATP affinity is the primary mechanism by which the T790M mutation confers drug resistance. Crystallographic analysis of the T790M mutant shows how it can adapt to accommodate tight binding of diverse inhibitors, including the irreversible inhibitor HKI-272, and also suggests a structural mechanism for catalytic activation. We conclude that the T790M mutation is a 'generic' resistance mutation that will reduce the potency of any ATP-competitive kinase inhibitor and that irreversible inhibitors overcome this resistance simply through covalent binding, not as a result of an alternative binding mode.

  14. Correlation between EGFR Gene Mutations and Lung Cancer: a Hospital-Based Study.

    PubMed

    Matam, Kavitha; Goud, Iravathy; Lakshmi M, Adi Maha; Ravi, V; Sridhar, K; Vijayanand, P Reddy; Chakravarthy, Srinivas; Prasad, S V S S; Tabassum, Shaik Nazia; Shaik, Noor Ahmad; Syed, Rabbani; Alharbi, Khalid Khalaf; Khan, Imran Ali

    2015-01-01

    Epidermal growth factor receptor (EGFR) is one of the targeted molecular markers in many cancers including lung malignancies. Gefitinib and erlotinib are two available therapeutics that act as specific inhibitors of tyrosine kinase (TK) domains. We performed a case-control study with formalin-fixed paraffin-embedded tissue blocks (FFPE) from tissue biopsies of 167 non-small cell lung carcinoma (NSCLC) patients and 167 healthy controls. The tissue biopsies were studied for mutations in exons 18-21 of the EGFR gene. This study was performed using PCR followed by DNA sequencing. We identified 63 mutations in 33 men and 30 women. Mutations were detected in exon 19 (delE746-A750, delE746-T751, delL747-E749, delL747-P753, delL747-T751) in 32 patients, exon 20 (S786I, T790M) in 16, and exon 21 (L858R) in 15. No mutations were observed in exon 18. The 63 patients with EFGR mutations were considered for upfront therapy with oral tyrosine kinase inhibitor (TKI) drugs and have responded well to therapy over the last 15 months. The control patients had no mutations in any of the exons studied. The advent of EGFR TKI therapy has provided a powerful new treatment modality for patients diagnosed with NSCLC. The study emphasizes the frequency of EGFR mutations in NSCLC patients and its role as an important predictive marker for response to oral TKI in the south Indian population.

  15. Efficacy of multimodal treatment for leptomeningeal metastases in a lung cancer harboring an EGFR mutation.

    PubMed

    Morichika, Daisuke; Kubo, Toshio; Gotoda, Hiroko; Tamura, Tomoki; Ohashi, Kadoaki; Hotta, Katsuyuki; Tabata, Masahiro; Kurozumi, Kazuhiko; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-01-01

    For lung cancer patients with epidermal growth factor receptor (EGFR) mutations, the advent of EGFR tyrosine kinase inhibitors (TKIs) has prolonged survival rates. Even though disease sites have been well controlled by EGFR-TKIs, some patients develop carcinomatous meningitis, which reduces their quality of life drastically. Although multidisciplinary approaches have improved patient survival and quality of life, the outcomes are not yet satisfactory. We report the case of a 54-year-old Japanese woman diagnosed with leptomeningeal metastases (LM) from a lung adenocarcinoma harboring an EGFR exon 21 L858R point mutation. She was treated with gefitinib for 2 months, and symptoms of LM emerged during the treatment period. Although the treatment was switched to erlotinib, disturbance of consciousness worsened because of progressive hydrocephalus. Because all extracranial lesions remained responsive to treatment, and the exon 20 T790M point mutation was not detected in cerebrospinal fluid, we placed a ventriculoperitoneal shunt. The patient's disturbed consciousness improved dramatically after the shunt was placed; however, the optic and auditory nerve impairments due to direct invasion of LM lesions into nerve canals persisted. Administration of bevacizumab subsequent to whole-brain radiotherapy reduced the cranial nerve impairment, and the patient survived for 10 months. In conclusion, a combination of erlotinib and ventriculoperitoneal shunt was effective for hydrocephalus, and the immediate administration of additional therapies, including bevacizumab and radiation therapy, was useful in a patient suffering from LM.

  16. EGFR Exon 20 Insertion/Duplication Mutations Characterize Fibrous Hamartoma of Infancy.

    PubMed

    Park, Jason Y; Cohen, Cynthia; Lopez, Dania; Ramos, Erica; Wagenfuehr, Jennifer; Rakheja, Dinesh

    2016-12-01

    Fibrous hamartoma of infancy (FHI) is a benign mesenchymal tumor histologically characterized by a mixture of intersecting fascicles of fibroblasts/myofibroblasts in collagenous stroma, nests of primitive oval or stellate cells in basophilic mucoid stroma, and mature adipose tissue. We hypothesized that FHI, because of histologic overlap with mesenchymal overgrowth tumors seen in CLOVES (Congenital Lipomatous Overgrowth with Vascular, Epidermal, Skeletal anomalies) and Proteus syndromes, may harbor mutations in signaling pathways associated with cellular proliferation. Formalin-fixed paraffin-embedded material from a discovery set of 4 cases of FHI was investigated by targeted next-generation sequencing of a panel of cancer-associated genes. The results were confirmed by targeted Sanger sequencing of EGFR exon 20. A validation set of 8 cases of FHI and 10 cases of other pediatric fatty tumors were investigated by targeted Sanger sequencing of EGFR exon 20. All 12 cases of FHI, and none of the 10 control tumors, showed EGFR exon 20 insertion/duplication mutations. This is the first report of molecular aberrations in FHI. The consistent occurrence of EGFR exon 20 insertion/duplication mutations in 100% of cases of FHI studied suggests that they must play a principal role in the pathogenesis of FHI, likely by conferring a potential for growth and local infiltration. Although surgical treatment will remain the mainstay of FHI treatment, tyrosine kinase inhibitors may have an adjunctive role in cases that are difficult to resect.

  17. Phase II study of erlotinib plus tivantinib (ARQ 197) in patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer just after progression on EGFR-TKI, gefitinib or erlotinib

    PubMed Central

    Azuma, Koichi; Hirashima, Tomonori; Yamamoto, Nobuyuki; Okamoto, Isamu; Takahashi, Toshiaki; Nishio, Makoto; Hirata, Taizo; Kubota, Kaoru; Kasahara, Kazuo; Hida, Toyoaki; Yoshioka, Hiroshige; Nakanishi, Kaoru; Akinaga, Shiro; Nishio, Kazuto; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko

    2016-01-01

    Background Patients with epidermal growth factor receptor (EGFR) activation mutation-positive non-small-cell lung cancer (NSCLC) respond well to EGFR tyrosine kinase inhibitors (EGFR-TKIs), but eventually become resistant in most cases. The hepatocyte growth factor/c-Met (HGF/c-Met) pathway is reported as a poor prognostic factor in various cancers. As c-Met is involved in EGFR-TKI resistance, a c-Met inhibitor and EGFR-TKI combination may reverse the resistance. This study evaluated the efficacy and safety of a c-Met selective inhibitor, tivantinib (ARQ 197), in combination with erlotinib, in Japanese EGFR mutation-positive patients with NSCLC who progressed while on EGFR-TKIs. Methods This study enrolled 45 patients with NSCLC with acquired resistance to EGFR-TKIs, who were orally administered a daily combination of tivantinib/erlotinib. The primary end point was the overall response rate (ORR) and secondary end points included disease control rate, progression-free survival (PFS) and overall survival (OS). The patients underwent a mandatory second biopsy just after progression on EGFR-TKIs. The predictive biomarkers were extensively analysed using tumour and blood samples. Results The ORR was 6.7% (95% CI 1.4% to 18.3%), and the lower limit of 95% CI did not exceed the target of 5%. The median PFS (mPFS) and median OS (mOS) were 2.7 months (95% CI 1.4 to 4.2) and 18.0 months (95% CI 13.4 to 22.2), respectively. Both were longer in c-Met high patients (c-Met high vs low: mPFS 4.1 vs 1.4 months; mOS 20.7 vs 13.9 months). Partial response was observed in three patients, all of whom were c-Met and HGF high. The common adverse events and their frequencies were similar to those known to occur with tivantinib or erlotinib alone. Conclusions Although this study did not prove clinical benefit of tivantinib in patients with acquired resistance to EGFR-TKIs, activated HGF/c-Met signalling, a poor prognostic factor, may define a patient subset associated with longer

  18. EGFR mutation in squamous cell carcinoma of the lung: does it carry the same connotation as in adenocarcinomas?

    PubMed Central

    Joshi, Amit; Zanwar, Saurabh; Noronha, Vanita; Patil, Vijay M; Chougule, Anuradha; Kumar, Rajiv; Janu, Amit; Mahajan, Abhishek; Kapoor, Akhil; Prabhash, Kumar

    2017-01-01

    Background EGFR tyrosine kinase inhibitors (TKIs) have greatly improved the outcomes of EGFR mutation-positive adenocarcinomas of the lung. In contrast, the significance of EGFR mutation in metastatic squamous cell carcinoma (SCC) of the lung has been debated. Methods All patients with metastatic SCC who underwent EGFR mutation testing at our center from 2010 to 2015 were included for analysis. EGFR kinase domain mutations were tested using Taqman-based real-time polymerase chain reaction (PCR). Response assessment was done using Response Evaluation Criteria In Solid Tumors (RECIST) 1.1. Kaplan–Meier method was used for calculating progression-free survival (PFS) and overall survival (OS). Results EGFR mutation was detected in 29 out of 639 patients with SCC. Furthermore, 19 out of the 29 patients received TKIs at some point during their treatment. TKI therapy led to a partial response in 5 out of 19 patients and stable disease in 4 out of 19 patients. The median PFS of patients treated with TKIs was 5.0 months. The median OS of the whole EGFR-positive SCC cohort was 6.6 months. On univariate analysis, patients having received TKI therapy was the only factor associated with a significantly better OS of 13.48 months versus 2.58 months (P=0.000). On multivariate analysis, patients receiving TKI therapy, Eastern Cooperative Oncology Group–Performance Scale (ECOG-PS) score <2, EGFR exon 19 mutation and nonsmoking status were associated with significantly better OS. Conclusion EGFR mutation in SCC of the lung predicts a better outcome if the patient is given TKI, but it may be inferior to the outcomes seen in EGFR-positive adenocarcinomas treated with TKI.

  19. Clinical features reflect exon sites of EGFR mutations in patients with resected non-small-cell lung cancer.

    PubMed

    Na, Im Il; Rho, Jin Kyung; Choi, Yun Jung; Kim, Cheol Hyeon; Koh, Jae Soo; Ryoo, Baek-Yeol; Yang, Sung Hyun; Lee, Jae Cheol

    2007-06-01

    The aim of the current study was to determine the clinical significance according to the subtypes of epidermal growth factor receptor (EGFR) mutations and presence of KRAS mutations in operable non-small-cell lung cancer (NSCLC). We sequenced exons 18-21 of the EGFR tyrosine kinase domain and examined mutations in codons 12 and 13 of KRAS in tissues of patients with NSCLC who had undergone surgical resection. EGFR mutations were more frequent in never-smokers than smokers (33% vs. 14%, respectively; p=0.009) and in females than in males (31% vs. 16%, respectively; p=0.036). Mutations in exon 18-19 and 20-21 were found in 10 and 22 patients, respectively. Never-smokers and broncho-alveolar cell carcinoma features were positively associated with a mutation in exon 18-19 (p=0.027 and 0.016, respectively). The five-year survival rate in patients with a mutation in exons 18-19 (100%) was higher than that in patients without such mutation (47%; p=0.021). KRAS mutations were found in 16 patients (12%) and were not related to the overall survival (p=0.742). Patients with an EGFR mutation in exons 18-19 had better survival than patients without such mutation. Subtypes of EGFR mutations may be prognostic factors in patients undergoing curative resection.

  20. EGFR mutations in lung cancer: from tissue testing to liquid biopsy.

    PubMed

    Fenizia, Francesca; De Luca, Antonella; Pasquale, Raffaella; Sacco, Alessandra; Forgione, Laura; Lambiase, Matilde; Iannaccone, Alessia; Chicchinelli, Nicoletta; Franco, Renato; Rossi, Antonio; Morabito, Alessandro; Rocco, Gaetano; Piccirillo, Maria Carmela; Normanno, Nicola

    2015-01-01

    ABSTRACT  The presence of EGFR mutations predicts the sensitivity to EGF receptor (EGFR)-tyrosine kinase inhibitors in a molecularly defined subset of non-small-cell lung carcinoma (NSCLC) patients. For this reason, EGFR testing of NSCLC is required to provide personalized treatment options and better outcomes for NSCLC patients. As surgery specimens are not available in the majority of NSCLC, other currently available DNA sources are small biopsies and cytological samples, providing however limited and low-quality material. In order to address this issue, the use of surrogate sources of DNA, such as blood, serum and plasma samples, which often contains circulating free tumor DNA or circulating tumor cells, is emerging as a new strategy for tumor genotyping.

  1. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer.

    PubMed

    Zhang, Nan; Zeng, Yuanyuan; Du, Wenwen; Zhu, Jianjie; Shen, Dan; Liu, Zeyi; Huang, Jian-An

    2016-10-01

    Negative regulation of the signal mediated by the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway can effectively inhibit the function of T and B cells, which play a key role in the regulation of immune response. Recently, emerging evidence has suggested that the expression of PD-L1 is related to the mutation status of the epidermal growth factor receptor (EGFR). Moreover, the activation of the EGFR signaling pathway can induce expression of PD-L1. In the present study, we demonstrated that activated EGFR can upregulate the expression of PD-L1 through the interleukin 6/Janus kinase/signal transducer and activator of transcription 3 (IL-6/JAK/STAT3) signaling pathway in non-small cell lung cancer (NSCLC) cells. Cells treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) can downregulate the activation of the IL-6/JAK/STAT3 pathway, which subsequently reduces the expression of PD-L1. Furthermore, silencing of PD-L1 expression in NSCLC cells correlated with inhibition of cell proliferation and enhanced tumor cell apoptosis. In summary, our research indicates that EGFR is involved in the regulation of PD-L1 expression and cell proliferation via the IL-6/JAK/STAT3 signaling pathway in NSCLC. The present study suggests the potential of combined targeted therapy with immunotherapy in the treatment of NSCLC.

  2. Impact of TP53 Mutations on Outcome in EGFR-Mutated Patients Treated with First-Line Tyrosine Kinase Inhibitors.

    PubMed

    Canale, Matteo; Petracci, Elisabetta; Delmonte, Angelo; Chiadini, Elisa; Dazzi, Claudio; Papi, Maximilian; Capelli, Laura; Casanova, Claudia; De Luigi, Nicoletta; Mariotti, Marita; Gamboni, Alessandro; Chiari, Rita; Bennati, Chiara; Calistri, Daniele; Ludovini, Vienna; Crinò, Lucio; Amadori, Dino; Ulivi, Paola

    2016-10-25

    Purpose: To analyze the impact of TP53 mutations on response to first-line tyrosine kinase inhibitors (TKI) in patients with EGFR-mutated non-small cell lung cancer (NSCLC).Experimental Design: 136 EGFR-mutated NSCLC patients receiving first-line TKIs were analyzed. TP53 mutations were evaluated in 123 patients in relation to disease control rate (DCR), objective response rate (ORR), progression-free survival (PFS), and overall survival (OS).Results:TP53 mutations were observed in 37 (30.1%), 10 (27.0%), 6 (16.2%), 9 (24.3%), and 12 (32.4%) patients in exons 5, 6, 7, and 8, respectively. DCR was 70% in TP53-mutated patients compared with 88% in TP53-wild type (wt) patients [relative risk, RR, of disease progression: 3.17 (95% CI, 1.21-8.48), P = 0.019]. In particular, a 42% DCR was observed in patients with TP53 exon 8 mutation versus 87% in exon 8 wt patients [RR of disease progression 9.6 (2.71-36.63), P < 0.001]. Shorter median PFS and OS were observed in patients with TP53 exon 8 mutations compared with others (4.2 vs. 12.5, P = 0.058, and 16.2 vs. 32.3, P = 0.114, respectively); these differences became significant in the subgroup with EGFR exon 19 deletion (4.2 vs. 16.8, P < 0.001, and 7.6 vs. not reached, P = 0.006, respectively), HR 6.99 (95% CI, 2.34-20.87, P < 0.001) and HR 4.75 (95% CI, 1.38-16.29, P = 0.013), respectively.Conclusions:TP53 mutations, especially exon 8 mutations, reduce responsiveness to TKIs and worsen prognosis in EGFR-mutated NSCLC patients, mainly those carrying exon 19 deletions. Clin Cancer Res; 1-8. ©2016 AACR.

  3. Structural signature of the G719S-T790M double mutation in the EGFR kinase domain and its response to inhibitors

    NASA Astrophysics Data System (ADS)

    George Priya Doss, C.; Rajith, B.; Chakraborty, Chiranjib; Nagasundaram, N.; Ali, Shabana Kouser; Zhu, Hailong

    2014-08-01

    Some individuals with non-small-cell lung cancer (NSCLC) benefit from therapies targeting epidermal growth factor receptor (EGFR), and the characterization of a new mechanism of resistance to the EGFR-specific antibody gefitinib will provide valuable insight into how therapeutic strategies might be designed to overcome this particular resistance mechanism. The G719S and T790M mutations and their combination were involved in causing different conformational redistribution of EGFR. In the present computational study, we analyzed the impact and structural influence of G719S/T790M double mutation (DM) in EGFR with ligand (gefitinib) through molecular dynamic simulation (50 ns) and docking analysis. We observed the escalation in distance between the functional loop and activation loop with respect to T790M mutation compared to the G719S mutation. Furthermore, we confirmed that the G719S mutation causes the ligand to move closer to the hinge region, whereas T790M makes the ligand escape from the binding pocket. Obtained results provide with an explanation for the resistance induced by T790M and a vital clue for the design of drugs to combat gefitinib resistance.

  4. BIM Gene Polymorphism Lowers the Efficacy of EGFR-TKIs in Advanced Nonsmall Cell Lung Cancer With Sensitive EGFR Mutations: A Systematic Review and Meta-Analysis.

    PubMed

    Huang, Wu Feng; Liu, Ai Hua; Zhao, Hai Jin; Dong, Hang Ming; Liu, Lai Yu; Cai, Shao Xi

    2015-08-01

    The strong association between bcl-2-like 11 (BIM) triggered apoptosis and the presence of epidermal growth factor receptor (EGFR) mutations has been proven in nonsmall cell lung cancer (NSCLC). However, the relationship between EGFR-tyrosine kinase inhibitor's (TKI's) efficacy and BIM polymorphism in NSCLC EGFR is still unclear.Electronic databases were searched for eligible literatures. Data on objective response rates (ORRs), disease control rates (DCRs), and progression-free survival (PFS) stratified by BIM polymorphism status were extracted and synthesized based on random-effect model. Subgroup and sensitivity analyses were conducted.A total of 6 studies that involved a total of 773 EGFR mutant advanced NSCLC patients after EGFR-TKI treatment were included. In overall, non-BIM polymorphism patients were associated with significant prolonged PFS (hazard ratio 0.63, 0.47-0.83, P = 0.001) compared to patients with BIM polymorphism. However, only marginal improvements without statistical significance in ORR (odds ratio [OR] 1.71, 0.91-3.24, P = 0.097) and DCR (OR 1.56, 0.85-2.89, P = 0.153) were observed. Subgroup analyses showed that the benefits of PFS in non-BIM polymorphism group were predominantly presented in pooled results of studies involving chemotherapy-naive and the others, and retrospective studies. Additionally, we failed to observe any significant benefit from patients without BIM polymorphism in every subgroup for ORR and DCR.For advanced NSCLC EGFR mutant patients, non-BIM polymorphism ones are associated with longer PFS than those with BIM polymorphism after EGFR-TKIs treatment. BIM polymorphism status should be considered an essential factor in studies regarding EGFR-targeted agents toward EGFR mutant patients.

  5. Identification of G2607A mutation in EGFR gene with a significative rate in Moroccan patients with nasopharyngeal carcinoma.

    PubMed

    Naji, F; Attaleb, M; Laantri, N; Benchakroun, N; El Gueddari, B; Benider, A; Azeddoug, H; Ennaji, M M; El Mzibri, M; Khyatti, M

    2010-12-15

    The epidermal growth factor receptor (EGFR) is involved in the regulation of several cellular processes and in the development of many human cancers. Somatic mutations of EGFR at tyrosine kinase domain have been associated with clinical response to tyrosine kinase inhibitors (TKIs) in lung cancer patients. In this study, we evaluated the frequency of point mutations in EGFR for future use of TKI in clinical treatment of nasopharyngeal carcinoma (NPC). Sixty Moroccan patient specimens of NPC were analysed for EGFR mutations in the region delimiting exons 18 and 21 by direct sequencing. Our results showed the absence of mutations in the EGFR kinase domain in these exons in all 60 analysed specimens. Sequence analysis of the EGFR—TK domain, revealed the presence of (G2607A) polymorphism at exon 20. The genotypes AA and GA were found respectively in 39 (65%) and 16 (26.6%) cases. Statistical analysis showed no difference between the polymorphism and either gender or age of patients. Mutations in EGFR kinase domain are rare events in NPC biopsies, suggesting, that treatment of NPC patients with TKI may not be effective. However, EGFR G2607A polymorphism at exon 20 is frequent in NPC cases and could be associated to clinical response to TKI therapy.

  6. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas.

    PubMed

    Wu, Zhenzhou; Bai, Fan; Fan, Liyun; Pang, Wenshuai; Han, Ruiyu; Wang, Juan; Liu, Yueping; Yan, Xia; Duan, Huijun; Xing, Lingxiao

    2015-12-01

    AXL has been identified as a tyrosine kinase switch that causes resistance to inhibitors targeting epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC). However, the relationship between 2 receptor tyrosine kinases, AXL and EGFR, and the relevance of AXL expression with EGFR mutation status in treatment-naive human NSCLCs remain uncertain. In this study, we evaluated the coexpression pattern of AXL, EGFR, and pEGFR(1068) in 109 lung adenocarcinoma patients with or without an EGFR mutation. There were 68 (62.4%) patients with tumors harboring EGFR mutations such as 19 del and/or L858R; 2 patients were T790M positive. The expression of AXL, EGFR, and pEGFR(1068) was detected in 60 (55%), 68 (62.4%), and 57 (52.3%) of 109 patients, respectively. The positive rates of EGFR and pEGFR(1068) were associated with the L858R mutation alone or with the 19 del and L858R mutation status. Further analysis indicated that the percentage of AXL(+)/EGFR(+)/pEGFR(1068) coexpression in 68 EGFR-activating mutations patients was significantly higher than that in 39 EGFR wild-type patients (30.9% versus 10.3%, P=.015). Furthermore, in the subgroup of AXL(+) patients (35 mutation(+) and 23 wild-type patients), the coexpression rates of AXL(+)/pEGFR(1068+) and AXL(+)/EGFR(+)/pEGFR(1068+) in patients with EGFR mutations were significantly higher compared with those in wild-type patients (both P<.05). Our study emphasized that the AXL and EGFR receptor tyrosine kinases were coexpressed in a subgroup of treatment-naive lung adenocarcinomas with or without EGFR mutations. Anti-AXL therapeutics delivered up front in combination with an EGFR inhibitor might prevent or delay resistance in patients with AXL-positive, EGFR-mutant, or wild-type NSCLC.

  7. Sea-urchin-like Au nanocluster with surface-enhanced raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion.

    PubMed

    Wang, Lei; Guo, Ting; Lu, Qiang; Yan, Xiaolong; Zhong, Daixing; Zhang, Zhipei; Ni, Yunfeng; Han, Yong; Cui, Daxiang; Li, Xiaofei; Huang, Lijun

    2015-01-14

    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are common in patients with lung adenocarcinomas and are associated with sensitivity to the small-molecule tyrosine kinase inhibitors (TKIs). For 10%-50% of the patients who experienced malignant pleural effusion (MPE), pathological diagnosis might rely exclusively on finding lung cancer cells in the MPE. Current methods based on polymerase chain reaction were utilized to test EGFR mutation status of MPE samples, but the accuracy of the test data was very low, resulting in many patients losing the chance of TKIs treatment. Herein, we synthesized the sea-urchin-like Au nanocluster (AuNC) with an average diameter of 92.4 nm, composed of 15-nm nanopricks. By introducing abundant sharp nanopricks, the enhancement factor of AuNC reached at 1.97 × 10(7). After capped with crystal violet (CV), polyethylene glycol, and EGFR mutation specific antibody, the AuNC-EGFR had excellent surface-enhanced Raman scattering (SERS) activity and EGFR mutation targeted recognition capability in lung cancer cells. Characteristic SERS signal at 1617 cm(-1) of CV was linear correlation with the number of H1650 cells, demonstrating the minimum detection limit as 25 cells in a 1-mL suspension. The gold mass in single H1650 cells exposed to AuNC-E746_750 for 2 h ranged from 208.6 pg to 231.4 pg, which approximately corresponded to 56-62 AuNCs per cell. Furthermore, SERS was preclinically utilized to test EGFR mutation status in MPE samples from 35 patients with lung adenocarcinoma. Principal component analysis (PCA) and the support vector machine (SVM) algorithm were constructed for EGFR mutation diagnostic analysis, yielding an overall accuracy of 90.7%. SERS measurement based on sea-urchin-like AuNC was an efficient method for EGFR mutation detection in MPE, and it might show great potential in applications such as predicting gene typing of clinical lung cancer in the near future.

  8. Cytomorphologic features of advanced lung adenocarcinomas tested for EGFR and KRAS mutations: a retrospective review of 50 cases.

    PubMed

    Marotti, Jonathan D; Schwab, Mary C; McNulty, Nancy J; Rigas, James R; DeLong, Peter A; Memoli, Vincent A; Tsongalis, Gregory J; Padmanabhan, Vijayalakshmi

    2013-01-01

    Associations between bronchioloalveolar carcinoma (BAC), mucinous differentiation, and epidermal growth factor receptor (EGFR) and KRAS mutations have been previously reported in studies of surgical specimens. We present the cytomorphology of lung adenocarcinomas, including metastases that were diagnosed by cytologic methods and the relationship to both EGFR and KRAS mutational status. We retrospectively reviewed the clinical and cytomorphologic features of 50 lung adenocarcinomas that were tested for both EGFR and KRAS mutations. Cytomorphologic features evaluated included cell size, architectural pattern, nucleoli, intranuclear cytoplasmic inclusions (INCI), mucin, necrosis, squamoid features, lymphocytic response, and histologic features of BAC differentiation. DNA was extracted from a paraffin-embedded cell block or frozen needle core fragments. Exon 19 deletions and the L858R mutation in exon 21 of EGFR were detected using PCR followed by capillary electrophoresis for fragment sizing. KRAS mutational analysis was performed by real-time PCR using a set of seven different Taqman(r) allelic discrimination assays to detect six mutations in codon 12 and one mutation in codon 13. Six cases (12%) showed EGFR mutations, 12 (24%) showed KRAS mutations, and 38 (62%) contained neither EGFR nor KRAS mutations. The majority of patients had stage IV disease (78%); 20 samples (40%) were from metastatic sites. The presence of prominent INCI (P = 0.036), papillary fragments (P = 0.041), and histologic features of BAC on paraffin block (P = 0.039) correlated with the presence of EGFR mutations. The presence of necrosis (P = 0.030), squamoid features (P = 0.048), and poorly differentiated tumors (P = 0.025) were more likely to be identified in the KRAS positive group.

  9. Determination of HER2 and p53 Mutations by Sequence Analysis Method and EGFR/Chromosome 7 Gene Status by Fluorescence in Situ Hybridization for the Predilection of Targeted Therapy Modalities in Immunohistochemically Triple Negative Breast Carcinomas in Turkish Population.

    PubMed

    Pala, Emel Ebru; Bayol, Umit; Keskin, Elif Usturali; Ozguzer, Alp; Kucuk, Ulku; Ozer, Ozge; Koc, Altug

    2015-09-01

    Triple negative breast cancer (TNBC), an agressive subtype accounts nearly 15 % of all breast carcinomas. Conventional chemotherapy is the only treatment modality thus new, effective targeted therapy methods have been investigated. Epidermal growth factor receptor (EGFR) inhibitors give hope according to the recent studies results. Also therapeutic agents have been tried against aberrant p53 signal activity as TNBC show high p53 mutation rates. Our aim was to detect the incidence of mutations/amplifications identified in TNBC in our population. Here we used sequence analysis to detect HER2 (exon 18-23), p53 (exon 5-8) mutations; fluorescence in situ hybridization (FISH) method to analyse EGFR/chromosome 7 centromere gene status in 82 immunohistochemically TNBC. Basaloid phenotype was identified in 49 (59.8 %) patients. EGFR amplification was noted in 5 cases (6.1 %). All EGFR amplified cases showed EGFR overexpression by immunohistochemistry (IHC). p53 mutations were identified in 33 (40.2 %) cases. Almost 60 % of the basal like breast cancer cases showed p53 mutation. Only one case showed HER2 mutation (exon 20:g.36830_3). Our results showed that gene amplification is not the unique mechanism in EGFR overexpression. IHC might be used in the decision of anti-EGFR therapy in routine practice. p53 mutation rate was lower than the rates reported in the literature probably due to ethnic differences and low sensitivity of sanger sequences in general mutation screening. We also established the rarity of HER2 mutation in TNBC. In conclusion EGFR and p53 are the major targets in TNBC also for our population.

  10. EGFR exon mutation distribution and outcome in non-small-cell lung cancer: a Portuguese retrospective study.

    PubMed

    de Mello, Ramon Andrade; Pires, Filipa Soares; Marques, Dânia Sofia; Oliveira, Júlio; Rodrigues, Ana; Soares, Marta; Azevedo, Isabel; Peixoto, Ana; Santos, Catarina; Pinto, Carla; Hespanhol, Venceslau; Teixeira, Manuel R; Amaro, Teresina; Queiroga, Henrique; Araújo, António

    2012-12-01

    Epidermal growth factor receptor (EGFR) mutations play a predictive role in advanced stages of non-small-cell lung cancer (NSCLC) patients. We conducted this study in order to assess EGFR status in a Portuguese population and its role in NSCLC patients' outcomes. Patients were submitted to EGFR assessment by high-resolution melting and/or direct sequencing. Kaplan-Meier curve was used to assess overall survival and progression-free survival (PFS). Two hundred forty eight out of 322 participants were assessed for EGFR status. Forty-two patients (16.9 %) presented EGFR-mutated status: one patient (2.4 %) presented exon 18; 21 patients (50 %), exon 19; one patient (2.4 %), exon 20; and 18 patients (45.2 %), exon 21 mutations, p < 0.001. PFS was not assessed (n.a.) for patient with exon 18 mutation, and for the other patients with mutations, it was 7 months (3.96-10.03) (exon 19), <1 month (exon 20), and 7 months (0-14.2) (exon 21) (p = 0.027). Overall survival (OS) was 11 months (exon 18), 11 months (1-18) (exon 19), 1 month (exon 20), and 7.5 months (2-70) (exon 21) (p = n.a). This study suggests that the EGFR mutation is herein observed in a higher proportion than expected for a Caucasian population, and OS is a little less than that published in the literature.

  11. Development of epidermal growth factor receptor tyrosine kinase inhibitors against EGFR T790M. Mutation in non small-cell lung carcinoma

    PubMed Central

    Wang, Yuli; Guo, Zhitao; Li, Yang

    2016-01-01

    Abstract Individualized therapies targeting epidermal growth factor receptor (EGFR) mutations show promises for the treatment of non small-cell lung carcinoma (NSCLC). However, disease progression almost invariably occurs 1 year after tyrosine kinase inhibitor (TKI) treatment. The most prominent mechanism of acquired resistance involves the secondary EGFR mutation, namely EGFR T790M, which accounts for 50%–60% of resistant tumors. A large amount of studies have focused on the development of effective strategies to treat TKI-resistant EGFR T790M mutation in lung tumors. Novel generations of EGFR inhibitors are producing encouraging results in patients with acquired resistance against EGFR T790M mutation. This review will summarize the novel inhibitors, which might overcome resistance against EGFR T790M mutation. PMID:28352770

  12. Detection of EGFR mutations by TaqMan mutation detection assays powered by competitive allele-specific TaqMan PCR technology.

    PubMed

    Roma, Cristin; Esposito, Claudia; Rachiglio, Anna Maria; Pasquale, Raffaella; Iannaccone, Alessia; Chicchinelli, Nicoletta; Franco, Renato; Mancini, Rita; Pisconti, Salvatore; De Luca, Antonella; Botti, Gerardo; Morabito, Alessandro; Normanno, Nicola

    2013-01-01

    Epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are predictive of response to treatment with tyrosine kinase inhibitors. Competitive Allele-Specific TaqMan PCR (castPCR) is a highly sensitive and specific technology. EGFR mutations were assessed by TaqMan Mutation Detection Assays (TMDA) based on castPCR technology in 64 tumor samples: a training set of 30 NSCLC and 6 colorectal carcinoma (CRC) samples and a validation set of 28 NSCLC cases. The sensitivity and specificity of this method were compared with routine diagnostic techniques including direct sequencing and the EGFR Therascreen RGQ kit. Analysis of the training set allowed the identification of the threshold value for data analysis (0.2); the maximum cycle threshold (Ct = 37); and the cut-off ΔCt value (7) for the EGFR TMDA. By using these parameters, castPCR technology identified both training and validation set EGFR mutations with similar frequency as compared with the Therascreen kit. Sequencing detected rare mutations that are not identified by either castPCR or Therascreen, but in samples with low tumor cell content it failed to detect common mutations that were revealed by real-time PCR based methods. In conclusion, our data suggest that castPCR is highly sensitive and specific to detect EGFR mutations in NSCLC clinical samples.

  13. TERT Polymorphism rs2736100-C Is Associated with EGFR Mutation-Positive Non-Small Cell Lung Cancer

    PubMed Central

    Zheng, Yonglan; Niu, Xiaomin; Weng, Xiaoling; Zhang, Hong; Favus, Murray; Zhang, Lanjun; Jia, Weihua; Zeng, Yixin; Amos, Christopher I; Lu, Shun; Wang, Hui-Yun; Liu, Yun; Liu, Wanqing

    2015-01-01

    Purpose Epidermal growth factor receptor (EGFR) mutation-positive (EGFRmut+) non-small cell lung cancer (NSCLC) may be a unique orphan disease. Previous studies suggested that the telomerase reverse transcriptase (TERT) gene polymorphism is associated with demographic and clinical features strongly associated with EGFR mutations, e.g. adenocarcinoma histology, never-smoking history and female gender. We aim to test the association between TERT polymorphism and EGFRmut+ NSCLC. Experimental Design We conducted a genetic association study in Chinese NSCLC patients (n=714) and healthy controls (n=2,520), between the rs2736100 polymorphism and EGFRmut+ NSCLC. We further tested the association between the EGFR mutation status and mean leukocyte telomere length (LTL). The potential function of rs2736100 in lung epithelial cells was also explored. Results The rs2736100-C allele was significantly associated with EGFRmut+ NSCLC (OR=1.52, 95%CI=1.28–1.80, p=1.6×10−6) but not EGFRmut− NSCLC (OR=1.07, 95%CI=0.92–1.24, p=0.4). While NSCLC patients as a whole have significantly longer LTL compared to healthy controls (p≤10−13), the EGFRmut+ patients have even longer LTL compared to EGFRmut-patients (p=0.008). Meanwhile, rs2736100 was significantly associated with TERT mRNA expression in both normal and tumor lung tissues. All results remained significant after controlling for age, gender, smoking status and histology (p<0.05 for all tests). Moreover, the rs2736100 DNA sequence has an allele-specific affinity to nuclear proteins extracted from lung epithelial cells, which led to an altered enhancer activity of the sequence in vitro. Conclusion Our study suggests that telomerase and telomere function may be essential for carcinogenesis of EGFRmut+ NSCLC. Further investigation for the underlying mechanism is warranted. PMID:26149460

  14. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: the detrimental role and mechanism of EGFR activation

    PubMed Central

    Fang, Qilu; Zou, Chunpeng; Zhong, Peng; Lin, Feng; Li, Weixin; Wang, Lintao; Zhang, Yali; Zheng, Chao; Wang, Yi; Li, Xiaokun; Liang, Guang

    2016-01-01

    Previous studies have implicated inflammation, oxidative stress, and fibrosis as key factors in the development of obesity-induced kidney diseases. Epidermal growth factor receptor (EGFR) plays an important role in cancer development. Recently, the EGFR pathway has been increasingly implicated in chronic cardiovascular diseases via regulating inflammation and oxidative stress. However, it is unclear if EGFR is involved in obesity-related kidney injury. Using ApoE−/− and C57BL/6 mice models and two specific EGFR inhibitors, we investigated the potential effects of EGFR inhibition in the treatment of obesity-related nephropathy and found that EGFR inhibition alleviates renal inflammation, oxidative stress and fibrosis. In NRK-52E cells, we also elucidated the mechanism behind hyperlipidemia-induced EGFR activation. We observed that c-Src and EGFR forms a complex, and following PA stimulation, it is the successive phosphorylation, not formation, of the c-Src/EGFR complex that results in the subsequent cascade activation. Second, we found that TLR4 regulates the activation EGFR pathway mainly through the phosphorylation of the c-Src/EGFR complex. These results demonstrate the detrimental role of EGFR in the pathogenesis of obesity-related nephropathy, provide a new understanding of the mechanism behind hyperlipidemia/FFA-induced EGFR activation, and support the use of EGFR inhibitors in the treatment of obesity-induced kidney diseases. PMID:27014908

  15. Can EGFR mutation status be reliably determined in pre-operative needle biopsies from adenocarcinomas of the lung?

    PubMed

    Lindahl, Kim Hein; Sørensen, Flemming Brandt; Jonstrup, Søren Peter; Olsen, Karen Ege; Loeschke, Siegfried

    2015-04-01

    The identification of EGFR mutations in non-small-cell lung cancer is important for selecting patients, who may benefit from treatment with EGFR tyrosine kinase inhibitors. The analysis is usually performed on cytological aspirates and/or histological needle biopsies, representing a small fraction of the tumour volume. The aim of the present investigation was to evaluate the diagnostic performance of this molecular test. We retrospectively included 201 patients with primary adenocarcinoma of the lung. EGFR mutation status (exon 19 deletions and exon 21 L858R point mutation) was evaluated on both pre-operative biopsies (131 histological and 70 cytological) and on the surgical specimens, using PCR. Samples with low tumour cell fraction were assigned to laser micro-dissection (LMD). We found nine (4.5%) patients with EGFR mutation in the lung tumour resections, but failed to identify mutation in one of the corresponding pre-operative, cytological specimens. Several (18.4%) analyses of the pre-operative biopsies were inconclusive, especially in case of biopsies undergoing LMD and regarding exon 21 analysis. Discrepancy of mutation status in one patient may reflect intra-tumoural heterogeneity or technical issues. Moreover, several inconclusive results in the diagnostic biopsies reveal that attention must be paid on the suitability of pre-operative biopsies for EGFR mutation analysis.

  16. The Role of PIK3CA Mutations among Lung Adenocarcinoma Patients with Primary and Acquired Resistance to EGFR Tyrosine Kinase Inhibition

    PubMed Central

    Wu, Shang-Gin; Chang, Yih-Leong; Yu, Chong-Jen; Yang, Pan-Chyr; Shih, Jin-Yuan

    2016-01-01

    To understand the impact of PIK3CA mutations on clinical characteristics and treatment response to epidermal growth factor tyrosine kinase inhibitors (EGFR TKIs) of lung adenocarcinoma, we examined PIK3CA and EGFR mutations in lung adenocarcinoma patients, and analyzed their clinical outcomes. Surgically excised tumor, bronchoscopy biopsy/brushing specimens and pleural effusions were prospectively collected from 1029 patients. PIK3CA and EGFR mutations were analyzed by RT-PCR and direct sequencing. In EGFR TKI-nave specimens, PIK3CA mutation rate was 1.8% (14/760). Twelve patients had coexisting PIK3CA and EGFR mutations. Among the 344 EGFR TKI-treated EGFR mutant patients, there was no significant difference in treatment response (p = 0.476) and progression-free survival (p = 0.401) of EGFR TKI between PIK3CA mutation-positive and negative patients. The PIK3CA mutation rate in lung adenocarcinoma with acquired resistance to EGFR TKI is not higher than that in EGFR TKI-naïve tissue specimens (2.9% (6/207) vs. 1.8%; p = 0.344). Of the 74 patients with paired specimens (TKI-naïve and acquired resistance to TKIs) only one patient (1.4%) developed acquired PIK3CA (E545K) mutation, and he also had acquired EGFR (T790M) mutation. In conclusion, PIK3CA mutation may not be associated with primary resistance to EGFR TKI among lung adenocarcinoma patients. Acquired PIK3CA mutation related to EGFR TKI treatment is rare. PMID:27734950

  17. Personalized prediction of EGFR mutation-induced drug resistance in lung cancer

    PubMed Central

    Wang, Debby D.; Zhou, Weiqiang; Yan, Hong; Wong, Maria; Lee, Victor

    2013-01-01

    EGFR mutation-induced drug resistance has significantly impaired the potency of small molecule tyrosine kinase inhibitors in lung cancer treatment. Computational approaches can provide powerful and efficient techniques in the investigation of drug resistance. In our work, the EGFR mutation feature is characterized by the energy components of binding free energy (concerning the mutant-inhibitor complex), and we combine it with specific personal features for 168 clinical subjects to construct a personalized drug resistance prediction model. The 3D structure of an EGFR mutant is computationally predicted from its protein sequence, after which the dynamics of the bound mutant-inhibitor complex is simulated via AMBER and the binding free energy of the complex is calculated based on the dynamics. The utilization of extreme learning machines and leave-one-out cross-validation promises a successful identification of resistant subjects with high accuracy. Overall, our study demonstrates advantages in the development of personalized medicine/therapy design and innovative drug discovery. PMID:24092472

  18. Personalized prediction of EGFR mutation-induced drug resistance in lung cancer.

    PubMed

    Wang, Debby D; Zhou, Weiqiang; Yan, Hong; Wong, Maria; Lee, Victor

    2013-10-04

    EGFR mutation-induced drug resistance has significantly impaired the potency of small molecule tyrosine kinase inhibitors in lung cancer treatment. Computational approaches can provide powerful and efficient techniques in the investigation of drug resistance. In our work, the EGFR mutation feature is characterized by the energy components of binding free energy (concerning the mutant-inhibitor complex), and we combine it with specific personal features for 168 clinical subjects to construct a personalized drug resistance prediction model. The 3D structure of an EGFR mutant is computationally predicted from its protein sequence, after which the dynamics of the bound mutant-inhibitor complex is simulated via AMBER and the binding free energy of the complex is calculated based on the dynamics. The utilization of extreme learning machines and leave-one-out cross-validation promises a successful identification of resistant subjects with high accuracy. Overall, our study demonstrates advantages in the development of personalized medicine/therapy design and innovative drug discovery.

  19. ATM mutations and E-cadherin expression define sensitivity to EGFR-targeted therapy in colorectal cancer.

    PubMed

    Geißler, Anna-Lena; Geißler, Miriam; Kottmann, Daniel; Lutz, Lisa; Fichter, Christiane D; Fritsch, Ralph; Weddeling, Britta; Makowiec, Frank; Werner, Martin; Lassmann, Silke

    2017-02-09

    EGFR-targeted therapy is a key treatment approach in patients with RAS wildtype metastatic colorectal cancers (CRC). Still, also RAS wildtype CRC may be resistant to EGFR-targeted therapy, with few predictive markers available for improved stratification of patients. Here, we investigated response of 7 CRC cell lines (Caco-2, DLD1, HCT116, HT29, LS174T, RKO, SW480) to Cetuximab and correlated this to NGS-based mutation profiles, EGFR promoter methylation and EGFR expression status as well as to E-cadherin expression. Moreover, tissue specimens of primary and/or recurrent tumors as well as liver and/or lung metastases of 25 CRC patients having received Cetuximab and/or Panitumumab were examined for the same molecular markers. In vitro and in situ analyses showed that EGFR promoter methylation and EGFR expression as well as the MSI and or CIMP-type status did not guide treatment responses. In fact, EGFR-targeted treatment responses were also observed in RAS exon 2 p.G13 mutated CRC cell lines or CRC cases and were further linked to PIK3CA exon 9 mutations. In contrast, non-response to EGFR-targeted treatment was associated with ATM mutations and low E-cadherin expression. Moreover, down-regulation of E-cadherin by siRNA in otherwise Cetuximab responding E-cadherin positive cells abrogated their response. Hence, we here identify ATM and E-cadherin expression as potential novel supportive predictive markers for EGFR-targeted therapy.

  20. Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic-Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104.

    PubMed

    Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter

    2016-10-01

    Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR.

  1. Relationship between epidermal growth factor receptor (EGFR) mutation and serum cyclooxygenase-2 Level, and the synergistic effect of celecoxib and gefitinib on EGFR expression in non-small cell lung cancer cells.

    PubMed

    Li, Na; Li, Huanhuan; Su, Fan; Li, Jing; Ma, Xiaoping; Gong, Ping

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutations occur mostly in patients with lung adenocarcinoma; such patients are also more likely to express cyclooxygenase-2 (COX-2), indicating a possible relationship between EGFR mutation and COX-2. The COX-2 and EGFR pathways mutually enhance their procarcinogenic effects in different tumor types. Therefore, simultaneous EGFR and COX-2 inhibition may be a promising therapeutic approach for patients with lung adenocarcinoma. We obtained tissue and serum samples from patients with non-small cell lung cancer (NSCLC) to detect the relationship between EGFR mutation and serum COX-2 level. Subsequently, gefitinib was combined with celecoxib to investigate the efficacy of inhibition in vitro in two NSCLC cell lines: HCC827 (del E746-A750) and A549 (wild-type EGFR). The cells were treated with gefitinib or celecoxib alone or with gefitinib plus celecoxib. Cell proliferation and apoptosis were assessed and correlated with expression of COX-2 and phosphorylated (p)-EGFR. The EGFR mutation rate of the high-COX-2 patients was significantly higher than that in the low-COX-2 patients. Multivariate analysis showed that high COX-2 levels were independently associated with EGFR mutation. Celecoxib and gefitinib inhibited cell growth in both cell lines. At sufficiently high concentrations, celecoxib plus gefitinib significantly mutually enhanced their anti-proliferative and apoptotic effects in both cell lines. At low concentrations, the combination had no additional effects on A549 cells. There was increased down regulation of COX-2 and p-EGFR when both cell lines were treated with high-concentration celecoxib plus gefitinib compared to either agent alone. This study demonstrates that high serum COX-2 levels may indicate EGFR mutations and that the efficacy of combined celecoxib and gefitinib is significantly greater in NSCLC cells with EGFR mutations; at high concentrations, the combination is efficacious in wild-type NSCLC cells.

  2. The functional interplay between EGFR overexpression, hTERT activation, and p53 mutation in esophageal epithelial cells with activation of stromal fibroblasts induces tumor development, invasion, and differentiation.

    PubMed

    Okawa, Takaomi; Michaylira, Carmen Z; Kalabis, Jiri; Stairs, Douglas B; Nakagawa, Hiroshi; Andl, Claudia D; Johnstone, Cameron N; Klein-Szanto, Andres J; El-Deiry, Wafik S; Cukierman, Edna; Herlyn, Meenhard; Rustgi, Anil K

    2007-11-01

    Esophageal cancer is a prototypic squamous cell cancer that carries a poor prognosis, primarily due to presentation at advanced stages. We used human esophageal epithelial cells as a platform to recapitulate esophageal squamous cell cancer, thereby providing insights into the molecular pathogenesis of squamous cell cancers in general. This was achieved through the retroviral-mediated transduction into normal, primary human esophageal epithelial cells of epidermal growth factor receptor (EGFR), the catalytic subunit of human telomerase (hTERT), and p53(R175H), genes that are frequently altered in human esophageal squamous cell cancer. These cells demonstrated increased migration and invasion when compared with control cells. When these genetically altered cells were placed within the in vivo-like context of an organotypic three-dimensional (3D) culture system, the cells formed a high-grade dysplastic epithelium with malignant cells invading into the stromal extracellular matrix (ECM). The invasive phenotype was in part modulated by the activation of matrix metalloproteinase-9 (MMP-9). Using pharmacological and genetic approaches to decrease MMP-9, invasion into the underlying ECM could be suppressed partially. In addition, tumor differentiation was influenced by the type of fibroblasts within the stromal ECM. To that end, fetal esophageal fibroblasts fostered a microenvironment conducive to poorly differentiated invading tumor cells, whereas fetal skin fibroblasts supported a well-differentiated tumor as illustrated by keratin "pearl" formation, a hallmark feature of well-differentiated squamous cell cancers. When inducible AKT was introduced into fetal skin esophageal fibroblasts, a more invasive, less-differentiated esophageal cancer phenotype was achieved. Invasion into the stromal ECM was attenuated by genetic knockdown of AKT1 as well as AKT2. Taken together, alterations in key oncogenes and tumor suppressor genes in esophageal epithelial cells, the composition

  3. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments

    PubMed Central

    Wang, Debby D.; Ma, Lichun; Wong, Maria P.; Lee, Victor H. F.; Yan, Hong

    2015-01-01

    EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met) of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib). Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met). Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The analysis verified

  4. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    PubMed

    Angulo, Bárbara; Conde, Esther; Suárez-Gauthier, Ana; Plaza, Carlos; Martínez, Rebeca; Redondo, Pilar; Izquierdo, Elisa; Rubio-Viqueira, Belén; Paz-Ares, Luis; Hidalgo, Manuel; López-Ríos, Fernando

    2012-01-01

    The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry), with direct sequencing and to investigate the limit of detection (LOD) of both PCR-based methods. We identified EGFR mutations in 21 (16%) of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%), which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%). Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+) yielded similar results. Immunohistochemistry (IHC) staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  5. A Comparison of EGFR Mutation Testing Methods in Lung Carcinoma: Direct Sequencing, Real-time PCR and Immunohistochemistry

    PubMed Central

    Angulo, Bárbara; Conde, Esther; Suárez-Gauthier, Ana; Plaza, Carlos; Martínez, Rebeca; Redondo, Pilar; Izquierdo, Elisa; Rubio-Viqueira, Belén; Paz-Ares, Luis; Hidalgo, Manuel; López-Ríos, Fernando

    2012-01-01

    The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry), with direct sequencing and to investigate the limit of detection (LOD) of both PCR-based methods. We identified EGFR mutations in 21 (16%) of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%), which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%). Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+) yielded similar results. Immunohistochemistry (IHC) staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity. PMID:22952784

  6. Aptamer-Conjugated Chitosan-Anchored Liposomal Complexes for Targeted Delivery of Erlotinib to EGFR-Mutated Lung Cancer Cells.

    PubMed

    Li, Fengqiao; Mei, Hao; Xie, Xiaodong; Zhang, Huijuan; Liu, Jian; Lv, Tingting; Nie, Huifang; Gao, Yu; Jia, Lee

    2017-02-23

    Lung cancer is the leading cancer and has the highest death rate. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib has had a promising response in lung cancer therapy. Unfortunately, individuals with TKI-resistant EGFR mutations often develop acquired resistance against erlotinib. To overcome this resistance, in the present study, we developed liposomes anchored with anti-EGFR aptamer (Apt)-conjugated chitosan (Apt-Cs) as stable carriers to deliver erlotinib to the target. We loaded erlotinib into Apt-Cs-anchored liposomal complexes (Apt-CL-E) and characterized the physicochemistry of Apt-CL-E. The nanoparticles showed good biostability and a binding specificity for EGFR-mutated cancer cells guided by the Apt. The specific binding facilitated the uptake of Apt-CL-E into EGFR-mutated cancer cells. A cytotoxicity study showed an advantage of Apt-CL-E over their nontargeted liposomal counterparts in delivering erlotinib to EGFR-mutated cancer cells, resulting in cell cycle arrest and apoptosis. These results provide a good platform for future in vivo animal studies with Apt-CL-E.

  7. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    PubMed Central

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  8. Driver mutations among never smoking female lung cancer tissues in China identify unique EGFR and KRAS mutation pattern associated with household coal burning.

    PubMed

    Hosgood, H Dean; Pao, William; Rothman, Nathaniel; Hu, Wei; Pan, Yumei Helen; Kuchinsky, Kyle; Jones, Kirk D; Xu, Jun; Vermeulen, Roel; Simko, Jeff; Lan, Qing

    2013-11-01

    Lung cancer in never smokers, which has been partially attributed to household solid fuel use (i.e., coal), is etiologically and clinically different from lung cancer attributed to tobacco smoking. To explore the spectrum of driver mutations among lung cancer tissues from never smokers, specifically in a population where high lung cancer rates have been attributed to indoor air pollution from domestic coal use, multiplexed assays were used to detect >40 point mutations, insertions, and deletions (EGFR, KRAS, BRAF, HER2, NRAS, PIK3CA, MEK1, AKT1, and PTEN) among the lung tumors of confirmed never smoking females from Xuanwei, China [32 adenocarcinomas (ADCs), 7 squamous cell carcinomas (SCCs), 1 adenosquamous carcinoma (ADSC)]. EGFR mutations were detected in 35% of tumors. 46% of these involved EGFR exon 18 G719X, while 14% were exon 21 L858R mutations. KRAS mutations, all of which were G12C_34G>T, were observed in 15% of tumors. EGFR and KRAS mutations were mutually exclusive, and no mutations were observed in the other tested genes. Most point mutations were transversions and were also found in tumors from patients who used coal in their homes. Our high mutation frequencies in EGFR exon 18 and KRAS and low mutation frequency in EGFR exon 21 are strikingly divergent from those in other smoking and never smoking populations from Asia. Given that our subjects live in a region where coal is typically burned indoors, our findings provide new insights into the pathogenesis of lung cancer among never smoking females exposed to indoor air pollution from coal.

  9. Association of variations in HLA class II and other loci with susceptibility to EGFR-mutated lung adenocarcinoma

    PubMed Central

    Shiraishi, Kouya; Okada, Yukinori; Takahashi, Atsushi; Kamatani, Yoichiro; Momozawa, Yukihide; Ashikawa, Kyota; Kunitoh, Hideo; Matsumoto, Shingo; Takano, Atsushi; Shimizu, Kimihiro; Goto, Akiteru; Tsuta, Koji; Watanabe, Shun-ichi; Ohe, Yuichiro; Watanabe, Yukio; Goto, Yasushi; Nokihara, Hiroshi; Furuta, Koh; Yoshida, Akihiko; Goto, Koichi; Hishida, Tomoyuki; Tsuboi, Masahiro; Tsuchihara, Katsuya; Miyagi, Yohei; Nakayama, Haruhiko; Yokose, Tomoyuki; Tanaka, Kazumi; Nagashima, Toshiteru; Ohtaki, Yoichi; Maeda, Daichi; Imai, Kazuhiro; Minamiya, Yoshihiro; Sakamoto, Hiromi; Saito, Akira; Shimada, Yoko; Sunami, Kuniko; Saito, Motonobu; Inazawa, Johji; Nakamura, Yusuke; Yoshida, Teruhiko; Yokota, Jun; Matsuda, Fumihiko; Matsuo, Keitaro; Daigo, Yataro; Kubo, Michiaki; Kohno, Takashi

    2016-01-01

    Lung adenocarcinoma driven by somatic EGFR mutations is more prevalent in East Asians (30–50%) than in European/Americans (10–20%). Here we investigate genetic factors underlying the risk of this disease by conducting a genome-wide association study, followed by two validation studies, in 3,173 Japanese patients with EGFR mutation-positive lung adenocarcinoma and 15,158 controls. Four loci, 5p15.33 (TERT), 6p21.3 (BTNL2), 3q28 (TP63) and 17q24.2 (BPTF), previously shown to be strongly associated with overall lung adenocarcinoma risk in East Asians, were re-discovered as loci associated with a higher susceptibility to EGFR mutation-positive lung adenocarcinoma. In addition, two additional loci, HLA class II at 6p21.32 (rs2179920; P =5.1 × 10−17, per-allele OR=1.36) and 6p21.1 (FOXP4) (rs2495239; P=3.9 × 10−9, per-allele OR=1.19) were newly identified as loci associated with EGFR mutation-positive lung adenocarcinoma. This study indicates that multiple genetic factors underlie the risk of lung adenocarcinomas with EGFR mutations. PMID:27501781

  10. EGFR Activation Leads to Cell Death Independent of PI3K/AKT/mTOR in an AD293 Cell Line

    PubMed Central

    Popeda, Marta; Ksiazkiewicz, Magdalena; Grzela, Dawid P.; Walczak, Maciej P.; Banaszczyk, Mateusz; Peciak, Joanna; Stoczynska-Fidelus, Ewelina; Rieske, Piotr

    2016-01-01

    The Epidermal Growth Factor Receptor (EGFR) and its mutations contribute in various ways to tumorigenesis and biology of human cancers. They are associated with tumor proliferation, progression, drug resistance and the process of apoptosis. There are also reports that overexpression and activation of wild-type EGFR may lead to cell apoptosis. To study this phenomenon, we overexpressed in an AD293 cell line two most frequently observed forms of the EGFR receptor: wild-type and the constitutively active mutant–EGFR variant III (EGFRvIII). Then, we compared the effect of EGF stimulation on cell viability and downstream EGFR signaling. AD293 cells overexpressing wild-type EGFR, despite a significant proliferation increase in serum supplemented medium, underwent apoptosis after EGF stimulation in serum free conditions. EGFRvIII expressing cells, however, were unaffected by either serum starvation or EGF treatment. The effect of EGF was completely neutralized by tyrosine kinase inhibitors (TKIs), indicating the specificity of this observation. Moreover, apoptosis was not prevented by inhibiting EGFR downstream proteins (PI3K, AKT and mTOR). Here we showed another EGFR function, dependent on environmental factors, which could be employed in therapy and drug design. We also proposed a new tool for EGFR inhibitor analysis. PMID:27153109

  11. Prognostic factors for brain metastases from non-small cell lung cancer with EGFR mutation: influence of stable extracranial disease and erlotinib therapy.

    PubMed

    Sekine, Akimasa; Satoh, Hiroaki; Iwasawa, Tae; Tamura, Katsumi; Hayashihara, Kenji; Saito, Takefumi; Kato, Terufumi; Arai, Mito; Okudela, Koji; Ohashi, Kenichi; Ogura, Takashi

    2014-10-01

    The aim of this study was to explore prognostic factors for non-small cell lung cancer (NSCLC) patients with brain metastases (BM) on the basis of EGFR mutation status. Among 779 consecutive NSCLC patients who underwent EGFR mutation screening, all 197 patients with BM were divided according to the EGFR mutation status. The prognostic factors, including patient characteristics at the time of BM diagnosis, treatment history, and radiologic features, were analyzed. Of 197 patients with BM, 108 had wild-type EGFR and 89 had EGFR mutation. The patients with EGFR mutation presented longer overall survival after BM diagnosis (OS) than those with wild-type EGFR, regardless of whether BM was synchronous or metachronous. For the patients with EGFR mutation, favorable prognostic factors in multivariate analysis were age<65 (p=0.037), good performance status (PS) (p<0.0001), cranial radiotherapy (p=0.020), previous chemotherapy≤1 regimen (p=0.009), stable extracranial disease at BM diagnosis (p=0.022), and erlotinib therapy after BM diagnosis (p=0.0015). On the other hand, favorable prognostic factors for the patients with wild-type EGFR were only good PS (p=0.0037) and cranial radiotherapy (p=0.0005). Among patients treated with erlotinib after BM diagnosis, the patients with exon 19 deletion showed longer OS than those with exon 21 point mutation (p=0.019). The prognostic factors for NSCLC patients with BM were different according to the EGFR mutation status. Particularly in NSCLC patients with EGFR mutation and stable extracranial disease, regular cranial evaluation for detecting asymptomatic BM would lead to good prognosis. In addition, erlotinib therapy would be preferable in NSCLC patients with BM and EGFR mutation, especially those with exon 19 deletion.

  12. Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT.

    PubMed

    Yeh, Hsin Hsien; Ogawa, Kazuma; Balatoni, Julius; Mukhapadhyay, Uday; Pal, Asutosh; Gonzalez-Lepera, Carlos; Shavrin, Aleksandr; Soghomonyan, Suren; Flores, Leo; Young, Daniel; Volgin, Andrei Y; Najjar, Amer M; Krasnykh, Victor; Tong, William; Alauddin, Mian M; Gelovani, Juri G

    2011-01-25

    The importance of the EGF receptor (EGFR) signaling pathway in the development and progression of nonsmall cell lung carcinomas (NSCLC) is widely recognized. Gene sequencing studies revealed that a majority of tumors responding to EGFR kinase inhibitors harbor activating mutations in the EGFR kinase domain. This underscores the need for novel biomarkers and diagnostic imaging approaches to identify patients who may benefit from particular therapeutic agents and approaches with improved efficacy and safety profiles. To this goal, we developed 4-[(3-iodophenyl)amino]-7-{2-[2-{2-(2-[2-{2-([(18)F]fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)-ethoxy}-ethoxy]-quinazoline-6-yl-acrylamide ([(18)F]F-PEG6-IPQA), a radiotracer with increased selectivity and irreversible binding to the active mutant L858R EGFR kinase. We show that PET with [(18)F]F-PEG6-IPQA in tumor-bearing mice discriminates H3255 NSCLC xenografts expressing L858R mutant EGFR from H441 and PC14 xenografts expressing EGFR or H1975 xenografts with L858R/T790M dual mutation in EGFR kinase domain, which confers resistance to EGFR inhibitors (i.e., gefitinib). The T790M mutation precludes the [(18)F]F-PEG6-IPQA from irreversible binding to EGFR. These results suggest that PET with [(18)F]F-PEG6-IPQA could be used for the selection of NSCLC patients for individualized therapy with small molecular inhibitors of EGFR kinase that are currently used in the clinic and have a similar structure (i.e., iressa, gefitinib, and erlotinib).

  13. Disconnecting the Yin and Yang Relation of Epidermal Growth Factor Receptor (EGFR)-Mediated Delivery: A Fully Synthetic, EGFR-Targeted Gene Transfer System Avoiding Receptor Activation

    PubMed Central

    Schäfer, A.; Pahnke, A.; Schaffert, D.; van Weerden, W.M.; de Ridder, C.M.A.; Rödl, W.; Vetter, A.; Spitzweg, C.; Kraaij, R.; Wagner, E.

    2011-01-01

    Abstract The epidermal growth factor receptor (EGFR) is upregulated within a high percentage of solid tumors and hence is an attractive target for tumor-targeted therapies including gene therapy. The natural EGFR ligand epidermal growth factor (EGF) has been used for this purpose, despite the risk of mitogenic effects due to EGFR activation. We have developed a fully synthetic, EGFR-targeted gene delivery system based on PEGylated linear polyethylenimine (LPEI), allowing evaluation of different EGFR-binding peptides in terms of transfection efficiency and EGFR activation. Peptide sequences directly derived from the human EGF molecule enhanced transfection efficiency with concomitant EGFR activation. Only the EGFR-binding peptide GE11, which has been identified by phage display technique, showed specific enhancement of transfection on EGFR-overexpressing tumor cells including glioblastoma and hepatoma, but without EGFR activation. EGFR targeting led to high levels of cell association of fluorescently labeled polyplexes after only 30 min of incubation. EGF pretreatment of cells induced enhanced cellular internalization of all polyplex types tested, pointing at generally enhanced macropinocytosis. EGF polyplexes diminished cell surface expression of EGFR for up to 4 hr, whereas GE11 polyplexes did not. In a clinically relevant orthotopic prostate cancer model, intratumorally injected GE11 polyplexes were superior in inducing transgene expression when compared with untargeted polyplexes. PMID:21644815

  14. Correlation between EGFR mutation status and response to first-line platinum-based chemotherapy in patients with advanced non-small cell lung cancer

    PubMed Central

    Fang, Shu; Wang, Zhehai; Guo, Jun; Liu, Jie; Li, Changzheng; Liu, Lin; Shi, Huan; Liu, Liyan; Li, Huihui; Xie, Chao; Zhang, Xia; Sun, Wenwen; Li, Minmin

    2014-01-01

    Background The purpose of this research was to investigate the relationship between epidermal growth factor receptor (EGFR) mutations and the response to first-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). Methods A total of 266 patients with stage IIIB or IV NSCLC who received platinum-based doublet therapies as first-line chemotherapy were investigated retrospectively, and their clinical data were assessed according to EGFR mutation. Results EGFR mutations were identified in 45.5% of patients. There was no significant difference in response rate between EGFR mutation carriers and EGFR wild-type carriers (P=0.484). Among the patients with Kirsten rat sarcoma viral oncogene homolog (KRAS) wild-type, however, those with EGFR mutations responded better to treatment than EGFR wild-type patients (46.2% versus 20.8%, P=0.043). The disease control rate associated with pemetrexed-based treatments was higher than for vinorelbine-based therapies in EGFR mutation patients (P=0.001). EGFR mutation was found in patients with longer progression-free survival and median survival time, and improved 1-year and 2-year overall survival when compared with EGFR wild-type patients (6.1 versus 5.0 months, P=0.004; 18.9 versus 13.8 months, P=0.001; 81.0% versus 63.4%, P=0.002; and 33.9% versus 22.8% P=0.044, respectively). Patients with the EGFR exon 19 mutation had longer progression-free survival than those with EGFR exon 21 mutation (P=0.007). Multivariate analysis showed that the response to first-line chemotherapy and the presence of EGFR mutations were independent prognostic factors in patients with advanced NSCLC. Conclusion Our data showed that the presence of EGFR mutations meant longer survival times for patients with advanced NSCLC who received platinum-based doublet first-line chemotherapy, especially in those with the exon 19 deletion mutation. Among KRAS wild-type patients, those with EGFR mutation responded better to first

  15. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    PubMed

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-06-11

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.

  16. Response to second-line erlotinib in an EGFR mutation-negative patient with non-small-cell lung cancer: make no assumptions

    PubMed Central

    Karam, I.; Melosky, B.

    2012-01-01

    Erlotinib—an oral tyrosine kinase inhibitor (tki) of the epidermal growth factor receptor (egfr)—has commonly been used as a therapeutic option in metastatic non-small-cell lung cancer (nsclc) patients in the second- or third-line treatment setting. A mutation in the EGFR gene (EGFR M+) confers an increased response to this class of drugs. In the first-line setting, use of tkis is restricted to patients having a mutation. The importance of this biomarker has been questioned in subsequent treatment lines. Here, we report a case showing a positive response to erlotinib treatment in the second-line setting. The patient, an elderly male smoker with stage iv nsclc, had a tumour that was EGFR mutation-negative (wild-type EGFR). Based on this clinical case, we discuss the controversy concerning the need for, and impact of, testing for EGFR mutation after first-line treatment. PMID:22328842

  17. MET amplification and epithelial-to-mesenchymal transition exist as parallel resistance mechanisms in erlotinib-resistant, EGFR-mutated, NSCLC HCC827 cells.

    PubMed

    Jakobsen, K R; Demuth, C; Madsen, A T; Hussmann, D; Vad-Nielsen, J; Nielsen, A L; Sorensen, B S

    2017-04-03

    Although many epidermal growth factor receptor (EGFR)-mutated lung cancer patients initially benefit from the EGFR-inhibitor erlotinib, all acquire resistance. So far, several mechanisms implicated in resistance have been identified, but the existence of multiple resistance mechanisms in parallel have only been sparsely investigated. In this study, we investigated parallel resistance mechanisms acquired by HCC827, an EGFR-mutated adenocarcinoma cell line dependent on EGFR activity and sensitive to erlotinib. The cell line was treated with erlotinib by stepwise escalation of the drug-concentration and erlotinib-resistant (HCC827ER) cells created. HCC827ER cells depicted a mixed epithelial and mesenchymal phenotype. To clarify potential parallel resistance mechanisms, 14 resistant subclones were established by limited dilution. Interestingly, all HCC827ER subclones harbored either a MET-amplification (6/14) or underwent EMT (8/14), mechanisms both found in previous studies, but not in co-occurrence. Both subclone-types were resistant to erlotinib, but only MET-subclones responded to the MET-inhibitors crizotinib and capmatinib. EMT-subclones on the other hand had markedly increased FGFR1 expression and responded to the FGFR-inhibitor AZD4547, whereas MET-subclones did not. Monitoring gene expression through the development of HCC827ER revealed upregulation of FGFR1 expression as an early response to erlotinib. In addition, FGFR1 expression increased upon short-term erlotinib treatment (48 h) identifying a physiological role immediately after erlotinib exposure. The high FGFR1 expression seen in EMT-subclones was stable even after five passages without erlotinib. Here we show, that parallel resistance mechanisms appear during erlotinib-resistance development in EGFR-mutated NSCLC cells and highlight a role for FGFR1 expression changes as an early response to erlotinib as well as a bypass-signaling mechanism.

  18. Mitochondrial DNA Mutations in Respiratory Complex-I in Never-Smoker Lung Cancer Patients Contribute to Lung Cancer Progression and associated with EGFR gene mutation

    PubMed Central

    Dasgupta, Santanu; Soudry, Ethan; Mukhopadhyay, Nitai; Shao, Chunbo; Yee, John; Lam, Stephan; Lam, Wan; Zhang, Wei; Gazdar, Adi F; Fisher, Paul B; Sidransky, David

    2011-01-01

    Mitochondrial DNA (mtDNA) mutations were reported in different cancers. However, the nature and role of mtDNA mutation in never-smoker lung cancer patients including patients with EGFR and KRAS gene mutation are unknown. In the present study, we sequenced entire mitochondrial genome (16.5 kb) in matched normal and tumors obtained from 30 never-smoker and 30 current-smoker lung cancer patients, and determined the mtDNA content. All the patients’ samples were sequenced for KRAS (exon 2) and EGFR (exon 19 and 21) gene mutation. The impact of forced overexpression of a respiratory complex-I gene mutation was evaluated in a lung cancer cell line. We observed significantly higher (P=0.006) mtDNA mutation in the never-smokers compared to the current-smoker lung cancer patients. MtDNA mutation was significantly higher (P=0.026) in the never-smoker Asian compared to the current-smoker Caucasian patients’ population. MtDNA mutation was significantly (P=0.007) associated with EGFR gene mutation in the never-smoker patients. We also observed a significant increase (P=0.037) in mtDNA content among the never-smoker lung cancer patients. The majority of the coding mtDNA mutations targeted respiratory complex-I and forced overexpression of one of these mutations resulted in increased in vitro proliferation, invasion and superoxide production in lung cancer cells. We observed a higher prevalence and new relationship between mtDNA alterations among never-smoker lung cancer patients and EGFR gene mutation. Moreover, a representative mutation produced strong growth effects after forced overexpression in lung cancer cells. Signature mtDNA mutations provide a basis to develop novel biomarkers and therapeutic strategies for never-smoker lung cancer patients. PMID:21830212

  19. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications.

  20. Assessment of DDR2, BRAF, EGFR and KRAS mutations as therapeutic targets in non-adenocarcinoma lung cancer patients.

    PubMed

    Yashima, Hideaki; Shimizu, Kimihiro; Araki, Takuya; Aomori, Tohru; Ohtaki, Yoichi; Nagashima, Toshiteru; Enokida, Yasuaki; Atsumi, Jun; Nakamura, Tomonori; Takeyoshi, Izumi; Yamamoto, Koujirou

    2014-09-01

    Molecular-targeted therapy has not been established in non-adenocarcinoma lung cancer (non-AdLC), as no targets that affect the clinical efficacy of molecular-targeted drugs have yet been identified. In this study, we investigated the frequency of genetic variations in discoidin domain receptor 2 (DDR2), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), epidermal growth factor receptor (EGFR) and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) in non-AdLC patients, in order to evaluate the possibility of genetic mutations in these genes being used as therapeutic targets for the treatment of patients with non-AdLC. For this purpose, we enrolled 150 non-AdLC patients who had undergone surgery at the Gunma University Hospital between December, 2003 and December, 2012. Genetic mutations in the EGFR, KRAS, DDR2 and BRAF genes were detected by a sequencing method or probe assay using DNA derived from cancer tissues. No somatic mutations in DDR2 or BRAF were detected in non-AdLC patients. Conversely, genetic mutations in EGFR exon 19 were found in 3 squamous cell carcinoma (SCC) and 3 adenosquamous carcinoma patients, whereas KRAS codon 12 mutations were also found in 3 SCC patients and 1 large-cell neuroendocrine carcinoma patient. EGFR and KRAS mutations were mutually exclusive. This study indicated that, although DDR2 and BRAF mutations may only rarely be used as therapeutic targets, EGFR and KRAS mutations may represent candidate therapeutic targets, at least in the non-AdLC patients investigated.

  1. Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer

    PubMed Central

    Xiao, DeSheng; Lu, Can; Zhu, Wei; He, QiuYan; Li, Yong; Fu, ChunYan; Zhou, JianHua; Liu, Shuang; Tao, YongGuang

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes represent novel oncogenes that are associated with non–small-cell lung cancers (NSCLC). The feasibility of detecting EGFR mutations and ALK fusion genes in small biopsy specimens or surgical specimens was determined. Of the 721 NSCLC patients, a total of 305 cases were positive for EGFR mutations (42.3%). The rate of EGFR mutations in women was significantly higher than that in men. Histologically, the EGFR mutation rate in adenocarcinomas was significantly higher than that in squamous cell carcinomas. No difference in the EGFR mutation rate was observed between surgical specimens (42.1%) and small biopsy specimens (42.4%), which indicated that the EGFR mutation ratios in surgical specimens and small biopsy specimens were not different. In 385 NSCLC patients, 26 cases were positive for EML4-ALK (6.8%). However, 11.7% of the surgical specimens were EML4-ALK-positive, whereas the positive proportion in the small biopsy specimens was only 4.7%, which indicated that EML4-ALK-positive rate in the surgical specimens was significantly higher than that in the small biopsy specimens. Detection of EGFR gene mutations was feasible in small biopsy specimens, and screening for EML4-ALK expression in small biopsy specimens can be used to guide clinical treatments. PMID:27322143

  2. TRAIL-activated EGFR by Cbl-b-regulated EGFR redistribution in lipid rafts antagonises TRAIL-induced apoptosis in gastric cancer cells.

    PubMed

    Xu, Ling; Zhang, Ye; Liu, Jing; Qu, Jinglei; Hu, Xuejun; Zhang, Fan; Zheng, Huachuan; Qu, Xiujuan; Liu, Yunpeng

    2012-11-01

    Most gastric cancer cells are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Since TRAIL resistance is associated with lipid rafts, in which both death receptors and epidermal growth factor receptors (EGFR) are enriched, our aim is to identify how lipid raft-regulated receptor redistribution influences the sensitivity of TRAIL in gastric cancer cells. In TRAIL-resistant gastric cancer cells, TRAIL did not induce effective death-inducing signalling complex (DISC) formation in lipid rafts, accompanied with EGFR translocation into lipid rafts, and activation of EGFR pathway. Knockdown of casitas B-lineage lymphoma-b (Cbl-b) enhanced TRAIL-induced apoptosis by promoting DISC formation in lipid rafts. However, knockdown of Cbl-b also enhanced EGFR translocation into lipid rafts and EGFR pathway activation induced by TRAIL. Either using inhibitors of EGFR or depletion of EGFR with small interfering RNA (siRNA) prevented EGFR pathway activation, and thus increased TRAIL-induced apoptosis, especially in Cbl-b knockdown clones. Taken together, TRAIL-induced EGFR activation through Cbl-b-regulated EGFR redistribution in lipid rafts antagonised TRAIL-induced apoptosis. The contribution of DISC formation and the inhibition of EGFR signal triggered in lipid rafts are both essential for increasing the sensitivity of gastric cancer cells to TRAIL.

  3. Screening for EGFR Mutations in Patients with Head and Neck Cancer Treated with Gefitinib on a Compassionate-Use Program: A Hellenic Cooperative Oncology Group Study

    PubMed Central

    Murray, Samuel; Bobos, Mattheos; Angouridakis, Nikolaos; Nikolaou, Angelos; Linardou, Helena; Razis, Evangelia; Fountzilas, George

    2010-01-01

    Background and Aim. EGFR is commonly expressed in cancers of the head and neck (H and N), and anti-EGFR agents have demonstrated improvements in outcomes (TTP and OS). The aim of this study was to determine EGFR gene status in H and N cancer patients treated with gefitinib and to correlate mutational status with clinico-pathological data and response. Patients and Methods. Patients with histologically confirmed H and N cancer having failed prior treatment for advanced disease entered this compassionate-use-program. Nineteen patients received gefitinib. EGFR expression was assessed by IHC, gene copy number by FISH, and mutation analysis was conducted for EGFR (18-21), KRAS, BRAF (V600E), and HER-2 exon 20. An additional TKI naive cohort of 73 patients was also screened. Results. Mutations were detected in 6/19 patients (3× EGFR, 1× KRAS, and 2× HER2-exon 20). There were no significant differences in TTP or OS for patients with somatic EGFR mutations. No BRAF mutations were detected. Conclusions. The incidence of EGFR mutations in H and N cancer in this study was 5.3%. No statistically relevant correlations between mutation or gene gain and response or survival were observed. Due to the limited number of patients and low incidence of genetic aberrations in the genes analyzed, additional studies are warranted. PMID:21274259

  4. Total DNA input is a crucial determinant of the sensitivity of plasma cell-free DNA EGFR mutation detection using droplet digital PCR

    PubMed Central

    Zhao, Jing; Chen, Minjiang; Zhang, Li; Li, Longyun; Wang, Mengzhao

    2017-01-01

    We evaluated the use of droplet digital PCR (ddPCR) to detect plasma cell-free DNA (cfDNA) epidermal growth factor receptor (EGFR) mutations in advanced non-small cell lung cancer (NSCLC) patients. Compared with tumor-tissue-based detection, the sensitivity of ddPCR for detecting plasma cfDNA tyrosine kinase inhibitor (TKI)-sensitizing EGFR mutations was 61.3%, the specificity was 96.7%, and the consistency rate was 81.4% (?=0.605, 95% confidence interval: 0.501-0.706, p <0.0001). The sensitivity declined from 82.6% to 46.7% with decreasing cfDNA inputs (p=0.028). The plasma cfDNA concentration correlated with gender (males vs.females =11.69 ng/mL vs. 9.508 ng/mL; p=0.044), EGFR mutation status (tumor-tissue EGFR mutation-positive (EGFR M+) vs. EGFR mutation-negative (EGFR M-) = 9.61 ng/mL vs. 12.82 ng/mL; p =0.049) and specimen collection time (=2 years vs. >2 years=13.83 ng/mL vs. 6.575 ng/mL; p <0.001), and was greater in tumor-tissue EGFR M+ / plasma EGFR M+ patients than in tumor-tissue EGFR M+/plasma EGFR M- patients (11.61 vs. 7.73 ng/mL, respectively; p=0.003). Thus total cfDNA input crucially influences the sensitivity of plasma cfDNA EGFR mutation testing with ddPCR. Such analysis could be an effective supplemental test for advanced NSCLC patients. PMID:28052016

  5. Prevalence of KRAS, BRAF, PI3K and EGFR mutations among Asian patients with metastatic colorectal cancer

    PubMed Central

    PHUA, LEE CHENG; NG, HUI WEN; YEO, ANGIE HUI LING; CHEN, ELYA; LO, MICHELLE SHU MEI; CHEAH, PEH YEAN; CHAN, ERIC CHUN YONG; KOH, POH KOON; HO, HAN KIAT

    2015-01-01

    Mutations in oncogenes along the epidermal growth factor receptor (EGFR) signaling pathway have been implicated in the resistance to cetuximab in patients with metastatic colorectal cancer (mCRC). However, the relative significance of these mutations based on their frequencies of occurrence in the Singaporean population remains unclear. In the present study, the prevalence of Kirsten rat sarcoma viral oncogene homolog (KRAS), v-Raf murine sarcoma viral oncogene homolog B (BRAF), phosphoinositide 3-kinase (PI3K) and EGFR somatic mutations were determined among Singaporean patients with mCRC. DNA extracted from 45 pairs of surgically resected tumor and normal mucosa samples was subjected to direct sequencing or restriction fragment length polymorphism. Associations of the genetic mutations with various clinicopathological parameters were further explored. Mutations in either codon 12 or 13 of KRAS were confirmed as prominent phenomena among the included Singaporean mCRC patients, at a prevalence comparable with that of Caucasian and patients of other Asian ethnicities [33.3% (90% confidence interval, 21.8–44.9%)]. KRAS mutation was not associated with clinicopathological features, including age, gender and ethnicity of patients, or the tumor site, differentiation and mucinous status. Conversely, the prevalence of BRAF (0%), PI3K (2.2%) and EGFR (0%) mutations were low. The results of the present study indicate that KRAS mutations are prevalent among the studied population, and confirm the low prevalence of BRAF, PI3K and EGFR mutations. KRAS should be prioritized as an investigational gene for future studies of predictive biomarkers of cetuximab response among Singaporean patients with mCRC. PMID:26622882

  6. Analysis of EGFR, KRAS and P53 mutations in lung cancer using cells in the curette lavage fluid obtained by bronchoscopy.

    PubMed

    Yamaguchi, Fumihiro; Kugawa, Satoshi; Tateno, Hidetsugu; Kokubu, Fumio; Fukuchi, Kunihiko

    2012-12-01

    Histopathological samples are commonly used for molecular testing to detect both oncogenes and tumor-suppressor genes in lung cancer. The purpose of this study was to determine the efficacy of using curette lavage fluid for molecular testing to detect EGFR, KRAS and P53 mutations in lung cancer patients. Samples were obtained from 77 lung cancer patients by bronchoscopy at the time of diagnosis, collected by scraping the site of the primary tumor lesion with a curette. DNA was extracted from cells in the curette lavage fluid, and PCRs were performed to amplify mutation hot spot regions in the EGFR, KRAS and P53 genes. The PCR products were direct-sequenced to detect mutations of each gene. The reference sequence of each gene was obtained from GenBank. Overall, 27% (21 of 77) were found with EGFR mutations, 1% (1 of 77) with KRAS mutations, and 36% (28 of 77) with P53 mutations. KRAS mutations were not detected in patients harboring mutations in either EGFR or P53. P53 mutations were identified in 38% (8 of 21) of the patients with EGFR mutations, all of who had advanced lung cancer. Of these patients, a 62-year-old female current smoker was given EGFR-TKI as third-line therapy, with no improvement in clinical symptoms or results of radiographic examination. Multivariate analysis indicated that P53 mutation rates in advanced-stage lung cancer were significantly higher than those in early-stage lung cancer (P=.017). In contrast, EGFR mutation rates were not significantly associated with staging. L747S in EGFR, described as a mutation associated with secondary resistance to EGFR-TKI, was detected in three patients who had never received EGFR-TKI, including one SCLC patient. It is possible to analyze EGFR, KRAS and P53 mutations using curette lavage fluid collected from lung cancer patients. This is useful when sufficient amounts of tumor samples cannot be obtained. Data from the current study suggest that EGFR mutations in concert with P53 mutations accelerate cancer

  7. Roles of EGFR and KRAS Mutations in the Treatment Of Patients With Non–Small-Cell Lung Cancer

    PubMed Central

    Langer, Corey J.

    2011-01-01

    After decades of empirical treatment, molecular subtypes of non–small-cell lung cancer (NSCLC) are now emerging that may enable us to target treatment for patients and increase the likelihood of response. Of the biomarkers under evaluation, gene mutations are gaining recognition as predictive markers for anti–epidermal-growth factor receptor (EGFR) therapy. To date, unlike the situation in colorectal cancer, mutation of the v-Ki-Ras-2 Kirsten rat sarcoma viral oncogene homolog (KRAS) has an inconclusive role in NSCLC and should not be used to exclude patients from anti-EGFR therapy. For first-line NSCLC therapy, EGFR mutation status constitutes a prudent test to identify patients who are most likely to benefit from EGFR–tyrosine kinase inhibitor therapy rather than from chemotherapy. In first-line maintenance and relapsed (second-line or third-line) settings, clinical data support the use of erlotinib (Tarceva), as currently indicated, without regard to evaluation of EGFR mutation status. All patient subsets have been shown to benefit with prolonged progression-free and overall survival. PMID:21785539

  8. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.

    PubMed

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L; Nadel, Jay A; Koff, Jonathan L

    2014-07-15

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.

  9. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production

    PubMed Central

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L.; Nadel, Jay A.

    2014-01-01

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies. PMID:24838750

  10. [Therapeutic biomarkers of EGFR-TKI].

    PubMed

    Seike, Masahiro; Gemma, Akihiko

    2012-11-01

    Non-small cell lung cancer(NSCLC)patients with activating mutations of the epidermal growth factor receptor(EGFR)gene have shown a dramatic response to EGFR tyrosine kinase inhibitors(EGFR-TKI)such as gefitinib and erlotinib. EGFR activating mutations including exon 19 deletion and exon 21 L858R are recognized as markers ofthe sensitivity to EGFR-TKI therapy in NSCLC. However, the emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. Several acquired-resistance mechanisms and candidates, including exon 20 T790M secondary mutation, MET amplification, a high-level of HGF expression, PTEN downregulation, FAS-NF-κB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer, have been identified. Understanding the mechanisms of acquired resistance to EGFR-TKI, followed by the development of molecular targeted drugs that can overcome the resistance, could serve as an important advance for targeting EGFR, which is activated in NSCLC. Further studies should be performed to clarify other mechanisms associated with the acquired resistance to EGFR-TKI. In this review, we summarize recent advances in the therapeutic biomarkers to EGFR-TKI.

  11. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.

    PubMed

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-07-10

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.

  12. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2017-01-01

    Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the

  13. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the

  14. Targeting the Gatekeeper: Osimertinib in EGFR T790M Mutation-Positive Non-Small Cell Lung Cancer.

    PubMed

    Skoulidis, Ferdinandos; Papadimitrakopoulou, Vassiliki A

    2017-02-01

    In 2015, the FDA approved an unprecedented number of new therapies for non-small cell lung cancer (NSCLC), among them therapies addressing specific genomic tumor subsets in the setting of development of resistance to first-line targeted therapy. Osimertinib (Tagrisso, formerly AZD9291; AstraZeneca) is indicated for patients with metastatic EGFR T790M mutation-positive NSCLC, as detected by an FDA-approved test, who have progressed on or after EGFR tyrosine kinase inhibitor therapy. It received breakthrough therapy designation, priority review status, and accelerated approval from the FDA. Clin Cancer Res; 23(3); 618-22. ©2016 AACR.

  15. Features and prognostic impact of distant metastasis in patients with stage IV lung adenocarcinoma harboring EGFR mutations: importance of bone metastasis.

    PubMed

    Fujimoto, Daichi; Ueda, Hiroyuki; Shimizu, Ryoko; Kato, Ryoji; Otoshi, Takehiro; Kawamura, Takahisa; Tamai, Koji; Shibata, Yumi; Matsumoto, Takeshi; Nagata, Kazuma; Otsuka, Kyoko; Nakagawa, Atsushi; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

    2014-06-01

    Mutated epidermal growth factor receptor (EGFR) and signaling pathways were associated with multiple brain and intra-pulmonary metastases, oncogenic progression and metastasis. However, features of metastasis to other organs and the independent prognostic influence of metastatic lesions were not elucidated in patients with lung cancer harboring EGFR mutations. Between January 2007 and April 2012, we treated 277 patients diagnosed with stage IV lung adenocarcinoma. Studied were 246 patients with available tumor EGFR mutation data who also underwent radiographic evaluation of lung, abdominal, brain, and bone metastases. The EGFR mutated group (N = 98) had significantly more metastatic lesions in the brain and bone than the wild-type group (N = 148): brain, 3 (1-93) versus 2 (1-32) median (range), P = 0.023; bone, 3 (1-43) versus 2 (1-27), P = 0.035, respectively. In addition, EGFR mutations were significantly more frequent in patients with multiple than non-multiple lung metastases (24/40 vs. 12/42, P = 0.004). Multivariate analysis showed that bone metastasis was a significant independent negative predictive factor of overall survival (OS) in patients with mutated [hazard ratio (HR) 2.04; 95 % confidence interval (CI) 1.17-3.64; P = 0.011] and wild-type EGFR (HR 2.09; 95 % CI 1.37-3.20; P < 0.001). In conclusion, patients with mutated EGFR had more lung, brain, and bone metastases, and bone metastasis was an independent negative predictor of OS.

  16. Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells.

    PubMed

    Al-Aidaroos, Abdul Qader Omer; Yuen, Hiu Fung; Guo, Ke; Zhang, Shu Dong; Chung, Tae-Hoon; Chng, Wee Joo; Zeng, Qi

    2013-08-01

    Metastasis-associated phosphatase of regenerating liver-3 (PRL-3) has pleiotropic effects in driving cancer progression, yet the signaling mechanisms of PRL-3 are still not fully understood. Here, we provide evidence for PRL-3-induced hyperactivation of EGFR and its downstream signaling cascades in multiple human cancer cell lines. Mechanistically, PRL-3-induced activation of EGFR was attributed primarily to transcriptional downregulation of protein tyrosine phosphatase 1B (PTP1B), an inhibitory phosphatase for EGFR. Functionally, PRL-3-induced hyperactivation of EGFR correlated with increased cell growth, promigratory characteristics, and tumorigenicity. Moreover, PRL-3 induced cellular addiction to EGFR signaling, as evidenced by the pronounced reversion of these oncogenic attributes upon EGFR-specific inhibition. Of clinical significance, we verified elevated PRL-3 expression as a predictive marker for favorable therapeutic response in a heterogeneous colorectal cancer (CRC) patient cohort treated with the clinically approved anti-EGFR antibody cetuximab. The identification of PRL-3-driven EGFR hyperactivation and consequential addiction to EGFR signaling opens new avenues for inhibiting PRL-3-driven cancer progression. We propose that elevated PRL-3 expression is an important clinical predictive biomarker for favorable anti-EGFR cancer therapy.

  17. Expression, Mutation, and Amplification Status of EGFR and Its Correlation with Five miRNAs in Salivary Gland Tumours

    PubMed Central

    Boštjančič, Emanuela; Grošelj, Aleš

    2017-01-01

    Malignant salivary gland tumours are rare histologically and clinically heterogeneous group of tumours, missing prognostic factors and therapeutic targets. MicroRNAs (miRNAs), small noncoding RNAs, and posttranscriptional regulators of mRNA are poorly described in different subtypes of salivary gland tumours. Epidermal growth factor receptor (EGFR), an important therapeutic target and target of certain miRNAs (i.e., miR-133b), shows variable degrees of expression in salivary gland tumours. Our study included 70 parotid gland tumours of different histological subtypes. Expression, mutations, and copy number variations (CNVs) of EGFR were determined using immunohistochemistry, single-stranded conformation polymorphism, quantitative polymerase chain reaction (qPCR), and fluorescence in situ hybridization. Expression of miR-99b, miR-133b, miR-140, miR-140-3p, and let-7a was analysed using qPCR. Expression of EGFR was observed in 37% of tumours with low and 40% of tumours with high malignant potential. There were no mutations, with the majority of samples showing polysomy of chromosome 7. Based on histological subtypes, we found differential expression of all five miRNAs. We confirmed association of reactivity of EGFR, miR-133b, miR-140, miR-140-3p, and let-7a with CNV of EGFR and a positive association between miR-133b/let-7a and reactivity of EGFR. Age and need for postoperative radiotherapy were characterized as significant in multivariate survival analysis. PMID:28377929

  18. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications.

    PubMed

    Marchetti, Antonio; Del Grammastro, Maela; Filice, Giampaolo; Felicioni, Lara; Rossi, Giulio; Graziano, Paolo; Sartori, Giuliana; Leone, Alvaro; Malatesta, Sara; Iacono, Michele; Guetti, Luigi; Viola, Patrizia; Mucilli, Felice; Cuccurullo, Franco; Buttitta, Fiamma

    2012-01-01

    Microdeletions at exon 19 are the most frequent genetic alterations affecting the Epidermal Growth Factor Receptor (EGFR) gene in non-small cell lung cancer (NSCLC) and they are strongly associated with response to treatment with tyrosine kinase inhibitors. A series of 116 NSCLC DNA samples investigated by Sanger Sequencing (SS), including 106 samples carrying exon 19 EGFR deletions and 10 without deletions (control samples), were subjected to deep next generation sequencing (NGS). All samples with deletions at SS showed deletions with NGS. No deletions were seen in control cases. In 93 (88%) cases, deletions detected by NGS were exactly corresponding to those identified by SS. In 13 cases (12%) NGS resolved deletions not accurately characterized by SS. In 21 (20%) cases the NGS showed presence of complex (double/multiple) frameshift deletions producing a net in-frame change. In 5 of these cases the SS could not define the exact sequence of mutant alleles, in the other 16 cases the results obtained by SS were conventionally considered as deletions plus insertions. Different interpretative hypotheses for complex mutations are discussed. In 46 (43%) tumors deep NGS showed, for the first time to our knowledge, subpopulations of DNA molecules carrying EGFR deletions different from the main one. Each of these subpopulations accounted for 0.1% to 17% of the genomic DNA in the different tumors investigated. Our findings suggest that a region in exon 19 is highly unstable in a large proportion of patients carrying EGFR deletions. As a corollary to this study, NGS data were compared with those obtained by immunohistochemistry using the 6B6 anti-mutant EGFR antibody. The immunoreaction was E746-A750del specific. In conclusion, NGS analysis of EGFR exon 19 in NSCLCs allowed us to formulate a new interpretative hypothesis for complex mutations and revealed the presence of subpopulations of deletions with potential pathogenetic and clinical impact.

  19. Fulvestrant regulates epidermal growth factor (EGF) family ligands to activate EGF receptor (EGFR) signaling in breast cancer cells.

    PubMed

    Zhang, Xihong; Diaz, Michael R; Yee, Douglas

    2013-06-01

    Estrogen receptor-α (ER) targeted therapies are routinely used to treat breast cancer. However, patient responses are limited by resistance to endocrine therapy. Breast cancer cells resistant to the pure steroidal ER antagonist fulvestrant (fulv) demonstrate increased activation of epidermal growth factor receptor (EGFR) family members and downstream ERK signaling. In this study, we investigated the effects of fulv on EGFR signaling and ligand regulation in several breast cancer cell lines. EGFR/HER2/HER3 phosphorylation and ERK1,2 activation were seen after 24-48 h after fulvestrant treatment in ER-positive breast cancer cell lines. 4-Hydroxy-tamoxifen and estradiol did not cause EGFR activation. Fulvestrant did not affect EGFR expression. Cycloheximide abolished the ability of fulv to activate EGFR suggesting the autocrine production of EGFR ligands might be responsible for fulvestrant induced EGFR signaling. qRT-PCR results showed fulv differentially regulated EGFR ligands; HB-EGF mRNA was increased, while amphiregulin and epiregulin mRNAs were decreased. Fulvestrant induced EGFR activation and upregulation of EGFR ligands were ER dependent since fulv treatment in C4-12, an ER-negative cell line derivative of MCF-7 cells, did not result in EGFR activation or change in ligand mRNA levels. ER downregulation by siRNA induced similar EGFR activation and regulation of EGFR ligands as fulvestrant. Neutralizing HB-EGF antibody blocked fulv-induced EGFR activation. Combination of fulv and EGFR family tyrosine kinase inhibitors (erlotinib and lapatinib) significantly decreased EGFR signaling and cell survival. In conclusion, fulvestrant-activated EGFR family members accompanied by ER dependent upregulation of HB-EGF within 48 h. EGF receptor or ligand inhibition might enhance or prolong the therapeutic effects of targeting ER by fulvestrant in breast cancer.

  20. EGFR and KRAS Mutations Predict the Incidence and Outcome of Brain Metastases in Non-Small Cell Lung Cancer

    PubMed Central

    Tomasini, Pascale; Serdjebi, Cindy; Khobta, Nataliya; Metellus, Philippe; Ouafik, L’Houcine; Nanni, Isabelle; Greillier, Laurent; Loundou, Anderson; Fina, Frederic; Mascaux, Celine; Barlesi, Fabrice

    2016-01-01

    Background: Lung cancer is the leading cause of brain metastases (BM). The identification of driver oncogenes and matched targeted therapies has improved outcome in non-small cell lung cancer (NSCLC) patients; however, a better understanding of BM molecular biology is needed to further drive the process in this field. Methods: In this observational study, stage IV NSCLC patients tested for EGFR and KRAS mutations were selected, and BM incidence, recurrence and patients’ outcome were assessed. Results: A total of 144 patients (142 Caucasian and two Asian) were selected, including 11.27% with EGFR-mutant and 33.10% with KRAS-mutant tumors, and 57.04% patients had developed BM. BM incidence was more frequent in patients with EGFR mutation according to multivariate analyses (MVA) (Odds ratio OR = 8.745 [1.743–43.881], p = 0.008). Among patients with treated BM, recurrence after local treatment was less frequent in patients with KRAS mutation (OR = 0.234 [0.078–0.699], p = 0.009). Among patients with untreated BM, overall survival (OS) was shorter for patients with KRAS mutation according to univariate analysis (OR = 7.130 [1.240–41.012], p = 0.028), but not MVA. Conclusions: EGFR and KRAS mutations have a predictive role on BM incidence, recurrence and outcome in Caucasian NSCLC patients. These results may impact the routine management of disease in these patients. Further studies are required to assess the influence of other biomarkers on NSCLC BM. PMID:27999344

  1. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma.

    PubMed

    Habibovic, Aida; Hristova, Milena; Heppner, David E; Danyal, Karamatullah; Ather, Jennifer L; Janssen-Heininger, Yvonne M W; Irvin, Charles G; Poynter, Matthew E; Lundblad, Lennart K; Dixon, Anne E; Geiszt, Miklos; van der Vliet, Albert

    2016-11-03

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite-induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.

  2. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    PubMed Central

    Habibovic, Aida; Hristova, Milena; Heppner, David E.; Danyal, Karamatullah; Ather, Jennifer L.; Janssen-Heininger, Yvonne M.W.; Irvin, Charles G.; Poynter, Matthew E.; Lundblad, Lennart K.; Dixon, Anne E.; Geiszt, Miklos

    2016-01-01

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite–induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management. PMID:27812543

  3. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer.

    PubMed

    Wang, Shuhang; Tsui, Stella T; Liu, Christina; Song, Yongping; Liu, Delong

    2016-07-22

    T790M mutation is the most common mechanism for resistance to first- and second-generation tyrosine kinase inhibitors (TKI) for epidermal growth factor receptor (EGFR). Several third-generation EGFR mutant selective TKIs are being explored to conquer this resistance. AZD9291 (osimertinib, tagrisso) has been approved for treatment of the metastatic EGFR T790M mutation-positive non-small cell lung cancer. Resistance to AZD9291 has been described. C797S mutation was reported to be a major mechanism for resistance to T790M-targeting EGFR inhibitors. This review summarizes the latest development in identifying the C797S mutation and EAI045, the novel selective inhibitor overcoming the C797S mutant.

  4. EGFR-AKT-mTOR activation mediates epiregulin-induced pleiotropic functions in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Zhu, Xin-Hui; Yuan, Kun; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2015-01-01

    Epidermal growth factor (EGF) receptor (EGFR) emerges as an essential molecule for the regulating of osteoblast cellular functions. In the current study, we explored the effect of epiregulin, a new EGFR ligand, on osteoblast functions in vitro, and studied the underlying mechanisms. We found that epiregulin-induced EGFR activation in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, epiregulin activated AKT-mammalian target of rapamycin (mTOR) and Erk-mitogen-activated protein kinase (MAPK) signalings in cultured osteoblasts, which were blocked by EGFR inhibitor AG1478 or monoclonal antibody against EGFR (anti-EGFR). Further, in primary and MC3T3-E1 osteoblasts, epiregulin promoted cell proliferation and increased alkaline phosphatase activity, while inhibiting dexamethasone (Dex)-induced cell death. Such effects by epiregulin were largely inhibited by AG1478 or anti-EGFR. Notably, AKT-mTOR inhibitors, but not Erk inhibitors, alleviated epiregulin-induced above pleiotropic functions in osteoblasts. Meanwhile, siRNA depletion of Sin1, a key component of mTOR complex 2 (mTORC2), also suppressed epiregulin-exerted effects in MC3T3-E1 cells. Together, these results suggest that epiregulin-induced pleiotropic functions in cultured osteoblasts are mediated through EGFR-AKT-mTOR signalings.

  5. Mutation analysis of circulating plasma DNA to determine response to EGFR tyrosine kinase inhibitor therapy of lung adenocarcinoma patients

    PubMed Central

    Riediger, Anja Lisa; Dietz, Steffen; Schirmer, Uwe; Meister, Michael; Heinzmann-Groth, Ingrid; Schneider, Marc; Muley, Thomas; Thomas, Michael; Sültmann, Holger

    2016-01-01

    Long-lasting success in lung cancer therapy using tyrosine kinase inhibitors (TKIs) is rare since the tumors develop resistance due to the occurrence of molecularly altered subclones. The aim of this study was to monitor tumors over time based on the quantity of mutant plasma DNA and to identify early indications for therapy response and tumor progression. Serial plasma samples from lung adenocarcinoma patients treated with TKIs were used to quantify EGFR and KRAS mutations in circulating DNA by digital PCR. Mutant DNA levels were compared with the courses of responses to treatment with TKIs, conventional chemotherapy, radiotherapy, or combinations thereof. Variations in plasma DNA mutation levels over time were found in 15 patients. We categorize three major courses: First, signs of therapy response are associated with a fast clearing of plasma DNA mutations within a few days. Second, periods of stable disease are accompanied by either absence of mutations or fluctuation at low levels. Finally, dramatic increase of mutational load is followed by rapid tumor progression and poor patient survival. In summary, the serial assessment of EGFR mutations in the plasma of NSCLC patients allows conclusions about controlled disease and tumor progression earlier than currently available methods. PMID:27640882

  6. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms

    PubMed Central

    Needham, Sarah R.; Roberts, Selene K.; Arkhipov, Anton; Mysore, Venkatesh P.; Tynan, Christopher J.; Zanetti-Domingues, Laura C.; Kim, Eric T.; Losasso, Valeria; Korovesis, Dimitrios; Hirsch, Michael; Rolfe, Daniel J.; Clarke, David T.; Winn, Martyn D.; Lajevardipour, Alireza; Clayton, Andrew H. A.; Pike, Linda J.; Perani, Michela; Parker, Peter J.; Shan, Yibing; Shaw, David E.; Martin-Fernandez, Marisa L.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. PMID:27796308

  7. Rate of EGFR mutation testing for patients with nonsquamous non-small-cell lung cancer with implementation of reflex testing by pathologists

    PubMed Central

    Cheema, P.K.; Raphael, S.; El-Maraghi, R.; Li, J.; McClure, R.; Zibdawi, L.; Chan, A.; Victor, J.C.; Dolley, A.; Dziarmaga, A.

    2017-01-01

    Background Testing for mutation of the EGFR (epidermal growth factor receptor) gene is a standard of care for patients with advanced nonsquamous non-small-cell lung cancer (nsclc). To improve timely access to EGFR results, a few centres implemented reflex testing, defined as a request for EGFR testing by the pathologist at the time of a nonsquamous nsclc diagnosis. We evaluated the impact of reflex testing on EGFR testing rates. Methods A retrospective observational review of the Web-based AstraZeneca Canada EGFR Database from 1 April 2010 to 31 March 2014 found centres within Ontario that had requested EGFR testing through the database and that had implemented reflex testing (with at least 2 years’ worth of data, including the pre- and post-implementation period). Results The 7 included centres had requested EGFR tests for 2214 patients. The proportion of pathologists requesting EGFR tests increased after implementation of reflex testing (53% vs. 4%); conversely, the proportion of medical oncologists requesting tests decreased (46% vs. 95%, p < 0.001). After implementation of reflex testing, the mean number of patients having EGFR testing per centre per month increased significantly [12.6 vs. 4.9 (range: 4.5–14.9), p < 0.001]. Before reflex testing, EGFR testing rates showed a significant monthly increase over time (1.37 more tests per month; 95% confidence interval: 1.19 to 1.55 tests; p < 0.001). That trend could not account for the observed increase with reflex testing, because an immediate increase in EGFR test requests was observed with the introduction of reflex testing (p = 0.003), and the overall trend was sustained throughout the post–reflex testing period (p < 0.001). Conclusions Reflex EGFR testing for patients with nonsquamous nsclc was successfully implemented at multiple centres and was associated with an increase in EGFR testing. PMID:28270720

  8. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status

    PubMed Central

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-01-01

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung’s disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = −0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression. PMID:27409604

  9. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status.

    PubMed

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-07-09

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung's disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = -0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression.

  10. Prognostic Value of Baseline 18F-FDG PET/CT Functional Parameters in Patients with Advanced Lung Adenocarcinoma Stratified by EGFR Mutation Status

    PubMed Central

    Wang, Dalong; Zhang, Minghui; Gao, Xuan; Yu, Lijuan

    2016-01-01

    The study objective was to retrospectively analyze the metabolic variables derived from 18 F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) as predictors of progression-free survival (PFS) and overall survival (OS) in advanced lung adenocarcinoma stratified by epidermal growth factor receptor (EGFR) mutation status. A total of 176 patients (91, EGFR mutation; 85, wild-type EGFR) who underwent 18F-FDG PET/CT before treatment were enrolled. The main 18F-FDG PET/CT-derived variables: primary tumor maximum standardized uptake value (SUVmaxT), primary tumor total lesion glycolysis (TLGT), the maximum SUVmax of all selected lesions in whole body determined using the Response Evaluation Criteria In Solid Tumors (RECIST) 1.1 criteria (SUVmaxWBR), and whole-body total TLG determined using the RECIST 1.1 criteria (TLGWBR) were measured. Survival analysis regarding TLGWBR, and other factors in advanced lung adenocarcinoma patients stratified using EGFR mutation status, were evaluated. The results indicated that high TLGWBR (≥259.85), EGFR wild-type, and high serum LDH were independent predictors of worse PFS and OS in all patients with advanced lung adenocarcinoma. Among patients with wild-type EGFR, only TLGWBR retained significance as an independent predictor of both PFS and OS. Among patients with the EGFR mutation, high serum LDH level was an independent predictor of worse PFS and OS, and high TLGWBR (≥259.85) was an independent predictor of worse PFS but not worse OS. In conclusion, TLGWBR is a promising parameter for prognostic stratification of patients with advanced lung adenocarcinoma and EGFR status; however, it cannot be used to further stratify the risk of worse OS for patients with the EGFR mutation. Further prospective studies are needed to validate our findings. PMID:27336755

  11. The evolutionarily conserved EBR module of RALT/MIG6 mediates suppression of the EGFR catalytic activity.

    PubMed

    Anastasi, S; Baietti, M F; Frosi, Y; Alemà, S; Segatto, O

    2007-12-13

    Physiological signalling by the epidermal growth factor receptor (EGFR) controls developmental processes and tissue homeostasis, whereas aberrant EGFR activity drives oncogenic cell transformation. Under normal conditions, the EGFR must therefore generate outputs of defined strength and duration. To this aim, cells balance EGFR activity via different modalities of negative signalling. Increasing attention is being drawn on transcriptionally controlled feedback inhibitors of EGFR, namely RALT/MIG6, LRIG1, SOCS4 and SOCS5. Genetic studies in mice have revealed the essential role of Ralt/Mig6 in regulating Egfr-driven skin morphogenesis and tumour formation, yet the mechanisms through which RALT abrogates EGFR activity are still undefined. We report that RALT suppresses EGFR function by inhibiting its catalytic activity. The evolutionarily conserved ErbB-binding region (EBR) is necessary and sufficient to carry out RALT-dependent suppression of EGFR kinase activity in vitro and in intact cells. The mechanism involves binding of the EBR to the 953RYLVIQ958 sequence, which is located in the alphaI helix of the EGFR kinase and has been shown to participate in allosteric control of EGFR catalytic activity. Our results uncover a novel mechanism of temporal regulation of EGFR activity in vertebrate organisms.

  12. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer

    PubMed Central

    Jia, Xiangbo; Qian, Rulin; Zhang, Binbin

    2016-01-01

    Background Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 (SALL4) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. Methods In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS), and a fusion gene of the echinoderm microtubule-associated protein-like 4 (EML4) and the anaplastic lymphoma kinase (ALK). Results The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS. In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. Conclusions SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR, which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis. PMID:27867542

  13. Customized Treatment in Non-Small-Cell Lung Cancer Based on EGFR Mutations and BRCA1 mRNA Expression

    PubMed Central

    Rosell, Rafael; Perez-Roca, Laia; Sanchez, Jose Javier; Cobo, Manuel; Moran, Teresa; Chaib, Imane; Provencio, Mariano; Domine, Manuel; Sala, Maria Angeles; Jimenez, Ulpiano; Diz, Pilar; Barneto, Isidoro; Macias, Jose Antonio; de las Peñas, Ramon; Catot, Silvia; Isla, Dolores; Sanchez, Jose Miguel; Ibeas, Rafael; Lopez-Vivanco, Guillermo; Oramas, Juana; Mendez, Pedro; Reguart, Noemi; Blanco, Remei; Taron, Miquel

    2009-01-01

    Background Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. Methodology/Principal Findings We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1 levels (hazard ratio, 1

  14. BIM deletion polymorphisms in Hispanic patients with non-small cell lung cancer carriers of EGFR mutations

    PubMed Central

    Carranza, Hernán; Vargas, Carlos; Otero, Jorge; Corrales-Rodriguez, Luis; Martín, Claudio; Reguart, Noemí; Archila, Pilar; Rodríguez, July; Cuello, Mauricio; Ortíz, Carlos; Franco, Sandra; Rolfo, Christian; Rosell, Rafael

    2016-01-01

    Background Germline alterations in the proapoptotic protein Bcl-2-like 11 (BIM) can have a crucial role in diverse tumors. To determine the clinical utility of detecting BIM deletion polymorphisms (par4226 bp/ par363 bp) in EGFR positive non-small-cell lung cancer (NSCLC) we examined the outcomes of patients with and without BIM alterations. Results BIM deletion was present in 14 patients (15.7%). There were no significant differences between patients with and without BIM-del in clinical characteristics or EGFR mutation type; however, those with BIM-del had a worse overall response rate (ORR) to erlotinib (42.9% vs. 73.3% in patients without BIM-del; p=0.024) as well as a significantly shorter progression-free survival (PFS) (10.8 BIM-del+ vs. 21.7 months for patients without BIM-del; p=0.029) and overall survival (OS) (15.5 BIM-del+ vs. 34.0 months for patients without BIM-del; p=0.035). Multivariate Cox regression analysis showed that BIM-del+ was an independent indicator of shorter PFS (HR 3.0; 95%CI 1.2-7.6; p=0.01) and OS (HR 3.4; 95%CI 1.4-8.3; p=0.006). Methods We studied 89 NSCLC Hispanic patients with EGFR mutation who were treated with erlotinib between January 2009 and November 2014. BIM deletion polymorphisms (BIM-del) was analyzed by PCR in formalin-fixed paraffin-embedded (FFPE) tissues of tumor biopsies. We retrospectively analyzed clinical characteristics, response rate, toxicity, and outcomes among patients with and without BIM-del. Conclusions The incidence of BIM-del found in Hispanic patients is similar to that previously described in Asia. This alteration is associated with a poor clinical response to erlotinib and represents an independent prognostic factor for patients who had NSCLC with an EGFR mutation. PMID:27926478

  15. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    PubMed

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  16. Plasma MiRNA alterations between NSCLC patients harboring Del19 and L858R EGFR mutations

    PubMed Central

    Ma, Yihan; Xu, Peiqi; Mi, Yanjun; Wang, Wenyi; Pan, Xiaoyan; Wu, Xiaoting; He, Qi; Liu, Hongming; Tang, Weiwei; An, Hanxiang

    2016-01-01

    Based on recognition of driver mutations, treatment paradigm for non-small-cell lung cancer (NSCLC) patients has been shifted. However, recently exon 19 deletion mutation (del19) of epidermal growth factor receptor (EGFR) clearly shows better clinical benefit over single-point substitution mutation L858R in exon 21 (L858R). The aim of this study was to investigate the difference by analyzing the expression of plasma microRNAs (miRNAs) of NSCLC patients with EGFR mutation del19 or L858R. MiRNA microarray of plasma from patients' blood identified 79 mapped, network-eligible miRNAs (fold > 5), of which 76 were up regulated and 3 were down regulated. Genetic network was performed with Ingenuity Pathway Analysis (IPA). Among analysis, MYC, Argonaute2 (AGO2), Y-box binding protein 1 (YBX1), cyclin E1 (CCNE1) were involved in organismal abnormalities and cancer. Our findings provide information on the epigenetic signature of the two major sensitive mutations among NSCLC and add to the understanding of mechanisms underlying the different outcomes. PMID:27463019

  17. Prognostic factors analysis in EGFR mutation-positive non-small cell lung cancer with brain metastases treated with whole brain-radiotherapy and EGFR-tyrosine kinase inhibitors

    PubMed Central

    WEI, HANGPING; SU, MENG; LIN, RUIFANG; LI, HUIFANG; ZOU, CHANGLIN

    2016-01-01

    The survival time of non-small cell lung cancer (NSCLC) patients with brain metastases has been previously reported to be 6.5–10.0 months, even with systematic treatment. Patients that possess a certain epidermal growth factor receptor (EGFR) mutation alongside NSCLC with brain metastases also have a short survival rate, and a reliable prognostic model for these patients demonstrates a strong correlation between the outcome and treatment recommendations. The Cox proportional hazards regression and classification tree models were used to explore the prognostic factors in EGFR mutation-positive NSCLC patients with brain metastases following whole-brain radiation therapy (WBRT) and EGFR-tyrosine kinase inhibitor (EGFR-TKI) treatment. A total of 66 EGFR mutation-positive NSCLC patients with brain metastases were retrospectively reviewed. Univariate and multivariate analyses by Cox proportional hazards regression were then performed. The classification tree model was applied in order to identify prognostic groups of the patients. In the survival analysis, age, carcinoembryonic antigen (CEA) and status of the primary tumor were prognostic factors for progression free survival (P=0.006, 0.014 and 0.005, respectively) and overall survival (P=0.009, 0.013 and 0.009, respectively). The classification tree model was subsequently applied, which revealed 3 patient groups with significantly different survival times: Group I, age <65 years and CEA ≤10 µg/ml; Group II, age <65 years and CEA >10 µg/ml or age ≥65 years and CEA ≤10 µg/ml; and Group III, age ≥65 years and CEA >10 µg/ml. The major prognostic predictors for EGFR mutation-positive NSCLC patients with brain metastases following WBRT and EGFR-TKI were age and CEA. In addition, primary tumor control may be important for predicting survival. PMID:26998157

  18. High epidermal growth factor receptor immunohistochemical expression in urothelial carcinoma of the bladder is not associated with EGFR mutations in exons 19 and 21: a study using formalin-fixed, paraffin-embedded archival tissues.

    PubMed

    Chaux, Alcides; Cohen, Julie S; Schultz, Luciana; Albadine, Roula; Jadallah, Sana; Murphy, Kathleen M; Sharma, Rajni; Schoenberg, Mark P; Netto, George J

    2012-10-01

    Epidermal growth factor receptor (EGFR) is a member of the erbB tyrosine kinase family reported to be overexpressed in a variety of solid malignancies. Mutations in exons 19 to 21 of the tyrosine kinase domain have been detected in a subset of these tumors and its presence associated with a better response to EGFR inhibitors. Several clinical trials are currently underway to evaluate the performance of such drugs in patients with bladder cancer, but data on EGFR mutation status are limited. The current study assesses EGFR immunohistochemical expression and the presence of mutations in exons 19 and 21 by polymerase chain reaction in 19 bladder urothelial carcinomas from formalin-fixed, paraffin-embedded tissues. Representative paraffin sections were microdissected for DNA extraction using a pinpoint isolation system. Parallel sections were immunostained using a monoclonal anti-EGFR antibody. No mutations in exons 19 and 21 of EGFR were identified in any of the cases. Immunohistochemical EGFR positivity was observed in 14 of 19 cases. In summary, we found EGFR protein expression in 74% of urothelial carcinomas, but we failed to detect EGFR mutations at exons 19 to 21, suggesting that EGFR overexpression is not related to the presence of mutations in the tyrosine kinase domain of the gene. Mutation analysis of EGFR exons 19 and 21 is feasible in microdissected paraffin sections from archival tissues. Immunohistochemical expression of EGFR may not be useful to predict therapeutic response to EGFR inhibitors in patients with urothelial carcinomas. To explain EGFR immunohistochemical overexpression, other mechanisms besides mutations in the EGFR kinase domain should be investigated in future studies.

  19. Imaging Characteristics of Driver Mutations in EGFR, KRAS, and ALK among Treatment-Naïve Patients with Advanced Lung Adenocarcinoma

    PubMed Central

    Park, Jangchul; Kobayashi, Yoshihisa; Urayama, Kevin Y.; Yamaura, Hidekazu; Yatabe, Yasushi; Hida, Toyoaki

    2016-01-01

    This study aimed to identify the computed tomography characteristics of treatment-naïve patients with lung adenocarcinoma and known driver mutations in EGFR, KRAS, or ALK. Patients with advanced lung adenocarcinoma (stage IIIB–IV) and known mutations in EGFR, KRAS, or ALK were assessed. The radiological findings for the main tumor and intra-thoracic status were retrospectively analyzed in each group, and the groups’ characteristics were compared. We identified 265 treatment-naïve patients with non-small-cell carcinoma, who had EGFR mutations (n = 159), KRAS mutations (n = 55), or ALK rearrangements (n = 51). Among the three groups, we evaluated only patients with stage IIIB–IV lung adenocarcinoma who had EGFR mutations (n = 126), KRAS mutations (n = 35), or ALK rearrangements (n = 47). We found that ground-glass opacity at the main tumor was significantly more common among EGFR-positive patients, compared to ALK-positive patients (p = 0.009). Lymphadenopathy was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.003). Extranodal invasion was significantly more common among ALK-positive patients, compared to EGFR-positive patients and KRAS-positive patients (p = 0.001 and p = 0.049, respectively). Lymphangitis was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.049). Pleural effusion was significantly less common among KRAS-positive patients, compared to EGFR-positive patients and ALK-positive patients (p = 0.046 and p = 0.026, respectively). Lung metastases were significantly more common among EGFR-positive patients, compared to KRAS-positive patients and ALK-positive patients (p = 0.007 and p = 0.04, respectively). In conclusion, EGFR mutations were associated with ground-glass opacity, KRAS-positive tumors were generally solid and less likely to metastasize to the lung and pleura, and ALK-positive tumors tended to present with lymphadenopathy, extranodal

  20. Mechanisms of resistance to EGFR tyrosine kinase inhibitors

    PubMed Central

    Huang, Lihua; Fu, Liwu

    2015-01-01

    Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies. PMID:26579470

  1. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells.

    PubMed

    Sakuma, Yuji; Matsukuma, Shoichi; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Koizume, Shiro; Sekiguchi, Hironobu; Saito, Haruhiro; Nakayama, Haruhiko; Kameda, Yoichi; Yokose, Tomoyuki; Oguni, Sachiko; Niki, Toshiro; Miyagi, Yohei

    2013-10-01

    Lung cancers harboring epidermal growth factor receptor (EGFR) mutations depend on constitutive activation of the kinase for survival. Although most EGFR-mutant lung cancers are sensitive to EGFR tyrosine kinase inhibitors (TKIs) and shrink in response to treatment, acquired resistance to TKI therapy is common. We demonstrate here that two EGFR-mutated lung adenocarcinoma cell lines, HCC827 and HCC4006, contain a subpopulation of cells that have undergone epithelial-to-mesenchymal transition and survive independent of activated EGFR. These EGFR-independent cancer cells, herein termed gefitinib-resistant (GR) cells, demonstrate higher levels of basal autophagy than their parental cells and thrive under hypoxic, reduced-serum conditions in vitro; this somewhat simulates the hypoxic environment common to cancerous tissues. We show that depletion of the essential autophagy gene, ATG5, by small interfering RNA (siRNA) or chloroquine, an autophagy inhibitor, markedly reduces GR cell viability under hypoxic conditions. Moreover, we show a significant elevation in caspase activity in GR cells following knockdown of ATG5. These results suggest that GR cells can evade apoptosis and survive in hostile, hypoxic environments with constant autophagic flux. We also show the presence of autophagosomes in some cancer cells from patient samples, even in untreated EGFR-mutant lung cancer tissue samples. Together, our results indicate that autophagy inhibitors alone or in combination with EGFR TKIs may be an effective approach for the treatment of EGFR-mutant lung cancers, where basal autophagy of some cancer cells is upregulated.

  2. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

    PubMed

    Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J

    2015-09-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted.

  3. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis

    PubMed Central

    Zhang, Yue-Lun; Yuan, Jin-Qiu; Wang, Kai-Feng; Fu, Xiao-Hong; Han, Xiao-Ran; Threapleton, Diane; Yang, Zu-Yao; Mao, Chen; Tang, Jin-Ling

    2016-01-01

    Objectives Estimate the epidermal growth factor receptor (EGFR) mutation prevalence in all non-small cell lung cancer (NSCLC) patients and patient subgroups. Results A total of 456 studies were included, reporting 30,466 patients with EGFR mutation among 115,815 NSCLC patients. The overall pooled prevalence for EGFR mutations was 32.3% (95% CI 30.9% to 33.7%), ranging from 38.4% (95% CI: 36.5% to 40.3%) in China to 14.1% (95% CI: 12.7% to 15.5%) in Europe. The pooled prevalence of EGFR mutation was higher in females (females vs. males: 43.7% vs. 24.0%; OR: 2.7, 95% CI: 2.5 to 2.9), non-smokers (non-smokers vs. past or current smokers: 49.3% vs. 21.5%; OR: 3.7, 95% CI: 3.4 to 4.0), and patients with adenocarcinoma (adenocarcinoma vs. non-adenocarcinoma: 38.0% vs. 11.7%; OR: 4.1, 95% CI: 3.6 to 4.8). Materials and Methods PubMed, EMBASE, and the Cochrane Library were searched to June 2013. Eligible studies reported EGFR mutation prevalence and the association with at least one of the following factors: gender, smoking status and histology. Random-effects models were used to pool EGFR mutation prevalence data. Conclusion This study provides the exact prevalence of EGFR mutations in different countries and NSCLC patient subgroups. PMID:27738317

  4. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells.

    PubMed

    Han, Weidong; Pan, Hongming; Chen, Yan; Sun, Jie; Wang, Yanshan; Li, Jing; Ge, Weiting; Feng, Lifeng; Lin, Xiaoying; Wang, Xiaojia; Wang, Xian; Jin, Hongchuan

    2011-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer.

  5. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: analysis of LUX-Lung 3 and 6

    PubMed Central

    Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin

    2017-01-01

    Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816

  6. Toxoplasma gondii-Induced Activation of EGFR Prevents Autophagy Protein-Mediated Killing of the Parasite

    PubMed Central

    Muniz-Feliciano, Luis; Van Grol, Jennifer; Portillo, Jose-Andres C.; Liew, Lloyd; Liu, Bing; Carlin, Cathleen R.; Carruthers, Vern B.; Matthews, Stephen; Subauste, Carlos S.

    2013-01-01

    Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome - lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3+ structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival. PMID:24367261

  7. MALT1 is required for EGFR-induced NF-κB activation and contributes to EGFR-driven lung cancer progression.

    PubMed

    Pan, D; Jiang, C; Ma, Z; Blonska, M; You, M J; Lin, X

    2016-02-18

    The transcription factor nuclear factor kappa B (NF-κB) has been implicated in having a crucial role in the tumorigenesis of many types of human cancers. Although epidermal growth factor receptor (EGFR) can directly activate NF-κB, the mechanism by which EGFR induces NF-κB activation and the role of NF-κB in EGFR-associated tumor progression is still not fully defined. Herein, we found that mucosa-associated lymphoid tissue 1 (MALT1) is involved in EGFR-induced NF-κB activation in cancer cells, and that MALT1 deficiency impaired EGFR-induced NF-κB activation. MALT1 mainly functions as a scaffold protein by recruiting E3 ligase TRAF6 to IKK complex to activate NF-κB in response to EGF stimulation. Functionally, MALT1 inhibition shows significant defects in EGFR-associated tumor malignancy, including cell migration, metastasis and anchorage-independent growth. To further access a physiological role of MALT1-dependent NF-κB activation in EGFR-driven tumor progression, we generated triple-transgenic mouse model (tetO-EGFR(L858R); CCSP-rtTA; Malt1(-/-)), in which mutant EGFR-driven lung cancer was developed in the absence of MALT1 expression. MALT1-deficient mice show significantly less lung tumor burden when compared with its heterozygous controls, suggesting that MALT1 is required for the progression of EGFR-induced lung cancer. Mechanistically, MALT1 deficiency abolished both NF-κB and STAT3 activation in vivo, which is a result of a defect of interleukin-6 production. In comparison, MALT1 deficiency does not affect tumor progression in a mouse model (LSL-K-ras(G12D); CCSP-Cre; Malt1(-/-)) in which lung cancer is induced by expressing a K-ras mutant. Thus, our study has provided the cellular and genetic evidence that suggests MALT1-dependent NF-κB activation is important in EGFR-associated solid-tumor progression.

  8. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer

    PubMed Central

    Saloura, Vassiliki; Vougiouklakis, Theodore; Zewde, Makda; Deng, Xiaolan; Kiyotani, Kazuma; Park, Jae-Hyun; Matsuo, Yo; Lingen, Mark; Suzuki, Takehiro; Dohmae, Naoshi; Hamamoto, Ryuji; Nakamura, Yusuke

    2017-01-01

    While multiple post-translational modifications have been reported to regulate the function of epidermal growth factor receptor (EGFR), the effect of protein methylation on its function has not been well characterized. In this study, we show that WHSC1L1 mono-methylates lysine 721 in the tyrosine kinase domain of EGFR, and that this methylation leads to enhanced activation of its downstream ERK cascade without EGF stimulation. We also show that EGFR K721 mono-methylation not only affects the function of cytoplasmic EGFR, but also that of nuclear EGFR. WHSC1L1-mediated methylation of EGFR in the nucleus enhanced its interaction with PCNA in squamous cell carcinoma of the head and neck (SCCHN) cells and resulted in enhanced DNA synthesis and cell cycle progression. Overall, our study demonstrates the multifaceted oncogenic function of the protein lysine methyltransferase WHSC1L1 in SCCHN, which is mediated through direct non-histone methylation of the EGFR protein with effects both in its cytoplasmic and nuclear functions. PMID:28102297

  9. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro.

    PubMed

    Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi

    2016-11-01

    Induction of PM2.5-associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM2.5, followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM2.5. The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei.

  10. EGFR kinase domain duplication (EGFR-KDD) is a novel oncogenic driver in lung cancer that is clinically responsive to afatinib

    PubMed Central

    Gallant, Jean-Nicolas; Sheehan, Jonathan H.; Shaver, Timothy M.; Bailey, Mark; Lipson, Doron; Chandramohan, Raghu; Brewer, Monica Red; York, Sally J.; Kris, Mark G.; Pietenpol, Jennifer A.; Ladanyi, Marc; Miller, Vincent A.; Ali, Siraj M.; Meiler, Jens; Lovly, Christine M.

    2015-01-01

    Oncogenic EGFR mutations are found in 10-35% of lung adenocarcinomas. Such mutations, which present most commonly as small in-frame deletions in exon 19 or point mutations in exon 21 (L858R), confer sensitivity to EGFR tyrosine kinase inhibitors (TKIs). In analyzing the tumor from a 33-year-old male never smoker, we identified a novel EGFR alteration in lung cancer: EGFR exon 18-25 kinase domain duplication (EGFR-KDD). Through analysis of a larger cohort of tumor samples, we detected additional cases of EGFR-KDD in lung, brain, and other cancers. In vitro, EGFR-KDD is constitutively active, and computational modeling provides potential mechanistic support for its auto-activation. EGFR-KDD-transformed cells are sensitive to EGFR TKIs and, consistent with these in vitro findings, the index patient had a partial response to the EGFR TKI, afatinib. The patient eventually progressed, at which time, re-sequencing revealed an EGFR-dependent mechanism of acquired resistance to afatinib, thereby validating EGFR-KDD as a driver alteration and therapeutic target. PMID:26286086

  11. c-Src/Cav1-dependent activation of the EGFR by Dsg2

    PubMed Central

    Roberts, Brett J.; Cooper, Felicia; Brennan-Crispi, Donna M.; Deguchi, Takahiro; Peltonen, Sirkku; James K., Wahl; Mahoney, M? G.

    2016-01-01

    The desmosomal cadherin, desmoglein 2 (Dsg2), is deregulated in a variety of human cancers including those of the skin. When ectopically expressed in the epidermis of transgenic mice, Dsg2 activates multiple mitogenic signaling pathways and increases susceptibility to tumorigenesis. However, the molecular mechanism responsible for Dsg2-mediated cellular signaling is poorly understood. Here we show overexpression as well as co-localization of Dsg2 and EGFR in cutaneous SCCs in vivo. Using HaCaT keratinocytes, knockdown of Dsg2 decreases EGFR expression and abrogates the activation of EGFR, c-Src and Stat3, but not Erk1/2 or Akt, in response to EGF ligand stimulation. To determine whether Dsg2 mediates signaling through lipid microdomains, sucrose density fractionation illustrated that Dsg2 is recruited to and displaces Cav1, EGFR and c-Src from light density lipid raft fractions. STED imaging confirmed that the presence of Dsg2 disperses Cav1 from the cell-cell borders. Perturbation of lipid rafts with the cholesterol-chelating agent MβCD also shifts Cav1, c-Src and EGFR out of the rafts and activates signaling pathways. Functionally, overexpression of Dsg2 in human SCC A431 cells enhances EGFR activation and increases cell proliferation and migration through a c-Src and EGFR dependent manner. In summary, our data suggest that Dsg2 stimulates cell growth and migration by positively regulating EGFR level and signaling through a c-Src and Cav1-dependent mechanism using lipid rafts as signal modulatory platforms. PMID:26918609

  12. Comparison of outcomes of tyrosine kinase inhibitor in first- or second-line therapy for advanced non-small-cell lung cancer patients with sensitive EGFR mutations.

    PubMed

    Xu, Jianlin; Zhang, Xueyan; Yang, Haitang; Ding, Guozheng; Jin, Bo; Lou, Yuqing; Zhang, Yanwei; Wang, Huimin; Han, Baohui

    2016-10-18

    Direct comparisons between the use of first- and second-line EGFR tyrosine kinase inhibitor (TKI) in patients with sensitive EGFR mutations are limited. A total of 264 advanced non-small-cell lung cancer (NSCLC) patients with sensitive mutations received EGFR TKI therapy as the first-line therapy, and a total of 187 patients received TKI as the second-line therapy at Shanghai Chest Hospital. First-line EGFR TKI therapy [12.9 months, 95% confidence interval (CI), 10.7-15.2] provided longer progression-free survival (PFS) than did second-line EGFR TKI therapy (9.0 months, 95% CI, 7.7-10.2) [hazard ratio (HR): 0.78, P = 0.034]. The objective response rate (ORR) of first-, and second-line TKI therapy were 67.8% (159/233) and 55.6% (94/169), respectively (P = 0.001). The overall survival (OS) for patients (n = 141) receiving first-line TKI followed by second-line chemotherapy were longer than those for patients (n = 187) receiving first-line chemotherapy followed by second-line TKI (HR: 0.69, P = 0.02).Compared with second-line TKI, first-line therapy achieved a significant and longer PFS, and higher ORR in the sensitive EGFR mutated NSCLC patients. The therapeutic strategy of using TKI followed by chemotherapy achieved longer OS than that using chemotherapy followed by TKI.

  13. Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network

    PubMed Central

    Beau-Faller, M.; Prim, N.; Ruppert, A.-M.; Nanni-Metéllus, I.; Lacave, R.; Lacroix, L.; Escande, F.; Lizard, S.; Pretet, J.-L.; Rouquette, I.; de Crémoux, P.; Solassol, J.; de Fraipont, F.; Bièche, I.; Cayre, A.; Favre-Guillevin, E.; Tomasini, P.; Wislez, M.; Besse, B.; Legrain, M.; Voegeli, A.-C.; Baudrin, L.; Morin, F.; Zalcman, G.; Quoix, E.; Blons, H.; Cadranel, J.

    2014-01-01

    Background There is scarce data available about epidermal growth factor receptor (EGFR) mutations other than common exon 19 deletions and exon 21 (L858R) mutations. Patients and methods EGFR exon 18 and/or exon 20 mutations were collected from 10 117 non-small-cell lung cancer (NSCLC) samples analysed at 15 French National Cancer Institute (INCa)-platforms of the ERMETIC-IFCT network. Results Between 2008 and 2011, 1047 (10%) samples were EGFR-mutated, 102 (10%) with rare mutations: 41 (4%) in exon 18, 49 (5%) in exon 20, and 12 (1%) with other EGFR mutations. Exon 20 mutations were related to never-smoker status, when compared with exon 18 mutations (P < 0.001). Median overall survival (OS) of metastatic disease was 21 months [95% confidence interval (CI) 12–24], worse in smokers than in non-smoker patients with exon 20 mutations (12 versus 21 months; hazard ratio [HR] for death 0.27, 95% CI 0.08–0.87, P = 0.03). Under EGFR-tyrosine kinase inhibitors (TKIs), median OS was 14 months (95% CI 6–21); disease control rate was better for complex mutations (6 of 7, 86%) than for single mutations (16 of 40, 40%) (P = 0.03). Conclusions Rare EGFR-mutated NSCLCs are heterogeneous, with resistance of distal exon 20 insertions and better sensitivity of exon 18 or complex mutations to EGFR-TKIs, probably requiring individual assessment. PMID:24285021

  14. Extracellular PKM2 induces cancer proliferation by activating the EGFR signaling pathway

    PubMed Central

    Hsu, Ming-Chuan; Hung, Wen-Chun; Yamaguchi, Hirohito; Lim, Seung-Oe; Liao, Hsin-Wei; Tsai, Chia-Hua; Hung, Mien-Chie

    2016-01-01

    Pyruvate kinase is a key enzyme in the glycolytic pathway that converts phosphoenolpyruvate to pyruvate, and the M2 isoform of pyruvate kinase (PKM2) is associated with cancer. PKM2 has been reported to function independently of its pyruvate kinase activity, which is crucial for cancer cell proliferation. Moreover, there is growing evidence indicating that dimeric PKM2 is released from tumor cells into the circulation of cancer patients. However, the role of secreted PKM2 in cancer is not well understood. Here, we found that the phosphorylation level of epidermal growth factor receptor (EGFR) significantly increased upon the exposure of cells to the recombinant PKM2 protein. In addition, secreted PKM2 induces EGFR phosphorylation and activates the EGFR downstream signaling in triple-negative breast cancer cells. In contrast, knocking down PKM2 decreased EGFR phosphorylation. Moreover, expression of R399E mutant PKM2, which has been reported to preferentially form a dimer, enhanced EGFR phosphorylation, cellular transformation, and cell proliferation more strongly than the wild-type PKM2. Thus, our study revealed a novel function of extracellular PKM2 in the promoting cancer cell proliferation through EGFR activation. PMID:27152240

  15. Assessment of MAGE-A expression in resected non-small cell lung cancer in relation to clinicopathologic features and mutational status of EGFR and KRAS.

    PubMed

    Ayyoub, Maha; Memeo, Lorenzo; Alvarez-Fernández, Emilio; Colarossi, Cristina; Costanzo, Rosario; Aiello, Eleonora; Martinetti, Daniela; Valmori, Danila

    2014-10-01

    Non-small cell lung cancer (NSCLC) is a major public health problem, accounting for more cancer-related deaths than any other cancer. Both immunotherapy, based on the expression of tumor-specific antigens, and targeted therapy, based on the presence of oncogenic mutations, are under development for NSCLC. In this study, we analyzed the expression of MAGE-A, a cancer-testis antigen, in tumors from a cohort of patients with resected NSCLC with respect to their clinicopathologic characteristics and their mutational status for the EGFR and KRAS genes. We found MAGE-A expression by IHC in 43% of the tumors. MAGE-A expression was significantly more frequent in squamous tumors than in adenocarcinomas, did not correlate with disease stage, but was correlated significantly with high tumor grade and worse survival. EGFR and KRAS mutations were present in adenocarcinomas, but not in squamous tumors. Whereas the presence of EGFR mutations did not seem to affect survival, the presence of KRAS mutations was associated with early-stage disease and better survival. MAGE-A expression was absent from adenocarcinomas with KRAS mutations, but not significantly different in tumors with or without EGFR mutations. Together, the reported results provide guidance for the design of combination therapies in patients with NSCLC.

  16. Cortactin promotes colorectal cancer cell proliferation by activating the EGFR-MAPK pathway

    PubMed Central

    Zhang, Tao; Wang, Zhenlei; Qin, Xuan; Jing, Xiaoqian; Wu, Haoxuan; Ji, Xiaopin; He, Yonggang; Zhao, Ren

    2017-01-01

    Cortactin (CTTN) is overexpressed in various tumors, including head and neck squamous cell carcinoma and colorectal cancer (CRC), and can serve as a biomarker of cancer metastasis. We observed that CTTN promotes cancer cell proliferation in vitro and increases CRC tumor xenograft growth in vivo. CTTN expression increases EGFR protein levels and enhances the activation of the MAPK signaling pathway. CTTN expression also inhibits the ubiquitin-mediated degradation of EGFR by suppressing the coupling of c-Cbl with EGFR. CoIP experiments indicate CTTN can interact with c-Cbl in CRC cells. These results demonstrate that CTTN promotes the proliferation of CRC cells and suppresses the degradation of EGFR. PMID:27903975

  17. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation.

    PubMed

    Takezawa, Ken; Pirazzoli, Valentina; Arcila, Maria E; Nebhan, Caroline A; Song, Xiaoling; de Stanchina, Elisa; Ohashi, Kadoaki; Janjigian, Yelena Y; Spitzler, Paula J; Melnick, Mary Ann; Riely, Greg J; Kris, Mark G; Miller, Vincent A; Ladanyi, Marc; Politi, Katerina; Pao, William

    2012-10-01

    EGF receptor (EGFR)-mutant lung cancers eventually become resistant to treatment with EGFR tyrosine kinase inhibitors (TKI). The combination of EGFR-TKI afatinib and anti-EGFR antibody cetuximab can overcome acquired resistance in mouse models and human patients. Because afatinib is also a potent HER2 inhibitor, we investigated the role of HER2 in EGFR-mutant tumor cells. We show in vitro and in vivo that afatinib plus cetuximab significantly inhibits HER2 phosphorylation. HER2 overexpression or knockdown confers resistance or sensitivity, respectively, in all studied cell line models. FISH analysis revealed that HER2 was amplified in 12% of tumors with acquired resistance versus only 1% of untreated lung adenocarcinomas. Notably, HER2 amplification and EGFR(T790M) were mutually exclusive. Collectively, these results reveal a previously unrecognized mechanism of resistance to EGFR-TKIs and provide a rationale to assess the status and possibly target HER2 in EGFR-mutant tumors with acquired resistance to EGFR-TKIs.

  18. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity

    PubMed Central

    Mincione, Gabriella; Di Marcantonio, Maria Carmela; Tarantelli, Chiara; Savino, Luca; Ponti, Donatella; Marchisio, Marco; Lanuti, Paola; Sancilio, Silvia; Calogero, Antonella; Di Pietro, Roberta; Muraro, Raffaella

    2016-01-01

    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling. PMID:27732953

  19. EGFR mutations are associated with higher incidence of distant metastases and smaller tumor size in patients with non-small-cell lung cancer based on PET/CT scan.

    PubMed

    Guan, Jian; Chen, Min; Xiao, Nanjie; Li, Lu; Zhang, Yue; Li, Qinyang; Yang, Mi; Liu, Laiyu; Chen, Longhua

    2016-01-01

    The study aimed to explore the correlation of epidermal growth factor receptor (EGFR) mutation with tumor node metastasis (TNM) stage in patients with non-small-cell lung cancer (NSCLC) who underwent positron emission tomography/computed tomography (PET/CT) scan. Patients diagnosed with NSCLC who underwent EGFR mutation status testing and PET/CT or PET/CT plus brain magnetic resonance imaging scan at initial diagnosis in Nanfang Hospital between July 2010 and June 2014 were consecutively enrolled. The correlation of EGFR mutation status with TNM stage and distant metastasis organs including brain, bone, liver, pleural, adrenals and contralateral lobe of lung were analyzed. A total of 401 patients were enrolled. Tumor size in EGFR mutation group was significantly smaller than the wild-type group (P < 0.001). Further, patients with EGFR mutations were demonstrated significantly more frequent in patients with distant metastasis than non-metastasis (45.7 vs 32.2 %, P = 0.007). The rates of bone (32.2 vs 22.8 %, P = 0.007) and brain (16.3 vs 9.4 %, P = 0.008) metastasis were significantly higher in EGFR mutation group than the wild-type group. In the subgroup of 199 metastatic NSCLC patients, patients with EGFR mutation were significantly associated with a smaller tumor size (P = 0.013) and earlier N stage (P = 0.033). Of note, compared with the EGFR wild-type group, patients had a higher likelihood of developing brain plus bone metastases at initial diagnosis of EGFR mutation group (20.9 vs 7.5 %, P = 0.018). Taken together, we identify that EGFR mutations might associate with more aggressive tumor progression than the wild types in NSCLC. In addition, patients with tumor having EGFR mutation had a smaller tumor size than without mutation.

  20. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  1. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing

    PubMed Central

    Francis, Joshua M.; Zhang, Cheng-Zhong; Maire, Cecile L.; Jung, Joonil; Manzo, Veronica E.; Adalsteinsson, Viktor A.; Homer, Heather; Haidar, Sam; Blumenstiel, Brendan; Pedamallu, Chandra Sekhar; Ligon, Azra H.; Love, J. Christopher; Meyerson, Matthew; Ligon, Keith L.

    2014-01-01

    Glioblastomas with EGFR amplification represent approximately 50% of newly diagnosed cases and recent studies have revealed frequent coexistence of multiple EGFR aberrations within the same tumor with implications for mutation cooperation and treatment resistance. However, bulk tumor sequencing studies cannot resolve the patterns of how the multiple EGFR aberrations coexist with other mutations within single tumor cells. Here we applied a population-based single-cell whole genome sequencing methodology to characterize genomic heterogeneity in EGFR amplified glioblastomas. Our analysis effectively identified clonal events, including a novel translocation of a super enhancer to the TERT promoter, as well as subclonal loss-of-heterozygosity and multiple EGFR mutational variants within tumors. Correlating the EGFR mutations onto the cellular hierarchy revealed that EGFR truncation variants (EGFRvII and EGFR Carboxyl-terminal deletions) identified in the bulk tumor segregate into non-overlapping subclonal populations. In vitro and in vivo functional studies show EGFRvII is oncogenic and sensitive to EGFR inhibitors currently in clinical trials. Thus the association between diverse activating mutations in EGFR and other subclonal mutations within a single tumor supports an intrinsic mechanism for proliferative and clonal diversification with broad implications in resistance to treatment. PMID:24893890

  2. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations.

    PubMed

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao-Ou; Kim, Young-Chul; Bassig, Bryan A; Chang, Jiang; Ho, James Chung Man; Ji, Bu-Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu-Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B; Hutchinson, Amy; Berndt, Sonja I; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J; Lan, Qing

    2016-12-26

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking controls from Asia confirmed associations with eight known single nucleotide polymorphisms (SNPs). Two new signals were observed at genome-wide significance (P < 5 × 10(-8)), namely, rs7216064 (17q24.3, BPTF), for overall lung adenocarcinoma risk, and rs3817963 (6p21.3, BTNL2) which is specific to cases with EGFR mutations. In further sub-analyses by EGFR status, rs9387478 (ROS1/DCBLD1) and rs2179920 (HLA-DPB1) showed stronger estimated associations in EGFR-positive compared to EGFR-negative cases. Comparison of the overall associations with published results in Western populations revealed that the majority of these findings were distinct, underscoring the importance of distinct contributing factors for smoking and non-smoking lung cancer. Our results extend the catalogue of regions associated with lung adenocarcinoma in non-smoking Asian women and highlight the importance of how the germline could inform risk for specific tumour mutation patterns, which could have important translational implications.

  3. [Response of Erlotinib in Lung Adenocarcinoma Harboring EGFR Sensitive Mutation in Cerebrospinal Fluid: Case Report].

    PubMed

    Li, Xiaoyan; Yang, Hui; Xu, Huayan; Wang, Shasha; Gao, Hongjun

    2016-01-01

    背景与目的 脑是非小细胞肺癌(non-small cell lung cancer, NSCLC)常见的转移部位。有研究显示表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitors, EGFR-TKI)可透过血脑屏障,发挥抗肿瘤作用。本例报道采用突变扩增阻滞系统(amplification refractory mutation system, ARMS)检测脑脊液EGFR突变指导临床治疗的可行性,并分析TKI治疗肺癌脑转移的疗效和安全性。方法 腰穿取得脑脊液标本,检测颅内压力,检验常规、生化及肿瘤标志物,查找脱落细胞,采用ARMS法检测EGFR基因突变,得到阳性结果后给予盐酸厄洛替尼(erlotinib,tarceva,特罗凯)治疗,150 mg,每天1次。按照实体瘤疗效评价标准1.1版(Response Evaluation Criteriation in Solid Tumours, RECIST v1.1)评价客观疗效,按照不良反应通用术语标准4.0版(Common Terminology Criteria for Adverse Events v4.0, CTC AE v4.0)评估用药期间发生的不良事件。结果 该患者多线治疗后,颅内病灶控制欠佳,脑脊液中发现异型细胞,EGFR基因19外显子缺失突变,服用厄洛替尼4周后,颅内客观疗效为部分缓解(partial response, PR),颅外客观疗效为疾病稳定(stable disease, SD),颅内无进展生存期(progression-free survival, PFS)10.5个月,总生存期(overall survival, OS)11个月。主要不良反应为皮疹(1级)。结论 脑脊液检测EGFR突变可为制定治疗策略提供理论支持,根据不同的突变状态给予小分子靶向药物联合化疗,可分别控制颅内及颅外病灶。.

  4. MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition

    PubMed Central

    Owen, William; Weitsman, Gregory; Fruhwirth, Gilbert; Dunn, Robert G.; Neat, Michael J.; McCaughan, Frank; Parker, Peter; Ng, Tony; Santis, George

    2017-01-01

    Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common. Preclinical data suggest synergy between MET and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response to MET inhibition, depending on EGFR mutation status, independently of MET copy number. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which co-express L858R and T790M EGFR mutations, namely H1975L858R/T790M (EGFR TKI resistant); H1975L858R (sensitized) and H1975WT (wild-type). We assessed cell proliferation in vitro and tumor growth/stroma formation in derived xenograft models in response to a MET TKI (SGX523) and correlated with EGFR-MET dimerization assessed by Förster Resonance Energy Transfer (FRET). SGX523 significantly reduced H1975L858R/T790M cell proliferation, xenograft tumor growth and decreased ERK phosphorylation. The same was not seen in H1975L858R or H1975WT cells. SGX523 only reduced stroma formation in H1975L858R. SGX523 reduced EGFR-MET dimerization in H1975L858R/T790M but induced dimer formation in H1975L858R with no effect in H1975WT. Our data suggests that MET inhibition by SGX523 and EGFR-MET heterodimerisation are determined by EGFR genotype. As tumor behaviour is modulated by this interaction, this could determine treatment efficacy. PMID:28141869

  5. Activation of sperm EGFR by light irradiation is mediated by reactive oxygen species.

    PubMed

    Shahar, Shiran; Hillman, Pnina; Lubart, Rachel; Ickowicz, Debby; Breitbart, Haim

    2014-01-01

    To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive-oxygen-species (ROS), Ca(2+) influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS-dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS-mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS-dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin-severing protein, gelsolin, and causes actin-depolymerization in human sperm. Light-stimulated tyrosine phosphorylation of Src-dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src-mediated actin polymerization. Light-stimulated HAM and in vitro-fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM.

  6. EGFR Activation Increases Parathyroid Hyperplasia and Calcitriol Resistance in Kidney Disease

    PubMed Central

    Arcidiacono, Maria Vittoria; Sato, Tetsuhiko; Alvarez-Hernandez, Daniel; Yang, Jing; Tokumoto, Masanori; Gonzalez-Suarez, Ignacio; Lu, Yan; Tominaga, Yoshihiro; Cannata-Andia, Jorge; Slatopolsky, Eduardo; Dusso, Adriana S.

    2008-01-01

    Calcitriol, acting through vitamin D receptors (VDR) in the parathyroid, suppresses parathyroid hormone synthesis and cell proliferation. In secondary hyperparathyroidism (SH), VDR content is reduced as hyperplasia becomes more severe, limiting the efficacy of calcitriol. In a rat model of SH, activation of the EGF receptor (EGFR) by TGF-α is required for the development of parathyroid hyperplasia, but the relationship between EGFR activation and reduced VDR content is unknown. With the use of the same rat model, it was found that pharmacologic inhibition of EGFR activation with erlotinib prevented the upregulation of parathyroid TGF-α, the progression of growth, and the reduction of VDR. Increased TGF-α/EGFR activation induced the synthesis of liver-enriched inhibitory protein, a potent mitogen and the dominant negative isoform of the transcription factor CCAAT enhancer binding protein-β, in human hyperplastic parathyroid glands and in the human epidermoid carcinoma cell line A431, which mimics hyperplastic parathyroid cells. Increases in liver-enriched inhibitory protein directly correlated with proliferating activity and, in A431 cells, reduced VDR expression by antagonizing CCAAT enhancer binding protein-β transactivation of the VDR gene. Similarly, in nodular hyperplasia, which is the most severe form of SH and the most resistant to calcitriol therapy, higher TGF-α activation of the EGFR was associated with an 80% reduction in VDR mRNA levels. Thus, in SH, EGFR activation is the cause of both hyperplastic growth and VDR reduction and therefore influences the efficacy of therapy with calcitriol. PMID:18216322

  7. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    SciTech Connect

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.

  8. Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling

    PubMed Central

    Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944

  9. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent anti-tumor activity

    PubMed Central

    Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.

    2015-01-01

    Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164

  10. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas

    PubMed Central

    Elkabets, Moshe; Pazarentzos, Evangelos; Juric, Dejan; Sheng, Qing; Pelossof, Raphael A.; Brook, Samuel; Benzaken, Ana Oaknin; Rodon, Jordi; Morse, Natasha; Yan, Jenny Jiacheng; Liu, Manway; Das, Rita; Chen, Yan; Tam, Angela; Wang, Huiqin; Liang, Jinsheng; Gurski, Joseph M.; Kerr, Darcy A.; Rosell, Rafael; Teixidó, Cristina; Huang, Alan; Ghossein, Ronald A.; Rosen, Neal; Bivona, Trever G.; Scaltriti, Maurizio; Baselga, José

    2015-01-01

    Summary Phosphoinositide-3-kinase (PI3K)-α inhibitors have shown clinical activity in squamous carcinoma (SCC) of head and neck (H&N) bearing PIK3CA mutations or amplification. Studying models of therapeutic resistance we have observed that SCCs cells that become refractory to PI3Kα inhibition maintain PI3K-independent activation of the mammalian target of rapamycin (mTOR). This persistent mTOR activation is mediated by the tyrosine kinase receptor AXL. AXL is overexpressed in resistant tumors from both laboratory models and patients treated with the PI3Kα inhibitor BYL719. AXL dimerizes with and phosphorylates epidermal growth factor receptor (EGFR), resulting in activation of phospholipase Cγ (PLCγ)- protein kinase C (PKC), which in turn activates mTOR. Combined treatment with PI3Kα and either EGFR, AXL, or PKC inhibitors reverts this resistance. PMID:25873175

  11. Exploring the impact of EGFR T790M neighboring SNPs on ARMS-based T790M mutation assay

    PubMed Central

    Xu, Sanpeng; Duan, Yaqi; Lou, Liping; Tang, Fengjuan; Shou, Juan; Wang, Guoping

    2016-01-01

    The present study aimed to explore the influence of T790M neighboring single nucleotide polymorphism (SNP) on the sensitivity of amplification refractory mutation system (ARMS)-based T790M mutation assay. Three ARMS-quantitative polymerase chain reaction (qPCR) systems (system 1 had a forward ARMS primer without rs1050171, system 2 included a forward ARMS primer with rs1050171 and system 3 contained the above two forward ARMS primers) were used to detect the T790M mutation in two series plasmid samples and genomic DNA (gDNA) of the cell line H1975. A total of 670 formalin-fixed paraffin-embedded (FFPE) tumor samples from non-small cell lung cancer patients were used to detect the epidermal growth factor receptor (EGFR) gene T790M mutation by direct sequencing and ARMS-qPCR. The ARMS-qPCR system 1 effectively detected samples with as low as 1% T790M mutant plasmid 1 (without rs1050171) and with 50% T790M mutant plasmid 2 (with rs1050171), while the ARMS-qPCR system 2 detected samples with 20 and 50% T790M mutant plasmid 1, in addition to samples with 1% T790M mutant plasmid 2. For the ARMS-qPCR system 3, samples with as low as 1% T790M mutant plasmids 1 or 2 were effectively detected. For gDNA analysis of the cell line H1975, the T790M mutation was effectively detected by the ARMS-qPCR systems 2 and 3 (~50% mutation rate), but was detected with a low mutation abundance by the ARMS-qPCR system 1 (~1% mutation rate). Of the 670 FFPE samples, 5 cases were identified to have the T790M mutation by sequencing and by the ARMS-qPCR system 1. One sample (named N067), which was considered as T790M-negative by sequencing, was demonstrated to have the T790M mutation using the ARMS-qPCR system 1. Sample N094, which was variant homozygous for rs1050171 and was indicated to be T790M-negative by sequencing and by the ARMS-qPCR system 1, was identified to have the T790M mutation with the ARMS-qPCR system 3. The A-variant allele frequency of rs1050171 was observed to be 28.2% in the

  12. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer

    PubMed Central

    Guerrab, Abderrahim El; Bamdad, Mahchid; Kwiatkowski, Fabrice; Aubel, Corinne

    2016-01-01

    Triple-negative breast cancer (TNBC) is characterized by overexpression of epidermal growth factor receptor (EGFR) and activation of its downstream signaling pathways. Dual targeting of EGFR using one monoclonal antibody (mAb; cetuximab or panitumumab) and one tyrosine kinase inhibitor (EGFR-TKI; gefitinib or erlotinib) is a potential therapeutic approach. We investigated the effect of these therapies in EGFR-expressing TNBC cell lines that do or do not harbor the main activating mutations of EGFR pathways. Cell lines were sensitive to EGFR-TKIs, whereas mAbs were active only in MDA-MB-468 (EGFR amplification) and SUM-1315 (KRAS and PTEN wild-type) cells. MDA-MB-231 (KRAS mutated) and HCC-1937 (PTEN deletion) cells were resistant to mAbs. The combined treatment resulted in a synergistic effect on cell proliferation and superior inhibition of the RAS/MAPK signaling pathway in mAb-sensitive cells. The anti-proliferative effect was associated with G1 cell cycle arrest followed by apoptosis. Sensitivity to therapies was characterized by induction of positive regulators and inactivation of negative regulators of cell cycle. These results suggest that dual EGFR inhibition might result in an enhanced antitumor effect in a subgroup of TNBC. The status of EGFR, KRAS and PTEN could be used as a molecular marker for predicting the response to this therapeutic strategy. PMID:27655662

  13. GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity.

    PubMed

    Lin, Tzu-Chi; Chen, Syue-Ting; Huang, Min-Chuan; Huang, John; Hsu, Chia-Lang; Juan, Hsueh-Fen; Lin, Ho-Hsiung; Chen, Chi-Hau

    2017-03-28

    Ovarian cancer is the most lethal of the gynecologic malignancies. N-acetylgalactosaminyltransferase 6 (GALNT6), an enzyme that mediates the initial step of mucin type-O glycosylation, has been reported to regulate mammary carcinogenesis. However, the expression and role of GALNT6 in ovarian cancer are still unclear. Here we showed that high GALNT6 expression correlates with increased recurrence, lymph node metastasis, and chemoresistance in ovarian endometrioid and clear cell carcinomas; and higher GALNT6 levels are significantly associated with poorer patient survivals. GALNT6 knockdown with two independent siRNAs significantly suppressed viability, migration, and invasion of ovarian cancer cells. Using phospho-RTK array and Western blot analyses, we identified EGFR as a critical target of GALNT6. GALNT6 knockdown decreased phosphorylation of EGFR, whereas GALNT6 overexpression increased the phosphorylation. Lectin pull-down assays with Vicia villosa agglutinin (VVA) indicated that GALNT6 was able to modify O-glycans on EGFR. Moreover, the GALNT6-enhanced invasive behavior was significantly reversed by erlotinib, an EGFR inhibitor. Our results suggest that GALNT6 expression is associated with poor prognosis of ovarian cancer and enhances the aggressive behavior of ovarian cancer cells by regulating EGFR activity.

  14. Efficacy of Second-line Tyrosine Kinase Inhibitors in the Treatment of Metastatic Advanced Non-small-cell Lung Cancer Harboring Exon 19 and 21 EGFR Mutations

    PubMed Central

    Zheng, Zhen; Jin, Xiance; Lin, Baochai; Su, Huafang; Chen, Hanbin; Fei, Shaoran; Zhao, Lihao; Deng, Xia; Xie, Deyao; Xie, Congying

    2017-01-01

    Background: Although superior clinical benefits of first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of advanced non-small-cell lung cancer (NSCLC) had been reported with different sensitivity, the sensitivity of second-line TKIs in NSCLC patients with different EFGR mutations was unknown. The purpose of this study is to investigate the clinical outcome of second-line EGFR-TKIs in the treatment of NSCLC patients according to different EGFR genotypes. Methods: The treatment outcomes of 166 NSCLC patients with different EGFR mutations treated by second-line TKIs were retrospectively reviewed. The efficacy was evaluated with Pearson chi-square or Fisher's exact tests, Log-rank test and Cox proportional hazards model. Results: The disease control rate (DCR) and objective response rate (ORR) of enrolled NSCLC patients were 77.7% and 11.4%, respectively. The exon 19 deletion group had a significantly longer median progression-free survival (PFS) (6.7 vs. 4.5 months, P=0.002) and overall survival (OS) (13.7 vs. 11.7 months, P=0.02) compared with the exon 19 L858R mutation group for NSCLC patients, as well for patients with brain metastasis [PFS: (6.7 vs. 3.9 months, p<0.001), OS: (13.7 vs. 7.9 months, p=0.006)]. No significant difference on PFS and OS was observed between exon 19 deletion and L858R mutation group for patients with bone metastasis. EGFR genotype and ECOG PS were independent predictors of PFS. Never smoking, exon 19 deletion, EGOC PS (0-1) and no brain metastasis were correlated with longer OS. No significant difference on side effect between exon 19 and 21 mutation group was observed. Conclusions: NSCLC patients harboring exon 19 deletion achieved better PFS and OS than those with L858R mutation, indicating that EGFR mutation is a significant prognostic factor for advanced NSCLC patients with and without brain metastasis receiving second-line EGFR-TKIs treatment. PMID:28367239

  15. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells.

    PubMed

    Grugan, Katharine D; Dorn, Keri; Jarantow, Stephen W; Bushey, Barbara S; Pardinas, Jose R; Laquerre, Sylvie; Moores, Sheri L; Chiu, Mark L

    2017-01-01

    Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.

  16. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells

    PubMed Central

    Grugan, Katharine D.; Dorn, Keri; Bushey, Barbara S.; Pardinas, Jose R.; Laquerre, Sylvie; Moores, Sheri L.; Chiu, Mark L.

    2017-01-01

    ABSTRACT Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients. PMID:27786612

  17. Economic Evaluation of Companion Diagnostic Testing for EGFR Mutations and First-Line Targeted Therapy in Advanced Non-Small Cell Lung Cancer Patients in South Korea

    PubMed Central

    Lim, Eun-A; Bae, Eunmi; Lim, Jaeok; Shin, Young Kee; Choi, Sang-Eun

    2016-01-01

    Background As targeted therapy becomes increasingly important, diagnostic techniques for identifying targeted biomarkers have also become an emerging issue. The study aims to evaluate the cost-effectiveness of treating patients as guided by epidermal growth factor receptor (EGFR) mutation status compared with a no-testing strategy that is the current clinical practice in South Korea. Methods A cost-utility analysis was conducted to compare an EGFR mutation testing strategy with a no-testing strategy from the Korean healthcare payer’s perspective. The study population consisted of patients with stage 3b and 4 lung adenocarcinoma. A decision tree model was employed to select the appropriate treatment regimen according to the results of EGFR mutation testing and a Markov model was constructed to simulate disease progression of advanced non-small cell lung cancer. The length of a Markov cycle was one month, and the time horizon was five years (60 cycles). Results In the base case analysis, the testing strategy was a dominant option. Quality-adjusted life-years gained (QALYs) were 0.556 and 0.635, and total costs were $23,952 USD and $23,334 USD in the no-testing and testing strategy respectively. The sensitivity analyses showed overall robust results. The incremental cost-effectiveness ratios (ICERs) increased when the number of patients to be treated with erlotinib increased, due to the high cost of erlotinib. Conclusion Treating advanced adenocarcinoma based on EGFR mutation status has beneficial effects and saves the cost compared to no testing strategy in South Korea. However, the cost-effectiveness of EGFR mutation testing was heavily affected by the cost-effectiveness of the targeted therapy. PMID:27483001

  18. Mechanisms of resistance to EGFR-targeted drugs: lung cancer.

    PubMed

    Morgillo, Floriana; Della Corte, Carminia Maria; Fasano, Morena; Ciardiello, Fortunato

    2016-01-01

    Despite the improvement in clinical outcomes derived by the introduction of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of patients with advanced non-small cell lung cancer (NSCLC) whose tumours harbour EGFR-activating mutations, prognosis remains unfavourable because of the occurrence of either intrinsic or acquired resistance. We reviewed the published literature and abstracts of oral and poster presentations from international conferences addressing EGFR-TKIs resistance mechanisms discovered in preclinical models and in patients with NSCLC. The molecular heterogeneity of lung cancer has several implications in terms of possible mechanisms of either intrinsic or acquired resistance to EGFR-targeted inhibitors. Several mechanisms of resistance have been described to EGFR-TKIs, such as the occurrence of secondary mutation (T790M, C797S), the activation of alternative signalling (Met, HGF, AXL, Hh, IGF-1R), the aberrance of the downstream pathways (AKT mutations, loss of PTEN), the impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism) and histological transformation. Although some of the mechanisms of resistance have been identified, much additional information is needed to understand and overcome resistance to EGFR-TKI agents. The majority of resistance mechanisms described are the result of a selection of pre-existing clones; thus, studies on the mechanisms by which subclonal alterations have an impact on tumour biology and influence cancer progression are extremely important in order to define the best treatment strategy.

  19. Diet-derived 25-hydroxyvitamin D3 activates vitamin D receptor target gene expression and suppresses EGFR mutant non-small cell lung cancer growth in vitro and in vivo

    PubMed Central

    Verone-Boyle, Alissa R.; Shoemaker, Suzanne; Attwood, Kristopher; Morrison, Carl D.; Makowski, Andrew J.; Battaglia, Sebastiano; Hershberger, Pamela A.

    2016-01-01

    Epidemiologic studies implicate vitamin D status as a factor that influences growth of EGFR mutant lung cancers. However, laboratory based evidence of the biological effect of vitamin D in this disease is lacking. To fill this knowledge gap, we determined vitamin D receptor (VDR) expression in human lung tumors using a tissue microarray constructed of lung cancer cases from never-smokers (where EGFR gene mutations are prevalent). Nuclear VDR was detected in 19/19 EGFR mutant tumors. Expression tended to be higher in tumors with EGFR exon 19 deletions than those with EGFR L858R mutations. To study anti-proliferative activity and signaling, EGFR mutant lung cancer cells were treated with the circulating metabolite of vitamin D, 25-hydroxyvitamin D3 (25D3). 25D3 inhibited clonogenic growth in a dose-dependent manner. CYP27B1 encodes the 1α-hydroxylase (1αOHase) that converts 25D3 to the active metabolite, 1,25-dihydroxyvitamin D3 (1,25D3). Studies employing VDR siRNA, CYP27B1 zinc finger nucleases, and pharmacologic inhibitors of the vitamin D pathway indicate that 25D3 regulates gene expression in a VDR-dependent manner but does not strictly require 1αOHase-mediated conversion of 25D3 to 1,25D3. To determine the effects of modulating serum 25D3 levels on growth of EGFR mutant lung tumor xenografts, mice were fed diets containing 100 or 10,000 IU vitamin D3/kg. High dietary vitamin D3 intake resulted in elevated serum 25D3 and significant inhibition of tumor growth. No toxic effects of supplementation were observed. These results identify EGFR mutant lung cancer as a vitamin D-responsive disease and diet-derived 25D3 as a direct VDR agonist and therapeutic agent. PMID:26654942

  20. EGFR Exon-Level Biomarkers of the Response to Bevacizumab/Erlotinib in Non-Small Cell Lung Cancer

    PubMed Central

    Baty, Florent; Rothschild, Sacha; Früh, Martin; Betticher, Daniel; Dröge, Cornelia; Cathomas, Richard; Rauch, Daniel; Gautschi, Oliver; Bubendorf, Lukas; Crowe, Susanne; Zappa, Francesco; Pless, Miklos; Brutsche, Martin

    2013-01-01

    Activating epidermal growth factor receptor (EGFR) mutations are recognized biomarkers for patients with metastatic non-small cell lung cancer (NSCLC) treated with EGFR tyrosine kinase inhibitors (TKIs). EGFR TKIs can also have activity against NSCLC without EGFR mutations, requiring the identification of additional relevant biomarkers. Previous studies on tumor EGFR protein levels and EGFR gene copy number revealed inconsistent results. The aim of the study was to identify novel biomarkers of the response to TKIs in NSCLC by investigating whole genome expression at the exon-level. We used exon arrays and clinical samples from a previous trial (SAKK19/05) to investigate the expression variations at the exon-level of 3 genes potentially playing a key role in modulating treatment response: EGFR, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and vascular endothelial growth factor (VEGFA). We identified the expression of EGFR exon 18 as a new predictive marker for patients with untreated metastatic NSCLC treated with bevacizumab and erlotinib in the first line setting. The overexpression of EGFR exon 18 in tumor was significantly associated with tumor shrinkage, independently of EGFR mutation status. A similar significant association could be found in blood samples. In conclusion, exonic EGFR expression particularly in exon 18 was found to be a relevant predictive biomarker for response to bevacizumab and erlotinib. Based on these results, we propose a new model of EGFR testing in tumor and blood. PMID:24039832

  1. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    SciTech Connect

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  2. Unravelling the pivotal role of Alix in MVB sorting and silencing of the activated EGFR.

    PubMed

    Sun, Sheng; Zhou, Xi; Zhang, Wei; Gallick, Gary E; Kuang, Jian

    2015-03-15

    Endosomal sorting complex required for transport (ESCRT)-III-mediated membrane invagination and scission are a critical step in multivesicular body (MVB) sorting of ubiquitinated membrane receptors, and generally thought to be required for degradation of these receptors in lysosomes. The adaptor protein Alix is critically involved in multiple ESCRT-III-mediated, membrane-remodelling processes in mammalian cells. However, Alix knockdown does not inhibit degradation of the activated epidermal growth factor receptor (EGFR) in mammalian cell lines, leading to a widely held notion that Alix is not critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells. In the present study, we demonstrate that, despite its non-essential role in degradation of the activated EGFR, Alix plays a critical role in its MVB sorting and silencing Epidermal growth factor (EGF) stimulation of mammalian cell lines induces Alix's interaction with the ubiquitinated EGFR via the Alix V domain, and increases Alix's association with membrane-bound charged multivesicular body protein 4 (CHMP4) via the Alix Bro1 domain. Under both continuous and pulse-chase EGF stimulation conditions, inhibition of Alix's interaction with membrane-bound CHMP4, inhibition of Alix dimerization through the V domain or Alix knockdown dramatically inhibits MVB sorting of the activated EGFR and promotes sustained activation of extracellular-signal regulated kinase (ERK)1/2. Under the continuous EGF stimulation conditions, these cell treatments also retard degradation of the activated EGFR. These findings indicate that Alix is critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells.

  3. Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation.

    PubMed

    Michailov, Yulia; Ickowicz, Debbi; Breitbart, Haim

    2014-12-15

    Extracellular zinc regulates cell proliferation via the MAP1 kinase pathway in several cell types, and has been shown to act as a signaling molecule. The testis contains a relatively high concentration of Zn(2+), required in both the early and late stages of spermatogenesis. Despite the clinical significance of this ion, its role in mature sperm cells is poorly understood. In this study, we characterized the role of Zn(2+) in sperm capacitation and in the acrosome reaction. Western blot analysis revealed the presence of ZnR of the GPR39 type in sperm cells. We previously demonstrated the presence of active epidermal growth factor receptor (EGFR) in sperm, its possible transactivation by direct activation of G-protein coupled receptor (GPCR), and its involvement in sperm capacitation and in the acrosome reaction (AR). We show here that Zn(2+) activates the EGFR during sperm capacitation, which is mediated by activation of trans-membrane adenylyl cyclase (tmAC), protein kinase A (PKA), and the tyrosine kinase, Src. Moreover, the addition of Zn(2+) to capacitated sperm caused further stimulation of EGFR and phosphatydil-inositol-3-kinase (PI3K) phosphorylation, leading to the AR. The stimulation of the AR by Zn(2+) also occurred in the absence of Ca(2+) in the incubation medium, and required the tmAC, indicating that Zn(2+) activates a GPCR. The AR stimulated by Zn(2+) is mediated by GPR39 receptor, PKA, Src and the EGFR, as well as the EGFR down-stream effectors PI3K, phospholipase C (PLC) and protein kinase C (PKC). These data support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways in sperm capacitation and the acrosome reaction.

  4. Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma

    PubMed Central

    Bossi, Paolo; Resteghini, Carlo; Paielli, Nicholas; Licitra, Lisa; Pilotti, Silvana; Perrone, Federica

    2016-01-01

    EGFR is an extensively studied biomarker in head and neck squamous cell carcinoma (HNSCC). In this review, we discuss the prognostic and predictive role of EGFR in HNSCC, focusing on the different molecular alterations in specific treatment modalities such as radiotherapy alone (RT), combination of surgery, RT and chemotherapy (CT), EGFR inhibitors. We considered EGFR at different molecular levels: protein expression, protein activation, gene copy number, polymorphisms, mutation, EGFRvIII expression and EGFR ligand expression. Considering RT alone, evidence supports the predictive and prognostic role of high EGFR expression only when evaluated by quantitative assays: this may help select the patients who can mostly benefit from accelerated treatment. Conversely, no predictive biomarkers are available when treatment is a combination of surgery, CT and RT. For this combined treatment, several studies indicate that EGFR expression represents a good prognostic parameter only when measured by a “quantitative” or at least semi-quantitative method. With respect to EGFR inhibitors, neither EGFR expression nor increased gene copy number represent prognostic/predictive factors. If validated, nuclear EGFR, TGFα levels, EGFR phopshorylation and polymorphisms could represent additional prognostic factors in relation to combination of surgery, CT and RT, while EGFR polymorphisms and high amphiregulin levels could have prognostic value in patients treated with EGFR inhibitors. PMID:27556186

  5. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    SciTech Connect

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of

  6. The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells.

    PubMed

    Huang, Kai; Yang, Chao; Wang, Qi-Xue; Li, Yan-Sheng; Fang, Chuan; Tan, Yan-Li; Wei, Jian-Wei; Wang, Yun-Fei; Li, Xin; Zhou, Jun-Hu; Zhou, Bing-Cong; Yi, Kai-Kai; Zhang, Kai-Liang; Li, Jie; Kang, Chun-Sheng

    2017-03-01

    Worldwide, glioblastoma (GBM) is the most lethal and frequent intracranial tumor. Despite decades of study, the overall survival of GBM patients remains unchanged. epidermal growth factor receptor (EGFR) amplification and gene mutation are thought to be negatively correlated with prognosis. In this study, we used proteomics to determine that UBXN1 is a negative downstream regulator of the EGFR mutation vIII (EGFRvIII). Via bioinformatics analysis, we found that UBXN1 is a factor that can improve glioma patients' overall survival time. We also determined that the down-regulation of UBXN1 is mediated by the upregulation of H3K27me3 in the presence of EGFRvIII. Because NF-κB can be negatively regulated by UBXN1, we believe that EGFRwt/vIII activates NF-κB by suppressing UBXN1 expression. Importantly, we used the latest genomic editing tool, CRISPR/Cas9, to knockout EGFRwt/vIII on exon 17 and further proved that UBXN1 is negatively regulated by EGFRwt/vIII. Furthermore, knockout of EGFR/EGFRvIII could benefit GBM in vitro and in vivo, indicating that CRISPR/Cas9 is a promising therapeutic strategy for both EGFR amplification and EGFR mutation-bearing patients.

  7. EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer.

    PubMed

    Choi, S H; Mendrola, J M; Lemmon, M A

    2007-03-08

    Several somatic mutations within the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have been identified that predict clinical response of non-small-cell lung carcinoma (NSCLC) patients to gefitinib. To test the hypothesis that these mutations cause constitutive EGF receptor signaling, and to investigate its mechanistic basis, we expressed representative examples in a null background and analysed their biochemical properties. Each mutation caused significant EGF-independent tyrosine phosphorylation of EGFR, and allowed the receptor to promote Ba/F3 cell mitogenesis in the absence of EGF, arguing that these are oncogenic mutations. Active mutated receptors are present at the cell surface and are fully competent to bind EGF. Recent structural studies show that the inactive EGFR tyrosine kinase domain is autoinhibited by intramolecular interactions between its activation loop and alphaC helix. We find that mutations predicted to disrupt this autoinhibitory interaction (including several that have not been described in NSCLC) elevate EGF-independent tyrosine kinase activity, thus providing new insight into how somatic mutations activate EGFR and other ErbB family members.

  8. Hepassocin activates the EGFR/ERK cascade and induces proliferation of L02 cells through the Src-dependent pathway.

    PubMed

    Gao, Ming; Zhan, Yi-Qun; Yu, Miao; Ge, Chang-Hui; Li, Chang-Yan; Zhang, Jian-Hong; Wang, Xiao-Hui; Ge, Zhi-Qiang; Yang, Xiao-Ming

    2014-10-01

    Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.

  9. The International Association for the Study of Lung Cancer Consensus Statement on Optimizing Management of EGFR Mutation-Positive Non-Small Cell Lung Cancer: Status in 2016.

    PubMed

    Tan, Daniel S W; Yom, Sue S; Tsao, Ming S; Pass, Harvey I; Kelly, Karen; Peled, Nir; Yung, Rex C; Wistuba, Ignacio I; Yatabe, Yasushi; Unger, Michael; Mack, Philip C; Wynes, Murry W; Mitsudomi, Tetsuya; Weder, Walter; Yankelevitz, David; Herbst, Roy S; Gandara, David R; Carbone, David P; Bunn, Paul A; Mok, Tony S K; Hirsch, Fred R

    2016-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) represent one of the most frequent "actionable" alterations in non-small cell lung cancer (NSCLC). Typified by high response rates to targeted therapies, EGFR tyrosine kinase inhibitors (TKIs) are now established first-line treatment options and have transformed the treatment paradigm for NSCLC. With the recent breakthrough designation and approval of the third-generation EGFR TKI osimertinib, available systemic and local treatment options have expanded, requiring new clinical algorithms that take into account individual patient molecular and clinical profiles. In this International Association for the Study of Lung Cancer commissioned consensus statement, key pathologic, diagnostic, and therapeutic considerations, such as optimal choice of EGFR TKI and management of brain metastasis, are discussed. In addition, recommendations are made for clinical guidelines and research priorities, such as the role of repeat biopsies and use of circulating free DNA for molecular studies. With the rapid pace of progress in treating EGFR-mutant NSCLC, this statement provides a state-of-the-art review of the contemporary issues in managing this unique subgroup of patients.

  10. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    PubMed

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  11. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma

    PubMed Central

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  12. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab

    PubMed Central

    Brand, Toni M; Iida, Mari

    2011-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase belonging to the HER family of receptor tyrosine kinases. Receptor activation upon ligand binding leads to down stream activation of the PI3K/AKT, RAS/RAF/MEK/ERK and PLCγ/PKC pathways that influence cell proliferation, survival and the metastatic potential of tumor cells. Increased activation by gene amplification, protein overexpression or mutations of the EGFR has been identified as an etiological factor in a number of human epithelial cancers (e.g., NSCLC, CRC, glioblastoma and breast cancer). Therefore, targeting the EGFR has been intensely pursued as a cancer treatment strategy over the last two decades. To date, five EGFR inhibitors, including three small molecule tyrosine kinase inhibitors (TKIs) and two monoclonal antibodies have gained FDA approval for use in oncology. Both approaches to targeting the EGFR have shown clinical promise and the anti-EGFR antibody cetuximab is used to treat HNSCC and CRC. Despite clinical gains arising from use of cetuximab, both intrinsic resistance and the development of acquired resistance are now well recognized. In this review we focus on the biology of the EGFR, the role of EGFR in human cancer, the development of antibody-based anti-EGFR therapies and a summary of their clinical successes. Further, we provide an in depth discussion of described molecular mechanisms of resistance to cetuximab and potential strategies to circumvent this resistance. PMID:21293176

  13. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab.

    PubMed

    Brand, Toni M; Iida, Mari; Wheeler, Deric L

    2011-05-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase belonging to the HER family of receptor tyrosine kinases. Receptor activation upon ligand binding leads to down stream activation of the PI3K/AKT, RAS/RAF/MEK/ERK and PLCγ/PKC pathways that influence cell proliferation, survival and the metastatic potential of tumor cells. Increased activation by gene amplification, protein overexpression or mutations of the EGFR has been identified as an etiological factor in a number of human epithelial cancers (e.g., NSCLC, CRC, glioblastoma and breast cancer). Therefore, targeting the EGFR has been intensely pursued as a cancer treatment strategy over the last two decades. To date, five EGFR inhibitors, including three small molecule tyrosine kinase inhibitors (TKIs) and two monoclonal antibodies have gained FDA approval for use in oncology. Both approaches to targeting the EGFR have shown clinical promise and the anti-EGFR antibody cetuximab is used to treat HNSCC and CRC. Despite clinical gains arising from use of cetuximab, both intrinsic resistance and the development of acquired resistance are now well recognized. In this review we focus on the biology of the EGFR, the role of EGFR in human cancer, the development of antibody-based anti-EGFR therapies and a summary of their clinical successes. Further, we provide an in depth discussion of described molecular mechanisms of resistance to cetuximab and potential strategies to circumvent this resistance.

  14. Correlation of immunohistochemical staining p63 and TTF-1 with EGFR and K-ras mutational spectrum and diagnostic reproducibility in non small cell lung carcinoma.

    PubMed

    Thunnissen, Erik; Boers, Evan; Heideman, Daniëlle A M; Grünberg, Katrien; Kuik, Dirk J; Noorduin, Arnold; van Oosterhout, Matthijs; Pronk, Divera; Seldenrijk, Cees; Sietsma, Hannie; Smit, Egbert F; van Suylen, Robertjan; von der Thusen, Jan; Vrugt, Bart; Wiersma, Anne; Witte, Birgit I; den Bakker, Michael

    2012-12-01

    For treatment purposes, distinction between squamous cell carcinoma and adenocarcinoma is important. The aim of this study is to examine the diagnostic accuracy on lung cancer small biopsies for the distinction between adenocarcinoma and squamous cell carcinoma and relate these to immunohistochemical and KRAS and EGFR mutation analysis. An interobserver study was performed on 110 prospectively collected biopsies obtained by bronchoscopy or transthoracic needle biopsy of patients with non-small cell lung cancer. The diagnosis was correlated with immunohistochemical (IHC) analysis for markers of adeno- (TTF1 and/or mucin positivity) and squamous cell differentiation (P63 and CK5/6) as well as KRAS and EGFR mutation analysis. Eleven observers independently read H&E-stained slides of 110 cases, resulting in a kappa value of 0.55 ± 0.10. The diagnosis non-small cell lung cancer not otherwise specified was given on average on 29.5 % of the biopsies. A high concordance was observed between hematoxylin-eosin-based consensus diagnosis (≥8/11 readings concordant) and IHC markers. In all cases with EGFR (n = 1) and KRAS (n = 20) mutations, adenodifferentiation as determined by IHC was present and p63 staining was absent. In 2 of 25 cases with a consensus diagnosis of squamous cell carcinoma, additional stainings favored adenodifferentation, and a KRAS mutation was present. P63 is most useful for distinction between EGFR/KRAS mutation positive and negative patients. In the diagnostic work-up of non-small cell lung carcinoma the limited reproducibility on small biopsies is optimized with immunohistochemical analysis, resulting in reliable delineation for predictive analysis.

  15. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors.

    PubMed

    Jia, Yong; Yun, Cai-Hong; Park, Eunyoung; Ercan, Dalia; Manuia, Mari; Juarez, Jose; Xu, Chunxiao; Rhee, Kevin; Chen, Ting; Zhang, Haikuo; Palakurthi, Sangeetha; Jang, Jaebong; Lelais, Gerald; DiDonato, Michael; Bursulaya, Badry; Michellys, Pierre-Yves; Epple, Robert; Marsilje, Thomas H; McNeill, Matthew; Lu, Wenshuo; Harris, Jennifer; Bender, Steven; Wong, Kwok-Kin; Jänne, Pasi A; Eck, Michael J

    2016-06-02

    The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.

  16. [Value of immunohistochemical staining with mutation-specific antibodies in detecting EGFR mutations: a meta-analysis].

    PubMed

    Ma, Qing; Wang, Jing; Zhong, Diansheng; Ning, Chao; Liu, Chang; Xiao, Ping

    2014-06-20

    背景与目的 已有的研究表明:表皮生长因子受体(epidermal growth factor receptor, EGFR)基因突变是非小细胞肺癌(non-small cell lung cancer, NSCLC)患者应用表皮生长因子受体酪氨酸激酶抑制剂(EGFR tyrosine kinase inhibitor, EGFR-TKI)治疗疗效的最重要的预测因子。EGFR基因突变的患者对于使用TKIs分子靶向药物治疗疗效更敏感。其突变检测对肺癌一线靶向治疗选择尤为关键。研究分析特异性抗体免疫组化法(immunohistochemistry, IHC)检测EGFR突变与DNA测序法比较的敏感度与特异度,明确该方法准确性及临床应用价值。 方法 通过Pubmed数据库检索所有符合检索条件的文献,末次检索日期2013年3月26日,根据纳入和排除标准进行进一步筛选,采用诊断试验meta分析方法,分析特异性抗体免疫组化方法与DNA直接测序法对比的敏感度与特异度。结果 10篇文献纳入meta分析,L858R 1,679例,E746-A750del 1,041例,诊断比值比(diagnositic odds ratio, DOR)分别为225.17(95%CI: 55.67-910.69)和267.16(95%CI: 132.45-538.88);SROC曲线AUC分别为0.948,4(SEAUC=0.014,4)和0.981,3(SEAUC=0.009,9),Q*统计量分别为0.888,3(SEQ*=0.019,2)和0.9397(SEQ*=0.019,1)。结论 以上两种特异性抗体IHC鉴别EGFR突变的特异度高,灵敏度较高,作为筛查突变方法可行性高,具有一定的临床应用价值。

  17. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  18. Tyrosine kinase inhibitors - small molecular weight compounds inhibiting EGFR.

    PubMed

    Hegymegi-Barakonyi, Bálint; Eros, Dániel; Szántai-Kis, Csaba; Breza, Nóra; Bánhegyi, Péter; Szabó, Gábor Viktor; Várkondi, Edit; Peták, István; Orfi, László; Kéri, György

    2009-06-01

    Abnormally elevated EGFR kinase activity can lead to various pathological states, including proliferative diseases such as cancer. The development of selective protein kinase inhibitors has become an important area of drug discovery for the potential treatment of a variety of solid tumors such as breast, ovarian and colorectal cancers, NSCLC, and carcinoma of the head and neck. There are three small molecule EGFR kinase inhibitor drugs in clinical use (gefitinib, erlotinib and lapatinib), and several others are currently undergoing clinical development. This review summarizes the development of EGFR kinase inhibitors, and includes descriptions of the binding modes, the importance of a multiple-targets strategy, the effects of sensitizing and resistance mutations in the EGFR, and molecular diagnostic approaches. In addition, the use of target fishing for selectivity profiling, off-target identification and quantitative structure-activity relationship modeling for the prediction of EGFR inhibition is discussed.

  19. Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology.

    PubMed

    Zhang, Hui; Liu, Deruo; Li, Shanqing; Zheng, Yongqing; Yang, Xinjie; Li, Xi; Zhang, Quan; Qin, Na; Lu, Jialin; Ren-Heidenreich, Lifen; Yang, Huiyi; Wu, Yuhua; Zhang, Xinyong; Nong, Jingying; Sun, Yifen; Zhang, Shucai

    2013-11-01

    Somatic DNA mutations affecting the epidermal growth factor receptor (EGFR) signaling pathway are known to predict responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers. We evaluated a sensitive liquidchip platform for detecting EGFR, KRAS (alias Ki-ras), proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations in plasma samples, which were highly correlated with matched tumor tissues from 86 patients with advanced non-small-cell lung cancers. Either EGFR exon 19 or 21 mutations were detected in 36 patients: 23 of whom had identical mutations in both their blood and tissue samples; whereas mutations in the remaining 13 were found only in their tumor samples. These EGFR mutations occurred at a significantly higher frequency in females, never-smokers, and in patients with adenocarcinomas (P ≤ 0.001). The EGFR exon 20 T790M mutation was detected in only one of the paired samples [100% (95% CI, 96% to 100%) agreement]. For KRAS, proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations, the overall agreements were 97% (95% CI, 90% to 99%), 98% (95% CI, 92% to 99%), and 97% (95% CI, 90% to 99%), respectively, and these were not associated with age, sex, smoking history, or histopathologic type. In conclusion, mutations detected in plasma correlated strongly with mutation profiles in each respective tumor sample, suggesting that this liquidchip platform may offer a rapid and noninvasive method for predicting tumor responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers.

  20. MET copy number gain is associated with gefitinib resistance in leptomeningeal carcinomatosis of EGFR-mutant lung cancer.

    PubMed

    Nanjo, Shigeki; Arai, Sachiko; Wang, Wei; Takeuchi, Shinji; Yamada, Tadaaki; Hata, Akito; Katakami, Nobuyuki; Okada, Yasunori; Yano, Seiji

    2017-01-30

    Leptomeningeal carcinomatosis (LMC) occurs frequently in EGFR-mutant lung cancer, and develops acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs). This study aimed to clarify the mechanism of EGFR-TKI resistance in LMC and seek for a novel therapeutic strategy. We examined EGFR mutations, including the T790M gatekeeper mutation, in 32 re-biopsy specimens from 12 LMC and 20 extracranial lesions of EGFR-mutant lung cancer patients who became refractory to EGFR-TKI treatment. All the 32 specimens had the same baseline EGFR mutations, but the T790M mutation was less frequent in LMC specimens than in extracranial specimens (8% vs. 55%, p<0.01). To study molecular mechanisms of acquired EGFR-TKI resistance in LMC, we utilized our previously developed mouse model of LMC with the EGFR-mutant lung cancer cell line PC-9/ffluc cells, in which acquired resistance to gefitinib was induced by continuous oral treatment. Compared with subcutaneously inoculated gefitinib-resistant tumors, the T790M mutation was less frequent in LMC that acquired resistance to gefitinib. PC-9/LMC-GR cells were established from the gefitinib-resistant LMC model, and they were found to be intermediately resistant to gefitinib and osimertinib (third generation EGFR-TKI). Although EGFR-T790M was negative, gefitinib resistance of PC-9/LMC-GR cells was related to MET copy number gain with MET activation. Moreover, combined use of EGFR-TKI and crizotinib, a MET inhibitor, dramatically regressed LMC with acquired resistance to gefitinib or osimertinib. These findings suggest that combination therapy with MET inhibitors may be promising for controlling LMC that acquires resistance to EGFR-TKIs.

  1. Annotation of human cancers with EGFR signaling-associated protein complexes using proximity ligation assays

    PubMed Central

    Smith, Matthew A.; Hall, Richard; Fisher, Kate; Haake, Scott M.; Khalil, Farah; Schabath, Matthew B.; Vuaroqueaux, Vincent; Fiebig, Heinz-Herbert; Altiok, Soner; Chen, Y. Ann; Haura, Eric B.

    2015-01-01

    Strategies to measure functional signaling-associated protein complexes have the potential to augment current molecular biomarker assays, such as genotyping and expression profiling, used to annotate diseases. Aberrant activation of epidermal growth factor receptor (EGFR) signaling contributes to diverse cancers. Here, we used a proximity ligation assay (PLA) to detect EGFR in a complex with growth factor receptor-bound protein 2 (GRB2), the major signaling adaptor for EGFR. We used multiple lung cancer cell lines to develop and characterize EGFR:GRB2 PLA and correlated this assay with established biochemical measures of EGFR signaling. In a panel of patient-derived xenografts in mice, the intensity of EGFR:GRB2 PLA correlated with the reduction in tumor size in response to the EGFR inhibitor cetuximab. In tumor biopsies from three cohorts of lung cancer patients, positive EGFR:GRB2 PLA was observed in patients with and without EGFR mutations and the intensity of EGFR:GRB2 PLA was predictive of overall survival in an EGFR inhibitor-treated cohort. Thus, we established the feasibility of using PLA to measure EGFR signaling-associated protein complexes in patient-based materials, suggesting the potential for similar assays for a broader array of receptor tyrosine kinases and other key signaling molecules. PMID:25587191

  2. Design and synthesis of 4-substituted quinazolines as potent EGFR inhibitors with anti-breast cancer activity.

    PubMed

    Ahmed, Marwa; Magdy, Naja

    2016-09-23

    Cancer is a major health problem to human beings around the world. Many quinazoline derivatives were reported to have potent cytotoxic activity. Our aim in this work is the discovery of potent epidermal growth factor receptor (EGFR) inhibitors with anti-breast cancer activity containing 4-substituted quinazoline pharmacophore. Novel series of 4-substituted 6,8-dibromo-2-(4-chlorophenyl)-quinazoline derivatives have been designed and synthesized. New derivatives were tested against MCF-7 (human breast carcinoma cell line) and screened for their inhibition activity against epidermal growth factor receptor tyrosine kinase (EGFR-TK). Most of the tested compounds show potent antiproliferative activity and EGFR-TK inhibitory activity. Compounds VIIIc and VIIIb exerted powerful cytotoxic activity (IC50 3.1 and 6.3 µM) with potent inhibitory percent (91.1 and 88.4%) against EGFR-TK. Compounds IX, VIIa, X, VIIb, VIc, V, IV, VIa and VIb showed promising cytotoxic effects with IC50 range (12-79 µM) with good activity against EGFR-TK with the inhibitory percent (85.4-60.8%). On the other hand, compounds VIIc, VIIIa exerted low cytotoxic effects as revealed from their IC50 value (124 and 144 µM) with low activity against EGFR-TK with inhibitory percent 30.6 and 29.1% respectively.

  3. Ibrutinib selectively and irreversibly targets EGFR (L858R, Del19) mutant but is moderately resistant to EGFR (T790M) mutant NSCLC Cells

    PubMed Central

    Wang, Wenchao; Hu, Chen; Ye, Zi; Zhao, Zheng; Wang, Li; Li, Xixiang; Yu, Kailin; Liu, Juan; Wu, Jiaxin; Yan, Xiao-E; Zhao, Peng; Wang, Jinhua; Wang, Chu; Weisberg, Ellen L.; Gray, Nathanael S.; Yun, Cai-Hong; Liu, Jing; Chen, Liang; Liu, Qingsong

    2015-01-01

    Through comprehensive comparison study, we found that ibrutinib, a clinically approved covalent BTK kinase inhibitor, was highly active against EGFR (L858R, del19) mutant driven NSCLC cells, but moderately active to the T790M ‘gatekeeper’ mutant cells and not active to wild-type EGFR NSCLC cells. Ibrutinib strongly affected EGFR mediated signaling pathways and induced apoptosis and cell cycle arrest (G0/G1) in mutant EGFR but not wt EGFR cells. However, ibrutinib only slowed down tumor progression in PC-9 and H1975 xenograft models. MEK kinase inhibitor, GSK1120212, could potentiate ibrutinib's effect against the EGFR (L858R/T790M) mutation in vitro but not in vivo. These results suggest that special drug administration might be required to achieve best clinical response in the ongoing phase I/II clinical trial with ibrutinib for NSCLC. PMID:26375053

  4. Relationship of epidermal growth factor receptor activating mutations with histologic subtyping according to International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society 2011 adenocarcinoma classification and their impact on overall survival

    PubMed Central

    Maturu, Venkata Nagarjuna; Singh, Navneet; Bal, Amanjit; Gupta, Nalini; Das, Ashim; Behera, Digambar

    2016-01-01

    Background: There is limited Indian data on epidermal growth factor receptor (EGFR) gene activating mutations (AMs) prevalence and their clinicopathologic associations. The current study aimed to assess the relationship between EGFR AM and histologic subtypes and their impact on overall survival (OS) in a North Indian cohort. Patients and Methods: Retrospective analysis of nonsmall cell lung cancer patients who underwent EGFR mutation testing (n = 186) over 3 years period (2012–2014). EGFR mutations were tested using polymerase chain reaction amplification and direct sequencing. Patients were classified as EGFR AM, EGFR wild type (WT) or EGFR unknown (UKN). Histologically adenocarcinomas (ADC) were further categorized as per the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society-2011 classification. Results: Overall EGFR AM prevalence was 16.6%. The ratio of exon 19 deletions to exon 21 L858R mutations was 3.17:1. Female sex (P = 0.002), never smoking status (P = 0.002), metastatic disease (P = 0.032), and nonsolid subtype of ADC (P = 0.001) were associated with EGFR AM on univariate logistic regression analysis (LRA). On multivariate LRA, solid ADC was negatively associated with EGFR AM. Median OS was higher in patients with EGFR AM (750 days) as compared to EGFR-WT (459 days) or EGFR-UKN (291 days) for the overall population and in patients with Stage IV disease (750 days vs. 278 days for EGFR-WT, P = 0.024). On univariate Cox proportional hazard (CPH) analysis, smoking, poor performance status (Eastern Cooperative Oncology Group ≥ 2), EGFR-UKN status, and solid ADC were associated with worse OS while female sex and lepidic ADC had better OS. On multivariate CPH analysis, lepidic ADC (hazard ratio [HR] =0.12) and EGFR-WT/EGFR-UKN (HR = 2.39 and HR = 3.30 respectively) were independently associated with OS in separate analyses. Conclusions: Histologic subtyping of ADC performed on small biopsies is

  5. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR.

    PubMed

    Edwards, Vonetta L; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C; Song, Wenxia

    2013-06-01

    Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.

  6. EGF receptor mutations in lung cancer: from humans to mice and maybe back to humans.

    PubMed

    Arteaga, Carlos L

    2006-06-01

    Deletions in exon 19 and nucleotide substitutions in exon 21 are the most common mutations of the EGFR (ErbB1) in NSCLC. These mutations endow the receptor with constitutive kinase activity. Most tumors expressing these mutants respond well to EGFR tyrosine kinase inhibitors, suggesting that they are dependent on mutant EGFR signaling. Two groups developed transgenic mice in which expression of these mutants is temporally induced in mouse lung. Mice expressing EGFR mutants develop bronchioloalveolar cancer and lung adenocarcinoma, which are highly sensitive to EGFR inhibitors. These mouse models provide important opportunities for studying the biology of NSCLC and the refinement of anti-EGFR therapies.

  7. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    SciTech Connect

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  8. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer.

    PubMed

    Franovic, Aleksandra; Gunaratnam, Lakshman; Smith, Karlene; Robert, Isabelle; Patten, David; Lee, Stephen

    2007-08-07

    Overexpression of the EGF receptor (EGFR) is a recurrent theme in human cancer and is thought to cause aggressive phenotypes and resistance to standard therapy. There has, thus, been a concerted effort in identifying EGFR gene mutations to explain misregulation of EGFR expression as well as differential sensitivity to anti-EGFR drugs. However, such genetic alterations have proven to be rare occurrences in most types of cancer, suggesting the existence of a more general physiological trigger for aberrant EGFR expression. Here, we provide evidence that overexpression of wild-type EGFR can be induced by the hypoxic microenvironment and activation of hypoxia-inducible factor 2-alpha (HIF2alpha) in the core of solid tumors. Our data suggest that hypoxia/HIF2alpha activation represents a common mechanism for EGFR overexpression by increasing EGFR mRNA translation, thereby diminishing the necessity for gene mutations. This allows for the accumulation of elevated EGFR levels, increasing its availability for the autocrine signaling required for tumor cell growth autonomy. Taken together, our findings provide a nonmutational explanation for EGFR overexpression in human tumors and highlight a role for HIF2alpha activation in the regulation of EGFR protein synthesis.

  9. Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium.

    PubMed

    Liu, Wei; Yin, Tuanfang; Ren, Jihao; Li, Lihua; Xiao, Zian; Chen, Xing; Xie, Dinghua

    2014-02-01

    Cholesteatoma is a benign keratinizing squamous epithelial lesion characterized by the hyper-proliferation of keratinocytes with abundant production of keratin debris in the middle ear. The epidermal growth factor receptor (EGFR)/Akt/nuclear factor-kappa B (NF-κB)/cyclinD1 signaling pathway is one of the most important pathways in regulating cell survival and proliferation. We hypothesized that the EGFR/Akt/NF-κB/cyclinD1 signaling pathway may be activated and involved in the cellular hyperplasia mechanism in acquired cholesteatoma epithelium. Immunohistochemical staining of phosphorylated EGFR (p-EGFR), phosphorylated Akt (p-Akt), activated NF-κB and cyclinD1 protein was performed in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium. Protein expression of p-EGFR, p-Akt, activated NF-κB and cyclinD1 in cholesteatoma epithelium was significantly increased when compared with normal EAC epithelium (p < 0.01). In cholesteatoma epithelium, a significant positive association was observed between p-EGFR and p-Akt expression and between the expressions of p-Akt and NF-κB, NF-κB and cyclinD1, respectively (p < 0.01). No significant relationships were observed between the levels of investigated proteins and the degree of bone destruction (p > 0.05). The increased protein expression of p-EGFR, p-Akt, NF-κB and cyclinD1 and their associations in cholesteatoma epithelium suggest that the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway is active and may be involved in the regulatory mechanisms of cellular hyperplasia in cholesteatoma epithelium.

  10. Detection of the T790M mutation of EGFR in plasma of advanced non–small cell lung cancer patients with acquired resistance to tyrosine kinase inhibitors (West Japan oncology group 8014LTR study)

    PubMed Central

    Azuma, Koichi; Hida, Toyoaki; Hirabayashi, Masataka; Oguri, Tetsuya; Tanaka, Hiroshi; Ebi, Noriyuki; Sawa, Toshiyuki; Bessho, Akihiro; Tachihara, Motoko; Akamatsu, Hiroaki; Bandoh, Shuji; Himeji, Daisuke; Ohira, Tatsuo; Shimokawa, Mototsugu; Nakanishi, Yoichi; Nakagawa, Kazuhiko; Nishio, Kazuto

    2016-01-01

    Introduction Next-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been developed to overcome resistance to earlier generations of such drugs mediated by a secondary T790M mutation of EGFR, but the performance of a second tumor biopsy to assess T790M mutation status can be problematic. Methods We developed and evaluated liquid biopsy assays for detection of TKI-sensitizing and T790M mutations of EGFR by droplet digital PCR (ddPCR) in EGFR mutation–positive non–small cell lung cancer (NSCLC) patients with acquired EGFR-TKI resistance. Results A total of 260 patients was enrolled between November 2014 and March 2015 at 29 centers for this West Japan Oncology Group (WJOG 8014LTR) study. Plasma specimens from all subjects as well as tumor tissue or malignant pleural effusion or ascites fluid from 41 patients were collected after the development of EGFR-TKI resistance. All plasma samples were genotyped successfully and the results were reported to physicians within 14 days. TKI-sensitizing and T790M mutations were detected in plasma of 120 (46.2%) and 75 (28.8%) patients, respectively. T790M was detected in 56.7% of patients with plasma positive for TKI-sensitizing mutations. For the 41 patients with paired samples obtained after acquisition of EGFR-TKI resistance, the concordance for mutation detection by ddPCR in plasma compared with tumor tissue or malignant fluid specimens was 78.0% for TKI-sensitizing mutations and 65.9% for T790M. Conclusions Noninvasive genotyping by ddPCR with cell-free DNA extracted from plasma is a promising approach to the detection of gene mutations during targeted treatment. PMID:27542267

  11. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs

    PubMed Central

    Zhang, Chengjuan; Wei, Bing; Li, Peng; Yang, Ke; Wang, Zhizhong; Ma, Jie; Guo, Yongjun

    2017-01-01

    Objective Epidermal growth factor receptor (EGFR) specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC). However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients. Methods A total of forty-five (45) NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS) PCR technology. Results In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7%) from positive to negative, and 14 cases (31.1%) from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS) than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05). Conclusions According to this study, it’s necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy. PMID:28333951

  12. Mutation profiling in chinese patients with metastatic colorectal cancer and its correlation with clinicopathological features and anti-EGFR treatment response

    PubMed Central

    Wang, Fang; Zhao, Qi; Zhang, Dong-Sheng; Wang, Feng-Hua; Wang, Zhi-Qiang; Luo, Hui-Yan; He, Ming-Ming; Wang, De-Shen; Jin, Ying; Ren, Chao; Qiu, Miao-Zhen; Ren, Jian; Pan, Zhi-Zhong; Li, Yu-Hong; Shao, Jiao-Yong; Xu, Rui-Hua

    2016-01-01

    An increasing number of studies reveal the significance of genetic markers in guiding target treatment and refining prognosis. This retrospective observational study aims to assess the mutation profile of metastatic colorectal cancer (mCRC) in Chinese population with the help of MassARRAY® technique platform and OncoCarta™ Panel. 322 Chinese patients with mCRC who received clinical molecular testing as part of their standard care were investigated. 80 patients received cetuximab palliative treatment. 238 common hot-spot mutations of 19 cancer related genes in the OncoCarta™ Panel were tested. 44 mutations in 11 genes were detected in 156 cases (48.4%). At least one mutation was identified in 38.5% (124/322) of all tested cases, two concomitant mutations in 9.0% (29/322) and three mutations in 3 cases (<1%). KRAS was the most frequently mutated gene (34.8%), followed by PIK3CA (9.6%), NRAS (4.3%), BRAF (3.4%), EGFR (2.5%) and HRAS (1.2%). Less frequent mutations were detected in PDGFRA, RET, AKT1, FGFR1, and ERBB2. Co-mutation of RAS family subtypes was observed in 5 patients, and KRAS and BRAF concurrent mutation in 1 patient. KRAS, NRAS, BRAF and PIK3CA mutations had association with some clinicopathological features statistically. Patients identified as wild-type in all 19 genes had better objective response rate when treated with cetuximab. The clinical molecular testing with OncoCarta™ Panel supplemented the limited data of mCRC in Chinese population, and offered a clearer landscape of multiple gene mutational profile in not only clinically prognostic KRAS, NRAS, BRAF and PIK3CA genes, but also less frequent mutated genes. Knowledge of these multiple gene mutation patterns may give clues in exploring interesting accompanying co-occurrence relationship or mutually exclusive relationship between mutated genes, as well as in predicting benefit of all-wild-type patients from anti-EGFR treatment. PMID:27050078

  13. Regulation of EGFR nanocluster formation by ionic protein-lipid interaction

    PubMed Central

    Wang, Ye; Gao, Jing; Guo, Xingdong; Tong, Ti; Shi, Xiaoshan; Li, Lunyi; Qi, Miao; Wang, Yajie; Cai, Mingjun; Jiang, Junguang; Xu, Chenqi; Ji, Hongbin; Wang, Hongda

    2014-01-01

    The abnormal activation of epidermal growth factor receptor (EGFR) is strongly associated with a variety of human cancers but the underlying molecular mechanism is not fully understood. By using direct stochastic optical reconstruction microscopy (dSTORM), we find that EGFR proteins form nanoclusters in the cell membrane of both normal lung epithelial cells and lung cancer cells, but the number and size of clusters significantly increase in lung cancer cells. The formation of EGFR clusters is mediated by the ionic interaction between the anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma membrane and the juxtamembrane (JM) region of EGFR. Disruption of EGFR clustering by PIP2 depletion or JM region mutation impairs EGFR activation and downstream signaling. Furthermore, JM region mutation in constitutively active EGFR mutant attenuates its capability of cell transformation. Collectively, our findings highlight the key roles of anionic phospholipids in EGFR signaling and function, and reveal a novel mechanism to explain the aberrant activation of EGFR in cancers. PMID:25001389

  14. A comparative analysis of EGFR mutation status in association with the efficacy of TKI in combination with WBRT/SRS/surgery plus chemotherapy in brain metastasis from non-small cell lung cancer.

    PubMed

    Cai, Ling; Zhu, Jian-fei; Zhang, Xue-wen; Lin, Su-xia; Su, Xiao-dong; Lin, Peng; Chen, Kai; Zhang, Lan-jun

    2014-11-01

    We proposed to identify the efficacy of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) using whole brain radiotherapy (WBRT)/stereotactic radiosurgery (SRS)/surgery in brain metastases from patients with non-small cell lung cancer (NSCLC) and clarify the association between treatment outcome and EGFR gene mutation status. A total of 282 patients with NSCLC brain metastases who underwent WBRT/SRS/surgery alone or in combination with TKI were enrolled in our study from 2003-2013. Amplification mutation refractory system technology was used to determine the EGFR mutation status in 109 tissue samples. EGFR mutation detection was performed in 109 patients with tumor tissues. The EGFR positive rate was 50 % (55/109), including 26 exon 19 deletions and 24 L858R mutations. The median follow-up time was 28 months. The median overall survival, median progression-free survival of intracranial disease, and median progression-free survival of extracranial disease was significantly longer for patients with TKI treatment (31.9 vs 17.0 months, P < 0.0001; 19.8 vs 12.0 months, P < 0.0001; and 19.6 vs 12.3 months, P < 0.0001; respectively). In subgroup analysis within the TKI group, patients harboring EGFR mutations had better extracranial disease control (20.4 vs 14.1 months, P = 0.032). Administration of TKI agents with conventional therapy compared with conventional therapy alone might be beneficial for overall survival, progression-free survival of intracranial disease and progression-free survival of extracranial disease in patients with brain metastases from NSCLC independent of EGFR mutations.

  15. ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy

    SciTech Connect

    Frederick, Barbara; Gustafson, Dan; Bianco, Cataldo; Ciardiello, Fortunato; Dimery, Isaiah; Raben, David . E-mail: david.raben@uchsc.edu

    2006-01-01

    Radiation enhances both epithelial growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) expression, which are a part of key pathways for tumor progression. Some tumors may not respond well to EGFR inhibitors alone or may develop resistance to EGFR inhibitors. Therefore, drug therapy targeted to VEGF receptors and EGFRs, when combined with radiotherapy (RT), may improve tumor control and provide wider applicability. This article focuses on ZD6474, an inhibitor of EGFR and VEGF receptor signaling in combination with RT. We discuss preclinical and clinical studies with RT and inhibitors of VEGF or EGFR signaling first. We then address issues associated with ZD6474 pharmacokinetic dosing, and scheduling when combined with RT. We also discuss ZD6474 in the context of anti-EGFR therapy resistance. Dual inhibition of EGFR and VEGF receptor signaling pathways shows promise in enhancing RT efficacy.

  16. Anti-EGFR activation, anti-proliferative and pro-apoptotic effects of polyclonal antibodies induced by EGFR-based cancer vaccine.

    PubMed

    Ramírez, Belinda Sánchez; Alpízar, Yeranddy Aguiar; Fernández, Diana Rosa Hernández; Hidalgo, Greta Garrido; Capote, Ailem Rabasa; Rodríguez, Rolando Pérez; Fernández, Luis Enrique

    2008-09-08

    Up to now clinical experiences focusing EGF receptor, an attractive target for cancer therapy, have been limited to passive therapies, suggesting that therapeutic cancer vaccines inducing anti-epidermal growth factor receptor (EGFR) antibodies could also work. Here, the humoral immune response induced in mice with a vaccine formulation containing the human EGFR-extracellular domain and very small-sized proteoliposomes (VSSP), a novel nanoparticulated adjuvant was assessed. In vaccinated mice sera average of the specific polyclonal antibodies (PAb) titers was 10(-5). Anti-EGFR PAb were able to bind EGFR+ tumor cell lines, expressing different levels of the molecule. Noteworthy, the presence of Cetuximab only partially inhibited the vaccine-induced antibodies binding to H125 cells. Anti-EGFR PAb abrogated ligands-dependent EGFR phosphorylation, provoking tumor cells apoptosis. The described EGFR-based vaccine might be a superior therapeutic approach for patients with EGFR+ tumors.

  17. Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): The road to a success, paved with failures.

    PubMed

    Lee, Dae Ho

    2017-02-04

    The discovery of epidermal growth factor receptor (EGFR) activating mutations in non-small cell lung cancer (NSCLC) and the success story of EGFR tyrosine kinases inhibitors (TKIs) have changed the paradigm of cancer therapy from empirical cytotoxic chemotherapy to molecular-targeted cancer therapy. As a result, EGFR TKI therapy, including gefitinib, erlotinib and afatinib, has become the standard therapy for NSCLC patients with EGFR activating mutation as first-line therapy. However, most patients inevitably progress despite initial dramatic and rapid response to EGFR TKIs and therefore during the last decade, a lot of efforts have been made to identify and overcome various resistance mechanisms. Fortunately, T790M secondary mutation, the main resistance mechanism, can be overcome by newly developed third-generation EGFR TKIs, such as osimertinib, while most combination trials trying to overcome resistance mechanisms other than T790M mutation have failed so far. To make it worse, spatial and temporal tumor heterogeneity and clonal selection or evolution are also identified in EGFR mutant NSCLC tumors. Nevertheless, advance of comprehensive and more sensitive molecular diagnostics and monitoring technology, such as next-generation sequencing and dynamic monitoring technology using circulating biomarker and development of new cancer medicine with different mechanisms from EGFR TKIs, especially immune checkpoint inhibitors, might affect or change the treatment paradigm of EGFR mutant NSCLC in the near future.

  18. Antibacterial and EGFR-tyrosine kinase inhibitory activities of polyhydroxylated xanthones from Garcinia succifolia.

    PubMed

    Duangsrisai, Susawat; Choowongkomon, Kiattawee; Bessa, Lucinda J; Costa, Paulo M; Amat, Nurmuhammat; Kijjoa, Anake

    2014-11-28

    Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae) led to the isolation of 1,5-dihydroxyxanthone (1), 1,7-dihydroxyxanthone (2), 1,3,7-trihydroxyxanthone (3), 1,5,6-trihydroxyxanthone (4), 1,6,7-trihydroxyxanthone (5), and 1,3,6,7-tetrahydroxyxanthone (6). All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633) and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853), and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1), as well as for their epidermal growth factor receptor (EGFR) of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4), 1,6,7-trihydroxy-(5), and 1,3,6,7-tetrahydroxyxanthones (6) exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2) showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1) and 1,7-dihydroxyxanthone (2) were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  19. Treatment of advanced non-small-cell lung cancer with epidermal growth factor receptor (EGFR) mutation or ALK gene rearrangement: results of an international expert panel meeting of the Italian Association of Thoracic Oncology.

    PubMed

    Gridelli, Cesare; de Marinis, Filippo; Cappuzzo, Federico; Di Maio, Massimo; Hirsch, Fred R; Mok, Tony; Morgillo, Floriana; Rosell, Rafael; Spigel, David R; Yang, James Chih-Hsin; Ciardiello, Fortunato

    2014-05-01

    The availability of targeted drugs has made the assessment of the EGFR mutation and ALK rearrangement critical in choosing the optimal treatment for patients with advanced non-small-cell lung cancer (NSCLC). In May 2013, the Italian Association of Thoracic Oncology (AIOT) organized an International Experts Panel Meeting to review strengths and limitations of the available evidence for the diagnosis and treatment of advanced NSCLC with EGFR or anaplastic lymphoma kinase (ALK) alterations and to discuss implications for clinical practice and future clinical research. All patients with advanced NSCLC, with the exclusion of pure squamous cell carcinoma in former or current smokers, should be tested for EGFR mutations and ALK rearrangements before decisions are made on first-line treatment. First-line treatment of EGFR-mutated cases should be with an EGFR tyrosine kinase inhibitor (TKI). Any available agent (gefitinib, erlotinib, or afatinib) can be used, until further data from comparative studies may better guide TKI selection. As general rule, and when clinically feasible, results of EGFR mutational status should be awaited before starting first-line treatment. Panelists agreed that the use of crizotinib is justified in any line of treatment. Although solid evidence supporting the continuation of EGFR TKIs or crizotinib beyond progression is lacking, in some cases (minimal, asymptomatic progression, or oligoprogression manageable by local therapy), treatment continuation beyond progression could be justified. Experimental strategies to target tumor heterogeneity and to treat patients after failure of EGFR TKIs or crizotinib are considered high-priority areas of research. A number of relevant research priorities were identified to optimize available treatment options.

  20. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    SciTech Connect

    Garrett, T.; Burgess, A; Gan, H; Luwor, R; Cartwright, G; Walker, F; Orchard, S; Clayton, A; Nice, E; et. al.

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR. However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.

  1. Activation of EGFR and ERBB2 by Helicobacter pylori Results in Survival of Gastric Epithelial Cells with DNA Damage

    PubMed Central

    Chaturvedi, Rupesh; Asim, Mohammad; Piazuelo, M. Blanca; Yan, Fang; Barry, Daniel P.; Sierra, Johanna Carolina; Delgado, Alberto G.; Hill, Salisha; Casero, Robert A.; Bravo, Luis E.; Dominguez, Ricardo L.; Correa, Pelayo; Polk, D. Brent; Washington, M. Kay; Rose, Kristie L.; Schey, Kevin L.; Morgan, Douglas R.; Peek, Richard M.; Wilson, Keith T.

    2014-01-01

    BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori upregulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOXhigh cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H pylori-infected Egfrwa5 mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. Phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsies from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H pylori-infected Egfrwa5 mice. H pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damagehigh apoptosislow cells. Phosphoproteomic analysis revealed increased EGFR and ERBB2 signaling. Immunoblot analysis demonstrated the presence of a phosphorylated (p)EGFR–ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damagehigh apoptosislow cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR–ERBB2, and pERBB2 were increased predominantly in tissues demonstrating gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR–ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis

  2. Sperm Epidermal Growth Factor Receptor (EGFR) Mediates α7 Acetylcholine Receptor (AChR) Activation to Promote Fertilization

    PubMed Central

    Jaldety, Yael; Glick, Yair; Orr-Urtreger, Avi; Ickowicz, Debby; Gerber, Doron; Breitbart, Haim

    2012-01-01

    To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca2+ influx, and the acrosome reaction. PMID:22577141

  3. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity.

    PubMed

    Amin, Kamilia M; Barsoum, Flora F; Awadallah, Fadi M; Mohamed, Nehal E

    2016-11-10

    Efforts to develop new antitumor agents are now directed towards multitarget therapies that are believed to have high potency and low tendency to resistance compared to conventional drugs. Herein, we highlighted the synthesis and antitumor activity of five series of phthalazine-based compounds featuring a variety of bioactive chemical fragments at position 1 of the phthalazine nucleus. The antitumor activity of the target compounds was performed against fourteen cancer cell lines where all compounds were active in the nanomolar level. In addition, the mechanism of action of the target compounds was investigated through an enzymatic inhibitory assay against VEGFR-2 and EGFR kinases, revealing potent and preferential activity toward VEGFR-2. Binding mode of the most active compounds was studied using docking experiment.

  4. Integrated Ligand-Receptor Bioinformatic and In Vitro Functional Analysis Identifies Active TGFA/EGFR Signaling Loop in Papillary Thyroid Carcinomas

    PubMed Central

    Degl'Innocenti, Debora; Alberti, Chiara; Castellano, Giancarlo; Greco, Angela; Miranda, Claudia; Pierotti, Marco A.; Seregni, Ettore; Borrello, Maria Grazia; Canevari, Silvana; Tomassetti, Antonella

    2010-01-01

    Background Papillary thyroid carcinoma (PTCs), the most frequent thyroid cancer, is usually not life threatening, but may recur or progress to aggressive forms resistant to conventional therapies. A more detailed understanding of the signaling pathways activated in PTCs may help to identify novel therapeutic approaches against these tumors. The aim of this study is to identify signaling pathways activated in PTCs. Methodology/Principal Findings We examined coordinated gene expression patterns of ligand/receptor (L/R) pairs using the L/R database DRLP-rev1 and five publicly available thyroid cancer datasets of gene expression on a total of 41 paired PTC/normal thyroid tissues. We identified 26 (up) and 13 (down) L/R pairs coordinately and differentially expressed. The relevance of these L/R pairs was confirmed by performing the same analysis on REarranged during Transfection (RET)/PTC1-infected thyrocytes with respect to normal thyrocytes. TGFA/EGFR emerged as one of the most tightly regulated L/R pair. Furthermore, PTC clinical samples analyzed by real-time RT-PCR expressed EGFR transcript levels similar to those of 5 normal thyroid tissues from patients with pathologies other than thyroid cancer, whereas significantly elevated levels of TGFA transcripts were only present in PTCs. Biochemical analysis of PTC cell lines demonstrated the presence of EGFR on the cell membrane and TGFA in conditioned media. Moreover, conditioned medium of the PTC cell line NIM-1 activated EGFR expressed on HeLa cells, culminating in both ERK and AKT phosphorylation. In NIM-1 cells harboring BRAF mutation, TGFA stimulated proliferation, contributing to PI3K/AKT activation independent of MEK/ERK signaling. Conclusions/Significance We compiled a reliable list of L/R pairs associated with PTC and validated the biological role of one of the emerged L/R pair, the TGFA/EGFR, in this cancer, in vitro. These data provide a better understanding of the factors involved in the biology of PTCs and

  5. Novel Quinazoline Derivatives Bearing Various 4-Aniline Moieties as Potent EGFR Inhibitors with Enhanced Activity Against NSCLC Cell Lines.

    PubMed

    Wang, Changyan; Sun, Yajun; Zhu, Xingqi; Wu, Bin; Wang, Qiao; Zhen, Yuhong; Shu, Xiaohong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-04-01

    A class of novel quinazoline derivatives bearing various C-4 aniline moieties was synthesized and biologically evaluated as potent epidermal growth factor receptor (EGFR) inhibitors for intervention of non-small-cell lung cancer (NSCLC). Most of these inhibitors are comparable to gefitinib in inhibiting these cancer cell lines, and several of them even displayed superior inhibitory activity. In particular, analogue 5b with an IC50 of 0.10 μm against the EGFR wild-type A431 cells and 5c with an IC50 of 0.001 μm against the gefitinib-sensitive HCC827 cells (EGFR del E746-A750) was identified as highly active EGFR inhibitors. It was also significant that the discovered analogue 2f, not only has high potency against the gefitinib-sensitive cells (IC50 = 0.031 μm), but also possesses remarkably improved activity against the gefitinib-resistant cells. In addition, the enzymatic assays and the Western blot analysis for evaluating the effects of the typical inhibitors indicated that these molecules strongly interfere with the EGFR target.

  6. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER)

    PubMed Central

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L.; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-01-01

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics. PMID:26079946

  7. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    SciTech Connect

    Ebi, Masahide; Kataoka, Hiromi; Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  8. Kinetics of inhibitor cycling underlie therapeutic disparities between EGFR-driven lung and brain cancers

    PubMed Central

    Barkovich, Krister J.; Hariono, Sujatmi; Garske, Adam L.; Zhang, Jie; Blair, Jimmy A.; Fan, Qi-Wen; Shokat, Kevan M.; Nicolaides, Theodore; Weiss, William A.

    2012-01-01

    While mutational activation of the Epidermal Growth Factor Receptor (EGFR) features prominently in glioma and non-small-cell lung cancer (NSCLC), inhibitors of EGFR improve survival only in NCSLC. To understand how mutations in EGFR influence response to therapy, we generated glioma cells expressing either glioma- or NSCLC-derived alleles, quantifying kinase site occupancy by clinical inhibitors using novel affinity probe and kinetic methodology. At equivalent doses, erlotinib achieved lower kinase site occupancy in glioma-derived EGFRvIII, compared to NSCLC-derived EGFR mutants. Kinase site occupancy correlated directly with cell cycle arrest. EGFRvIII released erlotinib rapidly compared to wild-type EGFR, whereas NSCLC-derived mutants released erlotinib slowly. PMID:22588882

  9. Circulating miRNAs is a potential marker for gefitinib sensitivity and correlation with EGFR mutational status in human lung cancers

    PubMed Central

    Zhao, Qiang; Cao, Jun; Wu, Yi-Chen; Liu, Xiang; Han, Jing; Huang, Xian-Cong; Jiang, Lie-Hao; Hou, Xiu-Xiu; Mao, Wei-Min; Ling, Zhi-Qiang

    2015-01-01

    miRNA expression is deregulated in non-small cell lung cancer (NSCLC), and some miRNAs are associated with gefitinib sensitivity. Here, we investigated if circulating miRNAs could be a useful biomarker for the prediction of EGFR mutation and the patient’s prognosis. The differential miRNAs related to gefitinib sensitivity were screened and identified by microRNA array. Using Taqman-based real-time RT-PCR, we analyzed the expression of selected miRNAs in tumor tissues and plasma of 150 NSCLC patients. Kaplan-Meier survival analysis and Cox proportional hazards regression were used to determine the association between miRNAs expression and survival. Receiver operating characteristic curve analysis was also performed. Compared with PC9 cell line, 41 microRNAs detected by microarray were significantly differentially expressed in A549 and H1299 cells. The 5 selected hsa-miRNAs were all found differently expressed between wild and mutant EGFR carriers (all P<0.01). Down-regulation of 5 selected miRNAs were independently associated with lymphatic invasion (all P<0.01) and clinical stage (all P<0.01), respectively. Both down-regulation of has-miR-195 (P=0.012) and has-miR-21 (P=0.004) were associated with poor differentiation. All up-regulation of 5 has-miRNAs were associated with smoking (All P<0.05). 5 hsa-miRNAs were up-regulated both in plasma and tissue samples. A model including 4 hsa-miRNAs may predict EGFR mutational status and gefitinib-sensitivity (both AUC: 0.869). Plasma levels of has-miR-125b expression were associated with disease-free survival (P=0.033) and overall survival in the patients (P=0.028). In a word, Circulating 5 selected miRNAs may especially be useful in predicting EGFR mutation, and circulating hsa-miR-125b may have prognostic values in NSCLC patients. PMID:26175938

  10. Differential protein stability of EGFR mutants determines responsiveness to tyrosine kinase inhibitors

    PubMed Central

    Ray, Paramita; Tan, Yee Sun; Somnay, Vishal; Mehta, Ranjit; Sitto, Merna; Ahsan, Aarif; Nyati, Shyam; Naughton, John P.; Bridges, Alexander; Zhao, Lili; Rehemtulla, Alnawaz; Lawrence, Theodore S.; Ray, Dipankar; Nyati, Mukesh K.

    2016-01-01

    Non-small cell lung cancer (NSCLC) patients carrying specific EGFR kinase activating mutations (L858R, delE746-A750) respond well to tyrosine kinase inhibitors (TKIs). However, drug resistance develops within a year. In about 50% of such patients, acquired drug resistance is attributed to the enrichment of a constitutively active point mutation within the EGFR kinase domain (T790M). To date, differential drug-binding and altered ATP affinities by EGFR mutants have been shown to be responsible for differential TKI response. As it has been reported that EGFR stability plays a role in the survival of EGFR driven cancers, we hypothesized that differential TKI-induced receptor degradation between the sensitive L858R and delE746-A750 and the resistant T790M may also play a role in drug responsiveness. To explore this, we have utilized an EGFR-null CHO overexpression system as well as NSCLC cell lines expressing various EGFR mutants and determined the effects of erlotinib treatment. We found that erlotinib inhibits EGFR phosphorylation in both TKI sensitive and resistant cells, but the protein half-lives of L858R and delE746-A750 were significantly shorter than L858R/T790M. Third generation EGFR kinase inhibitor (AZD9291) inhibits the growth of L858R/T790M-EGFR driven cells and also induces EGFR degradation. Erlotinib treatment induced polyubiquitination and proteasomal degradation, primarily in a c-CBL-independent manner, in TKI sensitive L858R and delE746-A750 mutants when compared to the L858R/T790M mutant, which correlated with drug sensitivity. These data suggest an additional mechanism of TKI resistance, and we postulate that agents that degrade L858R/T790M-EGFR protein may overcome TKI resistance. PMID:27612423

  11. IC-4, a new irreversible EGFR inhibitor, exhibits prominent anti-tumor and anti-angiogenesis activities.

    PubMed

    Li, Ying-Bo; Wang, Zhong-Qing; Yan, Xu; Chen, Mei-Wan; Bao, Jiao-Lin; Wu, Guo-Sheng; Ge, Ze-Mei; Zhou, De-Min; Wang, Yi-Tao; Li, Run-Tao

    2013-10-28

    Accumulating evidence suggested that the irreversible tyrosine kinase inhibitors (TKIs) have potential to override the acquired resistance to target-based therapies. Herein, we reported IC-4 as a novel irreversible TKI for epidermal growth factor receptor (EGFR). IC-4 potentially suppressed proliferation, induced apoptosis and a G2/M cell cycle arrest in breast cancer cells, correlating with inhibition of EGF-induced EGFR activation, but independent of DNA damage. In addition, IC-4 exhibited anti-angiogenetic activities both in vitro and in vivo. It suppressed cell viability and proliferation induced by various growth factors in human umbilical vein endothelial cells (HUVECs). IC-4 also inhibited HUVECs migration and tube formation. In transgenic zebrafish embryo model, IC-4 was shown to suppress formation of intersegmental vessel and development of subintestinal vessels. Taken together, these results demonstrated that IC-4 is a new irreversible EGFR-TKI, exhibiting potent anti-breast cancer and anti-angiogenetic effects.

  12. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin

    PubMed Central

    Yang, Nuo; Morrison, Carl D.; Liu, Peijun; Miecznikowski, Jeff; Bshara, Wiam; Han, Suxia; Zhu, Qing; Omilian, Angela R.; Li, Xu; Zhang, Jianmin

    2012-01-01

    The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. We previously showed that the pivotal effector of this pathway, YAP, is amplified in tumors and promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. Here, we report that overexpression of TAZ, a paralog of YAP, in human mammary epithelial cells promotes EMT and, in particular, some invasive structures in 3D cultures. TAZ also leads to cell migration and anchorage-independent growth in soft agar. Furthermore, we identified amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, as a target of TAZ. We show that AREG functions in a non-cell-autonomous manner to mediate EGF-independent growth and malignant behavior of mammary epithelial cells. In addition, ablation of TEAD binding completely abolishes the TAZ-induced phenotype. Last, analysis of breast cancer patient samples reveals a positive correlation between TAZ and AREG in vivo. In summary, TAZ-dependent secretion of AREG indicates that activation of the EGFR signaling is an important non-cell-autonomous effector of the Hippo pathway, and TAZ as well as its targets may play significant roles in breast tumorigenesis and metastasis. PMID:22825057

  13. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.

  14. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC

    PubMed Central

    Walter, Annette O.; Sjin, Robert Tjin Tham; Haringsma, Henry J.; Ohashi, Kadoaki; Sun, Jing; Lee, Kwangho; Dubrovskiy, Aleksander; Labenski, Matthew; Zhu, Zhendong; Wang, Zhigang; Sheets, Michael; Martin, Thia St; Karp, Russell; van Kalken, Dan; Chaturvedi, Prasoon; Niu, Deqiang; Nacht, Mariana; Petter, Russell C.; Westlin, William; Lin, Kevin; Jaw-Tsai, Sarah; Raponi, Mitch; Dyke, Terry Van; Etter, Jeff; Weaver, Zoe; Pao, William; Singh, Juswinder; Simmons, Andrew D.; Harding, Thomas C.; Allen, Andrew

    2014-01-01

    Non-small cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations initially respond to first generation reversible EGFR tyrosine kinase inhibitors. However, clinical efficacy is limited by acquired resistance, frequently driven by the EGFR T790M mutation. CO-1686 is a novel, irreversible and orally delivered kinase inhibitor that specifically targets the mutant forms of EGFR including T790M while exhibiting minimal activity towards the wild-type (WT) receptor. Oral administration of CO-1686 as single agent induces tumor regression in EGFR mutated NSCLC tumor xenograft and transgenic models. Minimal activity of CO-1686 against the WT EGFR receptor was observed. In NSCLC cells with acquired resistance to CO-1686 in vitro, there was no evidence of additional mutations or amplification of the EGFR gene, but resistant cells exhibited signs of epithelial-mesenchymal transition (EMT) and demonstrated increased sensitivity to AKT inhibitors. These results suggest CO-1686 may offer a novel therapeutic option for patients with mutant EGFR NSCLC. PMID:24065731

  15. Screening and discovery of nitro-benzoxadiazole compounds activating epidermal growth factor receptor (EGFR) in cancer cells.

    PubMed

    Sakanyan, Vehary; Angelini, Marie; Le Béchec, Mickael; Lecocq, Michèle Françoise; Benaiteau, Florence; Rousseau, Bénédicte; Gyulkhandanyan, Aram; Gyulkhandanyan, Lusine; Logé, Cédric; Reiter, Eric; Roussakis, Christos; Fleury, Fabrice

    2014-02-05

    Peptide ligand-induced dimerization of the extracellular region of the epidermal growth factor receptor (sEGFR) is central to the signal transduction of many cellular processes. A small molecule microarray screen has been developed to search for non-peptide compounds able to bind to sEGFR. We describe the discovery of nitro-benzoxadiazole (NBD) compounds that enhance tyrosine phosphorylation of EGFR and thereby trigger downstream signaling pathways and other receptor tyrosine kinases in cancer cells. The protein phosphorylation profile in cells exposed to NBD compounds is to some extent reminiscent of the profile induced by the cognate ligand. Experimental studies indicate that the small compounds bind to the dimerization domain of sEGFR, and generate stable dimers providing allosteric activation of the receptor. Moreover, receptor phosphorylation is associated with inhibition of PTP-1B phosphatase. Our data offer a promising paradigm for investigating new aspects of signal transduction mediated by EGFR in cancer cells exposed to electrophilic NBD compounds.

  16. Genotype-driven therapies for non-small cell lung cancer: focus on EGFR, KRAS and ALK gene abnormalities.

    PubMed

    Gaughan, Elizabeth M; Costa, Daniel B

    2011-05-01

    Non-small cell lung cancers (NSCLCs) are heterogeneous cancers. In 2004, the identification of epidermal growth factor receptor (EGFR) somatic mutations provided the first glimpse of a clinically relevant NSCLC oncogene. Approximately 70% of NSCLCs with EGFR mutations (exon 19 deletions or the exon 21 L858R) attain responses to EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, with improved response rate (RR), progression-free survival (PFS) and in some reports overall survival (OS) when compared with EGFR wildtype (WT) cases. Three randomized trials of gefitinib versus chemotherapy (IPASS, WJTOG3405, NEJ002) in stage IV NSCLC have consistently demonstrated better RR and PFS (hazard ratios of 0.48 [IPASS], 0.49 [WJTOG3405] and 0.30 [NEJ002]) for EGFR-mutated NSCLCs treated with gefitinib. Novel irreversible EGFR TKIs (afatinib, XL647, PF00299804) show similar activity in EGFR-mutated patients. A translocation involving the anaplastic lymphoma kinase (ALK) gene with EML4, identified in 2007, is the most recent oncogene found in NSCLC. Crizotinib (PF02341066), an ALK TKI, has shown impressive activity against ALK translocated NSCLC in an expanded cohort of a phase I trial (NCT00585195). Over 80 patients have been treated and the RR is ∼60% with the 6-month PFS rate exceeding 70%. A registration phase III trial of crizotinib versus second-line chemotherapy (pemetrexed/docetaxel) is underway (PROFILE 1007, NCT00932893). KRAS, EGFR mutations and ALK translocations are mutually exclusive and few EGFR WT NSCLCs respond to EGFR TKIs. The promising results of EGFR and ALK TKIs in molecular subgroups of NSCLCs herald a new age of drug and clinical trial development for patients with NSCLC.

  17. The sex-limited effects of mutations in the EGFR and TGF-β signaling pathways on shape and size sexual dimorphism and allometry in the Drosophila wing.

    PubMed

    Testa, Nicholas D; Dworkin, Ian

    2016-06-01

    Much of the morphological diversity in nature-including among sexes within a species-is a direct consequence of variation in size and shape. However, disentangling variation in sexual dimorphism for both shape (SShD), size (SSD), and their relationship with one another remains complex. Understanding how genetic variation influences both size and shape together, and how this in turn influences SSD and SShD, is challenging. In this study, we utilize Drosophila wing size and shape as a model system to investigate how mutations influence size and shape as modulated by sex. Previous work has demonstrated that mutations in epidermal growth factor receptor (EGFR) and transforming growth factor-β (TGF-β) signaling components can influence both wing size and shape. In this study, we re-analyze this data to specifically address how they impact the relationship between size and shape in a sex-specific manner, in turn altering the pattern of sexual dimorphism. While most mutations influence shape overall, only a subset have a genotypic specific effect that influences SShD. Furthermore, while we observe sex-specific patterns of allometric shape variation, the effects of most mutations on allometry tend to be small. We discuss this within the context of using mutational analysis to understand sexual size and shape dimorphism.

  18. Dacomitinib in lung cancer: a “lost generation” EGFR tyrosine-kinase inhibitor from a bygone era?

    PubMed Central

    Ou, Sai-Hong Ignatius; Soo, Ross A

    2015-01-01

    EGFR tyrosine-kinase inhibitors (TKIs) have now been firmly established as the first-line treatment for non-small-cell lung cancer (NSCLC) patients harboring activating EGFR mutations, based on seven prospective randomized Phase III trials. However, despite significantly improved overall response rate and improved median progression-free survival when compared to platinum-doublet chemotherapy, EGFR-mutant NSCLC patients treated with EGFR TKIs invariably progress due to the emergence of acquired resistances, with the gatekeeper T790M mutation accounting for up to 60% of the resistance mechanisms. Second-generation irreversible EGFR TKIs were developed in part to inhibit the T790M mutation, in addition to the common activating EGFR mutations. Dacomitinib is one such second-generation EGFR TKI designed to inhibit both the wild-type (WT) EGFR and EGFR T790M. Afatinib is another second-generation EGR TKI that has been now been approved for the first-line treatment of EGFR-mutant NSCLC patients, while dacomitinib continues to undergo clinical evaluation. We will review the clinical development of dacomitinib from Phase I to Phase III trials, including the two recently published negative large-scale randomized Phase III trials (ARCHER 1009, NCIC-BR-26). Results from another large-scale randomized trial (ARCHER 1050) comparing dacomitinib to gefitinib as first-line treatment of advanced treatment-naïve EGFR-mutant NSCLC patients will soon be available and will serve as the lynchpin trial for the potential approval of dacomitinib in NSCLC. Meanwhile, third-generation EGFR TKIs (eg, CO-1686 [rociletinib], AZ9291, HM61713, EGF816, and ASP8273) that preferentially and potently inhibit EGFR T790M but not WT EGFR are in full-scale clinical development, and some of these EGFR TKIs have received “breakthrough” designation by the US Food and Drug Administration and will likely be approved in late 2015. Given the rapid development of third-generation EGFR TKIs and the approval

  19. Epidermal Growth Factor Receptor Mutation Is Associated With Longer Local Control After Definitive Chemoradiotherapy in Patients With Stage III Nonsquamous Non–Small-Cell Lung Cancer

    SciTech Connect

    Yagishita, Shigehiro; Horinouchi, Hidehito; Katsui Taniyama, Tomoko; Nakamichi, Shinji; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Sumi, Minako; Shiraishi, Kouya; Kohno, Takashi; Furuta, Koh; Tsuta, Koji; Tamura, Tomohide

    2015-01-01

    Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficient specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC.

  20. A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells.

    PubMed

    Chu, B; Liu, F; Li, L; Ding, C; Chen, K; Sun, Q; Shen, Z; Tan, Y; Tan, C; Jiang, Y

    2015-03-12

    Aberrant expression or function of epidermal growth factor receptor (EGFR) or the closely related human epidermal growth factor receptor 2 (HER2) can promote cell proliferation and survival, thereby contributing to tumorigenesis. Specific antibodies and low-molecular-weight tyrosine kinase inhibitors of both proteins are currently in clinical trials for cancer treatment. Benzimidazole derivatives possess diverse biological activities, including antitumor activity. However, the anticancer mechanism of 5a (a 2-aryl benzimidazole compound; 2-chloro-N-(2-p-tolyl-1H-benzo[d]imidazol-5-yl)acetamide, C(16)H(14)ClN(3)O, MW299), a novel 2-aryl benzimidazole derivative, toward breast cancer is largely unknown. Here, we demonstrate that 5a potently inhibited both EGFR and HER2 activity by reducing EGFR and HER2 tyrosine phosphorylation and preventing downstream activation of PI3K/Akt and MEK/Erk pathways in vitro and in vivo. We also show that 5a inhibited the phosphorylation of FOXO and promoted FOXO translocation from the cytoplasm into the nucleus, resulting in the G1-phase cell cycle arrest and apoptosis. Moreover, 5a potently induced apoptosis via the c-Jun N-terminal kinase (JNK)-mediated death receptor 5 upregulation in breast cancer cells. The antitumor activity of 5a was consistent with additional results demonstrating that 5a significantly reduced tumor volume in nude mice in vivo. Analysis of the primary breast cancer cell lines with HER2 overexpression further confirmed that 5a significantly inhibited Akt Ser473 and Bad Ser136 phosphorylation and reduced cyclin D3 expression. On the basis of our findings, further development of this 2-aryl benzimidazole derivative, a new class of multitarget anticancer agents, is warranted and represents a novel strategy for improving breast cancer treatment.

  1. Deoxycholyltaurine Rescues Human Colon Cancer Cells From Apoptosis by Activating EGFR-Dependent PI3K/Akt Signaling

    PubMed Central

    Raufman, Jean-Pierre; Shant, Jasleen; Guo, Chang Yue; Roy, Sanjit; Cheng, Kunrong

    2010-01-01

    Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-α-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser473) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser21/9) and BAD (Ser136), and nuclear translocation (activation) of NF-κB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation. PMID:18064605

  2. CONTRIBUTION OF INSPIRATORY FLOW TO ACTIVATION OF EGFR, RAS, MAPK, ATF-2 AND C-JUN DURING LUNG STRETCH

    EPA Science Inventory

    Contribution of Inspiratory Flow to Activation of EGFR, Ras, MAPK, ATF-2 and c-Jun during Lung Stretch

    R. Silbajoris 1, Z. Li 2, J. M. Samet 1 and Y. C. Huang 1. 1 NHEERL, ORD, US EPA, RTP, NC and 2 CEMALB, UNC-CH, Chapel Hill, NC .

    Mechanical ventilation with larg...

  3. Discovery and Biological Evaluation of Novel Dual EGFR/c-Met Inhibitors

    PubMed Central

    2014-01-01

    Activating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials. In the present study we have identified dual EGFR/c-Met inhibitors and designed novel N-[4-(quinolin-4-yloxy)-phenyl]-biarylsulfonamide derivatives, which inhibit the c-Met receptor and both the wild-type and the activating mutant EGFR kinases in nanomolar range. We have demonstrated by Western blot analysis that compound 10 inhibits EGFR and c-Met phosphorylation at cellular level and effectively inhibits viability of the NSCLC cell lines. PMID:24900830

  4. Discovery and Biological Evaluation of Novel Dual EGFR/c-Met Inhibitors.

    PubMed

    Szokol, Bálint; Gyulavári, Pál; Kurkó, Ibolya; Baska, Ferenc; Szántai-Kis, Csaba; Greff, Zoltán; Orfi, Zoltán; Peták, István; Pénzes, Kinga; Torka, Robert; Ullrich, Axel; Orfi, László; Vántus, Tibor; Kéri, György

    2014-04-10

    Activating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials. In the present study we have identified dual EGFR/c-Met inhibitors and designed novel N-[4-(quinolin-4-yloxy)-phenyl]-biarylsulfonamide derivatives, which inhibit the c-Met receptor and both the wild-type and the activating mutant EGFR kinases in nanomolar range. We have demonstrated by Western blot analysis that compound 10 inhibits EGFR and c-Met phosphorylation at cellular level and effectively inhibits viability of the NSCLC cell lines.

  5. Overcoming EGFR T790M and C797S resistance with mutant-selective allosteric inhibitors

    PubMed Central

    Jia, Yong; Yun, Cai-Hong; Park, Eunyoung; Ercan, Dalia; Manuia, Mari; Juarez, Jose; Xu, Chunxiao; Rhee, Kevin; Chen, Ting; Zhang, Haikuo; Palakurthi, Sangeetha; Jang, Jaebong; Lelais, Gerald; DiDonato, Michael; Bursulaya, Badry; Michellys, Pierre-Yves; Epple, Robert; Marsilje, Thomas H.; McNeill, Matthew; Lu, Wenshuo; Harris, Jennifer; Bender, Steven; Wong, Kwok-Kin; Jänne, Pasi A.; Eck, Michael J.

    2016-01-01

    EGFR tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harboring activating mutations in the EGFR kinase1,2, but resistance arises rapidly, most frequently due to the secondary T790M mutation within the ATP-site of the receptor.3,4 Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant5,6, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond7. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternate mechanisms of action. Here we describe rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild type receptor. A crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays, but as a single agent is not effective in blocking EGFR-driven proliferation in cells due to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state8. We observe dramatic synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization9,10, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by L858R/T790M EGFR and by L858R/T790M/C797S EGFR, a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors. PMID:27251290

  6. TOPK promotes lung cancer resistance to EGFR tyrosine kinase inhibitors by phosphorylating and activating c-Jun

    PubMed Central

    Wang, Tao; Wang, Ting; Niu, Mengjie; Zhang, Shengli; Jia, Lintao; Li, Shengqing

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) have shown promising clinical efficacy in non-squamous non-small cell lung cancer (NSCLC); however, resistance is frequently observed in malignant cells, operating through a mechanism that remains largely unknown. The present study shows that T-lymphokine-activated killer cell-originated protein kinase (TOPK) is upregulated in NSCLC and excessively activated in TKI-refractory cells. TOPK dictates the responsiveness of lung cancers to the EGFR-targeted TKI gefitinib through the transcription factor AP-1 component c-Jun. TOPK binds directly to and phosphorylates c-Jun, which consequently activates the transcription of AP-1 target genes, including CCND1 and CDC2. TOPK silencing sensitizes EGFR-TKI-resistant lung cancer cells to gefitinib and increases gefitinib efficacy in preclinical lung adenocarcinoma xenograft models. These findings represent a novel mechanism of lung cancer resistance to TKIs and suggest that TOPK may have value both as a predictive biomarker and as a therapeutic target: TOPK-targeted therapy may synergize with EGFR-targeted therapy in lung cancers. PMID:26745678

  7. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    PubMed Central

    Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF “like” ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation. PMID:25249545

  8. Design, synthesis and molecular docking of α,β-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity.

    PubMed

    Xu, Yun-Yun; Cao, Yi; Ma, Hailkuo; Li, Huan-Qiu; Ao, Gui-Zhen

    2013-01-15

    A type of novel α,β-unsaturated cyclohexanone analogous, which designed based on the curcumin core structure, have been discovered as potential EGFR inhibitors. These compounds exhibit potent antiproliferative activity in two human tumor cell lines (Hep G2 and B16-F10). Among them, compounds I(3) and I(12) displayed the most potent EGFR inhibitory activity (IC(50) = 0.43 μM and 1.54 μM, respectively). Molecular docking of I(12) into EGFR TK active site was also performed. This inhibitor nicely fitting the active site might well explain its excellent inhibitory activity.

  9. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation

    PubMed Central

    Yu, Huangfei; Xia, Hongwei; Tang, Qiulin; Xu, Huanji; Wei, Guoqing; Chen, Ying; Dai, Xinyu; Gong, Qiyong; Bi, Feng

    2017-01-01

    Acetylcholine (ACh), known as a neurotransmitter, regulates the functions of numerous fundamental central and peripheral nervous system. Recently, emerging evidences indicate that ACh also plays an important role in tumorigenesis. However, little is known about the role of ACh in gastric cancer. Here, we reported that ACh could be auto-synthesized and released from MKN45 and BGC823 gastric cancer cells. Exogenous ACh promoted cell proliferation in a does-dependent manner. The M3R antagonist 4-DAMP, but not M1R antagonist trihexyphenidyl and M2/4 R antagonist AFDX-116, could reverse the ACh-induced cell proliferation. Moreover, ACh, via M3R, activated the EGFR signaling to induce the phosphorylation of ERK1/2 and AKT, and blocking EGFR pathway by specific inhibitor AG1478 suppressed the ACh induced cell proliferation. Furthermore, the M3R antagonist 4-DAMP and darifenacin could markedly inhibit gastric tumor formation in vivo. 4-DAMP could also significantly enhance the cytotoxic activity of 5-Fu against the MKN45 and BGC823 cells, and induce the expression of apoptosis-related proteins such as Bax and Caspase-3. Together, these findings indicated that the autocrine ACh could act through M3R and the EGFR signaling to promote gastric cancer cells proliferation, targeting M3R or EGFR may provide us a potential therapeutic strategy for gastric cancer treatment. PMID:28102288

  10. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  11. Anti-EGFR function of EFEMP1 in glioma cells and patient prognosis

    PubMed Central

    Hu, Yuanjie; Gao, Hengjun; Vo, Christopher; Ke, Chao; Pan, Francine; Yu, Liping; Siegel, Eric; Hess, Kenneth R.; Linskey, Mark E.; Zhou, Yi-Hong

    2014-01-01

    EGFR is one of the key oncogenes subjected to targeted therapy for several cancers, as it is known to be amplified and/or mutated in up to 40% of malignant gliomas. EFEMP1, a fibulin-like extracellular protein, exerts both tumor suppressive and oncogenic effects in various cancers and glioma cell models. Although EFEMP1's anti-cancer activity has most commonly been attributed to its anti-angiogenic effects, we showed for gliomas that EFEMP1's binding to EGFR accounts for its suppression of the intracranial tumorigenicity of glioma cells expressing high levels of EGFR. In gliomas where EFEMP1 expression, and thus the anti-EGFR effect of EFEMP1, was suppressed, heightened levels of EGFR expression were associated with unfavorable patient outcomes in prognostic models. Results from the current study clearly demonstrate the impact that the anti-EGFR function of EFEMP1 has on the expression of EGFR and patient prognosis. A glioma prognostic model also suggests EFEMP1's context-dependent oncogenic function in gliomas expressing low levels of EGFR. Hence the level of EFEMP1 expression may have a predictive value for choosing patients for anti-EGFR therapy. PMID:25594013

  12. The genomic landscape of response to EGFR blockade in colorectal cancer.

    PubMed

    Bertotti, Andrea; Papp, Eniko; Jones, Siân; Adleff, Vilmos; Anagnostou, Valsamo; Lupo, Barbara; Sausen, Mark; Phallen, Jillian; Hruban, Carolyn A; Tokheim, Collin; Niknafs, Noushin; Nesselbush, Monica; Lytle, Karli; Sassi, Francesco; Cottino, Francesca; Migliardi, Giorgia; Zanella, Eugenia R; Ribero, Dario; Russolillo, Nadia; Mellano, Alfredo; Muratore, Andrea; Paraluppi, Gianluca; Salizzoni, Mauro; Marsoni, Silvia; Kragh, Michael; Lantto, Johan; Cassingena, Andrea; Li, Qing Kay; Karchin, Rachel; Scharpf, Robert; Sartore-Bianchi, Andrea; Siena, Salvatore; Diaz, Luis A; Trusolino, Livio; Velculescu, Victor E

    2015-10-08

    Colorectal cancer is the third most common cancer worldwide, with 1.2 million patients diagnosed annually. In late-stage colorectal cancer, the most commonly used targeted therapies are the monoclonal antibodies cetuximab and panitumumab, which prevent epidermal growth factor receptor (EGFR) activation. Recent studies have identified alterations in KRAS and other genes as likely mechanisms of primary and secondary resistance to anti-EGFR antibody therapy. Despite these efforts, additional mechanisms of resistance to EGFR blockade are thought to be present in colorectal cancer and little is known about determinants of sensitivity to this therapy. To examine the effect of somatic genetic changes in colorectal cancer on response to anti-EGFR antibody therapy, here we perform complete exome sequence and copy number analyses of 129 patient-derived tumour grafts and targeted genomic analyses of 55 patient tumours, all of which were KRAS wild-type. We analysed the response of tumours to anti-EGFR antibody blockade in tumour graft models and in clinical settings and functionally linked therapeutic responses to mutational data. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Novel alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade. Amplifications and sequence changes in the tyrosine kinase receptor adaptor gene IRS2 were identified in tumours with increased sensitivity to anti-EGFR therapy. Therapeutic resistance to EGFR blockade could be overcome in tumour graft models through combinatorial therapies targeting actionable genes. These analyses provide a systematic approach to evaluating response to targeted therapies in human cancer, highlight new mechanisms of responsiveness to anti-EGFR therapies, and delineate new avenues for intervention in managing colorectal cancer.

  13. Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines.

    PubMed

    Yu, Haiqing; Li, Yanxia; Ge, Yang; Song, Zhendong; Wang, Changyuan; Huang, Shanshan; Jin, Yue; Han, Xu; Zhen, Yuhong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-03-03

    With the aim of overcoming gefitinib resistance, a series of novel quinazoline derivatives bearing an adamantyl group on the aniline ring were synthesized as potent epidermal growth factor receptor (EGFR) inhibitors. Most of these analogues are comparable to gefitinib in their ability to inhibit non-small cell lung cancer (NSCLC) cell lines, and several also exhibited significantly enhanced anti-tumor potency. Specifically, compound 3d, with an IC50 value of 2.06 μM against A431 cells with the wild-type EGFR and of 0.009 μM against the gefitinib-sensitive cells, displayed approximately 5-fold higher potency than the lead compound to inhibit the cells harboring the EGFR(T790M) mutant. In addition, the molecular simulation and Western blot analysis results also indicated that these compounds effectively interfered with the EGFR(T790M) activity, and may serve as a new alternative structure to develop more effective antitumor agents.

  14. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    SciTech Connect

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang; Yun, Cai-Hong; Li, Danan; Capelletti, Marzia; Cortot, Alexis B.; Chirieac, Lucian; Iacob, Roxana E.; Padera, Robert; Engen, John R.; Wong, Kwok-Kin; Eck, Michael J.; Gray, Nathanael S.; Jänne, Pasi A.

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.

  15. Pretreatment direct bilirubin and total cholesterol are significant predictors of overall survival in advanced non-small-cell lung cancer patients with EGFR mutations.

    PubMed

    Zhang, Yanwei; Xu, Jianlin; Lou, Yuqing; Hu, Song; Yu, Keke; Li, Rong; Zhang, Xueyan; Jin, Bo; Han, Baohui

    2017-04-01

    This study was designed to examine the prediction of pretreatment circulating bilirubin and cholesterol for overall survival in 459 advanced non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations. Circulating total bilirubin, direct bilirubin (DB), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were measured at baseline. The mean age (standard deviation) of all study patients was 58.7 (10.5) years, and 42.9% of them was males. Ever smokers accounted for 27.0% and lung adenocarcinoma for 90.4%. The median follow-up time and survival time were 29.5 and 34.9 months, respectively. Patients with higher DB had a 1.68-fold increased risk of death compared with patients with lower DB (hazard ratio [HR] = 1.68, 95% confidence interval [CI]: 1.22-2.30, p = 0.001), while patients with higher TC were at a 63% reduced risk of death compared with patients with lower TC (HR = 0.37, 95% CI: 0.20-0.67, p = 0.001). As for HDL-C, patients with higher levels had the risk of death reduced by 46% (HR = 0.54, 95% CI: 0.29-1.00, p = 0.049) compared with patients with lower levels. After the Bonferroni correction, only DB and TC were significantly associated with NSCLC survival. Our findings demonstrate for the first time that pretreatment DB was identified as a significant risk factor, yet TC as a protective factor, for overall survival in NSCLC patients with EGFR mutations.

  16. Rational bases for the development of EGFR inhibitors for cancer treatment.

    PubMed

    Bianco, Roberto; Gelardi, Teresa; Damiano, Vincenzo; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-01-01

    Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Several evidences suggest that cooperation of multiple ErbB receptors and ligands is required for the induction of cell transformation. In this respect, EGFR, upon activation, sustains a complex and redundant network of signal transduction pathways with the contribution of other trans-membrane receptors. EGFR has been found to be expressed and altered in a variety of malignancies and clearly it plays a significant role in tumor development and progression, including cell proliferation, regulation of apoptotic cell death, angiogenesis and metastatic spread. Moreover, amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain have been recently reported in human carcinomas. As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.

  17. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance.

    PubMed

    Wang, Shuhang; Song, Yongping; Liu, Delong

    2017-01-28

    The third-generation tyrosine kinase inhibitors (TKI), AZD9291 (osimertinib) and CO-1686 (rociletinib) of epidermal growth factor receptor (EGFR) are highly active against T790M positive non-small cell lung cancer (NSCLC). However, resistance develops rapidly. EGFR C797S mutation was reported to be a leading mechanism of resistance to the third-generation inhibitors. The C797S mutation appears to be an ideal target for overcoming the acquired resistance to the third-generation inhibitors. This review summarizes the latest development on the discovery of a fourth-generation EGFR TKI, EAI045.3.

  18. A peptide antigen derived from EGFR T790M is immunogenic in non-small cell lung cancer

    PubMed Central

    OFUJI, KAZUYA; TADA, YOSHITAKA; YOSHIKAWA, TOSHIAKI; SHIMOMURA, MANAMI; YOSHIMURA, MAYUKO; SAITO, KEIGO; NAKAMOTO, YASUNARI; NAKATSURA, TETSUYA

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, have demonstrated marked clinical activity against non-small cell lung cancer (NSCLC) harboring activating epidermal growth factor receptor (EGFR) mutations. However, in most cases, patients develop acquired resistance to EGFR-TKI therapy. The threonine to methionine change at codon 790 of EGFR (EGFR T790M) mutation is the most common acquired resistance mutation, and is present in ~50% cases of TKI resistance. New treatment strategies for NSCLC patients harboring the EGFR T790M mutation are required. We evaluated the immunogenicity of an antigen derived from EGFR with the T790M mutation. Using BIMAS we selected several EGFR T790M-derived peptides bound to human leukocyte antigen (HLA)-A*02:01. T790M-A peptide (789–797) (IMQLMPFGC)-specific cytotoxic T lymphocytes (CTLs) were induced from peripheral blood mononuclear cells (PBMCs) of HLA-A2+ healthy donors. An established T790M-A-specific CTL line showed reactivity against the NCSLC cell line, H1975-A2 (HLA-A2+, T790M+), but not H1975 (HLA-A2−, T790M+), and the corresponding wild-type peptide (ITQLMPFGC)-pulsed T2 cells using an interferon-γ (IFN-γ) enzyme-linked immuno spot (ELISPOT) assay. This CTL line also demonstrated peptide-specific cytotoxicity against H1975-A2 cells. This finding suggests that the EGFR T790M mutation-derived antigen could be a new target for cancer immunotherapy. PMID:25532027

  19. EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer.

    PubMed

    Moody, Terry W; Nuche-Berenguer, Bernardo; Nakamura, Taichi; Jensen, Robert T

    2016-01-01

    Lung cancer kills approximately 1.3 million citizens in the world annually. The tyrosine kinase inhibitors (TKI) erlotinib and gefitinib are effective anti-tumor agents especially in lung cancer patients with epidermal growth factor receptor (EGFR) mutations. The goal is to increase the potency of TKI in lung cancer patients with wild type EGFR. G protein-coupled receptors (GPCR) transactivate the wild type EGFR in lung cancer cells. The GPCR can be activated by peptide agonists causing phosphatidylinositol turnover or stimulation of adenylylcyclase. Recently, nonpeptide antagonists were found to inhibit the EGFR transactivation caused by peptides. Nonpeptide antagonists for bombesin (BB), neurotensin (NTS) and cholecystokinin (CCK) inhibit lung cancer growth and increase the cytotoxicity of gefitinib. The results suggest that GPCR transactivation of the EGFR may play an important role in cancer cell proliferation.

  20. EGFR inhibitors and autophagy in cancer treatment.

    PubMed

    Cui, Jie; Hu, Yun-Feng; Feng, Xie-Min; Tian, Tao; Guo, Ya-Huan; Ma, Jun-Wei; Nan, Ke-Jun; Zhang, Hong-Yi

    2014-12-01

    Epidermal growth factor receptor (EGFR) inhibitor treatment is a strategy for cancer therapy. However, innate and acquired resistance is a major obstacle of the efficacy. Autophagy is a self-digesting process in cells, which is considered to be associated with anti-cancer drug resistance. The activation of EGFR can regulate autophagy through multiple signal pathways. EGFR inhibitors can induce autophagy, but the specific function of the induction of autophagy by EGFR inhibitors remains biphasic. On the one hand, autophagy induced by EGFR inhibitors acts as a cytoprotective response in cancer cells, and autophagy inhibitors can enhance the cytotoxic effects of EGFR inhibitors. On the other hand, a high level of autophagy after treatment of EGFR inhibitors can also result in autophagic cell death lacking features of apoptosis, and the combination of EGFR inhibitors with an autophagy inducer might be beneficial. Thus, autophagy regulation represents a promising approach for improving the efficacy of EGFR inhibitors in the treatment of cancer patients.

  1. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier

    PubMed Central

    Wang, Xiangru; Maruvada, Ravi; Morris, Andrew J.; Liu, Jun O.; Baek, Dong Jae; Kim, Kwang Sik

    2016-01-01

    Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood–brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics. PMID:27711202

  2. Activating GNAS mutations in parosteal osteosarcoma.

    PubMed

    Carter, Jodi M; Inwards, Carrie Y; Jin, Long; Evers, Barbara; Wenger, Doris E; Oliveira, Andre M; Fritchie, Karen J

    2014-03-01

    Parosteal osteosarcoma is a surface-based osteosarcoma that often exhibits deceptively bland cytologic features, hindering diagnosis in small biopsies or when correlative radiologic imaging is not readily available. A number of benign and malignant fibro-osseous lesions, including fibrous dysplasia (FD) and low-grade central osteosarcoma, fall within the morphologic differential diagnosis of parosteal osteosarcoma. Somatic mutations in GNAS, encoding the α-subunit of the heterotrimeric G protein complex (Gsα), occur in FD and McCune-Albright syndrome but have not been reported in parosteal osteosarcoma. We evaluated GNAS mutational status in parosteal osteosarcoma and several of its histologic mimics to determine its utility in differentiating these entities. Eleven of 14 (79%) FD cases had GNAS mutations within codon 201 (5 R201C and 6 R201H mutations). GNAS mutations were not detected in any cases of adamantinoma or osteofibrous dysplasia. Direct sequencing of 9 parosteal osteosarcomas, including 3 of low grade and 6 with dedifferentiation, revealed activating GNAS mutations in 5 cases (55%), distributed as 4 R201C-mutated tumors and 1 tumor with an R201H mutation. GNAS codon 227 mutations were not detected in any of the cases. There was no association between GNAS mutational status and patient demographics, histologic dedifferentiation, or clinical outcome. To our knowledge, we report the first series of parosteal osteosarcomas harboring activating GNAS mutations. Our data suggest that GNAS mutational status may have limited utility as an ancillary technique in differentiating benign and malignant fibro-osseous lesions of the bone.

  3. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts.

    PubMed

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-02-07

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study.

  4. Carcinoma cells induce lumen filling and EMT in epithelial cells through soluble E-cadherin-mediated activation of EGFR

    PubMed Central

    Patil, Pratima U.; D'Ambrosio, Julia; Inge, Landon J.; Mason, Robert W.; Rajasekaran, Ayyappan K.

    2015-01-01

    ABSTRACT In epithelial cancers, carcinoma cells coexist with normal cells. Although it is known that the tumor microenvironment (TME) plays a pivotal role in cancer progression, it is not completely understood how the tumor influences adjacent normal epithelial cells. In this study, a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) was used to demonstrate that carcinoma cells sequentially induce preneoplastic lumen filling and epithelial–mesenchymal transition (EMT) in epithelial cysts. MMP-9 secreted by carcinoma cells cleaves cellular E-cadherin (encoded by CDH1) from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein. We show that sE-cad induces EGFR activation, resulting in lumen filling in MDCK cysts. Long-term sE-cad treatment induced EMT. sE-cad caused lumen filling by induction of the ERK signaling pathway and triggered EMT through the sustained activation of the AKT pathway. Although it is known that sE-cad induces MMP-9 release and consequent EGFR activation in tumor cells, our results, for the first time, demonstrate that carcinoma cells can induce sE-cad shedding in adjacent epithelial cells, which leads to EGFR activation and the eventual transdifferentiation of the normal epithelial cells. PMID:26483386

  5. Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains.

    PubMed

    Rimoldi, Valeria; Reversi, Alessandra; Taverna, Elena; Rosa, Patrizia; Francolini, Maura; Cassoni, Paola; Parenti, Marco; Chini, Bice

    2003-09-04

    We have recently shown that oxytocin inhibits cell proliferation when the vast majority of oxytocin receptors are excluded from caveolin-1-enriched microdomains, and that, on the contrary, it has a mitogenic effect when the receptors are targeted to these plasma membrane domains. In this study, we investigated whether the receptors located inside and outside caveolar microdomains initiate different signalling pathways and how this may lead to opposite effects on cell proliferation. Our data indicate that, depending on their localization, oxytocin receptors transactivate EGFR and activate ERK1/2 using different signalling intermediates. The final outcome is a different temporal pattern of EGFR and ERK1/2 phosphorylation, which is more persistent when the receptors are located outside caveolar microdomains and inhibit cell growth, and very transient when they are located in caveolar microdomains and stimulate cell growth. Finally, only the activation of receptors located outside caveolar microdomains correlates with the activation of the cell cycle inhibitor p21(WAF1/CIP1), thus suggesting that the antiproliferative OTR effects may, in this case, be achieved by a sustained activation of EGFR and MAPK leading to the induction of this cell cycle regulator.

  6. Mechanisms underlying skin disorders induced by EGFR inhibitors

    PubMed Central

    Holcmann, Martin; Sibilia, Maria

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently mutated or overexpressed in a large number of tumors such as carcinomas or glioblastoma. Inhibitors of EGFR activation have been successfully established for the therapy of some cancers and are more and more frequently being used as first or later line therapies. Although the side effects induced by inhibitors of EGFR are less severe than those observed with classic cytotoxic chemotherapy and can usually be handled by out-patient care, they may still be a cause for dose reduction or discontinuation of treatment that can reduce the effectiveness of antitumor therapy. The mechanisms underlying these cutaneous side effects are only partly understood. Important questions, such as the reasons for the correlation between the intensity of the side effects and the efficiency of treatment with EGFR inhibitors, remain to be answered. Optimized adjuvant strategies to accompany anti-EGFR therapy need to be found for optimal therapeutic application and improved quality of life of patients. Here, we summarize current literature on the molecular and cellular mechanisms underlying the cutaneous side effects induced by EGFR inhibitors and provide evidence that keratinocytes are probably the optimal targets for adjuvant therapy aimed at alleviating skin toxicities. PMID:27308503

  7. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    PubMed

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2016-12-16

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism.Experimental Design: We used EGFR-mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR.Results:EGFR-mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR-mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR-T790M mutations.Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR-mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 1-11. ©2016 AACR.

  8. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR

    PubMed Central

    Vizoso, Miguel; Ferreira, Humberto J; Lopez-Serra, Paula; Javier Carmona, F; Martínez-Cardús, Anna; Girotti, Maria Romina; Villanueva, Alberto; Guil, Sonia; Moutinho, Catia; Liz, Julia; Portela, Anna; Heyn, Holger; Moran, Sebastian; Vidal, August; Martinez-Iniesta, Maria; Manzano, Jose L; Fernandez-Figueras, Maria Teresa; Elez, Elena; Muñoz-Couselo, Eva; Botella-Estrada, Rafael; Berrocal, Alfonso; Pontén, Fredrik; van den Oord, Joost; Gallagher, William M; Frederick, Dennie T; Flaherty, Keith T; McDermott, Ultan; Lorigan, Paul; Marais, Richard; Esteller, Manel

    2016-01-01

    Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors. PMID:26030178

  9. Pinin facilitated proliferation and metastasis of colorectal cancer through activating EGFR/ERK signaling pathway

    PubMed Central

    Zhu, Xianjun; Wang, Yutian; Xu, Zhuoluo; Luo, Jun; Wang, Da; Guo, Weihong; Li, Xiaomei; Xin, Sainan; Yu, Jiang; Li, Guoxin

    2016-01-01

    Increasing emphasis has been put on the influence of desmosome related proteins on progress of colorectal cancer (CRC). Pinin (PNN) is a desmosome-associated molecule that has been reported its overexpression could increase desmoglein 2 (DSG2) and E-cadherin (E-ca) levels. However, it was documented that DSG2 and E-ca had opposite functions in CRC. Thus, we attempted to elucidate function and mechanism of PNN in CRC. Herein, we revealed that overexpression of PNN was significantly correlated with the aggressive characteristics and indicated poor overall survival of CRC patients. In addition, the proliferation, invasion in vitro, and tumorigenic growth, metastasis in vivo were also promoted by the up-regulation of PNN. It was also verified that up-regulation of PNN increased the expression of DSG2 and activated the EGFR/ERK signaling pathway. Our findings suggested that PNN, as a valuable marker of prognosis, has important influence on the progression of CRC. PMID:27107420

  10. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer.

    PubMed

    Babic, Ivan; Anderson, Erik S; Tanaka, Kazuhiro; Guo, Deliang; Masui, Kenta; Li, Bing; Zhu, Shaojun; Gu, Yuchao; Villa, Genaro R; Akhavan, David; Nathanson, David; Gini, Beatrice; Mareninov, Sergey; Li, Rui; Camacho, Carolina Espindola; Kurdistani, Siavash K; Eskin, Ascia; Nelson, Stanley F; Yong, William H; Cavenee, Webster K; Cloughesy, Timothy F; Christofk, Heather R; Black, Douglas L; Mischel, Paul S

    2013-06-04

    Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full-length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism.

  11. Somatic mutation analysis of KRAS, BRAF, HER2 and PTEN in EGFR mutation-negative non-small cell lung carcinoma: determination of frequency, distribution pattern and identification of novel deletion in HER2 gene from Indian patients.

    PubMed

    Bhaumik, Sangeet; Ahmad, Firoz; Das, Bibhu Ranjan

    2016-10-01

    Somatic mutations of KRAS, BRAF, HER2, PTEN genes are the most important molecular markers after the EGFR gene mutation. The current study evaluated the frequency and distribution pattern of KRAS, BRAF, HER2, PTEN mutation in Indian non-small cell lung carcinoma patients. The frequency of KRAS, BRAF, HER2, PTEN mutations was 6.4 % (14/204), 1.5 % (3/204), 1.5 % (3/204), 0 % (0/204), respectively. KRAS, BRAF, HER2 mutations were more prevalent in males than in females. KRAS and HER2 showed a trend of a higher frequency of mutation in the age group of <60 years, whereas BRAF mutations were more frequent in the age group of ≥60 years. Sequencing analysis of KRAS gene revealed c.34G>T (G12C) (n = 8), c.35G>A (G12D) (n = 3), c.35G>T (G12 V) (n = 1) and c.34G>T (G12C)/c.41T>C (V14A) (n = 2) mutations. Three different BRAF mutations (L584P: n = 1, V600E: n = 1, K601E: n = 1) were detected. Two cases harboured c.2324_2325ins12 (ATACGTGATGGC duplication) in HER2 gene, and one case was positive for NG_007503.2 (NM_001005862.2):c.2218-4del. It is less certain, but still quite possible that this mutation will affect splicing as the deletion of one C actually brings in one additional purine into the region. In conclusion, the present study demonstrates an instance of diverse nature of KRAS, BRAF, HER2 and PTEN gene in Indian patients and confirms that the frequency of these gene mutations varies globally. To the best of our knowledge, this is the first Indian study to evaluate KRAS, BRAF, HER2 and PTEN gene mutations.

  12. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling

    PubMed Central

    Wu, Xiao-Qing; Wu, Bo; Xu, Liang; Jiang, Jian-Li; Li, Ling; Chen, Zhi-Nan

    2016-01-01

    Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer. PMID:27556697

  13. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    SciTech Connect

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua; Turchi, John J.; Zhang, Zhong-Yin

    2013-10-04

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.

  14. Integrated genomic analysis of colorectal cancer progression reveals activation of EGFR through demethylation of the EREG promoter

    PubMed Central

    Qu, X; Sandmann, T; Frierson, H; Fu, L; Fuentes, E; Walter, K; Okrah, K; Rumpel, C; Moskaluk, C; Lu, S; Wang, Y; Bourgon, R; Penuel, E; Pirzkall, A; Amler, L; Lackner, M R; Tabernero, J; Hampton, G M; Kabbarah, O

    2016-01-01

    Key molecular drivers that underlie transformation of colonic epithelium into colorectal adenocarcinoma (CRC) are well described. However, the mechanisms through which clinically targeted pathways are activated during CRC progression have yet to be elucidated. Here, we used an integrative genomics approach to examine CRC progression. We used laser capture microdissection to isolate colonic crypt cells, differentiated surface epithelium, adenomas, carcinomas and metastases, and used gene expression profiling to identify pathways that were differentially expressed between the different cell types. We identified a number of potentially important transcriptional changes in developmental and oncogenic pathways, and noted a marked upregulation of EREG in primary and metastatic cancer cells. We confirmed this pattern of gene expression by in situ hybridization and observed staining consistent with autocrine expression in the tumor cells. Upregulation of EREG during the adenoma–carcinoma transition was associated with demethylation of two key sites within its promoter, and this was accompanied by an increase in the levels of epidermal growth factor receptor (EGFR) phosphorylation, as assessed by reverse-phase protein analysis. In CRC cell lines, we demonstrated that EREG demethylation led to its transcriptional upregulation, higher levels of EGFR phosphorylation, and sensitization to EGFR inhibitors. Low levels of EREG methylation in patients who received cetuximab as part of a phase II study were associated with high expression of the ligand and a favorable response to therapy. Conversely, high levels of promoter methylation and low levels of EREG expression were observed in tumors that progressed after treatment. We also noted an inverse correlation between EREG methylation and expression levels in several other cancers, including those of the head and neck, lung and bladder. Therefore, we propose that upregulation of EREG expression through promoter demethylation

  15. EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity

    PubMed Central

    2005-01-01

    We previously found that EGF (epidermal growth factor) increases the EGFR (EGF receptor) kinase-binding affinity towards the major tyrosine phosphorylation sites in downstream adaptor proteins such as Gab1 (Grb2-associated binding protein 1) and Shc [Src homology 2 (SH2) domain and collagen containing protein], but not that towards EGFR autophosphorylation sites [Fan, Wong, Deb and Johnson (2004) J. Biol. Chem. 279, 38143–38150]. EGFR activation can also result in transphosphorylation of tyrosine resides in the C-terminal region of the related receptors ErbB2, ErbB3 and ErbB4 in heterodimers which are formed upon ligand stimulation. In the present study, we investigated the specificity of EGFR kinase by comparing the steady state kinetic parameters for peptides derived from all four ErbBs in the absence or presence of EGF. Our results demonstrated that (i) EGFR kinase can efficiently phosphorylate a broad range of diverse peptide sequences representing ErbB sites; (ii) certain ErbB2, ErbB3 and ErbB4 sites had higher specificity constants than any EGFR sequence and (iii) EGF stimulation consistently increases the kcat approx. 5-fold, but does not significantly alter the Km for any ErbB peptides. Furthermore, peptides containing lysine at position −2 or −3 N-terminal to the target tyrosine were found to be poor EGFR kinase substrates, and substitution of these lysines with glutamine decreased the Km and increased the kcat for these substrates. We conclude that EGFR kinase-mediated ErbB transphosphorylations are mostly controlled at the level of oligomerization, and not by a preference of the EGFR kinase for phosphorylation sites in any particular ErbB. The results also demonstrated that, unlike phosphorylation sites in select downstream targets, EGF does not regulate the recognition of phosphorylation sites in the C-terminal region of any of the ErbBs. PMID:16122376

  16. Balancing protein stability and activity in cancer: a new approach for identifying driver mutations affecting CBL ubiquitin ligase activation

    PubMed Central

    Li, Minghui; Kales, Stephen C.; Ma, Ke; Shoemaker, Benjamin A.; Crespo-Barreto, Juan; Cangelosi, Andrew L.; Lipkowitz, Stanley; Panchenko, Anna R.

    2015-01-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved depicting the protein at different stages of its activation cycle and thus provide mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than did random non-cancer mutations. We further tested the ability of these computational models assessing the changes in CBL stability and its binding to ubiquitin conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two-thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  17. Interferon-α inducible protein 6 impairs EGFR activation by CD81 and inhibits hepatitis C virus infection.

    PubMed

    Meyer, Keith; Kwon, Young-Chan; Liu, Shuanghu; Hagedorn, Curt H; Ray, Ratna B; Ray, Ranjit

    2015-03-11

    Viral entry requires co-operative interactions of several host cell factors. Interferon (IFN) and the IFN-stimulated genes (ISGs) play a central role in antiviral responses against hepatitis C virus (HCV) infection. We examined the effect of interferon-α inducible protein 6 (IFI6) against HCV infection in human hepatoma cells. HCV RNA level or infectious foci were inhibited significantly by ectopic expression of IFI6. IFI6 impaired CD81 co-localization with claudin-1 (CLDN1) upon HCV infection or CD81 cross-linking by specific antibody. Activation of epidermal growth factor receptor (EGFR), a co-factor involved in CD81/CLDN1 interactions, was reduced in IFI6 expressing cells in response to HCV infection or CD81 cross linking by antibody, but not by treatment with EGF. Taken together, the results from our study support a model where IFI6 inhibits HCV entry by impairing EGFR mediated CD81/CLDN1 interactions. This may be relevant to other virus entry processes employing EGFR.

  18. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    SciTech Connect

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  19. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  20. Model-based Analysis of HER Activation in Cells Co-Expressing EGFR, HER2 and HER3.

    SciTech Connect

    Shankaran, Harish; Zhang, Yi; Tan, Yunbing; Resat, Haluk

    2013-08-22

    The HER/ErbB family of receptor tyrosine kinases drive critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of epithelial cells lines with known HER expression levels. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1/1 and HER1/2 dimers, and not HER1/3 dimers, ii) HER1/2 and HER2/3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2/3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.

  1. [Clinical Research of EGFR and KRAS Mutation in Fine Needle Aspiration Cytology Specimens of Non-small Cell Lung Carcinoma].

    PubMed

    Zhang, Zhihui; Wu, Xilan; Ying, Jianming; Li, Junling; Qiu, Tian; Guo, Huiqin; Zhao, Huan; Shan, Ling; Ling, Yun

    2015-04-01

    背景与目的 肺癌患者靶向药物治疗前,需要检测表皮生长因子受体(epidermal growth factor receptor, EGFR)和KRAS基因是否突变。本研究旨在探讨细针吸取悬浮液标本检测非小细胞肺癌EGFR、KRAS基因突变的意义。方法 细胞学悬浮液标本,Real-time PCR法检测EGFR 18-21号外显子,KRAS 2号外显子12、13密码子突变。结果 检测85例肺癌转移淋巴结针吸标本,EGFR突变率37.3%,KRAS突变率7.2%。19例组织切片标本,与细胞学结果一致(kappa=1.0)。13例有EGFR突变,临床分期IV期患者, 使用酪氨酸激酶抑制剂治疗,2例完全缓解(complete remission, CR)(16.7%);8例部分缓解(partial remission, PR)(66.7%);3例最佳稳定疾病(stable disease, SD)(25.0%)。结论 细针吸取标本检测EGFR、KRAS基因突变,标本取材容易、简单、方便,具有较高的临床实用性。.

  2. Kras, Egfr, and Tp53 Mutations in B6C3F1/N Mouse and F344/NTac Rat Alveolar/Bronchiolar Carcinomas Resulting from Chronic Inhalation Exposure to Cobalt Metal.

    PubMed

    Hong, Hue-Hua L; Hoenerhoff, Mark J; Ton, Thai-Vu; Herbert, Ronald A; Kissling, Grace E; Hooth, Michelle J; Behl, Mamta; Witt, Kristine L; Smith-Roe, Stephanie L; Sills, Robert C; Pandiri, Arun R

    2015-08-01

    Rodent lung tumors are morphologically similar to a subtype of human lung adenocarcinomas. The objective of this study was to evaluate Kirsten rat sarcoma oncogene homolog (Kras), epidermal growth factor receptor (Egfr), and tumor protein 53 (Tp53) mutations, which are relevant to human lung cancer, in cobalt metal dust (CMD)-induced alveolar/bronchiolar tumors of B6C3F1/N mice and F344/NTac rats. Kras mutations were detected in 67% (mice) and 31% (rats) of CMD-induced lung tumors and were predominantly exon 1 codon 12 G to T transversions (80% in mice and 57% in rats). Egfr mutations were detected in 17% (both mice and rats) of CMD-induced lung tumors and were predominantly in exon 20 with 50% G to A transitions (mice and rats). Tp53 mutations were detected in 19% (mice) and 23% (rats) of CMD-induced lung tumors and were predominant in exon 5 (mice, 69% transversions) and exon 6 (rats, all transitions). No mutations were observed for these genes in spontaneous lung tumors or normal lungs from untreated controls. Ames assay indicated that CMD is mutagenic in the absence but not in the presence of S9 mix. Thus, the mutation data (G to T transversions) and Ames assay results suggest that oxidative damage to DNA may be a contributing factor in CMD-induced pulmonary carcinogenesis in rodents.

  3. Kras, Egfr, and Tp53 Mutations in B6C3F1/N Mouse and F344/NTac Rat Alveolar/Bronchiolar Carcinomas Resulting from Chronic Inhalation Exposure to Cobalt Metal

    PubMed Central

    Hong, Hue-Hua L.; Hoenerhoff, Mark J.; Ton, Thai-Vu; Herbert, Ronald A.; Kissling, Grace E.; Hooth, Michelle J.; Behl, Mamta; Witt, Kristine L.; Smith-Roe, Stephanie L.; Sills, Robert C.; Pandiri, Arun R.

    2015-01-01

    Rodent lung tumors are morphologically similar to a subtype of human lung adenocarcinomas. The objective of this study was to evaluate Kras, Egfr and Tp53 mutations, which are relevant to human lung cancer, in cobalt metal dust (CMD) induced alveolar/bronchiolar tumors of B6C3F1/N mice and F344/NTac rats. Kras mutations were detected in 67% (mice) and 31% (rats) of CMD-induced lung tumors, and were predominantly exon 1 codon 12 G to T transversions (80% in mice and 57% in rats). Egfr mutations were detected in 17% (both mice and rats) of CMD-induced lung tumors, and were predominantly in exon 20 with 50% G to A transitions (mice and rats). Tp53 mutations were detected in 19% (mice) and 23% (rats) of CMD-induced lung tumors and were predominantly in exon 5 (mice, 69% transversions) and exon 6 (rats, all transitions). No mutations were observed for these genes in spontaneous lung tumors or normal lungs from untreated controls. Ames assays indicated that CMD is mutagenic in the absence but not in the presence of S9 mix. Thus, the mutation data (G to T transversions) and Ames assay results suggest that oxidative damage to DNA may be a contributing factor in CMD-induced pulmonary carcinogenesis in rodents. PMID:26059825

  4. Transcriptome analysis of EGFR tyrosine kinase inhibitors resistance associated long noncoding RNA in non-small cell lung cancer.

    PubMed

    Ma, Pei; Zhang, Meiling; Nie, Fengqi; Huang, Zebo; He, Jing; Li, Wei; Han, Liang

    2017-03-01

    The non-small cell lung cancer (NSCLC) patients harbor mutations in the epidermal growth factor receptor (EGFR) can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib, and show improved progression-free survival. However, most of the patients who are initially responsive to EGFR TKIs with activating EGFR mutations eventually develop acquired resistance after long-term therapy, and are followed by disease progression. Recently, diverse mechanisms of acquired EGFR TKI resistance have been reported, but little is known about the role of long noncoding RNAs in EGFR TKIs resistance. To gain insight into the expression pattern and potential function of lncRNAs in NSCLC cells EGFR-TKI resistance, we analyzed expression patterns in EGFR-TKIs-resistant cell lines and compared it with their parental sensitive cell line by using gene profiling datasets from Gene Expression Omnibus (GEO). Then, the expression levels of five chose lncRNAs were validated in PC9-gefitinib resistant cells (PC9G) and sensitive cells by using real-time quantitative PCR (qPCR). Among of these five lncRNAs, CASC9 expression was upregulated in PC9G and knockdown of its expression could increase the sensitivity of PC9G cells to gefitinib, while EWAST1 (LINC00227) is downregulated in PC9G cells and overexpressed EWAST1 also lead to increased sensitivity of PC9G cells to gefitinib. As indicated by GO analysis, the CASC9 and EWAST1 co-expressed genes are involved in several important pathways including regulation of cell growth, regulation of cell apoptosis and Chromatin assembly. Taken together, dysregulated lncRNAs play critical roles in EGFR-TKIs resistant NSCLC cells and might be used as novel potential targets to reverse EGFR-TKI resistance for NSCLC patients.

  5. EGFR mutation of adenocarcinoma in congenital cystic adenomatoid malformation/congenital pulmonary airway malformation: a case report.

    PubMed

    Hasegawa, Mizue; Sakai, Fumikazu; Arimura, Ken; Katsura, Hideki; Koh, Eitetsu; Sekine, Yasuo; Hiroshima, Kenzo

    2014-03-01

    An 80-year-old man underwent right upper lobectomy for the resection of multiple cysts accompanied by a nodule. The pathological diagnosis was adenocarcinoma with surrounding atypical epithelial cell proliferation in a Type 1 congenital cystic adenomatoid malformation/congenital pulmonary airway malformation. There was epidermal growth factor receptor mutation in the adenocarcinoma and surrounding atypical epithelial cells that had proliferated. Malignant transformation of congenital cystic adenomatoid malformation/congenital pulmonary airway malformation may be related to the epidermal growth factor receptor pathway in this case, with atypical epithelial cell proliferation as a precursor. We emphasize the importance of complete resection of congenital cystic adenomatoid malformation/congenital pulmonary airway malformation and the possibility of treatment with epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor-mutated cases.

  6. Upregulated CTHRC1 promotes human epithelial ovarian cancer invasion through activating EGFR signaling.

    PubMed

    Ye, Jun; Chen, Wei; Wu, Zhi-Yong; Zhang, Jin-Hui; Fei, He; Zhang, Li-Wen; Wang, Ya-Hui; Chen, Ya-Ping; Yang, Xiao-Mei

    2016-12-01

    Epithelial ovarian cancer (EOC) is the major cause of deaths from gynecologic malignancies, and metastasis is the main cause of cancer related death. Collagen triple helix repeat containing-1 (CTHRC1) is a secreted protein that has the ability to inhibit collagen matrix synthesis. In this study, we found that high CTHRC1 expression was associated with poor prognosis of EOC. In vitro experiments showed that CTHRC1 promoted migration and invasion of ovarian cancer cells. CTHRC1 had no effect on ovarian cancer cells viability. Additionally, EGFR inhibitors reduced the promotion effects of CTHRC1 on EOC cell invasion. After silencing of CTHRC1, downregulated expression of phosphorylation of EGFR/ERK1/2/AKT was observed in ovarian cancer cells. Taken together, our results suggest a role for CTHRC1 in the progression of ovarian cancer and identified CTHRC1 as a potentially important predictor for human ovarian cancer prognosis.

  7. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    SciTech Connect

    Song, Xiulong Wei, Zhengxi; Shaikh, Zahir A.

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  8. EGFR gene deregulation mechanisms in lung adenocarcinoma: A molecular review.

    PubMed

    Tsiambas, Evangelos; Lefas, Alicia Y; Georgiannos, Stavros N; Ragos, Vasileios; Fotiades, Panagiotis P; Grapsa, Dimitra; Stamatelopoulos, Athanasios; Kavantzas, Nikolaos; Patsouris, Efstratios; Syrigos, Konstantinos

    2016-08-01

    For the last two decades, evolution in molecular biology has expanded our knowledge in decoding a broad spectrum of genomic imbalances that progressively lead normal cells to a neoplastic state and finally to complete malignant transformation. Concerning oncogenes and signaling transduction pathways mediated by them, identification of specific gene alterations remains a critical process for handling patients by applying targeted therapeutic regimens. The epidermal growth factor receptor (EGFR) signaling pathway plays a crucial role in regulating cell proliferation, differentiation and apoptosis in normal cells. EGFR mutations and amplification represent the gene's main deregulation mechanisms in cancers of different histo-genetic origin. Furthermore, intra-cancer molecular heterogeneity due to clonal rise and expansion mainly explains the variable resistance to novel anti-EGFR monoclonal antibody (mAb), and also tyrosine kinase inhibitors (TKIs). According to recently published 2015 WHO new classification, lung cancer is the leading cause of death related to cancer and its incidence is still on the increase worldwide. The majority of patients suffering from lung cancer are diagnosed with epithelial tumors (adenocarcinoma predominantly and squamous cell carcinoma represent ∼85% of all pathologically defined lung cancer cases). In those patients, EGFR-activating somatic mutations in exons 18/19/20/21 modify patients' sensitivity (i.e. exon 21 L858R, exon 19 LREA deletion) or resistance (ie exon 20 T790M and/or insertion) to TKI mediated targeted therapeutic strategies. Additionally, the role of specific micro-RNAs that affect EGFR regulation is under investigation. In the current review, we focused on EGFR gene/protein structural and functional aspects and the corresponding alterations that occur mainly in lung adenocarcinoma to critically modify its molecular landscape.

  9. Somatic mutations of the HER2 in metastatic breast cancer.

    PubMed

    Fang, Yi; Jiang, Yanxia; Wang, Xin; Yang, Xue; Gao, Yinqi; Wang, Jing

    2014-12-01

    Mutations in the epidermal growth factor receptor gene (EGFR) in lung cancers predict for sensitivity to EGFR kinase inhibitors. HER2 (also known as NEU, EGFR2, or ERBB2) is a member of the EGFR family of receptor tyrosine kinases and plays important roles in the pathogenesis of certain human cancers, and mutations have recently been reported in lung cancers. We sequenced the full length of HER2 in 198 metastatic breast cancers (MBC) as well as 34 other epithelial cancers (bladder, prostate, and colorectal cancers) and compared the mutational status with clinic pathologic features and the presence of EGFR or KRAS mutations. HER2 mutations were present in 11.6 % (23 of 198) of MBC and were absent in other types of cancers. HER2 mutations were located in exon 15 and the in-frame insertions in exon 20 with corresponding region as did EGFR insertions. HER2 mutations were significantly more frequent in patient after the administration of trastuzumab (34.8 %, 8 of 23; P = 0.02). Mutations in exon 15 and 20 were more potent than wild-type HER2 in associating with activating signal transducers and inducing survival, invasiveness, and tumorigenicity.

  10. ERK1/2 Mediate Wounding- and G-protein-Coupled Receptor Ligands–Induced EGFR Activation via Regulating ADAM17 and HB-EGF Shedding

    PubMed Central

    Yin, Jia; Yu, Fu-Shin X.

    2013-01-01

    Purpose Previous studies have shown that wounding of human corneal epithelial cells (HCECs) results in the release of G-protein-coupled receptor ligands such as ATP and lysophosphatidic acid (LPA), which in turn transactivate epidermal growth factor (EGF) receptor (EGFR) through ectodomain shedding of heparin-binding EGF-like growth factor (HB-EGF). In the present study, the role of extracellular signal-regulated kinases 1/2 (ERK1/2) in regulating EGFR transactivation was investigated. Methods SV40-immortalized HCECs were wounded or stimulated with ATP and LPA. EGFR and ADAM17 activation was analyzed by immunoprecipitation followed by Western blot analysis with phospho-tyrosine or phospho-serine antibodies, respectively. Phosphorylation of ERK and AKT was analyzed by Western blot analysis. HB-EGF shedding was assessed by measuring the release of alkaline phosphatase (AP) in a stably transfected human corneal epithelial (THCE) cell line expressing HB-EGF-AP. ADAM17 and ERK interaction was determined by coimmunoprecipitation. Results Early, but not late, ERK1/2 phosphorylation in response to wounding, LPA, and ATP was EGFR independent, but sensitive to the inhibitors of calcium influx, protein kinase C and Src kinase. Wounding-, LPA-, and ATP-induced HB-EGF shedding and EGFR activation were attenuated by the MAPK/ERK kinase (MEK) inhibitors PD98059 and U0126, as well as by ADAM10 and -17 inhibitors. ADAM17 was found to be physically associated with active ERK and phosphorylated at serine residues in an ERK-dependent manner in wounded cells. Conclusions Taken together, our data suggest that in addition to functioning as an EGFR downstream effector, ERK1/2 also mediates ADAM-dependent HB-EGF shedding and subsequent EGFR transactivation in response to a variety of stimuli, including wounding and GPCR ligands. PMID:18658095

  11. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways.

    PubMed

    Xia, Wenle; Mullin, Robert J; Keith, Barry R; Liu, Lei-Hua; Ma, Hong; Rusnak, David W; Owens, Gary; Alligood, Krystal J; Spector, Neil L

    2002-09-12

    Dual EGFR/erbB2 inhibition is an attractive therapeutic strategy for epithelial tumors, as ligand-induced erbB2/EGFR heterodimerization triggers potent proliferative and survival signals. Here we show that a small molecule, GW572016, potently inhibits both EGFR and erbB2 tyrosine kinases leading to growth arrest and/or apoptosis in EGFR and erbB2-dependent tumor cell lines. GW572016 markedly reduced tyrosine phosphorylation of EGFR and erbB2, and inhibited activation of Erk1/2 and AKT, downstream effectors of proliferation and cell survival, respectively. Complete inhibition of activated AKT in erbB2 overexpressing cells correlated with a 23-fold increase in apoptosis compared with vehicle controls. EGF, often elevated in cancer patients, did not reverse the inhibitory effects of GW572016. These observations were reproduced in vivo, where GW572016 treatment inhibited activation of EGFR, erbB2, Erk1/2 and AKT in human tumor xenografts. Erk1/2 and AKT represent potential biomarkers to assess the clinical activity of GW572016. Inhibition of activated AKT in EGFR or erbB2-dependent tumors by GW572016 may lead to tumor regressions when used as a monotherapy, or may enhance the anti-tumor activity of chemotherapeutics, since constitutive activation of AKT has been linked to chemo-resistance.

  12. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    SciTech Connect

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.

  13. EGFR and Notch signaling respectively regulate proliferative activity and multiple cell lineage differentiation of Drosophila gastric stem cells.

    PubMed

    Wang, Chenhui; Guo, Xingting; Xi, Rongwen

    2014-05-01

    Quiescent, multipotent gastric stem cells (GSSCs) in the copper cell region of adult Drosophila midgut can produce all epithelial cell lineages found in the region, including acid-secreting copper cells, interstitial cells and enteroendocrine cells, but mechanisms controlling their quiescence and the ternary lineage differentiation are unknown. By using cell ablation or damage-induced regeneration assays combined with cell lineage tracing and genetic analysis, here we demonstrate that Delta (Dl)-expressing cells in the copper cell region are the authentic GSSCs that can self-renew and continuously regenerate the gastric epithelium after a sustained damage. Lineage tracing analysis reveals that the committed GSSC daughter with activated Notch will invariably differentiate into either a copper cell or an interstitial cell, but not the enteroendocrine cell lineage, and loss-of-function and gain-of-function studies revealed that Notch signaling is both necessary and sufficient for copper cell/interstitial cell differentiation. We also demonstrate that elevated epidermal growth factor receptor (EGFR) signaling, which is achieved by the activation of ligand Vein from the surrounding muscle cells and ligand Spitz from progenitor cells, mediates the regenerative proliferation of GSSCs following damage. Taken together, we demonstrate that Dl is a specific marker for Drosophila GSSCs, whose cell cycle status is dependent on the levels of EGFR signaling activity, and the Notch signaling has a central role in controlling cell lineage differentiation from GSSCs by separating copper/interstitial cell lineage from enteroendocrine cell lineage.

  14. High EGFR gene copy number predicts poor outcome in triple-negative breast cancer.

    PubMed

    Park, Heae Surng; Jang, Min Hye; Kim, Eun Joo; Kim, Hyun Jeong; Lee, Hee Jin; Kim, Yu Jung; Kim, Jee Hyun; Kang, Eunyoung; Kim, Sung-Won; Kim, In Ah; Park, So Yeon

    2014-09-01

    Epidermal growth factor receptor (EGFR) is frequently overexpressed in triple-negative breast cancer and is emerging as a therapeutic target. EGFR gene copy number alteration and mutation are highly variable and scientists have been challenged to define their prognostic significance in triple-negative breast cancer. We examined EGFR protein expression, EGFR gene copy number alteration and mutation of exon 18 to 21 in 151 cases of triple-negative breast cancer and correlated these findings with clinical outcomes. In addition, intratumoral agreement of EGFR protein overexpression and gene copy number alteration was evaluated. EGFR overexpression was found in 97 of 151 cases (64%) and high EGFR gene copy number was detected in 50 cases (33%), including 3 gene amplification (2%) and 47 high polysomy (31%). Five EGFR mutations were detected in 4 of 151 cases (3%) and included G719A in exon 18 (n=1), V786M in exon 20 (n=1), and L858R in exon 21 (n=3). One case had two mutations (G719A and L858R). High EGFR copy number, but not EGFR mutation, correlated with EGFR protein overexpression. Intratumoral heterogeneity of EGFR protein overexpression and EGFR copy number alteration was not significant. In survival analyses, high EGFR copy number was found to be an independent prognostic factor for poor disease-free survival in patients with triple-negative breast cancer. Our findings showed that EGFR mutation was a rare event, but high EGFR copy number was relatively frequent and correlated with EGFR overexpression in triple-negative breast cancer. Moreover, high EGFR copy number was associated with poor clinical outcome in triple-negative breast cancer, suggesting that evaluation of EGFR copy number may be useful for predicting outcomes in patients with triple-negative breast cancer and for selecting patients for anti-EGFR-targeted therapy.

  15. Met Receptor Acts Uniquely for Survival and Morphogenesis of EGFR-Dependent Normal Mammary Epithelial and Cancer Cells

    PubMed Central

    Bersani, Francesca; Quaglino, Elena; Martignani, Eugenio; Baratta, Mario

    2012-01-01

    Mammary gland development and breast cancer growth require multiple factors both of endocrine and paracrine origin. We analyzed the roles of Epidermal Growth Factor Receptor (EGFR) and Hepatocyte Growth Factor Receptor (Met) in mammary epithelial cells and mammary tumor cells derived from a mutated-ErbB2 transgenic mice. By using highly specific tyrosine kinase inhibitors we found that MCF-10A and NMuMG mammary epithelial cell lines are totally dependent on EGFR activation for their growth and survival. Proliferation and 3D-morphogenesis assays showed that HGF had no role in maintaining mammary cell viability, but was the only cytokine able to rescue EGFR-inhibited mammary cells. Insulin-Like Growth Factor-I (IGF-I), basic-Fibroblast Growth Factor (b-FGF) and Neuregulin, which are well known mammary morphogenic factors, did not rescue proliferation or morphogenesis in these cell lines, following EGFR inhibition. Similarly, ErbB2-driven tumor cells are EGFR-dependent and also display HGF-mediated rescue. Western-blot analysis of the signaling pathways involved in rescue after EGFR inhibition indicated that concomitant ERK1/2 and AKT activation was exclusively driven by Met, but not by IGF-I or b-FGF. These results describe a unique role for EGFR and Met in mammary epithelial cells by showing that similar pathways can be used by tumorigenic cells to sustain growth and resist to EGFR-directed anti-tumorigenic drugs. PMID:23028720

  16. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary.

    PubMed

    Jordan, Katherine C; Hatfield, Steven D; Tworoger, Michael; Ward, Ellen J; Fischer, Karin A; Bowers, Stuart; Ruohola-Baker, Hannele

    2005-03-01

    Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome-wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS-caEGFR), and an activated form of the signal transducer Raf (UAS-caRaf); we also over- or ectopically expressed the downstream homeobox transcription factor Mirror (UAS-mirr) and the ligand-activating serine protease Rhomboid (UAS-rho). To reduce pathway activity we used loss-of-function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain-of-function and loss-of-function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways.

  17. EGFR tyrosine kinase targeted compounds: in vitro antitumor activity and molecular modeling studies of new benzothiazole and pyrimido[2,1-b]benzothiazole derivatives.

    PubMed

    Gabr, Moustafa T; El-Gohary, Nadia S; El-Bendary, Eman R; El-Kerdawy, Mohamed M

    2014-01-01

    In this study, we illustrate computer aided drug design of new benzothiazole and pyrimido[2,1-b]benzothiazole derivatives as epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors. Compounds 1-5 were screened at NCI, USA, for antitumor activity against non-small cell lung cancer (NCI-H522), colon cancer (HCT-116, HCT-15 and HT29) and breast cancer (MDA-MB-468 and MDA-MB-231/ATCC) cell lines in which EGFR is overexpressed in varying levels. Results indicated that these compounds are more potent antitumor agents compared to erlotinib against HT29 and MDA-MB-231/ATCC cell lines. Compound 3 showed GI50 value of 22.3 nM against NCI-H522 cell line, while erlotinib exhibited GI50 value of 1 µM against the same cell line. In addition, these compounds were studied for their EGFR tyrosine kinase inhibitory activity. Virtual screening utilizing molecular modeling and QSAR techniques enabled the understanding of the pharmacophoric requirements for antitumor activity. Docking the designed compounds into the ATP binding site of EGFR-TK domain was done to predict the analogous binding mode of these compounds to the EGFR-TK inhibitors.

  18. EGFR tyrosine kinase targeted compounds: in vitro antitumor activity and molecular modeling studies of new benzothiazole and pyrimido[2,1-b]benzothiazole derivatives

    PubMed Central

    Gabr, Moustafa T.; El-Gohary, Nadia S; El-Bendary, Eman R.; El-Kerdawy, Mohamed M.

    2014-01-01

    In this study, we illustrate computer aided drug design of new benzothiazole and pyrimido[2,1-b]benzothiazole derivatives as epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors. Compounds 1-5 were screened at NCI, USA, for antitumor activity against non-small cell lung cancer (NCI-H522), colon cancer (HCT-116, HCT-15 and HT29) and breast cancer (MDA-MB-468 and MDA-MB-231/ATCC) cell lines in which EGFR is overexpressed in varying levels. Results indicated that these compounds are more potent antitumor agents compared to erlotinib against HT29 and MDA-MB-231/ATCC cell lines. Compound 3 showed GI50 value of 22.3 nM against NCI-H522 cell line, while erlotinib exhibited GI50 value of 1 µM against the same cell line. In addition, these compounds were studied for their EGFR tyrosine kinase inhibitory activity. Virtual screening utilizing molecular modeling and QSAR techniques enabled the understanding of the pharmacophoric requirements for antitumor activity. Docking the designed compounds into the ATP binding site of EGFR-TK domain was done to predict the analogous binding mode of these compounds to the EGFR-TK inhibitors. PMID:26417284

  19. 6-Aryl and heterocycle quinazoline derivatives as potent EGFR inhibitors with improved activity toward gefitinib-sensitive and -resistant tumor cell lines.

    PubMed

    Hamed, Mostafa M; Abou El Ella, Dalal A; Keeton, Adam B; Piazza, Gary A; Abadi, Ashraf H; Hartmann, Rolf W; Engel, Matthias

    2013-09-01

    A group of novel anilinoquinazoline derivatives with variable aryl and heterocyclic substituents at position 6 were synthesized and tested for their EGFR-inhibitory activity. Aryl and heterocyclic rings were attached to the quinazoline scaffold through different linkages such as imine, amide, and thiourea. Most of the aryl and heterocyclic derivatives showed potent inhibition of wild-type EGFR with IC₅₀ values in the low nanomolar range. Among these, thiourea derivatives 6 a, 6 b and compound 10 b also retained significant activity toward the gefitinib-insensitive EGFR(T790M/L858R) mutant, displaying up to 24-fold greater potency than gefitinib. In addition, cell growth inhibitory activity was tested against cancer cell lines with wild-type (KB cells) and mutant EGFR (H1975 cells). Several compounds including 6 a were found to be more potent than the reference compound gefitinib toward both cell lines, as was the case for compound 10 b against H1975 cells. Therefore, compounds 6 a and 10 b in particular may serve as new leads for the development of inhibitors effective against wild-type EGFR as well as gefitinib-resistant mutants.

  20. Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases

    PubMed Central

    Zhang, Guowei; Cheng, Ruirui; Zhang, Zengli; Jiang, Tao; Ren, Shengxiang; Ma, Zhiyong; Zhao, Sha; Zhou, Caicun; Zhang, Jun

    2017-01-01

    Whether bisphosphonates could enhance the effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) in non-small-cell lung cancer (NSCLC) patients with EGFR mutation and bone metastases (BM) remains unknown. EGFR mutation status were collected from 1560 patients with NSCLC and BM. 356 NSCLC patients with EGFR mutation and BM were identified. Among them, 91 patients received EGFR-TKIs alone and 105 patients received EGFR-TKIs plus bisphosphonates as first-line therapy. Comparing to TKIs alone, EGFR-TKIs plus bisphosphonates had a statistically significant longer progression-free survival (PFS: 11.6 vs. 9.3 months; HR = 0.68, P = 0.009), while a similar overall survival (OS: 20.5 vs. 19.5 months; HR = 0.95, P = 0.743) in patients with EGFR-mutant NSCLC and BM. The incidence of skeletal-related events in combined group was numerically lower than that in EGFR-TKIs alone group (29.7% vs. 39.4%, P = 0.147). In multivariate analysis, EGFR mutation was found to be a significant independent prognostic factor for OS in NSCLC patients with BM (HR = 0.710, P = 0.021). In conclusion, EGFR mutation was the significant independent prognostic factor for OS and the addition of bisphosphonates to EGFR-TKIs could enhance the antitumor effect of EGFR-TKIs in patients with EGFR-mutant NSCLC and BM. PMID:28211502

  1. INHIBITION OF PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    EPA Science Inventory

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden particulate matter inhibits protein tyrosine phosphatase activity in HAEC and leads to Src-dependent activation of EGFR sign...

  2. EGFR genomic alterations in cancer: prognostic and predictive values.

    PubMed

    Bronte, Giuseppe; Terrasi, Marianna; Rizzo, Sergio; Sivestris, Nicola; Ficorella, Corrado; Cajozzo, Massimo; Di Gaudio, Francesca; Gulotta, Gaspare; Siragusa, Sergio; Gebbia, Nicola; Russo, Antonio

    2011-06-01

    The role of EGFR in cancer development and progression has been recognized for long time in a variety of human malignancies including lung, head and neck, colon, breast, ovary and glioma. Recently its role as a target of antineoplastic agents has also been identified and a variety of EGFR-targeted drugs is already being used in a clinical setting and others are at present under investigation. Many data involving EGFR protein expression are now available for the choice of anti-EGFR monoclo