Sample records for activating enzyme e1

  1. A cascading activity-based probe sequentially targets E1E2–E3 ubiquitin enzymes

    PubMed Central

    Mulder, Monique P.C.; Witting, Katharina; Berlin, Ilana; Pruneda, Jonathan N.; Wu, Kuen-Phon; Chang, Jer-Gung; Merkx, Remco; Bialas, Johanna; Groettrup, Marcus; Vertegaal, Alfred C.O.; Schulman, Brenda A.; Komander, David; Neefjes, Jacques; Oualid, Farid El; Ovaa, Huib

    2016-01-01

    Post-translational modifications of proteins with ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers, orchestrated by a cascade of specialized E1, E2 and E3 enzymes, control a staggering breadth of cellular processes. To monitor catalysis along these complex reaction pathways, we developed a cascading activity-based probe, UbDha. Akin to the native Ub, upon ATP-dependent activation by the E1, UbDha can travel downstream to the E2 (and subsequently E3) enzymes through sequential trans-thioesterifications. Unlike the native Ub, at each step along the cascade UbDha has the option to react irreversibly with active site cysteine residues of target enzymes, thus enabling their detection. We show that our cascading probe ‘hops’ and ‘traps’ catalytically active ubiquitin-modifying enzymes (but not their substrates) by a mechanism diversifiable to Ubls. Our founder methodology, amenable to structural studies, proteome-wide profiling and monitoring of enzymatic activities in living cells, presents novel and versatile tools to interrogate the Ub/Ubl cascades. PMID:27182664

  2. Evolution of the ubiquitin-activating enzyme Uba1 (E1)

    NASA Astrophysics Data System (ADS)

    Allan, Douglas C.; Phillips, J. C.

    2017-10-01

    Ubiquitin tags diseased proteins and initiates an enzyme conjugation cascade, which has three stages. The first-stage enzyme Uba1 (E1) has evolved only modestly from slime mold to humans, and is > 14 times larger than Ub. Here we use critical point thermodynamic scaling theory to connect Uba1 (E1) evolution from yeast and slime mold to fruit flies and humans to subtle changes in its amino acid sequences.

  3. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jiazhang; Sheedlo, Michael J.; Yu, Kaiwen

    Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or asmore » enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. The E1/E2-independent ubiquitination catalyzed by these enzymes requires NAD but not ATP and Mg2+. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. These results establish that ubiquitination can be catalyzed by a single enzyme.« less

  4. Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis

    PubMed Central

    Mugoni, Vera; Postel, Ruben; Catanzaro, Valeria; De Luca, Elisa; Turco, Emilia; Digilio, Giuseppe; Silengo, Lorenzo; Murphy, Michael P.; Medana, Claudio; Stainier, Didier Y.R.; Bakkers, Jeroen; Santoro, Massimo M.

    2013-01-01

    Summary Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity. PMID:23374346

  5. The interaction of the Eco R1 restriction enzyme E.coli with nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollis, Donald F.

    1979-11-01

    The Eco R1 restriction enzyme can be shown to be inhibited by nucleotides which correspond to any part of its known site of phosphodiesterase activity. A series of di-, tetra-, and hexa-nucleotide fragments were synthesized and their effect on the activity of the enzyme upon superhelical Co1 E1 DNA studied. The inhibition caused by the individual mononucleotides were also studied. In general all the nucleotide fragments showed some form of interaction with the enzyme system. Tetranucleotides were stronger inhibitors than dinucleotides, which in turn were stronger inhibitors than the mononucleotides. Within each category of inhibitors, those containing the phosphodiester bondmore » which is acted upon by the enzyme were the strongest inhibitors. Only those fragments which were consistent with the enzymes site of activity showed competitive inhibition kinetics. Nucleotides which do not fit within the site of phosphodiesterase activity show non-competitive inhibition kinetics.« less

  6. Activation mechanism of erythrocyte cathepsin E. evidence for the occurrence of the membrane-associated active enzyme.

    PubMed

    Ueno, E; Sakai, H; Kato, Y; Yamamoto, K

    1989-06-01

    Activation of the erythrocyte cathepsin E located on the cytoplasmic surface of the membrane in a latent form was studied in stripped inside-out membrane vesicles prepared from human erythrocyte membranes. Incubation of the vesicles at 40 degrees C at pH 4 resulted in increased degradation of the membrane proteins, especially band 3. This proteolysis was selectively inhibited by the inclusion of pepstatin (isovaleryl-Val-Val-statyl-Ala-statine) or H 297 [Pro-Thr-Glu-Phe(CH2-NH)Nle-Arg-Leu] in the incubation mixtures, indicating that cathepsin E, as the only aspartic proteinase in erythrocytes, is responsible for the proteolysis. Two potential active-site-directed inhibitors of aspartic proteinases, pepstatin and H 297, were used to prove the occurrence of the membrane-associated active enzyme. To minimize potential errors arising from non-specific binding, the concentrations of the inhibitors used in the binding assay (pepstatin, 5 x 10(-8) M; H 297, 1 x 10(-5) M) were determined by calibration for purified and membrane-associated cathepsin E. The inhibition of the membrane-associated cathepsin E by each inhibitor, which showed the binding of the inhibitor to the activated enzyme, was temperature- and time-dependent. The binding of each inhibitor to the enzyme on the exposed surface of the membrane at pH 4 was highly specific, saturable, and reversible. The present study thus provides the first evidence that cathepsin E tightly bound to the membrane is converted to the active enzyme in the membrane-associated form, and suggests that this enzyme may be responsible for the degradation of band 3.

  7. OTUB1 Co-opts Lys48-Linked Ubiquitin Recognition to Suppress E2 Enzyme Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Yu-Chi; Landry, Marie-Claude; Sanches, Mario

    2012-03-26

    Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibitedmore » E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.« less

  8. E2 potentializes benzo(a)pyrene-induced hepatic cytochrome P450 enzyme activities in Nile tilapia at high concentrations.

    PubMed

    Rodrigues, Aline Cristina Ferreira; Moneró, Tatiana de Oliveira; Frighetto, Rosa Toyoko Shiraishi; de Almeida, Eduardo Alves

    2015-11-01

    In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia.

  9. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft.

    PubMed

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-10-14

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.

  10. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  11. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock.

    PubMed

    Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao

    2014-03-15

    To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Appendix. Cloning and sequence of the gene encoding enzyme E-1 from the methionine salvage pathway of Klebsiella oxytoca.

    PubMed

    Balakrishnan, R; Frohlich, M; Rahaim, P T; Backman, K; Yocum, R R

    1993-11-25

    The methionine salvage pathway converts the methylthioribose moiety of 5'-(methylthio)-adenosine to methionine via a series of biochemical steps. One enzyme active in this pathway, a bifunctional enolase-phosphatase called E-1 that promotes oxidative cleavage of the synthetic substrate 2,3-diketo-1-phosphohexane to 2-keto-pentanoate, has been purified from Klebsiella pneumoniae and is characterized in the preceding paper (Myers, R., Wray, J., Fish, S., and Abeles, R. H. (1993) J. Biol. Chem. 268, 24785-24791). We synthesized degenerate oligonucleotides corresponding to portions of the amino terminus of E-1. These oligonucleotides were used as polymerase chain reaction primers on whole genomic DNA from Klebsiella oxytoca. This resulted in an 82-base pair DNA fragment that was used as a hybridization probe to obtain a clone of the E-1 gene from a K. oxytoca gene library. The DNA sequence of the E-1 coding region was determined, and the amino acid sequence of E-1 was deduced. E-1 appears to represent a novel class of enzymes since no homology to known enzymes was found. Cloning the gene from K. oxytoca on a multicopy plasmid leads to overproduction of E-1 enzyme that has properties indistinguishable from those of the enzyme from K. pneumoniae.

  13. EI-2128-1, a novel interleukin-1beta converting enzyme inhibitor produced by Penicillium sp. E-2128.

    PubMed

    Koizumi, Fumito; Agatsuma, Tsutomu; Ando, Katsuhiko; Kondo, Hidemasa; Saitoh, Yutaka; Matsuda, Yuzuru; Nakanishi, Satoshi

    2003-11-01

    EI-2128-1, a novel interleukin-1beta converting enzyme (ICE) inhibitor, was isolated from the culture broths of Penicillium sp. E-2128. EI-2128-1 selectively inhibited human recombinant ICE activity with IC50 value of 0.59 microM, without inhibiting elastase and cathepsin B. EI-2128-1 also inhibited mature interleukin-1beta secretion from THP-1 cells induced by LPS with IC50 value of 0.28 microM.

  14. Microplate-based active/inactive 1 screen for biomass degrading enzyme library purification and gene discovery

    USDA-ARS?s Scientific Manuscript database

    We present here a whole-cell and permeabilized E. coli cell 1' active/inactive microplate screen for ß-D-xylosidase, xylanase, endocellulase, and ferulic acid esterase enzyme activities which are critical for the enzymatic deconstruction of biomass for fuels and chemicals. Transformants from genomic...

  15. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin

    PubMed Central

    Ishii, Satoshi; Chang, Hui-Hwa; Kawasaki, Kunito; Yasuda, Kayo; Wu, Hui-Li; Garman, Scott C.; Fan, Jian-Qiang

    2007-01-01

    Fabry disease is a lysosomal storage disorder caused by the deficiency of α-Gal A (α-galactosidase A) activity. In order to understand the molecular mechanism underlying α-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal Km and Vmax values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) α-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q α-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant α-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant α-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations. PMID:17555407

  16. Identification of sumoylation activating enzyme 1 inhibitors by structure-based virtual screening.

    PubMed

    Kumar, Ashutosh; Ito, Akihiro; Hirohama, Mikako; Yoshida, Minoru; Zhang, Kam Y J

    2013-04-22

    SUMO activating enzyme 1 (SUMO E1) is responsible for the activation of SUMO in the first step of the sumoylation cascade. SUMO E1 is linked to many human diseases including cancer, thus making it a potential therapeutic target. There are few reported SUMO E1 inhibitors including several natural products. To identify small molecule inhibitors of SUMO E1 with better drug-like properties for potential therapeutic studies, we have used structure-based virtual screening to identify hits from the Maybridge small molecule library for biological assay. Our virtual screening protocol involves fast docking of the entire small molecule library with rigid protein and ligands followed by redocking of top hits using a method that incorporates both ligand and protein flexibility. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based binding free energy calculation. Out of 24 compounds that were acquired and tested using in vitro sumoylation assay, four of them showed more than 85% inhibition of sumoylation with the most active compound showing an IC50 of 14.4 μM. A similarity search with the most active compound in the ZINC database has identified three more compounds with improved potency. These compounds share a common phenyl urea scaffold and have been confirmed to inhibit SUMO E1 by in vitro SUMO-1 thioester bond formation assay. Our study suggests that these phenyl urea compounds could be used as a starting point for the development of novel therapeutic agents.

  17. Molecular characterization and expression analysis of ubiquitin-activating enzyme E1 gene in Citrus reticulata.

    PubMed

    Miao, Hong-Xia; Qin, Yong-Hua; Ye, Zi-Xing; Hu, Gui-Bing

    2013-01-25

    Ubiquitin-activating enzyme E1 (UBE1) catalyzes the first step in the ubiquitination reaction, which targets a protein for degradation via a proteasome pathway. UBE1 plays an important role in metabolic processes. In this study, full-length cDNA and DNA sequences of UBE1 gene, designated CrUBE1, were obtained from 'Wuzishatangju' (self-incompatible, SI) and 'Shatangju' (self-compatible, SC) mandarins. 5 amino acids and 8 bases were different in cDNA and DNA sequences of CrUBE1 between 'Wuzishatangju' and 'Shatangju', respectively. Southern blot analysis showed that there existed only one copy of the CrUBE1 gene in genome of 'Wuzishatangju' and 'Shatangju'. The temporal and spatial expression characteristics of the CrUBE1 gene were investigated using semi-quantitative RT-PCR (SqPCR) and quantitative real-time PCR (qPCR). The expression level of the CrUBE1 gene in anthers of 'Shatangju' was approximately 10-fold higher than in anthers of 'Wuzishatangju'. The highest expression level of CrUBE1 was detected in pistils at 7days after self-pollination of 'Wuzishatangju', which was approximately 5-fold higher than at 0 h. To obtain CrUBE1 protein, the full-length cDNA of CrUBE1 genes from 'Wuzishatangju' and 'Shatangju' were successfully expressed in Pichia pastoris. Pollen germination frequency of 'Wuzishatangju' was significantly inhibited with increasing of CrUBE1 protein concentrations from 'Wuzishatangju'. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes: The effect of vitamin C and E supplementation.

    PubMed

    Johnston, Philip C; McCance, David R; Holmes, Valerie A; Young, Ian S; McGinty, Ann

    2016-01-01

    In view of the increased rates of pre-eclampsia observed in diabetic pregnancy and the lack of ex vivo data on placental biomarkers of oxidative stress in T1 diabetic pregnancy, the aim of the current investigation was to examine placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes. A further objective of the study was to investigate the putative impact of vitamin C and E supplementation on antioxidant enzyme activity and lipid peroxidation in type 1 diabetic placentae. The current study measured levels of antioxidant enzyme [glutathione peroxidase (Gpx), glutathione reductase (Gred), superoxide dismutase (SOD) and catalase] activity and degree of lipid peroxidation (aqueous phase hydroperoxides and 8-iso-prostaglandin F2α) in matched central and peripheral samples from placentae of DAPIT (n=57) participants. Levels of vitamin C and E were assessed in placentae and cord blood. Peripheral placentae demonstrated significant increases in Gpx and Gred activities in pre-eclamptic in comparison to non-pre-eclamptic women. Vitamin C and E supplementation had no significant effect on cord blood or placental levels of these vitamins, nor on placental antioxidant enzyme activity or degree of lipid peroxidation in comparison to placebo-supplementation. The finding that maternal supplementation with vitamin C/E does not augment cord or placental levels of these vitamins is likely to explain the lack of effect of such supplementation on placental indices including antioxidant enzymes or markers of lipid peroxidation. Copyright © 2016. Published by Elsevier Inc.

  19. Wheat germ-based protein libraries for the functional characterisation of the Arabidopsis E2 ubiquitin conjugating enzymes and the RING-type E3 ubiquitin ligase enzymes.

    PubMed

    Ramadan, Abdelaziz; Nemoto, Keiichirou; Seki, Motoaki; Shinozaki, Kazuo; Takeda, Hiroyuki; Takahashi, Hirotaka; Sawasaki, Tatsuya

    2015-11-10

    Protein ubiquitination is a ubiquitous mechanism in eukaryotes. In Arabidopsis, ubiquitin modification is mainly mediated by two ubiquitin activating enzymes (E1s), 37 ubiquitin conjugating enzymes (E2s), and more than 1300 predicted ubiquitin ligase enzymes (E3s), of which ~470 are RING-type E3s. A large proportion of the RING E3's gene products have yet to be characterised in vitro, likely because of the laborious work involved in large-scale cDNA cloning and protein expression, purification, and characterisation. In addition, several E2s, which might be necessary for the activity of certain E3 ligases, cannot be expressed by Escherichia coli or cultured insect cells and, therefore, remain uncharacterised. Using the RIKEN Arabidopsis full-length cDNA library (RAFL) with the 'split-primer' PCR method and a wheat germ cell-free system, we established protein libraries of Arabidopsis E2 and RING E3 enzymes. We expressed 35 Arabidopsis E2s including six enzymes that have not been previously expressed, and 204 RING proteins, most of which had not been functionally characterised. Thioester assays using dithiothreitol (DTT) showed DTT-sensitive ubiquitin thioester formation for all E2s expressed. In expression assays of RING proteins, 31 proteins showed high molecular smears, which are probably the result of their functional activity. The activities of another 27 RING proteins were evaluated with AtUBC10 and/or a group of different E2s. All the 27 RING E3s tested showed ubiquitin ligase activity, including 17 RING E3s. Their activities are reported for the first time. The wheat germ cell-free system used in our study, which is a eukaryotic expression system and more closely resembles the endogenous expression of plant proteins, is very suitable for expressing Arabidopsis E2s and RING E3s in their functional form. In addition, the protein libraries described here can be used for further understanding E2-E3 specificities and as platforms for protein-protein interaction

  20. Conversion of human steroid 5β-reductase (AKR1D1) into 3β-hydroxysteroid dehydrogenase by single point mutation E120H: example of perfect enzyme engineering.

    PubMed

    Chen, Mo; Drury, Jason E; Christianson, David W; Penning, Trevor M

    2012-05-11

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5β-reduction of Δ(4)-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His(120) (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5β-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5α-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3β-HSD as opposed to a 3α-HSD. The catalytic efficiency achieved for 3β-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5β-dihydrotestosterone, and Δ(4)-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the Δ(4)-double bond and confers 3β-HSD activity on the 5β-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its α-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  1. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mo; Drury, Jason E.; Christianson, David W.

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1Cmore » enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.« less

  2. Characterization of a feruloyl esterase from Aspergillus terreus facilitates the division of fungal enzymes from Carbohydrate Esterase family 1 of the carbohydrate-active enzymes (CAZy) database.

    PubMed

    Mäkelä, Miia R; Dilokpimol, Adiphol; Koskela, Salla M; Kuuskeri, Jaana; de Vries, Ronald P; Hildén, Kristiina

    2018-04-26

    Feruloyl esterases (FAEs) are accessory enzymes for plant biomass degradation, which catalyse hydrolysis of carboxylic ester linkages between hydroxycinnamic acids and plant cell-wall carbohydrates. They are a diverse group of enzymes evolved from, e.g. acetyl xylan esterases (AXEs), lipases and tannases, thus complicating their classification and prediction of function by sequence similarity. Recently, an increasing number of fungal FAEs have been biochemically characterized, owing to their potential in various biotechnological applications and multitude of candidate FAEs in fungal genomes. However, only part of the fungal FAEs are included in Carbohydrate Esterase family 1 (CE1) of the carbohydrate-active enzymes (CAZy) database. In this work, we performed a phylogenetic analysis that divided the fungal members of CE1 into five subfamilies of which three contained characterized enzymes with conserved activities. Conservation within one of the subfamilies was confirmed by characterization of an additional CE1 enzyme from Aspergillus terreus. Recombinant A. terreus FaeD (AtFaeD) showed broad specificity towards synthetic methyl and ethyl esters, and released ferulic acid from plant biomass substrates, demonstrating its true FAE activity and interesting features as potential biocatalyst. The subfamily division of the fungal CE1 members enables more efficient selection of candidate enzymes for biotechnological processes. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. A selective molecularly imprinted polymer for immobilization of acetylcholinesterase (AChE): an active enzyme targeted and efficient method.

    PubMed

    Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa

    2015-11-01

    In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    PubMed

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  5. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    PubMed Central

    Tang, Xianjin; Hashmi, Muhammad Z.; Long, Dongyan; Chen, Litao; Khan, Muhammad I.; Shen, Chaofeng

    2014-01-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  6. Induction of Phase 2 Antioxidant Enzymes by Broccoli Sulforaphane: Perspectives in Maintaining the Antioxidant Activity of Vitamins A, C, and E

    PubMed Central

    Boddupalli, Sekhar; Mein, Jonathan R.; Lakkanna, Shantala; James, Don R.

    2012-01-01

    Consumption of fruits and vegetables is recognized as an important part of a healthy diet. Increased consumption of cruciferous vegetables in particular has been associated with a decreased risk of several degenerative and chronic diseases, including cardiovascular disease and certain cancers. Members of the cruciferous vegetable family, which includes broccoli, Brussels sprouts, cauliflower, and cabbage, accumulate significant concentrations of glucosinolates, which are metabolized in vivo to biologically active isothiocyanates (ITCs). The ITC sulforaphane, which is derived from glucoraphanin, has garnered particular interest as an indirect antioxidant due to its extraordinary ability to induce expression of several enzymes via the KEAP1/Nrf2/ARE pathway. Nrf2/ARE gene products are typically characterized as Phase II detoxification enzymes and/or antioxidant (AO) enzymes. Over the last decade, human clinical studies have begun to provide in vivo evidence of both Phase II and AO enzyme induction by SF. Many AO enzymes are redox cycling enzymes that maintain redox homeostasis and activity of free radical scavengers such as vitamins A, C, and E. In this review, we present the existing evidence for induction of PII and AO enzymes by SF, the interactions of SF-induced AO enzymes and proposed maintenance of the essential vitamins A, C, and E, and, finally, the current view of genotypic effects on ITC metabolism and AO enzyme induction and function. PMID:22303412

  7. Association between Antioxidant Enzyme Activities and Enterovirus-Infected Type 1 Diabetic Children.

    PubMed

    Abdel-Moneim, Adel; El-Senousy, Waled M; Abdel-Latif, Mahmoud; Khalil, Rehab G

    2018-01-01

    To examine the effect of infection with Enterovirus (EV) in children with type 1 diabetes (T1D) on the activities of serum antioxidant enzymes in diabetic and nondiabetic controls. Three hundred and eighty-two diabetic and 100 nondiabetic children were tested for EV RNA using reverse transcriptase (RT)-PCR. The activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were also estimated in diabetic patients infected with EV (T1D-EV+), those not infected with EV (T1D-EV-), and in nondiabetic controls. The frequency of EV was higher in diabetic children (100/382; 26.2%) than in healthy controls (0/100). Levels of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c) and C-reactive protein (CRP) were significantly higher but C-peptide was significantly lower in diabetic children than in controls. CRP levels were higher in the T1D-EV+ group than in the T1D-EV- group, and higher in all diabetic children than in nondiabetic controls. The activities of the antioxidant enzymes GPx, SOD, and CAT decreased significantly in diabetic children compared to in controls. Moreover, the activities of the enzymes tested were significantly reduced in the T1D-EV+ group compared to in the T1D-EV- group. Our data indicate that EV infection correlated with a decrease in the activity of antioxidant enzymes in the T1D-EV+ group compared to in the T1D-EV- group; this may contribute to β cell damage and increased inflammation. © 2018 The Author(s) Published by S. Karger AG, Basel.

  8. Synthesis, characterization and cholinesterase enzymes inhibitory activity of 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone

    NASA Astrophysics Data System (ADS)

    Mehdi, Sayed Hasan; Ghalib, Raza Murad; Hashim, Rokiah; da Silva, M. Fátima C. Guedes; Sulaiman, Othman; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran; Naqvi, Mehnaz

    2013-10-01

    The crystal structure of the title compound, 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone has been determined by single crystal X-ray diffraction. It crystallizes in the orthorhombic space group P212121. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. Compound 1 demonstrated good inhibitory activity against butyrylcholinesterase (BChE; IC50 = 46.42 μM) comparable to physostigmine. However it showed moderate inhibitory activity against acetylcholinesterase (AChE; IC50 = 157.31 μM). It showed moderate inhibitory activity against acetylcholinesterase and selective inhibitory activity towards butyrylcholinesterase enzyme.

  9. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  10. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  11. Association of reduction of AFB1-induced liver tumours by antioxidants with increased activity of microsomal enzymes.

    PubMed

    Nyandieka, H S; Wakhis, J; Kilonzo, M M

    1990-10-01

    The influence of nutritional factors on aflatoxin B1 (AFB1)-induced liver tumours was investigated in rats. When a dose of 500 micrograms AFB1/kg body weight was given to rats in the absence of any anticarcinogen, 80 per cent of the rats developed liver tumours as compared to 0 to 40 per cent in those which received anticarcinogens. While beta-carotene totally inhibited the development of liver tumours ascorbic acid, selenium, and uric acid reduced the percentages of tumour-bearing rats to 13 per cent each. GSH and vitamin E also reduced these percentages to 20 and 40 per cent respectively. The reduction of tumour incidence by each anticarcinogen was associated with induction of increased microsomal enzyme activity. Inhibition of AFB1-induced liver cancer development thus seems to occur through microsomal enzyme induction and AFB1 activation.

  12. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.

    PubMed

    Lv, Zongyang; Yuan, Lingmin; Atkison, James H; Aldana-Masangkay, Grace; Chen, Yuan; Olsen, Shaun K

    2017-07-21

    E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl s mall u biquitin-like mo difier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles.

    PubMed

    Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K

    2007-01-01

    It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress.

  14. Activities of purine converting enzymes in heart, liver and kidney mice LDLR-/- and Apo E-/.

    PubMed

    Rybakowska, I M; Kutryb-Zając, B; Milczarek, R; Łukasz, B; Slominska, E M; Smolenski, R T

    2018-05-21

    Nucleotide metabolism plays a major role in a number of vital cellular processes such as energetics. This, in turn, is important in pathologies such as atherosclerosis. Three month old atherosclerotic mice with knock outs for LDLR and apolipoprotein E (ApoE) were used for the experiments. Activities of AMP-deaminase (AMPD), ecto5'-nucleotidase (e5NT), adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP) were measured in heart, liver and kidney cortex and medulla by analysing conversion of substrates into products using HPLC. The activity of ecto5'-nucleotidase differ in hearts of LDLR -/- and ApoE -/- mice with no differences in ADA and AMPD activity. We noticed highest activity of e5NT in kidney medulla of the models. This model of atherosclerosis characterize with an inhibition of enzyme responsible for production of protective adenosine in heart but not in other organs and different metabolism of nucleotides in kidney medulla.

  15. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6

    PubMed Central

    Hibbert, Richard G.; Huang, Anding; Boelens, Rolf; Sixma, Titia K.

    2011-01-01

    In ubiquitin conjugation, different combinations of E2 and E3 enzymes catalyse either monoubiquitination or ubiquitin chain formation. The E2/E3 complex Rad6/Rad18 exclusively monoubiquitinates the proliferating cell nuclear antigen (PCNA) to signal for “error prone” DNA damage tolerance, whereas a different set of conjugation enzymes is required for ubiquitin chain formation on PCNA. Here we show that human E2 enzyme Rad6b is intrinsically capable of catalyzing ubiquitin chain formation. This activity is prevented during PCNA ubiquitination by the interaction of Rad6 with E3 enzyme Rad18. Using NMR and X-ray crystallography we show that the R6BD of Rad18 inhibits this activity by competing with ubiquitin for a noncovalent “backside” binding site on Rad6. Our findings provide mechanistic insights into how E3 enzymes can regulate the ubiquitin conjugation process. PMID:21422291

  16. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of angiotensin...

  17. [Effect of Panax notoginseng saponins on liver drug metablic enzyme activity, mRNA and protein expressions in rats].

    PubMed

    Chen, Yan-Jin; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Tan, Hong-Ling; Liang, Qian-De; Tang, Xiang-Lin; Zhao, Yong-Hong; Wang, Dong-Gen; Gao, Yue

    2014-10-01

    To study the effect of Panax notoginseng saponins (PNS) on liver drug metabolic enzyme activity, mRNA and protein expressions in rats. Male Wistar rats were randomly divided into nine groups. After administration of the test drugs, their liver microsomes, liver total RNA and total protein were extracted to detect the regulating effect of PNS on liver drug metabolic enzyme activity-related subtype enzymatic activity, mRNA and protein expression by substrate probe, quantitative PCR and Western Blot technology. The result of this experiment was that PNS could significantly induce CYP1A2 and CYP2E1 enzyme activity, mRNA expression, CYP2E1 protein expression level. PNS significantly induced CYP3A mRNA expression, but with no significant effect in CYP3A enzyme activity level. PNS had no significant effect CYP1A1 and CYP2B mRNA expressions and enzyme activity levels. PNS had selective regulations on different P450 subtypes, and the major subtypes were CYP1A2 and CYP2E1. In clinical practice, particularly in the combination with CYP1A2 and CYP2E1 metabolism-related drugs, full consideration shall be given to the possible drug interactions in order to avoid potential toxic and side effects. Meanwhile, whether the induction effect of CYP2E1 gets involved in ginsenoside's effect incavenging free radicals deserves further studies.

  18. Enzyme activity in dialkyl phosphate ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, M.F.; Dunn, J.; Li, L.-L.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  19. The dimerization domain in DapE enzymes is required for catalysis.

    PubMed

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  20. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    PubMed

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  1. 4-aminoquinolone piperidine amides: noncovalent inhibitors of DprE1 with long residence time and potent antimycobacterial activity.

    PubMed

    Naik, Maruti; Humnabadkar, Vaishali; Tantry, Subramanyam J; Panda, Manoranjan; Narayan, Ashwini; Guptha, Supreeth; Panduga, Vijender; Manjrekar, Praveena; Jena, Lalit Kumar; Koushik, Krishna; Shanbhag, Gajanan; Jatheendranath, Sandesh; Manjunatha, M R; Gorai, Gopinath; Bathula, Chandramohan; Rudrapatna, Suresh; Achar, Vijayashree; Sharma, Sreevalli; Ambady, Anisha; Hegde, Naina; Mahadevaswamy, Jyothi; Kaur, Parvinder; Sambandamurthy, Vasan K; Awasthy, Disha; Narayan, Chandan; Ravishankar, Sudha; Madhavapeddi, Prashanti; Reddy, Jitendar; Prabhakar, Kr; Saralaya, Ramanatha; Chatterji, Monalisa; Whiteaker, James; McLaughlin, Bob; Chiarelli, Laurent R; Riccardi, Giovanna; Pasca, Maria Rosalia; Binda, Claudia; Neres, João; Dhar, Neeraj; Signorino-Gelo, François; McKinney, John D; Ramachandran, Vasanthi; Shandil, Radha; Tommasi, Ruben; Iyer, Pravin S; Narayanan, Shridhar; Hosagrahara, Vinayak; Kavanagh, Stefan; Dinesh, Neela; Ghorpade, Sandeep R

    2014-06-26

    4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure-activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb.

  2. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    PubMed

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-09

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.

  3. Cholinesterase and Paraoxonase (PON1) enzyme activities in Mexican-American Mothers and Children from an Agricultural Community

    PubMed Central

    Gonzalez, V.; Huen, K.; Venkat, S.; Pratt, K.; Xiang, P.; Harley, K.G.; Kogut, K.; Trujillo, C.M.; Bradman, A.; Eskenazi, B.; Holland, N.T.

    2014-01-01

    Exposure to organophosphate and carbamate pesticides can lead to neurotoxic effects through inhibition of cholinesterase enzymes. The paraoxonase (PON1) enzyme can detoxify oxon derivatives of some organophosphates. Lower PON1, acetylcholinesterase, and butyrylcholinesterase activities have been reported in newborns relative to adults, suggesting increased susceptibility to organophosphate exposure in young children. We determined PON1, acetylcholinesterase, and butyrylcholinesterase activities in Mexican-American mothers and their 9-year-old children (n=202 pairs) living in an agricultural community in California. We used paired t-tests to compare enzymatic activities among mothers and their children and analysis of variance to determine which factors are associated with enzyme activities. Substrate-specific PON1 activities were slightly lower in children than their mothers; however, these differences were not statistically significant. We observed significantly lower acetylcholinesterase but higher butyrylcholinesterase levels in children compared to their mothers. Mean butyrylcholinesterase levels were strongly associated with child obesity status (BMI Z scores >95%). We observed highly significant correlations among mother-child pairs for each of the enzymatic activities analyzed; however, PON1 activities did not correlate with acetylcholinesterase or butyrylcholinesterase activities. Our findings suggest that by age nine, PON1 activities approach adult levels and host factors including sex and obesity may affect key enzymes involved in pesticide metabolism. PMID:22760442

  4. 1,3-Butadiene-Induced Mitochondrial Dysfunction is Correlated with Mitochondrial CYP2E1 Activity in Collaborative Cross Mice

    PubMed Central

    Hartman, Jessica H.; Miller, Grover P.; Caro, Andres A.; Byrum, Stephanie D.; Orr, Lisa M.; Mackintosh, Samuel G.; Tackett, Alan J.; MacMillan-Crow, Lee Ann; Hallberg, Lance M.; Ameredes, Bill T.; Boysen, Gunnar

    2017-01-01

    Cytochrome P450 2E1 (CYP2E1) metabolizes low molecular weight hydrophobic compounds, including 1,3-butadiene, which is converted by CYP2E1 to electrophilic epoxide metabolites that covalently modify cellular proteins and DNA. Previous CYP2E1 studies have mainly focused on the enzyme localized in the endoplasmic reticulum (erCYP2E1); however, active CYP2E1 also localizes in mitochondria (mtCYP2E1) and the distribution of CYP2E1 between organelles can influence an individual's response to exposure. Relatively few studies have focused on the contribution of mtCYP2E1 to activation of chemical toxicants. We hypothesized that CYP2E1 bioactivation of butadiene within mitochondria adversely affects mitochondrial respiratory complexes I-IV. A population of Collaborative Cross mice were exposed to air (control) or 200 ppm butadiene. Subcellular fractions (mitochondria, DNA, and microsomes) were collected from frozen livers and CYP2E1 activity was measured in microsomes and mitochondria. Individual activities of mitochondrial respiratory complexes I-IV were measured using in vitro assays with purified mitochondrial fractions. In air- and butadiene-exposed mouse samples, mtDNA copy numbers were assessed by RT-PCR, and mtDNA integrity was assessed through a PCR-based assay. No significant change in mtDNA copy number or integrity were observed; however, there was a decrease in overall activity of mitochondrial respiratory complexes I, II, and IV after butadiene exposure. Additionally, higher mtCYP2E1 (but not erCYP2E1) activity was correlated with decreased mitochondrial respiratory complex activity (in complexes I-IV) in the butadiene-exposed (not control) animals. Together, these results represent the first in vivo link between mitochondrial CYP2E1 activity and mitochondrial toxicity. PMID:28082109

  5. Deubiquitinating enzyme regulation of the p53 pathway: A lesson from Otub1

    PubMed Central

    Sun, Xiao-Xin; Dai, Mu-Shui

    2014-01-01

    Deubiquitination has emerged as an important mechanism of p53 regulation. A number of deubiquitinating enzymes (DUBs) from the ubiquitin-specific protease family have been shown to regulate the p53-MDM2-MDMX networks. We recently reported that Otub1, a DUB from the OTU-domain containing protease family, is a novel p53 regulator. Interestingly, Otub1 abrogates p53 ubiquitination and stabilizes and activates p53 in cells independently of its deubiquitinating enzyme activity. Instead, it does so by inhibiting the MDM2 cognate ubiquitin-conjugating enzyme (E2) UbcH5. Otub1 also regulates other biological signaling through this non-canonical mechanism, suppression of E2, including the inhibition of DNA-damage-induced chromatin ubiquitination. Thus, Otub1 evolves as a unique DUB that mainly suppresses E2 to regulate substrates. Here we review the current progress made towards the understanding of the complex regulation of the p53 tumor suppressor pathway by DUBs, the biological function of Otub1 including its positive regulation of p53, and the mechanistic insights into how Otub1 suppresses E2. PMID:24920999

  6. Heterologous co-expression in E. coli of isoamylase genes from cassava Manihot esculenta Crantz 'KU50' achieves enzyme-active heteromeric complex formation.

    PubMed

    Panpetch, Pawinee; Field, Robert A; Limpaseni, Tipaporn

    2018-03-01

    Cloning of two isoamylase genes, MeISA1 and MeISA2, from cassava (Manihot esculenta Crantz) tubers, accompanied by their co-expression in E. coli demonstrates a requirement for heteromeric complex formation to achieve debranching activity. Starch debranching enzyme (DBE) or isoamylase (ISA) (EC.3.2.1.68), an important enzyme in starch metabolism, catalyses the hydrolysis of α-1,6 glycosidic linkages of amylopectin. Isoforms of ISAs have been reported in higher plants and algae (Fujita et al. in Planta 208:283-293, 1999; Hussain et al. in Plant Cell 15:133-149, 2003; Ishizaki et al. in Agric Biol Chem 47:771-779, 1983; Mouille et al. in Plant Cell 8:1353-1366, 1996). In the current work, cassava ISA genes were isolated from cDNA generated from total RNA from tubers of Manihot esculanta Crantz cultivar KU50. MeISA1 and MeISA2 were successfully amplified and cloned into a pETDuet1 vector. The putative MeISA1 and MeISA2 proteins comprised 763 and 882 amino acids, with substantial similarity to StISA1 and StISA2 from potato (84.4% and 68.9%, respectively). Recombinant MeISA1 and MeISA2 were co-expressed in Escherichia coli SoluBL21 (DE3). Histrap TM -Purified rMeISA1 and rMeISA2 showed approximate molecular weights of 87 and 99 kDa, respectively, by SDS-PAGE. Debranching activity was only detectable in the column fractions where both recombinant ISA isoforms were present. The heteromeric DBE from crude extracts of 4-5 h induced cultures analysed by gel filtration chromatography and western blot showed combinations of rMeISA1 and rMeISA2 at ratios of 1:1 to 4:1. Pooled fractions with DBE activity were used for enzyme characterisation, which showed that the enzyme was specific for amylopectin, with optimum activity at 37 °C and pH 7.0. Enzyme activity was enhanced by Co 2+ , Mg 2+ and Ca 2+ , but was strongly inhibited by Cu 2+ . Debranched amylopectin products showed chain length distributions typical of plant DBE.

  7. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    PubMed

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  8. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds.

    PubMed

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-06-24

    Here we present a non-invasive imaging method for visualizing endogenous enzyme activities in living animals. This optical imaging method is based on an energy transfer principle termed chemically initiated electron exchange luminescence (CIEEL). The light energy is provided by enzymatic activation of metastable 1,2-dioxetane substrates, whose protective groups are removed by hydrolytic enzymes such as β-galactosidase and alkaline phosphatase. In the presence of a nearby fluorescent recipient, the chemical energy within the activated substrate is then transferred via formation of a charge-transfer complex with the fluorophore, a mechanism closely related to glow stick chemistry. Efficient CIEEL energy transfer requires close proximity between the trigger enzyme and the fluorescent recipient. Using cells stained with fluorescent dialkylcarbocyanines as the energy recipients, we demonstrated CIEEL imaging of cellular β-galactosidase or alkaline phosphatase activity. In living animals, we used a similar approach to non-invasively image alkaline phosphatase activity in the peritoneal cavity. In this report, we provide proof-of-concept for CIEEL imaging of in vivo enzymatic activity. In addition, we demonstrate the use of CIEEL energy transfer for visualizing elevated alkaline phosphatase activity associated with tissue inflammation in living animals.

  9. Heterologous Acidothermus cellulolyticus 1,4-β-Endoglucanase E1 Produced Within the Corn Biomass Converts Corn Stover Into Glucose

    NASA Astrophysics Data System (ADS)

    Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam

    Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.

  10. Activity assessment of microbial fibrinolytic enzymes.

    PubMed

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  11. A rapid fluorescence assay for sphingosine-1-phosphate lyase enzyme activity.

    PubMed

    Bandhuvula, Padmavathi; Fyrst, Henrik; Saba, Julie D

    2007-12-01

    Sphingosine-1-phosphate (S1P) lyase (SPL) catalyzes the conversion of S1P to ethanolamine phosphate and hexadecenal. This enzyme plays diverse roles in physiology and disease and, thus, may be useful as a disease marker and/or drug target. Unfortunately, the radioisotope-based assay currently used to quantify SPL activity is suboptimal. We have devised an assay using a commercially available omega(7-nitro-2-1,3-benzoxadiazol-4-yl)-d-erythro (NBD)-labeled fluorescent substrate. Alternatively, we provide a method for synthesis of the substrate from NBD-sphingosine. Enzyme activity is determined by following the formation of NBD-aldehyde product, which is isolated from unreacted substrate by lipid extraction and quantified after separation by HPLC using a C18 column. A fluorescent NBD-C18-sphingosine internal standard is used to control for extraction efficiency. The reaction is linear over 20 min and total protein concentrations of 20-200 mg/l. The sensitivity of the fluorescence assay is comparable to or better than that of the radioactive assay, and SPL levels as low as 8 pmol/mg/min were readily detected. Semicarbazide, a nonspecific SPL inhibitor, reduced SPL activity in vitro by approximately 70% using both standard and fluorescence methods. Product inhibition was not observed using ethanolamine phosphate and a commercially available source of hexadecenal. This method is suitable for quantifying SPL activity in a variety of cell and tissue sources.

  12. Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorus Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Dan; Wang, Jun; Wang, Limin

    We report a new approach for electrochemical quantification of enzymatic inhibition and phosphorylation for biomonitoring of exposure to organophosphorus (OP) pesticides and nerve agents based on a magnetic beads (MBs) immunosensing platform. The principle of this approach is based on the combination of MBs immuno-capture based enzyme activity assay and competitive immunoassay of total amount of enzyme for simultaneous detection of enzyme inhibition and phosphorylation in biological fluids. Butyrylcholinesterase (BChE) was chosen as a model enzyme. In competitive immunoassay, the target total BChE in a sample (mixture of OP-inhibited BChE and active BChE) competes with the BChE modified on themore » MBs to bind to the limited anti-BChE antibody labeled with quantum dots (QDs-anti-BChE), and followed by electrochemical stripping analysis of the bound QDs conjugate on the MBs. This assay shows a linear response over the total BChE concentration range of 0.1~20 nM. Simultaneously, real time BChE activity was measured on an electrochemical carbon nanotube-based sensor coupled with microflow injection system after immuno-capture by MBs-anti-BChE conjugate. Therefore, the formed phosphorylated adduct (OP-BChE) can be estimated by the difference values of the total amount BChE (including active and OP-inhibited) and active BChE from established calibration curves. This approach not only eliminates the difficulty in screening of low-dose OP exposure (less than 20% inhibition of BChE) because of individual variation of BChE values, but also avoids the drawback of the scarce availability of OP-BChE antibody. It is sensitive enough to detect 0.5 nM OP-BChE, which is less than 2% BChE inhibition. This method offers a new method for rapid, accurate, selective and inexpensive quantification of phosphorylated adducts and enzyme inhibition for biomonitoring of OP and nerve agent exposures.« less

  13. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Malley, Konstantin R.; Brenner, Caitlin C.; Koroleva, Olga; Korolev, Sergey; Downes, Brian P.

    2016-08-01

    Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2~Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.

  14. Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1.

    PubMed

    Liu, Jiawang; Taylor, Shannon F; Dupart, Patrick S; Arnold, Corey L; Sridhar, Jayalakshmi; Jiang, Quan; Wang, Yuji; Skripnikova, Elena V; Zhao, Ming; Foroozesh, Maryam

    2013-05-23

    Selective inhibition of P450 enzymes is the key to block the conversion of environmental procarcinogens to their carcinogenic metabolites in both animals and humans. To discover highly potent and selective inhibitors of P450s 1A1, 1A2, and 1B1, as well as to investigate active site cavities of these enzymes, 14 novel flavone derivatives were prepared as chemical probes. Fluorimetric enzyme inhibition assays were used to determine the inhibitory activities of these probes toward P450s 1A1, 1A2, 1B1, 2A6, and 2B1. A highly selective P450 1B1 inhibitor 5-hydroxy-4'-propargyloxyflavone (5H4'FPE) was discovered. Some tested compounds also showed selectivity between P450s 1A1 and 1A2. α-Naphthoflavone-like and 5-hydroxyflavone derivatives preferentially inhibited P450 1A2, while β-naphthoflavone-like flavone derivatives showed selective inhibition of P450 1A1. On the basis of structural analysis, the active site cavity models of P450 enzymes 1A1 and 1A2 were generated, demonstrating a planar long strip cavity and a planar triangular cavity, respectively.

  15. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    PubMed

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  16. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  17. Non-tumor cell IDO1 predominantly contributes to enzyme activity and response to CTLA-4/PD-L1 inhibition in mouse glioblastoma.

    PubMed

    Zhai, Lijie; Ladomersky, Erik; Dostal, Carlos R; Lauing, Kristen L; Swoap, Kathleen; Billingham, Leah K; Gritsina, Galina; Wu, Meijing; McCusker, Robert H; Binder, David C; Wainwright, Derek A

    2017-05-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults with a median survival of 14.6months. A contributing factor to GBM aggressiveness is the intratumoral expression of the potently immunosuppressive enzyme, indoleamine 2,3 dioxygenase 1 (IDO1). The enzymatic activity of IDO1 is associated with the conversion of tryptophan into downstream kynurenine (Kyn), which has previously been hypothesized to contribute toward the suppression of tumor immunity. Utilizing the syngeneic, immunocompetent, intracranial GL261 cell GBM model, we previously demonstrated that tumor cell, but not non-tumor cell IDO1, suppresses T cell-mediated brain tumor regression in mice. Paradoxically, we also showed that the survival advantage mediated by immune checkpoint blockade is abrogated by non-tumor cell IDO1 deficiency. Here, we have built on our past observations and confirm the maladaptive role of tumor cell IDO1 in a novel mouse GBM model. We also demonstrate that, non-tumor cells, rather than mouse GBM cells, are the dominant contributor to IDO1-mediated enzyme activity. Finally, we show the novel associations between maximally-effective immune-checkpoint blockade-mediated survival, non-tumor cell IDO1 and intra-GBM Kyn levels. These data suggest for the first time that, GBM cell-mediated immunosuppression is IDO1 enzyme independent, while the survival benefits of immune checkpoint blockade require non-tumor cell IDO1 enzyme activity. Given that current clinical inhibitors vary in their mechanism of action, in terms of targeting IDO1 enzyme activity versus enzyme-independent effects, this work suggests that choosing an appropriate IDO1 pharmacologic will maximize the effectiveness of future immune checkpoint blockade approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.

    PubMed

    Bate, Paul; Warwicker, Jim

    2004-07-02

    Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.

  19. Active sites of two orthologous cytochromes P450 2E1: Differences revealed by spectroscopic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzenbacherova, Eva; Hudecek, Jiri; Murgida, Daniel

    2005-12-09

    Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry.more » In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics.« less

  20. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    PubMed

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  1. Extracellular enzyme activity in a willow sewage treatment system.

    PubMed

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  2. Screening the ToxCast Phase 1, 2, and e1k Chemical Libraries for Inhibition of Deiodinase Type 1, 2 and 3 Enzyme Activity

    EPA Science Inventory

    Thyroid hormone (TH) homeostasis is dependent on multiple proteins for TH synthesis, transport, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting THs between active and inactive forms by converting the pro-hormone thyroxine (T4) to...

  3. Screening the ToxCast Phase 1, 2, and e1k chemical libraries for inhibition of Deiodinase Types 1, 2 and 3 enzyme activity

    EPA Science Inventory

    Thyroid hormone (TH) homeostasis is dependent on multiple proteins for TH synthesis, transport, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting THs between active and inactive forms by deiodinating the pro-hormone thyroxine (T4) ...

  4. Prediction of Enzyme Mutant Activity Using Computational Mutagenesis and Incremental Transduction

    PubMed Central

    Basit, Nada; Wechsler, Harry

    2011-01-01

    Wet laboratory mutagenesis to determine enzyme activity changes is expensive and time consuming. This paper expands on standard one-shot learning by proposing an incremental transductive method (T2bRF) for the prediction of enzyme mutant activity during mutagenesis using Delaunay tessellation and 4-body statistical potentials for representation. Incremental learning is in tune with both eScience and actual experimentation, as it accounts for cumulative annotation effects of enzyme mutant activity over time. The experimental results reported, using cross-validation, show that overall the incremental transductive method proposed, using random forest as base classifier, yields better results compared to one-shot learning methods. T2bRF is shown to yield 90% on T4 and LAC (and 86% on HIV-1). This is significantly better than state-of-the-art competing methods, whose performance yield is at 80% or less using the same datasets. PMID:22007208

  5. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

    PubMed

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-15

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes*

    PubMed Central

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-01

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560

  7. Monitoring of the lactonase activity of paraoxonase-1 enzyme in HIV-1-infection.

    PubMed

    Dias, Clara; Marinho, Aline; Morello, Judit; Almeida, Gabriela; Caixas, Umbelina; Soto, Karina; Monteiro, Emilia; Pereira, Sofia

    2014-01-01

    Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated enzyme known as a free radical scavenging system (1). PON-1 has three main activities, responsible for its antioxidant and anti-inflammatory potential: paraoxonase, arylesterase and lactonase (LACase), the latest to be discovered and pointed out to be its native activity (2). Among other physiological roles, the LACase might minimize the deleterious effects of hyperhomocysteinaemia in infection, by detoxifying the highly reactive metabolite homocysteine-thiolactone (HcyTL) (3),4. In the present work, we have developed and applied a method to quantify LACase activity and to explore the role of this enzyme in HIV-infection and virological response. The LACase activity was monitored in a cohort of HIV-1-infected patients, through the titration of 3-(o-hydroxyphenyl) propionic acid, formed upon the LACase-mediated hydrolysis of the substrate dihydrocoumarin. The study protocol was approved by the Ethics Committee of Centro Hospitalar de Lisboa Central and Hospital Prof. Doutor Fernando Fonseca. All patients gave their written informed consent and were adults with documented HIV-1-infection, regardless of combined antiretroviral therapy (cART) use. Naïve patients and patients who had received continuous antiretroviral treatment for more than one month were included. A total of 179 HIV-1-infected patients were included on this study (51% Men, 39% non-Caucasian, 45±13 years old). Patients with non-suppressed viraemia, either from the non-cART (n=89, 12±4 kU/L, p<0.01) or from the cART with detectable viral load (n=11, 10±5 kU/L, p<0.05) groups, had lower activity than the cART with suppressed viraemia (n=79, 15±7 kU/L) (Kruskal-Wallis test). Among naïve patients, higher viral load (> 31,500 cps/mL, Spearman r=-0.535, p=0.003) and lower CD4+ T-cells count (< 500 cell/mm(3), Pearson r=0.326, p=0.024) were associated with the LACase activity. The present study suggests that lower LACase activity is

  8. Human γ-Glutamyl Transpeptidase 1: STRUCTURES OF THE FREE ENZYME, INHIBITOR-BOUND TETRAHEDRAL TRANSITION STATES, AND GLUTAMATE-BOUND ENZYME REVEAL NOVEL MOVEMENT WITHIN THE ACTIVE SITE DURING CATALYSIS.

    PubMed

    Terzyan, Simon S; Burgett, Anthony W G; Heroux, Annie; Smith, Clyde A; Mooers, Blaine H M; Hanigan, Marie H

    2015-07-10

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Soil Minerals Affect Extracellular Enzyme Activities in Cold and Warm Environments

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Morin, M. M.; Graham, D. E.; Wullschleger, S. D.; Gu, B.

    2017-12-01

    Extracellular enzymes are mainly responsible for degrading and cycling soil organic matter (SOM) in both cold and warm terrestrial ecosystems. Minerals can play important roles in affecting soil enzyme activities, however, the interactions between enzyme and soil minerals remain poorly understood. In this study, we developed a model soil-enzyme system to examine the mineral effects on a hydrolytic enzyme (i.e., β-glucosidase) under both cold (4°C) and relatively warm (20 and 30°C) conditions. Minerals including iron oxides and clays (e.g., kaolinite and montmorillonite) were used to mimic different types of soils, and enzyme adsorption experiments were conducted to determine the enzyme interactions with different mineral surfaces. Time-series experiments were also carried out to measure enzymatic degradation of the organic substrates, such as cellobiose and indican. We observed that fractions of adsorbed enzyme and the hydrolytic activity were higher on iron oxides (e.g., hematite) compared to kaolinite and montmorillonite at given experimental conditions. The degradation of cellobiose was significantly faster than that of indican in the presence of minerals. We also found that the adsorption of enzyme was not dependent on the mineral surface areas, but was controlled by the mineral surface charge. In addition, temperature increase from 4 to 30°C enhanced mineral-assisted glucosidase hydrolysis by 2 to 4 fold, suggesting greater degradation under warmer environments. The present work demonstrates that the enzyme activity is influenced not only by the soil temperature but also by the surface chemistry of soil minerals. Our results highlight the need to consider the physical and chemical properties of minerals in biogeochemical models, which could provide a better prediction for enzyme-facilitated SOM transformations in terrestrial ecosystems.

  10. Function and biotechnology of extremophilic enzymes in low water activity

    PubMed Central

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  11. In vitro antibody-enzyme conjugates with specific bactericidal activity.

    PubMed

    Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C

    1973-06-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.

  12. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds.

    PubMed

    Shen, Yi; Zhong, Linlin; Johnson, Stephen; Cao, Deliang

    2011-05-30

    Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Enzyme activation through the utilization of intrinsic dianion binding energy.

    PubMed

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2017-03-01

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    PubMed

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  15. Purification and Characterization of the Crown Gall-specific Enzyme, Octopine Synthase 1

    PubMed Central

    Hack, Ethan; Kemp, John D.

    1980-01-01

    A single enzyme catalyzes the synthesis of all four N2-(1-carboxyethyl)-amino acid derivatives found in a crown gall tumor tissue induced by Agrobacterium tumefaciens (E. F. Sm. and Town.) Conn strain B6 on sunflower (Helianthus annuus L.). This enzyme, octopine synthase, has been purified by ammonium sulfate fractionation and chromatography on diethylaminoethylcellulose, blue agarose, and hydroxylapatite. The purified enzyme has all the N2-(1-carboxyethyl)-amino acid synthesizing activities found in crude preparations, and the relative activities with six amino acids remain nearly constant during purification. Although the maximum velocities (V) and Michaelis constants (Km) differ, the ratio V/Km is the same for all amino acid substrates. Thus an equimolar mixture of amino acids will give rise to an equimolar mixture of products. The kinetic properties of the enzyme are consistent with a partially ordered mechanism with arginine (NADPH, then arginine or pyruvate). Octopine synthase is a monomeric enzyme with a molecular weight of 39,000 by gel filtration and 38,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:16661312

  16. The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes

    PubMed Central

    Hiltscher, Heiko; Rudnik, Radoslaw; Shaikhali, Jehad; Heiber, Isabelle; Mellenthin, Marina; Meirelles Duarte, Iuri; Schuster, Günter; Kahmann, Uwe; Baier, Margarete

    2014-01-01

    The rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical-induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1. Discovering this link let to our investigation of its regulatory mechanism. We show in yeast that RCD1 can physically interact with the transcription factor Rap2.4a which provides redox-sensitivity to nuclear expression of genes for chloroplast antioxidant enzymes. In the rimb1 (rcd1-6) mutant, a single nucleotide exchange results in a truncated RCD1 protein lacking the transcription factor binding site. Protein-protein interaction between full-length RCD1 and Rap2.4a is supported by H2O2, but not sensitive to the antioxidants dithiotreitol and ascorbate. In combination with transcript abundance analysis in Arabidopsis, it is concluded that RCD1 stabilizes the Rap2.4-dependent redox-regulation of the genes encoding chloroplast antioxidant enzymes in a widely redox-independent manner. Over the years, rcd1-mutant alleles have been described to develop symptoms like chlorosis, lesions along the leaf rims and in the mesophyll and (secondary) induction of extra- and intra-plastidic antioxidant defense mechanisms. All these rcd1 mutant characteristics were observed in rcd1-6 to succeed low activation of the chloroplast antioxidant system and glutathione biosynthesis. We conclude that RCD1 protects plant cells from running into reactive oxygen species (ROS)-triggered programs, such as cell death and activation of pathogen-responsive genes (PR genes) and extra-plastidic antioxidant enzymes, by supporting the induction of the chloroplast antioxidant system. PMID:25295044

  17. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  18. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    PubMed

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  19. DENEDDYLASE1 Protein Counters Automodification of Neddylating Enzymes to Maintain NEDD8 Protein Homeostasis in Arabidopsis.

    PubMed

    Mergner, Julia; Kuster, Bernhard; Schwechheimer, Claus

    2017-03-03

    In eukaryotes, the conjugation of the ubiquitin-like protein NEDD8 onto protein targets is an important post-translational modification. The best understood neddylation targets are the cullins, scaffold subunits of E3 ubiquitin ligases, where neddylation as well as deneddylation, facilitated by the protease activity of the CSN ( C OP9 s ig n alosome), are required to control ubiquitin ligase assembly, function, and ultimately substrate degradation. Little is known about the role of other deneddylating enzymes besides CSN and the role of neddylation and deneddylation of their substrates. We previously characterized Arabidopsis thaliana mutants with defects in the conserved NEDD8-specific protease DEN1 ( DENEDDYLASE 1). These mutants display only subtle growth phenotypes despite the strong accumulation of a broad range of neddylated proteins. Specifically, we identified AXR1 (AUXIN-RESISTANT1), a subunit of the heterodimeric NAE (E1 NEDD8-ACTIVATING ENZYME), as highly neddylated in den1 mutants. Here, we examined the mechanism and consequences of AXR1 neddylation in more detail. We find that AXR1 as well as other neddylation enzymes are autoneddylated at multiple lysines. NAE autoneddylation can be linked to reduced NCE (E2 NEDD8-CONJUGATING ENZYME) NEDD8 thioester levels, either by critically reducing the pool of free NEDD8 or by reducing NAE activity. In planta , increasing NEDD8 gene dosage is sufficient to suppress den1 mutant phenotypes. We therefore suggest that DEN1 serves to recover diverted NEDD8 moieties from autoneddylated NAE subunits, and possibly also other neddylated proteins, to maintain NEDD8 pathway activity toward other NEDD8-dependent processes such as cullin E3 ligase regulation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex

    NASA Astrophysics Data System (ADS)

    Dai, Han; Case, April W.; Riera, Thomas V.; Considine, Thomas; Lee, Jessica E.; Hamuro, Yoshitomo; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M.; Pietrak, Beth; Schwartz, Benjamin; Blum, Charles A.; Disch, Jeremy S.; Caldwell, Richard; Szczepankiewicz, Bruce; Oalmann, Christopher; Yee Ng, Pui; White, Brian H.; Casaubon, Rebecca; Narayan, Radha; Koppetsch, Karsten; Bourbonais, Francis; Wu, Bo; Wang, Junfeng; Qian, Dongming; Jiang, Fan; Mao, Cheney; Wang, Minghui; Hu, Erding; Wu, Joe C.; Perni, Robert B.; Vlasuk, George P.; Ellis, James L.

    2015-07-01

    SIRT1, the founding member of the mammalian family of seven NAD+-dependent sirtuins, is composed of 747 amino acids forming a catalytic domain and extended N- and C-terminal regions. We report the design and characterization of an engineered human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small molecule sirtuin-activating compounds (STACs). Using this construct, we solved the crystal structure of a mini-hSIRT1-STAC complex, which revealed the STAC-binding site within the N-terminal domain of hSIRT1. Together with hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis using full-length hSIRT1, these data establish a specific STAC-binding site and identify key intermolecular interactions with hSIRT1. The determination of the interface governing the binding of STACs with human SIRT1 facilitates greater understanding of STAC activation of this enzyme, which holds significant promise as a therapeutic target for multiple human diseases.

  1. Expression and Characterization of Acidothermus celluloyticus E1 Endoglucanase in Transgenic Duckweed Lemna minor 8627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Cheng, J. J.; Himmel, M. E.

    2007-01-01

    Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein{sup -1} extracted from fresh duckweed.more » The optimal temperature and pH for E1 enzyme activity were about 80 C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N{prime}-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.« less

  2. Molecular architectures and functions of radical enzymes and their (re)activating proteins.

    PubMed

    Shibata, Naoki; Toraya, Tetsuo

    2015-10-01

    Certain proteins utilize the high reactivity of radicals for catalysing chemically challenging reactions. These proteins contain or form a radical and therefore named 'radical enzymes'. Radicals are introduced by enzymes themselves or by (re)activating proteins called (re)activases. The X-ray structures of radical enzymes and their (re)activases revealed some structural features of these molecular apparatuses which solved common enigmas of radical enzymes—i.e. how the enzymes form or introduce radicals at the active sites, how they use the high reactivity of radicals for catalysis, how they suppress undesired side reactions of highly reactive radicals and how they are (re)activated when inactivated by extinction of radicals. This review highlights molecular architectures of radical B12 enzymes, radical SAM enzymes, tyrosyl radical enzymes, glycyl radical enzymes and their (re)activating proteins that support their functions. For generalization, comparisons of the recently reported structures of radical enzymes with those of canonical radical enzymes are summarized here. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.

    PubMed

    Botyanszki, Zsofia; Tay, Pei Kun R; Nguyen, Peter Q; Nussbaumer, Martin G; Joshi, Neel S

    2015-10-01

    Biocatalytic transformations generally rely on purified enzymes or whole cells to perform complex transformations that are used on industrial scale for chemical, drug, and biofuel synthesis, pesticide decontamination, and water purification. However, both of these systems have inherent disadvantages related to the costs associated with enzyme purification, the long-term stability of immobilized enzymes, catalyst recovery, and compatibility with harsh reaction conditions. We developed a novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E. coli to create a functional nanofiber network capable of covalent immobilization of enzymes. This approach is attractive because it is scalable, represents a modular strategy for site-specific enzyme immobilization, and has the potential to stabilize enzymes under denaturing environmental conditions. We site-specifically immobilized a recombinant α-amylase, fused to the SpyCatcher attachment domain, onto E. coli curli fibers displaying complementary SpyTag capture domains. We characterized the effectiveness of this immobilization technique on the biofilms and tested the stability of immobilized α-amylase in unfavorable conditions. This enzyme-modified biofilm maintained its activity when exposed to a wide range of pH and organic solvent conditions. In contrast to other biofilm-based catalysts, which rely on high cellular metabolism, the modified curli-based biofilm remained active even after cell death due to organic solvent exposure. This work lays the foundation for a new and versatile method of using the extracellular polymeric matrix of E. coli for creating novel biocatalytic surfaces. © 2015 Wiley Periodicals, Inc.

  4. Differential Ubiquitin Binding by the Acidic Loops of Ube2g1 and Ube2r1 Enzymes Distinguishes Their Lys-48-ubiquitylation Activities*

    PubMed Central

    Choi, Yun-Seok; Lee, Yun-Ju; Lee, Seo-Yeon; Shi, Lei; Ha, Jung-Hye; Cheong, Hae-Kap; Cheong, Chaejoon; Cohen, Robert E.; Ryu, Kyoung-Seok

    2015-01-01

    The ubiquitin E2 enzymes, Ube2g1 and Ube2r1, are able to synthesize Lys-48-linked polyubiquitins without an E3 ligase but how that is accomplished has been unclear. Although both E2s contain essential acidic loops, only Ube2r1 requires an additional C-terminal extension (184–196) for efficient Lys-48-ubiquitylation activity. The presence of Tyr-102 and Tyr-104 in the Ube2g1 acidic loop enhanced both ubiquitin binding and Lys-48-ubiquitylation and distinguished Ube2g1 from the otherwise similar truncated Ube2r11–183 (Ube2r1C). Replacement of Gln-105–Ser-106–Gly-107 in the acidic loop of Ube2r1C (Ube2r1CYGY) by the corresponding residues from Ube2g1 (Tyr-102–Gly-103–Tyr-104) increased Lys-48-ubiquitylation activity and ubiquitin binding. Two E2∼UB thioester mimics (oxyester and disulfide) were prepared to characterize the ubiquitin binding activity of the acidic loop. The oxyester but not the disulfide derivative was found to be a functional equivalent of the E2∼UB thioester. The ubiquitin moiety of the Ube2r1CC93S-[15N]UBK48R oxyester displayed two-state conformational exchange, whereas the Ube2r1CC93S/YGY-[15N]UBK48R oxyester showed predominantly one state. Together with NMR studies that compared UBK48R oxyesters of the wild-type and the acidic loop mutant (Y102G/Y104G) forms of Ube2g1, in vitro ubiquitylation assays with various mutation forms of the E2s revealed how the intramolecular interaction between the acidic loop and the attached donor ubiquitin regulates Lys-48-ubiquitylation activity. PMID:25471371

  5. Garlic extract diallyl sulfide (DAS) activates nuclear receptor CAR to induce the Sult1e1 gene in mouse liver.

    PubMed

    Sueyoshi, Tatsuya; Green, William D; Vinal, Kellie; Woodrum, Tyler S; Moore, Rick; Negishi, Masahiko

    2011-01-01

    Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car(+/+) and Car(-/-) mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car(+/+) females but not of Car(-/-) female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hours after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice.

  6. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane.

    PubMed

    Kharasch, E D; Thummel, K E

    1993-10-01

    Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0

  7. Basophil activation test compared to skin prick test and fluorescence enzyme immunoassay for aeroallergen-specific Immunoglobulin-E

    PubMed Central

    2012-01-01

    Background Skin prick test (SPT) and fluorescence enzyme immunoassay (FEIA) are widely used for the diagnosis of Immunoglobulin-E (IgE)-mediated allergic disease. Basophil activation test (BAT) could obviate disadvantages of SPT and FEIA. However, it is not known whether BAT gives similar results as SPT or FEIA for aeroallergens. Objectives In this study, we compared the results of SPT, BAT and FEIA for different aeroallergens. Methods We performed BAT, SPT and FEIA in 41 atopic subjects (symptomatic and with positive SPT for at least 1 of 9 common aeroallergens) and 31 non-atopic subjects (asymptomatic and with negative SPT). Results Correlations between SPT and BAT, SPT and FEIA, and BAT and FEIA results were statistically significant but imperfect. Using SPT as the "gold standard", BAT and FEIA were similar in sensitivity. However, BAT had lower specificity than FEIA. False positive (BATposSPTneg) results were frequent in those atopic subjects who were allergic by SPT to a different allergen and rare in non-atopic subjects. The false positivity in atopic subjects was due in part to high levels of serum Total-IgE (T-IgE) levels in atopic individuals that lead to basophil activation upon staining with fluorochrome-labeled anti-IgE. Conclusion As an alternative to SPT in persons allergic to aeroallergens, BAT in its present form is useful for distinguishing atopic from non-atopic persons. However, BAT in its present form is less specific than FEIA when determining the allergen which a patient is allergic to. This is due to IgE staining-induced activation of atopic person's basophils and/or nonspecific hyperreactivity of atopic person's basophils. PMID:22264407

  8. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Cardozo-Bernal, Ángela M.; Pedroza-Rodríguez, Aura M.; Díaz-Rincón, Dennis J.; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Cuervo-Patiño, Claudia L.

    2017-01-01

    Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges. PMID:28421142

  9. Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization.

    PubMed

    Morales-Álvarez, Edwin D; Rivera-Hoyos, Claudia M; Cardozo-Bernal, Ángela M; Poutou-Piñales, Raúl A; Pedroza-Rodríguez, Aura M; Díaz-Rincón, Dennis J; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Cuervo-Patiño, Claudia L

    2017-01-01

    Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZ α A- GlucPost -Stop in Pichia pastoris . Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL -1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a V max of 6.87 × 10 -5  mM s -1 , with an apparent K m of 5.36 × 10 -2  mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.

  10. MAO enzymes inhibitory activity of new benzimidazole derivatives including hydrazone and propargyl side chains.

    PubMed

    Can, Özgür Devrim; Osmaniye, Derya; Demir Özkay, Ümide; Sağlık, Begüm Nurpelin; Levent, Serkan; Ilgın, Sinem; Baysal, Merve; Özkay, Yusuf; Kaplancıklı, Zafer Asım

    2017-05-05

    In the present work, 15 new N'-(arylidene)-4-(1-(prop-2-yn-1-yl)-1H-benzo[d]imidazol-2-yl)benzohydrazide (4a-4o) were designed and synthesized. The structures of the synthesized compounds were elucidated using FT-IR, 1 H-NMR, 13 C-NMR, and HRMS spectral data. The inhibitory activity of the compounds 4a-4o against hMAO-A and hMAO-B enzymes was evaluated by using in vitro Amlex Red ® reagent based fluorometric method. Due to lots of high-cost kits including this assay, we determined the ingredients of the kits from the data sheets of several suppliers, and adjusted a protocol by working with various concentrations and volumes of these ingredients. As a result, a fast and sensitive assay was applied as in the commercially available MAO kits with lower costs and clearer ingredients than those of the kits. The enzyme inhibition assay revealed that synthesized compounds have selective inhibition potency against hMAO-B. The compound 4e and 4f displayed IC 50 values of 0.075 μM and 0.136 μM against hMAO-B, respectively. The reference drugs selegiline (IC 50  = 0.040 μM) and rasagiline (IC 50  = 0.066 μM) also displayed a significant inhibition against hMAO-B. The enzyme kinetic study was performed in order to observe the effect of the most active compound 4e on substrate-enzyme relationship and non-competitive inhibition of hMAO-B was determined. Cytotoxicity and genotoxicity studies were carried out and the compound 4e was found as non-cytotoxic and non-genotixic. Theoretical calculation of ADME properties suggested that compound 4e may have a good pharmacokinetic profile. The docking study of compound 4e revealed that there is a strong interaction between the active sites of hMAO-B and analyzed compound. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    PubMed

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    PubMed Central

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  13. Dipeptidyl peptidase IV (DPPIV) enzyme activity on immature T-cell line R1.1 is down-regulated by dynorphin-A(1-17) as a non-substrate inhibitor.

    PubMed

    Gabrilovac, Jelka; Abramić, Marija; Uzarević, Branka; Andreis, Ana; Poljak, Ljiljana

    2003-05-30

    In this study we examined surface expression of CD26 and the corresponding enzyme activity of dipeptidyl peptidase IV (DPPIV) on the cells of immature murine T-cell line, R1.1. The data obtained have shown that R1.1 cells express high density of surface CD26 as compared to normal thymus cells. This was associated with strong enzyme activity, which, based on substrates and inhibitor specificity, corresponded to DPPIV. The DPPIV enzyme activity of R1.1 cells was 10 times stronger than that found on normal murine thymus cells (V(max) = 39 micromol/min/10(6) cells, vs 3.7 micromol/min/10(6) cells, respectively). Upon activation with anti-CD3, up-regulation of both membrane CD26, as well as of DPPIV enzyme activity on R1.1 cells were observed. The finding of strong DPPIV on R1.1 cells makes them suitable model for testing putative substrates/inhibitors of the enzyme in its natural microenvironment. Since in addition to strong DPPIV, R1.1 cells also express kappa opioid receptors (KOR) [European Journal of Pharmacology 227 (1992) 257], we tested the effect of dynorphin-A(1-17), an endogenous opioid peptide with KOR selectivity, on DPPIV of R1.1 cells. Dynorphin-A(1-17) down-regulated DPPIV in a dose-dependent manner, with the potency similar to that of substance P, a known natural DPPIV substrate [Journal of Pharmacology and Experimental Therapeutics 260 (1992) 1257]. DPPIV down-regulation was resistant to bestatin and thiorphan, the inhibitors of two cell surface peptidases (APN and NEP, respectively) with potential of dynorphin-A(1-17) degradation, suggesting that the mechanism underlying the observed effect does not involve degradative products of dynorphin-A(1-17). DPPIV down-regulation was also resistent to KOR antagonist, NBI, suggesting that the mechanism underlying the observed phenomenon involves neither cointernalization of KOR and DPPIV. Collectively, cells of immature T cell line, R1.1 exert strong DPPIV enzyme activity, which could be down-regulated in the

  14. Uronic Acid Products Release from Enzymically Active Cell Wall from Tomato Fruit and Its Dependency on Enzyme Quantity and Distribution 1

    PubMed Central

    Huber, Donald J.; Lee, James H.

    1988-01-01

    Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed. PMID:16666191

  15. A comparative study of extracellular glucanhydrolase and glucosyltransferase enzyme activities of five different serotypes of oral Streptococcus mutans.

    PubMed

    Felgenhauer, B; Trautner, K

    1982-01-01

    The activities of glucanhydrolase (EC 3.2.1.11) and glucosyltransferase (EC 2.4.1.5) in crude enzyme preparations of 44 strains of Streptococcus mutans of five serotypes were investigated. The strains were grown in a laboratory fermentor for 16 h and the enzymes were isolated by adding solid ammonium sulphate to the culture supernatant, resulting in a 12-fold enrichment of the enzymes. For glucanhydrolase, strains of serotype a showed the lowest total activity (0.768 U, approx. 120 ml), whereas strains of serotype d had an activity 39 times higher (29.9 U). The total activities of strains of serotypes b, c and e were 5.56, 6.30 and 7.06 U, respectively. For glucosyltransferase, strains of type e showed the highest total activity (293 U), whereas differences between strains of the other four types were insignificant (type a: 158 U; type b: 175 U; type c: 191 U; type d: 225 U; approx. 120 ml). A strong correlation was found between the glucanhydrolase activity and the percentage of insoluble glucan synthesized in vitro by the respective strains. This correlation was not substantially changed if the enzyme activities were expressed as specific activities, or as total activities against bacterial weight.

  16. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.

    PubMed

    Truongvan, Ngoc; Chung, Hye-Shin; Jang, Sei-Heon; Lee, ChangWoo

    2016-03-01

    An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr(182) in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr(182) was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr(182) significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.

  17. Micropollutant degradation via extracted native enzymes from activated sludge.

    PubMed

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    full variety of indigenous enzymatic activity of the activated sludge source material could not be restored, experimental modifications, e.g. different lysate filtration, significantly enhanced specific enzyme activities (e.g. >96% removal of the antibiotic erythromycin). Therefore, the approach presented in this study provides the experimental basis for a further elucidation of the enzymatic processes underlying wastewater treatment on the level of native proteins. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic Activity In Vitro

    PubMed Central

    Prakash Vincent, Samuel Gnana

    2014-01-01

    A potent fibrinolytic enzyme-producing Bacillus cereus IND1 was isolated from the Indian food, rice. Solid-state fermentation was carried out using agroresidues for the production of fibrinolytic enzyme. Among the substrates, wheat bran supported more enzyme production and has been used for the optimized enzyme production by statistical approach. Two-level full-factorial design demonstrated that moisture, supplementation of beef extract, and sodium dihydrogen phosphate have significantly influenced enzyme production (P < 0.05). A central composite design resulted in the production of 3699 U/mL of enzyme in the presence of 0.3% (w/w) beef extract and 0.05% (w/w) sodium dihydrogen phosphate, at 100% (v/w) moisture after 72 h of fermentation. The enzyme production increased fourfold compared to the original medium. This enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl-cellulose ion-exchange chromatography, Sephadex G-75 gel filtration chromatography, and casein-agarose affinity chromatography and had an apparent molecular mass of 29.5 kDa. The optimum pH and temperature for the activity of fibrinolytic enzyme were found to be 8.0 and 60°C, respectively. This enzyme was highly stable at wide pH range (7.0–9.0) and showed 27% ± 6% enzyme activity after initial denaturation at 60°C for 1 h. In vitro assays revealed that the enzyme could activate plasminogen and significantly degraded the fibrin net of blood clot, which suggests its potential as an effective thrombolytic agent. PMID:25003130

  19. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  20. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  1. Effect of monensin on the levels of tachykinins and their processing enzyme activity in rat dorsal root ganglia.

    PubMed

    Chikuma, Toshiyuki; Inomata, Yuji; Tsuchida, Ken; Hojo, Hiroshi; Kato, Takeshi

    2002-06-28

    Th effect of monensin, which inhibits trans-Golgi function, on the levels of tachykinins and their processing enzyme activity was examined in organ-cultured rat dorsal root ganglia (DRG). Using an enzyme immunoassay method, we measured neurokinin A and substance P immunoreactivity in the DRG cultured for 72 h with and without 0.1 microM monensin. Both tachykinins were reduced in the DRG treated with monensin. Treatment with monensin also reduced the activity of carboxypeptidase E, which is one of the proteolytic processing enzymes of neuropeptides. These data suggest that proteolytic processing enzymes may in part modulate the biological activity of neuropeptides within a trans-Golgi apparatus.

  2. THE E1 PROTEINS

    PubMed Central

    Bergvall, Monika; Melendy, Thomas; Archambault, Jacques

    2013-01-01

    E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA using a spiral escalator mechanism. E1 is tightly regulated in vivo, in particular by post-translational modifications that restrict its accumulation in the nucleus. Here we review how different functional domains of E1 orchestrate viral DNA replication, with an emphasis on their interactions with substrate DNA, host DNA replication factors and modifying enzymes. These studies have made E1 one of the best characterized helicases and provided unique insights on how PVs usurp different host-cell machineries to replicate and amplify their genome in a tightly controlled manner. PMID:24029589

  3. Comparative analyses of two thermophilic enzymes exhibiting both beta-1,4 mannosidic and beta-1,4 glucosidic cleavage activities from Caldanaerobius polysaccharolyticus.

    PubMed

    Han, Yejun; Dodd, Dylan; Hespen, Charles W; Ohene-Adjei, Samuel; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-08-01

    The hydrolysis of polysaccharides containing mannan requires endo-1,4-beta-mannanase and 1,4-beta-mannosidase activities. In the current report, the biochemical properties of two endo-beta-1,4-mannanases (Man5A and Man5B) from Caldanaerobius polysaccharolyticus were studied. Man5A is composed of an N-terminal signal peptide (SP), a catalytic domain, two carbohydrate-binding modules (CBMs), and three surface layer homology (SLH) repeats, whereas Man5B lacks the SP, CBMs, and SLH repeats. To gain insights into how the two glycoside hydrolase family 5 (GH5) enzymes may aid the bacterium in energy acquisition and also the potential application of the two enzymes in the biofuel industry, two derivatives of Man5A (Man5A-TM1 [TM1 stands for truncational mutant 1], which lacks the SP and SLH repeats, and Man5A-TM2, which lacks the SP, CBMs, and SLH repeats) and the wild-type Man5B were biochemically analyzed. The Man5A derivatives displayed endo-1,4-beta-mannanase and endo-1,4-beta-glucanase activities and hydrolyzed oligosaccharides with a degree of polymerization (DP) of 4 or higher. Man5B exhibited endo-1,4-beta-mannanase activity and little endo-1,4-beta-glucanase activity; however, this enzyme also exhibited 1,4-beta-mannosidase and cellodextrinase activities. Man5A-TM1, compared to either Man5A-TM2 or Man5B, had higher catalytic activity with soluble and insoluble polysaccharides, indicating that the CBMs enhance catalysis of Man5A. Furthermore, Man5A-TM1 acted synergistically with Man5B in the hydrolysis of beta-mannan and carboxymethyl cellulose. The versatility of the two enzymes, therefore, makes them a resource for depolymerization of mannan-containing polysaccharides in the biofuel industry. Furthermore, on the basis of the biochemical and genomic data, a molecular mechanism for utilization of mannan-containing nutrients by C. polysaccharolyticus is proposed.

  4. Expression and chromatin structures of cellulolytic enzyme gene regulated by heterochromatin protein 1.

    PubMed

    Zhang, Xiujun; Qu, Yinbo; Qin, Yuqi

    2016-01-01

    Heterochromatin protein 1 (HP1, homologue HepA in Penicillium oxalicum ) binding is associated with a highly compact chromatin state accompanied by gene silencing or repression. HP1 loss leads to the derepression of gene expression. We investigated HepA roles in regulating cellulolytic enzyme gene expression, as an increasingly number of studies have suggested that cellulolytic enzyme gene expression is not only regulated by transcription factors, but is also affected by the chromatin status. Among the genes that exhibited significant differences between the hepA deletion strain (Δ hepA ) and the wild type (WT), most (95.0 %) were upregulated in Δ hepA compared with WT. The expression of the key transcription factor for cellulolytic enzyme gene (e.g., repressor CreA and activator ClrB) increased significantly. However, the deletion of hepA led to downregulation of prominent extracellular cellulolytic enzyme genes. Among the top 10 extracellular glycoside hydrolases (Amy15A, Amy13A, Cel7A/CBHI, Cel61A, Chi18A, Cel3A/BGLI, Xyn10A, Cel7B/EGI, Cel5B/EGII, and Cel6A/CBHII), in which secretion amount is from the highest to the tenth in P . oxalicum secretome, eight genes, including two amylase genes ( amy15A and amy13A ), all five cellulase genes ( cel7A / cbh1 , cel6A / cbh2 , cel7B / eg1 , cel5B / eg2 , and cel3A / bgl1 ), and the cellulose-active LPMO gene ( cel61A ) expression were downregulated. Results of chromatin accessibility real-time PCR (CHART-PCR) showed that the chromatin of all three tested upstream regions opened specifically because of the deletion of hepA in the case of two prominent cellulase genes cel7A/cbh1 and cel7B/eg1 . However, the open chromatin status did not occur along with the activation of cellulolytic enzyme gene expression. The overexpression of hepA upregulated the cellulolytic enzyme gene expression without chromatin modification. The overexpression of hepA remarkably activated the cellulolytic enzyme synthesis, not only in WT (~150

  5. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  6. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.

    PubMed

    Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P

    2015-12-02

    Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd

  7. Garlic Extract Diallyl Sulfide (DAS) Activates Nuclear Receptor CAR to Induce the Sult1e1 Gene in Mouse Liver

    PubMed Central

    Sueyoshi, Tatsuya; Green, William D.; Vinal, Kellie; Woodrum, Tyler S.; Moore, Rick; Negishi, Masahiko

    2011-01-01

    Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car +/+ and Car −/− mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car +/+ females but not of Car −/− female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hourrs after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice. PMID:21698271

  8. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes.

    PubMed

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2015-04-01

    A cytochrome P450 active site is buried within the protein molecule and several channels connect the catalytic cavity to the protein surface. Their role in P450 catalysis is still matter of debate. The aim of this study was to understand the possible relations existing between channels and substrate specificity. Time course studies were carried out with a collection of polycyclic substrates of increasing sizes assayed with a library of wild-type and chimeric CYP1A enzymes. This resulted in a matrix of activities sufficiently large to allow statistical analysis. Multivariate statistical tools were used to decipher the correlation between observed activity shifts and sequence segment swaps. The global kinetic behavior of CYP1A enzymes toward polycyclic substrates is significantly different depending on the size of the substrate. Mutations which are close or lining the P450 channels significantly affect this discrimination, whereas mutations distant from the P450 channels do not. Size discrimination is taking place for polycyclic substrates at the entrance of the different P450 access channels. It is thus hypothesized that channels differentiate small from large substrates in CYP1A enzymes, implying that residues located at the surface of the protein may be implied in this differential recognition. Catalysis thus occurs after a two-step recognition process, one at the surface of the protein and the second within the catalytic cavity in enzymes with a buried active site. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Opposite Roles of RNase and Kinase Activities of Inositol-Requiring Enzyme 1 (IRE1) on HSV-1 Replication

    PubMed Central

    Su, Airong; Wang, Huanru; Li, Yanlei; Wang, Xiaohui; Chen, Deyan; Wu, Zhiwei

    2017-01-01

    In response to the endoplasmic reticulum (ER) stress induced by herpes simplex virus type 1 (HSV-1) infection, host cells activate the unfolded protein response (UPR) to reduce the protein-folding burden in the ER. The regulation of UPR upon HSV-1 infection is complex, and the downstream effectors can be detrimental to viral replication. Therefore, HSV-1 copes with the UPR to create a beneficial environment for its replication. UPR has three branches, including protein kinase RNA (PKR)-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activated transcription factor 6 (ATF6). IRE1α is the most conserved branch of UPR which has both RNase and kinase activities. Previous studies have shown that IRE1α RNase activity was inactivated during HSV-1 infection. However, the effect of the two activities of IRE1α on HSV-1 replication remains unknown. Results in this study showed that IRE1α expression was up-regulated during HSV-1 infection. We found that in HEC-1-A cells, increasing RNase activity, or inhibiting kinase activity of IRE1α led to viral suppression, indicating that the kinase activity of IRE1α was beneficial, while the RNase activity was detrimental to viral replication. Further evidence showed that the kinase activity of IRE1α leads to the activation of the JNK (c-Jun N-terminal kinases) pathway, which enhances viral replication. Taken together, our evidence suggests that IRE1α is involved in HSV-1 replication, and its RNase and kinase activities play differential roles during viral infection. PMID:28832521

  10. Sacubitril Is Selectively Activated by Carboxylesterase 1 (CES1) in the Liver and the Activation Is Affected by CES1 Genetic Variation

    PubMed Central

    Shi, Jian; Wang, Xinwen; Nguyen, Jenny; Wu, Audrey H.; Bleske, Barry E.

    2016-01-01

    Sacubitril was recently approved by the Food and Drug Administration for use in combination with valsartan for the treatment of patients with heart failure with reduced ejection fraction. As a prodrug, sacubitril must be metabolized (hydrolyzed) to its active metabolite sacubitrilat (LBQ657) to exert its intended therapeutic effects. Thus, understanding the determinants of sacubitril activation will lead to the improvement of sacubitril pharmacotherapy. The objective of this study was to identify the enzyme(s) responsible for the activation of sacubitril, and determine the impact of genetic variation on sacubitril activation. First, an incubation study of sacubitril with human plasma and the S9 fractions of human liver, intestine, and kidney was conducted. Sacubitril was found to be activated by human liver S9 fractions only. Moreover, sacubitril activation was significantly inhibited by the carboxylesterase 1 (CES1) inhibitor bis-(p-nitrophenyl) phosphate in human liver S9. Further incubation studies with recombinant human CES1 and carboxylesterase 2 confirmed that sacubitril is a selective CES1 substrate. The in vitro study of cell lines transfected with wild-type CES1 and the CES1 variant G143E (rs71647871) demonstrated that G143E is a loss-of-function variant for sacubitril activation. Importantly, sacubitril activation was significantly impaired in human livers carrying the G143E variant. In conclusion, sacubitril is selectively activated by CES1 in human liver. The CES1 genetic variant G143E can significantly impair sacubitril activation. Therefore, CES1 genetic variants appear to be an important contributing factor to interindividual variability in sacubitril activation, and have the potential to serve as biomarkers to optimize sacubitril pharmacotherapy. PMID:26817948

  11. Design and optimization of N-acylhydrazone pyrimidine derivatives as E. coli PDHc E1 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study.

    PubMed

    He, Haifeng; Xia, Hongying; Xia, Qin; Ren, Yanliang; He, Hongwu

    2017-10-15

    By targeting the thiamin diphosphate (ThDP) binding site of Escherichia coli (E. coli) pyruvate dehydrogenase multienzyme complex E1 (PDHc E1), a series of novel 'open-chain' classes of ThDP analogs A, B, and C with N-acylhydrazone moieties was designed and synthesized to explore their activities against E. coli PHDc E1 in vitro and their inhibitory activity against microbial diseases were further evaluated in vivo. As a result, A1-23 exhibited moderate to potent inhibitory activities against E. coli PDHc E1 (IC 50 =0.15-23.55μM). The potent inhibitors A13, A14, A15, C2, had strong inhibitory activities with IC 50 values of 0.60, 0.15, 0.39 and 0.34μM against E. coli PDHc E1 and with good enzyme-selective inhibition between microorganisms and mammals. Especially, the most powerful inhibitor A14 could 99.37% control Xanthimonas oryzae pv. Oryzae. Furthermore, the binding features of compound A14 within E. coli PDHc E1 were investigated to provide useful insights for the further construction of new inhibitor by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that A14 had most powerful inhibition against E. coli PDHc E1 due to the establishment of stronger interaction with Glu571, Met194, Glu522, Leu264 and Phe602 at active site of E.coli PDHc E1. It could be used as a lead compound for further optimization, and may have potential as a new microbicide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity.

    PubMed

    Dul, Barbara E; Walworth, Nancy C

    2007-06-22

    The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.

  13. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions.

    PubMed

    Tomek, Petr; Palmer, Brian D; Flanagan, Jack U; Sun, Chuanwen; Raven, Emma L; Ching, Lai-Ming

    2017-01-27

    High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC 50 between 3 and 12 μM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Human γ-glutamyl transpeptidase 1: Structures of the free enzyme, inhibitor-bound tetrahedral transition states, and glutamate-bound enzyme reveal novel movement within the active site during catalysis [Human gamma-glutamyl transpeptidase: Inhibitor binding and movement within the active site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terzyan, Simon S.; Burgett, Anthony W. G.; Heroux, Annie

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within themore » active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. Lastly,tThese data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.« less

  15. Human γ-glutamyl transpeptidase 1: Structures of the free enzyme, inhibitor-bound tetrahedral transition states, and glutamate-bound enzyme reveal novel movement within the active site during catalysis [Human gamma-glutamyl transpeptidase: Inhibitor binding and movement within the active site

    DOE PAGES

    Terzyan, Simon S.; Burgett, Anthony W. G.; Heroux, Annie; ...

    2015-05-26

    γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within themore » active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. Lastly,tThese data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.« less

  16. Experimental strategy to discover microbes with gluten-degrading enzyme activities

    NASA Astrophysics Data System (ADS)

    Helmerhorst, Eva J.; Wei, Guoxian

    2014-06-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  17. Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities.

    PubMed

    Helmerhorst, Eva J; Wei, Guoxian

    2014-05-05

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  18. Inhibition of human cytochrome P450 2E1 and 2A6 by aldehydes: structure and activity relationships.

    PubMed

    Kandagatla, Suneel K; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M

    2014-08-05

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ± 0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ± 1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5-12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8 ± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0 ± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Inhibition of human Cytochrome P450 2E1 and 2A6 by aldehydes: Structure and activity relationships

    PubMed Central

    Kandagatla, Suneel K.; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M.

    2014-01-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ±0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ±1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5–12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. PMID:24924949

  20. E2 enzyme inhibition by stabilization of a low affinity interface with ubiquitin

    PubMed Central

    St-Cyr, Daniel J.; Ziemba, Amy; Garg, Pankaj; Plamondon, Serge; Auer, Manfred; Sidhu, Sachdev; Marinier, Anne; Kleiger, Gary; Tyers, Mike; Sicheri, Frank

    2014-01-01

    Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small molecule inhibitor of the E2 ubiquitin conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester, without overtly affecting the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities. PMID:24316736

  1. Dual enzyme activities assay by quantitative electrospray ionization quadrupole-time-of-flight mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Wang, Rong; Zhang, Yurong; Guo, Yinlong

    2012-01-01

    A practical and rapid method based on electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-ToF MS) was developed for detecting activities of both acetylcholinesterase IAChEI and glutathione S-transferase (GST). The simultaneous study of these two enzyme activities is significant for studying human bio-functions, especially for those who take in toxic compounds and have a risk of disease. Here, the enzyme activities were represented by the conversion of enzymatic substrates and determined by quantitatively analyzing enzymatic substrates. Different internal standards were used to quantify each enzymatic substrate and the good linearity of calibration curves demonstrated the feasibility of the internal standards. The Michaelis-Menten constants (Km) of both GST and AChE were measured by this method and were consistent with values previously reported. Furthermore, we applied this approach to detect GST and AChE activities of whole bloods from four deceased and healthy people. The variation in enzyme activity was in accord with information from gas chromatography mass spectrometry [GC/MS). The screening of AChE and GST provided reliable results and strong forensic evidence. This method offers an alternative choice for detecting enzyme activities and is anticipated to have wide applications in pharmaceutical research and prevention in toxic compounds.

  2. High Performance Liquid Chromatography Resolution of Ubiquitin Pathway Enzymes from Wheat Germ 1

    PubMed Central

    Sullivan, Michael L.; Callis, Judy; Vierstra, Richard D.

    1990-01-01

    The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667769

  3. Temperature and UV light affect the activity of marine cell-free enzymes

    NASA Astrophysics Data System (ADS)

    Thomson, Blair; Hepburn, Christopher David; Lamare, Miles; Baltar, Federico

    2017-09-01

    Microbial extracellular enzymatic activity (EEA) is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells). Experiments were run to assess how cell-free enzymes (excluding microbes) respond to ultraviolet radiation (UVR) and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase), β-glucosidase, (BGase), and leucine aminopeptidase (LAPase). Environmentally relevant UVR (i.e. in situ UVR levels measured at our site) reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C) increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C), likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  4. Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.

    PubMed

    Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine

    2011-01-15

    The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.

  5. County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment.

    PubMed

    Tan, Xiangping; Xie, Baoni; Wang, Junxing; He, Wenxiang; Wang, Xudong; Wei, Gehong

    2014-01-01

    Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km(2)) scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI) and the geometric mean of enzyme activities (GME). At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  6. The formation of estrogen-like tamoxifen metabolites and their influence on enzyme activity and gene expression of ADME genes.

    PubMed

    Johänning, Janina; Kröner, Patrick; Thomas, Maria; Zanger, Ulrich M; Nörenberg, Astrid; Eichelbaum, Michel; Schwab, Matthias; Brauch, Hiltrud; Schroth, Werner; Mürdter, Thomas E

    2018-03-01

    Tamoxifen, a standard therapy for breast cancer, is metabolized to compounds with anti-estrogenic as well as estrogen-like action at the estrogen receptor. Little is known about the formation of estrogen-like metabolites and their biological impact. Thus, we characterized the estrogen-like metabolites tamoxifen bisphenol and metabolite E for their metabolic pathway and their influence on cytochrome P450 activity and ADME gene expression. The formation of tamoxifen bisphenol and metabolite E was studied in human liver microsomes and Supersomes™. Cellular metabolism and impact on CYP enzymes was analyzed in upcyte® hepatocytes. The influence of 5 µM of tamoxifen, anti-estrogenic and estrogen-like metabolites on CYP activity was measured by HPLC MS/MS and on ADME gene expression using RT-PCR analyses. Metabolite E was formed from tamoxifen by CYP2C19, 3A and 1A2 and from desmethyltamoxifen by CYP2D6, 1A2 and 3A. Tamoxifen bisphenol was mainly formed from (E)- and (Z)-metabolite E by CYP2B6 and CYP2C19, respectively. Regarding phase II metabolism, UGT2B7, 1A8 and 1A3 showed highest activity in glucuronidation of tamoxifen bisphenol and metabolite E. Anti-estrogenic metabolites (Z)-4-hydroxytamoxifen, (Z)-endoxifen and (Z)-norendoxifen inhibited the activity of CYP2C enzymes while tamoxifen bisphenol consistently induced CYPs similar to rifampicin and phenobarbital. On the transcript level, highest induction up to 5.6-fold was observed for CYP3A4 by tamoxifen, (Z)-4-hydroxytamoxifen, tamoxifen bisphenol and (E)-metabolite E. Estrogen-like tamoxifen metabolites are formed in CYP-dependent reactions and are further metabolized by glucuronidation. The induction of CYP activity by tamoxifen bisphenol and the inhibition of CYP2C enzymes by anti-estrogenic metabolites may lead to drug-drug-interactions.

  7. Sacubitril Is Selectively Activated by Carboxylesterase 1 (CES1) in the Liver and the Activation Is Affected by CES1 Genetic Variation.

    PubMed

    Shi, Jian; Wang, Xinwen; Nguyen, Jenny; Wu, Audrey H; Bleske, Barry E; Zhu, Hao-Jie

    2016-04-01

    Sacubitril was recently approved by the Food and Drug Administration for use in combination with valsartan for the treatment of patients with heart failure with reduced ejection fraction. As a prodrug, sacubitril must be metabolized (hydrolyzed) to its active metabolite sacubitrilat (LBQ657) to exert its intended therapeutic effects. Thus, understanding the determinants of sacubitril activation will lead to the improvement of sacubitril pharmacotherapy. The objective of this study was to identify the enzyme(s) responsible for the activation of sacubitril, and determine the impact of genetic variation on sacubitril activation. First, an incubation study of sacubitril with human plasma and the S9 fractions of human liver, intestine, and kidney was conducted. Sacubitril was found to be activated by human liver S9 fractions only. Moreover, sacubitril activation was significantly inhibited by the carboxylesterase 1 (CES1) inhibitor bis-(p-nitrophenyl) phosphate in human liver S9. Further incubation studies with recombinant human CES1 and carboxylesterase 2 confirmed that sacubitril is a selective CES1 substrate. The in vitro study of cell lines transfected with wild-type CES1 and the CES1 variant G143E (rs71647871) demonstrated that G143E is a loss-of-function variant for sacubitril activation. Importantly, sacubitril activation was significantly impaired in human livers carrying the G143E variant. In conclusion, sacubitril is selectively activated by CES1 in human liver. The CES1 genetic variant G143E can significantly impair sacubitril activation. Therefore, CES1 genetic variants appear to be an important contributing factor to interindividual variability in sacubitril activation, and have the potential to serve as biomarkers to optimize sacubitril pharmacotherapy. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms.

    PubMed

    Stewart, Mikaela D; Duncan, Emily D; Coronado, Ernesto; DaRosa, Paul A; Pruneda, Jonathan N; Brzovic, Peter S; Klevit, Rachel E

    2017-03-01

    The tumor-suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N-terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain-containing proteins. RING domains bind and activate E2 ubiquitin-conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer-associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1. © 2017 The Protein Society.

  9. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    PubMed

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    NASA Technical Reports Server (NTRS)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  11. CYP2E1 overexpression inhibits microsomal Ca2+-ATPase activity in HepG2 cells.

    PubMed

    Caro, Andres A; Evans, Kerry L; Cederbaum, Arthur I

    2009-01-31

    Cytochrome P450 2E1 (CYP2E1) is a microsomal enzyme that generates reactive oxygen species during its catalytic cycle. We previously found an important role for calcium in CYP2E1-potentiated injury in HepG2 cells. The possibility that CYP2E1 may oxidatively damage and inactivate the microsomal Ca2+-ATPase in intact liver cells was evaluated, in order to explain why calcium is elevated during CYP2E1 toxicity. Microsomes were isolated by differential centrifugation from two liver cell line: E47 cells (HepG2 cells transfected with the pCI neo expression vector containing the human CYP2E1 cDNA, which overexpress active microsomal CYP2E1), and control C34 cells (HepG2 cells transfected with the pCI neo expression vector alone, which do not express significantly any cytochrome P450). The Ca2+-dependent ATPase activity was determined by measuring the accumulation of inorganic phosphate from ATP hydrolysis. CYP2E1 overexpression produced a 45% decrease in Ca2+-dependent ATPase activity (8.6 nmol Pi/min/mg protein in C34 microsomes versus 4.7 nmol Pi/min/mg protein in microsomes). Saturation curves with Ca2+ or ATP showed that CYP2E1 overexpression produced a decrease in Vmax but did not affect the Km for either Ca2+ or ATP. The decrease in activity was not associated with a decrease in SERCA protein levels. The ATP-dependent microsomal calcium uptake was evaluated by fluorimetry using fluo-3 as the fluorogenic probe. Calcium uptake rate in E47 microsomes was 28% lower than in C34 microsomes. Treatment of E47 cells with 2mM N-acetylcysteine prevented the decrease in microsomal Ca2+-ATPase found in E47 cells. These results suggest that CYP2E1 overexpression produces a decrease in microsomal Ca2+-ATPase activity in HepG2 cells mediated by reactive oxygen species. This may contribute to elevated cytosolic calcium and to CYP2E1-potentiated injury.

  12. Nicergoline reverts haloperidol-induced loss of detoxifying-enzyme activity.

    PubMed

    Vairetti, Mariapia; Ferrigno, Andrea; Canonico, Pier Luigi; Battaglia, Angelo; Bertè, Francantonio; Richelmi, Plinio

    2004-11-28

    We evaluated the effects of nicergoline on antioxidant defense enzymes (detoxifying enzymes), during chronic treatment with haloperidol in rats. Chronic use of haloperidol (10 weeks, 1.5 mg/kg/day) induces a significant decrease in glutathione reductase, glutathione peroxidase and superoxide dismutase activity, in selected areas of the brain. Co-administration of nicergoline (20 days, 10 mg/kg/day) significantly restored the activity of these enzymes to levels comparable to those observed in control rats. These observations suggest beneficial effects of nicergoline in the prevention and in the treatment of haloperidol-induced side effects.

  13. Analysis of the activation of acetylcholinesterase by carbon nanoparticles using a monolithic immobilized enzyme microreactor: role of the water molecules in the active site gorge.

    PubMed

    Ibrahim, Firas; Andre, Claire; Iutzeler, Anne; Guillaume, Yves Claude

    2013-10-01

    A biochromatographic system was used to study the direct effect of carbon nanoparticles (CNPs) on the acetylcholinesterase (AChE) activity. The AChE enzyme was covalently immobilized on a monolithic CIM-disk via its NH2 residues. Our results showed an increase in the AChE activity in presence of CNPs. The catalytic constant (k(cat)) was increased while the Michaelis constant (K(m)) was slightly decreased. This indicated an increase in the enzyme efficiency with increase of the substrate affinity to the active site. The thermodynamic data of the activation mechanism of the enzyme, i.e. ΔH* and ΔS*, showed no change in the substrate interaction mechanism with the anionic binding site. The increase of the enthalpy (ΔH*) and the entropy (ΔS*) with decrease in the free energy of activation (Ea) was related to structural conformation change in the active site gorge. This affected the stability of water molecules in the active site gorge and facilitated water displacement by substrate for entering to the active site of the enzyme.

  14. C1q/TNF-Related Protein-9 Ameliorates Ox-LDL-Induced Endothelial Dysfunction via PGC-1α/AMPK-Mediated Antioxidant Enzyme Induction

    PubMed Central

    Sun, Haijian; Zhu, Xuexue; Zhou, Yuetao; Cai, Weiwei; Qiu, Liying

    2017-01-01

    Oxidized low-density lipoprotein (ox-LDL) accumulation is one of the critical determinants in endothelial dysfunction in many cardiovascular diseases such as atherosclerosis. C1q/TNF-related protein 9 (CTRP9) is identified to be an adipocytokine with cardioprotective properties. However, the potential roles of CTRP9 in endothelial function remain largely elusive. In the present study, the effects of CTRP9 on the proliferation, apoptosis, migration, angiogenesis, nitric oxide (NO) production and oxidative stress in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL were investigated. We observed that treatment with ox-LDL inhibited the proliferation, migration, angiogenesis and the generation of NO, while stimulated the apoptosis and reactive oxygen species (ROS) production in HUVECs. Incubation of HUVECs with CTRP9 rescued ox-LDL-induced endothelial injury. CTRP9 treatment reversed ox-LDL-evoked decreases in antioxidant enzymes including heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase quinone 1, and glutamate-cysteine ligase (GCL), as well as endothelial nitric oxide synthase (eNOS). Furthermore, CTRP9 induced activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC1-α) and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Of interest, AMPK inhibition or PGC1-α silencing abolished CTRP9-mediated antioxidant enzymes levels, eNOS expressions, and endothelial protective effects. Collectively, we provided the first evidence that CTRP9 attenuated ox-LDL-induced endothelial injury by antioxidant enzyme inductions dependent on PGC-1α/AMPK activation. PMID:28587104

  15. Induction of antioxidant enzyme activities by a phenylurea derivative, EDU.

    PubMed

    Stevens, T M; Boswell, G A; Adler, R; Ackerman, N R; Kerr, J S

    1988-10-01

    Oxygen free radicals have the potential to mediate cell injury. Defenses against such radicals include the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). The purposes of this study were (1) to develop an in vitro model using human cells in which to investigate a potential pharmacologic agent as an inducer of these antioxidant enzymes; (2) to investigate the phenylurea derivative N-[2-(2-oxo-1-imidazolindinyl)ethyl]-N-phenylurea (EDU) in this model with paraquat (PQ) serving as the positive control; and (3) to determine if induction of the antioxidant enzymes by EDU occurs in vivo. Human gingival fibroblasts (Gin-1) were used as the target cell in vitro; PQ and EDU, an inducer of SOD and CAT activities in plants, were evaluated as antioxidant enzyme inducers. Total SOD activity in Gin-1 cells increased 2-fold (p less than 0.05) in the presence of 1.0 mM PQ for 18-48 hr compared with untreated controls. Gin-1 cells incubated with 0.25-2.0 mM PQ for 24 hr had significantly increased total SOD (1.5 to 2.0-fold; p less than 0.05). CAT activity increased with 1.0 and 2.0 mM PQ (p less than 0.05). In the presence of PQ, GSH-PX activity decreased (p less than 0.05) in a concentration-dependent manner, indicating inactivation of this enzyme. No toxicity, indicated by lactate dehydrogenase released into the incubation medium, was noted at PQ concentrations below 5.0 mM. In the presence of 0.125-2.0 mM EDU, total SOD activity in Gin-1 cells significantly increased (1.5 to 2.0-fold; p less than 0.05). CAT activity significantly increased in a dose-dependent manner (p less than 0.05), while GSH-PX activity remained constant following exposure to 0.125-2.0 mM EDU. Intraperitoneal administration of EDU to rats twice a day for 2 days at 100 mg/kg induced SOD activity in heart, liver, and lung compared to controls (p less than 0.05). CAT activity increased in the liver 56% and in the lung 36% (p less than 0.05). GSH-PX activity

  16. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants.

    PubMed

    Vance, Terrence M; Azabdaftari, Gissou; Pop, Elena A; Lee, Sang Gil; Su, L Joseph; Fontham, Elizabeth T H; Bensen, Jeannette T; Steck, Susan E; Arab, Lenore; Mohler, James L; Chen, Ming-Hui; Koo, Sung I; Chun, Ock K

    2015-01-01

    Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1), an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher's exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P = 0.01) and inversely associated with dietary antioxidant intake (P = 0.03). In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P = 0.01). No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P = 0.04). Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants.

  17. Mutagenesis of threonine to serine in the active site of Mycobacterium tuberculosis fructose-1,6-bisphosphatase (Class II) retains partial enzyme activity.

    PubMed

    Bondoc, Jasper Marc G; Wolf, Nina M; Ndichuck, Michael; Abad-Zapatero, Celerino; Movahedzadeh, Farahnaz

    2017-09-01

    The glpX gene encodes for the Class II fructose-1,6-bisphosphatase enzyme in Mycobacterium tuberculosis ( Mt ), an essential enzyme for pathogenesis. We have performed site directed mutagenesis to introduce two mutations at residue Thr84, T84A and T84S, to explore the binding affinity of the substrate and the catalytic mechanism. The T84A mutant fully abolishes enzyme activity while retaining substrate binding affinity. In contrast, the T84S mutant retains some activity having a 10 times reduction in V max and exhibited similar sensitivity to lithium when compared to the wildtype. Homology modeling using the Escherichia coli enzyme structure suggests that the replacement of the critical nucleophile OH - in the Thr84 residue of the wildtype of Mt FBPase by Ser84 results in subtle alterations of the position and orientation that reduce the catalytic efficiency. This mutant could be used to trap reaction intermediates, through crystallographic methods, facilitating the design of potent inhibitors via structure-based drug design.

  18. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication

    PubMed Central

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K.; McCormick, Frank; Graeber, Thomas G.; Christofk, Heather R.

    2014-01-01

    SUMMARY Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. While recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. PMID:24703700

  19. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  20. Molecular docking of (5E)-3-(2-aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione on HIV-1 reverse transcriptase: novel drug acting on enzyme.

    PubMed

    Seniya, Chandrabhan; Yadav, Ajay; Uchadia, Kuldeep; Kumar, Sanjay; Sagar, Nitin; Shrivastava, Priyanka; Shrivastava, Shilpi; Wadhwa, Gulshan

    2012-01-01

    The study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV. Therefore, inhibition of HIV-1RT enzyme is one of the major and potential targets in the treatment of AIDS. The enzyme (HIV-1RT) was successfully targeted by non nucleotide reverse transcriptase inhibitors (NNRTIs). But frequent application of NNRTIs led drug resistance mutation on HIV infections. Therefore, there is a need to search new NNRTIs with appropriate pharmacophores. For the purpose, a virtually screened 3D model of unliganded HIV-1RT (1DLO) was explored. The unliganded HIV-1RT (1DLO) was docked with 4-thiazolidinone and its derivatives (ChemBank Database) by using AutoDock4. The best seven docking solutions complex were selected and analyzed by Ligplot. The analysis showed that derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) has maximum potential against unliganded HIV-1RT (1DLO). The analysis was done on the basis of scoring and binding ability. The derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) indicated minimum energy score and highest number of interactions with active site residue and could be a promising inhibitor for HIV-1 RT as Drug target.

  1. Heterodimer formation and activity in the human enzyme galactose-1-phosphate uridylyltransferase.

    PubMed Central

    Elsevier, J P; Wells, L; Quimby, B B; Fridovich-Keil, J L

    1996-01-01

    One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits. Images Fig. 1 Fig. 4 Fig. 6 PMID:8692963

  2. Gene coding for the E1 endoglucanase

    DOEpatents

    Thomas, Steven R.; Laymon, Robert A.; Himmel, Michael E.

    1996-01-01

    The gene encoding Acidothermus cellulolyticus E1 endoglucanase is cloned and expressed in heterologous microorganisms. A new modified E1 endoglucanase enzyme is produced along with variants of the gene and enzyme. The E1 endoglucanase is useful for hydrolyzing cellulose to sugars for simultaneous or later fermentation into alcohol.

  3. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    PubMed

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  4. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    PubMed

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  5. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  6. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    PubMed

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  7. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-β-d-glucose from uridine-5′-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss. Images Fig. 4 PMID:11537438

  8. Gene coding for the E1 endoglucanase

    DOEpatents

    Thomas, S.R.; Laymon, R.A.; Himmel, M.E.

    1996-07-16

    The gene encoding Acidothermus cellulolyticus E1 endoglucanase is cloned and expressed in heterologous microorganisms. A new modified E1 endoglucanase enzyme is produced along with variants of the gene and enzyme. The E1 endoglucanase is useful for hydrolyzing cellulose to sugars for simultaneous or later fermentation into alcohol. 6 figs.

  9. The Ontogeny of Cytochrome P450 Enzyme Activity and Protein Abundance in Conventional Pigs in Support of Preclinical Pediatric Drug Research.

    PubMed

    Millecam, Joske; De Clerck, Laura; Govaert, Elisabeth; Devreese, Mathias; Gasthuys, Elke; Schelstraete, Wim; Deforce, Dieter; De Bock, Lies; Van Bocxlaer, Jan; Sys, Stanislas; Croubels, Siska

    2018-01-01

    Since the implementation of several legislations to improve pediatric drug research, more pediatric clinical trials are being performed. In order to optimize these pediatric trials, adequate preclinical data are necessary, which are usually obtained by juvenile animal models. The growing piglet has been increasingly suggested as a potential animal model due to a high degree of anatomical and physiological similarities with humans. However, physiological data in pigs on the ontogeny of major organs involved in absorption, distribution, metabolism, and excretion of drugs are largely lacking. The aim of this study was to unravel the ontogeny of porcine hepatic drug metabolizing cytochrome P450 enzyme (CYP450) activities as well as protein abundances. Liver microsomes from 16 conventional pigs (8 males and 8 females) per age group: 2 days, 4 weeks, 8 weeks, and 6-7 months were prepared. Activity measurements were performed with substrates of major human CYP450 enzymes: midazolam (CYP3A), tolbutamide (CYP2C), and chlorzoxazone (CYP2E). Next, the hepatic scaling factor, microsomal protein per gram liver (MPPGL), was determined to correct for enzyme losses during the fractionation process. Finally, protein abundance was determined using proteomics and correlated with enzyme activity. No significant sex differences within each age category were observed in enzyme activity or MPPGL. The biotransformation rate of all three substrates increased with age, comparable with human maturation of CYP450 enzymes. The MPPGL decreased from birth till 8 weeks of age followed by an increase till 6-7 months of age. Significant sex differences in protein abundance were observed for CYP1A2, CYP2A19, CYP3A22, CYP4V2, CYP2C36, CYP2E_1, and CYP2E_2. Midazolam and tolbutamide are considered good substrates to evaluate porcine CYP3A/2C enzymes, respectively. However, chlorzoxazone is not advised to evaluate porcine CYP2E enzyme activity. The increase in biotransformation rate with age can be

  10. INHIBITION OF ERN1 SIGNALING ENZYME AFFECTS HYPOXIC REGULATION OF THE EXPRESSION OF E2F8, EPAS1, HOXC6, ATF3, TBX3 AND FOXF1 GENES IN U87 GLIOMA CELLS.

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Kovalevska, O V; Karbovskyi, L L; Bikfalvi, A

    2015-01-01

    Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERNI function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes. removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function.

  11. Optimization of oligomeric enzyme activity in ionic liquids using Rhodotorula glutinis yeast phenylalanine ammonia lyase.

    PubMed

    Barron, Christiaan C; Sponagle, Brandon J D; Arivalagan, Pugazhendhi; D'Cunha, Godwin B

    2017-01-01

    Phenylalanine ammonia lyase (E.C.4.3.1.24, PAL) activity of Rhodotorula glutinis yeast has been demonstrated in four commonly used ionic liquids. PAL forward reaction was carried out in 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO 4 ]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF 6 ]) and 1-butyl-3-methylimidazolium lactate ([BMIM][lactate]). Our experiments have revealed that PAL is catalytically active in ionic liquids and the enzyme activity in ([BMIM][PF 6 ]) is comparable to that obtained in aqueous buffer medium. Different conditions were optimized for maximal PAL forward activity including time of incubation (30.0min) L -phenylalanine substrate concentration (30.0mM), nature of buffer (50.0mM Tris-HCl), pH (9.0), temperature (37°C), and speed of agitation (100 rev min -1 ). Under these optimized conditions, about 83% conversion of substrate to product was obtained for the PAL forward reaction that was determined using UV spectroscopy at 290nm. PAL reverse reaction in ([BMIM][PF 6 ]) was determined spectrophotometrically at 520nm; and about 59% substrate conversion was obtained. This data provides further knowledge in enzyme biocatalysis in non-aqueous media, and may be of importance when studying the function of other oligomeric/multimeric proteins and enzymes in ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities

    PubMed Central

    Joyet, Philippe; Mokhtari, Abdelhamid; Riboulet-Bisson, Eliette; Blancato, Víctor S.; Espariz, Martin; Magni, Christian; Sauvageot, Nicolas

    2017-01-01

    another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose. IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis. PMID:28455338

  13. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  14. Albumin Stimulates the Activity of the Human UDP-Glucuronosyltransferases 1A7, 1A8, 1A10, 2A1 and 2B15, but the Effects Are Enzyme and Substrate Dependent

    PubMed Central

    Svaluto-Moreolo, Paolo; Dziedzic, Klaudyna; Yli-Kauhaluoma, Jari; Finel, Moshe

    2013-01-01

    Human UDP-glucuronosyltransferases (UGTs) are important enzymes in metabolic elimination of endo- and xenobiotics. It was recently shown that addition of fatty acid free bovine serum albumin (BSA) significantly enhances in vitro activities of UGTs, a limiting factor in in vitro–in vivo extrapolation. Nevertheless, since only few human UGT enzymes were tested for this phenomenon, we have now performed detailed enzyme kinetic analysis on the BSA effects in six previously untested UGTs, using 2–4 suitable substrates for each enzyme. We also examined some of the previously tested UGTs, but using additional substrates and a lower BSA concentration, only 0.1%. The latter concentration allows the use of important but more lipophilic substrates, such as estradiol and 17-epiestradiol. In five newly tested UGTs, 1A7, 1A8, 1A10, 2A1, and 2B15, the addition of BSA enhanced, to a different degree, the in vitro activity by either decreasing reaction’s K m, increasing its V max, or both. In contrast, the activities of UGT2B17, another previously untested enzyme, were almost unaffected. The results of the assays with the previously tested UGTs, 1A1, 1A6, 2B4, and 2B7, were similar to the published BSA only as far as the BSA effects on the reactions’ K m are concerned. In the cases of V max values, however, our results differ significantly from the previously published ones, at least with some of the substrates. Hence, the magnitude of the BSA effects appears to be substrate dependent, especially with respect to V max increases. Additionally, the BSA effects may be UGT subfamily dependent since K m decreases were observed in members of subfamilies 1A, 2A and 2B, whereas large V max increases were only found in several UGT1A members. The results shed new light on the complexity of the BSA effects on the activity and enzyme kinetics of the human UGTs. PMID:23372764

  15. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity

    PubMed Central

    Sun, Cen-Cen; Dong, Wei-Ren; Shao, Tong; Li, Jiang-Yuan; Zhao, Jing; Nie, Li

    2017-01-01

    Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpectedly observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent of Cys peroxidation and reductants. This study aimed to validate a novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase (CAT)-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the CAT-like activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT-like activities for individual functional validation. We discovered that the TnPrx1 POX and CAT-like activities possessed different kinetic features in the reduction of H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2. Prx1 is a dual-function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants. PMID:28219939

  17. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  18. Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp Litopenaeus vannamei fed with aflatoxin B1(AFB1).

    PubMed

    Zhao, Wei; Wang, Lei; Liu, Mei; Jiang, Keyong; Wang, Mengqiang; Yang, Guang; Qi, Cancan; Wang, Baojie

    2017-09-01

    Aflatoxin produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing and storage. Aflatoxins cause severe health problems reducing the yield and profitability of shrimp cultures. We sought to understand the interaction between shrimp immunity and aflatoxin B1 (AFB1), analyzing transcriptome expression, antioxidant enzyme activity, and histological features of the hepatopancreas of shrimp fed with AFB1. From over 4 million high-quality reads, de novo unigene assembly produced 103,644 fully annotated genes. A total of 1024 genes were differentially expressed in shrimp fed with AFB1, being involved in functions, such as peroxidase metabolism, signal transduction, transcriptional control, apoptosis, proteolysis, endocytosis, and cell adhesion and cell junction. Upon AFB1 challenge, there were severe histological alterations in shrimp hepatopancreas. AFB1 challenge increased the activity of several antioxidant enzymes. Our data contribute to improve the current understanding of host-AFB1 interaction, providing an abundant source for identification of novel genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1.

    PubMed

    Chen, Suping; Yang, Jing; Zhang, Yang; Duan, Chunyan; Liu, Qing; Huang, Zhengyun; Xu, Ying; Zhou, Liang; Xu, Guoqiang

    2018-06-05

    Dysregulation of the circadian rhythm is associated with many diseases, including diabetes, obesity, and cancer. Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl or Bmal1) is the only clock gene whose loss disrupts circadian locomotor behavior in constant darkness. BMAL1 levels are affected by proteasomal inhibition and by several enzymes in the ubiquitin-proteasome system, but the exact molecular mechanism remains unclear. Here, using immunoprecipitation and MS analyses, we discovered an interaction between BMAL1 and ubiquitin-conjugating enzyme E2 O (UBE2O), an E3-independent, E2-ubiquitin-conjugating enzyme (i.e. hybrid E2/E3 enzyme). Biochemical experiments with cell lines and animal tissues validated this specific interaction and uncovered that UBE2O expression reduces BMAL1 levels by promoting its ubiquitination and degradation. Moreover, UBE2O expression and UBE2O knockdown diminished and increased, respectively, BMAL1-mediated transcriptional activity, but did not affect BMAL1 gene expression. Bioluminescence experiments disclosed that UBE2O knockdown elevates the amplitude of the circadian clock in human osteosarcoma U2OS cells. Furthermore, mapping of the BMAL1-interacting domain in UBE2O and analyses of BMAL1 stability and ubiquitination revealed that the conserved region 2 (CR2) in UBE2O significantly enhances BMAL1 ubiquitination and decreases BMAL1 protein levels. A Cys-to-Ser substitution in the CR2 domain identified the critical Cys residue responsible for BMAL1 ubiquitination mediated by the CR2 domain in UBE2O. This work identifies UBE2O as a critical regulator in the ubiquitin-proteasome system, which modulates BMAL1 transcriptional activity and circadian function by promoting BMAL1 ubiquitination and degradation under normal physiological conditions. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Ionizable side chains at catalytic active sites of enzymes.

    PubMed

    Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob

    2012-05-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

  1. Synthesis of New Hydrazone Derivatives for MAO Enzymes Inhibitory Activity.

    PubMed

    Can, Nafiz Öncü; Osmaniye, Derya; Levent, Serkan; Sağlık, Begüm Nurpelin; İnci, Beril; Ilgın, Sinem; Özkay, Yusuf; Kaplancıklı, Zafer Asım

    2017-08-20

    In the present work, 14 new 1-substituted-2-phenylhydrazone derivatives were synthesized to evaluate their inhibitory activity against hMAO enzymes. The structures of the newly synthesized hydrazones 2a-2n were characterized by IR, 1H-NMR, 13C-NMR, HR-MS spectroscopic methods. The inhibitory activity of compounds 2a-2n against hMAO-A and hMAO-B enzymes was elucidated by using an in-vitro Amplex Red® reagent assay based on fluorometric methods. According to the activity studies, 2a and 2b were found to be the most active compounds against hMAO-A enzyme, with IC50 values of 0.342 µM and 0.028 µM, respectively. The most active compounds 2a-2b were evaluated by means of enzyme kinetics and docking studies. Moreover, these compounds were subjected to cytotoxicity and genotoxicity tests to establish their preliminary toxicological profiles and were found to be non-cytotoxic and non-genotoxic. Consequently, the findings of this study display the biological importance of compounds 2a, 2b as selective, irreversible and competitive inhibitors of hMAO-A. Docking studies revealed that there is a strong interaction between hMAO-A and the most active compound 2b.

  2. Probes of Ubiquitin E3 ligases distinguish different stages of Parkin activation

    PubMed Central

    Pao, Kuan-Chuan; Stanley, Mathew; Han, Cong; Lai, Yu-Chiang; Murphy, Paul; Balk, Kristin; Wood, Nicola T.; Corti, Olga; Corvol, Jean-Christophe; Muqit, Miratul M.K.; Virdee, Satpal

    2016-01-01

    E3 ligases represent an important class of enzymes, yet there are currently no chemical probes to profile their activity. We develop a new class of activity-based probe by reengineering of a ubiquitin-charged E2 conjugating enzyme and demonstrate their utility by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase Parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in Parkin activation. We also profile Parkin patient disease-associated mutations and strikingly demonstrate that they largely mediate their effect by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous Parkin activity revealing that endogenous Parkin is activated in neuronal cell lines (≥75 %) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-Parkin signalling as demonstrated by compatibility with Parkinson’s disease patient-derived samples. PMID:26928937

  3. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions.

    PubMed

    Mondal, Subhanjan; Hsiao, Kevin; Goueli, Said A

    Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD + ]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD + and enzymes that use NAD + like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.

  4. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    PubMed

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  5. Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues.

    PubMed

    Baek, Seung Cheol; Ho, Thien-Hoang; Lee, Hyun Woo; Jung, Won Kyeong; Gang, Hyo-Seung; Kang, Lin-Woo; Kim, Hoon

    2017-05-01

    β-1,3-1,4-Glucanase (BGlc8H) from Paenibacillus sp. X4 was mutated by error-prone PCR or truncated using termination primers to improve its enzyme properties. The crystal structure of BGlc8H was determined at a resolution of 1.8 Å to study the possible roles of mutated residues and truncated regions of the enzyme. In mutation experiments, three clones of EP 2-6, 2-10, and 5-28 were finally selected that exhibited higher specific activities than the wild type when measured using their crude extracts. Enzyme variants of BG 2-6 , BG 2-10 , and BG 5-28 were mutated at two, two, and six amino acid residues, respectively. These enzymes were purified homogeneously by Hi-Trap Q and CHT-II chromatography. Specific activity of BG 5-28 was 2.11-fold higher than that of wild-type BG wt , whereas those of BG 2-6 and BG 2-10 were 0.93- and 1.19-fold that of the wild type, respectively. The optimum pH values and temperatures of the variants were nearly the same as those of BG wt (pH 5.0 and 40 °C, respectively). However, the half-life of the enzyme activity and catalytic efficiency (k cat /K m ) of BG 5-28 were 1.92- and 2.12-fold greater than those of BG wt at 40 °C, respectively. The catalytic efficiency of BG 5-28 increased to 3.09-fold that of BG wt at 60 °C. These increases in the thermostability and catalytic efficiency of BG 5-28 might be useful for the hydrolysis of β-glucans to produce fermentable sugars. Of the six mutated residues of BG 5-28 , five residues were present in mature BGlc8H protein, and two of them were located in the core scaffold of BGlc8H and the remaining three residues were in the substrate-binding pocket forming loop regions. In truncation experiments, three forms of C-terminal truncated BGlc8H were made, which comprised 360, 286, and 215 amino acid residues instead of the 409 residues of the wild type. No enzyme activity was observed for these truncated enzymes, suggesting the complete scaffold of the α 6 /α 6 -double-barrel structure is

  6. Crystal structure of the Streptomyces coelicolor sortase E1 transpeptidase provides insight into the binding mode of the novel class E sorting signal

    DOE PAGES

    Kattke, Michele D.; Chan, Albert H.; Duong, Andrew; ...

    2016-12-09

    Here, many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution ofmore » alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.« less

  7. Functional Characterization of the Vitamin K2 Biosynthetic Enzyme UBIAD1

    PubMed Central

    Hirota, Yoshihisa; Nakagawa, Kimie; Sawada, Natsumi; Okuda, Naoko; Suhara, Yoshitomo; Uchino, Yuri; Kimoto, Takashi; Funahashi, Nobuaki; Kamao, Maya; Tsugawa, Naoko; Okano, Toshio

    2015-01-01

    UbiA prenyltransferase domain-containing protein 1 (UBIAD1) plays a significant role in vitamin K2 (MK-4) synthesis. We investigated the enzymological properties of UBIAD1 using microsomal fractions from Sf9 cells expressing UBIAD1 by analysing MK-4 biosynthetic activity. With regard to UBIAD1 enzyme reaction conditions, highest MK-4 synthetic activity was demonstrated under basic conditions at a pH between 8.5 and 9.0, with a DTT ≥0.1 mM. In addition, we found that geranyl pyrophosphate and farnesyl pyrophosphate were also recognized as a side-chain source and served as a substrate for prenylation. Furthermore, lipophilic statins were found to directly inhibit the enzymatic activity of UBIAD1. We analysed the aminoacid sequences homologies across the menA and UbiA families to identify conserved structural features of UBIAD1 proteins and focused on four highly conserved domains. We prepared protein mutants deficient in the four conserved domains to evaluate enzyme activity. Because no enzyme activity was detected in the mutants deficient in the UBIAD1 conserved domains, these four domains were considered to play an essential role in enzymatic activity. We also measured enzyme activities using point mutants of the highly conserved aminoacids in these domains to elucidate their respective functions. We found that the conserved domain I is a substrate recognition site that undergoes a structural change after substrate binding. The conserved domain II is a redox domain site containing a CxxC motif. The conserved domain III is a hinge region important as a catalytic site for the UBIAD1 enzyme. The conserved domain IV is a binding site for Mg2+/isoprenyl side-chain. In this study, we provide a molecular mapping of the enzymological properties of UBIAD1. PMID:25874989

  8. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis.

    PubMed

    Qian, Xu; Li, Xinjian; Lu, Zhimin

    2017-07-03

    Macroautophagy/autophagy is a cellular defense response to stress conditions and is crucial for cell homeostasis maintenance. However, the precise mechanism underlying autophagy initiation, especially in response to glutamine deprivation and hypoxia, is yet to be explored. We recently discovered that PGK1 (phosphoglycerate kinase 1), a glycolytic enzyme, functions as a protein kinase, phosphorylating BECN1/Beclin 1 to initiate autophagy. Under glutamine deprivation or hypoxia stimulation, PGK1 is acetylated at K388 by NAA10/ARD1 in an MTOR-inhibition-dependent manner, leading to the interaction between PGK1 and BECN1 and the subsequent phosphorylation of BECN1 at S30 by PGK1. This phosphorylation enhances ATG14-associated PIK3C3/VPS34-BECN1-PIK3R4/VPS15 complex activity, thereby increasing phosphatidylinositol-3-phosphate (PtdIns3P) generation in the initiation stage of autophagy. Furthermore, NAA10-dependent PGK1 acetylation and PGK1-dependent BECN1 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumor formation. Our work reveals the important dual roles of PGK1 as a glycolytic enzyme and a protein kinase in the mutual regulation of cell metabolism and autophagy in maintaining cell homeostasis.

  9. Glycyl radical activating enzymes: Structure, mechanism, and substrate interactions☆

    PubMed Central

    Shisler, Krista A.; Broderick, Joan B.

    2014-01-01

    The glycyl radical enzyme activating enzymes (GRE–AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe–4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE–AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE–AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE–AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes. PMID:24486374

  10. Inhibitory Effects of Commonly Used Herbal Extracts on UDP-Glucuronosyltransferase 1A4, 1A6, and 1A9 Enzyme Activities

    PubMed Central

    Mohamed, Mohamed-Eslam F.

    2011-01-01

    The aim of this study was to investigate the effect of commonly used botanicals on UDP-glucuronosyltransferase (UGT) 1A4, UGT1A6, and UGT1A9 activities in human liver microsomes. The extracts screened were black cohosh, cranberry, echinacea, garlic, ginkgo, ginseng, milk thistle, saw palmetto, and valerian in addition to the green tea catechin epigallocatechin gallate (EGCG). Formation of trifluoperazine glucuronide, serotonin glucuronide, and mycophenolic acid phenolic glucuronide was used as an index reaction for UGT1A4, UGT1A6, and UGT1A9 activities, respectively, in human liver microsomes. Inhibition potency was expressed as the concentration of the inhibitor at 50% activity (IC50) and the volume in which the dose could be diluted to generate an IC50-equivalent concentration [volume/dose index (VDI)]. Potential inhibitors were EGCG for UGT1A4, milk thistle for both UGT1A6 and UGT1A9, saw palmetto for UGT1A6, and cranberry for UGT1A9. EGCG inhibited UGT1A4 with an IC50 value of (mean ± S.E.) 33.8 ± 3.1 μg/ml. Milk thistle inhibited both UGT1A6 and UGT1A9 with IC50 values of 59.5 ± 3.6 and 33.6 ± 3.1 μg/ml, respectively. Saw palmetto and cranberry weakly inhibited UGT1A6 and UGT1A9, respectively, with IC50 values >100 μg/ml. For each inhibition, VDI was calculated to determine the potential of achieving IC50-equivalent concentrations in vivo. VDI values for inhibitors indicate a potential for inhibition of first-pass glucuronidation of UGT1A4, UGT1A6, and UGT1A9 substrates. These results highlight the possibility of herb-drug interactions through modulation of UGT enzyme activities. Further clinical studies are warranted to investigate the in vivo extent of the observed interactions. PMID:21632963

  11. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.

    PubMed

    Laskoski, Kerly; Santos, Adrian R S; Bonatto, Ana C; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2016-05-01

    Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.

  12. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    PubMed

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  13. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  14. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    NASA Astrophysics Data System (ADS)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  15. Activity-Based Screening of Metagenomic Libraries for Hydrogenase Enzymes.

    PubMed

    Adam, Nicole; Perner, Mirjam

    2017-01-01

    Here we outline how to identify hydrogenase enzymes from metagenomic libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis (ΔhyaB) via triparental mating. If a fosmid exhibits hydrogen uptake activity, S. oneidensis' phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. This new method enables screening of 48 metagenomic fosmid clones in parallel.

  16. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions.

    PubMed

    Shisler, Krista A; Broderick, Joan B

    2014-03-15

    The glycyl radical enzyme activating enzymes (GRE-AEs) are a group of enzymes that belong to the radical S-adenosylmethionine (SAM) superfamily and utilize a [4Fe-4S] cluster and SAM to catalyze H-atom abstraction from their substrate proteins. GRE-AEs activate homodimeric proteins known as glycyl radical enzymes (GREs) through the production of a glycyl radical. After activation, these GREs catalyze diverse reactions through the production of their own substrate radicals. The GRE-AE pyruvate formate lyase activating enzyme (PFL-AE) is extensively characterized and has provided insights into the active site structure of radical SAM enzymes including GRE-AEs, illustrating the nature of the interactions with their corresponding substrate GREs and external electron donors. This review will highlight research on PFL-AE and will also discuss a few GREs and their respective activating enzymes. Copyright © 2014. Published by Elsevier Inc.

  17. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    PubMed

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Bundle-sheath thylakoids from NADP-malic enzyme-type C4 plants require an exogenous electron donor for enzyme light activation.

    PubMed

    Lavergne, D; Droux, M; Jacquot, J P; Miginiac-Maslow, M; Champigny, M L; Gadal, P

    1985-10-01

    Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.

  19. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    PubMed

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  20. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    PubMed Central

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  1. Enzymic Synthesis of Indole-3-Acetyl-1-O-β-d-Glucose 1

    PubMed Central

    Leznicki, Antoni J.; Bandurski, Robert S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-β-d-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as ρ-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid, and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed. PMID:11537439

  2. Conversion of Human Steroid 5β-Reductase (AKR1D1) into 3β-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H

    PubMed Central

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-01-01

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5β-reduction of Δ4-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5β-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5α-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3β-HSD as opposed to a 3α-HSD. The catalytic efficiency achieved for 3β-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5β-dihydrotestosterone, and Δ4-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the Δ4-double bond and confers 3β-HSD activity on the 5β-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its α-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference. PMID:22437839

  3. Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli.

    PubMed

    Bajaj, Priyanka; Tripathy, Rajan K; Aggarwal, Geetika; Pande, Abhay H

    2015-11-01

    Human PON1 (h-PON1) is a Ca(2+)-dependent serum enzyme and can hydrolyze (and inactivate) a wide range of substrates. It is a multifaceted enzyme and exhibit anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial, and organophosphate (OP)-detoxifying properties. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against these conditions in humans. Insufficient hydrolyzing activity of native h-PON1 against desirable substrate affirms the urgent need to develop improved variant(s) of h-PON1 having enhanced activity. Production of recombinant h-PON1 (rh-PON1) using an Escherichia coli expression system is a key to develop such variant(s). However, generation of rh-PON1 using E. coli expression system has been elusive until now because of the aggregation of over-expressed rh-PON1 protein in inactive form as inclusion bodies (IBs) in the bacterial cells. In this study, we have over-expressed rh-PON1(wt) and rh-PON1(H115W;R192K) proteins as IBs in E. coli, and refolded the inactive enzymes present in the IBs to their active form using in vitro refolding. The active enzymes were isolated from the refolding mixture by ion-exchange chromatography. The catalytic properties of the refolded enzymes were similar to their soluble counterparts. Our results show that the pure and the active variant of rh-PON1 enzyme having enhanced hydrolyzing activity can be produced in large quantities using E. coli expression system. This method can be used for the industrial scale production of rh-PON1 enzymes and will aid in developing h-PON1 as a therapeutic candidate. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Activity of xenobiotic-metabolizing enzymes in the liver of rats with multi-vitamin deficiency.

    PubMed

    Tutelyan, Victor A; Kravchenko, Lidia V; Aksenov, Ilya V; Trusov, Nikita V; Guseva, Galina V; Kodentsova, Vera M; Vrzhesinskaya, Oksana A; Beketova, Nina A

    2013-01-01

    The purpose of the study was to determine how multi-vitamin deficiency affects xenobiotic-metabolizing enzyme (XME) activities in the rat liver. Vitamin levels and XME activities were studied in the livers of male Wistar rats who were fed for 4 weeks with semi-synthetic diets containing either adequate (100 % of recommended vitamin intake) levels of vitamins (control), or decreased vitamin levels (50 % or 20 % of recommended vitamin intake). The study results have shown that moderate vitamin deficiency (50 %) leads to a decrease of vitamin A levels only, and to a slight increase, as compared with the control, in the following enzyme activities: methoxyresorufin O-dealkylase (MROD) activity of CYP1 A2 - by 34 % (p < 0.05), UDP-glucuronosyl transferase - by 26 % (p < 0.05), and quinone reductase - by 55 % (p < 0.05). Profound vitamin deficiency (20 %) led to a decrease of vitamins A, E, B1, B2, and C, and enzyme activities in the liver: MROD - to 78 % of the control level (p < 0.05), 4-nitrophenol hydroxylase - to 74 % (p < 0.05), heme oxygenase-1 - to 83 % (p < 0.05), and quinone reductase - to 60 % (p < 0.05). At the same time, the UDP-glucuronosyl transferase activity and ethoxyresorufin O-dealkylase activity of CYP1A1, pentoxyresorufin O-dealkylase activity of CYP2B1/2 and 6β-testosterone hydroxylase, as well as the total activity of glutathione transferase did not differ from the control levels. The study has demonstrated that profound multi-vitamin deficiency is associated with a decrease in the expression of CYP1A2 and CYP3A1 mRNAs to 62 % and 79 %, respectively. These data indicated that a short-term but profound multi-vitamin deficiency in rats leads to a decrease in the activities and expression of the some XME that play an important role in detoxification of xenobiotics and metabolism of drugs and antioxidant protection.

  5. Kinetic study of an enzymic cycling system coupled to an enzymic step: determination of alkaline phosphatase activity.

    PubMed Central

    Valero, E; Varón, R; García-Carmona, F

    1995-01-01

    A kinetic study is made of a system consisting of a specific enzymic cycling assay coupled to an enzymic reaction. A kinetic analysis of this system is presented, and the accumulation of chromophore involved in the cycle is seen to be parabolic, i.e. the rate of the reaction increases continuously with constant acceleration. The system is illustrated by the measurement of alkaline phosphatase activity using beta-NADP+ as substrate. The enzymes alcohol dehydrogenase and diaphorase are used to cycle beta-NAD+ in the presence of ethanol and p-Iodonitrotetrazolium Violet. During each turn of the cycle, one molecule of the tetrazolium salt is reduced to an intensely coloured formazan. A simple procedure for evaluating the kinetic parameters involved in the system and for optimizing this cycling assay is described. The method is applicable to the measurement of any enzyme, and its amplification capacity as well as the simplicity of determining kinetic parameters enable it to be employed in enzyme immunoassays to increase the magnitude of the measured response. PMID:7619054

  6. Serum paraoxonase-1 gene polymorphism and enzyme activity in patients with urolithiasis.

    PubMed

    Atar, Arda; Gedikbasi, Asuman; Sonmezay, Erkan; Kiraz, Zeynep Kusku; Abbasoglu, Semra; Tasci, Ali Ihsan; Tugcu, Volkan

    2016-01-01

    Paraoxonase-1 (PON1) is a high-density lipoprotein-associated enzyme implicated in the pathogenesis of atherosclerosis by protecting lipoproteins against peroxidation. PON1 has two genetic polymorphisms both due to amino acid substitution, one involving glutamine and arginine at position 192 and the other leucine and methionine at position 55. Recent reports suggest that nephrolithiasis and atherosclerosis share a number of risk factors. Our study aimed to compare the effects of PON1 192, PON1 55 polymorphisms, and PON1 activity in patients with urolithiasis and controls. PON1's arylesterase/paraoxonase activities and phenotype were determined in 158 stone forming cases (Group 1) and 138 non-stone forming controls (Group 2). The PON1 192 and PON1 55 polymorphisms were studied by polymerase chain reaction/restriction fragment length polymorphism. Paraoxonase activity was significantly lower in Group 1 than Group 2 (112 ± 31.8 vs. 208 ± 53.1 IU/L) (p < 0.001). The PON1 L55M polymorphism was significantly higher in Group 1. The "M" allele coding for PON1 was higher in Group 1 (p < 0.001). PON1 192 RR homozygotes had significantly higher PON1 activity than QR and QQ genotypes among all the patients (p < 0.001). The results of our study demonstrate that the PON1 55 gene "M" allele is associated with renal stone disease. Individuals possessing the "M" allele have a higher incidence of urolithiasis. The results of this study provide genetic evidence that the PON1 gene may play a role in stone formation. PON1 genotype determination may provide a tool to identify individuals who are at risk of urolithiasis.

  7. Inhibitory properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives acting on glycogen metabolising enzymes.

    PubMed

    Díaz-Lobo, Mireia; Concia, Alda Lisa; Gómez, Livia; Clapés, Pere; Fita, Ignacio; Guinovart, Joan J; Ferrer, Joan C

    2016-09-26

    Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.

  8. Energetic aspects of the light activation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase.

    PubMed

    Miginiac-Maslow, M; Jacquot, J P; Droux, M

    1985-09-01

    The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m(-2) under nitrogen and 50 W·m(-2) under air, while NADP photoreduction was saturated at 240 W·m(-2). Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.

  9. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    PubMed

    Yuan, Lin; Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  10. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers

    PubMed Central

    Wang, Mingfa; Zhang, Xiaotu; Wang, Zhixiang

    2017-01-01

    Three hundred one-day-old male broiler chickens (Ross-308) were fed corn-soybean basal diets containing non-starch polysaccharide (NSP) enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI) and average daily gain (ADG) were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05). Feed-to-gain ratio (FGR) was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05). Apparent digestibility of crude protein (ADCP) was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05). Cholecystokinin (CCK) level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05), but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05), respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05). However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05). The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05). Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  11. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors.

  12. Spatial localization of the first and last enzymes effectively connects active metabolic pathways in bacteria.

    PubMed

    Meyer, Pablo; Cecchi, Guillermo; Stolovitzky, Gustavo

    2014-12-14

    Although much is understood about the enzymatic cascades that underlie cellular biosynthesis, comparatively little is known about the rules that determine their cellular organization. We performed a detailed analysis of the localization of E.coli GFP-tagged enzymes for cells growing exponentially. We found that out of 857 globular enzymes, at least 219 have a discrete punctuate localization in the cytoplasm and catalyze the first or the last reaction in 60% of biosynthetic pathways. A graph-theoretic analysis of E.coli's metabolic network shows that localized enzymes, in contrast to non-localized ones, form a tree-like hierarchical structure, have a higher within-group connectivity, and are traversed by a higher number of feed-forward and feedback loops than their non-localized counterparts. A Gene Ontology analysis of these enzymes reveals an enrichment of terms related to essential metabolic functions in growing cells. Given that these findings suggest a distinct metabolic role for localization, we studied the dynamics of cellular localization of the cell wall synthesizing enzymes in B. subtilis and found that enzymes localize during exponential growth but not during stationary growth. We conclude that active biochemical pathways inside the cytoplasm are organized spatially following a rule where their first or their last enzymes localize to effectively connect the different active pathways and thus could reflect the activity state of the cell's metabolic network.

  13. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.

  14. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  15. Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2.

    PubMed

    Tatemoto, K; Nozaki, Y; Tsuda, R; Kaneko, S; Tomura, K; Furuno, M; Ogasawara, H; Edamura, K; Takagi, H; Iwamura, H; Noguchi, M; Naito, T

    2018-05-01

    Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through 2 main pathways, immunoglobulin E-dependent and E-independent activation. In the latter pathway, mast cells are activated by a diverse range of basic molecules (collectively known as basic secretagogues) through Mas-related G protein-coupled receptors (MRGPRs). In addition to the known basic secretagogues, here, we discovered several endogenous protein and enzyme fragments (such as chaperonin-10 fragment) that act as bioactive peptides and induce immunoglobulin E-independent mast cell activation via MRGPRX2 (previously known as MrgX2), leading to the degranulation of mast cells. We discuss the possibility that MRGPRX2 responds various as-yet-unidentified endogenous ligands that have specific characteristics, and propose that MRGPRX2 plays an important role in regulating inflammatory responses to endogenous harmful stimuli, such as protein breakdown products released from damaged or dying cells. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  16. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  17. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    PubMed

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  18. Multiple autophosphorylations significantly enhance the endoribonuclease activity of human inositol requiring enzyme 1α

    PubMed Central

    2014-01-01

    Background Endoplasmic reticulum stress, caused by the presence of misfolded proteins, activates the stress sensor inositol-requiring enzyme 1α (IRE1α). The resulting increase in IRE1α RNase activity causes sequence-specific cleavage of X-box binding protein 1 (XBP1) mRNA, resulting in upregulation of the unfolded protein response and cellular adaptation to stress. The precise mechanism of human IRE1α activation is currently unclear. The role of IRE1α kinase activity is disputed, as results from the generation of various kinase-inactivating mutations in either yeast or human cells are discordant. Kinase activity can also be made redundant by small molecules which bind the ATP binding site. We set out to uncover a role for IRE1α kinase activity using wild-type cytosolic protein constructs. Results We show that concentration-dependent oligomerisation is sufficient to cause IRE1α cytosolic domain RNase activity in vitro. We demonstrate a role for the kinase activity by showing that autophosphorylation enhances RNase activity. Inclusion of the IRE1α linker domain in protein constructs allows hyperphosphorylation and further enhancement of RNase activity, highlighting the importance of kinase activity. We show that IRE1α phosphorylation status correlates with an increased propensity to form oligomeric complexes and that forced dimerisation causes great enhancement in RNase activity. In addition we demonstrate that even when IRE1α is forced to dimerise, by a GST-tag, phospho-enhancement of activity is still observed. Conclusions Taken together these experiments support the hypothesis that phosphorylation is important in modulating IRE1α RNase activity which is achieved by increasing the propensity of IRE1α to dimerise. This work supports the development of IRE1α kinase inhibitors for use in the treatment of secretory cancers. PMID:24524643

  19. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities.

    PubMed

    Elbarbry, Fawzy; Ung, Aimy; Abdelkawy, Khaled

    2018-01-01

    Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP

  20. Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients.

    PubMed

    Teixeira, Raquel Lima de Figueiredo; Morato, Renata Gomes; Cabello, Pedro Hernan; Muniz, Ligia Mayumi Kitada; Moreira, Adriana da Silva Rezende; Kritski, Afrânio Lineu; Mello, Fernanda Carvalho Queiroz; Suffys, Philip Noel; Miranda, Antonio Basilio de; Santos, Adalberto Rezende

    2011-09-01

    Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.

  1. Isolation, enzyme-bound structure and antibacterial activity of platencin A[subscript 1] from Streptomyces platensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sheo B.; Ondeyka, John G.; Herath, Kithsiri B.

    Natural products continue to serve as one of the best sources for discovery of antibacterial agents as exemplified by the recent discoveries of platensimycin and platencin. Chemical modifications as well as discovery of congeners are the main sources for gaining knowledge of structure-activity relationship of natural products. Screening for congeners in the extracts of the fermentation broths of Streptomyces platensis led to the isolation of platencin A{sub 1}, a hydroxy congener of platencin. The hydroxylation of the tricyclic enone moiety negatively affected the antibacterial activity and appears to be consistent with the hydrophobic binding pocket of the FabF. Isolation, structure,more » enzyme-bound structure and activity of platencin A{sub 1} and two other congeners have been described.« less

  2. Detoxification enzyme activities (CYP1A1 and GST) in the skin of humpback whales as a function of organochlorine burdens and migration status.

    PubMed

    Bengtson Nash, S; Dawson, A; Burkhard, M; Waugh, C; Huston, W

    2014-10-01

    The activities of glutathione-s-transferase (GST) and cytochrome P-450 1A1 (CYP1A1) enzymes were measured in freshly extracted epidermis of live-biopsied, migrating, southern hemisphere humpback whales (Megaptera novaeangliae). The two quantified enzyme activities did not correlate strongly with each other. Similarly, neither correlated strongly with any of the organochlorine compound groups previously measured in the superficial blubber of the sample biopsy core, likely reflecting the anticipated low levels of typical aryl-hydrocarbon receptor ligands. GST activity did not differ significantly between genders or between northward (early migration) or southward (late migration) migrating cohorts. Indeed, the inter-individual variability in GST measurements was relatively low. This observation raises the possibility that measured activities were basal activities and that GST function was inherently impacted by the fasting state of the sampled animals, as seen in other species. These results do not support the implementation of CYP1A1 or GST as effective biomarkers of organochlorine contaminant burdens in southern hemisphere populations of humpback whales as advocated for other cetacean species. Further investigation of GST activity in feeding versus fasting cohorts may, however, provide some insight into the fasting metabolism of these behaviourally adapted populations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Novel mechanism of JNK pathway activation by adenoviral E1A

    PubMed Central

    Morrison, Helen; Pospelova, Tatiana V.; Pospelov, Valery A.; Herrlich, Peter

    2014-01-01

    The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action. PMID:24742962

  4. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity.

    PubMed

    Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia

    2017-12-01

    A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.

  5. Enzyme Activity Experiments Using a Simple Spectrophotometer

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  6. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    NASA Astrophysics Data System (ADS)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  7. Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    PubMed Central

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H.

    2011-01-01

    Background Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management. PMID:21379573

  8. Correlation Among Soil Enzyme Activities, Root Enzyme Activities, and Contaminant Removal in Two-Stage In Situ Constructed Wetlands Purifying Domestic Wastewater.

    PubMed

    Ni, Lixiao; Xu, Jiajun; Chu, Xianglin; Li, Shiyin; Wang, Peifang; Li, Yiping; Li, Yong; Zhu, Liang; Wang, Chao

    2016-07-01

    Two-stage in situ wetlands (two vertical flow constructed wetlands in parallel and a horizontal flow constructed wetland) were constructed for studying domestic wastewater purification and the correlations between contaminant removal and plant and soil enzyme activities. Results indicated the removal efficiency of NH4 (+) and NO3 (-) were significantly correlated with both urease and protease activity, and the removal of total phosphorus was significantly correlated with phosphatase activity. Chemical oxygen demand removal was not correlated with enzyme activity in constructed wetlands. Plant root enzyme (urease, phosphatase, protease and cellulose) activity correlation was apparent with all contaminant removal in the two vertical flow constructed wetlands. However, the correlation between the plant root enzyme activity and contaminant removal was poor in horizontal flow constructed wetlands. Results indicated that plant roots clearly played a role in the removal of contaminants.

  9. Activation of immobilized enzymes by acoustic wave resonance oscillation.

    PubMed

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-12-01

    Acoustic wave resonance oscillation has been used successfully in the development of methods to activate immobilized enzyme catalysts. In this study, resonance oscillation effects were demonstrated for enzyme reactions on galactose oxidase (GAD), D-amino acid oxidase (DAAO), and L-amino acid oxidase (LAAO), all of which were immobilized covalently on a ferroelectric lead zirconate titanate (PZT) device that could generate thickness-extensional resonance oscillations (TERO) of acoustic waves. For galactose oxidation on immobilized GAD in a microreactor, TERO generation immediately increased enzyme activity 2- to 3-fold. Eliminating TERO caused a slight decrease in the activity, with ∼90% of the enhanced activity retained while the reaction proceeded. Contact of the enhanced enzyme with a galactose-free solution caused almost complete reversion of the activity to the original low level before TERO generation, indicating that, not only TERO-induced GAD activation, but also preservation of the increased activity, required a galactose substrate. Similar activity changes with TERO were observed for enzyme reactions on DAAO and LAAO. Kinetic analysis demonstrated that TERO helped strengthen the interactions of the immobilized enzyme with the reactant substrate and promoted formation of an activation complex. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Enzyme reversal to explore the function of yeast E3 ubiquitin-ligases.

    PubMed

    MacDonald, Chris; Winistorfer, Stanley; Pope, Robert M; Wright, Michael E; Piper, Robert C

    2017-07-01

    The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 "anti-ligases" that appear to work in a dominant-negative fashion to stabilize their cognate substrates against ubiquitin-dependent proteasomal and lysosomal degradation. We then used the ligase-deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post-Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the "ubiquitome" of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase-DUb fusions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    PubMed

    Han, Peng; Niu, Chang-Ying; Biondi, Antonio; Desneux, Nicolas

    2012-11-01

    The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.

  12. The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR-Cas subtype III-Bv system.

    PubMed

    Behler, Juliane; Sharma, Kundan; Reimann, Viktoria; Wilde, Annegret; Urlaub, Henning; Hess, Wolfgang R

    2018-03-01

    Specialized RNA endonucleases for the maturation of clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNAs (crRNAs) are critical in CRISPR-CRISPR-associated protein (Cas) defence mechanisms. The Cas6 and Cas5d enzymes are the RNA endonucleases in many class 1 CRISPR-Cas systems. In some class 2 systems, maturation and effector functions are combined within a single enzyme or maturation proceeds through the combined actions of RNase III and trans-activating CRISPR RNAs (tracrRNAs). Three separate CRISPR-Cas systems exist in the cyanobacterium Synechocystis sp. PCC 6803. Whereas Cas6-type enzymes act in two of these systems, the third, which is classified as subtype III-B variant (III-Bv), lacks cas6 homologues. Instead, the maturation of crRNAs proceeds through the activity of endoribonuclease E, leaving unusual 13- and 14-nucleotide-long 5'-handles. Overexpression of RNase E leads to overaccumulation and knock-down to the reduced accumulation of crRNAs in vivo, suggesting that RNase E is the limiting factor for CRISPR complex formation. Recognition by RNase E depends on a stem-loop in the CRISPR repeat, whereas base substitutions at the cleavage site trigger the appearance of secondary products, consistent with a two-step recognition and cleavage mechanism. These results suggest the adaptation of an otherwise very conserved housekeeping enzyme to accommodate new substrates and illuminate the impressive plasticity of CRISPR-Cas systems that enables them to function in particular genomic environments.

  13. A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity1[OPEN

    PubMed Central

    Connor, Richard A.

    2017-01-01

    Of the three classes of enzymes involved in ubiquitination, ubiquitin-conjugating enzymes (E2) have been often incorrectly considered to play merely an auxiliary role in the process, and few E2 enzymes have been investigated in plants. To reveal the role of E2 in plant innate immunity, we identified and cloned 40 tomato genes encoding ubiquitin E2 proteins. Thioester assays indicated that the majority of the genes encode enzymatically active E2. Phylogenetic analysis classified the 40 tomato E2 enzymes into 13 groups, of which members of group III were found to interact and act specifically with AvrPtoB, a Pseudomonas syringae pv tomato effector that uses its ubiquitin ligase (E3) activity to suppress host immunity. Knocking down the expression of group III E2 genes in Nicotiana benthamiana diminished the AvrPtoB-promoted degradation of the Fen kinase and the AvrPtoB suppression of host immunity-associated programmed cell death. Importantly, silencing group III E2 genes also resulted in reduced pattern-triggered immunity (PTI). By contrast, programmed cell death induced by several effector-triggered immunity elicitors was not affected on group III-silenced plants. Functional characterization suggested redundancy among group III members for their role in the suppression of plant immunity by AvrPtoB and in PTI and identified UBIQUITIN-CONJUGATING11 (UBC11), UBC28, UBC29, UBC39, and UBC40 as playing a more significant role in PTI than other group III members. Our work builds a foundation for the further characterization of E2s in plant immunity and reveals that AvrPtoB has evolved a strategy for suppressing host immunity that is difficult for the plant to thwart. PMID:27909045

  14. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.

    PubMed

    Wei, Tianxiang; Du, Dan; Zhu, Mei-Jun; Lin, Yuehe; Dai, Zhihui

    2016-03-01

    Protein-inorganic nanoflowers, composed of protein and copper(II) phosphate (Cu3(PO4)2), have recently grabbed people's attention. Because the synthetic method requires no organic solvent and because of the distinct hierarchical nanostructure, protein-inorganic nanoflowers display enhanced catalytic activity and stability and would be a promising tool in biocatalytical processes and biological and biomedical fields. In this work, we first coimmobilized the enzyme, antibody, and Cu3(PO4)2 into a three-in-one hybrid protein-inorganic nanoflower to enable it to possess dual functions: (1) the antibody portion retains the ability to specifically capture the corresponding antigen; (2) the nanoflower has enhanced enzymatic activity and stability to produce an amplified signal. The prepared antibody-enzyme-inorganic nanoflower was first applied in an enzyme-linked immunosorbent assay to serve as a novel enzyme-labeled antibody for Escherichia coli O157:H7 (E. coli O157:H7) determination. The detection limit is 60 CFU L(-1), which is far superior to commercial ELISA systems. The three-in-one antibody (anti-E. coli O157:H7 antibody)-enzyme (horseradish peroxidase)-inorganic (Cu3(PO4)2) nanoflower has some advantages over commercial enzyme-antibody conjugates. First, it is much easier to prepare and does not need any complex covalent modification. Second, it has fairly high capture capability and catalytic activity because it is presented as aggregates of abundant antibodies and enzymes. Third, it has enhanced enzymatic stability compared to the free form of enzyme due to the unique hierarchical nanostructure.

  15. RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity That Is Essential for DNA Double Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment

    DOE PAGES

    Hodge, Curtis D.; Ismail, Ismail H.; Edwards, Ross A.; ...

    2016-02-22

    DNA double strand break (DSB) responses depend on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 plus E2 ubiquitin-conjugating enzyme Ubc13 to specifically generate histone Lys-63-linked ubiquitin chains in DSB signaling. In this paper, we defined the activated RNF8-Ubc13~ubiquitin complex by x-ray crystallography and its functional solution conformations by x-ray scattering, as tested by separation-of-function mutations imaged in cells by immunofluorescence. The collective results show that the RING E3 RNF8 targets E2 Ubc13 to DSB sites and plays a critical role in damage signaling by stimulating polyubiquitination through modulating conformations of ubiquitin covalently linked to the Ubc13more » active site. Structure-guided separation-of-function mutations show that the RNF8 E2 stimulating activity is essential for DSB signaling in mammalian cells and is necessary for downstream recruitment of 53BP1 and BRCA1. Chromatin-targeted RNF168 rescues 53BP1 recruitment involved in non-homologous end joining but not BRCA1 recruitment for homologous recombination. Finally, these findings suggest an allosteric approach to targeting the ubiquitin-docking cleft at the E2-E3 interface for possible interventions in cancer and chronic inflammation, and moreover, they establish an independent RNF8 role in BRCA1 recruitment.« less

  16. A designed bifunctional laccase/β-1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse.

    PubMed

    Furtado, G P; Ribeiro, L F; Lourenzoni, M R; Ward, R J

    2013-01-01

    A bifunctional enzyme has been created by fusing two Bacillus subtilis enzymes: the β-1,3-1,4-glucanase (BglS, EC 3.2.1.73) that hydrolyzes plant cell wall β-glucans and the copper-dependent oxidase laccase (CotA, EC 1.10.3.2) that catalyzes the oxidation of aromatic compounds with simultaneous reduction of oxygen to water. The chimeric laccase/β-1,3-1,4-glucanase was created by insertion fusion of the bglS and cotA genes, and expressed in Escherichia coli. The affinity-purified recombinant chimeric enzyme showed both laccase and glucanase activities, with a maximum laccase activity at pH 4.5 and 75°C that showed a V(max) 30% higher than observed for the parental laccase. The maximum glucanase activity in the chimeric enzyme was at pH 6.0 and 50°C, with a slight reduction in V(max) by ∼10% compared with the parental glucanase. A decreased K(M) resulted in an overall increase in the K(cat)/K(M) value for the glucanase activity of the chimeric enzyme. The hydrolytic activity of the chimera was 20% higher against natural milled sugarcane bagasse as compared with equimolar mixtures of the separate parental enzymes. Molecular dynamics simulations indicated the approximation of the two catalytic domains in the chimeric enzyme, and the formation of an inter-domain interface may underlie the improved catalytic function.

  17. Normal Modes Expose Active Sites in Enzymes.

    PubMed

    Glantz-Gashai, Yitav; Meirson, Tomer; Samson, Abraham O

    2016-12-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes.

  18. Normal Modes Expose Active Sites in Enzymes

    PubMed Central

    Glantz-Gashai, Yitav; Samson, Abraham O.

    2016-01-01

    Accurate prediction of active sites is an important tool in bioinformatics. Here we present an improved structure based technique to expose active sites that is based on large changes of solvent accessibility accompanying normal mode dynamics. The technique which detects EXPOsure of active SITes through normal modEs is named EXPOSITE. The technique is trained using a small 133 enzyme dataset and tested using a large 845 enzyme dataset, both with known active site residues. EXPOSITE is also tested in a benchmark protein ligand dataset (PLD) comprising 48 proteins with and without bound ligands. EXPOSITE is shown to successfully locate the active site in most instances, and is found to be more accurate than other structure-based techniques. Interestingly, in several instances, the active site does not correspond to the largest pocket. EXPOSITE is advantageous due to its high precision and paves the way for structure based prediction of active site in enzymes. PMID:28002427

  19. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity

    PubMed Central

    Störmer, Elke; Roots, Ivar; Brockmöller, Jürgen

    2000-01-01

    Aims The role of flavin containing monooxygenases (FMO) on the disposition of many drugs has been insufficiently explored. In vitro and in vivo tests are required to study FMO activity in humans. Benzydamine (BZD) N-oxidation was evaluated as an index reaction for FMO as was the impact of genetic polymorphisms of FMO3 on activity. Methods BZD was incubated with human liver microsomes (HLM) and recombinant enzymes. Human liver samples were genotyped using PCR-RFLP. Results BZD N-oxide formation rates in HLM followed Michaelis-Menten kinetics (mean Km = 64.0 μm, mean Vmax = 6.9 nmol mg−1 protein min−1; n = 35). N-benzylimidazole, a nonspecific CYP inhibitor, and various CYP isoform selective inhibitors did not affect BZD N-oxidation. In contrast, formation of BZD N-oxide was almost abolished by heat treatment of microsomes in the absence of NADPH and strongly inhibited by methimazole, a competitive FMO inhibitor. Recombinant FMO3 and FMO1 (which is not expressed in human liver), but not FMO5, showed BZD N-oxidase activity. Respective Km values for FMO3 and FMO1 were 40.4 μm and 23.6 μm, and respective Vmax values for FMO3 and FMO1 were 29.1 and 40.8 nmol mg−1 protein min−1. Human liver samples (n = 35) were analysed for six known FMO3 polymorphisms. The variants I66M, P135L and E305X were not detected. Samples homozygous for the K158 variant showed significantly reduced vmax values (median 2.7 nmol mg−1 protein min−1) compared to the carriers of at least one wild type allele (median 6.2 nmol mg−1 protein min−1) (P<0.05, Mann–Whitney- U-test). The V257M and E308G substitutions had no effect on enzyme activity. Conclusions BZD N-oxidation in human liver is mainly catalysed by FMO3 and enzyme activity is affected by FMO3 genotype. BZD may be used as a model substrate for human liver FMO3 activity in vitro and may be further developed as an in vivo probe reflecting FMO3 activity. PMID:11136294

  20. ORENZA: a web resource for studying ORphan ENZyme activities

    PubMed Central

    Lespinet, Olivier; Labedan, Bernard

    2006-01-01

    Background Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. Conclusion ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities) and sequence (dataset present in public databases). ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme activities by allocating gene

  1. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  2. Novel Barley (1→3,1→4)-β-Glucan Endohydrolase Alleles Confer Increased Enzyme Thermostability.

    PubMed

    Lauer, Juanita C; Yap, Kuok; Cu, Suong; Burton, Rachel A; Eglinton, Jason K

    2017-01-18

    Barley (1→3,1→4)-β-glucan endohydrolases (β-glucanases; EI and EII) are primarily responsible for hydrolyzing high molecular weight (1→3,1→4)-β-glucans (β-glucan) during germination. Incomplete endosperm modification during malting results in residual β-glucan that can contribute to increased wort viscosity and beer chill haze. Four newly identified forms of EI and EII and the reference enzymes EI-a and EII-a were expressed in Escherichia coli, and the recombinant proteins were characterized for enzyme kinetics and thermostability. EI and EII variants that exhibited higher residual β-glucanase activity than EI-a and EII-a after heat treatment also exhibited increased substrate affinity and decreased turnover rates. The novel EII-l form exhibited significantly increased thermostability compared with the reference EII-a when activity was measured at elevated temperature. EII-l exhibited a T 50 value, which indicates the temperature at which 50% of β-glucanase activity remains, 1.3 °C higher than that of EII-a. The irreversible thermal inactivation difference between EII-a and EII-l after 5 min of heat treatment at 56 °C was 11.9%. The functional significance of the three amino acid differences between EII-a and EII-l was examined by making combinatorial mutations in EII-a using site-directed mutagenesis. The S20G and D284E amino acid substitutions were shown to be responsible for the increase in EII-1 thermostability.

  3. Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin.

    PubMed

    Correale, Stefania; de Paola, Ivan; Morgillo, Carmine Marco; Federico, Antonella; Zaccaro, Laura; Pallante, Pierlorenzo; Galeone, Aldo; Fusco, Alfredo; Pedone, Emilia; Luque, F Javier; Catalanotti, Bruno

    2014-01-01

    UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1-E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders.

  4. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  5. Glutathione Peroxidase Enzyme Activity in Aging

    PubMed Central

    Espinoza, Sara E.; Guo, Hongfei; Fedarko, Neal; DeZern, Amy; Fried, Linda P.; Xue, Qian-Li; Leng, Sean; Beamer, Brock; Walston, Jeremy D.

    2010-01-01

    Background It is hypothesized that free radical damage contributes to aging. Age-related decline in activity of the antioxidant enzyme glutathione peroxidase (GPx) may contribute to increased free radicals. We hypothesized that GPx activity decreases with age in a population of older women with disability. Methods Whole blood GPx activity was measured in baseline stored samples from participants in the Women's Health and Aging Study I, a cohort of disabled community-dwelling older women. Linear regression was used to determine cross-sectional associations between GPx activity and age, adjusting for hemoglobin, coronary disease, diabetes, selenium, and body mass index. Results Six hundred one participants had complete demographic, disease, and laboratory information. An inverse association was observed between GPx and age (regression coefficient = −2.9, p < .001), indicating that for each 1-year increase in age, GPx activity decreased by 2.9 μmol/min/L. This finding remained significant after adjustment for hemoglobin, coronary disease, diabetes, and selenium, but not after adjustment for body mass index and weight loss. Conclusion This is the first study to examine the association between age and GPx activity in an older adult cohort with disability and chronic disease. These findings suggest that, after age 65, GPx activity declines with age in older women with disability. This decline does not appear to be related to diseases that have been previously reported to alter GPx activity. Longitudinal examination of GPx activity and other antioxidant enzymes in diverse populations of older adults will provide additional insight into age- and disease-related changes in these systems. PMID:18511755

  6. O 2 Activation by Non-Heme Iron Enzymes

    DOE PAGES

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    2016-10-28

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  7. O 2 Activation by Non-Heme Iron Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Edward I.; Goudarzi, Serra; Sutherlin, Kyle D.

    The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O 2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods have now been developed that provide significant insight into the correlation of structure with function. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O 2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O 2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin Fe III-OOHmore » non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin Fe IV=O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Lastly, for several subclasses of non-heme Fe enzymes, substrate binding to the Fe II site leads to the one electron reductive activation of O 2 to an Fe III-superoxide capable of H-atom abstraction and electrophilic attack.« less

  8. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    PubMed

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  9. High titers of autoantibodies to glutamate decarboxylase in Type 1 Diabetes Patients: Epitope Analysis and Inhibition of Enzyme Activity

    PubMed Central

    Hampe, Christiane S.; Maitland, Murray E.; Gilliam, Lisa K.; Thi Phan, Thanh-H.; Sweet, Ian R.; Radtke, Jared R.; Bota, Vasile; Ransom, Bruce R.; Hirsch, Irl B.

    2014-01-01

    Objective Autoantibodies to glutamate decarboxylase (GAD65Ab) are found in patients with autoimmune neurological disorders and patients with type 1 diabetes. The correct diagnosis of GAD65Ab-associated neurological disorders is often delayed by the variability of symptoms and a lack of diagnostic markers. We hypothesize that the frequency of neurological disorders with high GAD65Ab titers is significantly higher than currently recognized. Methods We analyzed GAD65Ab titer, inhibition of GAD65 enzyme activity, and pattern of GAD65Ab epitopes in a cohort of type 1 diabetes patients (n=100) and correlated our findings with neurological symptoms and diseases. Results Fourty-three percent (43/100) of the patients had detectable GAD65Ab titers (median=400 U/ml, range: 142–250,000U/ml). The GAD65Ab titers in 10 type 1 diabetes patients exceeded the 90th percentile of the cohort (2,000–250,000 U/ml). Sera of these 10 patients were analyzed for their GAD65Ab epitope specificity and their ability to inhibit GAD65 enzyme activity in vitro. GAD65Ab of five patients inhibited the enzyme activity significantly (by 34–55%). Three of these patients complained of muscle stiffness and pain, which was documented in two of these patients. Conclusions Based on our findings we suggest that neurological disorders with high GAD65Ab titers are more frequent in type 1 diabetes patients than currently recognized. PMID:23512385

  10. Identification of novel membrane-associated prostaglandin E synthase-1 (mPGES-1) inhibitors with anti-influenza activities in vitro.

    PubMed

    Park, Ji Hoon; Park, Eun Beul; Lee, Jae Yeol; Min, Ji-Young

    2016-01-22

    Influenza A virus (IAV) is a major public health concern that leads to high morbidity and mortality worldwide. Despite various vaccination programs and development of drugs targeting essential viral proteins, the emergence of drug-resistant variants has been frequently reported and the therapeutic options are limited. Because exaggerated inflammation is considered as an important factor in disease pathogenesis, immunomodulatory agents that effectively suppress cytokine responses are needed for the treatment of IAV infection. Membrane-associated prostaglandin E synthase-1 (mPGES-1) is an enzyme responsible for the production of prostaglandin E2 (PGE2) that is the best-characterized immune modulatory lipid in vitro and in vivo models of inflammation. In the present study, we tested the anti-influenza activities of mPGES-1 inhibitors, using a phenotype-based assay involving image analyses. Seven primary hits among 49 compounds targeting mPGES-1 exhibited anti-influenza activities against A/Puerto Rico/8/1934 (H1N1) in a dose-dependent manner. The most effective hit, MPO-0047, suppressed influenza-induced p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) activation. We also showed that mRNA levels of TNF-α, IL-8, CCL5/RANTES, and CXCL10/IP-10 were significantly reduced by the treatment of influenza-infected cells with MPO-0047. Exogenous PGE2 reversed the inhibitory effects of MPO-0047. Our results showed that this selective mPGES-1 inhibitor has anti-influenza effects by inhibiting PGE2 production, which suppresses the induction of pro-inflammatory genes. Taken together our data revealed that mPGES-1 inhibitor has the potential for further development as an influenza therapeutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effect of protease inhibitors on angiotensin-converting enzyme activity in human T-lymphocytes.

    PubMed

    Petrov, V; Fagard, R; Lijnen, P

    2000-05-01

    The purpose of these investigations was to determine whether the aminopeptidase B and leucine aminopeptidase inhibitor bestatin, the chymase inhibitor chymostatin, the calpain inhibitor E-64, and the neutral serine protease inhibitor leupeptin affect the angiotensin converting enzyme (ACE) activity in T-lymphocytes. ACE activity in homogenates of T-lymphocytes or in intact T-lymphocytes in suspension was measured by determining fluorimetrically histidyl-leucine, formed from the conversion of hippuryl-histidyl-leucine, coupled with ophtaldialdehyde. The effect of various concentrations (10(-9) to 10(-3) mol/L) of the angiotensin-converting enzyme inhibitors lisinopril and captopril and of the various protease inhibitors on ACE activity was studied. Lisinopril and captopril reduced the ACE activity in homogenates of T-lymphocytes in a concentration-dependent manner. Lisinopril exhibited a more pronounced inhibition of ACE in T-lymphocytes than did captopril. Chymostatin and E-64 had no effect on the ACE activity in T-lymphocytes, whereas leupeptin inhibited its activity in a dose-dependent fashion. Bestatin, on the contrary, increased the ACE activity in homogenates of T-lymphocytes as well as in intact T-lymphocytes in proportion to the concentration. Our data showed that the ACE activity in T-lymphocytes was stimulated by bestatin and inhibited by leupeptin, whereas chymostatin and E-64 did not affect the ACE activity in T-lymphocytes.

  12. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    PubMed

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  13. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    PubMed Central

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  14. Ubiquitin enzymes in the regulation of immune responses.

    PubMed

    Ebner, Petra; Versteeg, Gijs A; Ikeda, Fumiyo

    2017-08-01

    Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.

  15. [Changes of neurotransmitter, lipid peroxide and their metabolic related enzyme activities in the brain of rats exposed to noise and vitamin E].

    PubMed

    Sakuma, N

    1984-09-01

    Effects of noise on locomotor activities were analysed in rat. In addition, changes in lipid peroxide (LPX), their metabolic related enzyme activities, and neurotransmitter in the rat brain due to noise exposure and the effects of vitamin E on the rats were studied. The results obtained were as follows: After white noise exposure of 95 dB (A), the locomotor activities of rat increased. But 3 weeks after noise exposure, the activities began to decrease. LPX and glutathione peroxidase (GSH-Px) activities in hypothalamus and cortex increased at the 14th day after noise exposure or at the 21st day after noise exposure. Superoxide dismutase (SOD) activities increased in hippocampus at the 4th day after noise exposure, and decreased in midbrain and thalamus at the 14th day and the 21th day after noise exposure. Norepinephrine (NE) increased in hypothalamus at the 1st day, the 2nd day and the 7th day after noise exposure, and increased in striatum at the 7th day after noise exposure, in cortex at the 4th day and the 7th day after exposure. At the 14th day after noise exposure, NE decreased in cerebellum, in medulla and pons, in midbrain and thalamus, and in cortex. In cortex NE also decreased at the 21st day after noise exposure. Serotonin increased in hypothalamus and in midbrain and thalamus at the 1st and 4th day after noise exposure, and increased in striatum at the 7th day after noise exposure. Decrease in serotonin was observed in cerebellum at the 14th day after noise exposure. Vitamin E decreased LPX in rat brain and the liver.

  16. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    PubMed

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  17. An appraisal of the enzyme stability-activity trade-off.

    PubMed

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. Carbon-Degrading Enzyme Activities Stimulated by Increased Nutrient Availability in Arctic Tundra Soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2013-01-01

    Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM) decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral) from untreated native soils and from soils which had been fertilized with nitrogen (N) and phosphorus (P) since 1989 (23 years) and 2006 (six years). Fertilized plots within the 1989 site received annual additions of 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. Within the 2006 site, two fertilizer regimes were established – one in which plots received 5 g N⋅m-2⋅year-1 and 2.5 g P⋅m-2⋅year-1 and one in which plots received 10 g N⋅m-2⋅year-1 and 5 g P⋅m-2⋅year-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C)-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems. PMID:24204773

  19. Activities of Tricarboxylic Acid Cycle Enzymes, Glyoxylate Cycle Enzymes, and Fructose Diphosphatase in Bakers' Yeast During Adaptation to Acetate Oxidation

    PubMed Central

    Gosling, J. P.; Duggan, P. F.

    1971-01-01

    Bakers' yeast oxidizes acetate at a high rate only after an adaptation period during which the capacity of the glyoxylate cycle is found to increase. There was apparently no necessity for the activity of acetyl-coenzyme A synthetase, the capacity of the tricarboxylic acid cycle, or the concentrations of the cytochromes to increase for this adaptation to occur. Elevation of fructose 1,6 diphosphatase occurred only when acetate oxidation was nearly maximal. Cycloheximide almost completely inhibited adaptation as well as increases in the activities of isocitrate lyase and aconitate hydratase, the only enzymes assayed. p-Fluorophenylalanine was partially effective and chloramphenicol did not inhibit at all. The presence of ammonium, which considerably delayed adaptation of the yeast to acetate oxidation, inhibited the increases in the activities of the glyoxylate cycle enzymes to different degrees, demonstrating noncoordinate control of these enzymes. Under the various conditions, the only enzyme activity increase consistently related to the rising oxygen uptake rate was that of isocitrate lyase which apparently limited the activity of the cycle. PMID:5557595

  20. Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus.

    PubMed

    Leis, Benedikt; Angelov, Angel; Mientus, Markus; Li, Haijuan; Pham, Vu T T; Lauinger, Benjamin; Bongen, Patrick; Pietruszka, Jörg; Gonçalves, Luís G; Santos, Helena; Liebl, Wolfgang

    2015-01-01

    Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed mutant strain BL03 with multiple markerless deletions in genes for major extra- and intracellular lipolytic activities. This esterase-diminished strain was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active esterase clones in the thermophilic bacterium than in the mesophilic E. coli. From several thousand functionally screened clones only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable in E. coli. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus only. Four open reading frames (ORFs) were found which did not share significant similarity to known esterase enzymes but contained the conserved GXSXG motif regularly found in lipolytic enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and

  1. Enzyme-polymer composites with high biocatalytic activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungbae; Kosto, Timothy J.; Manimala, Joseph C.

    2004-08-22

    We have applied vacuum-spraying and electrospinning to incorporate an enzyme into a polymer matrix, creating a novel and highly active biocatalytic composite. As a unique technical approach, enzymes were co-dissolved in toluene with polymers, and the solvent was then rapidly removed by injecting the mixture into a vacuum chamber or by electrospinning. Subsequent crosslinking of the enzyme with glutaraldehyde resulted in stable entrapped enzyme within the polymeric matrices. For example, an amorphous composite of alpha-chymotrypsin and polyethylene showed no significant loss of enzymatic activity in aqueous buffer for one month. Nanofibers of alpha-chymotrypsin and polystyrene also showed no decrease inmore » activity for more than two weeks. The normalized activity of amorphous composite in organic solvents was 3-13 times higher than that of native alpha-chymotrypsin. The activity of nanofibers was 5-7 times higher than that of amorphous composite in aqueous buffer solution. The composites of alpha-chymotrypsin and polymers demonstrate the feasibility of obtaining a wide variety of active and stable biocatalytic materials with many combinations of enzymes and polymers.« less

  2. Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1)*

    PubMed Central

    O'Neill, Ellis C.; Stevenson, Clare E. M.; Tantanarat, Krit; Latousakis, Dimitrios; Donaldson, Matthew I.; Rejzek, Martin; Nepogodiev, Sergey A.; Limpaseni, Tipaporn; Field, Robert A.; Lawson, David M.

    2015-01-01

    The degradation of transitory starch in the chloroplast to provide fuel for the plant during the night requires a suite of enzymes that generate a series of short chain linear glucans. However, glucans of less than four glucose units are no longer substrates for these enzymes, whereas export from the plastid is only possible in the form of either maltose or glucose. In order to make use of maltotriose, which would otherwise accumulate, disproportionating enzyme 1 (DPE1; a 4-α-glucanotransferase) converts two molecules of maltotriose to a molecule of maltopentaose, which can now be acted on by the degradative enzymes, and one molecule of glucose that can be exported. We have determined the structure of the Arabidopsis plastidial DPE1 (AtDPE1), and, through ligand soaking experiments, we have trapped the enzyme in a variety of conformational states. AtDPE1 forms a homodimer with a deep, long, and open-ended active site canyon contained within each subunit. The canyon is divided into donor and acceptor sites with the catalytic residues at their junction; a number of loops around the active site adopt different conformations dependent on the occupancy of these sites. The “gate” is the most dynamic loop and appears to play a role in substrate capture, in particular in the binding of the acceptor molecule. Subtle changes in the configuration of the active site residues may prevent undesirable reactions or abortive hydrolysis of the covalently bound enzyme-substrate intermediate. Together, these observations allow us to delineate the complete AtDPE1 disproportionation cycle in structural terms. PMID:26504082

  3. E4bp4 regulates carboxylesterase 2 enzymes through repression of the nuclear receptor Rev-erbα in mice.

    PubMed

    Zhao, Mengjing; Zhang, Tianpeng; Yu, Fangjun; Guo, Lianxia; Wu, Baojian

    2018-06-01

    Carboxylesterases (CES) are a family of phase I enzymes that play an important role in xenobiotic clearance and lipid metabolism. Here, we investigate a potential role of E4 promoter-binding protein 4 (E4bp4) in regulation of Ces and CPT-11 (irinotecan, a first-line drug for treating colorectal cancer) pharmacokinetics in mice. Mouse hepatoma Hepa-1c1c7 cells were transfected with Rev-erbα expression plasmid or siRNA targeting E4bp4. The relative mRNA and protein levels of Ces enzymes in the cells or the livers of wild-type and E4bp4-deficient (E4bp4 -/- ) mice were determined by qPCR and Western blotting, respectively. Transcriptional regulation of Ces by E4bp4/Rev-erbα were investigated using luciferase reporter, mobility shift, and co-immunoprecipitation (Co-IP) assays. Pharmacokinetic studies were performed with wild-type and E4bp4 -/- mice after intraperitoneal injection of CPT-11. E4bp4 ablation down-regulated an array of hepatic Ces genes in mice. E4bp4 -/- mice also showed reduced Ces-mediated metabolism and elevated systemic exposure of CPT-11, a well-known Ces substrate. Consistently, E4bp4 knockdown reduced the expression of Ces genes (Ces2b, Ces2e and Ces2f) in Hepa-1c1c7 cells. Furthermore, Rev-erbα repressed the transcription of Ces2b, whereas E4bp4 antagonized this repressive action. Co-IP experiment confirmed a direct interaction between E4bp4 and Rev-erbα. Through a combination of promoter analysis and mobility shift assays, we demonstrated that Rev-erbα trans-repressed Ces (Ces2b) through its specific binding to the -767 to-754 bp promoter region. In conclusion, E4bp4 regulates Ces enzymes through inhibition of the transrepression activity of Rev-erbα, thereby impacting the metabolism and pharmacokinetics of Ces substrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells.

    PubMed

    Leung, Travis; Rajendran, Ramkumar; Singh, Subir; Garva, Richa; Krstic-Demonacos, Marija; Demonacos, Constantinos

    2013-11-08

    The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2',7'-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism and breast cancer and suggest that

  5. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus. 1. Biochemical analysis.

    PubMed

    Alvarez-González, C A; Moyano-López, F J; Civera-Cerecedo, R; Carrasco-Chávez, V; Ortiz-Galindo, J L; Dumas, S

    2008-12-01

    Spotted sand bass Paralabrax maculatofasciatus is a potential aquaculture species in Northwest Mexico. In the last few years it has been possible to close its life cycle and to develop larviculture technology at on pilot scale using live food, however survival values are low (11%) and improvements in growth and survival requires the study of the morpho-physiological development during the initial ontogeny. In this research digestive activity of several enzymes were evaluated in larvae, from hatching to 30 days after hatching (dah), and in live prey (rotifers and Artemia), by use of biochemical and electrophoretic techniques. This paper, is the first of two parts, and covers only the biochemical analysis. All digestive enzyme activities were detected from mouth opening; however the, maximum activities varied among different digestive enzymes. For alkaline protease and trypsin the maximum activities were detected from 12 to 18 dah. Acid protease activity was observed from day 12 onwards. The other digestive enzymes appear between days 4 and 18 after hatching, with marked fluctuations. These activities indicate the beginning of the juvenile stage and the maturation of the digestive system, in agreement with changes that occur during morpho-physiological development and food changes from rotifers to Artemia. All enzymatic activities were detected in rotifers and Artemia, and their contribution to enhancement the digestion capacity of the larvae appears to be low, but cannot be minimised. We concluded that the enzymatic equipment of P. maculatofasciatus larvae is similar to that of other marine fish species, that it becomes complete between days 12 and 18 after hatching, and that it is totally efficient up to 25 dah.

  6. Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS)

    PubMed Central

    Gielen, Fabrice; Hours, Raphaelle; Emond, Stephane; Fischlechner, Martin; Schell, Ursula

    2016-01-01

    Ultrahigh-throughput screening, in which members of enzyme libraries compartmentalized in water-in-oil emulsion droplets are assayed, has emerged as a powerful format for directed evolution and functional metagenomics but is currently limited to fluorescence readouts. Here we describe a highly efficient microfluidic absorbance-activated droplet sorter (AADS) that extends the range of assays amenable to this approach. Using this module, microdroplets can be sorted based on absorbance readout at rates of up to 300 droplets per second (i.e., >1 million droplets per hour). To validate this device, we implemented a miniaturized coupled assay for NAD+-dependent amino acid dehydrogenases. The detection limit (10 μM in a coupled assay producing a formazan dye) enables accurate kinetic readouts sensitive enough to detect a minimum of 1,300 turnovers per enzyme molecule, expressed in a single cell, and released by lysis within a droplet. Sorting experiments showed that the AADS successfully enriched active variants up to 2,800-fold from an overwhelming majority of inactive ones at ∼100 Hz. To demonstrate the utility of this module for protein engineering, two rounds of directed evolution were performed to improve the activity of phenylalanine dehydrogenase toward its native substrate. Fourteen hits showed increased activity (improved >4.5-fold in lysate; kcat increased >2.7-fold), soluble protein expression levels (up 60%), and thermostability (Tm, 12 °C higher). The AADS module makes the most widely used optical detection format amenable to screens of unprecedented size, paving the way for the implementation of chromogenic assays in droplet microfluidics workflows. PMID:27821774

  7. Deficiency of cellulase activity measurements for enzyme evaluation.

    PubMed

    Pryor, Scott W; Nahar, Nurun

    2010-11-01

    Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial beta-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.

  8. Evidence that the modulation of membrane-associated protein kinase C activity by an endogenous inhibitor plays a role in N1E-115 murine neuroblastoma cell differentiation.

    PubMed

    Chakravarthy, B R; Wong, J; Durkin, J P

    1995-10-01

    Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.

  9. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism.

    PubMed

    Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong

    2013-06-05

    DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.

  10. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism

    PubMed Central

    Liu, Tianhui; Wang, Ping; Cong, Min; Xu, Youqing; Jia, Jidong; You, Hong

    2013-01-01

    DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis. PMID:23577625

  11. Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish.

    PubMed

    Banerjee, Goutam; Nandi, Ankita; Ray, Arun Kumar

    2017-01-01

    In the present investigation, probiotic potential (antagonistic activity, enzyme production, hemolytic activity, biosafety, antibiotic sensitivity and bile tolerance level) of Bacillus subtilis LR1 was evaluated. Bacteriocin produced by the bacterial strain B. subtilis LR1 isolated from the gastrointestinal tract of Labeo rohita was purified and characterized. The molecular weight of the purified bacteriocin was ~50 kDa in 12 % Native PAGE and showed inhibitory activity against four fish pathogens such as Bacillus mycoides, Aeromonas salmonicida, Pseudomonas fluorescens and Aeromonas hydrophila. The purified bacteriocin was maximally active at temperature 40 °C and pH 7.0, while none of the tested surfactants affect the bacteriocin activity. Extracellular enzyme activity of the selected bacterial strain was also evaluated. Amylase activity was estimated to be highest (38.23 ± 1.15 µg of maltose liberated mg -1  protein ml -1 of culture filtrate) followed by cellulase and protease activity. The selected bacterium was sensitive to most of the antibiotics used in this experiment, can tolerate 0.25 % bile salt and non-hemolytic in nature. Finally, the efficiency of the proposed probiotic candidate was evaluated in in vivo condition. It was detected that the bacterial strain can effectively reduce bacterial pathogenicity in Indian major carps.

  12. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  13. Ubiquitin enzymes in the regulation of immune responses

    PubMed Central

    Ebner, Petra; Versteeg, Gijs A.; Ikeda, Fumiyo

    2017-01-01

    Abstract Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses. PMID:28524749

  14. Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex.

    PubMed

    Sánchez-Martín, Pablo; Romá-Mateo, Carlos; Viana, Rosa; Sanz, Pascual

    2015-12-01

    Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin-laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin-laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin-laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin-laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin-laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin-laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Genetic variation in the temperature dependence of liver microsomal CYP2E1 activity, within and between species of the viviparous fish Poeciliopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crivello, J.F.; Schultz, R.J.

    1995-01-01

    The temperature dependence of liver microsomal CYP2E1 (cytochrome P450 2E1) activity was examined in selected genotypes of the viviparous fish Poeciliopsis. Activity of this enzyme, as a function of incubation temperature, was determined by measuring 6-OH-chlorzoxazone formation from chlorzoxazone, a specific CYP2E1 substrate. Chlorzoxazone-6-hydroxylase activity was examined among five species of Poeciliopsis, as well as among nine genotypes within a species, P. monacha. Among Poeciliopsis genotypes, P. monacha contained the greatest activity, 9.5 [+-] 1.5 U with a temperature optimum (T[sub O]) of 25 C. The lowest activity was in P. occidentalis, 0.65 [+-] 0.11 U, with a T[sub O]more » of 27 t 28 C; P. prolifica, P. fasciata, P. lucida, and P. viriosa had intermediate levels of activities, 1.1 to 5.5 U, and T[sub O] from 25 to 31 C. To determine if metabolic differences exist within species, enzyme activity was examined from nine genotypes of P. monacha by comparing expression among P. monacha-lucida hybrids. These hybrids were given identical paternal genomes of lucida but retained the original maternal Monacha genomes sampled from wild gene pools. The greatest activity was found in genotype T70-3 P. Cw, 3.6 [+-] 0.1 U, at a T[sub O] of 29 C, and the lowest was in genotype SV73-7s, 0.40 [+-] 0.12 U, at a T[sub O] of 27 C. The other naturally occurring genotypes, M65-24, M65-26, SV73-7v, as well as the laboratory-produced synthetic hybrids, Syn4 and Syn5, had intermediate activities, 0.73 [+-] 0.38 to 2.1 [+-] 0.69 U, and T[sub O] of 25 to 27 C. No hybrid had activity levels as high as the maternal parent, P. monacha, and only one had a T[sub O] as low as either parent. Apparently the genes involved in xenobiotic activity vary widely among the closely related species of Poeciliopsis but also within species, suggesting that these phenotypes can be acted upon by natural selection.« less

  16. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted thatmore » mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.« less

  17. Competitive inhibition of carcinogen-activating CYP1A1 and CYP1B1 enzymes by a standardized complex mixture of PAH extracted from coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, B.; Marston, C.P.; Luch, A.

    2007-03-15

    A complex mixture of polycyclic aromatic hydrocarbons (PAH) extracted from coal tar, the Standard Reference Material (SRM) 1597, was recently shown to decrease the levels of DNA binding of the 2 strong carcinogens benzo(a)pyrene (BP) and dibenzo(a,l)pyrene (DBP) in the human mammary carcinoma-derived cell line MCF-7. The present study was designed to further elucidate the biochemical mechanisms involved in this inhibition process. We examined the effects of SRM 1597 on the metabolic activation of BP and DBP toward DNA-binding derivatives in Chinese hamster cells expressing either human cytochrome P450 (CYP) 1A1 or CYP1B1. The data obtained from biochemical experiments revealedmore » that SRM 1597 competitively inhibited the activity of both human enzymes as analyzed by 7-ethoxyresorufin O-deethylation assays. While the Michaelis-Menten constant (K-M) was {lt} 0.4 {mu}M in the absence of SRM 1597, this value increased up to 1.12 (CYP1A1) or 4.45 {mu}M (CYP1B1) in the presence of 0.1 {mu} g/ml SRM 1597. Hence the inhibitory effects of the complex mixture on human CYP1B1 were much stronger when compared to human CYP1A1 Taken together, the decreases in PAH-DNA adduct formation on co-treatment with SRM 1597 revealed inhibitory effects on the CYP enzymes that convert carcinogenic PAH into DNA-binding metabolites. The implications for the tumorigenicity of complex environmental PAR mixtures are discussed.« less

  18. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  19. Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms

    PubMed Central

    2014-01-01

    Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red

  20. Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms.

    PubMed

    Ellithey, Mona S; Lall, Namrita; Hussein, Ahmed A; Meyer, Debra

    2014-02-25

    Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the

  1. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians.

    PubMed

    Li, Mei-Hui

    2016-08-01

    The development of a high-throughput tool is required for screening of environmental pollutants and assessing their impacts on aquatic animals. Freshwater planarians can be used in rapid and sensitive toxicity bioassays. Planarians are known for their remarkable regeneration ability but much less known for their metabolic and xenobiotic biotransformation abilities. In this study, the activities of different phase I and II enzymes were determined in vivo by directly measuring fluorescent enzyme substrate disappearance or fluorescent enzyme metabolite production in planarian culture media. For phase I enzyme activity, O-deethylation activities with alkoxyresorufin could not be detected in planarian culture media. By contrast, O-deethylation activities with alkoxycoumarin were detected in planarian culture media. Increases in 7-ethoxycoumarin O-deethylase (ECOD) activities was only observed in planarians exposed to 1μM, but not 10μM, β-naphthoflavone for 24h. ECOD activity was inhibited in planarians exposed to 10 and 100μM rifampicin or carbamazepine for 24h. For phase II enzyme activity, DT-diaphorase, arylsulfatases, uridine 5'-diphospho (UDP)-glucuronosyltransferase or catechol-O-methyltransferase activity was determined in culture media containing planarians. The results of this study indicate that freshwater planarians are a promising model organism to monitor exposure to environmental pollutants or assess their impacts through the in vivo measurement of phase I and II enzyme activities. Copyright © 2016. Published by Elsevier Inc.

  2. Transcriptome analysis of the Tan sheep testes: Differential expression of antioxidant enzyme-related genes and proteins in response to dietary vitamin E supplementation.

    PubMed

    Xu, Chenchen; Zuo, Zhaoyun; Liu, Kun; Jia, Huina; Zhang, Yuwei; Luo, Hailing

    2016-03-15

    Gene-chip technology was employed to study the effect of dietary vitamin E on gene expression in sheep testes based on our previous research. Thirty-five male Tan sheep (20-30 days after weaning) with similar body weight were randomly allocated into five groups and supplemented 0, 20, 100, 200 and 2,000 IU sheep(-1)day(-1) vitamin E (treatments denoted as E0, E20, E100, E200, and E2000, respectively) for 120 days. At the end of the study the sheep were slaughtered and the testis samples were immediately collected and stored in liquid nitrogen. Differences in gene expression between different treated groups were identified. Based on GO enrichment analysis and the KEGG database to evaluate the gene expression data we found that vitamin E might affect genes in the testes by modulating the oxidation level, by affecting the expression of various receptors and transcription factors in biological pathways, and by regulating the expression of metabolism-associated genes. The effect of vitamin E supplementation on the expression of oxidative enzyme-related genes was detected by quantitative real-time PCR (qRT-PCR) and Western blot. The results show that dietary vitamin E, at various doses, can significantly increase (P<0.05) the mRNA and protein expression of Glutathione peroxidase 3 and Glutathione S-transferase alpha 1. In addition, the results of qRT-PCR of the antioxidant enzyme genes were consistent with those obtained using the gene chip microarray analysis. In summary, the dietary vitamin E treatment altered the expression of a number of genes in sheep testes. The increase in the mRNA and protein levels of antioxidant enzyme genes, coupled with the elevation in the activity of the antioxidant enzymes were primarily responsible for the improved reproductive performance promoted by dietary vitamin E. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. [Seasonal variations of soil enzyme activities in typical plant communities in the Ebinur Lake wetland, China].

    PubMed

    Zhu, Hai Qiang; Li, Yan Hong; Li, Fa Dong

    2017-04-18

    In this study, the soil catalase, phosphatase and urease activities of typical plant communities of reed (Phragmites australis) and tamarisk (Tamarix ramosissima) and their influencing factors were investigated in Ebinur Lake wetland. The results showed that three soil enzyme activities of reed and tamarisk had seasonal dynamic characteristics during different growth periods. For the reed community, the peak concentrations of soil catalase, phosphatase and urease appeared at vigorous stage with 3.26, 0.60 and 0.33 mg·g -1 , respectively, and the minimum value occurred at budding stage and leaf-expansion stage. For the tamarisk community, the peak values of three soil enzyme activities appeared at withered stage with values of 6.33, 0.58 and 0.21 mg·g -1 , respectively, and the valley values were observed at flowering and vigorous stages. Urease was stable during different growth periods, and it could be used as an indicator to identify the differences of soil enzyme activities in the wetlands. The enzyme activities of reed and tamarisk had significant positive correlation with soil organic matter and total P in all growth periods, while there was no significant relationship between enzyme activities and soil water content. The enzyme activities of reed had significant positive correlation with ammonium nitrogen in the rapid growth period. There were no significant relationships between enzyme activities and soil salinity in both communities. The soil enzyme activities of reed and tamarisk were controlled by many factors. Soil organic matter, soil water and soil temperature were the main factors influencing the enzyme activities in the Ebinur Lake wetland.

  4. Inhibition of existing denitrification enzyme activity by chloramphenicol

    USGS Publications Warehouse

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  5. Abiotic stress and phytohormones affect enzymic activity of 1-O-(indole-3-acetyl)-β-d-glucose: myo-inositol indoleacetyl transferase from rice (Oryza sativa).

    PubMed

    Ciarkowska, Anna; Ostrowski, Maciej; Jakubowska, Anna

    2016-10-20

    Indole-3-acetic acid (IAA) conjugation is a part of mechanism regulating free auxin concentration. 1-O-(indole-3-acetyl)-β-d-glucose: myo-inositol indoleacetyl transferase (IAInos synthase) is an enzyme involved in IAA-ester conjugates biosynthesis. Biotic and abiotic stress conditions can modulate auxin conjugates formation in plants. In this study, we investigated effect of plant hormones (IAA, ABA, SA and 2,4-D) and abiotic stress (drought and salt stress: 150mM NaCl and 300mM NaCl) on expression level and catalytic activity of rice IAInos synthase. Enzymic activity assay indicated that all tested phytohormones affected activity of IAInos synthase, but only ABA had inhibiting effect, while IAA, SA and 2,4-D activated the enzyme. Drought and salt stress induced with lower NaCl concentration resulted in decreased activity of IAInos synthase, but 300mM NaCl had no effect on the enzyme. Despite observed differences in enzymic activities, no changes of expression level, tested by semiquantitative RT-PCR and Western blot, were detected. Based on our results it has been supposed that plant hormones and stress conditions affect IAInos synthase activity on posttranslational level. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    PubMed Central

    Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503

  7. Diffusional correlations among multiple active sites in a single enzyme.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2014-04-07

    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  8. Enzyme replacement for GM1-gangliosidosis: Uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase:RTB lectin fusion.

    PubMed

    Condori, Jose; Acosta, Walter; Ayala, Jorge; Katta, Varun; Flory, Ashley; Martin, Reid; Radin, Jonathan; Cramer, Carole L; Radin, David N

    2016-02-01

    New enzyme delivery technologies are required for treatment of lysosomal storage disorders with significant pathologies associated with the so-called "hard-to-treat" tissues and organs. Genetic deficiencies in the GLB1 gene encoding acid β-galactosidase lead to GM1-gangliosidosis or Morquio B, lysosomal diseases with predominant disease manifestation associated with the central nervous system or skeletal system, respectively. Current lysosomal ERTs are delivered into cells based on receptor-mediated endocytosis and do not effectively address several hard-to-treat organs including those critical for GM1-gangliosidosis patients. Lectins provide alternative cell-uptake mechanisms based on adsorptive-mediated endocytosis and thus may provide unique biodistribution for lysosomal disease therapeutics. In the current study, genetic fusions of the plant galactose/galactosamine-binding lectin, RTB, and the human acid β-galactosidase enzyme were produced using a plant-based bioproduction platform. β-gal:RTB and RTB:β-gal fusion products retained both lectin activity and β-galactosidase activity. Purified proteins representing both fusion orientations were efficiently taken up into GM1 patient fibroblasts and mediated the reduction of GM1 ganglioside substrate with activities matching mammalian cell-derived β-galactosidase. In contrast, plant-derived β-gal alone was enzymatically active but did not mediate uptake or correction indicating the need for either lectin-based (plant product) or mannose-6-phosphate-based (mammalian product) delivery. Native β-galactosidase undergoes catalytic activation (cleavage within the C-terminal region) in lysosomes and is stabilized by association with protective protein/cathepsin A. Enzymatic activity and lysosomal protein processing of the RTB fusions were assessed following internalization into GM1 fibroblasts. Within 1-4h, both β-gal:RTB and RTB:β-gal were processed to the ~64kDa "activated" β-gal form; the RTB lectin was

  9. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    PubMed

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  10. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications. © 2014 Wiley Periodicals, Inc.

  11. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

    PubMed Central

    2016-01-01

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70–81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1’s lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1’s lactonase activity is minimal, whereas the kcat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1’s active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar “gating loop” or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates. PMID:28026940

  12. Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1.

    PubMed

    Blaha-Nelson, David; Krüger, Dennis M; Szeler, Klaudia; Ben-David, Moshe; Kamerlin, Shina Caroline Lynn

    2017-01-25

    Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70-81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computational analyses of the role of selected Y71 variants in the active site stability and catalytic activity in order to probe the role of Y71 in PON1's lactonase and organophosphatase activities. We demonstrate that the impact of Y71 substitutions on PON1's lactonase activity is minimal, whereas the k cat for the paraoxonase activity is negatively perturbed by up to 100-fold, suggesting greater mutational robustness of the native activity. Additionally, while these substitutions modulate PON1's active site shape, volume, and loop flexibility, their largest effect is in altering the solvent accessibility of the active site by expanding the active site volume, allowing additional water molecules to enter. This effect is markedly more pronounced in the organophosphatase activity than the lactonase activity. Finally, a detailed comparison of PON1 to other organophosphatases demonstrates that either a similar "gating loop" or a highly buried solvent-excluding active site is a common feature of these enzymes. We therefore posit that modulating the active site hydrophobicity is a key element in facilitating the evolution of organophosphatase activity. This provides a concrete feature that can be utilized in the rational design of next-generation organophosphate hydrolases that are capable of selecting a specific reaction from a pool of viable substrates.

  13. Structure And Mutagenic Conversion of E(1) Dehydrase: at the Crossroads of Dehydration, Amino Transfer, And Epimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.; Szu, P.-H.; Bui, C.

    2009-05-26

    Pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP) are highly versatile coenzymes whose importance is well recognized. The capability of PLP/PMP-dependent enzymes to catalyze a diverse array of chemical reactions is attributed to fine-tuning of the cofactor-substrate interactions in the active site. CDP-6-deoxy-l-threo-d-glycero-4-hexulose 3-dehydrase (E1), along with its reductase (E{sub 3}), catalyzes the C-3 deoxygenation of CDP-4-keto-6-deoxy-d-glucose to form the dehydrated product, CDP-4-keto-3,6-dideoxy-d-glucose, in the ascarylose biosynthetic pathway. This product is the progenitor to most 3,6-dideoxyhexoses, which are the major antigenic determinants of many Gram-negative pathogens. The dimeric [2Fe-2S] protein, E{sub 1}, cloned from Yersinia pseudotuberculosis, is the only known enzymemore » whose catalysis involves the direct participation of PMP in one-electron redox chemistry. E{sub 1} also contains an unusual [2Fe-2S] cluster with a previously unknown binding motif (C-X{sub 57}-C-X{sub 1}-C-X{sub 7}-C). Herein we report the first X-ray crystal structure of E{sub 1}, which exhibits an aspartate aminotransferase (AAT) fold. A comparison of the E{sub 1} active site architecture with homologous structures uncovers residues critical for the dehydration versus transamination activity. Site-directed mutagenesis of four E{sub 1} residues, D194H, Y217H, H220K, and F345H, converted E{sub 1} from a PMP-dependent dehydrase to a PLP/glutamate-dependent aminotransferase. The E{sub 1} quadruple mutant, having been conferred this altered enzyme activity, can transaminate the natural substrate to CDP-4,6-dideoxy-4-amino-d-galactose without E{sub 3}. Taken together, these results provide the molecular basis of the functional switch of E{sub 1} toward dehydration, epimerization, and transamination. The insights gained from these studies can be used for the development of inhibitors of disease-relevant PLP/PMP-dependent enzymes.« less

  14. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Gregor; Grotzky, Andrea; Lukić, Ružica; Matoori, Simon; Luciani, Paola; Yu, Hao; Zhang, Baozhong; Walde, Peter; Schlüter, A. Dieter; Gauthier, Marc A.; Leroux, Jean-Christophe

    2013-07-01

    Methods to stabilize and retain enzyme activity in the gastrointestinal tract are investigated rarely because of the difficulty of protecting proteins from an environment that has evolved to promote their digestion. Preventing the degradation of enzymes under these conditions, however, is critical for the development of new protein-based oral therapies. Here we show that covalent conjugation to polymers can stabilize orally administered therapeutic enzymes at different locations in the gastrointestinal tract. Architecturally and functionally diverse polymers are used to protect enzymes sterically from inactivation and to promote interactions with mucin on the stomach wall. Using this approach the in vivo activity of enzymes can be sustained for several hours in the stomach and/or in the small intestine. These findings provide new insight and a firm basis for the development of new therapeutic and imaging strategies based on orally administered proteins using a simple and accessible technology.

  15. Molecular Structure of a 9-MDa Icosahedral Pyruvate Dehydrogenase Subcomplex Containing the E2 and E3 Enzymes Using Cryoelectron Microscopy*

    PubMed Central

    Milne, Jacqueline L. S.; Wu, Xiongwu; Borgnia, Mario J.; Lengyel, Jeffrey S.; Brooks, Bernard R.; Shi, Dan; Perham, Richard N.; Subramaniam, Sriram

    2006-01-01

    The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (α2β2) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587–5598). An annular gap of ~90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ~75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain. PMID:16308322

  16. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences.

    PubMed

    Schwarzenberger, Anke; Fink, Patrick

    2018-04-01

    Food quality is an important factor influencing organisms' well-being. In freshwater ecosystems, food quality has been studied extensively for the keystone herbivore genus Daphnia, as they form the critical trophic link between primary producers and higher order consumers such as fish. For Daphnia, the edible fraction of phytoplankton in lakes (consisting mostly of unicellular algae and cyanobacteria) is extraordinarily diverse. To be able to digest different food particles, Daphnia possess a set of digestive enzymes that metabolize carbohydrates, lipids and proteins. Recent studies have found a connection between gene expression and activity of single digestive enzyme types of Daphnia, i.e. lipases and proteases, and transcriptome studies have shown that a variety of genes coding for gut enzymes are differentially expressed in response to different food algae. However, never before has a set of digestive enzymes been studied simultaneously both on the gene expression and the enzyme activity level in Daphnia. Here, we investigated several digestive enzymes of Daphnia pulex in a comparison between a high-quality (green algal) and a low-quality (cyanobacterial) diet. Diet significantly affected the expression of all investigated digestive enzyme genes and enzyme activity was altered between treatments. Furthermore, we found that gene expression and enzyme activity were significantly correlated in cellulase, triacylglycerol lipase and β-glucosidase when switched from high to low-quality food. We conclude that one of the factors causing the often observed low biomass and energy transfer efficiency from cyanobacteria to Daphnia is probably the switch to a cost-effective overall increase of gene expression and activity of digestive enzymes of this herbivore. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.

    PubMed

    Han, Gui Hwan; Seong, Wonjae; Fu, Yaoyao; Yoon, Paul K; Kim, Seong Keun; Yeom, Soo-Jin; Lee, Dae-Hee; Lee, Seung-Goo

    2017-03-01

    Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products. Copyright © 2017

  18. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    PubMed

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    PubMed

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P < 0.05) enzyme activities compared to all other protocols for both enzymes. Of the four protocols examined, the data demonstrate that the glass-on-glass pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  20. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  1. The molecular basis of the effect of temperature on enzyme activity.

    PubMed

    Daniel, Roy M; Peterson, Michelle E; Danson, Michael J; Price, Nicholas C; Kelly, Sharon M; Monk, Colin R; Weinberg, Cristina S; Oudshoorn, Matthew L; Lee, Charles K

    2009-12-23

    Experimental data show that the effect of temperature on enzymes cannot be adequately explained in terms of a two-state model based on increases in activity and denaturation. The Equilibrium Model provides a quantitative explanation of enzyme thermal behaviour under reaction conditions by introducing an inactive (but not denatured) intermediate in rapid equilibrium with the active form. The temperature midpoint (Teq) of the rapid equilibration between the two forms is related to the growth temperature of the organism, and the enthalpy of the equilibrium (DeltaHeq) to its ability to function over various temperature ranges. In the present study, we show that the difference between the active and inactive forms is at the enzyme active site. The results reveal an apparently universal mechanism, independent of enzyme reaction or structure, based at or near the active site, by which enzymes lose activity as temperature rises, as opposed to denaturation which is global. Results show that activity losses below Teq may lead to significant errors in the determination of DeltaG*cat made on the basis of the two-state ('Classical') model, and the measured kcat will then not be a true indication of an enzyme's catalytic power. Overall, the results provide a molecular rationale for observations that the active site tends to be more flexible than the enzyme as a whole, and that activity losses precede denaturation, and provide a general explanation in molecular terms for the effect of temperature on enzyme activity.

  2. Effect of cigarette smoke on salivary proteins and enzyme activities.

    PubMed

    Nagler, R; Lischinsky, S; Diamond, E; Drigues, N; Klein, I; Reznick, A Z

    2000-07-15

    Exposure of human plasma in vitro to gas-phase cigarette smoke (CS) causes a marked modification of plasma proteins as measured by protein carbonyl assay. Aldehydes present in CS may cause this elevation of protein carbonyls by reacting with sulfhydryl groups of proteins. Saliva is the first body fluid to confront the inhaled CS. Thus, in vitro exposure of saliva to nine "puffs" of CS also showed a distinct increase in protein carbonyls. Ascorbate and desferrioxamine mesylate had little effect on protein carbonyl formation, while GSH and N-acetylcysteine considerably inhibited the accumulation of protein carbonyls due to CS exposure. Following the exposure to CS, the activities of several salivary enzymes-amylase, lactic dehydrogenase (LDH), and acid phosphatase-were found to be significantly reduced (34, 57, and 77%, respectively). However, CS had no effect on the activities of aspartate aminotransferase and alkaline phosphatase. Addition of 1 mM of GSH and N-acetylcysteine considerably protected LDH and amylase activities, suggesting that sulfhydryl groups are affected in LDH and amylase. On the other hand, addition of 1 mM ascorbate caused a further loss of LDH and amylase activities, which could be partially prevented by the addition of desferrioxamine mesylate, implicating metal-catalyzed oxidation processes. Finally, loss of acid phosphatase activity was completely unaffected by any of the above antioxidants. It is concluded that the loss of salivary enzyme activities may be due to various agents in the CS that affect the enzyme activities via different mechanisms. Copyright 2000 Academic Press.

  3. Geographic distributions of Idh-1 alleles in a cricket are linked to differential enzyme kinetic performance across thermal environments

    PubMed Central

    Huestis, Diana L; Oppert, Brenda; Marshall, Jeremy L

    2009-01-01

    Background Geographic clines within species are often interpreted as evidence of adaptation to varying environmental conditions. However, clines can also result from genetic drift, and these competing hypotheses must therefore be tested empirically. The striped ground cricket, Allonemobius socius, is widely-distributed in the eastern United States, and clines have been documented in both life-history traits and genetic alleles. One clinally-distributed locus, isocitrate dehydrogenase (Idh-1), has been shown previously to exhibit significant correlations between allele frequencies and environmental conditions (temperature and rainfall). Further, an empirical study revealed a significant genotype-by-environmental interaction (GxE) between Idh-1 genotype and temperature which affected fitness. Here, we use enzyme kinetics to further explore GxE between Idh-1 genotype and temperature, and test the predictions of kinetic activity expected under drift or selection. Results We found significant GxE between temperature and three enzyme kinetic parameters, providing further evidence that the natural distributions of Idh-1 allele frequencies in A. socius are maintained by natural selection. Differences in enzyme kinetic activity across temperatures also mirror many of the geographic patterns observed in allele frequencies. Conclusion This study further supports the hypothesis that the natural distribution of Idh-1 alleles in A. socius is driven by natural selection on differential enzymatic performance. This example is one of several which clearly document a functional basis for both the maintenance of common alleles and observed clines in allele frequencies, and provides further evidence for the non-neutrality of some allozyme alleles. PMID:19460149

  4. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  5. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    PubMed

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  6. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  7. Higher Plasma Pyridoxal Phosphate Is Associated with Increased Antioxidant Enzyme Activities in Critically Ill Surgical Patients

    PubMed Central

    Cheng, Chien-Hsiang; Huang, Shih-Chien; Chiang, Ting-Yu; Wong, Yueching

    2013-01-01

    Critically ill patients experience severe stress, inflammation and clinical conditions which may increase the utilization and metabolic turnover of vitamin B-6 and may further increase their oxidative stress and compromise their antioxidant capacity. This study was conducted to examine the relationship between vitamin B-6 status (plasma and erythrocyte PLP) oxidative stress, and antioxidant capacities in critically ill surgical patients. Thirty-seven patients in surgical intensive care unit of Taichung Veterans General Hospital, Taiwan, were enrolled. The levels of plasma and erythrocyte PLP, serum malondialdehyde, total antioxidant capacity, and antioxidant enzyme activities (i.e., superoxide dismutase (SOD), glutathione S-transferase, and glutathione peroxidase) were determined on the 1st and 7th days of admission. Plasma PLP was positively associated with the mean SOD activity level on day 1 (r = 0.42, P < 0.05), day 7 (r = 0.37, P < 0.05), and on changes (Δ (day 7 − day 1)) (r = 0.56, P < 0.01) after adjusting for age, gender, and plasma C-reactive protein concentration. Higher plasma PLP could be an important contributing factor in the elevation of antioxidant enzyme activity in critically ill surgical patients. PMID:23819116

  8. Contributions of Human Enzymes in Carcinogen Metabolism

    PubMed Central

    Rendic, Slobodan; Guengerich, F. Peter

    2012-01-01

    Considerable support exists for roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are procarcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, inter-individual variations, and risk assessment. PMID:22531028

  9. Molecular Characterization of Plant Ubiquitin-Conjugating Enzymes Belonging to the UbcP4/E2-C/UBCx/UbcH10 Gene Family1

    PubMed Central

    Criqui, Marie Claire; de Almeida Engler, Janice; Camasses, Alain; Capron, Arnaud; Parmentier, Yves; Inzé, Dirk; Genschik, Pascal

    2002-01-01

    The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradation. Although it has recently been shown that mammalian E2-C is regulated at the protein level during the cell cycle, not much is known concerning the expression of these genes. Arabidopsis encodes two genes belonging to the E2-C gene family (called UBC19 and UBC20). We found that UBC19 is able to complement fission yeast (Schizosaccharomyces pombe) UbcP4-140 mutant, indicating that the plant protein can functionally replace its yeast ortholog for protein degradation during mitosis. In situ hybridization experiments were performed to study the expression of the E2-C genes in various tissues of plants. Their transcripts were always, but not exclusively, found in tissues active for cell division. Thus, the UBC19/20 E2s may have a key function during cell cycle, but may also be involved in ubiquitylation reactions occurring during differentiation and/or in differentiated cells. Finally, we showed that a translational fusion protein between UBC19 and green fluorescent protein localized both in the cytosol and the nucleus in stable transformed tobacco (Nicotiana tabacum cv Bright Yellow 2) cells. PMID:12427990

  10. Therapeutic Application of Phage Capsule Depolymerases against K1, K5, and K30 Capsulated E. coli in Mice.

    PubMed

    Lin, Han; Paff, Matthew L; Molineux, Ian J; Bull, James J

    2017-01-01

    Capsule depolymerase enzymes offer a promising class of new antibiotics. In vivo studies are encouraging but it is unclear how well this type of phage product will generalize in therapeutics, or whether different depolymerases against the same capsule function similarly. Here, in vivo efficacy was tested using cloned bacteriophage depolymerases against Escherichia coli strains with three different capsule types: K1, K5, and K30. When treating infections with the cognate capsule type in a mouse thigh model, the previously studied K1E depolymerase rescued poorly, whereas K1F, K1H, K5, and K30 depolymerases rescued well. K30 gp41 was identified as the catalytically active protein. In contrast to the in vivo studies, K1E enzyme actively degraded K1 capsule polysaccharide in vitro and sensitized K1 bacteria to serum killing. The only in vitro correlate of poor K1E performance in vivo was that the purified enzyme did not form the expected trimer. K1E appeared as an 18-mer which might limit its in vivo distribution. Overall, depolymerases were easily identified, cloned from phage genomes, and as purified proteins they proved generally effective.

  11. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.

    PubMed

    Li, Kai; Wang, Jianhua; He, Yaojia; Abdulrazaq, Miaad Adnan; Yan, Yunjun

    2018-06-19

    Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu 3 (PO 4 ) 2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu 3 (PO 4 ) 2 /CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu 3 (PO 4 ) 2 /Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ee s ) reached 98% in only 10 min, and the corresponding Cu 3 (PO 4 ) 2 /CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Correlation of endothelin-1 concentration and angiotensin-converting enzyme activity with the staging of liver fibrosis.

    PubMed

    Kardum, Dusko; Fabijanić, Damir; Lukić, Anita; Romić, Zeljko; Petrovecki, Mladen; Bogdanović, Zoran; Jurić, Klara; Urek-Crncević, Marija; Banić, Marko

    2012-06-01

    Increased serum angiotensin-converting enzyme (SACE) activity and serum concentration of endothelin-1 (ET-1) were found in liver cirrhosis. We investigated a correlation between the different stages of liver fibrosis and SACE activity and serum ET-1 concentration. Seventy patients with pathohistologically established chronic liver disease were divided in three groups according to Ishak criteria for liver fibrosis: minimal fibrosis (Ishak score 0-1, n =20), medium fibrosis (Ishak score 2-5, n=20) and cirrhosis (Ishak score 6, n=30). SACE activity and ET-1 concentration were determined using commercial ELISA kits. SACE activity and ET-1 concentrations were proportional to the severity of disease, the highest being in patients with liver cirrhosis. Maximal increase in SACE activity was found between minimal and medium fibrosis while maximal increase in ET-1 concentration was revealed between medium fibrosis and cirrhosis. The analysis of the Receiver Operating Characteristic (ROC) curve for SACE activity suggested a cut-off value to separate minimal from medium fibrosis at 59.00 U/L (sensitivity 100%, specificity 64.7%). The cut-off value for serum ET-1 concentration to separate medium fibrosis from cirrhosis was 12.4 pg/mL (sensitivity 96.8%, specificity 94.4%). A positive correlation between SACE activity and ET-1 concentration was registered (Spearman's ñ = 0.438, p = 0.004). Both SACE activity and ET-1 concentration were increased in all stages of liver fibrosis. Cut-off points for SACE activity and ET-1 concentration could be a biochemical marker for the progression of fibrosis. Positive correlation between SACE activity and ET-1 concentration might indicate their interaction in the development of liver cirrhosis.

  13. Effects of sex, weight, diet and hCG administration on levels of skatole and indole in the liver and hepatic activities of cytochromes P4502E1 and P4502A6 in pigs.

    PubMed

    Zamaratskaia, G; Chen, G; Lundström, K

    2006-02-01

    Cytochromes P4502E1 (CYP2E1) and P4502A6 (CYP2A6) catalyse metabolic reactions of skatole and indole metabolism. The objectives of this study were as follows: to evaluate whether activities of CYP2E1 and CYP2A6 in pigs of two live weights (LW) differ between males and females; to investigate whether activities of CYP2E1 and CYP2A6 are affected by hCG stimulation; and to investigate whether the levels of skatole and indole in the liver and the activities of CYP2E1 and CYP2A6 are affected by raw potato starch (RPS). Female pigs expressed higher CYP2A6 activity at 90kg LW, and higher CYP2E1 activity at 115kg LW compared to male pigs. Skatole levels in the liver were higher in male pigs than in female pigs at both LW, whereas indole levels were higher in males only at 115 kg LW. Neither levels of indolic compounds in the liver nor enzyme activities were affected by hCG stimulation. The inclusion of RPS in the diet reduced skatole levels in the liver in both sexes and increased CYP2A6 activity in female pigs. It was concluded that the incidence of boar taint may depend on both skatole amount, which reach the liver, and the activities of enzymes involved in skatole metabolism, which may vary depending on sex, live weight, and diet.

  14. Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine.

    PubMed

    Lewis, Benjamin C; Mackenzie, Peter I; Miners, John O

    2011-11-01

    The chemotherapeutic prodrug dacarbazine (DTIC) has limited efficacy in human malignancies and exhibits numerous adverse effects that arise from systemic exposure to the cytotoxic metabolite. DTIC is activated by CYP1A1 and CYP1A2 catalyzed N-demethylation. However, structural features of these enzymes that confer DTIC N-demethylation have not been characterized. A validated homology model of CYP1A1 was employed to elucidate structure-activity relationships and to engineer CYP1A1 enzymes with altered DTIC activation. In silico docking demonstrated that DTIC orientates proximally to Ser122, Phe123, Asp313, Ala317, Ile386, Tyr259, and Leu496 of human CYP1A1. The site of metabolism is positioned 5.6 Å from the heme iron at an angle of 105.3°. Binding in the active site is stabilized by H-bonding between Tyr259 and the N(2) position of the imidazole ring. Twenty-seven CYP1A1 mutants were generated and expressed in Escherichia coli in yields ranging from 9 to 225 pmol P450/mg. DTIC N-demethylation by the E161K, E256K, and I458V mutants exhibited Michaelis-Menten kinetics, with decreases in K(m) (183-249 μM) that doubled the catalytic efficiency (p < 0.05) relative to wild-type CYP1A1 (K(m), 408 ± 43 μM; V(max), 28 ± 4 pmol · min(-1) · pmol of P450(-1)). The generation of enzymes with catalytically enhanced DTIC activation highlights the potential use of mutant CYP1A1 proteins in P450-based gene-directed enzyme prodrug therapy for the treatment of metastatic malignant melanoma.

  15. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities

    PubMed Central

    Liu, Ge; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-01-01

    A multifunctional enzyme is one that performs multiple physiological functions, thus benefiting the organism. Characterization of multifunctional enzymes is important for researchers to understand how organisms adapt to different environmental challenges. In the present study, we report the discovery of a novel multifunctional enzyme Amy63 produced by marine bacterium Vibrio alginolyticus 63. Remarkably, Amy63 possesses amylase, agarase and carrageenase activities. Amy63 is a substrate promiscuous α-amylase, with the substrate priority order of starch, carrageenan and agar. Amy63 maintains considerable amylase, carrageenase and agarase activities and stabilities at wide temperature and pH ranges, and optimum activities are detected at temperature of 60 °C and pH of 6.0, respectively. Moreover, the heteroexpression of Amy63 dramatically enhances the ability of E. coli to degrade starch, carrageenan and agar. Motif searching shows three continuous glycosyl hydrolase 70 (GH70) family homologs existed in Amy63 encoding sequence. Combining serial deletions and phylogenetic analysis of Amy63, the GH70 homologs are proposed as the determinants of enzyme promiscuity. Notably, such enzymes exist in all kingdoms of life, thus providing an expanded perspective on studies of multifunctional enzymes. To our knowledge, this is the first report of an amylase having additional agarase and carrageenase activities. PMID:26725302

  16. Allosteric activation transitions in enzymes and biomolecular motors: insights from atomistic and coarse-grained simulations.

    PubMed

    Daily, Michael D; Yu, Haibo; Phillips, George N; Cui, Qiang

    2013-01-01

    The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In "simple" enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for "cracking" in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again

  17. ENZYME ACTIVITIES DURING THE ASEXUAL CYCLE OF NEUROSPORA CRASSA

    PubMed Central

    Stine, G. J.

    1968-01-01

    Three enzymes, (a) nicotinamide adenine diphosphate-dependent glutamic dehydrogenase (NAD enzyme), (b) nictoinamide adenine triphosphate-dependent glutamic dehydrogenase (NADP enzyme), and (c) nicotinamide-adenine dinucleotidase (NADase), were measured in separate extracts of Neurospora crassa grown in Vogel's medium N and medium N + glutamate. Specific activities and total units per culture of each enzyme were determined at nine separate intervals phased throughout the asexual cycle. The separate dehydrogenases were lowest in the conidia, increased slowly during germination, and increased rapidly during logarithmic mycelial growth. The amounts of these enzymes present during germination were small when compared with those found later during the production of the conidiophores. The NAD enzyme may be necessary for pregermination synthesis. The NADP-enzyme synthesis was associated with the appearance of the germ tube. Although higher levels of the dehydrogenases in the conidiophores resulted in more enzyme being found in the differentiated conidia, the rate of germination was uneffected. The greatest activity for the NADase enzyme was associated with the conidia, early phases of germination, and later production of new conidia. NADase decreased significantly with the onset of logarithmic growth, remained low during the differentiation of conidiophores, and increased considerably as the conidiophores aged. PMID:4384627

  18. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour.

    PubMed

    Mathy, Nathalie; Hébert, Agnès; Mervelet, Peggy; Bénard, Lionel; Dorléans, Audrey; Li de la Sierra-Gallay, Inés; Noirot, Philippe; Putzer, Harald; Condon, Ciarán

    2010-01-01

    Ribonucleases J1 and J2 are recently discovered enzymes with dual 5'-to-3' exoribonucleolytic/endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently. Here we present evidence that RNases J1 and J2 form a complex that is likely to be the predominant form of these enzymes in wild-type cells. While both RNase J1 and the RNase J1/J2 complex have robust 5'-to-3' exoribonuclease activity in vitro, RNase J2 has at least two orders of magnitude weaker exonuclease activity, providing a possible explanation for why RNase J1 is essential. The association of the two proteins also has an effect on the endoribonucleolytic properties of RNases J1 and J2. While the individual enzymes have similar endonucleolytic cleavage activities and specificities, as a complex they behave synergistically to alter cleavage site preference and to increase cleavage efficiency at specific sites. These observations dramatically change our perception of how these ribonucleases function and provide an interesting example of enzyme subfunctionalization after gene duplication.

  19. Activity, cloning, and expression of an isoamylase-type starch-debranching enzyme from banana fruit.

    PubMed

    Bierhals, Jacqueline Dettmann; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana; Oliveira do Nascimento, João Roberto

    2004-12-01

    Unripe bananas have a high content of starch (almost 20%) that is metabolized during fruit ripening with a concomitant synthesis of soluble sugars. Since starch granules are composed of amylose and amylopectin, several enzymes have to be involved in its mobilization during banana ripening, with a necessary participation of one starch-debranching enzyme (DBE) to hydrolyze the alpha-1,6-branches of amylopectin. Banana DBE seems to be an isoamylase-type enzyme, as indicated by substrate specificity and the cloning of a 1575 bp cDNA, similar to the isoamylase sequences from potato, Arabdopsis, and maize. The assays for DBE indicated only minor changes in activity during ripening, and the results of the northern and western blots with antiserum against the recombinant banana isoamylase were in agreement with the steady-state level of activity, since no significant changes in gene expression were observed. The high activity on beta-limit dextrin and the similarity to the potato isoform 3 suggest that during banana ripening the hydrolysis of alpha-1,6-linkage of amylopectin results from the activity of a pre-existing isoamylase-type debranching enzyme in coordination with other amylolitic enzymes. To the best of our knowledge, this is the first evaluation of activity and expression of a DBE from a fruit.

  20. Dioxygen Binding, Activation, and Reduction to H2O by Cu Enzymes.

    PubMed

    Solomon, Edward I

    2016-07-05

    Oxygen intermediates in copper enzymes exhibit unique spectroscopic features that reflect novel geometric and electronic structures that are key to reactivity. This perspective will describe: (1) the bonding origin of the unique spectroscopic features of the coupled binuclear copper enzymes and how this overcomes the spin forbiddenness of O2 binding and activates monooxygenase activity, (2) how the difference in exchange coupling in the non-coupled binuclear Cu enzymes controls the reaction mechanism, and (3) how the trinuclear Cu cluster present in the multicopper oxidases leads to a major structure/function difference in enabling the irreversible reductive cleavage of the O-O bond with little overpotential and generating a fully oxidized intermediate, different from the resting enzyme studied by crystallography, that is key in enabling fast PCET in the reductive half of the catalytic cycle.

  1. Multiple transcriptional regulatory domains in the human immunodeficiency virus type 1 long terminal repeat are involved in basal and E1A/E1B-induced promoter activity.

    PubMed Central

    Kliewer, S; Garcia, J; Pearson, L; Soultanakis, E; Dasgupta, A; Gaynor, R

    1989-01-01

    The human immunodeficiency virus (HIV) type 1 long terminal repeat (LTR) is the site of activation of the HIV tat protein. However, additional transactivators, such as the adenovirus E1A and herpesvirus ICPO proteins, have also been shown to be capable of activating the HIV LTR. Analysis of adenovirus mutants indicated that complete transactivation of the HIV LTR was dependent on both the E1A and E1B proteins. To determine which regions of the HIV LTR were important for complete E1A/E1B activation, a variety of oligonucleotide-directed mutations in HIV transcriptional regulatory domains were assayed both in vivo and in vitro. S1 nuclease analysis of RNA prepared after transfection of these HIV constructs into HeLa cells infected with wild-type adenovirus indicated that the enhancer, SP1, TATA, and a portion of the transactivation-responsive element were each required for complete E1A/E1B-mediated activation of the HIV LTR. These same promoter elements were required for both basal and E1A/E1B-induced levels of transcription in in vitro transcription reactions performed with cellular extracts prepared from cells infected with dl434, an E1A/E1B deletion mutant, or wild-type adenovirus. No mutations were found that reduced only E1A/E1B-induced expression without proportionally reducing basal levels of transcription, suggesting that E1A/E1B-mediated induction of the HIV LTR requires multiple promoter elements which are also required for basal transcriptional levels. Unlike activation by the tat protein, there was not a rigid dependence on maintenance of the transactivation-responsive stem base pairing for E1A/E1B-mediated activation either in vivo or in vitro, indicating that activation occurs by a mechanism distinct from that of tat induction. Images PMID:2529378

  2. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  3. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells

    PubMed Central

    2013-01-01

    Introduction The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Methods Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2′,7′-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Results Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. Conclusions These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism

  4. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase.

    PubMed

    Liu, Shui; Zhou, Yonglin; Niu, Xiaodi; Wang, Tingting; Li, Jiyun; Liu, Zhongjie; Wang, Jianfeng; Tang, Shusheng; Wang, Yang; Deng, Xuming

    2018-12-01

    The emergence of plasmid-mediated New Delhi metallo-β-lactamase-1 (NDM-1) in carbapenem-resistant Gram-negative pathogens is an increasing clinical threat. Here we report the discovery of an NDM-1 inhibitor, magnolol, through enzyme inhibition screening. We showed that magnolol significantly inhibited NDM enzyme activity (IC 50  = 6.47 µg/mL), and it restored the activity of meropenem against Escherichia coli ZC-YN3, an NDM-1-producing E. coli isolate, in in vitro antibacterial activity assays. Magnolol lacked direct antibacterial activity, but compared with meropenem alone, it reduced the MICs of meropenem against E. coli ZC-YN3 by 4-fold and killed almost all the bacteria within 3 h. Molecular modeling and a mutational analysis demonstrated that magnolol binds directly to the catalytic pocket (residues 110 to 200) of NDM-1, thereby blocking the binding of the substrate to NDM-1 and leading to its inactivation. Our results demonstrate that the combination of magnolol and meropenem may have the potential to treat infections caused by NDM-1-positive, carbapenem-resistant Gram-negative pathogens.

  5. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.).

    PubMed

    Sen, Supatra; Mukherji, S

    2009-07-01

    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  6. Rational design to improve thermostability and specific activity of the truncated Fibrobacter succinogenes 1,3-1,4-β-D-glucanase.

    PubMed

    Huang, Jian-Wen; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Lai, Hui-Lin; Chen, Chun-Chi; Ma, Yanhe; Zheng, Yingying; Huang, Chun-Hsiang; Zou, Peijian; Liu, Je-Ruei; Guo, Rey-Ting

    2012-04-01

    1,3-1,4-β-D-Glucanase has been widely used as a feed additive to help non-ruminant animals digest plant fibers, with potential in increasing nutrition turnover rate and reducing sanitary problems. Engineering of enzymes for better thermostability is of great importance because it not only can broaden their industrial applications, but also facilitate exploring the mechanism of enzyme stability from structural point of view. To obtain enzyme with higher thermostability and specific activity, structure-based rational design was carried out in this study. Eleven mutants of Fibrobacter succinogenes 1,3-1,4-β-D-glucanase were constructed in attempt to improve the enzyme properties. In particular, the crude proteins expressed in Pichia pastoris were examined firstly to ensure that the protein productions meet the need for industrial fermentation. The crude protein of V18Y mutant showed a 2 °C increment of Tm and W203Y showed ∼30% increment of the specific activity. To further investigate the structure-function relationship, some mutants were expressed and purified from P. pastoris and Escherichia coli. Notably, the specific activity of purified W203Y which was expressed in E. coli was 63% higher than the wild-type protein. The double mutant V18Y/W203Y showed the same increments of Tm and specific activity as the single mutants did. When expressed and purified from E. coli, V18Y/W203Y showed similar pattern of thermostability increment and 75% higher specific activity. Furthermore, the apo-form and substrate complex structures of V18Y/W203Y were solved by X-ray crystallography. Analyzing protein structure of V18Y/W203Y helps elucidate how the mutations could enhance the protein stability and enzyme activity.

  7. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, Natasha M.; Meneely, Kathleen M.; Bart, Aaron G.

    2013-11-20

    Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drugmore » pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 {angstrom}), CYP2A13 (3.0 {angstrom}), CYP2E1 (2.35 {angstrom}), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 {angstrom}) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.« less

  8. Selectively enhanced expression of prophenoloxidase activating enzyme 1 (PPAE1) at a bacteria clearance site in the white shrimp, Litopenaeus vannamei

    PubMed Central

    2011-01-01

    Background The prophenoloxidase-activating (PO activating) system plays an important role in the crustacean innate immunity, particularly in wound healing and pathogen defense. A key member of this system is prophenoloxidase-activating enzyme (PPAE), which is the direct activator of prophenoloxidase (proPO). Despite their importance in crustacean PO activating system, the studies on them remain limited. Results Here we report on a PPAE of white shrimp, Litopenaeus vannamei (lvPPAE1), which showed 94% similarity to PPAE1 of Penaeus monodon. We found that lvPPAE1 in fluid hemocytes was down regulated after challenge by Vibrio harveyi but was enhanced when shrimps were exposed to a bacteria-rich environment for long-term. In vivo gene silence of lvPPAE1 by RNAi can significantly reduce the phenoloxidase activity (PO) and increase the susceptibility of shrimps to V. harveyi. Although lvPPAE1 was down-regulated in fluid hemocytes by Vibrio challenge, its expression increased significantly in gill after bacteria injection, which is the primary bacteria-clearance tissue. Conclusion Suppressed expression in fluid hemocytes and enhanced expression in gill indicates selectively enhanced expression at the bacterial clearance site. This is a novel feature for PPAE expression. The results will contribute to our understanding of the PO activating system in crustaceans. PMID:22208405

  9. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity[S

    PubMed Central

    Jaishy, Bharat; Zhang, Quanjiang; Chung, Heaseung S.; Riehle, Christian; Soto, Jamie; Jenkins, Stephen; Abel, Patrick; Cowart, L. Ashley; Van Eyk, Jennifer E.; Abel, E. Dale

    2015-01-01

    Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs. PMID:25529920

  10. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. © 2013.

  11. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    PubMed

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  12. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    NASA Astrophysics Data System (ADS)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  13. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  14. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.

    PubMed

    Muro, Silvia; Schuchman, Edward H; Muzykantov, Vladimir R

    2006-01-01

    Enzyme replacement therapy, a state-of-the-art treatment for many lysosomal storage disorders, relies on carbohydrate-mediated binding of recombinant enzymes to receptors that mediate lysosomal delivery via clathrin-dependent endocytosis. Suboptimal glycosylation of recombinant enzymes and deficiency of clathrin-mediated endocytosis in some lysosomal enzyme-deficient cells limit delivery and efficacy of enzyme replacement therapy for lysosomal disorders. We explored a novel delivery strategy utilizing nanocarriers targeted to a glycosylation- and clathrin-independent receptor, intercellular adhesion molecule (ICAM)-1, a glycoprotein expressed on diverse cell types, up-regulated and functionally involved in inflammation, a hallmark of many lysosomal disorders. We targeted recombinant human acid sphingomyelinase (ASM), deficient in types A and B Niemann-Pick disease, to ICAM-1 by loading this enzyme to nanocarriers coated with anti-ICAM. Anti-ICAM/ASM nanocarriers, but not control ASM or ASM nanocarriers, bound to ICAM-1-positive cells (activated endothelial cells and Niemann-Pick disease patient fibroblasts) via ICAM-1, in a glycosylation-independent manner. Anti-ICAM/ASM nanocarriers entered cells via CAM-mediated endocytosis, bypassing the clathrin-dependent pathway, and trafficked to lysosomes, where delivered ASM displayed stable activity and alleviated lysosomal lipid accumulation. Therefore, lysosomal enzyme targeting using nanocarriers targeted to ICAM-1 bypasses defunct pathways and may improve the efficacy of enzyme replacement therapy for lysosomal disorders, such as Niemann-Pick disease.

  15. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in murine epidermis. Modulation of enzyme content and activation state by barrier requirements.

    PubMed Central

    Proksch, E; Elias, P M; Feingold, K R

    1990-01-01

    Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state. Images PMID:2312730

  16. Paraoxonase (PON1) polymorphism and activity as the determinants of sensitivity to organophosphates in human subjects.

    PubMed

    Sirivarasai, Jintana; Kaojarern, Sming; Yoovathaworn, Krongtong; Sura, Thanyachai

    2007-07-20

    Paraoxonase (PON1) plays an important role in mechanism of organophosphorus compound (OP) toxicity, as seen both in vitro and in vivo studies. Polymorphisms of PON1 gene at coding and promoter regions have also been to affect on the hydrolytic activity and PON1 level. The objectives of this study were to determine PON1 polymorphism and activity in an OP-exposed population and the effects on inhibition of cholinesterase activity. The studied population consisted of control (n=30) and exposed groups (n=90). All enzyme activities (AChE, BuChE, paraoxonase, arylesterase and diazonase) were measured once for control group and two periods of exposure for exposed group. Three polymorphisms of PON1 (Q192R, L55M and T-108C) were identified only in the exposed subjects. The results demonstrated that AChE activity in both high (345.5 microkat/gHb) and low exposure periods (496.9 microkat/gHb) of the exposed group were significantly different from control group (649.7 microkat/gHb, p<0.01). For BuChE activity, the exposed group also showed the statistically lower level in both periods (high exposure period: 62.17 microkat/L and low exposure period: 81.84 microkat/L) than those in the control group (93.35 microkat/L). Serum paraoxonase activity was significantly different among individual genotypes, RR>QR>RR, LL>LM and -108CC>-108CT>-108TT, but this was not found for those of arylesterase and diazonase activities. Q192R and L55M as well as Q192R and T-108C also presented substantial linkage disequilibrium. Further analysis was performed with haplotypes and various enzyme activities. AChE activity was not affected by haplotypes. Individuals with "211" haplotype showed significantly higher paraoxonase activity and BuChE activity than other haplotypes but not in diazonase activity. In conclusion, PON1 gene exhibited a wide variation in enzyme activities both within and between genotypes which implied insights of a potentially difference in sensitivity to OP toxicity.

  17. Recombinant cathepsin E has no proteolytic activity at neutral pH.

    PubMed

    Zaidi, Nousheen; Herrmann, Timo; Voelter, Wolfgang; Kalbacher, Hubert

    2007-08-17

    Cathepsin E (CatE) is a major intracellular aspartic protease reported to be involved in cellular protein degradation and several pathological processes. Distinct cleavage specificities of CatE at neutral and acidic pH have been reported previously in studies using CatE purified from human gastric mucosa. Here, in contrast, we have analyzed the proteolytic activity of recombinant CatE at acidic and neutral pH using two separate approaches, RP-HPLC and FRET-based proteinase assays. Our data clearly indicate that recombinant CatE does not possess any proteolytic activity at all at neutral pH and was unable to cleave the peptides glucagon, neurotensin, and dynorphin A that were previously reported to be cleaved by CatE at neutral pH. Even in the presence of ATP, which is known to stabilize CatE, no proteolytic activity was observed. These discrepant results might be due to some contaminating factor present in the enzyme preparations used in previous studies or may reflect differences between recombinant CatE and the native enzyme.

  18. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater

    PubMed Central

    Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru

    2017-01-01

    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the

  19. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater.

    PubMed

    Obayashi, Yumiko; Wei Bong, Chui; Suzuki, Satoru

    2017-01-01

    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the

  20. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription.

    PubMed

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-07-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with co-factors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also

  1. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription

    PubMed Central

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J.; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-01-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with cofactors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises

  2. Production of a biodegradable plastic-degrading enzyme from cheese whey by the phyllosphere yeast Pseudozyma antarctica GB-4(1)W.

    PubMed

    Watanabe, Takashi; Shinozaki, Yukiko; Suzuki, Ken; Koitabashi, Motoo; Yoshida, Shigenobu; Sameshima-Yamashita, Yuka; Kuze Kitamoto, Hiroko

    2014-08-01

    Cheese whey is a by-product of cheese production and has high concentrations of lactose (about 5%) and other nutrients. Pseudozyma antarctica produces a unique cutinase-like enzyme, named PaE, that efficiently degrades biodegradable plastics. A previous study showed that a combination of 1% oil and 0.5% lactose increased cutinase-like enzyme production by another species of yeast. In this study, to produce PaE from cheese whey, we investigated the effects of soybean oil on PaE production (expressed as biodegradable plastic-degrading activity) by P. antarctica growing on lactose or cheese whey. In flask cultures, the final PaE activity was only 0.03 U/ml when soybean oil was used as the sole carbon source, but increased to 1.79 U/ml when a limited amount of soybean oil (under 0.5%) was combined with a relatively high concentration of lactose (6%). Using a 5-L jar fermentor with lactose fed-batch cultivation and periodic soybean oil addition, about 14.6 U/ml of PaE was obtained after 5 days of cultivation. When the lactose was replaced with cheese whey, PaE production was 10.8 U/ml after 3 days of cultivation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Effects of dietary lead acetate on hepatic detoxication enzyme activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, D.J.

    1979-12-01

    Lead-containing compounds usually inhibit enzymic and metabolic processes. This inhibition is presumed to be the mechanism of intoxication by these compounds. Inhibition of detoxication activities of liver microsomal enzymes could be particularly detrimental because the toxicity of many different substances would be increased. Exposure of experimental animals to lead compounds in several studies has been associated with depressed activity of hepatic microsomal enzymes, reduced levels of hepatic cytochrome P-450, reduced levels of hepatic microsomal protein, and prolonged hexobarbital sleep times. The present report contains observations that under certain experimental conditions there is stimulated hepatic meicrosomal enzyme activity in rats fedmore » lead acetate.« less

  4. Cadmium Phytoavailability and Enzyme Activity under Humic Acid Treatment in Fluvo-aquic Soil

    NASA Astrophysics Data System (ADS)

    Liu, Borui; Huang, Qing; Su, Yuefeng

    2018-01-01

    A pot experiment was conducted to investigate the cadmium (Cd) availability to pakchois (Brassica chinensis L.) as well as the enzyme activities in fluvo-aquic soil under humic acid treatment. The results showed that the phytoavailability of Cd in soil decreased gradually as humic acid concentration rose (0 to 12 g·kg-1), while the activities of urease (UE), alkaline phosphatase (ALP) and catalase (CAT) kept increasing (P < 0.05). The correlation analysis indicated that humic acid was effective for reducing the devastation to soil enzymes due to the Cd pollution. In conclusion, humic acid is effective for the reduction of both Cd phytoavailability and the damage to enzyme activities due to Cd pollution in fluvo-aquic soil

  5. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers EVIDENCE FOR A DIRECT PATHWAY BETWEEN THE 4′-AMINOPYRIMIDINE N1′ ATOMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy

    2010-11-03

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding inmore » the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.« less

  6. [Effect of Jinlida on changes in expression of skeletal muscle lipid transport enzymes in fat-induced insulin resistance ApoE -/- mice].

    PubMed

    Jin, Xin; Zhang, Hui-xin; Zhang, Yan-fen; Cui, Wen-wen; Bi, Yao; He, Qi-long; Zhou, Sheng-shan

    2015-03-01

    To study the effect of Jinlida on changes in expression of skeletal muscle lipid transport enzymes in fat-induced insulin resistance ApoE -/- mice. Eight male C57BL/6J mice were selected in the normal group (NF), 40 male ApoE -/- mice were fed for 16 weeks, divided into the model group (HF), the rosiglitazone group ( LGLT), the Jinlida low-dose group (JLDL), the Jinlida medium-dose group (JLDM), the Jinlida high-dose group (JLDH) and then orally given drugs for 8 weeks. The organization free fatty acids, BCA protein concentration determination methods were used to determine the skeletal muscle FFA content. The Real-time fluorescent quantitative reverse transcription PCR ( RT-PCR) and Western blot method were adopted to determine mRNA and protein expressions of mice fatty acids transposition enzyme (FAT/CD36), carnitine palm acyltransferase 1 (CPT1), peroxide proliferators-activated receptor α( PPAR α). Jinlida could decrease fasting blood glucose (FBG), cholesterol (TC), triglyceride (TG), free fatty acid (FFA) and fasting insulin (FIns) and raise insulin sensitive index (ISI) in mice to varying degrees. It could also up-regulate mRNA and protein expressions of CPT1 and PPARα, and down-regulate mRNA and protein levels of FAT/CD36. Jinlida can improve fat-induced insulin resistance ApoE -/- in mice by adjusting the changes in expression of skeletal muscle lipid transport enzymes.

  7. Discriminative structural approaches for enzyme active-site prediction.

    PubMed

    Kato, Tsuyoshi; Nagano, Nozomi

    2011-02-15

    Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.

  8. SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets.

    PubMed

    Jones, Darryl R; Thomas, Dallas; Alger, Nicholas; Ghavidel, Ata; Inglis, G Douglas; Abbott, D Wade

    2018-01-01

    Deposition of new genetic sequences in online databases is expanding at an unprecedented rate. As a result, sequence identification continues to outpace functional characterization of carbohydrate active enzymes (CAZymes). In this paradigm, the discovery of enzymes with novel functions is often hindered by high volumes of uncharacterized sequences particularly when the enzyme sequence belongs to a family that exhibits diverse functional specificities (i.e., polyspecificity). Therefore, to direct sequence-based discovery and characterization of new enzyme activities we have developed an automated in silico pipeline entitled: Sequence Analysis and Clustering of CarboHydrate Active enzymes for Rapid Informed prediction of Specificity (SACCHARIS). This pipeline streamlines the selection of uncharacterized sequences for discovery of new CAZyme or CBM specificity from families currently maintained on the CAZy website or within user-defined datasets. SACCHARIS was used to generate a phylogenetic tree of a GH43, a CAZyme family with defined subfamily designations. This analysis confirmed that large datasets can be organized into sequence clusters of manageable sizes that possess related functions. Seeding this tree with a GH43 sequence from Bacteroides dorei DSM 17855 (BdGH43b, revealed it partitioned as a single sequence within the tree. This pattern was consistent with it possessing a unique enzyme activity for GH43 as BdGH43b is the first described α-glucanase described for this family. The capacity of SACCHARIS to extract and cluster characterized carbohydrate binding module sequences was demonstrated using family 6 CBMs (i.e., CBM6s). This CBM family displays a polyspecific ligand binding profile and contains many structurally determined members. Using SACCHARIS to identify a cluster of divergent sequences, a CBM6 sequence from a unique clade was demonstrated to bind yeast mannan, which represents the first description of an α-mannan binding CBM. Additionally, we

  9. Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1

    PubMed Central

    Smesrud, Logan; Tebo, Bradley M.

    2016-01-01

    ABSTRACT The oxidation of soluble Mn(II) to insoluble Mn(IV) is a widespread bacterial activity found in a diverse array of microbes. In the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1, two Mn(II) oxidase genes, named mnxG and mcoA, were previously identified; each encodes a multicopper oxidase (MCO)-type enzyme. Expression of these two genes is positively regulated by the response regulator MnxR. Preliminary investigation into putative additional regulatory pathways suggested that the flagellar regulators FleN and FleQ also regulate Mn(II) oxidase activity; however, it also revealed the presence of a third, previously uncharacterized Mn(II) oxidase activity in P. putida GB-1. A strain from which both of the Mn(II) oxidase genes and fleQ were deleted exhibited low levels of Mn(II) oxidase activity. The enzyme responsible was genetically and biochemically identified as an animal heme peroxidase (AHP) with domain and sequence similarity to the previously identified Mn(II) oxidase MopA. In the ΔfleQ strain, P. putida GB-1 MopA is overexpressed and secreted from the cell, where it actively oxidizes Mn. Thus, deletion of fleQ unmasked a third Mn(II) oxidase activity in this strain. These results provide an example of an Mn(II)-oxidizing bacterium utilizing both MCO and AHP enzymes. IMPORTANCE The identity of the Mn(II) oxidase enzyme in Pseudomonas putida GB-1 has been a long-standing question in the field of bacterial Mn(II) oxidation. In the current work, we demonstrate that P. putida GB-1 employs both the multicopper oxidase- and animal heme peroxidase-mediated pathways for the oxidation of Mn(II), rendering this model organism relevant to the study of both types of Mn(II) oxidase enzymes. The presence of three oxidase enzymes in P. putida GB-1 deepens the mystery of why microorganisms oxidize Mn(II) while providing the field with the tools necessary to address this question. The initial identification of MopA as a Mn(II) oxidase in this strain required the

  10. Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors.

    PubMed

    Kia, Yalda; Osman, Hasnah; Suresh Kumar, Raju; Basiri, Alireza; Murugaiyah, Vikneswaran

    2014-04-01

    Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Potential antidiabetic activity of extracellular polysaccharides in submerged fermentation culture of Coriolus versicolor LH1.

    PubMed

    Yang, John Powen; Hsu, Taihao; Lin, Fangyi; Hsu, Wenkuang; Chen, Yucheng

    2012-09-01

    The separation and purification of extracellular polysaccharides from Coriolus versicolor LH1 were investigated along with their α-glucosidase inhibition properties. Three polysaccharide fractions (ePS-F2-1, ePS-F3-1, and ePS-F4-1) were separated from the culture medium of LH1 using a DEAE anion-exchange column and a Sephadex™ G-50 gel filtration column. Their chemical compositions was determined. On the basis of an α-glucosidase inhibition assay, the enzyme inhibition activities of ePS-F2-1, ePS-F3-1, and ePS-F4-1 were investigated. Among these, ePS-F4-1 had the highest enzyme inhibition effects on α-glucosidase. According to the results of the chemical component analysis, ePS-F3-1 and ePS-F4-1 are the polysaccharides which are combined with triterpenoides, and ePS-F2-1 is complexed with proteins and triterpenoides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Enhancement of hepatic detoxification enzyme activity by dietary mercuric acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, D.J.

    1973-01-01

    This report deals with stimulation of liver microsomal enzymes by dietary mercuric acetate (HgAc) and interactions of HgAc with phenobarbital sodium (PB). There is a diphasic response of microsomal enzymes in rats exposed to mercurials. Detoxication activity increased as the dietary dose of HgAc was increased. Liver weight was unaffected by ingestion of HgAc . Toxicity of HgAc increased with dosage. There were no deaths among animals fed diets of 2000 ppM HgAc or less but all five animals fed the diet of 5000 ppM died after five but before ten days on the experiment. The mercury-phenobarbital interactions support speculationmore » that mercury in combination with other chemicals in the environment may have enzyme stimulatory capacity at low exposure levels. 25 references, 1 figure, 1 table.« less

  13. Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism

    PubMed Central

    Rižner, Tea Lanišnik; Penning, Trevor M.

    2013-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ4-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. PMID:24189185

  14. Role of SKP1-CUL1-F-Box-Protein (SCF) E3 Ubiquitin Ligases in Skin Cancer

    PubMed Central

    Xie, Chuan-Ming; Wei, Wenyi; Sun, Yi

    2013-01-01

    Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis and degradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin—proteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26S proteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promoting role of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimate goal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore, altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis. PMID:23522382

  15. A Simple and Accurate Method for Measuring Enzyme Activity.

    ERIC Educational Resources Information Center

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  16. The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage1

    PubMed Central

    Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg

    2002-01-01

    Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088

  17. Application of activity-based protein profiling to study enzyme function in adipocytes.

    PubMed

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F; Saez, Enrique

    2014-01-01

    Activity-based protein profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways. © 2014 Elsevier Inc. All rights reserved.

  18. Evolutionary transitions in enzyme activity of ant fungus gardens.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  19. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae).

    PubMed

    Li, Xingyue; Liu, Qizhi; Lewis, Edwin E; Tarasco, Eustachio

    2016-12-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.

  20. Changes in digestive enzyme activities during larval development of leopard grouper (Mycteroperca rosacea).

    PubMed

    Martínez-Lagos, R; Tovar-Ramírez, D; Gracia-López, V; Lazo, J P

    2014-06-01

    The leopard grouper is an endemic species of the Mexican Pacific with an important commercial fishery and good aquaculture potential. In order to assess the digestive capacity of this species during the larval period and aid in the formulation of adequate weaning diets, this study aimed to characterize the ontogeny of digestive enzymes during development of the digestive system. Digestive enzymes trypsin, chymotrypsin, acid protease, leucine-alanine peptidase, alkaline phosphatase, aminopeptidase N, lipase, amylase and maltase were quantified in larvae fed live prey and weaned onto a formulated microdiet at 31 days after hatching (DAH) and compared with fasting larvae. Enzyme activity for trypsin, lipase and amylase were detected before the opening of the mouth and the onset of exogenous feeding, indicating a precocious development of the digestive system that has been described in many fish species. The intracellular enzyme activity of leucine-alanine peptidase was high during the first days of development, with a tendency to decrease as larvae developed, reaching undetectable levels at the end of the experimental period. In contrast, activities of enzymes located in the intestinal brush border (i.e., aminopeptidase and alkaline phosphatase) were low at the start of exogenous feeding but progressively increased with larval development, indicating the gradual maturation of the digestive system. Based on our results, we conclude that leopard grouper larvae possess a functional digestive system at hatching and before the onset of exogenous feeding. The significant increase in the activity of trypsin, lipase, amylase and acid protease between 30 and 40 DAH suggests that larvae of this species can be successfully weaned onto microdiets during this period.

  1. In-silico identification of the binding mode of synthesized adamantyl derivatives inside cholinesterase enzymes

    PubMed Central

    Al-Aboudi, Amal; Al-Qawasmeh, Raed A; Shahwan, Alaa; Mahmood, Uzma; Khalid, Asaad; Ul-Haq, Zaheer

    2015-01-01

    Aim: To investigate the binding mode of synthesized adamantly derivatives inside of cholinesterase enzymes using molecular docking simulations. Methods: A series of hybrid compounds containing adamantane and hydrazide moieties was designed and synthesized. Their inhibitory activities against acetylcholinesterase (AChE) and (butyrylcholinesterase) BChE were assessed in vitro. The binding mode of the compounds inside cholinesterase enzymes was investigated using Surflex-Dock package of Sybyl7.3 software. Results: A total of 26 adamantyl derivatives were synthesized. Among them, adamantane-1-carboxylic acid hydrazide had an almost equal inhibitory activity towards both enzymes, whereas 10 other compounds exhibited moderate inhibitory activity against BChE. The molecular docking studies demonstrated that hydrophobic interactions between the compounds and their surrounding residues in the active site played predominant roles, while hydrophilic interactions were also found. When the compounds were docked inside each enzyme, they exhibited stronger interactions with BChE over AChE, possibly due to the larger active site of BChE. The binding affinities of the compounds for BChE and AChE estimated were in agreement with the experimental data. Conclusion: The new adamantly derivatives selectively inhibit BChE with respect to AChE, thus making them good candidates for testing the hypothesis that BChE inhibitors would be more efficient and better tolerated than AChE inhibitors in the treatment of Alzheimer's disease. PMID:25937631

  2. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    PubMed

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  3. Effects of epithalon on activities gastrointestinal enzymes in young and old rats.

    PubMed

    Khavinson, V Kh; Malinin, V V; Timofeeva, N M; Egorova, V V; Nikitina, A A

    2002-03-01

    Peroral administration of Epithalon (Ala-Glu-Asp-Gly) to male and female Wistar rats aging 3 and 11 months changed activity of enzymes hydrolyzing carbohydrates, proteins, and phosphoric acid esters in various portions of the gastrointestinal tract. The most pronounced activation of enzymes was observed in 11-month-old animals. This effect diminished the differences in enzyme activities between young and old rats (compared to untreated animals). Our results indicate that Epithalon modulates activity of gastrointestinal enzymes during aging.

  4. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.

    PubMed

    Siddiqui, Khawar Sohail

    2017-05-01

    The biotechnological applications of enzymes are limited due to the activity-stability trade-off, which implies that an increase in activity is accompanied by a concomitant decrease in protein stability. This premise is based on thermally adapted homologous enzymes where cold-adapted enzymes show high intrinsic activity linked to enhanced thermolability. In contrast, thermophilic enzymes show low activity around ambient temperatures. Nevertheless, genetically and chemically modified enzymes are beginning to show that the activity-stability trade-off can be overcome. In this review, the origin of the activity-stability trade-off, the thermodynamic basis for enhanced activity and stability, and various approaches for escaping the activity-stability trade-off are discussed. The role of entropy in enhancing both the activity and the stability of enzymes is highlighted with a special emphasis placed on the involvement of solvent water molecules. This review is concluded with suggestions for further research, which underscores the implications of these findings in the context of productivity curves, the Daniel-Danson equilibrium model, catalytic antibodies, and life on cold planets.

  5. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  6. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo.

    PubMed

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Di Lorenzo, Annarita; Harrison, Kenneth D; Huang, Paul L; Sessa, William C

    2009-08-04

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1(-/-) mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme "constitutively active" or "less active." The eNOS mutations did not influence several phenotypes in Akt1(-/-) mice; however, the defective postnatal angiogenesis characteristic of Akt1(-/-) mice was rescued by crossing the Akt1(-/-) mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) and increased production of HIF-1alpha-responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling.

  8. Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes.

    PubMed

    Nikolić-Kokić, Aleksandra; Oreščanin-Dušić, Zorana; Spasojević, Ivan; Slavić, Marija; Mijušković, Ana; Paškulin, Roman; Miljević, Čedo; Spasić, Mihajlo B; Blagojević, Duško P

    2015-04-22

    Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. Some of the effects of ibogaine seem to be mediated through

  9. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes.

    PubMed

    Santiago, Margarita; Ramírez-Sarmiento, César A; Zamora, Ricardo A; Parra, Loreto P

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.

  10. A review on the effects of supercritical carbon dioxide on enzyme activity.

    PubMed

    Wimmer, Zdenek; Zarevúcka, Marie

    2010-01-19

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO(2). The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  11. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    PubMed Central

    Wimmer, Zdeněk; Zarevúcka, Marie

    2010-01-01

    Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013

  12. Purification and preliminary characterization of (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid synthase, an enzyme involved in biosynthesis of the antitumor agent sparsomycin.

    PubMed

    Parry, R J; Hoyt, J C

    1997-02-01

    Sparsomycin is an antitumor antibiotic produced by Streptomyces sparsogenes. Biosynthetic experiments have previously demonstrated that one component of sparsomycin is derived from L-tryptophan via the intermediacy of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid and (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid. An enzyme which catalyzes the conversion of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid to (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid has been purified 740-fold to homogeneity from S. sparsogenes. The molecular mass of the native and denatured enzyme was 87 kDa, indicating that the native enzyme is monomeric. The enzyme required NAD+ for activity but lacked rigid substrate specificity, since analogs of both NAD+ and 3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid could serve as substrates. The enzyme was very weakly inhibited by mycophenolic acid. Monovalent cations were required for activity, with potassium ions being the most effective. The enzyme exhibited sensitivity toward diethylpyrocarbonate and some thiol-directed reagents, and it was irreversibly inhibited by 6-chloropurine. The properties of the enzyme suggest it is mechanistically related to inosine-5'-monophosphate dehydrogenase.

  13. Prenatal ethanol exposure alters steroidogenic enzyme activity in newborn rat testes.

    PubMed

    Kelce, W R; Rudeen, P K; Ganjam, V K

    1989-10-01

    We have examined the in utero effects of ethanol exposure on testicular steroidogenesis in newborn male pups. Pregnant Sprague-Dawley rats were fed a liquid ethanol diet (35% ethanol-derived calories), a pair-fed isocaloric liquid diet, or a standard laboratory rat chow and water diet beginning on Day 12 of gestation and continuing through parturition. Although there were no significant differences in the enzymatic activity of 5-ene-3 beta-hydroxysteroid dehydrogenase/isomerase or C17,20-lyase, the enzymatic activity of 17 alpha-hydroxylase was significantly (p less than 0.01) reduced (i.e., approximately 36%) in the ethanol-exposed pups compared to those from the pair-fed and chow treatment groups. This lesion in testicular steroidogenic enzyme activity in newborn male pups exposed to alcohol in utero was transient as 17 alpha-hydroxylase activity from the ethanol-exposed animals returned to control levels by postnatal Day 20 and remained at control levels through adulthood (postnatal Day 60). These data suggest that the suppression of the perinatal testosterone surge in male rats exposed to alcohol in utero and the associated long term demasculinizing effects of prenatal ethanol exposure might be the result of reduced testicular steroidogenic enzyme activity in the perinatal animal.

  14. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  15. Genetic ontogeny of pancreatic enzymes in Labrus bergylta larvae and the effect of feed type on enzyme activities and gene expression.

    PubMed

    Hansen, Truls Wergeland; Folkvord, Arild; Grøtan, Espen; Sæle, Øystein

    2013-03-01

    A newly cultivated wrasse species, Labrus bergylta, have shown great potential for use in Atlantic salmon (Salmo salar) farms in the battle against sea lice (Lepeoptheirus salmonis) infections. Hatchery reared L. bergylta were studied from 2 to 55 DPH to examine the molecular basis of digestive ontogeny related to the pancreas. An isolated feeding trial was performed on 27-34 DPH larvae to compare the effect of diet on enzyme activity and the possible exogenous contribution by live feed. The following genes coding for key pancreatic enzymes were analyzed by qPCR: trypsin, Cyp7 A1, BAL, sPLA(2) 1B, amylase and pancreatic chitinase. Enzyme activity was measured on trypsin, neutral lipase, sPLA(2), amylase and chitinase in fed and unfed larvae. We did not observe any effects of the formulated diet v.s. rotifers on enzyme activities of neutral lipase, chitinase and sPLA(2). However, a probable feed-dependency was observed at a transcriptional level, where rotifers seem to stimulate upregulation. The regulation of BAL was the only exception, where an upregulation was observed after weaning both in the ontogeny series and the experimental part. Our data on pancreatic chitinase and amylase mRNA levels suggest the importance of carbohydrates in the diet of early larval and juvenile L. bergylta. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Heat Stable Enzymes from Thermophiles

    DTIC Science & Technology

    1998-02-01

    final product and is somewhat messy to work with. Therefore, alternatives were tested. However, no combination of corn syrup , alternative sugars and...INTRODUCTION 9 CLONING OF ALKALINE PHOSPHATASE GENE AND PRODUCTION OF HIGH SPECIFIC ACTIVITY ENZYME 9 Cloning into E. coil and expression of high activity...JKR209, into an alternative, better producing organism. CLONING OF ALKALINE PHOSPHATASE GENE AND PRODUCTION OF HIGH SPECIFIC ACTIVITY ENZYME Cloning into

  17. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity.

    PubMed

    Benini, Stefano; Toccafondi, Mirco; Rejzek, Martin; Musiani, Francesco; Wagstaff, Ben A; Wuerges, Jochen; Cianci, Michele; Field, Robert A

    2017-11-01

    Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  19. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    NASA Astrophysics Data System (ADS)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  20. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.

    PubMed

    Rižner, Tea Lanišnik; Penning, Trevor M

    2014-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. De novo active sites for resurrected Precambrian enzymes

    NASA Astrophysics Data System (ADS)

    Risso, Valeria A.; Martinez-Rodriguez, Sergio; Candel, Adela M.; Krüger, Dennis M.; Pantoja-Uceda, David; Ortega-Muñoz, Mariano; Santoyo-Gonzalez, Francisco; Gaucher, Eric A.; Kamerlin, Shina C. L.; Bruix, Marta; Gavira, Jose A.; Sanchez-Ruiz, Jose M.

    2017-07-01

    Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.

  2. Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksoy, Pinar; Escande, Carlos; Seccion Biologia Celular, Facultad de Ciencias, Universidad de la Republica, Igua 4225, Montevideo

    2006-10-13

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1more » enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes.« less

  3. Characterization of sphingosine-1-phosphate lyase activity by ESI-LC/MS/MS quantitation of (2E)-hexadecenal

    PubMed Central

    Berdyshev, Evgeny V.; Goya, Jonathan; Gorshkova, Irina; Prestwich, Glenn D.; Byun, Hoe-Sup; Bittman, Robert; Natarajan, Viswanathan

    2010-01-01

    Sphingosine-1-phosphate (S1P) is a sphingolipid signaling molecule crucial for cell survival and proliferation. S1P-mediated signaling is largely controlled through its biosynthesis and degradation, and S1P lyase (S1PL) is the only known enzyme, which irreversibly degrades sphingoid base-1-phosphates to phosphoethanolamine and the corresponding fatty aldehydes. S1PL-mediated degradation of S1P results in the formation of (2E)-hexadecenal, while hexadecanal is the product of dihydrosphingosine-1-phosphate (DHS1P) degradation. Fatty aldehydes can undergo biotransformation to fatty acids and/or alcohols, which makes them elusive and renders the task of fatty aldehyde quantitation challenging. We have developed a simple, highly sensitive, and high-throughput protocol for (2E)-hexadecenal quantitation as a semicarbazone derivative by liquid chromatography-electrospray ionization-tandem mass spectrometry. The approach was applied to determining S1PL activity in vitro, with the ability to use as low as 0.25 µg microsomal protein per assay. The method is also applicable to the use of total tissue homogenate as the source of S1PL. A correction for (2E)-hexadecenal disappearance due to its biotransformation during enzymatic reaction is required, especially at higher protein concentrations. The method was applied to confirm FTY720 as the inhibitor of S1PL with the IC50 of 52.4 µM. PMID:20804717

  4. E-NTPDase and E-ADA activities in lymphocytes associated with the immune response of rats experimentally infected with Toxoplasma gondii.

    PubMed

    Tonin, Alexandre A; Da Silva, Aleksandro S; Ruchel, Jader B; Rezer, João F P; Camillo, Giovana; Faccio, Luciana; França, Raqueli T; Leal, Daniela B R; Duarte, Marta M M F; Vogel, Fernada F; de la Rue, Mario L; Lopes, Sonia T A

    2013-10-01

    An investigation of E-NTPDase and E-ADA activities in lymphocytes from rats experimentally infected with Toxoplasma gondii was carried out in this study. For this purpose, twenty four adult male Wistar rats were divided in two groups/four subgroups (A1 and A2; B1 and B2-6 animal/each group), with "A" as uninfected and "B" inoculated with T. gondii (RH strain). Sampling was performed on days 5 and 10 post-infection (p.i.), with evaluation of hemogram, immunoglobulins (IgM and IgG) and activity of E-NTPDase and E-ADA in lymphocytes. Enzymes essays showed ATP hydrolysis increased on days 5 (P<0.05) and 10 (P<0.01) p.i., as well as an increase of ADP hydrolysis on day 10 (P<0.01) p.i. E-ADA activity on lymphocytes was also increased in both evaluated periods (P<0.01). Based on E-NTPDase and E-ADA increased activities observed on lymphocytes, it is possible to suggest their involvement in an anti-inflammatory response, consisting of a modulatory response, preventing excessive tissue damage caused by the infection with Toxoplasma gondii. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the

  6. Spatial characterization of proteolytic enzyme activity in the foregut region of the adult necrophagous fly, Protophormia terraenovae.

    PubMed

    Rivers, David B; Acca, Gillian; Fink, Marc; Brogan, Rebecca; Schoeffield, Andrew

    2014-08-01

    The spatial distribution of proteolytic enzymes in the adult foregut of Protophormia terraenovae was studied in the context of protein digestion and regurgitation. Based on substrate specificity, pH optima, and use of specific protease inhibitors, all adults tested displayed enzyme activity in the foregut consistent with pepsin, trypsin and chymotrypsin. Chymotrypsin-like and trypsin-like enzyme activity were detected in all gut fluids and tissues tested, with chymotrypsin displaying the highest activity in saliva and salivary gland tissue, whereas maximal trypsin activity was evident in the crop. Pepsin-like activity was only evident in crop fluids and tissues. The activity of all three enzymes was low or undetectable (pepsin) in the fluids and tissue homogenates derived from the esophagus and cardia of any of the adults assayed. Fed adult females displayed higher enzyme activities than fed males, and the activity of all three enzymes were much more prevalent in fed adults than starved. The pH optimum of the trypsin-like enzyme was between pH 7.0 and 8.0; chymotrypsin was near pH 8.0; and maximal pepsin-like activity occurred between pH 1.0 and 2.0. Regurgitate from fed adult females displayed enzyme activity consistent with the proteolytic enzymes detected in crop gut fluids. Enzymes in regurgitate were not derived from food sources based on assays of bovine liver samples. These latter observations suggest that adult flies release fluids from foregut when encountering dry foods, potentially as a means to initiate extra-oral digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Effects of two phenolic acids on root zone soil nutrients, soil enzyme activities and pod yield of peanut].

    PubMed

    Li, Qing Kai; Liu, Ping; Tang, Zhao Hui; Zhao, Hai Jun; Wang, Jiang Tao; Song, Xiao Zong; Yang, Li; Wan, Shu Bo

    2016-04-22

    In order to investigate the relationship between the accumulation of phenolic acids in peanut continuous cropping soil and the continuous cropping obstacle of peanut, the effects of p-hydroxy benzoic acid and cinnamic acid on peanut root zone soil nutrients, soil enzyme activities and yield of peanut were studied by pot experiment at three stages of peanut, i.e. the pegging stage of peanut (45 days after seedling), the early podding (75 days after seedling) and the end of podding (105 days after seedling) stages. The results showed that the peanut root zone soil nutrients and enzyme activities changed obviously under the two phenolic acids treatment, especially at the pegging stage of peanut. The soil alkali-hydrolyzable nitrogen, available phosphorus, available potassium, and soil enzyme activities (urease, sucrose, neutral phosphatase) were decreased significantly. At the early and end of podding stages of peanut, the effects of the two phenolic acids on peanut root zone soil nutrients and soil enzyme activities were under a weakening trend. The allelopathy of cinnamic acid was stronger than that of p-hydroxy benzoic acid at the same initial content. The pod yield per pot was reduced by 45.9% and 52.8%, while the pod number of per plant was reduced by 46.2% and 48.9% at higher concentration (80 mg·kg -1 dry soil) of p-hydroxy benzoic acid and cinnamic acid treatments, respectively.

  8. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  9. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  10. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  11. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars

    PubMed Central

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E; Daniell, Henry

    2009-01-01

    Summary It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10,751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3,100-fold and pectate lyase is 1,057 or 1,480 fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3,625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails. PMID:20070870

  12. Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: Biomarkers of CYP450 activity and oxidative stress.

    PubMed

    Franco, Marco E; Sutherland, Grace E; Lavado, Ramon

    2018-04-01

    The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes

    PubMed Central

    Santiago, Margarita; Ramírez-Sarmiento, César A.; Zamora, Ricardo A.; Parra, Loreto P.

    2016-01-01

    Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications. PMID:27667987

  14. [Activity of antioxidative enzymes of the myocardium during ischemia].

    PubMed

    Gutkin, D V; Petrovich, Iu A

    1982-01-01

    Activation of lipid peroxidation during myocardial ischemia may be determined by the reduction of the enzymatic antioxidant cell protection. Such a conclusion has been drawn on the basis of an analysis of variation in the activity of superoxide dismutase, glutathion peroxidase and catalase in experimental myocardial ischemia in rats, induced by ligation of the left descending artery of the heart. In the early period of ischemia (1-3 h) the activity of superoxide dismutase and glutation peroxidase markedly decreases. In the periischemic zone, the fall in the enzymatic activity is not so pronounced. The activity of the enzymes does not reach the basic level 5 days after the operation.

  15. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii.

    PubMed

    Xie, Chunliang; Yan, Li; Gong, Wenbing; Zhu, Zuohua; Tan, Senwei; Chen, Du; Hu, Zhenxiu; Peng, Yuande

    2016-01-01

    Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    PubMed

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  17. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri.

    PubMed

    Shima, S; Hérault, D A; Berkessel, A; Thauer, R K

    1998-11-01

    Enzymes involved in methane formation from carbon dioxide and dihydrogen in Methanopyrus kandleri require high concentrations (> 1 M) of lyotropic salts such as K2HPO4/KH2PO4 or (NH4)2SO4 for activity and for thermostability. The requirement correlates with high intracellular concentrations of cyclic 2,3-diphosphoglycerate (cDPG; approximately 1 M) in this hyperthermophilic organism. We report here on the effects of potassium cDPG on the activity and thermostability of the two methanogenic enzymes cyclohydrolase and formyltransferase and show that at cDPG concentrations prevailing in the cells the investigated enzymes are highly active and completely thermostable. At molar concentrations also the potassium salts of phosphate and of 2,3-bisphosphoglycerate, the biosynthetic precursor of cDPG, were found to confer activity and thermostability to the enzymes. Thermodynamic arguments are discussed as to why cDPG, rather than these salts, is present in high concentrations in the cells of Mp. kandleri.

  18. A DNA enzyme with Mg(2+)-Dependent RNA Phosphoesterase Activity

    NASA Technical Reports Server (NTRS)

    Breaker, Ronald R.; Joyce, Gerald F.

    1995-01-01

    Previously we demonstrated that DNA can act as an enzyme in the Pb(2+)-dependent cleavage of an RNA phosphoester. This is a facile reaction, with an uncatalyzed rate for a typical RNA phosphoester of approx. 10(exp -4)/ min in the presence of 1 mM Pb(OAc)2 at pH 7.0 and 23 C. The Mg(2+) - dependent reaction is more difficult, with an uncatalyzed rate of approx. 10(exp -7)/ min under comparable conditions. Mg(2+) - dependent cleavage has special relevance to biology because it is compatible with intracellular conditions. Using in vitro selection, we sought to develop a family of phosphoester-cleaving DNA enzymes that operate in the presence of various divalent metals, focusing particularly on the Mg(2+) - dependent reaction. Results: We generated a population of greater than 10(exp 13) DNAs containing 40 random nucleotides and carried out repeated rounds of selective amplification, enriching for molecules that cleave a target RNA phosphoester in the presence of 1 mM Mg(2+), Mn(2+), Zn(2+) or Pb(2+). Examination of individual clones from the Mg(2+) lineage after the sixth round revealed a catalytic motif comprised of a three-stem junction.This motif was partially randomized and subjected to seven additional rounds of selective amplification, yielding catalysts with a rate of 0.01/ min. The optimized DNA catalyst was divided into separate substrate and enzyme domains and shown to have a similar level of activity under multiple turnover conditions. Conclusions: We have generated a Mg(2+) - dependent DNA enzyme that cleaves a target RNA phosphoester with a catalytic rate approx. 10(exp 5) - fold greater than that of the uncatalyzed reaction. This activity is compatible with intracellular conditions, raising the possibility that DNA enzymes might be made to operate in vivo.

  19. The Role of Plasminogen Activator Inhibitor-1 and Angiotensin-Converting Enzyme Gene Polymorphisms in Bronchopulmonary Dysplasia

    PubMed Central

    Atac, Fatma Belgin; Ozkiraz, Servet; Dilmen, Ugur; Gulcan, Hande; Tarcan, Aylin; Ozbek, Namik

    2010-01-01

    Background: Bronchopulmonary dysplasia (BPD) is a multifactorial disease of preterm infants that is characterized by airway injury, inflammation, and parencymal remodeling. Activation of the coagulation cascade leads to intraalveolar fibrin deposition in many inflammatory pulmonary disorders. Increased fibrin formation or decreased fibrinolysis may cause extravascular fibrin deposition. Extravascular fibrin deposits in septae and alveoli due to the altered fibrin turnover are the pathological hallmarks of BPD, which strongly indicate the importance of the imbalance in the competing activities of coagulation and fibrinolysis. Objective: We investigated the predictive value of variations in plasminogen activator inhibitor-1 (PAI-1) and angiotensin-converting enzyme (ACE) genes as molecular determinants for BPD in neonates. Methods: The study group comprised 98 preterm infants with BPD and a control group including 94 preterm infants without BPD. Restriction fragment size analyses were performed by visualizing digested polymerase chain reaction products for ACE and PAI-1 genotypes. Results: No significant associations were found between ACE, PAI-1 gene polymorphisms, and BPD phenotype in our population. Conclusions: The two gene polymorphisms (PAI-1 and ACE) had no role in the development of BPD in our study. Further studies with other genes are required for the identification of molecular predisposing factors for BPD that may help in the development of new treatments. PMID:20818980

  20. Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes.

    PubMed

    Dindar, Gülcin; Anger, Andreas M; Mehlhorn, Christine; Hake, Sandra B; Janzen, Christian J

    2014-11-12

    DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono- and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes.

  1. Lipid peroxidation and antioxidant enzymes activity in Plasmodium vivax malaria patients evolving with cholestatic jaundice

    PubMed Central

    2013-01-01

    Background Plasmodium vivax infection has been considered a benign and self-limiting disease, however, recent studies highlight the association between vivax malaria and life-threatening manifestations. Increase in reactive oxygen species has already been described in vivax malaria, as a result of the increased metabolic rate triggered by the multiplying parasite, and large quantities of toxic redox-active byproducts generated. The present study aimed to study the oxidative stress responses in patients infected with P. vivax, who developed jaundice (hyperbilirubinaemia) in the course of the disease, a common clinical complication related to this species. Methods An evaluation of the lipid peroxidation and antioxidant enzymes profile was performed in 28 healthy individuals and compared with P. vivax infected patients with jaundice, i.e., bilirubin < 51.3 μmol/L (8 patients) or without jaundice (34 patients), on day 1 (D1) and day 14 (D14) after anti-malarial therapy. Results Hyperbilirubinaemia was more frequent among women and patients experiencing their first malarial infection, and lower haemoglobin and higher lactate dehydrogenase levels were observed in this group. Malondialdehyde levels and activity of celuroplasmin and glutathione reductase were increased in the plasma from patients with P. vivax with jaundice compared to the control group on D1. However, the activity of thioredoxin reductase was decreased. The enzymes glutathione reductase, thioredoxin reductase, thiols and malondialdehyde also differed between jaundiced versus non-jaundiced patients. On D14 jaundice and parasitaemia had resolved and oxidative stress biomarkers were very similar to the control group. Conclusion Cholestatic hyperbilirubinaemia in vivax malaria cannot be totally disassociated from malaria-related haemolysis. However, significant increase of lipid peroxidation markers and changes in antioxidant enzymes in patients with P. vivax-related jaundice was observed. These results

  2. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  3. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose

    DOE PAGES

    Chung, Daehwan; Young, Jenna; Cha, Minseok; ...

    2015-08-13

    The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5more » domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.« less

  4. Characterization of oil-palm trunk residue degradation enzymes derived from the isolated fungus, Penicillium rolfsii c3-2(1) IBRL.

    PubMed

    Lee, Kok Chang; Arai, Takamitsu; Ibrahim, Darah; Deng, Lan; Murata, Yoshinori; Mori, Yutaka; Kosugi, Akihiko

    2016-01-01

    This study characterizes crude enzymes derived from Penicillium rolfsii c3-2(1) IBRL, a mesophilic fungus isolated from the local soil of Malaysia. Prior to enzyme activity evaluation, P. rolfsii c3-2(1) IBRL was inoculated into a broth medium containing oil-palm trunk residues for the preparation of crude enzymes. Oil-palm trunk residues were optimally hydrolysed at pH5.0 and 50°C. P. rolfsii c3-2(1) IBRL-derived crude enzymes displayed higher thermal stability compared with the commercial enzymes, Celluclast 1.5 L and Acellerase 1500. Moreover, the hydrolysing activities of the P. rolfsii c3-2(1) IBRL-derived crude enzymes (xylan, arabinan, and laminarin) were superior compared to that of Celluclast 1.5 L and Acellerase 1500, and exhibit 2- to 3-fold and 3- to 4-fold higher oil-palm trunk residues-hydrolysing specific activity, respectively. This higher hydrolysis efficiency may be attributed to the weak 'lignin-binding' ability of the P. rolfsii c3-2(1) IBRL-derived enzymes compared to the commercial enzymes.

  5. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum.

    PubMed

    Tomás-Cortázar, Julen; Plaza-Vinuesa, Laura; de Las Rivas, Blanca; Lavín, José Luis; Barriales, Diego; Abecia, Leticia; Mancheño, José Miguel; Aransay, Ana M; Muñoz, Rosario; Anguita, Juan; Rodríguez, Héctor

    2018-02-26

    Tannases are tannin-degrading enzymes that have been described in fungi and bacteria as an adaptative mechanism to overcome the stress conditions associated with the presence of these phenolic compounds. We have identified and expressed in E. coli a tannase from the oral microbiota member Fusobacterium nucleatum subs. polymorphum (TanB Fnp ). TanB Fnp is the first tannase identified in an oral pathogen. Sequence analyses revealed that it is closely related to other bacterial tannases. The enzyme exhibits biochemical properties that make it an interesting target for industrial use. TanB Fnp has one of the highest specific activities of all bacterial tannases described to date and shows optimal biochemical properties such as a high thermal stability: the enzyme keeps 100% of its activity after prolonged incubations at different temperatures up to 45 °C. TanB Fnp also shows a wide temperature range of activity, maintaining above 80% of its maximum activity between 22 and 55 °C. The use of a panel of 27 esters of phenolic acids demonstrated activity of TanB Fnp only against esters of gallic and protocatechuic acid, including tannic acid, gallocatechin gallate and epigallocatechin gallate. Overall, TanB Fnp possesses biochemical properties that make the enzyme potentially useful in biotechnological applications. We have identified and characterized a metabolic enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. The biochemical properties of TanB Fnp suggest that it has a major role in the breakdown of complex food tannins during oral processing. Our results also provide some clues regarding its possible participation on bacterial survival in the oral cavity. Furthermore, the characteristics of this enzyme make it of potential interest for industrial use.

  6. A DNA enzyme with N-glycosylase activity

    NASA Technical Reports Server (NTRS)

    Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.

  7. Purification and characterization of a trehalase-invertase enzyme with dual activity from Candida utilis.

    PubMed

    Lahiri, Sagar; Basu, Arghya; Sengupta, Shinjinee; Banerjee, Shakri; Dutta, Trina; Soren, Dhananjay; Chattopadhyay, Krishnananda; Ghosh, Anil K

    2012-06-15

    Trehalose and sucrose, two important anti-stress non-reducing natural disaccharides, are catabolized by two enzymes, namely trehalase and invertase respectively. In this study, a 175 kDa enzyme protein active against both substrates was purified from wild type Candida utilis and characterized in detail. Substrate specificity assay and activity staining revealed the enzyme to be specific for both sucrose and trehalose. The ratio between trehalase and invertase activity was found to be constant at 1:3.5 throughout the entire study. Almost 40-fold purification and 30% yield for both activities were achieved at the final step of purification. The presence of common enzyme inhibitors, thermal and pH stress had analogous effects on its trehalase and invertase activity. Km values for two activities were similar while Vmax and Kcat also differed by a factor of 3.5. Competition plot for both substrates revealed the two activities to be occurring at the single active site. N-terminal sequencing and MALDI-TOF data analysis revealed higher similarity of the purified protein to previously known neutral trehalases. While earlier workers mentioned independent purification of neutral trehalase or invertase from different sources, the present study reports the purification of a single protein showing dual activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Effects of non-starch polysaccharides enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley.

    PubMed

    Li, Wei-Fen; Feng, Jie; Xu, Zi-Rong; Yang, Cai-Mei

    2004-03-15

    To investigate effects of non-starch polysaccharides(NSP) enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley. Sixty crossbred piglets averaging 13.5 kg were randomly assigned to two treatment groups with three replications (pens) based on sex and mass. Each group was fed on the diet based on barley with or without added NSP enzymes (0.15%) for a 40-d period. At the end of the experiment the pigs were weighed. Three piglets of each group were chosen and slaughtered. Pancreas, digesta from the distal end of the duodenum and jejunal mucosa were collected for determination. Activities of the digestive enzymes trypsin, chymotrypsin, amylase and lipase were determined in the small intestinal sections as well as in homogenates of pancreatic tissue. Maltase, sucrase, lactase and gamma-glutamyl transpeptidase (gamma-GT) activities were analyzed in jejunal mucosa. Supplementation with NSP enzymes improved growth performance of piglets. It showed that NSP enzymes had no effect on digestive enzyme activities in pancreas, but decreased the activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents by 57.56%, 76.08%, 69.03% and 40.22%(P<0.05) compared with control, and increased gamma-GT activities in jejunal mucosa by 118.75%(P<0.05). Supplementation with NSP enzymes in barley based diets could improve piglets' growth performance, decrease activities of proteolytic enzyme, trypsin, amylase and lipase in duodenal contents and increase gamma-GT activities in jejunal mucosa.

  9. Ppm1E is an in cellulo AMP-activated protein kinase phosphatase.

    PubMed

    Voss, Martin; Paterson, James; Kelsall, Ian R; Martín-Granados, Cristina; Hastie, C James; Peggie, Mark W; Cohen, Patricia T W

    2011-01-01

    Activation of 5'-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5'-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase Mg/Mn(2+)-dependent [corrected] (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the Mg(2+)/Mn(2+)-dependent [corrected] protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggest [corrected] that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Enzymatic activity and partial purification of solanapyrone synthase: first enzyme catalyzing Diels-Alder reaction.

    PubMed

    Katayama, K; Kobayashi, T; Oikawa, H; Honma, M; Ichihara, A

    1998-05-19

    In cell-free extracts of Alternaria solani, an enzymatic activity converting prosolanapyrone II to solanapyrones A and D via oxidation and subsequent Diels-Alder reaction has been found. Chromatography with DEAE-Sepharose provided two active fractions, pools 1 and 2. The former fraction converted prosolanapyrone II to solanapyrones A and D in a ratio of 2.2:1 with optical purities of 99% and 45% ee, respectively. The latter fraction did so in a ratio of 7.6:1 with 99% and nearly 0% ee, respectively. The enzyme partially purified from pool 2 native molecular weight of 40-62 kD and a pl of 4.25. The high reactivity of prosolanapyrone III in aqueous solution and the chromatographic behavior of the enzyme in pool 2 suggest that a single enzyme catalyzes both the oxidation and Diels-Alder reaction.

  11. [Hepatotoxicity of emodin based on UGT1A1 enzyme-mediated bilirubin in liver microsomes].

    PubMed

    Wang, Qi; Dai, Zhong; Zhang, Yu-Jie; Ma, Shuang-Cheng

    2016-12-01

    To study the hepatotoxicity of emodin based on bilirubin metabolism mediated by glucuronidation of UGT1A1 enzyme. In this study, three different incubation systems were established by using RLM, HLM, and rUGT1A1, with bilirubin as the substrate. Different concentrations of bilirubin and emodin were added in the incubation systems. The double reciprocal Michaelis equation was drawn based on the total amount of bilirubin glucuronidation. The apparent inhibition constant Ki was then calculated with the slope curve to predict the hepatotoxicity. The results indicated that emodin had a significant inhibition to the UGT1A1 enzyme in all of the three systems, with Ki=5.400±0.956(P<0.05) in HLM system, Ki =10.020±0.611(P<0.05) in RLM system, Ki=4.850±0.528(P<0.05) in rUGT1A1 system. Meanwhile, emodin had no significant difference between rat and human in terms of inhibition of UGT1A1 enzyme. Emodin had a potential risk of the hepatotoxicity by inhibiting the UGT1A1 enzyme activity. And the method established in this study provides a new thought and new method to evaluate hepatotoxicity and safety of traditional Chinese medicines. Copyright© by the Chinese Pharmaceutical Association.

  12. Prevalence of IgE reactivities in mold-allergic subjects to commercially available fungal enzymes.

    PubMed

    Horner, W Elliott; Armstrong, Maricelis; El-Dahr, Jane; McCants, Marjorie; Reese, Gerald; Kobernick, Aaron K; Lehrer, Samuel B

    2008-01-01

    Fungi are important aeroallergens. However, fungal allergen sources of consistent quality for clinical testing are not readily available. Because some allergens have been identified as enzymes, we assessed the prevalence of IgE reactivity to commercially available fungal enzymes. The purpose of this study was to determine IgE antibody reactivity by radioallergosorbent assay (RAST) to commercially available fungal enzymes in mold-allergic individuals. Sera from 20 subjects with symptoms of respiratory allergies and skin test reactivity to 2 or more fungal allergens (4 conidial [imperfecti] fungi and/or 8 basidiomycetes) were selected. Controls were six atopic individuals with neither history of fungal allergy nor skin test reactivity to fungi. Seventeen commercial fungal enzymes were used as antigens to evaluate the subjects' IgE antibody reactivity by RAST. Sera from most fungus-allergic individuals showed substantial IgE antibody reactivity to enzymes; control sera showed little or no reactivity. The mean reactivity to all commercial enzymes of all subjects tested was RAST > or = 3% with only one exception. The most reactive fungal enzymes were invertase (bakers' yeast, Saccharomyces cerevisiae), cellulase (Trichoderma viride), and glucosidase (brewers yeast, S. cerevisiae) with mean binding of 14.6, 9.5, and 8.8%, respectively. Using RAST results with a combination of four enzymes from S. cerevisiae (brewers yeast glucosidase, bakers' yeast maltase, invertase, and invertase V), a sensitivity of 100% was shown for detecting mold-allergic patients. The studies suggest that fungal enzymes may be useful source materials for the identification of fungal allergens and may also provide readily available source materials to produce improved diagnostic and therapeutic reagents.

  13. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.

    PubMed

    Simon, Gabriel M; Cravatt, Benjamin F

    2010-04-09

    Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members.

  14. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media.

    PubMed

    Taneja, Kapila; Bajaj, Bijender Kumar; Kumar, Sandeep; Dilbaghi, Neeraj

    2017-07-01

    Intravascular thrombosis is one of the major causes of variety of cardiovascular disorders leading to high mortality worldwide. Fibrinolytic enzymes from microbial sources possess ability to dissolve these clots and help to circumvent these problems in more efficient and safer way. In the present study, fibrinolytic protease with higher fibrinolytic activity than plasmin was obtained from Serratia sp. KG-2-1 isolated from garbage dump soil. Response surface methodology was used to study the interactive effect of concentration of maltose, yeast extract + peptone (1:1), incubation time, and pH on enzyme production and biomass. Maximum enzyme production was achieved at 33 °C after 24 h at neutral pH in media containing 1.5% Maltose, 4.0% yeast extract + peptone and other trace elements resulting in 1.82 folds increased production. The enzyme was purified from crude extract using ammonium sulfate precipitation and DEAE-Sephadex chromatography resulting in 12.9 fold purification with 14.9% yield. The purified enzyme belongs to metalloprotease class and had optimal activity in conditions similar to physiological environment with temperature optima of 40 °C and pH optima of 8. The enzyme was found to be stable in various solvents and its activity was enhanced in presence of Na + , K + , Ba 2+ , Cu 2+ , Mn 2+ , Hg 2+ but inhibited by Ca 2+ and Fe 3+ . Hence, the obtained enzyme may be used as potential therapeutic agent in combating various thrombolytic disorders.

  15. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit 12

    PubMed Central

    Starrett, David A.; Laties, George G.

    1991-01-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A+) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening. PMID:16668073

  16. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.

    PubMed

    Lyubun, Yelena V; Pleshakova, Ekaterina V; Mkandawire, Martin; Turkovskaya, Olga V

    2013-11-15

    Under the influence of pollutants, enzyme activities in plant-microbe-soil systems undergo changes of great importance in predicting soil-plant-microbe interactions, regulation of metal and nutrient uptake, and, ultimately, improvement of soil health and fertility. We evaluated the influence of As on soil enzyme activities and the effectiveness of five field crops for As phytoextraction. The initial As concentration in soil was 50mg As kg(-1) soil; planted clean soil, unplanted polluted soil, and unplanted clean soil served as controls. After 10 weeks, the growth of the plants elevated soil dehydrogenase activity relative to polluted but unplanted control soils by 2.4- and 2.5-fold for sorghum and sunflower (respectively), by 3-fold for ryegrass and sudangrass, and by 5.2-fold for spring rape. Soil peroxidase activity increased by 33% with ryegrass and rape, while soil phosphatase activity was directly correlated with residual As (correlation coefficient R(2)=0.7045). We conclude that soil enzyme activities should be taken into account when selecting plants for phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    PubMed

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  18. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  19. The H159A mutant of yeast enolase 1 has significant activity.

    PubMed

    Brewer, J M; Holland, M J; Lebioda, L

    2000-10-05

    The function of His159 in the enolase mechanism is disputed. Recently, Vinarov and Nowak (Biochemistry (1999) 38, 12138-12149) prepared the H159A mutant of yeast enolase 1 and expressed this in Escherichia coli. They reported minimal (ca. 0.01% of the native value) activity, though the protein appeared to be correctly folded, according to its CD spectrum, tryptophan fluorescence, and binding of metal ion and substrate. We prepared H159A enolase using a multicopy plasmid and expressed the enzyme in yeast. Our preparations of H159A enolase have 0.2-0.4% of the native activity under standard assay conditions and are further activated by Mg(2+) concentrations above 1 mM to 1-1.5% of the native activity. Native enolase 1 (and enolase 2) are inhibited by such Mg(2+) concentrations. It is possible that His159 is necessary for correct folding of the enzyme and that expression in E. coli leads to largely misfolded protein. Copyright 2000 Academic Press.

  20. Development of Activity-based Cost Functions for Cellulase, Invertase, and Other Enzymes

    NASA Astrophysics Data System (ADS)

    Stowers, Chris C.; Ferguson, Elizabeth M.; Tanner, Robert D.

    As enzyme chemistry plays an increasingly important role in the chemical industry, cost analysis of these enzymes becomes a necessity. In this paper, we examine the aspects that affect the cost of enzymes based upon enzyme activity. The basis for this study stems from a previously developed objective function that quantifies the tradeoffs in enzyme purification via the foam fractionation process (Cherry et al., Braz J Chem Eng 17:233-238, 2000). A generalized cost function is developed from our results that could be used to aid in both industrial and lab scale chemical processing. The generalized cost function shows several nonobvious results that could lead to significant savings. Additionally, the parameters involved in the operation and scaling up of enzyme processing could be optimized to minimize costs. We show that there are typically three regimes in the enzyme cost analysis function: the low activity prelinear region, the moderate activity linear region, and high activity power-law region. The overall form of the cost analysis function appears to robustly fit the power law form.

  1. Muscle-type 6-phosphofructo-1-kinase and aldolase associate conferring catalytic advantages for both enzymes.

    PubMed

    Marcondes, Mariah Celestino; Sola-Penna, Mauro; Torres, Renan da Silva Gianoti; Zancan, Patricia

    2011-06-01

    6-Phosphofructo-1-kinase (PFK) and aldolase are two sequential glycolytic enzymes that associate forming heterotetramers containing a dimer of each enzyme. Although free PFK dimers present a negligible activity, once associated to aldolase these dimers are as active as the fully active tetrameric conformation of the enzyme. Here we show that aldolase-associated PFK dimers are not inhibited by clotrimazole, an antifungal azole derivative proposed as an antineoplastic drug due to its inhibitory effects on PFK. In the presence of aldolase, PFK is not modulated by its allosteric activators, ADP and fructose-2,6-bisphosphate, but is still inhibited by citrate and lactate. The association between the two enzymes also results on the twofold stimulation of aldolase maximal velocity and affinity for its substrate. These results suggest that the association between PFK and aldolase confers catalytic advantage for both enzymes and may contribute to the channeling of the glycolytic metabolism. Copyright © 2011 Wiley Periodicals, Inc.

  2. A Chaperone Enhances Blood α-Glucosidase Activity in Pompe Disease Patients Treated With Enzyme Replacement Therapy

    PubMed Central

    Parenti, Giancarlo; Fecarotta, Simona; la Marca, Giancarlo; Rossi, Barbara; Ascione, Serena; Donati, Maria Alice; Morandi, Lucia Ovidia; Ravaglia, Sabrina; Pichiecchio, Anna; Ombrone, Daniela; Sacchini, Michele; Pasanisi, Maria Barbara; De Filippi, Paola; Danesino, Cesare; Della Casa, Roberto; Romano, Alfonso; Mollica, Carmine; Rosa, Margherita; Agovino, Teresa; Nusco, Edoardo; Porto, Caterina; Andria, Generoso

    2014-01-01

    Enzyme replacement therapy is currently the only approved treatment for Pompe disease, due to acid α-glucosidase deficiency. Clinical efficacy of this approach is variable, and more effective therapies are needed. We showed in preclinical studies that chaperones stabilize the recombinant enzyme used for enzyme replacement therapy. Here, we evaluated the effects of a combination of enzyme therapy and a chaperone on α-glucosidase activity in Pompe disease patients. α-Glucosidase activity was analyzed by tandem-mass spectrometry in dried blood spots from patients treated with enzyme replacement therapy, either alone or in combination with the chaperone N-butyldeoxynojirimycin given at the time of the enzyme infusion. Thirteen patients with different presentations (3 infantile-onset, 10 late-onset) were enrolled. In 11 patients, the combination treatment resulted in α-glucosidase activities greater than 1.85-fold the activities with enzyme replacement therapy alone. In the whole patient population, α-glucosidase activity was significantly increased at 12 hours (2.19-fold, P = 0.002), 24 hours (6.07-fold, P = 0.001), and 36 hours (3.95-fold, P = 0.003). The areas under the curve were also significantly increased (6.78-fold, P = 0.002). These results suggest improved stability of recombinant α-glucosidase in blood in the presence of the chaperone. PMID:25052852

  3. Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating.

    PubMed

    Luo, Jianquan; Meyer, Anne S; Mateiu, R V; Kalyani, Dayanand; Pinelo, Manuel

    2014-12-24

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer. The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 kDa membrane with sponge-like sublayer to immobilize laccase with dopamine coating, the trade-off between permeability and enzyme loading was broken, and enzyme loading reached 44.5% without any permeability loss. After 85 days of storage and reuse 14 times, more than 80% of the immobilized laccase activity was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic membrane is promising for cascade catalytic reactions.

  4. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice

    PubMed Central

    Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E.; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C.; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation. PMID:20606253

  5. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, Dalya; Goralski, Kerry B.; College of Pharmacy, Burbidge Building, Dalhousie University, Halifax, Nova Scotia, B3H 3J5

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo,more » an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.« less

  6. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    PubMed

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids. © 2012 National Research Council of Canada. The Plant Journal © 2012 Blackwell Publishing Ltd.

  7. Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism1[W][OPEN

    PubMed Central

    Biais, Benoît; Bénard, Camille; Beauvoit, Bertrand; Colombié, Sophie; Prodhomme, Duyên; Ménard, Guillaume; Bernillon, Stéphane; Gehl, Bernadette; Gautier, Hélène; Ballias, Patricia; Mazat, Jean-Pierre; Sweetlove, Lee; Génard, Michel; Gibon, Yves

    2014-01-01

    To assess the influence of the environment on fruit metabolism, tomato (Solanum lycopersicum ‘Moneymaker’) plants were grown under contrasting conditions (optimal for commercial, water limited, or shaded production) and locations. Samples were harvested at nine stages of development, and 36 enzyme activities of central metabolism were measured as well as protein, starch, and major metabolites, such as hexoses, sucrose, organic acids, and amino acids. The most remarkable result was the high reproducibility of enzyme activities throughout development, irrespective of conditions or location. Hierarchical clustering of enzyme activities also revealed tight relationships between metabolic pathways and phases of development. Thus, cell division was characterized by high activities of fructokinase, glucokinase, pyruvate kinase, and tricarboxylic acid cycle enzymes, indicating ATP production as a priority, whereas cell expansion was characterized by enzymes involved in the lower part of glycolysis, suggesting a metabolic reprogramming to anaplerosis. As expected, enzymes involved in the accumulation of sugars, citrate, and glutamate were strongly increased during ripening. However, a group of enzymes involved in ATP production, which is probably fueled by starch degradation, was also increased. Metabolites levels seemed more sensitive than enzymes to the environment, although such differences tended to decrease at ripening. The integration of enzyme and metabolite data obtained under contrasting growth conditions using principal component analysis suggests that, with the exceptions of alanine amino transferase and glutamate and malate dehydrogenase and malate, there are no links between single enzyme activities and metabolite time courses or levels. PMID:24474652

  8. Functional Evolution of PLP-dependent Enzymes based on Active-Site Structural Similarities

    PubMed Central

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-01-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5’-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the Comparison of Protein Active Site Structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. PMID:24920327

  9. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  10. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  11. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  12. Leinamycin E1 acting as an anticancer prodrug activated by reactive oxygen species.

    PubMed

    Huang, Sheng-Xiong; Yun, Bong-Sik; Ma, Ming; Basu, Hirak S; Church, Dawn R; Ingenhorst, Gudrun; Huang, Yong; Yang, Dong; Lohman, Jeremy R; Tang, Gong-Li; Ju, Jianhua; Liu, Tao; Wilding, George; Shen, Ben

    2015-07-07

    Leinamycin (LNM) is a potent antitumor antibiotic produced by Streptomyces atroolivaceus S-140, featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. Upon reductive activation in the presence of cellular thiols, LNM exerts its antitumor activity by an episulfonium ion-mediated DNA alkylation. Previously, we have cloned the lnm gene cluster from S. atroolivaceus S-140 and characterized the biosynthetic machinery responsible for the 18-membered lactam backbone and the alkyl branch at C3 of LNM. We now report the isolation and characterization of leinamycin E1 (LNM E1) from S. atroolivacues SB3033, a ΔlnmE mutant strain of S. atroolivaceus S-140. Complementary to the reductive activation of LNM by cellular thiols, LNM E1 can be oxidatively activated by cellular reactive oxygen species (ROS) to generate a similar episulfonium ion intermediate, thereby alkylating DNA and leading to eventual cell death. The feasibility of exploiting LNM E1 as an anticancer prodrug activated by ROS was demonstrated in two prostate cancer cell lines, LNCaP and DU-145. Because many cancer cells are under higher cellular oxidative stress with increased levels of ROS than normal cells, these findings support the idea of exploiting ROS as a means to target cancer cells and highlight LNM E1 as a novel lead for the development of anticancer prodrugs activated by ROS. The structure of LNM E1 also reveals critical new insights into LNM biosynthesis, setting the stage to investigate sulfur incorporation, as well as the tailoring steps that convert the nascent hybrid peptide-polyketide biosynthetic intermediate into LNM.

  13. Multiple enzyme activities of flavivirus proteins.

    PubMed

    Padmanabhan, R; Mueller, N; Reichert, E; Yon, C; Teramoto, T; Kono, Y; Takhampunya, R; Ubol, S; Pattabiraman, N; Falgout, B; Ganesh, V K; Murthy, K

    2006-01-01

    Dengue viruses (DENV) have 5'-capped RNA genomes of (+) polarity and encode a single polyprotein precursor that is processed into mature viral proteins. NS2B, NS3 and NS5 proteins catalyse/activate enzyme activities that are required for key processes in the virus life cycle. The heterodimeric NS2B/NS3 is a serine protease required for processing. Using a high-throughput protease assay, we screened a small molecule chemical library and identified -200 compounds having > or = 50% inhibition. Moreover, NS3 exhibits RNA-stimulated NTPase, RNA helicase and the 5'-RNA triphosphatase activities. The NTPase and the 5'-RTPase activities of NS3 are stimulated by interaction with NS5. Moreover, the conserved, positively charged motif in DENV-2 NS3, 184RKRK, is required for RNA binding and modulates the RNA-dependent enzyme activities of NS3. To study viral replication, a variety of methods are used such as the in vitro RNA-dependent RNA polymerase assays that utilize lysates from DENV-2-infected mosquito or mammalian cells or the purified NS5 along with exogenous short subgenomic viral RNAs or the replicative intracellular membrane-bound viral RNAs as templates. In addition, a cell-based DENV-2 replicon RNA encoding a luciferase reporter is also used to examine the role of cis-acting elements within the 3' UTR and the RKRK motif in viral replication.

  14. Screening of Neem extracts for microbial anti-chaperone activity by employing in vitro enzyme refolding assay.

    PubMed

    Patki, Jyoti M; Shah, Priyanka

    2017-10-01

    Microbial heat shock proteins (Hsps) play an important role in pathogenesis and development of resistance to existing drugs. New compounds that target microbial molecular chaperones have the potential of combating the challenge of anti-microbial resistance. The present study was aimed at assessing the employment of in vitro enzyme refolding assay to detect anti-chaperone activity of Neem ( Azadirachta indica ) extracts. Protein extracts of thermotolerant Escherichia coli cells were used as a source of Hsps or chaperones. Thermotolerance was found to be induced by pre-treating E. coli cells at 47 °C before subjecting them to a lethal temperature of 55 °C. This thermotolerance correlated with over-expression of specific proteins and reduced aggregation as evident from the SDS-PAGE profiles. Refolding assays of denatured enzymes exhibited 45% activity regain in presence of cell protein extracts containing chaperones compared to less than 5% regain in BSA negative controls. The chaperone activity was found to be ATP dependent. Addition of Neem extracts to refolding reaction mixtures distinctly reduced the activity regain (20%) in a dose dependent manner (500 and 1000 ppm). The negative influence of plant extract on refolding of the enzyme in the presence of chaperones gives evidence to its anti-chaperone activity. We propose that the employment of in vitro enzyme refolding assays will help not only to analyze the activity of known and putative chaperones but also to screen natural compounds for anti-microbial-Hsp activity.

  15. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter.

    PubMed

    Peyrot, Caroline; Wilkinson, Kevin J; Desrosiers, Mélanie; Sauvé, Sébastien

    2014-01-01

    The effects of silver nanoparticles (AgNPs) on terrestrial ecosystems need to be better understood and assessed. Cationic silver (Ag+) has well-documented toxicity against bacteria, but it is not clear what will be the effect of nanoscale Ag. In the present study, the potential effects of AgNPs were investigated in soils by measuring activity of the enzymes phosphomonoesterase, arylsulfatase, β-D-glucosidase, and leucine-aminopeptidase. The toxicity of AgNPs was compared with that of ionic Ag, and the ameliorating effects of soil organic matter were evaluated. To this end, 2 soils with different organic matter contents were artificially contaminated with either AgNPs or Ag-acetate at equivalent total Ag concentrations. In general, enzyme activities were inhibited as a function of the Ag concentration in the soil. In the AgNP exposures, only a small fraction of the AgNP was actually truly dissolved (found in the <1-nm fraction), suggesting that the particulate forms of AgNPs resulted in a significant inhibition of soil enzymes. The addition of organic matter to the soils appeared to enhance enzyme activities; however, the mechanism of organic matter action is not clear given that dissolved Ag concentrations were similar in both the organic-matter–amended and unamended soils. The present study shows that the AgNP produces significant negative effects on the soil enzyme activities tested. The Ag chemical speciation measurements suggested that the AgNP caused greater toxic effects to the soil enzymes at the low Ag concentrations. For the larger concentrations of total soil Ag, causes of the negative effects on enzyme activities are less obvious but suggest that colloidal forms of Ag play a role.

  16. Localization of functional β-xylosidases, encoded by the same single gene, xlsIV (xlnD), from Aspergillus niger E-1.

    PubMed

    Inoue, Kotomi; Takahashi, Yui; Obara, Ken; Murakami, Shuichiro

    2017-03-01

    Cell wall-associated β-xylosidase was isolated from Aspergillus niger E-1 and identified as XlsIV, corresponding to the extracellular enzyme XlnD reported previously. xlsIV was transcribed only in the early cultivation period. Cell wall-associated enzyme activity gradually decreased, but extracellular activity increased as the strain grew. These results indicate that XlsIV (XlnD) was secreted into culture after localizing at cell wall.

  17. Functional evolution of PLP-dependent enzymes based on active-site structural similarities.

    PubMed

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-10-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. © 2014 Wiley Periodicals, Inc.

  18. Effects of dietary probiotic supplementation on LXRα and CYP7α1 gene expression, liver enzyme activities and fat metabolism in ducks.

    PubMed

    Huang, Z; Mu, C; Chen, Y; Zhu, Z; Chen, C; Lan, L; Xu, Q; Zhao, W; Chen, G

    2015-04-01

    1. The objective of this study was to investigate the effects of dietary probiotic supplementation on liver X receptor alpha (LXRα) and cholesterol 7α-hydroxylase (CYP7α1) mRNA levels, protein enzymatic activities and fat metabolism in Cherry Valley Pekin ducks. 2. A total of 750 one-day-old Cherry Valley Pekin ducks were randomly divided into 5 groups with three replicates of 50 ducks each in a completely randomised experiment. Each group was fed on a basal diet supplemented with 0, 500, 1000, 1500 or 2000 mg probiotics/kg. 3. Body rate and feed conversion ratio were highest and abdominal subcutaneous fat % was lowest at 1000 mg probiotic/kg. 4. The mRNA levels of LXRα and CYP7α1 in liver tissue was estimated by RT-PCR; serum triglyceride (TG) and total cholesterol (TC) concentrations were measured by ELISA. 5. The expression levels and enzyme activity of LXRα and CYP7α1 increased in conjunction with decreases in TG and TC concentrations following probiotic supplementation to a maximum at 1000 mg probiotics/kg and decreased thereafter. 6. It is concluded that dietary probiotics can enhance LXRα and CYP7α1 enzyme activities in the liver and reduce lipid concentrations and fat deposition in ducks.

  19. Effects of chlorogenic acid on adenine nucleotides hydrolyzing enzyme activities and expression in platelets of rats experimentally demyelinated with ethidium bromide.

    PubMed

    Leal, Claudio A M; Leal, Daniela B R; Adefegha, Stephen A; Morsch, Vera M; Beckmann, Diego V; Castilhos, Lívia G; Thorstenberg, Maria L P; Jaques, Jeandre A Dos S; Souza, Viviane do C G; Farias, Júlia G; Martins, Caroline C; Schetinger, Maria R C

    2016-07-01

    The effects of chlorogenic acid (one of the major phenolic acid found in human diets) were investigated on the adenine nucleotides hydrolyzing enzymes; ecto-nucleotide pyrophosphatase/phophodiesterase (E-NPP), ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'- nucleotidase and ecto-adenosine deaminase (E-ADA) activities and expression in platelets of rats experimentally demyelinated with ethidium bromide. Rats were divided into four groups of eight animals each. Group I rats were control rats; injected with saline (CT), group II rats were injected with saline and treated with chlorogenic acid (AC), group III rats were injected with 0.1% ethidium bromide (EB) and group IV rats were injected with 0.1% EB and treated with chlorogenic acid (EB+AC). The activities of the enzymes were analyzed using colorimetric methods, and the gene expression of NTPDase 1, 2 and 3 were analyzed using the polymerase chain reaction (PCR). The results revealed that there was a significant (P<0.01) reduction in E-NPP activity in EB group (1.63±0.10nmol p-nitrophenol released/min/mg protein) when compared to CT group (2.33±0.14nmol p-nitrophenol released/min/mg protein). However, treatment with chlorogenic acid significantly (P<0.05) increased E-NPP activity in EB group. Furthermore, no significant (P>0.05) change was observed in the E-NPP activity of EB+AC group (2.19±0.08nmol p-nitrophenol released/min/mg protein) when compared to CT group (2.33±0.14nmol p-nitrophenol released/min/mg protein). In addition, there was a significant (P<0.05) increase in AMP hydrolysis in EB rat group when compared to CT group. No significant (P>0.05) difference was observed in AMP hydrolysis between AC, AC+EB and CT groups. Conversely, there were no significant (P>0.05) differences in ATP and ADP hydrolyses between all the groups (AC, EB, AC+EB and CT groups). Likewise, there were no significant (P>0.05) changes in E-ADA activity and percentage platelet aggregation among all groups

  20. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river.

    PubMed

    Wilczek, Sabine; Fischer, Helmut; Pusch, Martin T

    2005-08-01

    We tested whether seasonal changes in the sources of organic substances for microbial metabolism were reflected changes in the activities of five extracellular enzymes in the eighth order lowland River Elbe, Germany. Leucine aminopeptidase showed the highest activities in the water column and the sediments, followed by phosphatase > beta-glucosidase > alpha-glucosidase > exo-1,4-beta-glucanase. Individual enzymes exhibited characteristic seasonal dynamics, as indicated by their relative contribution to cumulative enzyme activity. Leucine aminopeptidase was significantly more active in spring and summer. In contrast, the carbohydrate-degrading enzymes peaked in autumn, and beta-glucosidase activity peaked once again in winter. Thus, in sediments, the ratio of leucine aminopeptidase/beta-glucosidase reached significant higher medians in spring and summer (5-cm depth: ratio 7.7; 20-cm depth: ratio 10.1) than in autumn and winter (5-cm depth: ratio 3.7, 20-cm depth: ratio 6.3). The relative activity of phosphatase in the sediments was seasonally related to both the biomass of planktonic algae as well as to the high content of total particulate phosphorus in autumn and winter. Due to temporal shifts in organic matter supply and changes in the storage capacity of sediments, the seasonal peaks of enzyme activities in sediments exhibited a time lag of 2-3 months compared to that in the water column, along with a significant extension of peak width. Hence, our data show that the seasonal pattern of extracellular enzyme activities provides a sensitive approach to infer seasonal or temporary availability of organic matter in rivers from autochthonous and allochthonous sources. From the dynamics of individual enzyme activities, a consistent synoptic pattern of heterotrophic functioning in the studied river ecosystem could be derived. Our data support the revised riverine productivity model predicting that the metabolism of organic matter in high-order rivers is mainly fuelled

  1. Digestive enzymes activity in subsequent generations of Cameraria ohridella larvae harvested from horse chestnut trees after treatment with imidacloprid.

    PubMed

    Stygar, Dominika; Michalczyk, Katarzyna; Dolezych, Bogdan; Nakonieczny, Miroslaw; Migula, Pawel; Zaak, Maria; Sawczyn, Tomasz; Karcz-Socha, Iwona; Kukla, Michal; Zwirska-Korczala, Krystyna; Buldak, Rafal

    2013-01-01

    In the present study we describe the effect of chloronicotinoid pesticide (imidacloprid) on the digestive enzymes activity of the Cameraria ohridella larvae after lasting 1 year sublethal exposure to imidacloprid pesticide. Caterpillars - L4 stage (fourth instar, hyperphagic tissue-feeding phase) - were collected from chemically protected white horse chestnut trees 1 year after imidacloprid treatment, and compared with caterpillars collected from non-treated trees in a previous study. Enzymes activity of α-amylase, disaccharidases, glycosidases and proteases was assayed. The presence of pesticide in ingested food changed the digestive enzymes profile of caterpillars. The analysis of correlations between different digestive enzymes showed many significant correlations (P<0.05) among glycolytic activities like β-glucosidase and α-galactosidase activities. Statistically significant correlations for proteolytic activity were found between trypsin and chymotrypsin activity and aminopeptidase activity that occurred only in the 1st generation. PCA distinguished five primary components with eigenvalues higher than 1, from which the first two explain almost 59% of analyzed results. Surprisingly, in the pesticide treated groups significantly higher activities of sucrase and lactase in relation to control were found. In general, glycosidase (α-glucosidase, β-glucosidase and β-galactosidase) activities showed a similar pattern of activity in different generations. These results contrast with those obtained with control larvae, where significant differences in activities of α-glucosidase, β-glucosidase and β-galactosidase may result from the different quantity and quality food intake by subsequent generations of larvae. No inter-generation differences in total proteolytic activity were observed in treated larvae. The absolute value of total proteolytic activity was higher than that in the control group. The pesticide present in the vascular system of the horse chestnut

  2. Biochemical and Structural Characterization of Bisubstrate Inhibitors of BasE, the Self-standing Non-Ribosomal Peptide Synthetase Adenylate-Forming Enzyme of Acinetobactin Synthesis†,‡

    PubMed Central

    Drake, Eric J.; Duckworth, Benjamin P.; Neres, João; Aldrich, Courtney C.; Gulick, Andrew M.

    2010-01-01

    The human pathogen Acinetobacter baumannii produces a siderophore called acinetobactin that is derived from one molecule each of threonine, histidine, and 2,3-dihydroxybenzoic acid (DHB). The activity of several non-ribosomal peptide synthetase (NRPS) enzymes is used to combine the building blocks into the final molecule. The acinetobactin synthesis pathway initiates with a self-standing adenylation enzyme, BasE, that activates the DHB molecule and covalently transfers it to the pantetheine cofactor of an aryl-carrier protein of BasF, a strategy that is shared with many siderophore-producing NRPS clusters. In this reaction, DHB reacts with ATP to form the aryl adenylate and pyrophosphate. In a second partial reaction, the DHB is transferred to the carrier protein. Inhibitors of BasE and related enzymes have been identified that prevent growth of bacteria on iron-limiting media. Recently, a new inhibitor of BasE has been identified via high-throughput screening using a fluorescence polarization displacement assay. We present here biochemical and structural studies to examine the binding mode of this inhibitor. The kinetics of the wild-type BasE enzyme is shown and inhibition studies demonstrate that the new compound exhibits competitive inhibition against both ATP and 2,3-dihydroxybenzoate. Structural examination of BasE bound to this inhibitor illustrates a novel binding mode in which the phenyl moiety partially fills the enzyme pantetheine binding tunnel. Structures of rationally designed bisubstrate inhibitors are also presented. PMID:20853905

  3. Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.

    PubMed

    Lee, Yingying; Mehra-Chaudhary, Ritcha; Furdui, Cristina; Beamer, Lesa J

    2013-06-01

    Enzymes in the α-d-phosphohexomutase superfamily catalyze the conversion of 1-phosphosugars to their 6-phospho counterparts. Their phosphoryl transfer reaction has long been proposed to require general acid-base catalysts, but candidate residues for these key roles have not been identified. In this study, we show through mutagenesis and kinetic studies that a histidine (His329) in the active site is critical for enzyme activity in a well-studied member of the superfamily, phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa. Crystallographic characterization of an H329A mutant protein showed no significant changes from the wild-type enzyme, excluding structural disruption as the source of its compromised activity. Mutation of the structurally analogous lysine residue in a related protein, phosphoglucomutase from Salmonella typhimurium, also results in significant catalytic impairment. Analyses of protein-ligand complexes of the P. aeruginosa enzyme show that His329 is appropriately positioned to abstract a proton from the O1/O6 hydroxyl of the phosphosugar substrates, and thus may serve as the general base in the reaction. Histidine is strongly conserved at this position in many proteins in the superfamily, and lysine is also often conserved at a structurally corresponding position, particularly in the phosphoglucomutase enzyme sub-group. These studies shed light on the mechanism of this important enzyme superfamily, and may facilitate the design of mechanism-based inhibitors. Structural data have been deposited in the Protein Data Bank with accession number 4IL8. © 2013 The Authors Journal compilation © 2013 FEBS.

  4. Small heat shock protein AgsA: an effective stabilizer of enzyme activities.

    PubMed

    Tomoyasu, Toshifumi; Tabata, Atsushi; Ishikawa, Yoko; Whiley, Robert A; Nagamune, Hideaki

    2013-01-01

    A small heat shock protein, AgsA, possesses chaperone activity that can reduce the amount of heat-aggregated protein in vivo, and suppress the aggregation of chemical- and heat-denatured proteins in vitro. Therefore, we examined the ability of AgsA to stabilize the activity of several enzymes by using this chaperone activity. We observed that AgsA can stabilize the enzymatic activities of Renilla (Renilla reniformis) luciferase, firefly (Photinus pyralis) luciferase, and β-galactosidase, and showed comparable or greater stabilization of these enzymes than bovine serum albumin (BSA), a well-known stabilizer of enzyme activities. In particular, AgsA revealed better stabilization of Renilla luciferase and β-galactosidase than BSA under disulfide bond-reducing conditions with dithiothreitol. In addition, AgsA also increased the enzymatic performance of β-galactosidase and various restriction enzymes to a comparable or greater extent than BSA. These data indicate that AgsA may be useful as a general stabilizer of enzyme activities. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity.

    PubMed

    Sun, Xi; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Su, Benying; Liu, Tong; Zhang, Cheng; Gao, Chong; Shao, Yuting

    2017-01-01

    Ionic liquids (ILs) were considered as "green" solvents and have been used widely because of their excellent properties. But ILs are not as "green" as has been suggested, and the toxic effects of ILs on organisms have been shown in recent years. In the present study, the toxic effects of the IL 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF 4 ) on soil enzyme activity and soil microbial communities at three different concentrations (1.0, 5.0 and 10.0mg/kg) and a control treatment over 40 days of incubation time (sampled on days 10, 20, 30 and 40) were examined under laboratory conditions. The concentrations of [Omim]BF 4 in soils were detected by high performance liquid chromatography (HPLC) and the results indicated that [Omim]BF 4 were maintained stable in the soil during the exposure period. However, the enzyme activity results showed that urease activity was stimulated on day 20 and then decreased after 30 days of incubation. The activity of β-glucosidase was stimulated after 20 days of incubation in both treatment groups. Moreover, both dehydrogenase and acid phosphatase were inhibited at a high level (10.0mg/kg) only on day 20. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed that the soil microbial community structures were altered by [Omim]BF 4 and that the soil microbial diversity and evenness of high levels (5.0mg/kg and 10.0mg/kg) treatments were decreased. Moreover, the dominant structure of the microbial communities was not changed by [Omim]BF 4 . Furthermore, the abundance of the ammonia monooxygenase (amoA) genes of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was examined using real time polymerase chain reaction (RT-PCR). The results revealed that the copy numbers of the amoA-gene were decreased by [Omim]BF 4 with the 5.0 and 10.0mg/kg treatments. Based on the experiment, we concluded that high levels (5.0 and 10.0mg/kg) of [Omim]BF 4 could have significantly toxic effects on

  6. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    NASA Astrophysics Data System (ADS)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  7. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.

    PubMed

    Jin, Lixia; Son, Yowhan; Yoon, Tae Kyung; Kang, Yu Jin; Kim, Woong; Chung, Haegeun

    2013-02-01

    Nanomaterials such as single-walled carbon nanotubes (SWCNTs) may enter the soil environment with unknown consequences resulting from the development of nanotechnology for a variety of applications. We determined the effects of SWCNTs on soil enzyme activity and microbial biomass through a 3-week incubation of urban soils treated with different concentrations of SWCNTs ranging from 0 to 1000 μg g(-1) soil. The activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase and microbial biomass were measured in soils treated with powder and suspended forms of SWCNTs. SWCNTs of concentrations at 300-1000 μg g(-1) soil significantly lowered activities of most enzymes and microbial biomass. It is noteworthy that the SWCNTs showed similar effects to that of multi-walled carbon nanotubes (MWCNTs), but at a concentration approximately 5 times lower; we suggest that this is mainly due to the higher surface area of SWCNTs than that of MWCNTs. Indeed, our results show that surface area of CNTs has significant negative relationship with relative enzyme activity and biomass, which suggests that greater microorganism-CNT interactions could increase the negative effect of CNTs on microorganisms. Current work may contribute to the preparation of a regulatory guideline for the release of CNTs to the soil environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1.

    PubMed

    Login, Hande; Butowt, Rafal; Bohm, Staffan

    2015-07-01

    It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.

  10. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes.

    PubMed

    Yasumoto, Shuhei; Fukushima, Ery O; Seki, Hikaru; Muranaka, Toshiya

    2016-02-01

    Triterpenoids have diverse chemical structures and bioactivities. Cytochrome P450 monooxygenases play a key role in their structural diversification. In higher plants, CYP716A subfamily enzymes are triterpene oxidases. In this study, Arabidopsis thaliana CYP716A1 and CYP716A2 were characterized by heterologously expressing them in simple triterpene-producing yeast strains. In contrast to the C-28 oxidative activity of CYP716A1 shown in several CYP716A subfamily enzymes, remarkably, CYP716A2 displayed 22α-hydroxylation activity against α-amyrin that has not been previously reported, which produces the cytotoxic triterpenoid, 22α-hydroxy-α-amyrin. Our results contribute to the enrichment of the molecular toolbox that allows for the combinatorial biosynthesis of diverse triterpenoids. © 2016 Federation of European Biochemical Societies.

  11. Efficient activation of transcription in yeast by the BPV1 E2 protein.

    PubMed Central

    Stanway, C A; Sowden, M P; Wilson, L E; Kingsman, A J; Kingsman, S M

    1989-01-01

    The full-length gene product encoded by the E2 open reading frame (ORF) of bovine papillomavirus type 1 (BPV1) is a transcriptional transactivator. It is believed to mediate its effect on the BPV1 long control region (LCR) by binding to motifs with the consensus sequence ACCN6GGT. The minimal functional cis active site, called the E2 response element (E2RE), in mammalian cells comprises two copies of this motif. Here we have shown that E2 can function in Saccharomyces cerevisiae by placing an E2RE upstream of a synthetic yeast assay promoter which consists of a TATA motif and an mRNA initiation site, spaced correctly. This E2RE-minimal promoter is only transcriptionally active in the presence of E2 protein and the resulting mRNA is initiated at the authentic start site. This is the first report of a mammalian viral transactivator functioning in yeast. The level of activation by E2 via the E2RE was the same as observed with the highly efficient authentic PGK promoter where the upstream activation sequence is composed of three distinct elements. Furthermore a single E2 motif which is insufficient in mammalian cells as an activation site was as efficiently utilized in yeast as the E2RE (2 motifs). Previous studies have shown that mammalian cellular activators can function in yeast and our data now extend this to viral-specific activators. Our data indicate however that while the mechanism of transactivation is broadly conserved there may be significant differences at the detailed level. Images PMID:2539584

  12. Variation of Enzyme Activities and Metabolite Levels in 24 Arabidopsis Accessions Growing in Carbon-Limited Conditions1[W

    PubMed Central

    Cross, Joanna M.; von Korff, Maria; Altmann, Thomas; Bartzetko, Linda; Sulpice, Ronan; Gibon, Yves; Palacios, Natalia; Stitt, Mark

    2006-01-01

    Our understanding of the interaction of carbon (C) metabolism with nitrogen (N) metabolism and growth is based mainly on studies of responses to environmental treatments, and studies of mutants and transformants. Here, we investigate which metabolic parameters vary and which parameters change in a coordinated manner in 24 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions, grown in C-limited conditions. The accessions were grown in short days, moderate light, and high nitrate, and analyzed for rosette biomass, levels of structural components (protein, chlorophyll), total phenols and major metabolic intermediates (sugars, starch, nitrate, amino acids), and the activities of seven representative enzymes from central C and N metabolism. The largest variation was found for plant weight, reducing sugars, starch at the end of the night, and several enzyme activities. High levels of one sugar correlated with high levels of other sugars and starch, and a trend to increased amino acids, slightly lower nitrate, and higher protein. The activities of enzymes at the interface of C and N metabolism correlated with each other, but were unrelated to carbohydrates, amino acid levels, and total protein. Rosette weight was unrelated or showed a weak negative trend to sugar and amino acid contents at the end of the day in most of the accessions, and was negatively correlated with starch at the end of the night. Rosette weight was positively correlated with several enzyme activities. We propose that growth is not related to the absolute levels of starch, sugars, and amino acids; instead, it is related to flux, which is indicated by the enzymatic capacity to use these central resources. PMID:17085515

  13. Production of Delta(1)-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris.

    PubMed

    Taura, Futoshi; Dono, Emi; Sirikantaramas, Supaart; Yoshimura, Kohji; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-09-28

    Delta(1)-Tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes the oxidative cyclization of cannabigerolic acid into THCA, the acidic precursor of Delta(1)-tetrahydrocannabinol. We developed a novel expression system for THCA synthase using a methylotrophic yeast Pichia pastoris as a host. Under optimized conditions, the transgenic P. pastoris secreted approximately 1.32nkat/l of THCA synthase activity, and the culture medium, from which the cells were removed, effectively synthesized THCA from cannabigerolic acid with a approximately 98% conversion rate. The secreted THCA synthase was readily purified to homogeneity. Interestingly, endoglycosidase treatment afforded a deglycosylated THCA synthase with more catalytic activity than that of the glycosylated form. The non-glycosylated THCA synthase should be suitable for structure-function studies because it displayed much more activity than the previously reported native enzyme from Cannabis sativa as well as the recombinant enzyme from insect cell cultures.

  14. Angiotensin II AT1 receptor alters ACE2 activity, eNOS expression and CD44-hyaluronan interaction in rats with hypertension and myocardial fibrosis.

    PubMed

    Bai, Feng; Pang, Xue-Fen; Zhang, Li-Hui; Wang, Ning-Ping; McKallip, Robert J; Garner, Ronald E; Zhao, Zhi-Qing

    2016-05-15

    This study tested the hypothesis that angiotensin II (Ang II) AT1 receptor is involved in development of hypertension and cardiac fibrosis via modifying ACE2 activity, eNOS expression and CD44-hyaluronan interaction. Male Sprague-Dawley rats were subjected to Ang II infusion (500ng/kg/min) using osmotic minipumps up to 4weeks and the AT1 receptor blocker, telmisartan was administered by gastric gavage (10mg/kg/day) during Ang II infusion. Our results indicated that Ang II enhances AT1 receptor, downregulates AT2 receptor, ACE2 activity and eNOS expression, and increases CD44 expression and hyaluronidase activity, an enzyme for hyaluronan degradation. Further analyses revealed that Ang II increases blood pressure and augments vascular/interstitial fibrosis. Comparison of the Ang II group, treatment with telmisartan significantly increased ACE2 activity and eNOS expression in the intracardiac vessels and intermyocardium. These changes occurred in coincidence with decreased blood pressure. Furthermore, the locally-expressed AT1 receptor was downregulated, as evidenced by an increased ratio of the AT2 over AT1 receptor (1.4±0.4% vs. 0.4±0.1% in Ang II group, P<0.05). Along with these modulations, telmisartan inhibited membrane CD44 expression and hyaluronidase activity, decreased populations of macrophages and myofibroblasts, and reduced expression of TGFβ1 and Smads. Collagen I synthesis and tissue fibrosis were attenuated as demonstrated by the less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in development of hypertension and cardiac fibrosis. Selective activating ACE2/eNOS and inhibiting CD44/HA interaction might be considered as the therapeutic targets for attenuating Ang II induced deleterious cardiovascular effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes.

    PubMed

    Fujishima, Kosuke; Wang, Kendrick M; Palmer, Jesse A; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J

    2018-01-29

    Amino acid biosynthesis pathways observed in nature typically require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine: serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase (CysK/CysM). To solve this chicken-and-egg problem, we substituted alternate amino acids in CysE, CysK and CysM for cysteine and methionine, which are the only two sulfur-containing proteinogenic amino acids. Using a cysteine-dependent auxotrophic E. coli strain, CysE function was rescued by cysteine-free and methionine-deficient enzymes, and CysM function was rescued by cysteine-free enzymes. CysK function, however, was not rescued in either case. Enzymatic assays showed that the enzymes responsible for rescuing the function in CysE and CysM also retained their activities in vitro. Additionally, substitution of the two highly conserved methionines in CysM decreased but did not eliminate overall activity. Engineering amino acid biosynthetic enzymes to lack the so-produced amino acids can provide insights into, and perhaps eventually fully recapitulate via a synthetic approach, the biogenesis of biotic amino acids.

  16. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    PubMed Central

    2012-01-01

    Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316

  17. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors.

    PubMed

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-02-01

    Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. E1R was tested for sigma receptor binding activity in a [³H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca²⁺ concentration ([Ca²⁺](i)) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca²⁺](i) increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. © 2013 The British Pharmacological Society.

  18. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors

    PubMed Central

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-01-01

    Background and Purpose Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. Experimental Approach E1R was tested for sigma receptor binding activity in a [3H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca2+ concentration ([Ca2+]i) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Key Results Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca2+]i increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. Conclusion and Implications E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. PMID:24490863

  19. Radiolabelling of glycosylated MFE-23::CPG2 fusion protein (MFECP1) with 99mTc for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT).

    PubMed

    Francis, R J; Mather, S J; Chester, K; Sharma, S K; Bhatia, J; Pedley, R B; Waibel, R; Green, A J; Begent, R H J

    2004-08-01

    MFECP1 is a glycosylated recombinant fusion protein composed of MFE-23, a high-affinity anti-carcinoembryonic antigen (CEA) single chain Fv (scFv), fused to the enzyme carboxypeptidase G2 (CPG2), and has been constructed for use in antibody-directed enzyme pro-drug therapy (ADEPT). Radiolabelling of glycosylated MFECP1 with technetium-99m was developed for the purpose of determining tumour localisation of MFECP1 in a phase I ADEPT clinical study. The method used was 99mTc-carbonyl [99mTc(H2O)3(CO)3]+ (abbreviated to TcCO) mediated labelling of 99mTc to the hexahistidine (His) tag of MFECP1. MFECP1 fusion protein was labelled with TcCO under a variety of conditions, and this was shown to be a relatively simple and robust method. Tissue biodistribution was assessed in a CEA-expressing LS174T (human colon carcinoma) nude mouse xenograft model. Tissues were taken at 1, 4 and 6 h for assessment of distribution of radioactivity and for measurement of CPG2 enzyme levels. The amount of radioactivity retained by the tumour proved to be an accurate estimation of actual measured enzyme activity, indicating that this radiolabelling method does not appear to damage the antibody-antigen binding or the enzyme activity of MFECP1. However, correlation between CPG2 enzyme activity and measured radioactivity in liver, spleen and kidney was poor, indicating retention of radioactivity in non-tumour sites but loss of enzyme activity. The high retention of technetium radioisotope in normal tissues may limit the clinical applicability of this radiolabelling method for MFECP1; however, these results suggest that this technique does have applicability for measuring the biodistribution of His-tagged recombinant proteins.

  20. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.

    PubMed

    Romero, Angel H; López, Simón E

    2017-09-01

    Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification.

    PubMed

    Campbell, Eric L; MacManus, Christopher F; Kominsky, Douglas J; Keely, Simon; Glover, Louise E; Bowers, Brittelle E; Scully, Melanie; Bruyninckx, Walter J; Colgan, Sean P

    2010-08-10

    Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells (IECs) and that microarray profiling of cells exposed to RvE1 revealed regulation of inflammatory response gene expression. Notably, RvE1 induced intestinal alkaline phosphatase (ALPI) expression and significantly enhanced epithelial ALPI enzyme activity. One role recently attributed to ALPI is the detoxification of bacterial LPS. In our studies, RvE1-exposed epithelia detoxified LPS (assessed by attenuation of NF-kappaB signaling). Furthermore, in epithelial-bacterial interaction assays, we determined that ALPI retarded the growth of Escherichia coli. To define these features in vivo, we used a murine dextran sulfate sodium (DSS) model of colitis. Compared with vehicle controls, administration of RvE1 resulted in significant improvement of disease activity indices (e.g., body weight, colon length) concomitant with increased ALPI expression in the intestinal epithelium. Moreover, inhibition of ALPI activity resulted in increased severity of colitis in DSS-treated animals and partially abrogated the protective influence of RvE1. Together, these data implicate a previously unappreciated role for ALPI in RvE1-mediated inflammatory resolution.

  2. The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes.

    PubMed

    Gangoiti, Joana; Pijning, Tjaard; Dijkhuizen, Lubbert

    2016-01-15

    The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    PubMed

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Extracellular Xylanopectinolytic Enzymes by Bacillus subtilis ADI1 from EFB's Compost

    PubMed Central

    Nawawi, Muhammad Hariadi; Mohamad, Rosfarizan; Tahir, Paridah Md.

    2017-01-01

    Microbial xylanase and pectinase are two extremely valuable enzymes, which have captivated much attention. This can be seen from the increased demand for these enzymes by many industrial sectors. This study investigates the isolation and screening of extracellular xylanopectinolytic enzymes-producing bacteria in a submerged fermentation (SmF). Samples are collected from the compost of empty fruit bunch (EFB) at Biocompost Pilot Plant, located at Biorefinery Plant, Universiti Putra Malaysia. From the experiment, out of 20 isolates, 11 isolates show xylanase or/and pectinase activity, and only one isolate (EFB-11) shows the concurrent activities of xylanase and pectinase. These activities are selected for enzyme production under submerged fermentation (quantitative screening). At the 72nd hour of incubation, xylanase and pectinase show the highest production, which ranges about 42.33 U/mL and 62.17 U/mL (with low amount of cellulase present), supplemented with 2% (w/v) of rice bran as carbon source at incubation temperature level, which is 30°C. Meanwhile, the pH of media is shifted to 8.42, which indicates that EFB-11 isolate is alkalotolerant bacteria and identified as Bacillus subtilis ADI1. This strain proves to have potential in agroindustrial bioconversion and has a promising ability to scale up to an industrial scale. PMID:28523288

  5. Metabolism of d-Arabinose: Origin of a d-Ribulokinase Activity in Escherichia coli1

    PubMed Central

    LeBlanc, Donald J.; Mortlock, Robert P.

    1971-01-01

    The kinase responsible for the phosphorylation of d-ribulose was purified 45.5-fold from a strain of Escherichia coli K-12 capable of growth on d-arabinose with no separation of d-ribulo- or l-fuculokinase activities. Throughout the purification, the ratios of activities remained essentially constant. A nonadditive effect of combining both substrates in an assay mixture; identical Km values for adenosine triphosphate with either l-fuculose or d-ribulose as substrate; and, the irreversible loss of activity on both substrates, after removal of magnesium ions from the enzyme preparation, suggest that the dual activity is due to the same enzyme. A fourfold greater affinity of the enzyme for l-fuculose than for d-ribulose, as well as a higher relative activity on l-fuculose, suggest that the natural substrate for this enzyme is l-fuculose. The product of the purified enzyme, with d-ribulose as substrate, was prepared. The ratio of total phosphorous to ribulose phosphate was 1.01:1, indicating that the product was ribulose monophosphate. The behavior of the kinase product in the cysteine-carbazole and orcinol reactions, as well as the results of periodate oxidation assays, provided evidence that it was not d-ribulose-5-phosphate. Reaction of this compound with a cell-free extract of E. coli possessing l-fuculose-l-phosphate aldolase activity resulted in the production of dihydroxyacetone phosphate and glycolaldehyde. The kinase product failed to reduce 2,3,5-triphenyltetrazolium and possessed a half-life of approximately 1.5 min in the presence of 1 n HCl at 100 C. These properties suggested that the phosphate group was attached to carbon atom 1 of d-ribulose. PMID:4323967

  6. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation.

    PubMed

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J N Mark; Giam, Chou-Zen

    2015-08-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.

  7. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation

    PubMed Central

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J. N. Mark; Giam, Chou-Zen

    2015-01-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells. PMID:26285145

  8. Monoamine oxidase A gene polymorphisms and enzyme activity associated with risk of gout in Taiwan aborigines.

    PubMed

    Tu, Hung-Pin; Ko, Albert Min-Shan; Wang, Shu-Jung; Lee, Chien-Hung; Lea, Rod A; Chiang, Shang-Lun; Chiang, Hung-Che; Wang, Tsu-Nai; Huang, Meng-Chuan; Ou, Tsan-Teng; Lin, Gau-Tyan; Ko, Ying-Chin

    2010-02-01

    Taiwanese aborigines have a high prevalence of hyperuricemia and gout. Uric acid levels and urate excretion have correlated with dopamine-induced glomerular filtration response. MAOs represent one of the major renal dopamine metabolic pathways. We aimed to identify the monoamine oxidase A (MAOA, Xp11.3) gene variants and MAO-A enzyme activity associated with gout risk. This study was to investigate the association between gout and the MAOA single-nucleotide polymorphisms (SNPs) rs5953210, rs2283725, and rs1137070 as well as between gout and the COMT SNPs rs4680 Val158Met for 374 gout cases and 604 controls. MAO-A activity was also measured. All three MAOA SNPs were significantly associated with gout. A synonymous MAOA SNP, rs1137070 Asp470Asp, located in exon 14, was associated with the risk of having gout (P = 4.0 x 10(-5), adjusted odds ratio 1.46, 95% confidence intervals [CI]: 1.11-1.91). We also showed that, when compared to individuals with the MAOA GAT haplotype, carriers of the AGC haplotype had a 1.67-fold (95% CI: 1.28-2.17) higher risk of gout. Moreover, we found that MAOA enzyme activity correlated positively with hyperuricemia and gout (P for trend = 2.00 x 10(-3) vs. normal control). We also found that MAOA enzyme activity by rs1137070 allele was associated with hyperuricemia and gout (P for trend = 1.53 x 10(-6) vs. wild-type allele). Thus, our results show that some MAOA alleles, which have a higher enzyme activity, predispose to the development of gout.

  9. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple.

    PubMed

    Zhang, Rui-Fen; Guo, Ying; Li, Yuan-Yuan; Zhou, Li-Jie; Hao, Yu-Jin; You, Chun-Xiang

    2016-07-01

    SUMOylation, the conjugation of target proteins with SUMO (small ubiquitin-related modifier), is a type of post-translational modification in eukaryotes and involves the sequential action of activation (E1), conjugation (E2) and ligation (E3) enzymes. In Arabidopsis, the AtSIZ1 protein is a SUMO E3 ligase that promotes the conjugation of SUMO proteins to target substrates. Here, we isolated and identified a SUMO E3 ligase, MdSIZ1, in apple, which was similar to AtSIZ1. SUMOylation analysis showed that MdSIZ1 had SUMO E3 ligase activity in vitro and in vivo. SUMO conjugation was increased by high temperatures, low temperatures, and abscisic acid (ABA). The ectopic expression of MdSIZ1 in Arabidopsis siz1-2 mutant plants partially complemented the morphological mutant phenotype and enhanced the levels of SUMO conjugation. Taken together, these results suggest that MdSIZ1-mediated SUMO conjugation of target proteins is an important process that regulates the adaptation of apple plants to various environmental stresses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo

    PubMed Central

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Lorenzo, Annarita Di; Harrison, Kenneth D.; Huang, Paul L.; Sessa, William C.

    2016-01-01

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1−/− mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme “constitutively active” or “less active.” The eNOS mutations did not influence several phenotypes in Akt1−/− mice; however, the defective postnatal angiogenesis characteristic of Akt1−/− mice was rescued by crossing the Akt1−/− mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1α (HIF-1α) and increased production of HIF-1α–responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling. PMID:19654415

  11. Mounting evidence validates Ursolic Acid directly activates SIRT1: A powerful STAC which mimic endogenous activator of SIRT1.

    PubMed

    Bakhtiari, Nuredin; Mirzaie, Sako; Hemmati, Roohullah; Moslemee-Jalalvand, Elham; Noori, Ali Reza; Kazemi, Jahanfard

    2018-07-15

    Ursolic Acid (UA), a pentacyclic triterpenoid compound, plays a vital role in aging process. However, the role of UA in the regulation of aging and longevity is still controversial as we have previously demonstrated that UA increases SIRT1 protein level in aged-mice. Here, we reveal that UA directly activates SIRT1 in silico, in vitro and in vivo. We have identified that UA binds to outer surface of SIRT1 and leads to tight binding of substrates to enzyme in comparison with Resveratrol (RSV) and control. Furthermore, our results indicate that UA drives the structure of SIRT1 toward a closed state (an active form of enzyme). Interestingly, our experimental findings are in agreement with the molecular dynamic results. Based on our data, UA increases the affinity of enzyme for both substrates with decreasing Km value, while enhances the Vmax of enzyme. Additionally, we have determined that UA heightened SIRT1 catalytic efficiency by 2 folds compared with RSV. Thereby, to identify the endogenous activator of SIRT1, UA was administrated to aged-mice and then the tissues were isolated. According to our results, it can be concluded that UA increases SIRT1 activity and mimics Lamin A and AROS behavior in the living cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Protoplast fusion enhances lignocellulolytic enzyme activities in Trichoderma reesei.

    PubMed

    Cui, Yu-xiao; Liu, Jia-jing; Liu, Yan; Cheng, Qi-yue; Yu, Qun; Chen, Xin; Ren, Xiao-dong

    2014-12-01

    Protoplast fusion was used to obtain a higher production of lignocellulolytic enzymes with protoplast fusion in Trichoderma reesei. The fusant strain T. reesei JL6 was obtained from protoplast fusion from T. reesei strains QM9414, MCG77, and Rut C-30. Filter paper activity of T. reesei JL6 increased by 18% compared with that of Rut C-30. β-Glucosidase, hemicellulase and pectinase activities of T. reesei JL6 were also higher. The former activity was 0.39 Uml(-1), while those of QM9414, MCG77, and Rut C-30 were 0.13, 0.11, and 0.16 Uml(-1), respectively. Pectinase and hemicellulase activities of JL6 were 5.4 and 15.6 Uml(-1), respectively, which were slightly higher than those of the parents. The effects of corn stover and wheat bran carbon sources on the cellulase production and growth curve of T. reesei JL6 were also investigated.

  13. [Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water].

    PubMed

    Pan, Neng; Hou, Zhen-An; Chen, Wei-Ping; Jiao, Wen-Tao; Peng, Chi; Liu, Wen

    2012-12-01

    The physicochemical properties of soils might be changed under the long-term reclaimed water irrigation. Its effects on soil biological activities have received great attentions. We collected surface soil samples from urban green spaces and suburban farmlands of Beijing. Soil microbial biomass carbon (SMBC), five types of soil enzyme activities (urease, alkaline phosphatase, invertase, dehydrogenase and catalase) and physicochemical indicators in soils were measured subsequently. SMBC and enzyme activities from green land soils irrigated with reclaimed water were higher than that of control treatments using drinking water, but the difference is not significant in farmland. The SMBC increased by 60.1% and 14.2% than those control treatments in 0-20 cm soil layer of green land and farmland, respectively. Compared with their respective controls, the activities of enzymes in 0-20 cm soil layer of green land and farmland were enhanced by an average of 36.7% and 7.4%, respectively. Investigation of SMBC and enzyme activities decreased with increasing of soil depth. Significantly difference was found between 0-10 cm and 10-20 cm soil layer in green land. Soil biological activities were improved with long-term reclaimed water irrigation in Beijing.

  14. Amadori products promote cellular senescence activating insulin-like growth factor-1 receptor and down-regulating the antioxidant enzyme catalase.

    PubMed

    Del Nogal-Ávila, María; Troyano-Suárez, Nuria; Román-García, Pablo; Cannata-Andía, Jorge B; Rodriguez-Puyol, Manuel; Rodriguez-Puyol, Diego; Kuro-O, Makoto; Ruiz-Torres, María P

    2013-07-01

    Activation of the insulin growth factor receptor-1 signaling pathways has been largely related to the aging process. Amadori products are produced in pathological conditions such as diabetes and aging, and are potentially involved in diabetic nephropathy or age-associated decline of renal function. We hypothesize that Amadori products induce senescence in primary human mesangial cells through the activation of IGF-1 receptor and investigate, in the present work, the intracellular mechanism involved after this activation. We treated cultured human mesangial cells with glycated albumin, one of the most abundant Amadori product, and senescence was assessed by determining the senescence associated β-galactosidase activity and the expression of the cell cycle regulators p53 and p21. We demonstrated that prolonged exposition (more than 24h) to glycated albumin induced senescence and, in parallel, incremented the release of IGF-1 and the activation of the IGF-1 receptor. Inhibition of the IGF-1 activation prevented the GA induced senescence. Activation of IGF-1R, after GA addition, promoted a reduction in the catalase content through the constitutive activation of Ras and erk1/2 proteins which were, in turn, responsible of the observed GA-induced senescence. In conclusion, we propose that the Amadori product, glycated albumin, promotes premature cell senescence in mesangial cells through the activation of the IGF-1 receptor and the subsequent reduction in the antioxidant enzyme catalase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass amount are sensitive to increased atmospheric CO2. We conclude that the more abundant available organics released by roots at elevated CO2 altered the ecological strategy of the soil microbial community specifically a shift to a higher contribution of fast-growing r-selected species was observed. These changes in functional structure of the soil microbial community may counterbalance higher C input into the soil under elevated atmospheric CO2 concentration.

  16. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  17. Crystallographic Analysis of Active Site Contributions to Regiospecificity in the Diiron Enzyme Toluene 4-Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.

    Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 andmore » A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their

  18. An evaluation of serum soluble CD30 levels and serum CD26 (DPPIV) enzyme activity as markers of type 2 and type 1 cytokines in HIV patients receiving highly active antiretroviral therapy

    PubMed Central

    Keane, N M; Price, P; Lee, S; Stone, S F; French, M A

    2001-01-01

    This study evaluates serum CD26 (dipeptidyl peptidase IV, DPPIV) enzyme activity and serum levels of soluble CD30 as markers of T1 and T2 cytokine environments in HIV patients who achieved immune reconstitution after highly active antiretroviral therapy (HAART). Patients who had experienced inflammatory disease associated with pre-existent opportunistic infections after HAART (immune restoration diseases, IRD) were considered separately. Serum sCD30 levels and CD26 (DPPIV) enzyme activity were compared with IFN-γ production by PBMC cultured with cytomegalovirus (CMV) antigen in controls and patient groups. High sCD30 levels were associated with low IFN-γ production after antigenic stimulation in control subjects and, to a lesser extent, in immune reconstituted HIV patients. There was no association between serum CD26 (DPPIV) enzyme activity and IFN-γ production or sCD30 levels. Serum sCD30 levels and CD26 (DPPIV) enzyme activity were significantly increased in immune reconstituted patients with high HIV viral loads. Patients who had experienced CMV retinitis as an IRD had significantly higher sCD30 levels than all other patient groups. Hence, high sCD30 levels may be a marker of a T2 cytokine environment in HIV patients with immune reconstitution and are associated with higher HIV viral loads and a history of CMV associated IRD. PMID:11678906

  19. Microbial Secondary Metabolite, Phlegmacin B1, as a Novel Inhibitor of Insect Chitinolytic Enzymes.

    PubMed

    Chen, Lei; Liu, Tian; Duan, Yanwei; Lu, Xinhua; Yang, Qing

    2017-05-17

    Periodic chitin remodeling during insect growth and development requires a synergistic action of two glycosyl hydrolase (GH) family enzymes, GH18 chitinase and GH20 β-N-acetylhexosaminidase (Hex). Inhibiting either or both of these enzymes is a promising strategy for pest control and management. In this study, OfChi-h (a GH18 chitinase) and OfHex1 (a GH20 Hex) from Ostrinia furnacalis were used to screen a library of microbial secondary metabolites. Phlegmacin B 1 was found to be the inhibitor of both OfChi-h and OfHex1 with K i values of 5.5 μM and 26 μM, respectively. Injection and feeding experiments demonstrated that phlegmacin B 1 has insecticidal effect on O. furnacalis's larvae. Phlegmacin B 1 was predicted to bind to the active pockets of both OfChi-h and OfHex1. Phlegmacin B 1 also showed moderate inhibitory activities against other bacterial and insect GH18 enzymes. This work provides an example of exploiting microbial secondary metabolites as potential pest control and management agents.

  20. Application of solid waste from anaerobic digestion of poultry litter in Agrocybe aegerita cultivation: mushroom production, lignocellulolytic enzymes activity and substrate utilization.

    PubMed

    Isikhuemhen, Omoanghe S; Mikiashvili, Nona A; Kelkar, Vinaya

    2009-06-01

    The degradation and utilization of solid waste (SW) from anaerobic digestion of poultry litter by Agrocybe aegerita was evaluated through mushroom production, loss of organic matter (LOM), lignocellulolytic enzymes activity, lignocellulose degradation and mushroom nutrients content. Among the substrate combinations (SCs) tested, substrates composed of 10-20% SW, 70-80% wheat straw and 10% millet was found to produce the highest mushroom yield (770.5 and 642.9 g per 1.5 kg of substrate). LOM in all SCs tested varied between 8.8 and 48.2%. A. aegerita appears to degrade macromolecule components (0.6-21.8% lignin, 33.1-55.2% cellulose and 14-53.9% hemicellulose) during cultivation on the different SCs. Among the seven extracellular enzymes monitored, laccase, peroxidase and CMCase activities were higher before fruiting; while xylanase showed higher activities after fruiting. A source of carbohydrates (e.g., millet) in the substrate is needed in order to obtain yield and biological efficiency comparable to other commercially cultivated exotic mushrooms.

  1. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  2. Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation*

    PubMed Central

    Habisov, Sabrina; Huber, Jessica; Ichimura, Yoshinobu; Akutsu, Masato; Rogova, Natalia; Loehr, Frank; McEwan, David G.; Johansen, Terje; Dikic, Ivan; Doetsch, Volker; Komatsu, Masaaki; Rogov, Vladimir V.; Kirkin, Vladimir

    2016-01-01

    The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/γ-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway. PMID:26929408

  3. Multiple allosteric sites are involved in the modulation of insulin-degrading-enzyme activity by somatostatin.

    PubMed

    Tundo, Grazia R; Di Muzio, Elena; Ciaccio, Chiara; Sbardella, Diego; Di Pierro, Donato; Polticelli, Fabio; Coletta, Massimo; Marini, Stefano

    2016-10-01

    Somatostatin is a cyclic peptide, released in the gastrointestinal system and the central nervous system, where it is involved in the regulation of cognitive and sensory functions, motor activity and sleep. It is a substrate of insulin-degrading enzyme (IDE), as well as a modulator of its activity and expression. In the present study, we have investigated the modulatory role of somatostatin on IDE activity at 37 °C and pH 7.3 for various substrates [i.e. insulin, β-amyloid (Aβ) 1-40 and bradykinin], aiming to quantitatively characterize the correlation between the specific features of the substrates and the regulatory mechanism. Functional data indicate that somatostatin, in addition to the catalytic site of IDE (being a substrate), is also able to bind to two additional exosites, which play different roles according to the size of the substrate and its binding mode to the IDE catalytic cleft. In particular, one exosite, which displays high affinity for somatostatin, regulates only the interaction of IDE with larger substrates (such as insulin and Aβ 1-40 ) in a differing fashion according to their various modes of binding to the enzyme. A second exosite, which is involved in the regulation of enzymatic processing by IDE of all substrates investigated (including a 10-25 amino acid long amyloid-like peptide, bradykinin and somatostatin itself, which had been studied previously), probably acts through the alteration of an 'open-closed' equilibrium. © 2016 Federation of European Biochemical Societies.

  4. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    NASA Astrophysics Data System (ADS)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  5. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites.

    PubMed

    Ribeiro, António J M; Holliday, Gemma L; Furnham, Nicholas; Tyzack, Jonathan D; Ferris, Katherine; Thornton, Janet M

    2018-01-04

    M-CSA (Mechanism and Catalytic Site Atlas) is a database of enzyme active sites and reaction mechanisms that can be accessed at www.ebi.ac.uk/thornton-srv/m-csa. Our objectives with M-CSA are to provide an open data resource for the community to browse known enzyme reaction mechanisms and catalytic sites, and to use the dataset to understand enzyme function and evolution. M-CSA results from the merging of two existing databases, MACiE (Mechanism, Annotation and Classification in Enzymes), a database of enzyme mechanisms, and CSA (Catalytic Site Atlas), a database of catalytic sites of enzymes. We are releasing M-CSA as a new website and underlying database architecture. At the moment, M-CSA contains 961 entries, 423 of these with detailed mechanism information, and 538 with information on the catalytic site residues only. In total, these cover 81% (195/241) of third level EC numbers with a PDB structure, and 30% (840/2793) of fourth level EC numbers with a PDB structure, out of 6028 in total. By searching for close homologues, we are able to extend M-CSA coverage of PDB and UniProtKB to 51 993 structures and to over five million sequences, respectively, of which about 40% and 30% have a conserved active site. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Increased Activity of Rhizosphere and Hyphosphere Enzymes under Elevated CO2 in a Loblolly Pine Stand

    NASA Astrophysics Data System (ADS)

    Meier, I.; Phillips, R.

    2012-12-01

    The stimulatory effect of elevated atmospheric CO2 under global climate change on forest productivity has been predicted to decrease over time as pools of available N in soil become depleted, but empirical support for such progressive N limitation has been lacking. Increased N acquisition from soil depleted in inorganic nitrogen requires stimulation of the microbial processing of organic N, possibly through increasing C supply to soil by plant roots or mycorrhizal hyphae. Increases in (mycorr)rhizosphere C fluxes could stimulate microbes to produce extra-cellular enzymes that release N from SOM, feeding back from soil microsites to ecosystem-scale processes. We investigated the influence of elevated CO2 on root exudation and soil enzyme activity at the Duke Forest FACE site, USA, where loblolly pine (Pinus taeda L.) stands have been exposed to elevated CO2 for 14 years and N fertilization for five years. In each plot, root boxes containing acetate windows were installed in 2008. Two years after installation, we collected soils adjacent to root tips (the rhizosphere), hyphal tips (the hyphosphere) and bulk soil. We measured in situ root exudation rates from intact pine roots. Study objectives were to analyze (i) the influence of atmospheric CO2 on root exudation and extra-cellular enzyme activities, (ii) the influence of soil N availability in regulating these activities, and (iii) the relationship between the activities of enzymes involved in N cycling in soils and gross N transformations at soil microsites. Elevated atmospheric CO2 significantly increased the activity of β-1-4-N-acetylglucosaminidase (NAG) in the rhizosphere by almost 2.5 times (39 to 95 nmol h-1 g-1), and 1.6fold in the hyphosphere relative to ambient plots. NAG is an enzyme involved in the degradation of chitin from the cell walls of soil organisms, releasing absorbable forms of nitrogen. The activity of peroxidase, which degrades aromatic C compounds of SOM, increased significantly in the

  7. Rotenone Induction of Hydrogen Peroxide Inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E Pathways, Leading to Neuronal Apoptosis

    PubMed Central

    Zhou, Qian; Liu, Chunxiao; Liu, Wen; Zhang, Hai; Zhang, Ruijie; Liu, Jia; Zhang, Jinfei; Xu, Chong; Liu, Lei; Huang, Shile; Chen, Long

    2015-01-01

    Rotenone, a common pesticide and inhibitor of mitochondrial complex I, induces loss of dopaminergic neurons and consequential aspects of Parkinson’s disease (PD). However, the exact mechanism of rotenone neurotoxicity is not fully elucidated. Here, we show that rotenone induced reactive oxygen species (ROS), leading to apoptotic cell death in PC12 cells and primary neurons. Pretreatment with catalase (CAT), a hydrogen peroxide-scavenging enzyme, attenuated rotenone-induced ROS and neuronal apoptosis, implying hydrogen peroxide (H2O2) involved, which was further verified by imaging intracellular H2O2 using a peroxide-selective probe H2DCFDA. Using thenoyltrifluoroacetone (TTFA), antimycin A, or Mito-TEMPO, we further demonstrated rotenone-induced mitochondrial H2O2-dependent neuronal apoptosis. Rotenone dramatically inhibited mTOR-mediated phosphorylation of S6K1 and 4E-BP1, which was also attenuated by CAT in the neuronal cells. Of interest, ectopic expression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 partially prevented rotenone-induced H2O2 and cell apoptosis. Furthermore, we noticed that rotenone-induced H2O2 was linked to the activation of caspase-3 pathway. This was evidenced by the finding that pretreatment with CAT partially blocked rotenone-induced cleavages of caspase-3 and poly (ADP-ribose) polymerase. Of note, zVAD-fmk, a pan caspase inhibitor, only partially prevented rotenone-induced apoptosis in PC12 cells and primary neurons. Expression of mTOR-wt, S6K1-ca, or silencing 4E-BP1 potentiated zVAD-fmk protection against rotenone-induced apoptosis in the cells. The results indicate that rotenone induction of H2O2 inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, resulting in caspase-dependent and -independent apoptosis in neuronal cells. Our findings suggest that rotenone-induced neuronal loss in PD may be prevented by activating mTOR signaling and/or administering antioxidants. PMID:25304210

  8. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    DOE PAGES

    Jian, Siyang; Li, Jianwei; Chen, Ji; ...

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less

  9. Safety assessment of enzyme-containing personal cleansing products: exposure characterization and development of IgE antibody to enzymes after a 6-month use test.

    PubMed

    Kelling, C K; Bartolo, R G; Ertel, K D; Smith, L A; Watson, D D; Sarlo, K

    1998-02-01

    Enzyme-containing personal cleansing products were being considered for the consumer market. Although enzymes have been marketed safely for many years as ingredients in laundry products, their use in a personal cleansing application represented a new type of exposure for consumers that was not supported by the historical safety data. An exposure assessment and additional safety data would be needed before marketing to ensure consumer safety. The work in this paper was designed to evaluate the potential for inhalation exposure to the enzyme during use of this new product while showering. Then a clinical trial was conducted to determine whether or not the level, duration, and routes of exposure encountered during use of this product would induce a Type I sensitization response to the enzyme. Exposure was assessed during normal showering activities by collecting air samples with both high volume and personal samplers and quantitating enzyme levels with an ELISA. To assess the potential for sensitization, panelists were asked to use a prototype protease-containing bar product for all personal cleansing tasks and to keep a use diary reporting any associated symptoms. Physical and dermatologic examinations and skin prick tests with enzyme were conducted before the test commenced and at 2-month intervals. Exposure assessment results showed that airborne enzyme levels were primarily dependent on the concentration of the enzyme in the personal cleansing product. Mean values for total airborne enzyme protein ranged from 5.7 to 11.8 ng/m3 when enzyme concentration, time of use, and measurement technique remained constant. After 6 months of at-home product use, four of 61 test subjects using the enzyme-containing bar had positive skin prick test responses when tested with the enzyme. The skin prick test data were supplemented with serologic analyses, which detected IgE specific for the protease enzyme. None of these subjects showed any clinical symptoms indicative of allergic

  10. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhead, A.D.; Achey, P.M.

    1981-06-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biological purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in preserving the integritymore » of embryonic DNA during this free-living stage.« less

  11. Photoreactivating enzyme activity in the rat tapeworm, Hymenolepis diminuta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhead, A.D.; Achey, P.M.

    1981-01-01

    There has been considerable speculation about the occurrence of photoreactivating enzyme in different organisms and about its biologic purpose. We have developed a simple, sensitive assay for estimating pyrimidine dimers in DNA which is useful in making a rapid survey for the presence of the enzyme. Using this method, we have found photoreactivating enzyme activity in the tissues of the rat tapeworm, Hymenolepis diminuta. This parasite spends the majority of its life span in the bodies of its definitive or intermediate hosts, but a period is spent externally. We suggest that photoreactivating enzyme may be important in perserving the integritymore » of embryonic DNA during this free-living stage.« less

  12. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases

    PubMed Central

    2014-01-01

    Background Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Results Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. Conclusion The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw. PMID:24766728

  13. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases.

    PubMed

    Badhan, Ajay; Wang, Yuxi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim

    2014-04-26

    Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw.

  14. Functional screening of pharmacological chaperones via restoration of enzyme activity upon denaturation.

    PubMed

    Shanmuganathan, Meera; Britz-McKibbin, Philip

    2012-10-02

    Pharmacological chaperones (PCs) are small molecules that stabilize and promote protein folding. Enzyme inhibition is widely used for PC selection; however, it does not accurately reflect chaperone activity. We introduce a functional assay for characterization of PCs based on their capacity to restore enzyme activity that is abolished upon chemical denaturation. Dose-dependent activity curves were performed as a function of urea to assess the chaperone potency of various ligands to β-glucocerebrosidase as a model system. Restoration of enzyme activity upon denaturation allows direct screening of PCs for treatment of genetic disorders associated with protein deficiency, such as Gaucher disease.

  15. Characterization of the receptor-destroying enzyme activity from infectious salmon anaemia virus.

    PubMed

    Kristiansen, Marianne; Frøystad, Marianne K; Rishovd, Anne Lise; Gjøen, Tor

    2002-11-01

    Infectious salmon anaemia virus (ISAV) infects cells via the endocytic pathway and, like many other enveloped viruses, ISAV contains a receptor-destroying enzyme. We have analysed this acetylesterase activity with respect to substrate specificity, enzyme kinetics, inhibitors, temperature and pH stability. The ISAV acetylesterase was inhibited by di-isopropyl fluorophosphate (DFP) in a dose-dependent fashion but not by other known hydrolase inhibitors, suggesting that a serine residue is part of the active site. The pH optimum of the enzyme was in the range 7.5-8.0 and the enzymatic activity was lessened at temperatures above 40 degrees C. The effect of DFP on agglutination/elution of erythrocytes by ISAV demonstrated that the acetylesterase activity is the bona fide receptor-destroying enzyme. A haemadsorption assay was used to analyse whether the esterase was active on the surface of infected cells or not.

  16. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    NASA Astrophysics Data System (ADS)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  17. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes.

    PubMed

    Vidal-Melgosa, Silvia; Pedersen, Henriette L; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G T

    2015-04-03

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A New Versatile Microarray-based Method for High Throughput Screening of Carbohydrate-active Enzymes*

    PubMed Central

    Vidal-Melgosa, Silvia; Pedersen, Henriette L.; Schückel, Julia; Arnal, Grégory; Dumon, Claire; Amby, Daniel B.; Monrad, Rune Nygaard; Westereng, Bjørge; Willats, William G. T.

    2015-01-01

    Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths. PMID:25657012

  19. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis

    Treesearch

    Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov

    2015-01-01

    Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...

  20. Nutrients removal and substrate enzyme activities in vertical subsurface flow constructed wetlands for mariculture wastewater treatment: Effects of ammonia nitrogen loading rates and salinity levels.

    PubMed

    Li, Meng; Liang, Zhenlin; Callier, Myriam D; Roque d'orbcastel, Emmanuelle; Sun, Guoxiang; Ma, Xiaona; Li, Xian; Wang, Shunkui; Liu, Ying; Song, Xiefa

    2018-06-01

    This study aims to investigate the effects of ammonia nitrogen loading rates and salinity levels on nutrients removal rates and substrate enzyme activities of constructed wetland (CW) microcosms planted with Salicornia bigelovii treating mariculture wastewater. Activities of urease (UA), dehydrogenase (DA), protease (PrA) and phosphatase (PA) were considered. Using principal component analysis (PCA), nutrient removal index (NRI) and enzyme activity index (EAI) were developed to evaluate the effects. The results revealed that increasing ammonia nitrogen loading rates had positive effects on nitrogen removal rates (i.e. NH 4 -N and DIN) and enhanced substrate enzyme activities. Compared with low salinity (i.e. 15 and 22), high salinity levels (i.e. 29 and 36) enhanced nutrients removal rates, DA and UA, but weaken PA and PrA. In conclusion, CW microcosms with Salicornia bigelovii can be used for the removal of nutrients under a range of ammonia nitrogen loadings and high salinity levels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. HPLC-DAD Analysis and In-Vitro Property of Polyphenols Extracts from (Solanum Aethiopium) Fruits on α -Amylase, α -Glucosidase and Angiotensin - 1- Converting Enzyme Activities

    PubMed Central

    Nwanna, E. E; Ibukun, E. O; Oboh, G.; Ademosun, A. O.; Boligon, A. A.; Athayde, M.

    2014-01-01

    AIM: Garden egg (Solanum aethiopium) is an edible fruits vegetable with  different species.This study investigated characterisation and the effect of the phenolics extracts from S. aethiopium species with enzymes linked with type -2-diabetes (α-amylase and α-glucosidase) and hypertension [Angiotensin-1-converting enzyme (ACE)]. METHODS: Fresh samples of the 5 species of the garden egg namely, [Solanum gilo (PW), Solanum torvum (TWS), Solanum kumba (PGR), Solanum incanum (GSB), and Solanum indicum (WSB)] were oven-dried at 50°C and milled into flour. The aqueous extracts were prepared (1:50 w/v). The phenolic contents (total phenol and total flavonoid), vitamin C and 1,1-diphenyl–2-picrylhydrazyl (DPPH), the antioxidant activities of the extracts were evaluated. The ability of the extracts to inhibit diabetes enzymes in rat pancreas as well as the inhibition of angiotensin-1-converting (ACE) enzyme in lungs homogenates in vitro were investigated. Furthermore, the fruits polyphenols were identified and quantified using HPLC-DAD. RESULTS: The phenolic contents ranged from 2.70-3.76 mgGAE/g, while there were no significant (P>0.05) differences in their flavonoid content and ability to reduce Fe3+ to Fe2+. The vitamin C contents of the species ranged from 4.01-6.52 mg/ml. The extracts scavenged DPPH in a dose dependent manner with the IC50 values ranging from 3.23-4.20 mg/ml. Furthermore, the extracts showed strong inhibition of α-glucosidase, mild inhibition of α-amylase and strong inhibition of ACE activities. CONCLUSION: This study showed that the inhibition of the key enzymes relevant to type-2 diabetes and hypertension could be part of the mechanisms by which garden egg manage/prevent the degenerative conditions. PMID:25598760

  2. The Saccharomyces cerevisiae Lipin Homolog is a Mg2+-dependent Phosphatidate Phosphatase Enzyme*

    PubMed Central

    Han, Gil-Soo; Wu, Wen-I; Carman, George M.

    2006-01-01

    Mg2+-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and Pi. In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg2+-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G.M. (1989) J. Biol. Chem. 264, 8641–8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg2+-dependent PA phosphatase activity, whereas the pah1Δ mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg2+-dependent PA phosphatase enzyme, and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA, and had reduced amounts of diacylglycerol and its derivative triacylglycerol. The PAH1-encoded Mg2+-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg2+-dependent PA phosphatase enzyme. PMID:16467296

  3. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis.

    PubMed

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-03-24

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes.

  4. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers.

    PubMed

    Awad, Yasser Mahmoud; Lee, Sang Soo; Kim, Ki-Hyun; Ok, Yong Sik; Kuzyakov, Yakov

    2018-05-01

    Biochar (BC) and polymers are cost-effective additives for soil quality improvement and long-term sustainability. The additional use of the oyster shells (OS) powder in BC- or polymer-treated soils is recommended as a nutrient source, to enhance aggregation and to increase enzyme activities. The effects of soil treatments (i.e., BC (5 Mg ha -1 ) and polymers (biopolymer at 0.4 Mg ha -1 or polyacrylamide at 0.4 Mg ha -1 ) with or without the OS (1%)) on the short-term changes were evaluated based on a 30-day incubation experiment with respect to several variables (e.g., CO 2 release, NH 4 + and NO 3 - concentrations, aggregate-size classes, and enzyme activities in an agricultural Luvisol). The BC and BP with the addition of OS increased the portion of microaggregates (<0.25 mm) relative to the control soil without any additions, while PAM alone increased the portion of large macroaggregates (1-2 mm). Concentrations of NO 3 - also increased in soils treated with OS, OS + BC, and OS + BP as result of the increased chitinase and leucine aminopeptidase activities. The BC and BP when treated with the additional OS had significant short-term impacts on N mineralization without affecting C mineralization in soil. Consequently, the combination of BC or BP with OS was seen to accelerate N turnover without affecting C turnover (and related C losses) from soil. As such, the addition of these additives contributed considerably to the improvement of soil fertility and C sequestration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. RP-HPLC-fluorescence analysis of aliphatic aldehydes: application to aldehyde-generating enzymes HACL1 and SGPL1

    PubMed Central

    Mezzar, Serena; de Schryver, Evelyn; Van Veldhoven, Paul P.

    2014-01-01

    Long-chain aldehydes are commonly produced in various processes, such as peroxisomal α-oxidation of long-chain 3-methyl-branched and 2-hydroxy fatty acids and microsomal breakdown of phosphorylated sphingoid bases. The enzymes involved in the aldehyde-generating steps of these processes are 2-hydroxyacyl-CoA lyase (HACL1) and sphingosine-1-phosphate lyase (SGPL1), respectively. In the present work, nonradioactive assays for these enzymes were developed employing the Hantzsch reaction. Tridecanal (C13-al) and heptadecanal (C17-al) were selected as model compounds and cyclohexane-1,3-dione as 1,3-diketone, and the fluorescent derivatives were analyzed by reversed phase (RP)-HPLC. Assay mixture composition, as well as pH and heating, were optimized for C13-al and C17-al. Under optimized conditions, these aldehydes could be quantified in picomolar range and different long-chain aldehyde derivatives were well resolved with a linear gradient elution by RP-HPLC. Aldehydes generated by recombinant enzymes could easily be detected via this method. Moreover, the assay allowed to document activity or deficiency in tissue homogenates and fibroblast lysates without an extraction step. In conclusion, a simple, quick, and cheap assay for the study of HACL1 and SGPL1 activities was developed, without relying on expensive mass spectrometric detectors or radioactive substrates. PMID:24323699

  6. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities.

    PubMed

    Xiong, Jia; Grace, Mary H; Esposito, Debora; Komarnytsky, Slavko; Wang, Fei; Lila, Mary Ann

    2017-11-01

    The present study was designed to characterize the polyphenols isolated from Acacia mearnsii bark crude extract (B) and fractions (B1-B7) obtained by high-speed counter-current chromatography (HSCCC) and evaluate their anti-inflammatory and carbolytic enzymes (α-glucosidase and α-amylase) inhibitory activities. Fractions B4, B5, B6, B7 (total phenolics 850.3, 983.0, 843.9, and 572.5 mg·g -1 , respectively; proanthocyanidins 75.7, 90.5, 95.0, and 44.8 mg·g -1 , respectively) showed significant activities against reactive oxygen species (ROS), nitric oxide (NO) production, and expression of pro-inflammatory genes interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line RAW 264.7. All the extracts suppressed α-glucosidase and α-amylase activities, two primary enzymes responsible for carbohydrate digestion. A. mearnsii bark samples possessed significantly stronger inhibitory effects against α-glucosidase enzyme (IC 50 of 0.4-1.4 μg·mL -1 ) than the pharmaceutical acarbose (IC 50 141.8 μg·mL -1 ). B6 and B7 (IC 50 17.6 and 11.7 μg·mL -1 , respectively) exhibited α-amylase inhibitory activity as efficacious as acarbose (IC 50 15.4 μg·mL -1 ). Moreover, B extract, at 25 µg·mL -1 , significantly decreased the non-mitochondrial oxidative burst that is often associated with inflammatory response in human monocytic macrophages. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis).

    PubMed

    Green, Sol A; Chen, Xiuyin; Nieuwenhuizen, Niels J; Matich, Adam J; Wang, Mindy Y; Bunn, Barry J; Yauk, Yar-Khing; Atkinson, Ross G

    2012-03-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.

  8. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis)

    PubMed Central

    Green, Sol A.; Chen, Xiuyin; Nieuwenhuizen, Niels J.; Matich, Adam J.; Wang, Mindy Y.; Bunn, Barry J.; Yauk, Yar-Khing; Atkinson, Ross G.

    2012-01-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers. PMID:22162874

  9. N-linked oligosaccharides on chondroitin 6-sulfotransferase-1 are required for production of the active enzyme, Golgi localization, and sulfotransferase activity toward keratan sulfate.

    PubMed

    Yusa, Akiko; Kitajima, Ken; Habuchi, Osami

    2006-07-21

    We have shown previously that purified chondroitin 6-sulfotransferase-1 (C6ST-1) was a glycoprotein abundant in N-linked oligosaccharides and could sulfate both chondroitin (C6ST activity) and keratan sulfate (KSST activity); however, functional roles of the N-glycans have remained unclear. In the present study, we show essential roles of N-glycans attached to C6ST-1 in the generation of the active enzyme and in its KSST activity. Treatment with tunicamycin of COS-7 cells transfected with C6ST-1 cDNA totally abolished production of the active C6ST-1. A nearly complete removal of N-glycans of the recombinant C6ST-1 by peptide N-glycosidase F increased the C6ST activity but decreased the KSST activity. Among six potential N-glycosylation sites, deletion of the fourth or sixth site from the amino terminus inhibited production of the active C6ST-1, whereas deletion of the fifth site resulted in a marked loss of the KSST activity. Wild-type recombinant C6ST-1 showed a typical Golgi localization, whereas M-4 recombinant C6ST-1, in which the fourth N-glycosylation site was deleted, colocalized with calnexin, an endoplasmic reticulum-resident protein. Unlike wildtype recombinant C6ST-1, M-4 recombinant C6ST-1 showed a weak affinity toward wheat germ agglutinin and was converted completely to the nonglycosylated form by endoglycosidase H. These observations suggest that N-glycan attached to the fourth N-glycosylation site may function in the proper processing of N-glycans required for the Golgi localization, thereby causing the production of the active C6ST-1, and that N-glycan attached to the fifth N-glycosylation site may contribute to the KSST activity of C6ST-1.

  10. Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues.

    PubMed

    Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F

    2018-05-26

    Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an

  11. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  12. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  13. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  14. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  15. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  16. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  17. Regulation of 11 beta-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol.

    PubMed

    Gomez-Sanchez, Elise P; Ganjam, Venkataseshu; Chen, Yuan Jian; Liu, Ying; Zhou, Ming Yi; Toroslu, Cigdem; Romero, Damian G; Hughson, Michael D; de Rodriguez, Angela; Gomez-Sanchez, Celso E

    2003-08-01

    The 11beta-hydroxysteroid dehydrogenase (11betaHSD) type 1 (11betaHSD1) enzyme is an NADP+-dependent oxidoreductase, usually reductase, of major glucocorticoids. The NAD+-dependent type 2 (11betaHSD2) enzyme is an oxidase that inactivates cortisol and corticosterone, conferring extrinsic specificity of the mineralocorticoid receptor for aldosterone. We reported that addition of a reducing agent to renal homogenates results in the monomerization of 11betaHSD2 dimers and a significant increase in NAD+-dependent corticosterone conversion. Estrogenic effects on expression, dimerization, and activity of the kidney 11betaHSD1 and -2 enzymes are described herein. Renal 11betaHSD1 mRNA and protein expressions were decreased to very low levels by estradiol (E2) treatment of both intact and castrated male rats; testosterone had no effect. NADP+-dependent enzymatic activity of renal homogenates from E2-treated rats measured under nonreducing conditions was less than that of homogenates from intact animals. Addition of 10 mM DTT to aliquots from these same homogenates abrogated the difference in NADP+-dependent activity between E2-treated and control rats. In contrast, 11betaHSD2 mRNA and protein expressions were significantly increased by E2 treatment. There was a marked increase in the number of juxtamedullary proximal tubules stained by the antibody against 11betaHSD2 after the administration of E2. Notwithstanding, neither the total corticosterone and 11-dehydrocorticosterone excreted in the urine nor their ratio differed between E2- and vehicle-treated rats. NAD+-dependent enzymatic activity in the absence or presence of a reducing agent demonstrated that the increase in 11betaHSD2 protein was not associated with an increase in in vitro activity unless the dimers were reduced to monomers.

  18. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies.

    PubMed

    Alım, Zuhal; Kılıç, Deryanur; Demir, Yeliz

    2018-05-09

    Paraoxonase 1 (PON1: EC 3.1.8.1) is a vital antioxidant enzyme against mainly atherosclerosis and many other diseases associated with oxidative stress. Thus, studies related to PON1 have an important place in the pharmacology. In this study, we aimed to evaluate the in vitro inhibition effects of some indazoles on the activity of human PON1. PON1 was purified from human serum with a specific activity of 5000 U/mg and 13.50% yield by using simple chromatographic methods. The indazoles showed K i values in a range of 26.0 ± 3.00-111 ± 31.0 μM against hPON1. All these indazoles exhibited competitive inhibition. In addition, molecular docking studies were performed in order to assess the probable binding mechanisms into the active site of hPON1. Molecular modeling studies confirmed our results. Inhibition of PON1 by indazoles supplies a verification to further consideration of limitation dosage of indazole molecule groups as drug.

  19. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification

    PubMed Central

    Campbell, Eric L.; MacManus, Christopher F.; Kominsky, Douglas J.; Keely, Simon; Glover, Louise E.; Bowers, Brittelle E.; Scully, Melanie; Bruyninckx, Walter J.; Colgan, Sean P.

    2010-01-01

    Resolvin-E1 (RvE1) has been demonstrated to promote inflammatory resolution in numerous disease models. Given the importance of epithelial cells to coordination of mucosal inflammation, we hypothesized that RvE1 elicits an epithelial resolution signature. Initial studies revealed that the RvE1-receptor (ChemR23) is expressed on intestinal epithelial cells (IECs) and that microarray profiling of cells exposed to RvE1 revealed regulation of inflammatory response gene expression. Notably, RvE1 induced intestinal alkaline phosphatase (ALPI) expression and significantly enhanced epithelial ALPI enzyme activity. One role recently attributed to ALPI is the detoxification of bacterial LPS. In our studies, RvE1-exposed epithelia detoxified LPS (assessed by attenuation of NF-κB signaling). Furthermore, in epithelial-bacterial interaction assays, we determined that ALPI retarded the growth of Escherichia coli. To define these features in vivo, we used a murine dextran sulfate sodium (DSS) model of colitis. Compared with vehicle controls, administration of RvE1 resulted in significant improvement of disease activity indices (e.g., body weight, colon length) concomitant with increased ALPI expression in the intestinal epithelium. Moreover, inhibition of ALPI activity resulted in increased severity of colitis in DSS-treated animals and partially abrogated the protective influence of RvE1. Together, these data implicate a previously unappreciated role for ALPI in RvE1-mediated inflammatory resolution. PMID:20660763

  20. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    PubMed

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.