Science.gov

Sample records for activating flux plasma

  1. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  2. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction.

    PubMed

    Forder, J; Scriabine, A; Rasmussen, H

    1985-11-01

    Isolated perfused rabbit ear arteries contract when treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of the calcium-activated, phospholipid-dependent protein kinase or C-kinase. Under conditions where the calcium concentration in the perfusate is 1.5 mM and the potassium concentration is 4.8 mM, there is a latent period of 70 +/- 19 min (mean +/- S.E.M., n = 10) between TPA addition and the onset of the contractile response. Once initiated, the contractile response is progressive and sustained. When perfusion conditions are altered in such a way as to modify calcium flux across the plasma membrane (i.e., raising the extracellular calcium concentration to 2.5 mM Ca++, raising the extracellular potassium concentration to 10 mM, and/or preincubating the tissues in media containing 100 nM Bay K 8644, a potent calcium channel agonist), the latency period between TPA addition and initiation of the contractile response is significantly reduced (2.5 mM Ca++, 37 +/- 7 min; 10 mM K+ and 2.5 mM Ca++, 11 +/- 3 min; 100 nM Bay K 8644 and 1.5 mM Ca++, 20 +/- 7 min; 100 nM Bay K 8644 and 2.5 mM Ca2+, 8.5 +/- 1.7 min; 10 mM K+ and 100 nM Bay K 8644, 11 +/- 5 min). Likewise, the combination of 2.5 mM calcium, 100 nM Bay K 8644, and 3.3 microM ouabain results in a contractile response 4.5 +/- 2.0 min after TPA addition (means +/- S.E.M., n = 4). Control tissues (absence of TPA addition) run simultaneously show no contractile responses to the various Ca++ flux regulators even after 90 min of incubation.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Magnetic Flux Compression in Plasmas

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.

    2012-10-01

    Magnetic flux compression (MFC) as a method for producing ultra-high pulsed magnetic fields had been originated in the 1950s by Sakharov et al. at Arzamas in the USSR (now VNIIEF, Russia) and by Fowler et al. at Los Alamos in the US. The highest magnetic field produced by explosively driven MFC generator, 28 MG, was reported by Boyko et al. of VNIIEF. The idea of using MFC to increase the magnetic field in a magnetically confined plasma to 3-10 MG, relaxing the strict requirements on the plasma density and Lawson time, gave rise to the research area known as MTF in the US and MAGO in Russia. To make a difference in ICF, a magnetic field of ˜100 MG should be generated via MFC by a plasma liner as a part of the capsule compression scenario on a laser or pulsed power facility. This approach was first suggested in mid-1980s by Liberman and Velikovich in the USSR and Felber in the US. It has not been obvious from the start that it could work at all, given that so many mechanisms exist for anomalously fast penetration of magnetic field through plasma. And yet, many experiments stimulated by this proposal since 1986, mostly using pulsed-power drivers, demonstrated reasonably good flux compression up to ˜42 MG, although diagnostics of magnetic fields of such magnitude in HED plasmas is still problematic. The new interest of MFC in plasmas emerged with the advancement of new drivers, diagnostic methods and simulation tools. Experiments on MFC in a deuterium plasma filling a cylindrical plastic liner imploded by OMEGA laser beam led by Knauer, Betti et al. at LLE produced peak fields of 36 MG. The novel MagLIF approach to low-cost, high-efficiency ICF pursued by Herrmann, Slutz, Vesey et al. at Sandia involves pulsed-power-driven MFC to a peak field of ˜130 MG in a DT plasma. A review of the progress, current status and future prospects of MFC in plasmas is presented.

  4. Observations of Plasma Waves in the Colliding Jet Region of a 3D Magnetic Flux Rope Flanked by Two Active Reconnection X Lines at the Subsolar Magnetopause

    NASA Astrophysics Data System (ADS)

    Oieroset, M.; Sundkvist, D. J.; Chaston, C. C.; Phan, T. D.; Mozer, F.; McFadden, J. P.; Angelopoulos, V.; Andersson, L.; Eastwood, J. P.

    2014-12-01

    We have performed a detailed analysis of plasma and wave observations in a 3D magnetic flux rope encountered by the THEMIS spacecraft at the subsolar magnetopause. The extent of the flux rope was ˜270 ion skin depths in the outflow direction, and it was flanked by two active reconnection X lines producing colliding plasma jets in the flux rope core where ion heating and suprathermal electrons were observed. The colliding jet region was highly dynamic and characterized by the presence of high-frequency waves such as ion acoustic-like waves, electron holes, and whistler mode waves near the flux rope center and low-frequency kinetic Alfvén waves over a larger region. We will discuss possible links between these waves and particle heating.

  5. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  6. The Fluxes-1 and -2 active experiments: Investigation of plasma jet dynamics and interactions with the ionosphere

    NASA Astrophysics Data System (ADS)

    Zetzer, J. I.; Gavrilov, B. G.; Kiselev, Yu. N.; Rybakov, V. A.; Gritskiv, V.; Romanovsky, Yu. A.; Erlandson, R. E.; Meng, C. I.; Stoyanov, B. J.

    1998-11-01

    This paper presents an overview of two Russian-American active geophysical rocket experiments, Fluxus-1 and Fluxus-2, designed to study the interaction of plasma jets with the ionosphere and magnetosphere. These active experiments used specially designed explosive type shaped-charge generator (ETG) that produces a 3-MJ aluminum plasma jet without the aid of solar illumination. The jet was injected nearly parallel to the magnetic field at an altitude of 140 km towards an instrumented payload located 130 m away. The plasma jet density exceeded 1 × 109 ions/cm-3 and produced over a 50% reduction in magnetic field strength due to a diamagnetic depression. The experiment was also observed using ground-based visible sensors, and space-based ultraviolet, visible, and infrared sensors on the Midcourse Space Experiment (MSX). It was found that the plasma jet was quickly stopped due to collisions with the atmosphere and formed a slowing moving (100 m/s) plasma cloud that was observed for up to 3 minutes using visible sensors.'

  7. Plasma flux-dependent lipid A deactivation

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Hsu, Cheng-Che; Ahmed, Musahid; Liu, Suet Yi; Fang, Yigang; Seog, Joonil; Oehrlein, Gottlieb S.; Graves, David B.

    2014-06-01

    This paper reports the influence of gas plasma flux on endotoxin lipid A film deactivation. To study the effect of the flux magnitude of reactive species, a modified low-pressure inductively coupled plasma (ICP) with O radical flux ˜1016 cm-2 s-1 was used. After ICP exposures, it was observed that while the Fourier transform infrared absorbance of fatty chains responsible for the toxicity drops by 80% through the film, no obvious film endotoxin deactivation is seen. This is in contrast to that previously observed under low flux exposure conducted in a vacuum beam system: near-surface only loss of fatty chains led to significant film deactivation. Secondary ion mass spectrometry characterization of changes at the film surface did not appear to correlate with the degree of deactivation. Lipid A films need to be nearly completely removed in order to detect significant deactivation under high flux conditions. Additional high reactive species flux experiments were conducted using an atmospheric pressure helium plasma jet and a UV/ozone device. Exposure of lipid A films to reactive species with these devices showed similar deactivation behaviour. The causes for the difference between low and high flux exposures may be due to the nature of near-surface structural modifications as a function of the rate of film removal.

  8. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  9. Rapid flux transport and plasma sheet reconfiguration

    NASA Astrophysics Data System (ADS)

    Schödel, R.; Nakamura, R.; Baumjohann, W.; Mukai, T.

    2001-05-01

    On the basis of 3 1/2 years of Geotail data we examine typical plasma sheet reconfigurations that are observed during rapid flux transport events (RFTs) in the central plasma sheet. RFTs are bursts of rapid earthward or tailward plasma flow with a large flux transport rate, EC=[(VXBZ)2+(VYBZ)2]1/2>2mVm-1. A superposed epoch analysis shows that earthward RFTs are related to nonadiabatic heating, dipolarization, and thickening of the plasma sheet, features typically seen during substorm expansion phase. The average earthward velocity component of the RFTs decreases toward Earth, whereas the average convection electric field, VXBZ, is practically independent of radial distance. Earthward RFTs show characteristics of bubbles, i.e., flux tubes with lower ion density and slightly higher magnetic field strength than the surrounding medium. Tailward RFTs beyond a radial distance of ~20RE can be associated either with a northward or a southward magnetic field, and their signatures show that they are probably related to the leading and trailing edges of tailward ejected plasmoids. Inside of 20RE, yet another type of tailward RFTs with BZ>0 can be observed. These events are possibly signatures of vortices or rebouncing flows in the near-Earth plasma sheet.

  10. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  11. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  12. Explosive Flux Compression: 50 Years of Los Alamos Activities

    SciTech Connect

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  13. Explosive Flux Compression:. 50 Years of LOS Alamos Activities

    NASA Astrophysics Data System (ADS)

    Fowler, C.; Thomson, D.; Garn, W.

    2004-11-01

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  14. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    NASA Astrophysics Data System (ADS)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  15. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  16. Explosive instability and erupting flux tubes in a magnetized plasma

    PubMed Central

    Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.

    2015-01-01

    The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193

  17. Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Slavin, James A.; Raines, Jim M.; Zurbuchen, Thomas H.; Anderson, Brian J.; Korth, Haje; Baker, Daniel N.; Solomon, Sean C.

    2013-11-01

    from the Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft during 40 orbits about Mercury are used to characterize the plasma depletion layer just exterior to the planet's dayside magnetopause. A plasma depletion layer forms at Mercury as a result of piled-up magnetic flux that is draped around the magnetosphere. The low average upstream Alfvénic Mach number (MA ~3-5) in the solar wind at Mercury often results in large-scale plasma depletion in the magnetosheath between the subsolar magnetopause and the bow shock. Flux pileup is observed to occur downstream under both quasi-perpendicular and quasi-parallel shock geometries for all orientations of the interplanetary magnetic field (IMF). Furthermore, little to no plasma depletion is seen during some periods with stable northward IMF. The consistently low value of plasma β, the ratio of plasma pressure to magnetic pressure, at the magnetopause associated with the low average upstream MA is believed to be the cause for the high average reconnection rate at Mercury, reported to be nearly 3 times that observed at Earth. Finally, a characteristic depletion length outward from the subsolar magnetopause of ~300 km is found for Mercury. This value scales among planetary bodies as the average standoff distance of the magnetopause.

  18. Heat flux measurement in a high enthalpy plasma flow

    NASA Astrophysics Data System (ADS)

    Löhle, Stefan; Battaglia, Jean-Luc; Gardarein, Jean-Laurent; Jullien, Pierre; van Ootegem, Bruno

    2008-11-01

    It is a widely used approach to measure heat flux in harsh environments like high enthalpy plasma flows, fusion plasma and rocket motor combustion chambers based on solving the inverse heat conduction problem in a semi-infinite environment. This approach strongly depends on model parameters and geometrical aspects of the sensor design. In this work the surface heat flux is determined by solving the inverse heat conduction problem using an identified system as a direct model. The identification of the system is performed using calibration measurements with modern laser technique and advanced data handling. The results of the identified thermo-physical system show that a non-integer model appears most adapted to this particular problem. It is concluded that the new method improves the heat flux sensor significantly and furthermore extend its application to very short measurement times.

  19. On the Magnetic Flux Conservation in the Partially Ionzied Plasma

    NASA Astrophysics Data System (ADS)

    Tsap, Yu.; Kopylova, Yu.

    2014-12-01

    The Ohm, Hall, and ambipolar diffusions in the partially ionized plasma are considered. It has been shown that the statement of Pandey and Wardle that only the Ohm diffusion is capable to decrease the magnetic flux is not sufficiently correct due to the formal dependence of the magnetic diffusion on a selected frame of reference. Thes ignificance of understanding of the physical nature for the dissipation and diffusion of the magnetic field in the partially ionized plasma as well as consequences of obtained results are discussed.

  20. Geodesic acoustic mode in anisotropic plasma with heat flux

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2015-10-01

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q2, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  1. Geodesic acoustic mode in anisotropic plasma with heat flux

    SciTech Connect

    Ren, Haijun

    2015-10-15

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  2. A plasma β transition within a propagating flux rope

    SciTech Connect

    Savani, N. P.; Vourlidas, A.; Linton, M. G.; Shiota, D.; Kusano, K.; Lugaz, N.; Rouillard, A. P.

    2013-12-20

    We present a 2.5 dimensional magnetohydrodynamic simulation of a magnetic flux rope (FR) propagating in the heliosphere and investigate the cause of the observed sharp plasma β transition. Specifically, we consider a strong internal magnetic field and an explosive fast start, such that the plasma β is significantly lower in the FR than in the sheath region that is formed ahead. This leads to an unusual FR morphology in the first stage of propagation, while the more traditional view (e.g., from space weather simulations like Enlil) of a pancake-shaped FR is observed as it approaches 1 AU. We investigate how an equipartition line, defined by a magnetic Weber number, surrounding a core region of a propagating FR, can demarcate a boundary layer where there is a sharp transition in the plasma β. The substructure affects the distribution of toroidal flux, with the majority of the flux remaining in a small core region that maintains a quasi-cylindrical structure. We quantitatively investigate a locus of points where the kinetic energy density of the relative inflow field is equal to the energy density of the transverse magnetic field (i.e., effective tension force). The simulation provides compelling evidence that at all heliocentric distances the distribution of toroidal magnetic flux away from the FR axis is not linear, with 80% of the toroidal flux occurring within 40% of the distance from the FR axis. Thus, our simulation displays evidence that the competing ideas of a pancaking structure observed remotely can coexist with a quasi-cylindrical magnetic structure seen in situ.

  3. Fast tokamak plasma flux and electron density reconstruction technique

    SciTech Connect

    Chiang, K.L.; Hallock, G.A.; Wootton, A.J.; Wang, L.

    1997-01-01

    Density profiles in TEXT-U are obtained using a vertical viewing far-infrared (FIR) interferometer. To obtain the local (inverted) density, we have developed a simple analytic model of the plasma equilibrium configuration which is faster than EFIT (a flux surface reconstruction program) and can be easily computed between discharges. This analytic solution of the Grad{endash}Shafranov equation is valid as long as the pressure p is a function of poloidal flux {psi}, i.e., p=p({psi}). The procedure incorporates both magnetic and FIR density data to solve the Grad{endash}Shafranov equation, and provides a density profile which is self-consistent with the reconstructed equilibrium flux surfaces. Examples are presented. {copyright} {ital 1997 American Institute of Physics.}

  4. Dual Active Surface Heat Flux Gage Probe

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-01-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  5. Dual active surface heat flux gage probe

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.; Kolodziej, Paul

    1995-02-01

    A unique plug-type heat flux gage probe was tested in the NASA Ames Research Center 2x9 turbulent flow duct facility. The probe was fabricated by welding a miniature dual active surface heat flux gage body to the end of a hollow metal cylindrical bolt containing a metal inner tube. Cooling air flows through the inner tube, impinges onto the back of the gage body and then flows out through the annulus formed between the inner tube and the hollow bolt wall. Heat flux was generated in the duct facility with a Huels arc heater. The duct had a rectangular cross section and one wall was fabricated from 2.54 centimeter thick thermal insulation rigid surface material mounted onto an aluminum plate. To measure heat flux, the probe was inserted through the plate and insulating materials with the from of the gage located flush with the hot gas-side insulation surface. Absorbed heat fluxes measured with the probe were compared with absorbed heat fluxes measured with six water-cooled reference calorimeters. These calorimeters were located in a water-cooled metal duct wall which was located across from the probe position. Correspondence of transient and steady heat fluxes measured with the reference calorimeters and heat flux gage probe was generally within a satisfactory plus or minus 10 percent. This good correspondence was achieved even though the much cooler probe caused a large surface temperature disruption of 1000K between the metal gage and the insulation. However, this temperature disruption did not seriously effect the accuracy of the heat flux measurement. A current application for dual active surface heat flux gages is for transient and steady absorbed heat flux, surface temperature and heat transfer coefficient measurements on the surface of an oxidizer turbine inlet deflector operating in a space shuttle test bed engine.

  6. Stochastic Flux-Freezing for Non-Ideal Hydromagnetic Plasmas

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory

    2009-11-01

    Non-ideal (viscous and resistive) magnetohydrodynamic plasmas are shown to possess stochastic versions of ideal flux-freezing laws. The magnetic field at a point is equal to the average of an infinite ensemble of field-lines advected to that point by the plasma velocity perturbed with a random white-noise (stochastic Lundquist formula). This implies a stochastic Alfv'en theorem, valid for any value of the magnetic Prandtl number. At unit Prandtl number there is also a random version of the generalized Kelvin theorem derived by Bekenstein-Oron for ideal MHD. These stochastic conservation laws are not only consequences of the non-ideal MHD equations, but are in fact equivalent to those equations. Similar results hold for Hall magnetohydrodynamics and the two-fluid plasma model. We argue that flux-conservation remains stochastic for turbulent MHD plasmas in the limit of infinite Reynolds numbers. Infinitely-many field lines are advected to each point by turbulent Richardson diffusion. The reconnection speed for pairs of field lines is the relative velocity of the turbulent fluid at their initial locations. Small-scale turbulent dynamo effect is rigorously related to angular correlation of the individual field vectors before reconnection.

  7. Surface modification and deuterium retention in reduced-activation steels under low-energy deuterium plasma exposure. Part II: steels pre-damaged with 20 MeV W ions and high heat flux

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Zhou, Z.; Sugiyama, K.; Balden, M.; Pintsuk, G.; Gasparyan, Yu.; Efimov, V.

    2017-03-01

    The reduced-activation ferritic/martensitic (RAFM) steels including Eurofer (9Cr) and oxide dispersion strengthened (ODS) steels by the addition of Y2O3 particles investigated in Part I were pre-damaged either with 20 MeV W ions at room temperature at IPP (Garching) or with high heat flux at FZJ (Juelich) and subsequently exposed to low energy (~20-200 eV per D) deuterium (D) plasma up to a fluence of 2.9  ×  1025 D m-2 in the temperature range from 290 K to 700 K. The pre-irradiation with 20 MeV W ions at room temperature up to 1 displacement per atom (dpa) has no noticeable influence on the steel surface morphology before and after the D plasma exposure. The pre-irradiation with W ions leads to the same concentration of deuterium in all kinds of investigated steels, regardless of the presence of nanoparticles and Cr content. It was found that (i) both kinds of irradiation with W ions and high heat flux increase the D retention in steels compared to undamaged steels and (ii) the D retention in both pre-damaged and undamaged steels decreases with a formation of surface roughness under the irradiation of steels with deuterium ions with incident energy which exceeds the threshold of sputtering. The increase in the D retention in RAFM steels pre-damaged either with W ions (damage up to ~3 µm) or high heat flux (damage up to ~10 µm) diminishes with increasing the temperature. It is important to mention that the near surface modifications caused by either implantation of high energy ions or a high heat flux load, significantly affect the total D retention at low temperatures or low fluences but have a negligible impact on the total D retention at elevated temperatures and high fluences because, in these cases, the D retention is mainly determined by bulk diffusion.

  8. Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Menmuir, S.; Rachlew, E.; Brunsell, P. R.; Frassinetti, L.; Drake, J. R.

    2008-03-01

    The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes [1]. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux.

  9. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    PubMed

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  10. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    SciTech Connect

    West, Michael D.; Charles, Christine; Boswell, Rod W.

    2009-05-15

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 {mu}N. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  11. Nonlinear evolution of magnetic flux ropes. 2: Finite beta plasma

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.

    1995-01-01

    In this second paper on the evolution of magnetic flux ropes we study the effects of gas pressure. We assume that the energy transport is described by a polytropic relationship and reduce the set of ideal MHD equations to a single, second-order, nonlinear, ordinary differential equation for the evolution function. For this conservative system we obtain a first integral of motion. To analyze the possible motions, we use a mechanical analogue -- a one-dimensional, nonlinear oscillator. We find that the effective potential for such an oscillator depends on two parameters: the polytropic index gamma and a dimensionless quantity kappa the latter being a function of the plasma beta, the strength of the azimuthal magnetic field relative to the axial field of the flux rope, and gamma. Through a study of this effective potential we classify all possible modes of evolution of the system. In the main body of the paper, we focus on magnetic flux ropes whose field and gas pressure increase steadily towards the symmetry axis. In this case, for gamma greater than 1 and all values of kappa, only oscillations are possible. For gamma less than 1, however, both oscillations and expansion are allowed. For gamma less than 1 and kappa below a critical value, the energy of the nonlinear oscillator determines whether the flux rope will oscillate or expand to infinity. For gamma less than 1 and kappa above critical, however, only expansion occurs. Thus by increasing kappa while keeping gamma fixed (less than 1), a phase transition occurs at kappa = kappa(sub critical) and the oscillatory mode disappears. We illustrate the above theoretical considerations by the example of a flux rope of constant field line twist evolving self-similarly. For this example, we present the full numerical MHD solution. In an appendix to the paper we catalogue all possible evolutions when (1) either the magnetic field or (2) the gas pressure decreases monotonically toward the axis. We find that in these cases

  12. Plasma dynamics on current-carrying magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.

  13. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  14. ATF (Advanced Toroidal Facility) flux surfaces and related plasma effects

    SciTech Connect

    Colchin, R.J.; England, A.C.; Harris, J.H.; Hillis, D.L.; Jernigan, T.C.; Murakami, M.; Neilson, G.H.; Rome, J.A.; Saltmarsh, M.J.; Anderson, F.S.B.

    1989-01-01

    Flux surfaces in the Advanced Toroidal Facility (ATF) were mapped using an electron beam which was incident on a fluorescent screen. Islands were found at r/a greater than or equal to 0.6, indicating the existence of field errors. Failure of the island size to scale with magnetic field indicated that the islands were intrinsic to the coils. The source of the field errors was found to be uncompensated dipoles in the helical coil feeds. The electron temperature was observed to be very low in the vicinity of the islands. Modifications were made to the helical field buswork to eliminate the field errors, and the flux surfaces were again checked using an electron beam. Islands at r/a greater than or equal to 0.6 were found to be greatly reduced in size, with the residual island at /tau/ = 1/2 scaling to 1 cm at B = 1 T. Initial experiments indicate that the plasma operating space has been extended since the buswork modifications. 4 refs., 3 figs.

  15. Blistering on tungsten surface exposed to high flux deuterium plasma

    NASA Astrophysics Data System (ADS)

    Xu, H. Y.; Liu, W.; Luo, G. N.; Yuan, Y.; Jia, Y. Z.; Fu, B. Q.; De Temmerman, G.

    2016-04-01

    The blistering behaviour of tungsten surfaces exposed to very high fluxes (1-2 × 1024/m2/s) of low energy (38 eV) deuterium plasmas was investigated as a function of ion fluence (0.2-7 × 1026 D/m2) and surface temperature (423-873 K). Blisters were observed under all conditions, especially up to temperatures of 873 K. The blister parameters are evaluated with blister size, blister density and surface coverage. The blister size always peaked at less than 0.5 μm and no blister larger than 10 μm is observed even at high fluence. The blister densities are found in high magnitude of 106 blisters/m2, with the surface coverages lower than 2%. The formation of cracks in the sub-surface region was observed by cross-section imaging. Changes in blister size and shape with fluence and temperature suggest processes of predominantly nucleation and subsequent growth of blisters. The smaller blister size is considered to be caused by a combination of flux-related effects such as enhanced defect formation in the near surface region, reduced deuterium diffusivity and relatively short exposure times.

  16. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect

    Wilson, K.L.

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  17. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    SciTech Connect

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier; Gahan, David; Braithwaite, Nicholas St. J.

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  18. Hydrogen pumping and release by graphite under high flux plasma bombardment

    SciTech Connect

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux approx. = 1 x 10/sup 18/ ions s/sup -1/ cm/sup -2/ to a fluence of the order of 10/sup 21/ ions/cm/sup 2/ and at temperatures around 800/sup 0/C. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10/sup 18/ H/cm/sup 2/ at temperatures below 100/sup 0/C and at a plasma bombarding energy of 300 eV. The graphite temperature was varied between 15 and 480/sup 0/C. Due to the plasma particle pumping capability, hydrogen recycling from the activated graphite surface is significantly reduced, relative to that from a pre-saturated surface. A pre-saturated surface was also observed to reproducibly pump a hydrogen plasma to a concentration of 9.5 x 10/sup 17/ H/cm/sup 2/. The hydrogen retention capacity of graphite is found to decrease with increasing temperature. A transient pumping mechanism associated with the sponge-like surface morphology is conjectured to explain the large hydrogen retention capacity. Hydrogen release behavior under helium and argon plasma bombardment was also investigated, and the result indicated the possibility of some in-pore retrapping effect. 43 refs., 11 figs.

  19. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    SciTech Connect

    Sowa, Mark J.

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  20. Controlling VUV photon fluxes in pulsed inductively coupled Ar/Cl2 plasmas and potential applications in plasma etching

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Kushner, Mark J.

    2017-02-01

    UV/VUV photon fluxes in plasma materials processing have a variety of effects ranging from producing damage to stimulating synergistic reactions. Although in plasma etching processes, the rate and quality of the feature are typically controlled by the characteristics of the ion flux, to truly optimize these ion and photon driven processes, it is desirable to control the relative fluxes of ions and photons to the wafer. In prior works, it was determined that the ratio of VUV photon to ion fluxes to the substrate in low pressure inductively coupled plasmas (ICPs) sustained in rare gases can be controlled by combinations of pressure and pulse power, while the spectrum of these VUV photons can be tuned by adding additional rare gases to the plasma. In this work, VUV photon and ion fluxes are computationally investigated for Ar/Cl2 ICPs as used in etching of silicon. We found that while the overall ratio of VUV photon flux to ion flux are controlled by pressure and pulse power, by varying the fraction of Cl2 in the mixture, both the ratio of VUV to ion fluxes and the spectrum of VUV photons can be tuned. It was also found that the intensity of VUV emission from Cl(3p 44s) can be independently tuned by controlling wall surface conditions. With this ability to control ratios of ion to photon fluxes, photon stimulated processes, as observed in halogen etching of Si, can be tuned to optimize the shape of the etched features.

  1. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; Matsumoto, H.; Kojima, H.; Mukai, T.; Saito, Y.; Yamamoto, T.

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  2. Physics of Space Plasma Activity

    NASA Astrophysics Data System (ADS)

    Schindler, Karl

    2010-04-01

    Preface; 1. Introduction; Part I. Setting the Scene: 2. Sites of activity; 3. Plasma models; Part II. Quiescence: 4. Introduction; 5. Magnetohydrodynamic states; 6. Particle picture of steady states; 7. A unified theory of steady states; 8. Quasi-static evolution and thin current sheets (TCS); Part III. Dynamics: 9. Nonideal effects; 10. Selected macroinstabilities; 11. Magnetic reconnection; 12. Aspects of bifurcation and nonlinear dynamics; Part IV. Applications: 13. Magnetospheric activity; 14. Models of solar activity; 15. Discussion; Appendix 1. Unified theory: details and derivations; Appendix 2. Variational principle for collisionless plasmas; Appendix 3. Symbols and fundamental constants; References; Index.

  3. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Plasmas fluxes to surfaces for an oblique magnetic field

    SciTech Connect

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D{sub {alpha}}, He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ``Cosine`` model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface.

  5. Plasmas fluxes to surfaces for an oblique magnetic field

    SciTech Connect

    Pitcher, C.S. ); Stangeby, P.C.; Elder, J.D. ); Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M. . Plasma Physics Lab.)

    1992-07-01

    The poloidal and toroidal spatial distributions of D{sub {alpha}}, He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface.

  6. Erosion of beryllium under high-flux plasma impact

    NASA Astrophysics Data System (ADS)

    Doerner, R. P.; Björkas, C.; Nishijima, D.; Schwarz-Selinger, T.

    2013-07-01

    Be sputtering yields, measured by weight loss, in PISCES-B are a factor of 5-10 less than that predicted by binary collision approximations. Measurements show the BeO surface is removed early in the plasma bombardment. Modeling of molecular ions (D2+ and D3+) species and redeposition cannot explain the difference. Surface morphology that evolves during the exposure reduces the sputtering yield by a factor of 2-3. Plasma fuel atoms retained in the surface decrease the sputtering yield compared to calculations of a pure Be surface. These effects may explain the measured erosion rates in the absence of Be impurities within the plasma. By introducing Be impurity ions into the plasma, it is possible to simulate a controllable amount of redeposition. The weight loss from eroding Be targets, with Be seeding, is unchanged until the concentration of Be ions in the plasma greatly exceeds the sputtering yield in the non-beryllium seeded exposure.

  7. The ISEE-3 ULEWAT: Flux tape description and heavy ion fluxes 1978-1984. [plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Klecker, B.

    1985-01-01

    The ISEE ULEWAT FLUX tapes contain ULEWAT and ISEE pool tape data summarized over relatively long time intervals (1hr) in order to compact the data set into an easily usable size. (Roughly 3 years of data fit onto one 1600 BPI 9-track magnetic tape). In making the tapes, corrections were made to the ULEWAT basic data tapes in order to, remove rate spikes and account for changes in instrument response so that to a large extent instrument fluxes can be calculated easily from the FLUX tapes without further consideration of instrument performance.

  8. Maximum available flux of charged particles from the laser ablation plasma

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuo; Itagaki, Tomonobu; Horioka, Kazuhiko

    2016-12-01

    The laser ablation plasma was characterized for high-flux sources of ion and electron beams. An ablation plasma was biased to a positive or a negative high voltage, and the fluxes of charged particles through a pair of extraction electrodes were measured as a function of the laser intensity IL. Maximum available fluxes and the ratios of electron and ion beam currents Je/Ji were evaluated as a function of the laser irradiance. The ion and the electron fluxes increased with a laser intensity and the current ratio was around 40 at IL = 1.3 × 108 W/cm2 which monotonically decreased with an increase of the laser intensity. The current ratios Je/Ji were correlated to the parameters of ablation plasma measured by the electrostatic probes. The results showed that the ion fluxes are basically enhanced by super-sonically drifting ions in the plasma and the electron fluxes are also enhanced by the drift motion together with a reduction of the sheath potential due to the enhanced ion flux to the surrounding wall.

  9. Gas dynamic theory of flight of fast electron flux in plasma

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.

    The one-dimensional flight of a fast electron flux in plasma is investigated taking into account generation and absorption of plasma waves. The transition from the kinetic description to the gas dynamics is made. The closed set of gas dynamic equations for electrons and plasmons is derived and an automodel solution is obtained in the case of instantaneous injection. This solution represents the beam-plasma formation on natural oscillations in the system electrons+plasmons is considered.

  10. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  11. Flux tube train model for local turbulence simulation of toroidal plasmas

    SciTech Connect

    Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.

    2015-02-15

    A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.

  12. Diagnosing pure-electron plasmas with internal particle flux probes.

    PubMed

    Kremer, J P; Pedersen, T Sunn; Marksteiner, Q; Lefrancois, R G; Hahn, M

    2007-01-01

    Techniques for measuring local plasma potential, density, and temperature of pure-electron plasmas using emissive and Langmuir probes are described. The plasma potential is measured as the least negative potential at which a hot tungsten filament emits electrons. Temperature is measured, as is commonly done in quasineutral plasmas, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-electron plasmas. This article describes the use of these techniques on pure-electron plasmas in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are phi(p)=-200+/-2 V, T(e)=4+/-1 eV, and n(e) on the order of 10(12) m(-3) in the interior.

  13. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    SciTech Connect

    McGrath, R.T.; Yamashina, T.

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  14. Active probing of space plasmas

    NASA Astrophysics Data System (ADS)

    Chan, Chang; Silevitch, Michael B.; Villalon, Elena

    1989-09-01

    During the course of the research period our efforts were focused on the following areas: (1) An examination of stochastic acceleration mechanisms in the ionosphere; (2) A study of nonequilibrium dynamics of the coupled magnetosphere - ionosphere system; and (3) Laboratory studies of active space experiments. Reprints include: Dynamics of charged particles in the near wake of a very negatively charged body -- Laboratory experiment and numerical simulation; Laboratory study of the electron temperature in the near wake of a conducting body; New model for auroral breakup during substorms; Substorm breakup on closed field lines; New model for substorm on sets -- The pre-breakup and triggering regimes; Model of the westward traveling surge and the generation of Pi 2 pulsations; Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances; Relativistic particle acceleration by obliquely propagating electromagnetic fields; Some consequences of intense electromagnetic wave injection into space plasmas.

  15. Numerical investigation of plasma edge transport and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Effenberg, F.; Feng, Y.; Schmitz, O.; Frerichs, H.; Bozhenkov, S. A.; Hölbe, H.; König, R.; Krychowiak, M.; Pedersen, T. Sunn; Reiter, D.; Stephey, L.; W7-X Team

    2017-03-01

    The results of a first systematic assessment of plasma edge transport processes for the limiter startup configuration at Wendelstein 7-X are presented. This includes an investigation of transport from intrinsic and externally injected impurities and their impact on the power balance and limiter heat fluxes. The fully 3D coupled plasma fluid and kinetic neutral transport Monte Carlo code EMC3-EIRENE is used. The analysis of the magnetic topology shows that the poloidally and toroidally localized limiters cause a 3D helical scrape-off layer (SOL) consisting of magnetic flux tubes of three different connection lengths L C. The transport in the helical SOL is governed by L C as topological scale length for the parallel plasma loss channel to the limiters. A clear modulation of the plasma pressure with L C is seen. The helical flux tube topology results in counter streaming sonic plasma flows. The heterogeneous SOL plasma structure yields an uneven limiter heat load distribution with localized peaking. Assuming spatially constant anomalous transport coefficients, increasing plasma density yields a reduction of the maximum peak heat loads from 12 MWm‑2 to 7.5 MWm‑2 and a broadening of the deposited heat fluxes. The impact of impurities on the limiter heat loads is studied by assuming intrinsic carbon impurities eroded from the limiter surfaces with a gross chemical sputtering yield of 2 % . The resulting radiative losses account for less than 10% of the input power in the power balance with marginal impact on the limiter heat loads. It is shown that a significant mitigation of peak heat loads, 40–50%, can be achieved with controlled impurity seeding with nitrogen and neon, which is a method of particular interest for the later island divertor phase.

  16. Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    NASA Astrophysics Data System (ADS)

    Horacek, J.; Pitts, R. A.; Adamek, J.; Arnoux, G.; Bak, J.-G.; Brezinsek, S.; Dimitrova, M.; Goldston, R. J.; Gunn, J. P.; Havlicek, J.; Hong, S.-H.; Janky, F.; LaBombard, B.; Marsen, S.; Maddaluno, G.; Nie, L.; Pericoli, V.; Popov, Tsv; Panek, R.; Rudakov, D.; Seidl, J.; Seo, D. S.; Shimada, M.; Silva, C.; Stangeby, P. C.; Viola, B.; Vondracek, P.; Wang, H.; Xu, G. S.; Xu, Y.; Contributors, JET

    2016-07-01

    As in many of today’s tokamaks, plasma start-up in ITER will be performed in limiter configuration on either the inner or outer midplane first wall (FW). The massive, beryllium armored ITER FW panels are toroidally shaped to protect panel-to-panel misalignments, increasing the deposited power flux density compared with a purely cylindrical surface. The chosen shaping should thus be optimized for a given radial profile of parallel heat flux, {{q}||} in the scrape-off layer (SOL) to ensure optimal power spreading. For plasmas limited on the outer wall in tokamaks, this profile is commonly observed to decay exponentially as {{q}||}={{q}0}\\text{exp} ~≤ft(-r/λ q\\text{omp}\\right) , or, for inner wall limiter plasmas with the double exponential decay comprising a sharp near-SOL feature and a broader main SOL width, λ q\\text{omp} . The initial choice of λ q\\text{omp} , which is critical in ensuring that current ramp-up or down will be possible as planned in the ITER scenario design, was made on the basis of an extremely restricted L-mode divertor dataset, using infra-red thermography measurements on the outer divertor target to extrapolate to a heat flux width at the main plasma midplane. This unsatisfactory situation has now been significantly improved by a dedicated multi-machine ohmic and L-mode limiter plasma study, conducted under the auspices of the International Tokamak Physics Activity, involving 11 tokamaks covering a wide parameter range with R=\\text{0}\\text{.4--2}\\text{.8} \\text{m}, {{B}0}=\\text{1}\\text{.2--7}\\text{.5} \\text{T}, {{I}\\text{p}}=\\text{9--2500} \\text{kA}. Measurements of λ q\\text{omp} in the database are made exclusively on all devices using a variety of fast reciprocating Langmuir probes entering the plasma at a variety of poloidal locations, but with the majority being on the low field side. Statistical analysis of the database reveals nine reasonable engineering and dimensionless scalings. All yield, however, similar

  17. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  18. Measuring the parameters of a high flux plasma in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Skeen, C.; Biewer, T. M.; Cantrell, C. L.; Klemm, J. C.; Musick, R. A.; Nunley, G.; Salazar Sanchez, J. S.; Sawyer, D. J.; Ray, H.; Shaw, G.; Showers, M.

    2016-10-01

    The Prototype Material Plasma Exposure Experiment (Proto-MPEX) is a linear, magnetically confined plasma production device, utilizing a helicon antenna. The plasma column interacts with a material target at the end of the device, creating plasma-material interaction conditions that are relevant to the conditions that are expected in future fusion reactors. Moreover, helicon antenna plasma sources have been proposed as propulsion devices for spacecraft. It has been observed that in some circumstances the Proto-MPEX plasma exerts sufficient force on the target plate to cause the target to recoil. A ballistic probe has been designed to measure the force and heat flux profile of the plasma. The probe response has been calibrated, using scales, thermocouples, and fast camera imaging. The ballistic probe has been inserted into Proto-MPEX plasmas and the heat flux profile of the plasma has been measured. Also the maximum force that is exerted on the probe has been estimated. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725, and the Oak Ridge Associated Universities ARC program.

  19. Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX

    SciTech Connect

    Maingi, Rajesh; Soukhanovskii, V. A.; Ahn, J.W.

    2011-01-01

    We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (P{sub LOSS}), plasma current (I{sub p}), and magnetic flux expansion (f{sub exp}), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363-365 (2007) 196-200] to higher triangularity similar to 0.7 and higher I{sub p} {le} 1.2 MA. First we note that the mid-plane heat flux width mapped to the mid-plane, {lambda}{sub q}{sup mid} is largely independent of P{sub LOSS} for P{sub LOSS} {ge} 4 MW. {lambda}{sub q}{sup mid} is also found to be relatively independent of f{sub exp}; peak heat flux is strongly reduced as f{sub exp} is increased, as expected. Finally, {lambda}{sub q}{sup mid} is shown to strongly contract with increasing I{sub p} such that {lambda}{sub q}{sup mid} {alpha} I{sub p}{sup -1.6} with a peak divertor heat flux of q{sub div,peak} similar to 15 MW/m{sup 2} when I{sub p} = 1.2 MA and P{sub LOSS} similar to 6 MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15 MW, B{sub t} = 1.01 and I{sub p}= 2.0 MA for 5 s.

  20. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  1. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  2. Silicon fluxes in the scrape-off layer plasma during silicon-assisted operation of TEXTOR

    NASA Astrophysics Data System (ADS)

    Rubel, M.; Wienhold, P.; Almqvist, N.; Emmoth, B.; Esser, H. G.; Könen, L.; von Seggern, J.; Winter, J.

    1995-04-01

    Surface collector probes were applied at TEXTOR for the investigation of silicon fluxes in the scrape-off layer during the first silicon-assisted (silane puffing, siliconization) operation of a tokamak. Probe exposures were made in order to measure the evolution of Si fluxes and the influence of silicon on the behaviour of other impurity fluxes like boron, oxygen and metals. Studies were performed under different conditions: heating mode, plasma density and gas filling. Comparative exposures were made before introduction of Si into the machine as well as immediately and long time after the siliconization. The exposed graphite samples were examined by surface analysis techniques, including Auger electron and Rutherford backscattering spectroscopies, nuclear reaction analysis and ultra-high resolution microscopies. The most important findings are concerned with: (i) the relation between silicon to carbon and silicon to oxygen in the deposits; (ii) the change in radial profiles of Si, B and D fluxes during consecutive stages of the silicon-assisted operation, and the retention of deuterium in the Si containing codeposited layers. The influence of plasma density on the fluxes is considered and gettering of oxygen by silicon is also addressed. Comparison is also made to the results of VUV spectroscopy signals of silicon and oxygen impurities in the plasma.

  3. Reduction of poloidal magnetic flux consumption during plasma current ramp-up in DEMO relevant plasma regimes

    NASA Astrophysics Data System (ADS)

    Wakatsuki, T.; Suzuki, T.; Hayashi, N.; Shiraishi, J.; Sakamoto, Y.; Ide, S.; Kubo, H.; Kamada, Y.

    2017-01-01

    The method for reducing a poloidal magnetic flux consumption of external coils is investigated to reduce the size of the central solenoid (CS) in the DEMO reactor. The reduction of the poloidal magnetic flux consumption during a plasma current ramp-up phase by electron cyclotron (EC) heating is investigated using an integrated modeling code suite, TOPICS. A strongly reversed shear q profile tends to be produced if intense off-axis EC heating is applied to obtain a large reduction of the flux consumption. In order to overcome this tendency, we find a method to obtain the optimum temperature profile which minimizes the poloidal flux consumption for a wide range of the q profile. We try to reproduce the optimum temperature profile for a weakly reversed shear q profile using six EC rays of 20 MW. As a result, the resistive flux consumption during the current ramp-up can be reduced by 63% from the estimation using the Ejima constant of 0.45 and the total flux consumption can be reduced by 20% from the conventional estimation. In addition, we find that the resistive flux consumption is closely related to the volume averaged electron temperature and not to the profile shape. Using this relation, the required heating power is estimated to be 31 MW based on a well established global confinement scaling, ITER L-89P. As a result, it is clarified that the poloidal magnetic flux consumption can be reduced by 20% using 20-31 MW of EC heating for a weakly reversed shear q profile. This reduction of the flux consumption accounts for 10% reduction of the CS radius.

  4. Ion flux asymmetry in radiofrequency capacitively-coupled plasmas excited by sawtooth-like waveforms

    NASA Astrophysics Data System (ADS)

    Bruneau, B.; Novikova, T.; Lafleur, T.; Booth, J. P.; Johnson, E. V.

    2014-12-01

    Using particle-in-cell simulations, we predict that it is possible to obtain a significant difference between the ion flux to the powered electrode and that to the grounded electrode—with about 50% higher ion flux on one electrode—in a geometrically symmetric, radiofrequency capacitively-coupled plasma reactor by applying a non-sinusoidal, ‘Tailored’ voltage waveform. This sawtooth-like waveform presents different rising and falling slopes over one cycle. We show that this effect is due to differing plasma sheath motion in front of each electrode, which induces a higher ionization rate in front of the electrode which has the fastest positive rising voltage. Together with the higher ion flux comes a lower voltage drop across the sheath, and therefore a reduced maximum ion bombardment energy; a result in contrast to typical process control mechanisms.

  5. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    SciTech Connect

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  6. Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure

    NASA Astrophysics Data System (ADS)

    Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie

    2016-12-01

    Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.

  7. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    SciTech Connect

    Mier, J. A. Anabitarte, E.; Sentíes, J. M.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Milligen, B. Ph. van

    2014-05-15

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  8. Characterization of radial turbulent fluxes in the Santander linear plasma machine

    NASA Astrophysics Data System (ADS)

    Mier, J. A.; Sánchez, R.; Newman, D. E.; Castellanos, O. F.; Anabitarte, E.; Sentíes, J. M.; van Milligen, B. Ph.

    2014-05-01

    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which long-term correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasmas.

  9. Vortices and Flux Ropes in Electron MHD Plasmas I

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Griskey, M. C.

    Laboratory experiments are reviewed which demonstrate the existence and properties of three-dimensional vortices in Electron MHD (EMHD) plasmas. In this parameter regime the electrons form a magnetized fluid which is charge-neutralized by unmagnetized ions. The observed vortices are time-varying flows in the electron fluid which produce currents and magnetic fields, the latter superimposed on a uniform dc magnetic field B0. The topology of the time-varying flows and fields can be described by linked toroidal and poloidal vector fields with amplitude distributions ranging from spherical to cylindrical shape. Vortices can be excited with pulsed currents to electrodes, pulsed currents in magnetic loop antennas, and heat pulses. The vortices propagate in the whistler mode along the mean field B0. In the presence of dissipation, magnetic self-helicity and energy decay at the same rate. Reversal of B or propagation direction changes the sign of the helicity. Helicity injection produces directional emission of vortices. Reflection of a vortex violates helicity conservation and field-line tying. Part I of two companion papers reviews the linear vortex properties while the companion Part II describes nonlinear EMHD phenomena and instabilities.

  10. Plasma signatures in large Martian magnetic flux ropes: MARSIS/ASPERA-3 observations

    NASA Astrophysics Data System (ADS)

    Diéval, Catherine; Morgan, David; Duru, Firdevs; Gurnett, Donald

    2014-05-01

    Cylindrical structures of highly twisted magnetic field (flux ropes) have been observed at Mars, using measurements by the MAG-ER magnetometer-electron reflectometer onboard Mars Global Surveyor (MGS) and by the MARSIS radar sounder onboard Mars Express (MEX). Signatures of flux ropes are spikes of magnetic field strength and magnetic field rotations. Both small scale flux ropes (diameters of a few tens of km) and large scale flux ropes (diameters of around 100 km) have been found at Mars. We look at times of presumed flux ropes on the dayside of Mars, detected in the local magnetic field strength given by MARSIS. The signatures in MARSIS are magnetic field strength increases (peak strength reaches several tens to hundred nT) for several minutes (size of hundreds of km along the spacecraft track), found outside but near crustal magnetic field regions. Although we cannot determine the presence of a magnetic field rotation because of the lack of a magnetometer onboard MEX, we assume that these magnetic field increases are large flux ropes. There are indeed large flux ropes with similar characteristics which were established by the magnetometer data from MGS, and thought to form by stretching and reconnection of crustal magnetic field by the solar wind. On the other hand, MEX possesses in situ ion measurements, unlike MGS. We will use the ion and electron data from the ASPERA-3 particle instrument onboard MEX in order to characterize the plasma (ionospheric only or mixing with shocked plasma?) inside the flux ropes, which will give hints on their origin.

  11. Plasma dynamics on current-carrying magnetic flux tubes. II - Low potential simulation

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    The evolution of plasma in a current-carrying magnetic flux tube of variable cross section is investigated using a one-dimensional numerical simulation. The flux tube is narrow at the two ends and broad in the middle. The middle part of the flux tube is loaded with a hot, magnetically trapped population, and the two ends have a more dense, gravitationally bound population. A potential difference larger than the gravitational potential but less than the energy of the hot population is applied across the domain. The general result is that the potential change becomes distributed along the anode half of the domain, with negligible potential change on the cathode half. The potential is supported by the mirror force of magnetically trapped particles. The simulations show a steady depletion of plasma on the anode side of the flux tube. The current steadily decreases on a time scale of an ion transit time. The results may provide an explanation for the observed plasma depletions on auroral field lines carrying upward currents.

  12. The distribution of ion orbit loss fluxes of ions and energy from the plasma edge across the last closed flux surface into the scrape-off layer

    SciTech Connect

    Stacey, Weston M.; Schumann, Matthew T.

    2015-04-15

    A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layer are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.

  13. The impulse exerted on the outward particle flux from a plasma ball

    NASA Astrophysics Data System (ADS)

    Makrinich, Gennady; Fruchtman, Amnon

    2010-11-01

    A plasma ball has been produced near the anode in a configuration that, when magnetized, operates as a radial plasma source (RPS) [1]. The plasma particle flux outward of the plasma ball seems to be larger than that expected by the Langmuir relation in double layers [2]. The forced oscillations of a pendulum induced by the flow in the vicinity of the plasma ball are also of an unexpectedly large amplitude. We examine the possibility that the ions gain most of the momentum in the quasi-neutral plasma rather than in the double layer. The impulse enhancement is suggested to result from ion-neutral collisions in the plasma. The electric force is being felt by ions for a longer time; their residence time in the acceleration region is increased due to their slowing-down collisions with neutrals. We previously suggested the ion-neutral collisions as a source of impulse enhancement in the RPS of a radially- outward flow with magnetized electrons. [1] G. Makrinich and A. Fruchtman, Phys. Plasmas 16, 043507, 2009; Appl. Phys. Lett. 95, 181504 (2009). [2] I. Langmuir, Phys. Rev. 33, 954 (1929); B. Song, N. D'Angelo, R.L. Merlino, J. Phys. D: Appl. Phys. 24, 1789 (1991).

  14. Mechanisms for the formation and transport of ion fluxes in the plasma of a high-current vacuum spark

    SciTech Connect

    Dolgov, A. N.; Zemchenkova, N. V.; Klyachin, N. A.; Prokhorovich, D. E.

    2010-09-15

    The processes of ion flux formation in the plasma of a high-current vacuum spark were investigated experimentally. It is shown that multicharged ions are generated in the neck formed in the erosion products of the inner electrode. The plasma escaping from the neck region plays a role of a piston dragging particles of the cold peripheral plasma into ambient space. As the discharge current increases, the flux of the evaporated electrode material grows, the degree of ionization of the plasma produced decreases, and the efficiency of plasma heating caused by the pinching effect is reduced.

  15. Integrated framework for the flux calculation of neutral species inside trenches and holes during plasma etching

    SciTech Connect

    Kokkoris, George; Boudouvis, Andreas G.; Gogolides, Evangelos

    2006-11-15

    An integrated framework for the neutral flux calculation inside trenches and holes during plasma etching is described, and a comparison between the two types of structure in a number of applications is presented. First, a detailed and functional set of equations for the neutral and ion flux calculations inside long trenches and holes with cylindrical symmetry is explicitly formulated. This set is based on early works [T. S. Cale and G. B. Raupp, J. Vac. Sci. Technol. B 8, 1242 (1990); V. K. Singh et al., J. Vac. Sci. Technol. B 10, 1091 (1992)], and includes new equations for the case of holes with cylindrical symmetry. Second, a method for the solution of the respective numerical task, i.e., one or a set of linear or nonlinear integral equations, is described. This method includes a coupling algorithm with a surface chemistry model and resolves the singularity problem of the integral equations. Third, the fluxes inside trenches and holes are compared. The flux from reemission is the major portion of the local flux at the bottom of both types of structure. The framework is applied in SiO{sub 2} etching by fluorocarbon plasmas to predict the increased intensity of reactive ion etching lag in SiO{sub 2} holes compared to trenches. It is also applied in deep Si etching: By calculating the flux of F atoms at the bottom of very high aspect ratio (up to 150) Si trenches and holes during the gas chopping process, the aspect ratio at which the flux of F atoms is eliminated and etching practically stops is estimated.

  16. Probe of hydrogen atom in plasmas with magnetic, electric, and Aharonov-Bohm flux fields

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2016-09-01

    In this study, for the first time, the combined effects of external magnetic, electric, and Aharonov-Bohm (AB) flux fields on quantum levels of the hydrogen atom embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential are investigated within cylindrical coordinate formalism using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in the potential. The corresponding Schrödinger equation is solved numerically in order to examine both strong and weak regimes and confinement effects of external fields. The influence of screening parameters of the MGECSC potential on quantum levels of the hydrogen atom is also studied in detail in the presence of external magnetic, electric, and AB flux fields. As it is possible to model both Debye and quantum plasmas by using screening parameters in the MGECSC potential, the effects of each plasma environment on quantum levels of the hydrogen atom are also considered in the external fields. It is observed that there are important results of external fields on the total interaction potential profile, and the most dominant one in these fields is the magnetic field. Furthermore, the effects of confinement on the physical state of the plasma environment is a subject of this study. These details would be important in experimental and theoretical investigations in plasma and atomic physics fields.

  17. Acceleration of deuterons from laser plasma in direct pulsed electron fluxes for generation of neutrons

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2016-12-01

    We report the results of experiments in which laser plasma deuterons are accelerated toward beryllium and deuterated polyethylene targets in a drift tube by means of a direct pulsed flux of electrons accelerated to maximum energy of 250 keV. Neutrons produced as a result of the interaction of deuterons with the targets are detected. The yield of neutrons in some of the experimental series reaches 106 n/pulse. Using a pulsed magnetic field synchronized with the generation of laser plasma is proposed for increasing the neutron yield as a result of electron flux compression. This magnetic field in the drift region of electrons is created by a spiral coil of conical shape.

  18. A fast, magnetics-free flux surface estimation and q-profile reconstruction algorithm for feedback control of plasma profiles

    NASA Astrophysics Data System (ADS)

    Hommen, G.; de Baar, M.; Citrin, J.; de Blank, H. J.; Voorhoeve, R. J.; de Bock, M. F. M.; Steinbuch, M.; contributors, JET-EFDA

    2013-02-01

    The flux surfaces' layout and the magnetic winding number q are important quantities for the performance and stability of tokamak plasmas. Normally, these quantities are iteratively derived by solving the plasma equilibrium for the poloidal and toroidal flux. In this work, a fast, non-iterative and magnetics-free numerical method is proposed to estimate the shape of the flux surfaces by an inward propagation of the plasma boundary shape, as can be determined for example by optical boundary reconstruction described in Hommen (2010 Rev. Sci. Instrum. 81 113504), toward the magnetic axis, as can be determined independently with the motional Stark effect (MSE) diagnostic. Flux surfaces are estimated for various plasma regimes in the ITER, JET and MAST tokamaks and are compared with results of CRONOS reconstructions and simulations, showing agreement to within 1% of the minor radius for almost all treated plasmas. The availability of the flux surface shapes combined with the pitch angles measured using MSE allow the reconstruction of the plasma q-profile, by evaluating the contour-integral over the flux surfaces of the magnetic field pitch angle. This method provides a direct and exact measure of the q-profile for arbitrary flux surface shapes, which does not rely on magnetic measurements. Results based on estimated flux surface shapes show agreement with CRONOS q-profiles of better than 10%. The impact of the shape of the flux surfaces on the q-profile, particularly the profiles of elongation and Shafranov shift, and offsets in plasma boundary and the magnetic axis are assessed. OFIT+ was conceived for real-time plasma profile control experiments and advanced tokamak operation, and provides quickly and reliably the mapping of actuators and sensors to the minor radius as well as the plasma q-profile, independent of magnetic measurements.

  19. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  20. Quasi-steady multiple flux tubes induced by localized current perturbation in toroidal plasma

    NASA Astrophysics Data System (ADS)

    Yun, Gunsu

    2015-11-01

    Quasi-steady helical modes with dual, triple, or more flux tubes are easily produced by localized current drive in the core of sawtoothing plasma on the KSTAR tokamak. Individual flux tubes have m / n = 1 / 1 helicity, co-rotate around the magnetic axis, and later merge into a single m = 1 mode. The merged mode eventually crashes with rapid collapse of the core pressure and the next cycle repeats the same pattern, exhibiting sawtooth-like oscillations in the core pressure. The generation mechanism of multiple flux tubes (MFTs) has been studied in two different approaches to understand the observed trend that the number of flux tubes increases as the current drive location moves away from the magnetic axis up to about the magnetic surface of the safety factor q = 1 at the mode collapse: (1) nonlinear reduced MHD simulation with a localized current source modeling the time-varying interaction between the current source and flux tubes and (2) linear MHD simulation with a prescribed q profile with a radially localized current blip. Both studies show that MFTs can be produced only in plasmas with nearly flat q profile close to unity, suggesting the collapse of the m = 1 mode (i.e., sawtooth crash) is complete. Recent observation of long-lived MFTs induced by localized current drive in non-sawtoothing plasma suggests that q profile evolution toward lower- m instability is required for the merging and crash of MFTs. Work supported by the National Research Foundation of Korea, US D.O.E., and Japan Society for the Promotion of Science.

  1. Multifield measurement of magnetic fluctuation-induced particle flux in a high-temperature toroidal plasma

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2016-12-01

    Magnetic fluctuation-induced particle transport is explored in the high-temperature, high-beta interior of the Madison symmetric torus (MST) reversed-field pinch by performing a multifield measurement of the correlated product of magnetic and density fluctuations associated with global resistive tearing modes. Local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of Faraday-effect polarimetry measurements. Reconstructed 2D images of density and current density perturbations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved. The convective magnetic fluctuation-induced particle flux profile is measured for both standard and high-performance plasmas in MST with tokamak-like confinement, showing large reduction in the flux during improved confinement.

  2. Simultaneous plasma wave and electron flux observations upstream of the Martian bow shock

    NASA Astrophysics Data System (ADS)

    Skalsky, A.; Grard, R.; Kiraly, P.; Klimov, S.; Kopanyi, V.; Schwingenschuh, K.; Trotignon, J. G.

    1993-03-01

    Flux enhancements of electrons with energies between 100 and 530 eV are observed simultaneously with electron plasma waves in the upstream region of the Martian bow shock. The electron flux appears to reach its maximum when the pitch angle is close to 0 deg, which corresponds to particles reflected from the shock region and backstreaming in the solar wind along the magnetic field. The correlation between high-frequency waves and enhanced electron fluxes is reminiscent of several studies on the electron foreshock of the Earth. Such a similarity indicates that, in spite of major differences between the global shock structures, the microscopic processes operating in the foreshocks of Earth and Mars are probably identical.

  3. On the instability and energy flux of lower hybrid waves in the Venus plasma mantle

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1993-01-01

    Waves generated near the lower hybrid resonance frequency by the modified two stream instability have been invoked as a possible source of energy flux into the topside ionosphere of Venus. These waves are observed above the ionopause in a region known as the plasma mantle. The plasma within the mantle appears to be a mixture of magnetosheath and ionospheric plasmas. Since the magnetosheath electrons and ions have temperatures of several tens of eV, any instability analysis of the modified two stream instability requires the inclusion of finite electron and ion temperatures. Finite temperature effects are likely to reduce the growth rate of the instability. Furthermore, the lower hybrid waves are only quasi-electrostatic, and the energy flux of the waves is mainly carried by parallel Poynting flux. The magnetic field in the mantle is draped over the ionopause. Lower hybrid waves therefore cannot transport any significant wave energy to lower altitudes, and so do not act as a source of additional heat to the topside ionosphere.

  4. The role of plasma membrane H(+) -ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana.

    PubMed

    Yan, Suli; McLamore, Eric S; Dong, Shanshan; Gao, Haibo; Taguchi, Masashige; Wang, Ningning; Zhang, Ting; Su, Xiaohua; Shen, Yingbai

    2015-08-01

    Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H(+) , Ca(2+) and K(+) in guard cells of wild-type (Col-0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1-1 and the PM H(+) -ATPase mutants aha1-6 and aha1-7, using a non-invasive micro-test technique. We showed that MeJA induced transmembrane H(+) efflux, Ca(2+) influx and K(+) efflux across the PM of Col-0 guard cells. However, this ion transport was abolished in coi1-1 guard cells, suggesting that MeJA-induced transmembrane ion flux requires COI1. Furthermore, the H(+) efflux and Ca(2+) influx in Col-0 guard cells was impaired by vanadate pre-treatment or PM H(+) -ATPase mutation, suggesting that the rapid H(+) efflux mediated by PM H(+) -ATPases could function upstream of the Ca(2+) flux. After the rapid H(+) efflux, the Col-0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H(+) -ATPase was reduced. Finally, the elevation of cytosolic Ca(2+) concentration and the depolarized PM drive the efflux of K(+) from the cell, resulting in loss of turgor and closure of the stomata.

  5. In situ measurements of the plasma bulk velocity near the Io flux tube

    NASA Technical Reports Server (NTRS)

    Barnett, A.

    1985-01-01

    The flow around the Io flux tube was studied by analyzing the eleven spectra taken by the Voyager 1 Plasma Science (PLS) experiment in its vicinity. The bulk plasma parameters were determined using a procedure that uses the full response function of the instrument and the data in all four PLS sensors. The mass density of the plasma in the vicinity of Io is found to be 22,500 + or - 2,500 amu/cu cm and its electron density is found to be 1500 + or - 200/cu cm. The Alfven speed was determined using three independent methods; the values obtained are consistent and taken together yield V sub A = 300 + or - 50 km/sec, corresponding to an Alfven Mach number of 0.19 + or - 0.02. For the flow pattern, good agreement was found with the model of Neubauer (1980), and it was concluded that the plasma flows around the flux tube with a pattern similar to the flow of an incompressible fluid around a long cylinder obstacle of radius 1.26 + or - 0.1 R sub Io.

  6. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    SciTech Connect

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G. C.; Ciardi, A.; Chittenden, J. P.; Loureiro, N. F.; Niasse, N.; Suzuki-Vidal, F.; Wu, J.; Yang, Q.; Clayson, T.; Frank, A.; Robinson, T. S.; Smith, R. A.; Stuart, N.

    2016-05-31

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (Ti~¯ZTe, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.

  7. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    DOE PAGES

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; ...

    2016-05-31

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (Ti~¯ZTe, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of themore » in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less

  8. Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows.

    PubMed

    Suttle, L G; Hare, J D; Lebedev, S V; Swadling, G F; Burdiak, G C; Ciardi, A; Chittenden, J P; Loureiro, N F; Niasse, N; Suzuki-Vidal, F; Wu, J; Yang, Q; Clayson, T; Frank, A; Robinson, T S; Smith, R A; Stuart, N

    2016-06-03

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counterstreaming, supersonic and magnetized aluminum plasma flows. The antiparallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure-two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T_{i}∼Z[over ¯]T_{e}, with average ionization Z[over ¯]=7). Analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilation of the inflowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.

  9. Magnetic Flux Compression Using Detonation Plasma Armatures and Superconductor Stators: Integrated Propulsion and Power Applications

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Robertson, Tony; Hawk, Clark; Turner, Matt; Koelfgen, Syri

    1999-01-01

    This presentation discusses the use of magnetic flux compression for space flight applications as a propulsion and other power applications. The qualities of this technology that make it suitable for spaceflight propulsion and power, are that it has high power density, it can give multimegawatt energy bursts, and terawatt power bursts, it can produce the pulse power for low impedance dense plasma devices (e.g., pulse fusion drivers), and it can produce direct thrust. The issues of a metal vs plasma armature are discussed, and the requirements for high energy output, and fast pulse rise time requires a high speed armature. The plasma armature enables repetitive firing capabilities. The issues concerning the high temperature superconductor stator are also discussed. The concept of the radial mode pulse power generator is described. The proposed research strategy combines the use of computational modeling (i.e., magnetohydrodynamic computations, and finite element modeling) and laboratory experiments to create a demonstration device.

  10. Evidence of Twisted Flux-Tube Emergence in Active Regions

    NASA Astrophysics Data System (ADS)

    Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.

    2015-03-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

  11. High heat flux issues for plasma-facing components in fusion reactors

    NASA Astrophysics Data System (ADS)

    Watson, Robert D.

    1993-02-01

    Plasma facing components in tokamak fusion reactors are faced with a number of difficult high heat flux issues. These components include: first wall armor tiles, pumped limiters, diverter plates, rf antennae structure, and diagnostic probes. Peak heat fluxes are 15 - 30 MW/m2 for diverter plates, which will operate for 100 - 1000 seconds in future tokamaks. Disruption heat fluxes can approach 100,000 MW/m2 for 0.1 ms. Diverter plates are water-cooled heat sinks with armor tiles brazed on to the plasma facing side. Heat sink materials include OFHC, GlidcopTM, TZM, Mo-41Re, and niobium alloys. Armor tile materials include: carbon fiber composites, beryllium, silicon carbide, tungsten, and molybdenum. Tile thickness range from 2 - 10 mm, and heat sinks are 1 - 3 mm. A twisted tape insert is used to enhance heat transfer and increase the burnout safety margin from critical heat flux limits to 50 - 60 MW/m2 with water at 10 m/s and 4 MPa. Tests using rastered electron beams have shown thermal fatigue failures from cracks at the brazed interface between tiles and the heat sink after only 1000 cycles at 10 - 15 MW/m2. These fatigue lifetimes need to be increased an order of magnitude to meet future requirements. Other critical issues for plasma facing components include: surface erosion from sputtering and disruption erosion, eddy current forces and runaway electron impact from disruptions, neutron damage, tritium retention and release, remote maintenance of radioactive components, corrosion-erosion, and loss-of-coolant accidents.

  12. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, S.; Brandenburg, A.

    2014-12-01

    Recent studies have suggested a new mechanism that can be used to explain the formation of magnetic spots or bipolar regions in highly stratified turbulent plasmas. According to this model, a large-scale magnetic field suppresses the turbulent pressure, which leads to a negative contribution of turbulence to the effective magnetic pressure. Direct numerical simulations (DNS) have confirmed that the negative contribution is large enough so that the effective magnetic pressure becomes negative and leads to a large-scale instability, which we refer to as negative effective magnetic pressure Instability (NEMPI). NEMPI was used to explain the formation of active regions and sunspots on the solar surface. One step toward improving this model was to combine dynamo in- stability with NEMPI. The dynamo is known to be responsible for the solar large-scale magnetic field and to play a role in solar activity. In this context, we studied stratified turbulent plasmas in spherical geometry, where the background field was generated by alpha squared dynamo. For NEMPI to be excited, the initial magnetic field should be in a proper range, so we used quenching function for alpha. Using the Pencil Code and mean field simulations (MFS), we showed that in the presence of dynamo-generated magnetic fields, we deal with a coupled system, where both instabilities, dynamo and NEMPI, work together and lead to the formation of magnetic structures (Jabbari et al. 2013). We also studied a similar system in plane geometry in the presence of rotation and confirmed that for slow rotation NEMPI works, but as the Coriolis number increases, the rotation suppresses NEMPI. By increasing the Coriolis number even further, the combination of fast rotation and high stratification excites a dynamo, which leads again to a coupled system of dynamo and NEMPI (Jabbari et al. 2014). Another important finding concerning NEMPI is the case where the instability is excited by a vertical magnetic field (Brandenburg et

  13. High-flux plasma exposure of ultra-fine grain tungsten

    SciTech Connect

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; Fang, Z. Z.; Ren, C.; Oya, Y.; Michibayashi, K.; Friddle, R. W.; Mills, B. E.

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-width Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 1022 m-2 s-1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to

  14. High-flux plasma exposure of ultra-fine grain tungsten

    DOE PAGES

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; ...

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 1022 m-2 s-1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of UFG

  15. Plasma-Materials Interactions (PMI) and High-Heat-Flux (HHF) component research and development in the US Fusion Program

    SciTech Connect

    Conn, R.W.

    1986-10-01

    Plasma particle and high heat fluxes to in-vessel components such as divertors, limiters, RF launchers, halo plasma scrapers, direct converters, and wall armor, and to the vacuum chamber itself, represent central technical issues for fusion experiments and reactors. This is well recognized and accepted. It is also well recognized that the conditions at the plasma boundary can directly influence core plasma confinement. This has been seen most dramatically, on the positive side, in the discovery of the H-mode using divertors in tokamaks. It is also reflected in the attention devoted worldwide to the problems of impurity control. Nowadays, impurities are controlled by wall conditioning, special discharge cleaning techniques, special coatings such as carbonization, the use of low-Z materials for limiters and armor, a careful tailoring of heat loads, and in some machines, through the use of divertors. All programs, all experiments, and all designers are now keenly aware that PMI and HHF issues are key to the successful performance of their machines. In this brief report we present general issues in Section 2, critical issues in Section 3, existing US PMI/HHF experiments and facilities in Section 4, US International Cooperative PMI/HHF activities in Section 5, and conclude with a discussion on major tasks in PMI/HHF in Section 6.

  16. A theoretical understanding of the scrape-off layer main heat-flux widths multi-tokamak database for limited plasmas

    NASA Astrophysics Data System (ADS)

    Halpern, Federico; Horacek, Jan; Pitts, Richard; Ricci, Paolo

    2015-11-01

    The Scrape-off Layer and Divertor topical group of the International Tokamak Physics Activity(ITPA) has amassed a database comprising hundreds of measurements of the main scrape-off layer (SOL) heat-flux widthsin inner-wall limited discharges. We have carried out an analysis of the dependence of the heat-flux widthswith respect to the plasma dimensionless parameters, derived fromturbulent transport theory. Restricting our analysis to circular plasmas, we find that a model based on non-linearly saturated turbulence can reproduce the heat-flux width values found in the database with very good agreement. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.

  17. Time-resolved measurements of hydrogen and deuterium fluxes in the ASDEX plasma boundary

    SciTech Connect

    Roth, J.; Varga, P.; Martinelli, A.P.; Scherzer, B.M.U.; Chen, C.K.; Wampler, W.R.; Taglauer, E.

    1982-01-01

    Hydrogen and deuterium fluxes parallel to the toroidal magnetic field were measured in the plasma boundary of ASDEX using graphite collector probes. Time resolution of the order of 100 ms can be obtained by rotating the cylindrical probes behind an aperture during the discharge. The trapped amount of hydrogen was determined by subsequent thermal desorption; in the analyses of deuterium the D(/sup 3/He,p)/sup 4/He nuclear reaction was used. Both methods yield quantitative results. Measurements were done for limiter and divertor discharges in the range of 4 to 20 cm outside the limiter or separatrix. The time distributions show a maximum flux at the beginning and the end of the discharge. The relatively lower flux during the plateau phase of the discharge is in the range 10/sup 15/ to 2 x 10/sup 17/ cm/sup -2/ sec/sup -1/, depending on the radial probe position; the maximum values are higher by a factor of 5 to 50. During neutral hydrogen injection, an additional maximum can be observed. The radial l/e-decay length is about 0.9 cm in front and 0.4 cm behind the fixed limiter. The results are compared with independent measurements in ASDEX and other plasma machines.

  18. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    NASA Astrophysics Data System (ADS)

    Pentecoste, Lucile; Thomann, Anne-Lise; Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal; Desgardin, Pierre; Barthe, Marie-France

    2016-09-01

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (1011-1014 ions.cm2.s-1) and kinetic energies below the W atom displacement threshold (about 500 eV for He+), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  19. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin

  20. Prediction of PFC Plasma Fluxes by Improved Edge/Scrape-off-layer Simulations

    SciTech Connect

    Rognlien, T

    2009-02-26

    Large, localized plasma heat exhaust, subsequent inward transport of eroded impurities, and distribution of tritium to walls comprise one of the most critical class of problems for the development of tokamak fusion reactors. The magnitude and temporal duration of the heat fluxes is controlled by two factors: (1) the plasma power coming into the edge from the core, and (2), the physics processes in the edge/scrape-off-layer (SOL) that distribute the power to Plasma Facing Components (PFCs), both in space and in time. Given that the plasma power is largely determined by the fusion power desired, here I address model development needs for item (2), the distribution of power to PFCs, which naturally carries with it the capability for transport of impurities and tritium. Another key issue not addressed here is the impact of edge plasma transport on the plasma pedestal parameters. The nature of plasma transport in the edge/SOL region has long be differentiated from that in the bulk core, initially because of the larger fluctuation amplitudes that are observed, with density fluctuations relative to the time-average sometimes approaching as high as unity in the SOL. More recent measurements have shown addition effects such as strong intermittency, filamentation, toroidal asymmetry, and large flows [1]. These characteristics have a direct impact on plasma energy and particle fluxes to PFCs and on the flow of impurities in the edge. The theory of the edge/SOL is complicated by the steep gradients, multi-dimensional nature of plasma/neutral variations, and as mentioned above, the strong relative fluctuation levels compared to the core region. Furthermore, the strong interaction of the plasma with neutrals and the associated radiative effects for partially ionized plasma are important, Consequently, theoretical models typically need to be, or should be, more complicated, which may be one reason model development has lagged that in the core (funding being another reason

  1. Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection X lines at Earth's magnetopause.

    PubMed

    Øieroset, M; Phan, T D; Eastwood, J P; Fujimoto, M; Daughton, W; Shay, M A; Angelopoulos, V; Mozer, F S; McFadden, J P; Larson, D E; Glassmeier, K-H

    2011-10-14

    We report the direct detection by three THEMIS spacecraft of a magnetic flux rope flanked by two active X lines producing colliding plasma jets near the center of the flux rope. The observed density depletion and open magnetic field topology inside the flux rope reveal important three-dimensional effects. There was also evidence for nonthermal electron energization within the flux rope core where the fluxes of 1-4 keV superthermal electrons were higher than those in the converging reconnection jets. The observed ion and electron energizations differ from current theoretical predictions.

  2. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.

    2015-08-01

    An effect of enhanced trapping of deuterium in tungsten at high flux was discovered. It was shown analytically and confirmed experimentally that the deuterium trapping in a presence of high density of defects in tungsten (W) depends on the ion energy and ion flux. Newly developed analytical model explains experimentally observed discrepancy of deuterium trapping at radiation-induced defects in tungsten at different ion fluxes that significantly improves a prediction of hydrogen isotope accumulation in different plasma devices, including ITER and DEMO. The developed model can be used for many system of hydrogen in a metal in both normal and extreme environments (high fluxes, elevated temperatures, neutron irradiation, etc.). This new model allows, for the first time, to validate density function theory (DFT) predictions of multiple occupation of a defect with deuterium against experimental data that bridge the gap in length and time scale between DFT calculations and experiments. By comparing first-principle calculations based on DFT and semi-empirical "adsorption model," it was proved that the mechanism of hydrogen isotope trapping in a vacancy cluster is similar to a chemisorption on a surface. Binding energies of deuterium with different types of defects in W were defined. Moreover, the surface barrier of deuterium to be chemisorbed on a clean W surface was found to be less than 1 eV and kinetics of deuterium release is limited by de-trapping from defects rather than to be limited by surface effects.

  3. Fundamental aspects of deuterium retention in tungsten at high flux plasma exposure

    SciTech Connect

    Ogorodnikova, O. V.

    2015-08-21

    An effect of enhanced trapping of deuterium in tungsten at high flux was discovered. It was shown analytically and confirmed experimentally that the deuterium trapping in a presence of high density of defects in tungsten (W) depends on the ion energy and ion flux. Newly developed analytical model explains experimentally observed discrepancy of deuterium trapping at radiation-induced defects in tungsten at different ion fluxes that significantly improves a prediction of hydrogen isotope accumulation in different plasma devices, including ITER and DEMO. The developed model can be used for many system of hydrogen in a metal in both normal and extreme environments (high fluxes, elevated temperatures, neutron irradiation, etc.). This new model allows, for the first time, to validate density function theory (DFT) predictions of multiple occupation of a defect with deuterium against experimental data that bridge the gap in length and time scale between DFT calculations and experiments. By comparing first-principle calculations based on DFT and semi-empirical “adsorption model,” it was proved that the mechanism of hydrogen isotope trapping in a vacancy cluster is similar to a chemisorption on a surface. Binding energies of deuterium with different types of defects in W were defined. Moreover, the surface barrier of deuterium to be chemisorbed on a clean W surface was found to be less than 1 eV and kinetics of deuterium release is limited by de-trapping from defects rather than to be limited by surface effects.

  4. The thermal and plasma-physical evolution of laminar current sheets formed in the solar atmosphere by emerging flux

    NASA Technical Reports Server (NTRS)

    Larosa, T. N.

    1992-01-01

    A time-dependent analysis of emerging flux is carried out, and the time evolution of both the current sheet energetics and the plasma state is calculated. This evolution is determined in two different regimes. In the first case the width of the current sheet is assumed to be independent of the sheet thermodynamics and is fixed by the initial conditions. In the second, the width of the current sheet is a function of the resistivity and is allowed to decrease to its minimum given by the electron gyroradius. In both cases the resistivity is computed according to the marginal stability hypothesis. In each case the thermodynamic evolution is found to be quite rapid, with the temperature increasing from 10,000 to 1,000,000 K in a second or less. In contrast to previous studies, it is found that the resistivity is not significantly enhanced by the current-driven plasma wave turbulence. It is concluded that a laminar current sheet cannot be responsible for the activity associated with emerging flux.

  5. Hydrogen Sulfide Inhibits Plasma Renin Activity

    PubMed Central

    Lu, Ming; Liu, Yi-Hong; Goh, Hong Swen; Wang, Josh Jia Xing; Yong, Qian-Chen; Wang, Rui

    2010-01-01

    The development of renovascular hypertension depends on the release of renin from the juxtaglomerular (JG) cells, a process regulated by intracellular cAMP. Hydrogen sulfide (H2S) downregulates cAMP production in some cell types by inhibiting adenylyl cyclase, suggesting the possibility that it may modulate renin release. Here, we investigated the effect of H2S on plasma renin activity and BP in rat models of renovascular hypertension. In the two-kidney-one-clip (2K1C) model of renovascular hypertension, the H2S donor NaHS prevented and treated hypertension. Compared with vehicle, NaHS significantly attenuated the elevation in plasma renin activity and angiotensin II levels but did not affect plasma angiotensin-converting enzyme activity. Furthermore, NaHS inhibited the upregulation of renin mRNA and protein levels in the clipped kidneys of 2K1C rats. In primary cultures of renin-rich kidney cells, NaHS markedly suppressed forskolin-stimulated renin activity in the medium and the intracellular increase in cAMP. In contrast, NaHS did not affect BP or plasma renin activity in normal or one-kidney-one-clip (1K1C) rats, both of which had normal plasma renin activity. In conclusion, these results demonstrate that H2S may inhibit renin activity by decreasing the synthesis and release of renin, suggesting its potential therapeutic value for renovascular hypertension. PMID:20360313

  6. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  7. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  8. Plasma Composition in a Sigmoidal Anemone Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Green, L. M.; Steed, K.; Carlyle, J.

    2013-11-01

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  9. Plasma composition in a sigmoidal anemone active region

    SciTech Connect

    Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.; Carlyle, J.; Brooks, D. H.; Démoulin, P.; Steed, K.

    2013-11-20

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  10. Linear MHD Wave Propagation in Time-Dependent Flux Tube. II. Finite Plasma Beta

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2014-04-01

    The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi ( Solar Phys. 2013, doi:10.1007/s11207-013-0366-9, Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.

  11. Modeling the Subsurface Evolution of Active-Region Flux Tubes

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2009-12-01

    I present results from a set of 3-D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior that put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy's law for the mean tilt of solar active regions. Due to asymmetric stretching of the Ω-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist α ≡ JB / B2, whereas the values in the following leg show large fluctuations and are of mixed signs.

  12. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells.

    PubMed

    Bulychev, Alexander A; Kamzolkina, Natalia A

    2006-10-01

    Cells of characean algae exposed to illumination arrange plasma-membrane H(+) fluxes and photosynthesis in coordinated spatial patterns (bands). This study reveals that H(+) transport and photosynthesis patterns in these excitable cells are affected not only by light conditions but also by electric excitation of the plasma membrane. It is shown that generation of action potential (AP) temporally eliminates alkaline bands, suppresses O(2) evolution, and differentially affects primary reactions of photosystem II (PSII) in different cell regions. The quantum yield of PSII electron transport decreased after AP in the alkaline but not in acidic cell regions. The effects of electric excitation on fluorescence and the PSII electron flow were most pronounced at light-limiting conditions. Evidence was obtained that the shift in chlorophyll fluorescence after AP is due to the increase in DeltapH at thylakoid membranes. It is concluded that the AP-triggered pathways affecting ion transport and photosynthetic energy conversion are linked but not identical.

  13. End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode

    NASA Astrophysics Data System (ADS)

    Griswold, M. E.; Korepanov, S.; Thompson, M. C.

    2016-11-01

    An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor of 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.

  14. Electrostatic Fluxes and Plasma Rotation in the Edge Region of EXTRAP-T2R

    NASA Astrophysics Data System (ADS)

    Serianni, G.; Antoni, V.; Bergsåker, H.; Brunsell, P.; Drake, J. R.; Spolaore, M.; Sätherblom, H. E.; Vianello, N.

    2001-10-01

    The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the E×B drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation.

  15. Subsurface deuterium bubble formation in W due to low-energy high flux deuterium plasma exposure

    NASA Astrophysics Data System (ADS)

    Jia, Y. Z.; Liu, W.; Xu, B.; Qu, S. L.; Shi, L. Q.; Morgan, T. W.

    2017-03-01

    The deuterium (D) bubbles formed in W exposed to high flux D plasma were researched by scanning electron microscopy and transmission electron microscopy. After D plasma exposure at 500 K and 1000 K, a layer of nano-sized bubbles were homogenously distributed in W subsurface region. The D bubbles were homogenously nucleated due to the high D concentration, and the nucleation process is not related to the vacancy defects. At low temperature (500 K), D bubbles can grow by surface blistering, which caused different nano scale morphologies on different surfaces. At high temperature (1000 K), D bubbles mainly grow by vacancy clustering, which caused pinholes on the surface.

  16. Thomson scattering measurements of heat flux from ion-acoustic waves in laser-produced aluminum plasmas.

    PubMed

    Yu, Q Z; Zhang, J; Li, Y T; Lu, X; Hawreliak, J; Wark, J; Chambers, D M; Wang, Z B; Yu, C X; Jiang, X H; Li, W H; Liu, S Y; Zheng, Z J

    2005-04-01

    Thomson scattering (TS) measurements are performed at different locations in a laser-produced aluminum plasma. Variations of the separation, wavelength shift, and asymmetric distribution of the two ion-acoustic waves are investigated from their spectral-time-resolved TS images. Detailed information on the space-time evolution of the plasma parameters is obtained. Electron distribution and variation of the heat flux in the plasma are also obtained for a steep temperature gradient.

  17. Contact activation of blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an

  18. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    SciTech Connect

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  19. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    NASA Astrophysics Data System (ADS)

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  20. Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.

    2016-09-01

    The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.

  1. The evolution of active region loop plasma

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Antiochos, S. K.

    1980-01-01

    The adjustment of coronal active-region loops to changes in their heating rate is investigated numerically. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux is dissipated by a static chromosphere, and (2) the method by which the chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates.

  2. Vapor shield protection of plasma facing components under incident high heat flux

    NASA Astrophysics Data System (ADS)

    Gilligan, J.; Bourham, M.; Hankins, O.; Eddy, W.; Hurley, J.; Black, D.

    1992-12-01

    Disruption damage to plasma facing components has been found to be a limiting design constraint in ITER and other large fusion devices. A growing data base is confirming the role of the vapor shield in protecting ablated surfaces under disruption-like conditions, which would imply longer lifetimes for plasma facing components. We present new results for exposure of various material surfaces to high heat fluxes up to 70 GW/m 2 over 100 μs (7 MJ/m 2) in the SIRENS high heat flux test facility. Tested materials are graphite grades, pyrolytic graphite, refractory metals and alloys, refractory coatings on copper substrates, boron nitride and preliminary results of diamond coating on silicon substrates. An empirical scaling law of the energy transmission factor through the vapor shield has been obtained. The application of a strong external magnetic field, to reduce turbulent energy transport in the vapor shield boundary, is shown to decrease f by as much as 35% for fields of 8 T.

  3. Innovative Divertor Development to Solve the Plasma Heat-Flux Problem

    SciTech Connect

    Rognlien, T; Ryutov, D; Makowski, M; Soukhanovskii, V; Umansky, M; Cohen, R; HIll, D; Joseph, I

    2009-02-26

    Large, localized plasma heat exhaust continues to be one of the critical problems for the development of tokamak fusion reactors. Excessive heat flux erodes and possibly melts plasma-facing materials, thereby dramatically shortening their lifetime and increasing the impurity contamination of the core plasma. A detailed assessment by the ITER team for their divertor has revealed substantial limitations on the operational space imposed by the divertor performance. For a fusion reactor, the problem becomes worse in that the divertor must accommodate 20% of the total fusion power (less any broadly radiated loss), while not allowing excess buildup of tritium in the walls nor excessive impurity production. This is an extremely challenging set of problems that must be solved for fusion to succeed as a power source; it deserves a substantial research investment. Material heat-flux constraints: Results from present-day tokamaks show that there are two major limitations of peak plasma heat exhaust. The first is the continuous flow of power to the divertor plates and nearby surfaces that, for present technology, is limited to 10-20 MW/m{sup 2}. The second is the transient peak heat-flux that can be tolerated in a short time, {tau}{sub m}, before substantial ablation and melting of the surface occurs; such common large transient events are Edge Localized Mode (ELMs) and disruptions. The material limits imposed by these events give a peak energy/{tau}{sub m}{sup 1/2} parameter of {approx} 40 MJ/m{sup 2}s{sup 1/2} [1]. Both the continuous and transient limits can be approached by input powers in the largest present-day devices, and future devices are expected to substantially exceed the limits unless a solution can be found. Since the early 90's LLNL has developed the analytic and computational foundation for analyzing divertor plasmas, and also suggested and studied a number of solid and liquid material concepts for improving divertor/wall performance, with the most recent

  4. Enhanced magnetic field probe array for improved excluded flux calculations on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Roche, T.; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J.

    2016-11-01

    External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ˜5 ms. The addition of the external copper coils effectively increases this time to ˜7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.

  5. Hamiltonian reduced fluid model for plasmas with temperature and heat flux anisotropies

    NASA Astrophysics Data System (ADS)

    Tassi, E.

    2016-09-01

    For an arbitrary number of species, we derive a Hamiltonian fluid model for strongly magnetized plasmas describing the evolution of the density, velocity, and electromagnetic fluctuations and also of the temperature and heat flux fluctuations associated with motions parallel and perpendicular to the direction of a background magnetic field. We derive the model as a reduction of the infinite hierarchy of equations obtained by taking moments of a Hamiltonian drift-kinetic system with respect to Hermite-Laguerre polynomials in velocity-magnetic-moment coordinates. We show that a closure relation directly coupling the heat flux fluctuations in the directions parallel and perpendicular to the background magnetic field provides a fluid reduction that preserves the Hamiltonian character of the parent drift-kinetic model. We find an alternative set of dynamical variables in terms of which the Poisson bracket of the fluid model takes a structure of a simple direct sum and permits an easy identification of the Casimir invariants. Such invariants in the limit of translational symmetry with respect to the direction of the background magnetic field turn out to be associated with Lagrangian invariants of the fluid model. We show that the coupling between the parallel and perpendicular heat flux evolutions introduced by the closure is necessary for ensuring the existence of a Hamiltonian structure with a Poisson bracket obtained as an extension of a Lie-Poisson bracket.

  6. Upper limit of electron fluxes generated by kinetic Alfvén waves in Maxwellian plasma

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Rankin, R.; Vasko, I. Y.

    2016-09-01

    We consider electron acceleration by kinetic Alfvén waves in the equatorial inner magnetosphere and plasma sheet boundary layer. The competition between the accelerating effect of the wave parallel electric field and mirror force acting on particles in an inhomogeneous background magnetic field generates an effective potential well where electrons can be trapped and accelerated. We compare energy variations of trapped and transient resonant electrons and show that these variations almost compensate each other. Thus, energy provided to waves by transient particles is transferred to trapped particles. This effect allows waves accelerate trapped electrons without being significantly damped. Using energy balance equations, we estimate the maximum flux of electrons accelerated via trapping into Landau resonance with kinetic Alfvén waves. For a wide range of system parameters (i.e., ion to electron temperature ratio, magnetic field amplitude, and wave number and wave frequency), acceleration of trapped electrons can generate fluxes with amplitude about 5-25% of the background thermal fluxes. We determine parametric regions for the most efficient acceleration.

  7. Numerical simulations of active region scale flux emergence: From spot formation to decay

    SciTech Connect

    Rempel, M.; Cheung, M. C. M.

    2014-04-20

    We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 × 10{sup 22} Mx flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots. We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two days of the decay phase is consistent with self-similar decay by turbulent diffusion.

  8. Nonuniform discharge currents in active plasma lenses

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Geddes, C. G. R.; Gonsalves, A. J.; Schroeder, C. B.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2017-03-01

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  9. A theoretical interpretation of the main scrape-off layer heat-flux width scaling for tokamak inner-wall limited plasmas

    NASA Astrophysics Data System (ADS)

    Halpern, F. D.; Horacek, J.; Pitts, R. A.; Ricci, P.

    2016-08-01

    The International Tokamak Physics Activity Topical Group on scrape-off layer and divertor physics has amassed a database comprising hundreds of reciprocating Langmuir probe measurements of the main scrape-off layer heat-flux width {λq} in inner-wall limited discharges. We have carried out an analysis, based on turbulent transport theory, of the variation of {λq} with respect to the dimensionless plasma parameters. Restricting our analysis to circular plasmas, we find that a model based on non-linearly saturated turbulence can well reproduce the {λq} values found in the database.

  10. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  11. Biochar activated by oxygen plasma for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua

    2015-01-01

    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (<150 °C) plasma treatment that efficiently activates a yellow pine biochar. Particularly, the effects of oxygen plasma on the biochar microstructure and supercapacitor characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  12. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    SciTech Connect

    C.H. Skinner; C.A. Gentile; A. Hassanein

    2002-01-28

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices.

  13. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas

    SciTech Connect

    Singh, S. C. Fallon, C.; Hayden, P.; Yeates, P.; Costello, J. T.; Mujawar, M.

    2014-09-15

    Ion signals from laser produced plasmas (LPPs) generated inside aluminum rectangular cavities at a fixed depth d = 2 mm and varying width, x = 1.0, 1.6, and 2.75 mm were obtained by spatially varying the position of a negatively biased Langmuir probe. Damped oscillatory features superimposed on Maxwellian distributed ion signals were observed. Depending on the distance of the probe from the target surface, three to twelve fold enhancements in peak ion density were observed via confinement of the LPP, generated within rectangular cavities of varying width which constrained the plasma plume to near one dimensional expansion in the vertical plane. The effects of lateral spatial confinement on the expansion velocity of the LPP plume front, the temperature, density and expansion velocity of ions, enhancement of ion flux, and ion energy distribution were recorded. The periodic behavior of ion signals was analyzed and found to be related to the electron plasma frequency and electron-ion collision frequency. The effects of confinement and enhancement of various ion parameters and expansion velocities of the LPP ion plume are explained on the basis of shock wave theory.

  14. Numerical study of the plasma wall-bias effect on the ion flux through acceleration grid hole

    SciTech Connect

    Park, Seung-Hoon; Chang, C. S.

    2010-07-15

    In the extraction of ion beams from a source plasma through a grid acceleration structure, one of the key improvement issues is the fluence of the ion flux. Theoretical research has usually been focused on the structure of the grid system and the distribution of the electrostatic voltages over the grid layers. In the present work, using a self-consistent computer simulation between the plasma source, sheath potential, and the grid system, the effect of the source-wall biasing on the fluence of the ion flux through a three-grid acceleration system has been examined. It is found that a strongly positive wall-biasing can significantly enhance the ion flux by improving the shape of the plasma sheath potential meniscus at the entrance to the grid hole structure.

  15. U.S. BURNING PLASMA ORGANIZATION ACTIVITIES

    SciTech Connect

    Raymond J. Fonck

    2009-08-11

    The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

  16. Transition region fluxes in A-F Dwarfs: Basal fluxes and dynamo activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Schrijver, Carolus J.; Boyd, William

    1988-01-01

    The transition region spectra of 87 late A and early F dwarfs and subgiants were analyzed. The emission line fluxes are uniformly strong in the early F stars, and drop off rapidly among the late A stars. The basal flux level in the F stars is consistent with an extrapolation of that observed among the G stars, while the magnetic component displays the same flux-flux relations seen among solar-like stars. Despite the steep decrease in transition region emission flux for B-V less than 0.28, C II emission is detected in alpha Aql (B-V = 0.22). The dropoff in emission is inconsistent with models of the mechanically generated acoustic flux available. It is concluded that, although the nonmagnetic basal heating is an increasingly important source of atmospheric heating among the early F stars, magnetic heating occurs in any star which has a sufficiently thick convective zone to generate acoustic heating.

  17. Magnetospheric plasma flows associated with boundary waves and flux transfer events

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Smith, M. F.

    1992-01-01

    We describe plasma flow perturbations in the outer magnetosphere during the passage of magnetopause boundary waves and cylindrically shaped flux transfer events (FTEs). Spacecraft which remain within the magnetosphere observe bipolar flows normal to the nominal magnetopause accompanied by flows nearly opposite to the direction of boundary wave and/or FTE motion. Flows are generally discontinuous across FTE and magnetopause boundaries, with reversals in the component of flow tangential to the nominal magnetopause expected during all magnetopause crossings and some entries into FTEs. No bipolar flows normal to the nominal magnetopause occur within FTEs unless they rotate and none occur in the magnetosheath unless the boundary waves propagate relative to the magnetosheath flow. IRM satellite observations on October 28, 1984 may be interpreted either in terms of FTEs or boundary waves.

  18. Kinetic modeling of active plasma resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Oberrath, Jens

    2016-09-01

    The term ``active plasma resonance spectroscopy'' (APRS) refers to a plasma diagnostic method which employs the natural ability of plasmas to resonate close to the plasma frequency. Essential for this method is an appropriate model to determine the relation between the resonance parameters and demanded plasma parameters. Measurements with these probes in plasmas of a few Pa typically show a broadening of the spectrum that cannot be predicted by a fluid model. Thus, a kinetic model is necessary. A general kinetic model of APRS probes, which can be described in electorstatic approximation, valid for all pressures has been presented. This model is used to analyze the dynamic behavior of such probes by means of functional analytic methods. One of the main results is, that the system response function Y (ω) is given in terms of the matrix elements of the resolvent of the dynamic operator evaluated for values on the imaginary axis. The spectrum of this operator is continuous which implies a new phenomenon related to anomalous or non-collisional dissipation. Based on the scalar product, which is motivated by the kinetic free energy, the non-collisional damping can be interpreted: In a periodic state, the probe constantly emits plasma waves which propagate to ``infinity''. The free energy simply leaves the ``observation range'' of the probe which is recorded as damping. The kinetic damping, which depends on the mean kinetic energy of the electrons, is responsible for the broadening of a resonance peak in the measured spectrum of APRS probes. The ultimate goal is to determine explicit formulas for the relation between the broadening of the resonance peak and the ``equivalent electron temperature'', especially in the case of the spherical Impedance Probe and the Multipole Resonance Probe. Gratitude is expressed to the internal funding of Leuphana University, the BMBF via PluTO+, the DFG via Collaborative Research Center TR 87, and the Ruhr University Research School.

  19. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology.

    PubMed

    Alharbi, Sami H; Akber, Riaz A

    2014-03-01

    The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface.

  20. Electrons precipitation stimulated by plasma jets injection in FLUXUS and NORTH STAR active rocket experiments

    NASA Astrophysics Data System (ADS)

    Gavrilov, B.; Erlandson, R.; Lynch, K.; Meng, C.; Podgorny, I.; Pfaff, R.; Stenbaek-Nielsen, H.; Sobyanin, D.; Zetzer, J.

    In Russian-American active rocket experiments FLUXUS (49? N, 47? E, 1997) and NORTH STAR (70? N, 148? W, 1999) high-velocity plasma jets were injected along and across the geomagnetic field respectively. In the both experiments high- density plasma jets pushed out the magnetic field. Later, when the magnetic field penetrated into the plasma jet, plasma was polarized and E=-VxB/c electric field was registered. As a result, Alfvén waves, carrying the field-aligned currents, propagate along the magnetic field lines. If the current density is rather high, the field-aligned electric fields can appear, and electrons would be accelerated along the magnetic field lines. Electron fluxes with energy from several eV to 2 keV were revealed in the both experiments. During NORTH STAR experiment electron fluxes caused by auroral precipitation were also registered

  1. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-06-01

    Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q  =  10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95  =  4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP

  2. Microstructural modifications in tungsten induced by high flux plasma exposure: TEM examination

    NASA Astrophysics Data System (ADS)

    Dubinko, A.; Bakaeva, A.; Hernández-Mayoral, M.; Terentyev, D.; De Temmerman, G.; Noterdaeme, J.-M.

    2016-02-01

    We have performed microstructural characterization using transmission electron microscopy (TEM) techniques to reveal nanometric features in the sub-surface region of tungsten samples exposed to high flux, low energy deuterium plasma. TEM examination revealed formation of a dense dislocation network and dislocation tangles, overall resulting in a strong increase in the dislocation density by at least one order of magnitude as compared to the initial one. Plasma-induced dislocation microstructure vanishes beyond a depth of about 10 μm from the top of the exposed surface where the dislocation density and its morphology becomes comparable to the reference microstructure. Interstitial edge dislocation loops with Burgers vector a 0/2<111> and a 0<100> were regularly observed within 6 μm of the sub-surface region of the exposed samples, but absent in the reference material. The presence of these loops points to a co-existence of nanometric D bubbles, growing by loop punching mechanism, and sub-micron deuterium flakes, resulting in the formation of surface blisters, also observed here by scanning electron microscopy.

  3. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  4. Time-resolved ion flux, electron temperature and plasma density measurements in a pulsed Ar plasma using a capacitively coupled planar probe

    NASA Astrophysics Data System (ADS)

    Darnon, Maxime; Cunge, Gilles; Braithwaite, Nicholas St. J.

    2014-04-01

    The resurgence of industrial interest in pulsed radiofrequency plasmas for etching applications highlights the fact that these plasmas are much less well characterized than their continuous wave counterparts. A capacitively coupled planar probe is used to determine the time variations of the ion flux, electron temperature (of the high-energy tail of the electron energy distribution function) and plasma density. For a pulsing frequency of 1 kHz or higher, the plasma never reaches a steady state during the on-time and is not fully extinguished during the off-time. The drop of plasma density during the off-time leads to an overshoot in the electron temperature at the beginning of each pulse, particularly at low frequencies, in good agreement with modeling results from the literature.

  5. Contact activation of blood-plasma coagulation.

    PubMed

    Vogler, Erwin A; Siedlecki, Christopher A

    2009-04-01

    This opinion identifies inconsistencies in the generally-accepted surface biophysics involved in contact activation of blood-plasma coagulation, reviews recent experimental work aimed at resolving inconsistencies, and concludes that this standard paradigm requires substantial revision to accommodate new experimental observations. Foremost among these new findings is that surface-catalyzed conversion of the blood zymogen factor XII (FXII, Hageman factor) to the enzyme FXIIa (FXII [surface] --> FXIIa, a.k.a. autoactivation) is not specific for anionic surfaces, as proposed by the standard paradigm. Furthermore, it is found that surface activation is moderated by the protein composition of the fluid phase in which FXII autoactivation occurs by what appears to be a protein-adsorption-competition effect. Both of these findings argue against the standard view that contact activation of plasma coagulation is potentiated by the assembly of activation-complex proteins (FXII, FXI, prekallikrein, and high-molecular weight kininogen) directly onto activating surfaces (procoagulants) through specific protein/surface interactions. These new findings supplement the observation that adsorption behavior of FXII and FXIIa is not remarkably different from a wide variety of other blood proteins surveyed. Similarity in adsorption properties further undermines the idea that FXII and/or FXIIa are distinguished from other blood proteins by unusual adsorption properties resulting in chemically-specific interactions with activating anionic surfaces. IMPACT STATEMENT: This review shows that the consensus biochemical mechanism of contact activation of blood-plasma coagulation that has long served as a rationale for poor hemocompatibility is an inadequate basis for surface engineering of advanced cardiovascular biomaterials.

  6. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  7. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  8. Collision of an Arched Plasma-Filled Flux Rope with a Target Cloud of Initially Neutral Gas

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Bellan, Paul M.

    2015-11-01

    The Caltech solar loop experiment apparatus had been used to create an arched plasma-filled flux rope that expands to collide with a pre-injected initially-neutral gas. We investigated such a situation in two regimes: (i) plasma made by heavy gas impacting a much lighter neutral gas cloud and (ii) a light-gas plasma impacting much heavier neutral gas. The neutral gas became ionized immediately upon impact. In regime (i), multiple shock layers were formed in the target cloud; these magnetized collisionless shocks are relevant to solar physics as such shocks develop ahead of Coronal Mass Ejections and occur in Co-rotating Interaction Regions. In regime (ii), plasma expansion was inhibited. In both cases, fast camera images, magnetic probe measurements, and spectroscopy data will be reported. The analysis of plasma and shock expansion, as well as associated density and temperature changes, will be presented.

  9. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    NASA Astrophysics Data System (ADS)

    Lisin, E. A.; Tarakanov, V. P.; Popel, S. I.; Petrov, O. F.

    2015-11-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered.

  10. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.

  11. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields.

    PubMed

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.

  12. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  13. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect

    Youchison, D. L.

    2012-03-01

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  14. A flux-splitting method for hyperbolic-equation system of magnetized electron fluids in quasi-neutral plasmas

    SciTech Connect

    Kawashima, Rei Komurasaki, Kimiya Schönherr, Tony

    2016-04-01

    A flux-splitting method is proposed for the hyperbolic-equation system (HES) of magnetized electron fluids in quasi-neutral plasmas. The numerical fluxes are split into four categories, which are computed by using an upwind method which incorporates a flux-vector splitting (FVS) and advection upstream splitting method (AUSM). The method is applied to a test calculation condition of uniformly distributed and angled magnetic lines of force. All of the pseudo-time advancement terms converge monotonically and the conservation laws are strictly satisfied in the steady state. The calculation results are compared with those computed by using the elliptic–parabolic-equation system (EPES) approach using a magnetic-field-aligned mesh (MFAM). Both qualitative and quantitative comparisons yield good agreements of results, indicating that the HES approach with the flux-splitting method attains a high computational accuracy.

  15. Modeling hydrodynamic flows in plasma fluxes when depositing metal layer on the surface of catalyst converters

    NASA Astrophysics Data System (ADS)

    Chinakhov, D. A.; Sarychev, V. D.; Granovsky, A. Yu; Solodsky, S. A.; Nevsky, S. A.; Konovalov, S. V.

    2017-01-01

    Air pollution with harmful substances resulting from combustion of liquid hydrocarbons and emitted into atmosphere became one of the global environmental problems in the late 20th century. The systems of neutralization capable to reduce toxicity of exhaust gases several times are very important for making environmentally safer combustion products discharged into the atmosphere. As revealed in the literature review, one of the most promising purification procedures is neutralization of burnt gases by catalyst converter systems. The principal working element in the converter is a catalytic layer of metals deposited on ceramics, with thickness 20-60 micron and a well-developed micro-relief. The paper presents a thoroughly substantiated new procedure of deposing a nano-scale surface layer of metal-catalyst particles, furthering the utilization of catalysts on a new level. The paper provides description of mathematical models and computational researches into plasma fluxes under high-frequency impulse input delivered to electrode material, explorations of developing Kelvin-Helmholtz, Marangoni and magnetic hydrodynamic instabilities on the surface of liquid electrode metal droplet in the nano-scale range of wavelengths to obtain a flow of nano-meter particles of cathode material. The authors have outlined a physical and mathematical model of magnetic and hydrodynamic instability for the case of melt flowing on the boundary with the molten metal with the purpose to predict the interphase shape and mutual effect of formed plasma jet and liquid metal droplet on the electrode in the nano-scale range of wavelengths at high-frequency impact on the boundary “electrode-liquid layer”.

  16. Statistics of field-aligned intermittent electron flux in a linear ECR plasma

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Terasaka, Kenichiro; Aramaki, Mitsutoshi; Tanaka, Masayoshi Y.

    2012-10-01

    Spontaneous emission of field-aligned intermittent high-energy electron flux has been observed in a linear electron-cyclotron-resonance (ECR) plasma produced in the HYPER-I device (NIFS, Japan). We utilized the temporal variation of probe's floating potential due to electron influx as an index of the intermittent events. Time series of the floating potential fluctuation have been analyzed statistically. The probability density function (PDF) exhibits a non-Gaussian distribution with a long tail in the negative amplitude side, indicating that the signal is dominated by large amplitude negative spikes. The frequency distribution of waiting time, which is defined by the time interval between two consecutive spikes, is well fitted by an exponential distribution, implying a probable connection to the stationary Poisson process. Although a power-law dependence is found in the duration distribution, its relation to the self-organized criticality has not been clear. The effect of ion species on the statistics above will also be discussed.

  17. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry

    NASA Astrophysics Data System (ADS)

    Bruneau, B.; Diomede, P.; Economou, D. J.; Longo, S.; Gans, T.; O'Connell, D.; Greb, A.; Johnson, E.; Booth, J.-P.

    2016-08-01

    Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure (~1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model are compared to phase resolved optical emission spectroscopy measurements, yielding information on the dynamics of the excitation rate in these discharges. When the discharge is excited with amplitude asymmetric waveforms, the discharge becomes electrically asymmetric, with different ion energies at each of the two electrodes. Unexpectedly, large differences in the \\text{H}2+ fluxes to each of the two electrodes are caused by the different \\text{H}3+ energies. When the discharge is excited with slope asymmetric waveforms, only weak electrical asymmetry of the discharge is observed. In this case, electron power absorption due to fast sheath expansion at one electrode is balanced by electron power absorption at the opposite electrode due to a strong electric field reversal.

  18. Updates on AmeriFlux Network Data Activities

    NASA Astrophysics Data System (ADS)

    Yang, B.; Boden, T.; Krassovski, M.; Jackson, B.

    2011-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory serves as the central data repository for the AmeriFlux network. The currently available datasets include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. In this presentation, we provide an update on this network database including the recent release of gap-filled meteorological records and progress in generating value-added high level products for the flux measurements. We will also discuss our plans in developing and producing other high-level products, such as uncertainty estimates for flux measurement and derivation of phenology from the available measurements at flux sites.

  19. Bi-Maxwellian electron energy distribution function in the vicinity of the last closed flux surface in fusion plasma

    NASA Astrophysics Data System (ADS)

    Popov, T. S. V. K.; Dimitrova, M.; Pedrosa, M. A.; López-Bruna, D.; Horacek, J.; Kovačič, J.; Dejarnac, R.; Stöckel, J.; Aftanas, M.; Böhm, P.; Bílková, P.; Hidalgo, C.; Panek, R.

    2015-11-01

    The first-derivative probe technique was applied to derive data for plasma parameters from the IV Langmuir probe characteristics measured in the plasma boundary region in the COMPASS tokamak and in the TJ-II stellarator. It is shown that in the COMPASS tokamak in the vicinity of the last closed flux surface (LCFS) the electron energy distribution function (EEDF) is bi-Maxwellian with the low-temperature electron fraction predominating over the higher temperature one, whereas in the far scrape-off layer (SOL) the EEDF is Maxwellian. In the TJ-II stellarator during NBI heated plasma the EEDF in the confined plasma and close to the LCFS is bi-Maxwellian while in the far SOL the EEDF is Maxwellian. In contrast, during the ECR heating phase of the discharge both in the confined plasma and in the SOL the EEDF is bi-Maxwellian. The mechanism for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. The comparison of the results from probe measurements with ASTRA package and EIRENE code calculations suggests that the main reason of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms. Results for the electron temperatures and densities obtained by the first-derivative probe technique in the COMPASS tokamak and in the TJ-II stellarator were used to evaluate the radial distribution of the parallel power flux density. It is shown that in the SOL the radial distribution of the parallel power flux density is a double exponential. It is pointed out that in the calculations of the parallel power flux density at the LCFS the energy losses from ionization mechanisms must be taken into account.

  20. Probability Density Functions of Floating Potential Fluctuations Due to Local Electron Flux Intermittency in a Linear ECR Plasma

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Terasaka, Kenichiro; Tanaka, Eiki; Aramaki, Mitsutoshi; Tanaka, Masayoshi Y.

    An intermittent behavior of local electron flux in a laboratory ECR plasma is statistically analyzed by means of probability density functions (PDFs). The PDF constructed from a time series of the floating potential signal on a Langmuir probe has a fat tail in the negative value side, which reflects the intermittency of the local electron flux. The PDF of the waiting time, which is defined by the time interval between two successive events, is found to exhibit an exponential distribution, suggesting that the phenomenon is characterized by a stationary Poisson process. The underlying Poisson process is also confirmed by the number of events in given time intervals that is Poisson distributed.

  1. Magnetic fusion energy plasma interactive and high heat flux components. Volume III. Strategy for international collaborations in the areas of plasma materials interactions and high heat flux materials and components development

    SciTech Connect

    Gauster, W.B.; Bauer, W.; Roberto, J.B.; Post, D.E.

    1984-01-01

    The purpose of this summary is to assess opportunities for such collaborations in the specific areas of Plasma Materials Interaction and High Heat Flux Materials and Components Development, and to aid in developing a strategy to take advantage of them. After some general discussion of international collaborations, we summarize key technical issues and the US programs to address them. Then follows a summary of present collaborations and potential opportunities in foreign laboratories.

  2. Boron Accelerates Cultured Osteoblastic Cell Activity through Calcium Flux.

    PubMed

    Capati, Mark Luigi Fabian; Nakazono, Ayako; Igawa, Kazunari; Ookubo, Kensuke; Yamamoto, Yuya; Yanagiguchi, Kajirou; Kubo, Shisei; Yamada, Shizuka; Hayashi, Yoshihiko

    2016-12-01

    A low concentration of boron (B) accelerates the proliferation and differentiation of mammalian osteoblasts. The aim of this study was to investigate the effects of 0.1 mM of B on the membrane function of osteoblastic cells in vitro. Genes involved in cell activity were investigated using gene expression microarray analyses. The Ca(2+) influx and efflux were evaluated to demonstrate the activation of L-type Ca(2+) channel for the Ca(2+) influx, and that of Na(+)/K(+)-ATPase for the Ca(2+) efflux. A real-time PCR analysis revealed that the messenger RNA (mRNA) expression of four mineralization-related genes was clearly increased after 3 days of culture with a B-supplemented culture medium. Using microarray analyses, five genes involved in cell proliferation and differentiation were upregulated compared to the control group. Regarding the Ca(2+) influx, in the nifedipine-pretreated group, the relative fluorescence intensity for 1 min after adding B solution did not increase compared with that for 1 min before addition. In the control group, the relative fluorescence intensity was significantly increased compared with the experimental group (P < 0.05). Regarding the Ca(2+) efflux, in the experimental group cultured in 0.1 mM of B-supplemented medium, the relative fluorescence intensity for 10 min after ouabain treatment revealed a significantly lower slope value compared with the control group (P < 0.01). This is the first study to demonstrate the acceleration of Ca(2+) flux by B supplementation in osteoblastic cells. Cell membrane stability is related to the mechanism by which a very low concentration of B promotes the proliferation and differentiation of mammalian osteoblastic cells in vitro.

  3. AmeriFlux Network Data Activities: updates, progress and plans

    NASA Astrophysics Data System (ADS)

    Yang, B.; Boden, T.; Krassovski, M.; Song, X.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory serves as the long-term data repository for the AmeriFlux network. Datasets currently available include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. In this presentation, we provide an update of this network database including a comprehensive review and evaluation of the biological data from about 70 sites, development of a new product for flux uncertainty estimates, and re-formatting of Level-2 standard files. In 2013, we also provided data support to two synthesis studies --- 2012 drought synthesis and FACE synthesis. Issues related to data quality and solutions in compiling datasets for these synthesis studies will be discussed. We will also present our work plans in developing and producing other high-level products, such as derivation of phenology from the available measurements at flux sites.

  4. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    PubMed

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  5. Horizontal flow fields in and around a small active region. The transition period between flux emergence and decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.

    2016-11-01

    Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims: Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods: The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Pérot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results: The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s-1 is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns

  6. Observation of fluctuation-driven particle flux reduction by low-frequency zonal flow in a linear magnetized plasma

    SciTech Connect

    Chen, R.; Xie, J. L. Yu, C. X.; Liu, A. D.; Lan, T.; Li, H.; Liu, W. D.; Zhang, S. B.; Kong, D. F.; Hu, G. H.

    2015-01-15

    Low-frequency zonal flow (ZF) has been observed in a linear magnetic plasma device, exhibiting significant intermittency. Using the conditional analysis method, a time-averaged fluctuation-induced particle flux was observed to consistently decrease as ZF increased in amplitude. A dominant fraction of the flux, which is driven by drift-wave harmonics, is reversely modulated by ZF in the time domain. Spectra of the flux, together with each of the related turbulence properties, are estimated subject to two conditions, i.e., when potential fluctuation series represents a strong ZF intermittency or a very weak ZF component. Comparison of frequency-domain results demonstrates that ZF reduces the cross-field particle transport primarily by suppressing the density fluctuation as well as decorrelating density and potential fluctuations.

  7. Control of Magnetic Field for Sustainment of Ion Production and Uniform Ion Flux to Substrate in Neutral Loop Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Yoshida, Takuhei; Sakurai, Yohei; Sugawara, Hirotake; Murayama, Akihiro

    We simulated the electron and ion motions in a neutral loop discharge plasma under the control of the foot of separatrix sweeping over a substrate and the neutral loop moving within a short distance from the RF antenna by a Monte Carlo method. We analyzed the distributions of ion production and ion flux to the substrate. We revealed that ion production is sensitive to the gradient of magnetic field rather than the electric field strength. Moreover, by superposing the flux distributions weighted by the passage time of the foot of separatrix on the substrate, we obtained a uniform time-averaged distribution of ion flux to the substrate in a radius range of r = 4.0-14.0 cm with σ/m = 0.25% (m: the average, σ: the standard deviation).

  8. Variability of the Lyman alpha flux with solar activity

    SciTech Connect

    Lean, J.L.; Skumanich, A.

    1983-07-01

    A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10/sup 11/ photons/cm/sup 2//s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10/sup 11/ photons/cm/sup 2//s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error.

  9. PLASMA JETS AND ERUPTIONS IN SOLAR CORONAL HOLES: A THREE-DIMENSIONAL FLUX EMERGENCE EXPERIMENT

    SciTech Connect

    Moreno-Insertis, F.

    2013-07-01

    A three-dimensional (3D) numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into a coronal hole. We explore the evolution of the emerging magnetically dominated plasma dome surmounted by a current sheet and the ensuing pattern of reconnection. A hot and fast coronal jet with inverted-Y shape is produced that shows properties comparable to those frequently observed with EUV and X-ray detectors. We analyze its 3D shape, its inhomogeneous internal structure, and its rise and decay phases, lasting for some 15-20 minutes each. Particular attention is devoted to the field line connectivities and the reconnection pattern. We also study the cool and high-density volume that appears to encircle the emerged dome. The decay of the jet is followed by a violent phase with a total of five eruptions. The first of them seems to follow the general pattern of tether-cutting reconnection in a sheared arcade, although modified by the field topology created by the preceding reconnection evolution. The two following eruptions take place near and above the strong-field concentrations at the surface. They show a twisted, {Omega}-loop-like rope expanding in height, with twist being turned into writhe, thus hinting at a kink instability (perhaps combined with a torus instability) as the cause of the eruption. The succession of a main jet ejection and a number of violent eruptions that resemble mini-CMEs and their physical properties suggest that this experiment may provide a model for the blowout jets recently proposed in the literature.

  10. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  11. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGES

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; ...

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  12. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    NASA Astrophysics Data System (ADS)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  13. Osmotic stress, plasma renin activity, and spermatogenesis in Vipera aspis.

    PubMed

    Uva, B; Ghiani, P; Masini, M A; Mandich, A

    1987-12-01

    Circulating electrolytes (Na+, K+), plasma renin-like activity, testosterone, and testis morphology were investigated in early summer during the spermatogenic progressive phase in Vipera aspis subjected to sodium loading and sodium depletion. After sodium loading, plasma sodium and plasma testosterone levels were significantly elevated compared with those of controls, while plasma renin-like activity was depressed, spermiogenesis was increased, the epithelium lining the epididymis was very thick, and the Leydig cells were hypertrophied. After sodium depletion, plasma sodium and plasma testosterone levels were significantly depressed and plasma renin-like activity was significantly elevated. Spermiogenesis seemed to be slightly regressed: the epithelium lining the epididymis was very thin, and the lumen was devoid of spermatozoa. The Leydig cells were hardly visible. All the data strongly suggest that osmotic stress affects gonadal activity in the snake. V. aspis.

  14. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  15. Simulation of Plasma Fluxes to Material Surfaces with Self-Consistent Edge Turbulence and Transport for Tokamaks

    SciTech Connect

    Rognlien, T; Umansky, M; Xu, X; Cohen, R; LoDestro, L

    2004-05-24

    The edge-plasma profiles and fluxes to the divertor and walls of a divertor tokamak with a magnetic X-point are simulated by coupling a 2D transport code (UEDGE) and a 3D turbulence code (BOUT). An relaxed iterative coupling scheme is used where each code is run on its characteristic time scale, resulting in a statistical steady state. Plasma variables of density, parallel velocity, and separate ion and electron temperatures are included, together with a fluid neutral model for recycling neutrals at material surfaces. Results for the DIII-D tokamak parameters show that the turbulence is preferentially excited in the outer radial region of the edge where magnetic curvature is destabilizing and that substantial plasma particle flux is transported to the main chamber walls. These results are qualitatively consistent with some experimental observations. The coupled transport/turbulence simulation technique provides a strategy to understanding edge-plasma physics in more detailed than previously available and to significantly enhance the realism of predictions of the performance of future devices.

  16. Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM

    NASA Astrophysics Data System (ADS)

    Dubinko, A.; Terentyev, D.; Bakaeva, A.; Hernández-Mayoral, M.; De Temmerman, G.; Buzi, L.; Noterdaeme, J.-M.; Unterberg, B.

    2017-01-01

    We have performed high flux plasma exposure of tungsten and subsequent microstructural characterization using transmission electron microscopy (TEM) techniques. The aim was to reveal the nanometric features in the sub-surface region as well as to compare the microstructural evolution in tungsten single crystal and ITER-relevant specification. In both types of samples, TEM examination revealed the formation of a dense dislocation network and dislocation tangles. The estimated dislocation density in the sub-surface region was of the order of 1014 m-2 and it gradually decreased with a depth position of the examined sample. Besides individual dislocation lines, networks and tangles, the interstitial dislocation loops have been observed in all examined samples only after the exposure. Contrary to that, examination of the pristine single crystal W and backside of the plasma-exposed samples did not reveal the presence of dislocation loops and tangles. This clearly proves that high flux plasma exposure induces severe plastic deformation in the sub-surface region irrespective of the presence of initial dislocations and sub-grains, and the formation of dislocation tangles, networks and interstitial loops is a co-product of thermal stress and intensive plasma particles uptake.

  17. Simulation of Plasma Fluxes to Material Surfaces with Self-consistent Edge Turbulence and Transport for Tokamaks

    SciTech Connect

    Rognlien, T; Umanksy, M; Xu, X; Cohen, R; LoDestro, L

    2004-05-24

    The edge-plasma profiles and fluxes to the divertor and walls of a divertor tokamak with a magnetic X-point are simulated by coupling a 2D transport code (UEDGE) and a 3D turbulence code (BOUT). An relaxed iterative coupling scheme is used where each code is run on its characteristic time scale, resulting in a statistical steady state. Plasma variables of density, parallel velocity, and separate ion and electron temperatures are included, together with a fluid neutral model for recycling neutrals at material surfaces. Results for the DIII-D tokamak parameters show that the turbulence is preferentially excited in the outer radial region of the edge where magnetic curvature is destabilizing and that substantial plasma particle flux is transported to the main chamber walls. These results are qualitatively consistent with some experimental observations. The coupled transport/turbulence simulation technique provides a strategy to understanding edge-plasma physics in more detailed than previously available and to significantly enhance the realism of predictions of the performance of future devices

  18. Plasma catecholamine activity in chronic lead poisoning

    SciTech Connect

    deCastro, F.J.

    1990-04-01

    Plasma catecholamines where measured in 15 children with chronic lead poisoning and 15 matched controls by radioimmunassay. The data suggest that plasma catecholamines (norepinephrine and epinphrine) were significantly elevated in chronic lead poisoning. Plasma catecholamine elevation may well be important in the clinical finding of hyperactivity and hypertension associated with chronic lead poisoning.

  19. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    NASA Astrophysics Data System (ADS)

    Budaev, V. P.

    2016-12-01

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach 10MW m-2 in the steady state of DT discharges, increasing to 0.6-3.5 GW m-2 under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma-wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  20. Collision Experiment of an Arched Plasma-Filled Flux Rope and a Target Cloud of Initially Neutral Gas

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Bellan, Paul; Li, Hui; Li, Shengtai

    2016-10-01

    Shocks occur in the co-rotating interaction regions just beyond the solar corona, in the corona during CME events, and when the solar wind impacts Earth's magnetosphere. The Caltech solar loop experiment investigates shock physics by creating an arched plasma-filled flux rope that expands to collide with a pre-injected, initially-neutral gas. We focus the investigation on the situation of a heavy-gas plasma (Argon) impacting a much lighter neutral gas cloud (Hydrogen). The neutral gas target cloud ionizes immediately upon being impacted and plasma-induced shock waves propagate in the target cloud away from the impact region. Analysis of data from magnetic probes, Langmuir probes, a fast camera, and spectroscopic measurements will be presented. The measurements suggest that a thin, compressed, ionized layer of hydrogen is formed just downstream of the Argon plasma loop and that thin, supersonic shocks form further downstream and propagate obliquely away from the plasma loop. Numerical simulation of an ideal MHD plasma is underway to enable comparison of the measurements with the predictions of MHD theory.

  1. Investigation of plasma parameters in an active screen cage-pulsed dc plasma used for plasma nitriding

    NASA Astrophysics Data System (ADS)

    Naeem, M.; Khattak, Z. I.; Zaka-ul-Islam, M.; Shabir, S.; Khan, A. W.; Zakaullah, M.

    2014-11-01

    Active screen cage-pulsed dc plasmas are widely used in the material processing applications such as plasma nitriding, carburizing and nitrocarburizing. Specifically for plasma nitriding applications, a H2-N2 mixture is used. In this article, a study of the electron number density (ne), atomic nitrogen density ([N]), electron temperature ? and the excitation temperature ? is reported in the presence of an active screen cage-pulsed dc plasma. The ne and ? are determined here by a triple Langmuir probe, while [N] and ? are estimated by optical emission spectroscopy (OES). The two temperatures and their ratio ? are compared for different input parameters (such as applied power, gas pressure and H2 percentage). This study is useful in active screen cage plasma nitriding applications where only few plasma diagnostic measurements have been reported.

  2. STUDY OF THE POYNTING FLUX IN ACTIVE REGION 10930 USING DATA-DRIVEN MAGNETOHYDRODYNAMIC SIMULATION

    SciTech Connect

    Fan, Y. L.; Wang, H. N.; He, H.; Zhu, X. S.

    2011-08-10

    Powerful solar flares are closely related to the evolution of magnetic field configuration on the photosphere. We choose the Poynting flux as a parameter in the study of magnetic field changes. We use time-dependent multidimensional MHD simulations around a flare occurrence to generate the results, with the temporal variation of the bottom boundary conditions being deduced from the projected normal characteristic method. By this method, the photospheric magnetogram could be incorporated self-consistently as the bottom condition of data-driven simulations. The model is first applied to a simulation datum produced by an emerging magnetic flux rope as a test case. Then, the model is used to study NOAA AR 10930, which has an X3.4 flare, the data of which has been obtained by the Hinode/Solar Optical Telescope on 2006 December 13. We compute the magnitude of Poynting flux (S{sub total}), radial Poynting flux (S{sub z} ), a proxy for ideal radial Poynting flux (S{sub proxy}), Poynting flux due to plasma surface motion (S{sub sur}), and Poynting flux due to plasma emergence (S{sub emg}) and analyze their extensive properties in four selected areas: the whole sunspot, the positive sunspot, the negative sunspot, and the strong-field polarity inversion line (SPIL) area. It is found that (1) the S{sub total}, S{sub z} , and S{sub proxy} parameters show similar behaviors in the whole sunspot area and in the negative sunspot area. The evolutions of these three parameters in the positive area and the SPIL area are more volatile because of the effect of sunspot rotation and flux emergence. (2) The evolution of S{sub sur} is largely influenced by the process of sunspot rotation, especially in the positive sunspot. The evolution of S{sub emg} is greatly affected by flux emergence, especially in the SPIL area.

  3. Transport of radial heat flux and second sound in fusion plasmas

    SciTech Connect

    Guercan, Oe. D.; Berionni, V.; Hennequin, P.; Morel, P.; Vermare, L.; Diamond, P. H.; Garbet, X.; Dif-Pradalier, G.; Kosuga, Y.

    2013-02-15

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  4. Nanoindentation study of the combined effects of crystallography, heat treatment and exposure to high-flux deuterium plasma in tungsten

    NASA Astrophysics Data System (ADS)

    Zayachuk, Y.; Armstrong, D. E. J.; Bystrov, K.; Van Boxel, S.; Morgan, T.; Roberts, S. G.

    2017-04-01

    tungsten samples were heat-treated to achieve partial recrystallization and exposed to high ion flux deuterium plasma at different temperatures and fluences. Continuous stiffness nanoindentation measurements of near-surface hardness were performed in the grains of specific annealing states and of specific crystallographic orientation, determined by electron backscatter diffraction (EBSD); indentation pile-up was investigated using surface profilometry. Bulk hardness of unexposed tungsten does not strongly depend on grain orientation, but depends on the annealing state of the grain, with values between ∼4.3 GPa for recrystallized grains and ∼5.5 for non-recrystallized ones. Grains with <111> surface normal orientation feature the least pile-up, while grains with <001> orientation the most; pile-up also depends on the annealing state, being generally lower in recrystallized grains. Plasma exposure leads to the increase of hardness, most significantly near the surface. The width of plasma-affected zone increases with the increase of exposure temperature and fluence, as well in recrystallized grains, correlating with the increase of diffusion depth. Plasma exposure does not lead to the emergence of orientation-dependence of hardness. Both indentation pile-up and near-surface indentation pop-ins are generally suppressed by plasma exposure.

  5. Calculations of axisymmetric stability of tokamak plasmas with active and passive feedback

    SciTech Connect

    Ward, D.J.; Jardin, S.C.; Cheng, C.Z.

    1991-07-01

    A new linear MHD stability code, NOVA-W, has been developed in order to study feedback stabilization of the axisymmetric mode in deformable tokamak plasmas. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The passive stability predictions of the code have been tested both against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. Active feedback calculations are performed for the CIT tokamak design demonstrating the effect of varying the position of the flux loops that provide the measurements of vertical displacement. The results compare well with those computed earlier using a less efficient nonlinear code. 37 refs., 13 figs.

  6. ISEE 1 observations of thermal plasma in the vicinity of the plasmasphere during periods of quieting magnetic activity

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Baugher, C. R.; Chappell, C. R.; Shelley, E. G.; Young, D. T.; Anderson, R. R.

    1981-01-01

    An investigation of thermal plasma behavior in the vicinity of the plasmasphere during periods of quieting magnetic activity was conducted by combining thermal ion observations made with the plasma composition experiment on ISEE 1 with plasma density profiles obtained from plasma frequency measurements made with the same satellite's plasma wave experiment. During periods in which the magnetic activity quiets, the two regions characterized by H(+):He(+):O(+) (isotropic) and H(+):O(+):He(+) (field-aligned) ion species distributions (in order of dominance) are separated by a new region in which low-energy H(+) and He(+) are found flowing along the magnetic field lines. At other times, following quieting magnetic activity, distributions having peak fluxes at 90 deg pitch angle are observed in this region.

  7. ISEE 1 observations of thermal plasma in the vicinity of the plasmasphere during periods of quieting magnetic activity

    NASA Astrophysics Data System (ADS)

    Horwitz, J. L.; Baugher, C. R.; Chappell, C. R.; Shelley, E. G.; Young, D. T.; Anderson, R. R.

    1981-11-01

    An investigation of thermal plasma behavior in the vicinity of the plasmasphere during periods of quieting magnetic activity was conducted by combining thermal ion observations made with the plasma composition experiment on ISEE 1 with plasma density profiles obtained from plasma frequency measurements made with the same satellite's plasma wave experiment. During periods in which the magnetic activity quiets, the two regions characterized by H(+):He(+):O(+) (isotropic) and H(+):O(+):He(+) (field-aligned) ion species distributions (in order of dominance) are separated by a new region in which low-energy H(+) and He(+) are found flowing along the magnetic field lines. At other times, following quieting magnetic activity, distributions having peak fluxes at 90 deg pitch angle are observed in this region.

  8. The Design of Actively Cooled Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Bolt, H.; Gervash, A.; Linke, J.; Smid, I.

    In future fusion devices, like in the stellarator Wendelstein 7-X, the target plates of the divertor will be exposed to heat loads up to power densities of 10 MW/m2 for 1000 s. For this purpose actively cooled target elements with an internal coolant flow return, made of 2-D CFC armor tiles brazed onto a two tube cooling structure were developed and manufactured at the Forschungszentrum Jülich. Individual bent- and coolant flow reversal elements were used to achieve a high flexibility in the shape of the target elements. A special brazing technology, using a thin layer of plasma-arc deposited titanium was used for the bonding of the cooling structure to the plasma facing armor (PFA). FEM-simulations of the thermal and mechanical behavior show that a detachment of about 25% of the bonded area between the copper tubes and the PFA can be tolerated, without exceeding the critical heat flux at 15 MW/m2 or a surface temperature of 1400°C at 10 MW/m2 by using twisted tape inserts with a twist ratio of 2 at a cooling water velocity of 10 m/s. Thermal cycling tests in an electron beam facility up to a power density level 10.5 MW/m2 show a very good behavior of parts of the target elements, which confirms the performance under fusion relevant conditions. Even defected parts in the bonding interface of the target elements, known from ultrasonic inspections before, show no change in the thermal performance under cycling, which confirms also the structural integrity of partly defected regions.

  9. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  10. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGES

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore » with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  11. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Liu, Zhong; Xiang, Yongyuan E-mail: zjun@nao.cas.cn

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads, tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.

  12. Measurements of the momentum flux from a low-temperature plasma to a surface

    NASA Astrophysics Data System (ADS)

    Trottenberg, Thomas

    2016-09-01

    The forces that low-temperature plasmas exert on surfaces in contact with the plasma have never been a significant topic. The reason might be the smallness of such forces and the expected difficulties in their measurement. Therefore, only in cases of special plasmas which were designed for the generation of directed momentum (in particular electric space propulsion), force measurements have been reported. Recently, our group demonstrated that the forces related to plasma-wall interactions are experimentally accessible with some effort. This presentation overviews our experimental approaches in the design of force measuring probes and reports on recent measurements with probes that have been integrated into a plane wall. The observations and prospects for an application as novel plasma diagnostic are discussed. This work was financially supported by the German Aerospace Center (DLR) under grant agreement 50 RS 1301.

  13. Enzymatically active high-flux selectively gas-permeable membranes

    SciTech Connect

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  14. [Chromatographic separation of activated proteases from human plasma].

    PubMed

    Lehmann, B; Taucher, M; Kühne, H; Scheuch, D W

    1988-01-01

    After separation of aceton and dextran sulfate activated human plasma by column chromatography on DEAE-cellulose three esterolytically and amidolytically active fractions, respectively, were obtained, which were assigned to the following species: plasma kallikrein (PK), PK.alpha-macroglobulin.HMW-Kininogen. Their percentage in the whole activity is variable. The proportion of free PK is low (0.11). For characterization of the products we studied inhibition by different polyvalent inhibitors. The Michaelis constant (Km) with p-toluene-sulfonyl-L-arginine methyl ester (TAME) were determined. For simulation of in vivo conditions dextran sulfate activated plasma was inactivated at 37 degrees C. The residual activity and the spontaneous activity in plasma from patients with shock are produced by different active protease inhibitor complexes.

  15. Hemagglutinin activity of human plasma fibronectin.

    PubMed

    Vuento, M

    1979-09-01

    Purified human plasma fibronectin at concentrations of about 30 microgram/ml was found to agglutinate trypsin-treated erythrocytes from certain species. The hemagglutination reaction was inhibited by specific antibodies to fibronectin, by relatively low concentrations of polyamines and by higher concentrations of basic amino acids and nonacetylated amino sugars. The divalent cations Ca2+ and Mg2+ and the chelating agent ethylenediaminetetraacetate did not affect the reaction. None of the neutral amino acids, neutral sugars or polyanions tested was inhibitory. The results imply that plasma fibronectin is capable of interacting with cell surfaces and support the idea of a similarity between cellular and plasma fibronectins.

  16. Submicrometre particle filtration with a dc activated plasma textile

    NASA Astrophysics Data System (ADS)

    Rasipuram, S. C.; Wu, M.; Kuznetsov, I. A.; Kuznetsov, A. V.; Levine, J. F.; Jasper, W. J.; Saveliev, A. V.

    2014-01-01

    Plasma textiles are novel fabrics incorporating the advantages of cold plasma and low-cost non-woven or woven textile fabrics. In plasma textiles, electrodes are integrated into the fabric, and a corona discharge is activated within and on the surface of the fabric by applying high voltages above 10 kV between the electrodes. When the plasma textile is activated, submicrometre particles approaching the textile are charged by the deposition of ions and electrons produced by the corona, and then collected by the textile material. A stable plasma discharge was experimentally verified on the surface of the textile that was locally smooth but not rigid. A filtration efficiency close to 100% was observed in experiments conducted on salt particles with diameters ranging from 50 to 300 nm. Unlike conventional fibrous filters, the plasma textile provided uniform filtration in this range, without exhibiting a maximum particle penetration size.

  17. Effect of high flux plasma exposure on the micro-structural and -mechanical properties of ITER specification tungsten

    NASA Astrophysics Data System (ADS)

    Dubinko, A.; Terentyev, D.; Bakaeva, A.; Pardoen, T.; Zibrov, M.; Morgan, T. W.

    2017-02-01

    We have performed a combined study using transmission electron microscopy (TEM), nuclear reaction analysis (NRA) and nano-indentation (NI) techniques to reveal the impact of high flux plasma exposure on the properties of a sub-surface region of the commercially available pure tungsten fabricated following the ITER specification. TEM examination revealed the formation of a dense dislocation network and dislocation tangles, resulting in a strong increase in the dislocation density by at least one order of magnitude as compared to the bulk density. The plasma-induced dislocation microstructure vanishes within a depth of about 10-15 μm from the top of the exposed surface. Surface hardness after the plasma exposure was characterized by NI and was found to increase significantly in the sub-surface region of 1.5-3 μm. That was attributed to the resistance of the plasma-induced dislocation networks and deuterium-induced defects, whose presence within a depth of ∼1 μm was unambiguously detected by the NRA measurements as well.

  18. Isolation of biologically-active exosomes from human plasma.

    PubMed

    Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L

    2014-09-01

    Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies.

  19. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah

    2015-08-01

    We study a system of a highly stratified turbulent plasma. In such a system, when the magnetic Reynolds number is large enough and there is a background field of suitable strength, a new effect will play role in con- centrating magnetic fields such that it leads to the formation of magnetic spots and bipolar regions. This effect is due to the fact that the turbu- lent pressure is suppressed by the large-scale magnetic field, which adds a negative term to the total mean-field (effective) pressure. This leads to an instability, which is known as the negative effective magnetic pressure instability (NEMPI). Direct numerical simulations (DNS) of isothermally forced turbulence have shown that NEMPI leads to the formation of spots in the presence of an imposed field. Our main aim now is to use NEMPI to explain the formation of active regions and sunspots. To achieve this goal, we need to move progressively to more realistic models. Here we extend our model by allowing the magnetic field to be generated by a dy- namo. A dynamo plays an important role in solar activity. Therefore, it is of interest to investigate NEMPI in the presence of dynamo-generated magnetic fields. Mean-field simulations (MFS) of such systems in spheri- cal geometry have shown how these two instabilities work in concert. In fact NEMPI will be activated as long as the strength of the magnetic field generated by the dynamo is in a proper range (for more detail see Jab- bari et al. 2013). In our new study, we use DNS to investigate a similar system. The turbulence is forced in the entire spherical shell, but the forc- ing is made helical in the lower 30% of the shell, similar to the model of Mitra et al. (2014). We perform simulations using the Pencil Code for different density contrasts and other input parameters. We applied ver- tical field boundary conditions in the r direction. The results show that, when the stratification is high enough, intense bipolar regions form and as time passes, they expand

  20. Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).

  1. Comparison of Plasma Activation of Thin Water Layers by Direct and Remote Plasma Sources

    NASA Astrophysics Data System (ADS)

    Kushner, Mark

    2014-10-01

    Plasma activation of liquids is now being investigated for a variety of biomedical applications. The plasma sources used for this activation can be generally classified as direct (the plasma is in contact with the surface of the liquid) or remote (the plasma does not directly touch the liquid). The direct plasma source may be a dielectric barrier discharge (DBD) where the surface of the liquid is a floating electrode or a plasma jet in which the ionization wave forming the plasma plume reaches the liquid. The remote plasma source may be a DBD with electrodes electrically isolated from the liquid or a plasma jet in which the ionization wave in the plume does not reach the liquid. In this paper, a comparison of activation of thin water layers on top of tissue, as might be encountered in wound healing, will be discussed using results from numerical investigations. We used the modeling platform nonPDPSIM to simulate direct plasma activation of thin water layers using DBDs and remote activation using plasma jets using up to hundreds of pulses. The DBDs are sustained in humid air while the plasma jets consist of He/O2 mixtures flowed into humid air. For similar number of pulses and energy deposition, the direct DBD plasma sources produce more acidification and higher production of nitrates/nitrites in the liquid. This is due to the accumulation of NxOy plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with newly produced reactive species. in the gas phase. In the plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with

  2. Heat flux of fast electrons to the limiter in lower hybrid current drive plasma on WT-3

    NASA Astrophysics Data System (ADS)

    Maekawa, T.; Nakamura, M.; Komatsu, T.; Kishino, T.; Kishigami, Y.; Makino, K.; Maehara, T.; Minami, T.; Hanada, K.; Iida, M.; Terumichi, Y.; Tanaka, S.

    1992-10-01

    The heat flux of fast electrons to the local limiter in LHCD plasmas in WT-3 has been investigated by thermal measurement of the limiter. The amount of the heat flux (PFE) is found to be about on third of the net radiofrequency power (Prf) injected into the plasma for various discharge conditions. The results combined with other measurements show that the confinement of fast electrons deteriorates as Prf increases. This direct loss of fast electrons is one of the causes of the degradation of the current drive efficiency. Heat transport of the bulk electrons is also found to increase as Prf increases. Experimental results indicate that a significant part of the remaining RF power (2Prf/3) flows to the bulk electrons. The slowing down power of fast electrons in the energy range above several tens of keV is estimated to be quite small compared with 2Prf/3, suggesting that a significant part of the remaining power flows to the bulk electrons via other channels. A plausible channel is the absorption of RF power via lower energy electrons by an upshift of the parallel refractive index of the injected lower hybrid waves. This seems to be another cause of the degradation of the current drive efficiency

  3. Heat-flux footprints for I-mode and EDA H-mode plasmas on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Hughes, J. W.; Reinke, M. L.; Whyte, D. G.

    2013-07-01

    IR thermography is used to measure the heat flux footprints on C-Mod's outer target in I-mode and EDA H-mode plasmas. The footprint profiles are fit to a function with a simple physical interpretation. The fit parameter that is sensitive to the power decay length into the SOL, λSOL, is ˜1-3× larger in I-modes than in H-modes at similar plasma current, which is the dominant dependence for the H-mode λSOL. In contrast, the fit parameter sensitive to transport into the private-flux-zone along the divertor leg is somewhat smaller in I-mode than in H-mode, but otherwise displays no obvious dependence on Ip, Bt, or stored energy. A third measure of the footprint width, the "integral width", is not significantly different between H- and I-modes. Also discussed are significant differences in the global power flows of the H-modes with "favorable"∇B drift direction and those of the I-modes with "unfavorable"∇B drift direction.

  4. Gyrokinetic study of turbulent convection of heavy impurities in tokamak plasmas at comparable ion and electron heat fluxes

    NASA Astrophysics Data System (ADS)

    Angioni, C.; Bilato, R.; Casson, F. J.; Fable, E.; Mantica, P.; Odstrcil, T.; Valisa, M.; ASDEX Upgrade Team; Contributors, JET

    2017-02-01

    In tokamaks, the role of turbulent transport of heavy impurities, relative to that of neoclassical transport, increases with increasing size of the plasma, as clarified by means of general scalings, which use the ITER standard scenario parameters as reference, and by actual results from a selection of discharges from ASDEX Upgrade and JET. This motivates the theoretical investigation of the properties of the turbulent convection of heavy impurities by nonlinear gyrokinetic simulations in the experimentally relevant conditions of comparable ion and electron heat fluxes. These conditions also correspond to an intermediate regime between dominant ion temperature gradient turbulence and trapped electron mode turbulence. At moderate plasma toroidal rotation, the turbulent convection of heavy impurities, computed with nonlinear gyrokinetic simulations, is found to be directed outward, in contrast to that obtained by quasi-linear calculations based on the most unstable linear mode, which is directed inward. In this mixed turbulence regime, with comparable electron and ion heat fluxes, the nonlinear results of the impurity transport can be explained by the coexistence of both ion temperature gradient and trapped electron modes in the turbulent state, both contributing to the turbulent convection and diffusion of the impurity. The impact of toroidal rotation on the turbulent convection is also clarified.

  5. Magnetic Flux Transport and the Long-term Evolution of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  6. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-20

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  7. Edge Recycling and Heat Fluxes in L- and H-mode NSTX Plasmas

    SciTech Connect

    V.A. Soukhanovskii; R. Maingi; R. Raman; H. Kugel; B. LeBlanc; A.L. Roquemore; C.J. Lasnier; the NSTX Research Team

    2003-08-05

    Introduction Edge characterization experiments have been conducted in NSTX to provide an initial survey of the edge particle and heat fluxes and their scaling with input power and electron density. The experiments also provided a database of conditions for the analyses of the NSTX global particle sources, core fueling, and divertor operating regimes.

  8. Responses of cells in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  9. Modeling of Particle Transport on Channels and Gaps Exposed to Plasma Fluxes

    SciTech Connect

    Nieto-Perez, Martin

    2008-04-07

    Many problems in particle transport in fusion devices involve the transport of plasma or eroded particles through channels or gaps, such as in the case of trying to assess damage to delicate optical diagnostics collecting light through a slit or determining the deposition and codeposition on the gaps between tiles of plasma-facing components. A dynamic-composition Monte Carlo code in the spirit of TRIDYN, previously developed to study composition changes on optical mirrors subject to ion bombardment, has been upgraded to include motion of particles through a volume defined by sets of plane surfaces. Particles sputtered or reflected from the walls of the channel/gap can be tracked as well, allowing the calculation of wall impurity transport, either back to the plasma (for the case of a gap) or to components separated from the plasma by a channel/slit (for the case of optical diagnostics). Two examples of the code application to particle transport in fusion devices will be presented in this work: one will evaluate the erosion/impurity deposition rate on a mirror separated from a plasma source by a slit; the other case will look at the enhanced emission of tile material in the region of the gap between two tiles.

  10. The use of an electrothermal plasma gun to simulate the extremely high heat flux conditions of a tokamak disruption

    NASA Astrophysics Data System (ADS)

    Gilligan, John; Bourham, Mohamed

    1993-09-01

    Disruption damage conditions for future large tokamaks like ITER are nearly impossible to simulate on current tokamaks. The electrothermal plasma source SIRENS has been designed, constructed, and operated to produce high density (> 1025/m3), low temperature (1-3 eV) plasma formed by the ablation of the insulator with currents of up to 100 kA (100 μs pulse length) and energies up to 15 kJ. The source heat fluence (variable from 0.2 to 7 MJ/m2) is adequate for simulation of the thermal quench phase of plasma disruption in future fusion tokamaks. Different materials have been exposed to the high heat flux in SIRENS, where comparative erosion behavior was obtained. Vapor shield phenomena has been characterized for different materials, and the energy transmission factor through the shielding layer is obtained. The device is also equipped with a magnet capable of producing a parallel magnetic field (up to 16 T) over a 8 msec pulse length. The magnetic field is produced to decrease the turbulent energy transport through the vapor shield, which provides further reduction of surface erosion (magnetic vapor shield effect).

  11. The use of an electrothermal plasma gun to simulate the extremely high heat flux conditions of a tokamak disruption

    SciTech Connect

    Gilligan, J.; Bourham, M. )

    1993-09-01

    Disruption damage conditions for future large tokamaks like ITER are nearly impossible to simulate on current tokamaks. The electrothermal plasma source SIRENS has been designed, constructed, and operated to produce high density (> 10[sup 25]/m[sup 3]), low temperature (1-3 eV) plasma formed by the ablation of the insulator with currents of up to 100 kA (100 [mu]s pulse length) and energies up to 15 kJ. The source heat fluence (variable from 0.2 to 7 MJ/m[sup 2]) is adequate for simulation of the thermal quench phase of plasma disruption in future fusion tokamaks. Different materials have been exposed to the high heat flux in SIRENS, where comparative erosion behavior was obtained. Vapor shield phenomena has been characterized for different materials, and the energy transmission factor through the shielding layer is obtained. The device is also equipped with a magnet capable of producing a parallel magnetic field (up to 16 T) over a 8 msec pulse length. The magnetic field is produced to decrease the turbulent energy transport through the vapor shield, which provides further reduction of surface erosion (magnetic vapor shield effect).

  12. Biological Studies in Childhood Schizophrenia: Plasma and RBC Cholinesterase Activity

    ERIC Educational Resources Information Center

    Lucas, Alexander R.; And Others

    1971-01-01

    A comparison of plasma (pseudo) cholinesterase and erythrocyte (true) cholinesterase activity in 16 male childhood schizophrenic patients and 16 male nonpsychotic hospitalized controls revealed no significant differences between the two groups. (Author)

  13. Scaling of the Heat Flux Width with Plasma Density in DIII-D

    NASA Astrophysics Data System (ADS)

    Makowski, M. A.; Lasnier, C. J.; Nichols, J.; Leonard, A. W.; Osborne, T. H.; Snyder, P. B.

    2013-10-01

    The previous study of the relationship between the heat flux width and upstream profiles is extended with the addition of density scans. These scans range from a low-density, attached state to a high-density, detached state on both the inner and outer divertors in both L- and H-mode discharges. Under attached conditions in L-mode both the inner and outer heat flux profiles are well fit by Eich's fitting function and clearly indicate the transition from attached to detached states. Analysis of the density scans will be combined with previous scaling results to extend the heat flux width database. Comparisons to a critical gradient model will also be made to assess its validity under these new conditions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under DE-AC52-07NA27344 and by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  14. Characterization of Beta-leptinotarsin-h and the Effects of Calcium Flux Antagonists on its Activity

    DTIC Science & Technology

    2007-11-02

    observation eliminated non-selective cation channels such as nicotinic, glutamatergic, purinergic P2X, and serotoni- nergic 5 - HT3 ligand-operated Ca 2C...Characterization of b-leptinotarsin-h and the effects of calcium flux antagonists on its activity Richard D. Croslanda,*, Richard W. Fitchb,1, Harry...presynaptic nerve terminals. We tested antagonists of Ca2C flux for their effects on b-leptinotarsin-h-stimulated Ca2C uptake in rat brain synaptosomes

  15. Phenylbutyrate reduces plasma leucine concentrations without affecting the flux of leucine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenylbutyrate (PB) has been used as an alternative pathway to excrete nitrogen in urea cycle disorder patients for the last 20 years. PB, after oxidation to phenylacetate, is conjugated with glutamine and excreted in the urine. A reduction in the plasma concentration of branched amino acids (BCAA) ...

  16. Ertel's vorticity theorem and new flux surfaces in multi-fluid plasmas

    SciTech Connect

    Hameiri, Eliezer

    2013-09-15

    Dedicated to Professor Harold Weitzner on the occasion of his retirement“Say to wisdom ‘you are my sister,’ and to insight ‘you are my relative.’”—Proverbs 7:4Based on an extension to plasmas of Ertel's classical vorticity theorem in fluid dynamics, it is shown that for each species in a multi-fluid plasma there can be constructed a set of nested surfaces that have this species' fluid particles confined within them. Variational formulations for the plasma evolution and its equilibrium states are developed, based on the new surfaces and all of the dynamical conservation laws associated with them. It is shown that in the general equilibrium case, the energy principle lacks a minimum and cannot be used as a stability criterion. A limit of the variational integral yields the two-fluid Hall-magnetohydrodynamic (MHD) model. A further special limit yields MHD equilibria and can be used to approximate the equilibrium state of a Hall-MHD plasma in a perturbative way.

  17. Actively cooled plasma electrode for long pulse operations in a cesium-seeded negative ion source

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Watanabe, Kazuhiro; Okumura, Yoshikazu; Trainham, Rusty; Jacquot, Claude

    2005-01-01

    An actively cooled plasma electrode has been developed for long pulse operation in a cesium-seeded negative ion source. To keep the electrode temperature at about 300°C, which is the optimum range of temperature to enhance cesium effects, the electrode cooling structure has been designed using three-dimensional numerical simulation assuming that the heat flux from the source plasma was 15W/cm2. Water cooling tubes were brazed to the plasma electrode substrate with spacers made of stainless steel, which acts as a thermal resistance. The fabricated plasma electrode has been tested in a cesium-seeded volume negative ion source called Kamaboko source. The temperature of the electrode reached 280°C for the arc power of 41kW, which is the operating condition required for producing D- beams with current densities exceeding 20mA/cm2. It was demonstrated that the actively cooled plasma electrode is applicable to long pulse operations, meeting the temperature requirement for optimizing the surface-production process of negative ions in the cesium-seeded ion source.

  18. ISS Plasma Contactor Units Operations During Strong Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Alred, J.; Mikatarian, R.; Barsamian, H.; Minow, J.; Koontz, S.

    2003-12-01

    The large structure and high voltage arrays of the ISS represent a complex system that interacts with the Earth's ionosphere. To mitigate spacecraft charging problems on the ISS, two Plasma Contactor Units discharge ionized xenon gas to "clamp" the potential of the ISS with respect to the low Earth orbit plasma. The Plasma Interaction Model, a model of ISS plasma interaction developed from the basic physics of the interaction phenomena, includes magnetic induction effects, plasma temperature and density effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. To augment this model, the PCU discharge current has been monitored for the ISS in a variety of flight attitudes as well as during the annual seasons. A review of the PCU discharge currents shows a correlation to the geomagnetic activity. The variation in the PCU discharge current during strong geomagnetic activity will be presented. Also, the PCU discharge currents during periods of low geomagnetic activity will be discussed. The presentation will conclude with a comparison of satellite plasma measurements during different stages of geomagnetic activity.

  19. Flux rope proxies and fan-spine structures in active region NOAA 11897

    NASA Astrophysics Data System (ADS)

    Hou, Y. J.; Li, T.; Zhang, J.

    2016-08-01

    Context. Flux ropes are composed of twisted magnetic fields and are closely connected with coronal mass ejections. The fan-spine magnetic topology is another type of complex magnetic fields. It has been reported by several authors, and is believed to be associated with null-point-type magnetic reconnection. Aims: We try to determine the number of flux rope proxies and reveal fan-spine structures in the complex active region (AR) NOAA 11897. Methods: Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigated flux rope proxies in NOAA AR 11897 from 14 November 2013 to 19 November 2013 and display two fan-spine structures in this AR. Results: For the first time, we detect flux rope proxies of NOAA 11897 for a total of 30 times in four different locations during this AR's transference from solar east to west on the disk. Moreover, we notice that these flux rope proxies were tracked by active or eruptive material of filaments 12 times, while for the remaining 18 times they appeared as brightenings in the corona. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. None of these flux rope proxies was observed to erupt; they faded away gradually. In addition to these flux rope proxies, we detect for the first time a secondary fan-spine structure. It was covered by dome-shaped magnetic fields that belong to a larger fan-spine topology. Conclusions: These new observations imply that many flux ropes can exist in an AR and that the complexity of AR magnetic configurations is far beyond our imagination. Movies 1-8 are available in electronic form at http://www.aanda.org

  20. Influence of local vibration on plasma creatine phosphokinase (CPK) activity.

    PubMed Central

    Okada, A; Okuda, H; Inaba, R; Ariizumi, M

    1985-01-01

    This study was designed to obtain basic information about the mechanism of the occurrence of muscular disorders after exposure to vibration. The hind legs of rats were exposed to acute and chronic local vibration at frequencies of 30, 60, 120, 240, 480, and 960 Hz with a constant acceleration of 50 m/sec2. The exposure time was four hours for acute, and four hours a day for two weeks continuously for chronic exposure. Blood was collected after exposure to measure plasma creatine phosphokinase (CPK) activity. In both exposure groups the activity of plasma CPK was significantly higher at 30, 60, 120, 240, and 480 Hz compared with the control group and was especially high at 30 Hz; there was no significant change at 960 Hz. As a result of an analysis of the CPK isoenzymes, the increase in plasma CPK activity was shown to be due to the activity of the plasma CPK-MM fraction, originating in the skeletal muscle. Plasma CPK activity showed a tendency to decrease gradually with the increase in vibration frequency during acute exposure but showed no such tendency during chronic exposure. There was no remarkable pathohistological change in muscle preparations from the hind legs, hence it was presumed that the increase in plasma CPK activity was caused not by the morphological changes of muscle but by other mechanisms, such as an increase in the permeability of the cell membrane. Images PMID:4041385

  1. Heat flux and plasma flow in the far scrape-off layer of the inboard poloidal field null configuration in QUEST

    SciTech Connect

    Onchi, T.; Zushi, H.; Hanada, K.; Idei, H.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Kuzmin, A.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Watanabe, O.; Mishra, K.; Mahira, Y.; Tashima, S.; Banerjee, S.; Nagaoka, K.

    2015-08-15

    Heat flux and plasma flow in the scrape-off layer (SOL) are examined for the inboard poloidal field null (IPN) configuration of the spherical tokamak QUEST. In the plasma current (I{sub p}) ramp-up phase, high heat flux (>1 MW/m{sup 2}) and supersonic flow (Mach number M > 1) are found to be present simultaneously in the far-SOL. The heat flux is generated by energetic electrons excursed from the last closed flux surface. Supersonic flows in the poloidal and toroidal directions are correlated with each other. In the quasi-steady state, sawtooth-like oscillation of I{sub p} at 20 Hz is observed. Heat flux and subsonic plasma flow in the far-SOL are modified corresponding to the I{sub p}-oscillation. The heat flow caused by motion of energetic electrons and the bulk-particle transport to the far-SOL is enhanced during the low-I{sub p} phase. Modification of plasma flow in the far SOL occurs earlier than the I{sub p} crash. The M–I{sub p} curve has a limit-cycle characteristic with sawtooth-like oscillation. Such a core–SOL relationship indicates that the far-SOL flow plays an important role in sustaining the oscillation of I{sub p} in the IPN configuration.

  2. Plasma matrix metalloproteinase-9 activity in cats with lymphoma.

    PubMed

    Tamamoto, T; Ohno, K; Takahashi, M; Fukushima, K; Kanemoto, H; Fujino, Y; Tsujimoto, H

    2017-03-01

    In this study, plasma MMP-9 activity was evaluated in cats with lymphoma. Plasma samples were obtained from 26 cats with lymphoma before treatment. From 13 of the included 26 cats, plasma samples were obtained 4 weeks after the initiation of treatment. Plasma samples were also obtained from 10 healthy cats as a control. Plasma MMP-9 activity was examined by gelatin zymography and semi-quantitative value (arbitrary unit; a.u.) for each sample was calculated. Relatively high levels of MMP-9 were observed in cats with lymphoma compared with those in healthy control cats. MMP-9 quantification through zymography showed significantly higher activity in cats with lymphoma (median, 0.63 a.u.; range, 0.23-3.24 a.u.) than in healthy controls (0.22 a.u.; 0.12-0.46 a.u.; P < 0.01). MMP-9 activities were significantly different before (0.73 a.u.; 0.30-3.24 a.u.) and after treatment (0.50 a.u.; 0.14-1.32 a.u.; P = 0.017). Measuring plasma MMP-9 activity in cats with lymphoma may become an appropriate monitoring tool for feline lymphoma.

  3. Dispersive Nature of High Mach Number Collisionless Plasma Shocks: Poynting Flux of Oblique Whistler Waves

    NASA Astrophysics Data System (ADS)

    Sundkvist, David; Krasnoselskikh, V.; Bale, S. D.; Schwartz, S. J.; Soucek, J.; Mozer, F.

    2012-01-01

    Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.

  4. ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes

    SciTech Connect

    Judd, J.L.

    1981-12-01

    The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.

  5. Identities in flux: cognitive network activation in times of change.

    PubMed

    Menon, Tanya; Smith, Edward Bishop

    2014-05-01

    Using a dynamic cognitive model, we experimentally test two competing hypotheses that link identity and cognitive network activation during times of change. On one hand, affirming people's sense of power might give them confidence to think beyond the densest subsections of their social networks. Alternatively, if such power affirmations conflict with people's more stable status characteristics, this could create tension, deterring people from considering their networks' diversity. We test these competing hypotheses experimentally by priming people at varying levels of status with power (high/low) and asking them to report their social networks. We show that confirming identity-not affirming power-cognitively prepares people to broaden their social networks when the world is changing around them. The emotional signature of having a confirmed identity is feeling comfortable and in control, which mediates network activation. We suggest that stable, confirmed identities are the foundation from which people can exhibit greater network responsiveness.

  6. Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons

    SciTech Connect

    Ribeyre, X.; Feugeas, J.-L.; Nicolaï, Ph.; Tikhonchuk, V. T.; Gus'kov, S.

    2013-06-15

    Process of shock ignition in inertial confinement fusion implies creation of a high pressure shock with a laser spike having intensity of the order of a few PW/cm{sup 2}. However, the collisional (Bremsstrahlung) absorption at these intensities is inefficient and a significant part of laser energy is converted in a stream of energetic electrons. The process of shock formation in a dense plasma by an intense electron beam is studied in this paper in a planar geometry. The energy deposition takes place in a fixed mass target layer with the areal density determined by the electron range. A self-similar isothermal rarefaction wave of a fixed mass describes the expanding plasma. Formation of a shock wave in the target under the pressure of expanding plasma is described. The efficiency of electron beam energy conversion into the shock wave energy depends on the fast electron energy and the pulse duration. The model is applied to the laser produced fast electrons. The fast electron energy transport could be the dominant mechanism of ablation pressure creation under the conditions of shock ignition. The shock wave pressure exceeding 1 Gbar during 200–300 ps can be generated with the electron pulse intensity in the range of 5–10 PW/cm{sup 2}. The conclusions of theoretical model are confirmed in numerical simulations with a radiation hydrodynamic code coupled with a fast electron transport module.

  7. Improved thrust calculations of active magnetic bearings considering fringing flux

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Kwan-Ho; Ko, Kyoung-Jin; Choi, Ji-Hwan; Sung, So-Young; Lee, Yong-Bok

    2012-04-01

    A methodology for deriving fringing permeance in axisymmetric devices such as active thrust magnetic bearings (ATMBs) is presented. The methodology is used to develop an improved equivalent magnetic circuit (EMC) for ATMBs, which considers the fringing effect. This EMC was used to characterize the force between the housing and mover and the dependence of thrust and inductance on the air gap and input current, respectively. These characteristics were validated by comparison with those obtained by the finite element method and in experiments.

  8. Generator of chemically active low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  9. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  10. Decrease in T Cell Activation and Calcium Flux during Clinorotation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Holtzclaw, J. David

    2006-01-01

    We investigated the effect of altered gravitational environments on T cell activation. We isolated human, naive T cells (CD3+CD14-CD19-CD16-CD56-CD25-CD69-CD45RA-) following IRB approved protocols. These purified T cells were then incubated with 6 mm polystyrene beads coated with OKT3 (Ortho Biotech, Raritan, NJ) and antiCD28 (Becton Dickinson (BD), San Jose, CA) at 37 C for 24 hours. Antibodies were at a 1:1 ratio and the bead-to-cell ratio was 2:1. Four incubation conditions existed: 1) static or "1g"; 2) centrifugation at 10 relative centrifugal force (RCF) or "10g"; 3) clinorotation at 25 RPM (functional weightlessness or "0g"); and 4) clinorotation at 80 RPM ("1g" plus net shear force approx.30 dynes/sq cm). Following incubation, T cells were stained for CD25 expression (BD) and intracellular calcium (ratio of Fluo4 to Fura Red, Molecular Probes, Eugene, OR) and analyzed by flow cytometry (Coulter EPICS XL, Miami, FL). Results: Static or "1g" T cells had the highest level of CD25 expression and intracellular calcium. T cells centrifuged at 10 RCF ("10g") had lower CD25 expression and calcium levels compared to the static control. However, cells centrifuged at 10 RCF had higher CD25 expression and calcium levels than those exposed to 24 RPM clinorotation ("0g"). T cells exposed to 24 RPM clinorotation had lower CD25 expression, but the approximately the same calcium levels than T cells exposed to 80 RPM clinorotation. These data suggest that stress-activated calcium channel exist in T cells and may play a role during T cell activation.

  11. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  12. Studies of dynamic processes related to active experiments in space plasmas

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Neubert, Torsten

    1992-01-01

    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.

  13. Generation and remote delivery of plasma activated species

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Rutherford, David; Mariotti, Davide; Macias-Montero, Manuel; Perez-Martin, Fatima; Diver, Declan

    2016-09-01

    Plasma interactions with microdroplets offer new opportunities to deliver active chemical agents and nanoparticles to remote substrates downstream with many potential applications from cancer theranostics and wound healing in biomedicine, gentle food decontamination and seed germination in plasma agriculture to catalyst production and photonic structures fabrication, among others. We demonstrate plasma-liquid based pristine nanomaterials synthesis in flight and subsequent delivery up to 120mm from the atmospheric pressure plasma source. Monosized and non-aggregating metal nanoparticles are formed in the rf plasma in less than 100us, representing an increase in precursor reduction rate that is many (>4) orders of magnitude faster than that observed with standard colloidal chemistry or via high energy radiolytic techniques. Also the collection and purification limitations of the latter are avoided. Plasma activated liquid including OH radicals and H2O2 are transported over 120mm and have demonstrated high efficacy bacterial decontamination. These results will be compared with charge species and radical transport from the rf plasma without microdroplets. Reaction models based on high solvated surface electron concentrations will be presented. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  14. Shuttle program. Solar activity prediction of sunspot numbers, predicted solar radio flux

    NASA Technical Reports Server (NTRS)

    Johnson, G. G.; Newman, S. R.

    1980-01-01

    A solar activity prediction technique for monthly mean sunspot numbers over a period of approximately ten years from February 1979 to January 1989 is presented. This includes the predicted maximum epoch of solar cycle 21, approximately January 1980, and the predicted minimum epoch of solar cycle 22, approximately March 1987. Additionally, the solar radio flux 10.7 centimeter smooth values are included for the same time frame using a smooth 13 month empirical relationship. The incentive for predicting solar activity values is the requirement of solar flux data as input to upper atmosphere density models utilized in mission planning satellite orbital lifetime studies.

  15. Understanding narrow SOL power flux component in COMPASS limiter plasmas by use of Langmuir probes

    NASA Astrophysics Data System (ADS)

    Dejarnac, R.; Stangeby, P. C.; Goldston, R. J.; Gauthier, E.; Horacek, J.; Hron, M.; Kocan, M.; Komm, M.; Panek, R.; Pitts, R. A.; Vondracek, P.

    2015-08-01

    The narrow scrape-off layer power component observed in COMPASS inner wall limiter circular discharges by means of IR thermography is investigated by Langmuir probes embedded in the limiter. The power flux profiles are in good agreement with IR observations and can be described by a double-exponential decay with a short decay length (<5 mm) just outside the separatrix and a longer one (∼50 mm) for the rest of the profile in the main scrape-off layer. Non-ambipolar currents measured at the limiter apex play a relatively modest role in the formation of the narrow component. The fraction of the deposited power due to non-ambipolarity varies between 2% and 45%. On the other hand, the measured power widths are roughly consistent in magnitude with a model that takes into account drift effects, suggesting these effects may be dominant.

  16. Erosion of CFC at medium flux densities in the plasma generator PSI-2

    NASA Astrophysics Data System (ADS)

    Bohmeyer, W.; Markin, A.; Biedermann, C.

    2009-12-01

    Mass spectrometry and CH emission spectroscopy are applied for the evaluation of the erosion yield under conditions when the eroded hydrocarbons undergo several cycles of sticking and erosion before leaving the target chamber. Two differentially pumped quadrupole mass spectrometers (QMS) installed at the target chamber and at the pump duct show quantitatively the same spectra for carbon erosion and during calibration by methane or ethane injection. With this information the amount of eroded carbon can be readily evaluated by comparing QMS or CH emission spectra. The procedure has been applied to determine the temperature dependence of the erosion yield in the range 370-920 K, for ion energies 30 and 100 eV. The maximum ion flux density was 1.1×1022 H+ m-2 s-1.

  17. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  18. Characterization of non-diffusive transport in plasma turbulence by means of flux-gradient integro-differential kernels

    NASA Astrophysics Data System (ADS)

    Alcuson, J. A.; Reynolds-Barredo, J. M.; Mier, J. A.; Sanchez, Raul; Del-Castillo-Negrete, Diego; Newman, David E.; Tribaldos, V.

    2015-11-01

    A method to determine fractional transport exponents in systems dominated by fluid or plasma turbulence is proposed. The method is based on the estimation of the integro-differential kernel that relates values of the fluxes and gradients of the transported field, and its comparison with the family of analytical kernels of the linear fractional transport equation. Although use of this type of kernels has been explored before in this context, the methodology proposed here is rather unique since the connection with specific fractional equations is exploited from the start. The procedure has been designed to be particularly well-suited for application in experimental setups, taking advantage of the fact that kernel determination only requires temporal data of the transported field measured on an Eulerian grid. The simplicity and robustness of the method is tested first by using fabricated data from continuous-time random walk models built with prescribed transport characteristics. Its strengths are then illustrated on numerical Eulerian data gathered from simulations of a magnetically confined turbulent plasma in a near-critical regime, that is known to exhibit superdiffusive radial transport

  19. Effect of high-flux, low-energy He+ ion irradiation on Ta as a plasma-facing material

    PubMed Central

    Novakowski, T. J.; Tripathi, J. K.; Hassanein, A.

    2016-01-01

    The goal of this work is to assess Ta as a potential plasma-facing material for future fusion reactors in terms of its response to high-flux, low-energy He+ ion irradiation. Ta samples were irradiated with 100 eV He+ ions at various fluences up to 3.5 × 1025 ions m−2 while simultaneously heated at constant temperatures in the range 823–1223 K. SEM studies show that irradiated Ta surfaces undergo significant morphology changes that have a strong dependence on both ion fluence and sample temperature. Optical reflectivity complements SEM and demonstrates a vertical growth of surface structures with increasing fluence. Ex situ XPS and XRD both show significant oxidation of the irradiated Ta surfaces, giving further qualitative information on the extent of surface modification. Overall, these irradiation-induced structures on Ta are similar to early-stage “fuzz” structures observed in W. However, Ta exhibits a higher fluence threshold for structure formation. While Ta may have less desirable bulk properties (e.g., thermal conductivity) when compared to W, its higher resilience to He+ ion-induced surface modification suggests that surface thermal and mechanical properties may not degrade as quickly in extreme fusion environments; this quality may be a redeeming factor for Ta as a plasma-facing material. PMID:28008976

  20. Effect of high-flux, low-energy He+ ion irradiation on Ta as a plasma-facing material

    NASA Astrophysics Data System (ADS)

    Novakowski, T. J.; Tripathi, J. K.; Hassanein, A.

    2016-12-01

    The goal of this work is to assess Ta as a potential plasma-facing material for future fusion reactors in terms of its response to high-flux, low-energy He+ ion irradiation. Ta samples were irradiated with 100 eV He+ ions at various fluences up to 3.5 × 1025 ions m‑2 while simultaneously heated at constant temperatures in the range 823–1223 K. SEM studies show that irradiated Ta surfaces undergo significant morphology changes that have a strong dependence on both ion fluence and sample temperature. Optical reflectivity complements SEM and demonstrates a vertical growth of surface structures with increasing fluence. Ex situ XPS and XRD both show significant oxidation of the irradiated Ta surfaces, giving further qualitative information on the extent of surface modification. Overall, these irradiation-induced structures on Ta are similar to early-stage “fuzz” structures observed in W. However, Ta exhibits a higher fluence threshold for structure formation. While Ta may have less desirable bulk properties (e.g., thermal conductivity) when compared to W, its higher resilience to He+ ion-induced surface modification suggests that surface thermal and mechanical properties may not degrade as quickly in extreme fusion environments; this quality may be a redeeming factor for Ta as a plasma-facing material.

  1. Present status of plasma-wall interactions research and materials development activities in the US

    SciTech Connect

    Hirooka, Y.; Conn, R.W.

    1989-08-01

    It is well known in the fusion engineering community that the plasma confinement performance in magnetic fusion devices is strongly affected by edge-plasma interactions with surface components. These plasma-material interactions (PMI) include fuel particle recycling and impurity generation both during normal and off-normal operation. To understand and then to control PMI effects, considerable effort has been made, particularly over the last decade in US, supported by Department of Energy, Division of Development and Technology. Also, because plasma-facing components are generally expected to receive significant amount of heat due to plasma bombardment and run-away electrons, materials must tolerate high-heat fluxes (HHF). The HHF-component research has been conducted in parallel with PMI research. One strong motivation for these research activities is that DT-burning experiments are currently planned in the Tokamak Test Fusion Reactor (TFTR) in early 1990s. Several different but mutually complementary approaches have been taken in the PMI+HHF research. The first approach is to conduct PMI experiments using toroidal fusion devices such as TFTR. The second one is to simulate elemental processes involved in PMI using ion beams and electron beams, etc. The last one but not least is to use non-tokamak plasma facilities. Along with these laboratory activities, new materials have been developed and evaluated from the PMI+HHF point of view. In this paper, several major PMI+HHF research facilities in US and their activities are briefly reviewed. 21 refs., 10 figs., 2 tabs.

  2. Control of glycolytic flux in Zymomonas mobilis by glucose 6-phosphate dehydrogenase activity

    SciTech Connect

    Snoep, J.L. |; Arfman, N.; Yomano, L.P.; Ingram, L.O.; Westerhoff, H.V.; Conway, T.

    1996-07-20

    Alycolytic genes in Zymomonas mobilis are highly expressed and constitute half of the cytoplasmic protein. The first four genes (glf, zwf, edd, glk) in this pathway form an operon encoding a glucose permease, glucose 6-phosphate dehydrogenase (G6-P dehydrogenase), 6-phosphogluconate dehydratase, and glucokinase, respectively. Each gene was overexpressed from a tac promoter to investigate the control of glycolysis during the early stages of batch fermentation when flux (qCO{sub 2}) is highest. Almost half of flux control appears to reside with G6-P dehydrogenase (C{sub G6-P dehydrogenase}{sup J} = 0.4). Although Z. mobilis exhibits one of the highest rates of glycolysis known, recombinants with elevated G6-P dehydrogenase had a 10% to 13% higher glycolytic flux than the native organism. A small increase in flux was also observed for recombinants expressing glf. Results obtained did not allow a critical evaluation of glucokinase and this enzyme may also represent an important control point. 6-Phosphogluconate dehydratase appears to be saturating at native levels. With constructs containing the full operon, growth rate and flux were both reduced, complicating interpretations. However, results obtained were also consistent with G6-P dehydrogenase as a primary site of control. Flux was 17% higher in operon constructs which exhibited a 17% increase in G6-P dehydrogenase specific activity, relative to the average of other operon constructs which contain a frameshift mutation in zwf.

  3. [Plasma antithrombin III activity in patients with pulmonary thromboembolism].

    PubMed

    Vertun, B; Filipecki, S; Szczepański, M; Wawrzyńska, L; Rózycka, J

    A decreased plasma antithrombin III activity has been noted in 12 out of 20 patients. In 2 patients it was most probably congenital defect, whereas in the remaining 10 patients--acquired. The observed disorders in the activity of antithrombin III with particular reference to anticoagulant therapy have been discussed.

  4. Development of active porous medium filters based on plasma textiles

    SciTech Connect

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  5. A novel heat flux study of a geothermally active lake - Lake Rotomahana, New Zealand

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; de Ronde, Cornel E. J.; Tontini, Fabio Caratori; Walker, Sharon L.; Fornari, Daniel J.

    2016-03-01

    A new technique for measuring conductive heat flux in a lake was adapted from the marine environment to allow for multiple measurements to be made in areas where bottom sediment cover is sparse, or even absent. This thermal blanket technique, pioneered in the deep ocean for use in volcanic mid-ocean rift environments, was recently used in the geothermally active Lake Rotomahana, New Zealand. Heat flow from the lake floor propagates into the 0.5 m diameter blanket and establishes a thermal gradient across the known blanket thickness and thereby provides an estimate of the conductive heat flux of the underlying terrain. This approach allows conductive heat flux to be measured over a spatially dense set of stations in a relatively short period of time. We used 10 blankets and deployed them for 1 day each to complete 110 stations over an 11-day program in the 6 × 3 km lake. Results show that Lake Rotomahana has a total conductive heat flux of about 47 MW averaging 6 W/m2 over the geothermally active lake. The western half of the lake has two main areas of high heat flux; 1) a high heat flux area averaging 21.3 W/m2 along the western shoreline, which is likely the location of the pre-existing geothermal system that fed the famous Pink Terraces, mostly destroyed during the 1886 eruption 2) a region southwest of Patiti Island with a heat flux averaging 13.1 W/m2 that appears to be related to the explosive rift that formed the lake in the 1886 Tarawera eruption. A small rise in bottom water temperature over the survey period of 0.01 °C/day suggests the total thermal output of the lake is ~ 112-132 MW and when compared to the conductive heat output suggests that 18-42% of the total thermal energy is by conductive heat transfer.

  6. The initiation and effects of plasma contact activation: an overview.

    PubMed

    Lin, Lisha; Wu, Mingyi; Zhao, Jinhua

    2017-03-01

    The plasma contact system sits atop the intrinsic coagulation cascade and plasma kallikrein-kinin pathway, and in vivo its activation contributes, respectively, to coagulation and inflammation mainly via two downstream pathways. This system has been widely investigated, its activation mechanisms by negatively charged surfaces and the interactions within its components, factor XII, prekallikrein and high molecular weight kininogen are well understood at the biochemical level. However, as most of the activators that have been discovered by in vitro experiments are exogenous, the physiological activators and roles of the contact system have remained unclear and controversial. In the last two decades, several physiological activators have been identified, and a better understanding of its roles and its connection with other signaling pathways has been obtained from in vivo studies. In this article, we present an overview of the contact pathway with a focus on the activation mechanisms, natural stimuli, possible physiological roles, potential risks of its excessive activation, remaining questions and future prospects.

  7. Potent cough suppression by physiologically active substance in human plasma.

    PubMed

    Akaike, Norio; Ito, Yushi; Ogawa, Sachie K; Maeda, Megumi; Wakita, Masahito; Takahama, Kazuo; Noguchi, Tetsuro; Kamei, Shintaro; Hamamoto, Takayoshi; Umehashi, Misako; Maeda, Hiroaki

    2014-01-01

    Human plasma contains wide variety of bioactive proteins that have proved essential in therapeutic discovery. However many human plasma proteins remain orphans with unknown biological functions. Evidences suggest that some plasma components target the respiratory system. In the present study we adapted heparin affinity chromatography to fractionate human plasma for functional bioassay. Fractions from pooled human plasma yielded particular plasma fractions with strong cough suppressing effects. Purification yielded a fraction that was finally identified as an activated blood coagulation factor fXIa using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF-MS). The fraction almost completely suppressed coughs induced by either chemical or mechanical stimulation applied to larynx or bifurcation of guinea-pig trachea. Cough suppressing effect of the fraction and commercially available fXIa were one million times stronger than codeine and codeine only partially suppressed the mechanically triggered coughing in animal model. Recent reviews highlighted prominent shortcomings of current available antitussives, including narcotic opioids such as codeine and their unpleasant or intolerable side effects. Therefore, safer and more effective cough suppressants would be welcome, and present findings indicate that fXIa in human plasma as a very promising, new therapeutic candidate for effective antitussive action.

  8. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  9. Midtail plasma flows and the relationship to near-Earth substorm activity: A case study

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.; Goodrich, C. C.; Reeves, G. D.; Belian, R. D.; Taktakishvili, A.

    1994-01-01

    Recent simulations of magnetotail reconnection have pointed to a link between plasma flows, dipolarization, and the substorm current wedge. In particular, Hesse and Birn (1991) have proposed that earthward jetting of plasma from the reconnection region transports flux into the near-Earth region. At the inner edge of the plasma sheet this flux piles up, producing a dipolarization of the magnetic field. The vorticity produced by the east-west deflection of the flow at the inner edge of the plasma sheet gives rise to field-aligned currents that have region 1 polarity. Thus in this scenario the earthward flow from the reconnection region produces the dipolarization ad the current wedge in a self-consistent fashion. In this study we examine observations made on April 8, 1985 by the Active Magnetospheric Particle Tracer Explorers (AMPTE)/Ion Release Module (IRM), the geosynchronous satellites 1979-053, 1983-019, and 1984-037, and Syowa station, as well as AE. This event is unique because IRM was located near the neutral sheet in the midnight sector for am extended period of time. Ground data show that there was ongoing activity in the IRM local time sector for several hours, beginning at 1800 UT and reaching a crescendo at 2300 UT. This activity was also accompanied by energetic particle variations, including injections, at geosynchronous orbit in the nighttime sector. Significantly, there were no fast flows at the neutral sheet until the great intensification of activity at 2300 UT. At that time, IRM recorded fast eartheard flow simultaneous with a dipolatization of the magetic field. We conclude that while the aforementioned scenario for the creation of the current wedge encounters serious problems explaining the earlier activity, the observations at 2300 UT are consistent with the scenario of Hesse and Birn (1191). On that basis it is argued that the physics of substorms is not exclusively rooted in the development of a global tearing mode. Processes at the inner edge

  10. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  11. Calcium fluxes across the plasma membrane of Commelina communis L. assayed in a cell-free system

    SciTech Connect

    Siebers, B.; Graef, P.; Weiler, E.W. )

    1990-07-01

    The inside-out fraction of plasma membrane-rich vesicles prepared from leaves of Commelina communis L. by aqueous two-phase partitioning was loaded with {sup 45}Ca{sup 2+} through the action of the plasma membrane Ca{sup 2+}-ATPase. Results suggest the presence of a Ca{sup 2+} channel in the plasma membrane of C. communis. The channel is obtained in a Ca{sup 2+}-inactivated state after preparation and Ca{sup 2+}-loading of the vesicles. The inactivation is removed by TFP (trifluoperazine) or W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), presumably due to the Ca{sup 2+}-mobilizing effect of these compounds. The activated Ca{sup 2+} channel is La{sup 3+} sensitive and, in the cell, would allow for passage of Ca{sup 2+} into the cell. The possibility that TFP or W-7 act independent of CM, or through CM tightly associated with the plasma membrane, is discussed.

  12. Outer magnetospheric resonances and transport: discrete and turbulent cascades in the dynamic pressure and plasma flux

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Büchner, Jörg; Zelenyi, Lev; Kronberg, Elena; Kozak, Lyudmila; Blecki, Jan; Lezhen, Liudmila; Nemecek, Zdenek; Safrankova, Jana; Skalsky, Alexander; Budaev, Vyacheslav; Amata, Ermanno

    We explore interactions of Supersonic Plasma Streams (SPS) with the Earth magnetosphere in the context of the planetary and astrophysical magnetospheres and of that of laboratory plasmas. The interactions can be inherently non-local and non-equilibrium, and even explosive due to both solar wind (SW) induced and self-generated coherent structures in the multiscale system with the scales ranging from the micro to global scales. We concentrate on the main fundamental processes arising from the SPS cascading and interactions with surface and cavity resonances in the Earth’s magnetosphere, using multi-spacecraft data (SPECTR-R, DOUBLE STAR, CLUSTER, GEOTAIL, ACE, WIND etc.). We will address the following key problems to advance our understanding of anomalous transport and boundary dynamics: - generalizations of the SPS generation mechanisms, e.g., by bow shock (BS) surface or magnetosheath (MSH) cavity resonances, triggering by interplanetary shocks, solar wind (SW) dynamic pressure jumps, foreshock nonlinear structures, etc. - the clarification of BS rippling mechanisms requires base on the relevant databases from the CLUSTER/ DOUBLE STAR/ GEOTAIL/SPECTR-R/ ACE/ WIND spacecraft, which will be used for a statistical analysis targeting the SPS statistical features as extreme events. - substantial part of the SW kinetic energy can be pumped into the BS membrane and MSH cavity modes and initiate further cascades towards higher frequencies. Accordingly we present the multipoint studies of the SPS and of related nonlinear discrete cascades (carried generally by the SPS), along with the transformation of discrete cascades of the dynamic pressure into turbulent cascades. - investigation of spectral and bi-spectral cross-correlations in SW, foreshock, MSH and in vicinity of BS and magnetopause (MP) would demonstrate that both inflow and outflow into/ from magnetosphere can be modulated by the SPS and by the related outer magnetospheric resonances as well. We demonstrate in

  13. Blood plasma contact activation on silicon, titanium and aluminium.

    PubMed

    Arvidsson, Sara; Askendal, Agneta; Tengvall, Pentti

    2007-03-01

    In the present work, blood plasma protein deposition to spontaneously air oxidized silicon, titanium and aluminium was re-investigated in vitro. Immunological- and null ellipsometry methods were used to detect and quantitate adsorbed proteins, RIA methods to study the retention of preadsorbed 125I-HSA upon exposure to buffer or blood plasma, and kallikrein-specific colorimetric substrate S-2302 to follow the surface generation of kallikrein. The results show that the contact activation of coagulation and complement systems are connected on Si and Ti, but not on Al, via coagulation factor XII. Preadsorbed 125I-HSA was most readily displaced on silicon, followed by titanium and aluminium. The surfaces displayed different antibody binding patterns after short and long-time exposures to plasma. Titanium and silicon bound anti-HMWK after 1 min in plasma, but aluminium did not. When the plasma incubation time was prolonged up to 2h the anti-HMWK binding disappeared totally on titanium and decreased on silicon. During the same time period, anti-C3c binding increased to the three types of surfaces. Also, the anti-C3c binding onto Si and Ti, but not Al, disappeared after incubation in Factor XII deficient plasma or when a specific coagulation factor XII (Factor XII) inhibitor, corn trypsin inhibitor (CTI) was added to normal plasma. The surface contacted plasmas cleaved the kallikrein-specific reagent S-2302 both after single surface contact, and after reincubation of surfaces in fresh plasma. The results show that C3b and Factor XIIa and their degradation products were retained at the surfaces.

  14. Platelet adhesion, contact phase coagulation activation, and C5a generation of polyethylene glycol acid-grafted high flux cellulosic membrane with varieties of grafting amounts.

    PubMed

    Fushimi, F; Nakayama, M; Nishimura, K; Hiyoshi, T

    1998-10-01

    Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.

  15. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  16. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation

    PubMed Central

    Kim, Sung-Wook; Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin M.D.; Lee, You-Jin; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Niacin, also known as vitamin B3 or nicotinamide is a water-soluble vitamin that is present in black beans and rice among other foods. Niacin is well known as an inhibitor of metastasis in human breast carcinoma cells but the effect of niacin treatment on TRAIL-mediated apoptosis is unknown. Here, we show that niacin plays an important role in the regulation of autophagic flux and protects tumor cells against TRAIL-mediated apoptosis. Our results indicated that niacin activated autophagic flux in human colon cancer cells and the autophagic flux activation protected tumor cells from TRAIL-induced dysfunction of mitochondrial membrane potential and tumor cell death. We also demonstrated that ATG5 siRNA and autophagy inhibitor blocked the niacin-mediated inhibition of TRAIL-induced apoptosis. Taken together, our study is the first report demonstrating that niacin inhibits TRAIL-induced apoptosis through activation of autophagic flux in human colon cancer cells. And our results also suggest that autophagy inhibitors including genetic and pharmacological tools may be a successful therapeutics during anticancer therapy using TRAIL. PMID:26517672

  17. High Resolution Simulations of Tearing and Flux-Rope Formation in Active Region Jets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    2015-12-01

    Observations of coronal jets increasingly suggest that local fragmentation and the generation of small-scale structure plays an important role in the dynamics of these events. In the magnetically closed corona, jets most often occur near active regions and are associated with an embedded-bipole topology consisting of a 3D magnetic null point atop a domed fan separatrix surface at the base of a coronal loop. Impulsive reconnection in the vicinity of the null point between the magnetic fluxes inside and outside the dome launches the jet along the loop. Wyper & Pontin 2014 showed that the 3D current layers that facilitate such reconnection are explosively unstable to tearing, generating complex flux-rope structures. Utilizing the adaptive mesh capabilities of the Adaptively Refined Magnetohydrodynamics Solver, we investigate the generation of such fine-scale structure in high-resolution simulations of active-region jets. We observe the formation of multiple flux-rope structures forming across the fan separatrix surface and discuss the photospheric signatures of these flux ropes and the associated local topology change. We also introduce a new way of identifying such flux ropes in the magnetic field, based on structures observed in the magnetic squashing factor calculated on the photosphere. By tracking the position and number of new null points produced by the fragmentation, we also show that the formation of flux ropes can occur away from the main null region on the flanks of the separatrix dome and that the jet curtain has a highly complex magnetic structure. This work was funded through an appointment to the NASA Postdoctoral Program and by NASA's Living With a Star TR&T program.

  18. The study of variations of low energy cosmic helium's flux (up to 6 MeV) due to solar activity

    NASA Astrophysics Data System (ADS)

    Shayan, M.; Davoudifar, P.; Bagheri, Z.

    2017-04-01

    In General, the flux of low energy cosmic rays varies with time due to solar activities. The cosmic particle fluxes were studied using data of satellites near the Earth. In this work, first we studied the variations of particle fluxes from 1 Jan to 31 Dec 2000 and 35 events were selected. Then we proposed a relation for cosmic particle flux as a function of time and rigidity in the time of approaching ejecta to the Earth. The coefficients of the relation were calculated using experimental data of particle fluxes from ACE satellite. Finally, we compare time variations of these coefficients for different events.

  19. Spatial variation in the plasma sheet composition: Dependence on geomagnetic and solar activity

    NASA Astrophysics Data System (ADS)

    Maggiolo, R.; Kistler, L. M.

    2014-04-01

    We study the spatial distribution of plasma sheet O+ and H+ ions using data from the COmposition and DIstribution Function (CODIF) instrument on board the Cluster spacecraft from 2001 to 2005. The densities are mapped along magnetic field lines to produce bidimensional density maps at the magnetospheric equatorial plane for various geomagnetic and solar activity levels (represented by the Kp and F10.7 indexes). We analyze the correlation of the O+ and H+ density with Kp and F10.7 in the midtail region at geocentric distances between 15 and 20 RE and in the near-Earth regions at radial distances between 7 and 8 RE. Near Earth the H+ density slightly increases with Kp and F10.7 while in the midtail region it is not correlated with Kp and F10.7. On the contrary, the amount of O+ ions significantly increases with Kp and F10.7 independently of the region. In the near-Earth region, the effects of solar EUV and geomagnetic activity on the O+ density are comparable. In the midtail region, the O+ density increases at a lower rate with solar EUV flux but strongly increases with geomagnetic activity although the effect is modulated by the solar EUV flux level. We also evidence a strong increase of the proportion of O+ ions with decreasing geocentric distance below ~10 RE. These results confirm the direct entry of O+ ions into the near-Earth plasma sheet and suggest that both energetic outflows from the auroral zone and cold outflow from the high-latitude ionosphere may contribute to feed the near-Earth plasma sheet with ionospheric ions.

  20. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; Matlis, N. H.; Shaw, B. H.; Gonsalves, A. J.; Huijts, J. V.; Nakamura, K.; Daniels, J.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2015-10-01

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T /m , enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  1. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams.

    PubMed

    van Tilborg, J; Steinke, S; Geddes, C G R; Matlis, N H; Shaw, B H; Gonsalves, A J; Huijts, J V; Nakamura, K; Daniels, J; Schroeder, C B; Benedetti, C; Esarey, E; Bulanov, S S; Bobrova, N A; Sasorov, P V; Leemans, W P

    2015-10-30

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  2. Active plasma source formation in the MAP diode

    SciTech Connect

    Lamppa, K.P.; Stinnett, R.W.; Renk, T.J.

    1995-07-01

    The Ion Beam Surface Treatment (IBEST) program is exploring using ion beams to treat the surface of a wide variety of materials. These experiments have shown that improved corrosion resistance, surface hardening, grain size modification, polishing and surface cleaning can all be achieved using a pulsed 0.4-0.8 MeV ion beam delivering 1-10 J/cm{sup 2}. The Magnetically-confined Anode Plasma (MAP) diode, developed at Cornell University, produces an active plasma which can be used to treat the surfaces of materials. The diode consists of a fast puff valve as the source of gas to produce the desired ions and two capacitively driven B-fields. A slow magnetic field is used for electron insulation and a fast field is used to both ionize the puffed gas and to position the plasma in the proper spatial location in the anode prior to the accelerator pulse. The relative timing between subsystems is an important factor in the effective production of the active plasma source for the MAP diode system. The MAP diode has been characterized using a Langmuir probe to measure plasma arrival times at the anode annulus for hydrogen gas. This data was then used to determine the optimum operating point for the MAP diode on RHEPP-1 accelerator shots. Operation of the MAP diode system to produce an ion beam of 500 kV, 12 kA with 40% efficiency (measured at the diode) has been demonstrated.

  3. Features of the Active Evening Plasma Sheet from MMS

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chandler, M. O.; Avanov, L. A.; Burch, J. L.; Coffey, V. N.; Ergun, R. E.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Lavraud, B.; MacDonald, E.; Mauk, B.; Mukai, T.; Nakamura, R.; Pollock, C. J.; Russell, C. T.; Saito, Y.; Sauvaud, J. A.; Torbert, R. B.; Yokota, S.

    2015-12-01

    The Magnetospheric Multiscale (MMS) mission, consisting of four identical plasmas and fields observatories, was launched into a 12 RE elliptical equatorial orbit in March 2015 and was in the process of being commissioned through August 2015. During commissioning, the orbit apogee rotated from near midnight through the evening toward the dusk sector and occasionally captured new observations of the plasma sheet, its boundary layers, and the magnetospheric tail lobes. On 22-23 June, an especially active plasma sheet was involved in a major geospace storm that developed a ring current with 200 nT DST. We report on the ion kinetic and flow features of this active plasma sheet, comparing them with familiar observations from earlier missions, as an exercise in validating the MMS observations and assessing their capabilities to provide higher time resolution in multi-point views of thin, fast-moving structures. The observed features include but are not limited to cold lobal wind streams in the lobes, tailward flowing auroral beams and conics, hot earthward field-aligned flows and counter-flows, fast cross-field convection of some flows toward the neutral sheet, and the hot isotropic plasma sheet proper. Relationships between these features, the ionosphere, and the reconnecting magnetotail will be explored and discussed, seeking preliminary conclusions.

  4. Whole body net ion fluxes, plasma electrolyte concentrations and haematology during a Loma salmonae infection in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum).

    PubMed

    Powell, M D; Speare, D J; Becker, J A

    2006-12-01

    Loma salmonae infections of salmonids culminate in the development of branchial xenomas and subsequent focal hyperplasia of the lamellar or filament epithelium following xenoma rupture and spore release. The effects of this acute branchial disruption upon net ionic flux rates and plasma electrolyte concentrations were determined in juvenile rainbow trout given an experimental oral exposure to L. salmonae. Mean numbers of branchial xenomas peaked at week 5 post-exposure (PE), which coincided with a reduction in the specific growth rate, although there were no significant differences in mass, length or condition of Loma-exposed fish compared with unexposed controls. Following exposure, negative net whole body Na(+) and K(+) fluxes decreased, whereas net Cl(-) fluxes remained unchanged compared with non-exposed control fish. At week 3 PE during the initial branchial xenoma formation stage, there was a significant negative whole body net K(+) flux in Loma-exposed trout compared with other points during the exposure and subsequent infection. Additionally, Loma-exposed fish had marginally elevated plasma Na(+) and Cl(-) concentrations, whilst K(+) levels remained unchanged, compared with control fish. Although there was a progressive decrease in leucocrit, haematocrit remained unchanged over the course of the Loma exposure and subsequent infection. These results suggest that ionic compensation can occur at the gills during the development of xenomas during exposure to L. salmonae and the resultant infection, therefore allowing defence of plasma electrolyte concentrations, unlike the acute ionic disturbances seen with some other parasitic diseases.

  5. Correlative Aspects of the Solar Electron Neutrino Flux and Solar Activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    Between 1970 and 1994, the Homestake Solar Neutrino Detector obtained 108 observations of the solar electron neutrino flux (less than 0.814 MeV). The "best fit" values derived from these observations suggest an average daily production rate of about 0.485 Ar-37 atom per day, a rate equivalent to about 2.6 SNU (solar neutrino units) or about a factor of 3 below the expected rate from the standard solar model. In order to explain, at least, a portion of this discrepancy, some researchers have speculated that the flux of solar neutrinos is variable, possibly being correlated with various markers of the solar cycle (e.g., sunspot number, the Ap index, etc.). In this paper, using the larger "standard data set," the issue of correlative behavior between solar electron neutrino flux and solar activity is re-examined. The results presented here clearly indicate that no statistically significant association exists between any of the usual markers of solar activity and the solar electron neutrino flux.

  6. Evaluation of CETP activity in vivo under non-steady-state conditions: influence of anacetrapib on HDL-TG flux[S

    PubMed Central

    McLaren, David G.; Previs, Stephen F.; Phair, Robert D.; Stout, Steven J.; Xie, Dan; Chen, Ying; Salituro, Gino M.; Xu, Suoyu S.; Castro-Perez, Jose M.; Opiteck, Gregory J.; Akinsanya, Karen O.; Cleary, Michele A.; Dansky, Hayes M.; Johns, Douglas G.; Roddy, Thomas P.

    2016-01-01

    Studies in lipoprotein kinetics almost exclusively rely on steady-state approaches to modeling. Herein, we have used a non-steady-state experimental design to examine the role of cholesteryl ester transfer protein (CETP) in mediating HDL-TG flux in vivo in rhesus macaques, and therefore, we developed an alternative strategy to model the data. Two isotopomers ([2H11] and [13C18]) of oleic acid were administered (orally and intravenously, respectively) to serve as precursors for labeling TGs in apoB-containing lipoproteins. The flux of a specific TG (52:2) from these donor lipoproteins to HDL was used as the measure of CETP activity; calculations are also presented to estimate total HDL-TG flux. Based on our data, we estimate that the peak total postprandial TG flux to HDL via CETP is ∼13 mg·h−1·kg−1 and show that this transfer was inhibited by 97% following anacetrapib treatment. Collectively, these data demonstrate that HDL TG flux can be used as a measure of CETP activity in vivo. The fact that the donor lipoproteins can be labeled in situ using well-established stable isotope tracer techniques suggests ways to measure this activity for native lipoproteins in free-living subjects under any physiological conditions. PMID:26658238

  7. Children's plasma cholinesterase activity and fatal methomyl poisoning.

    PubMed

    Ruangyuttikarn, W; Phakdeewut, T; Sainumtan, W; Sribanditmongkol, P

    2001-09-01

    There is a case of a couple who intentionally killed their children with methomyl insecticide. This was presented as our initial investigation of plasma cholinesterase (ChE) activity in Thai children. A hundred and five healthy Thai children 5-6 years of age, participated in the project. Their plasma was drawn to measure ChE activity. Mean +/- standard deviation of the children ChE was 7,417 +/- 1,620 U/L. The enzyme activity of the children was not significantly different between gender and parents' occupations. However, the mean of female ChE activity appeared to be lower than male ChE. Children whose parents were farmers appeared to have lower ChE activity than those whose parents were employees, merchants, government officers, unemployed parents, or private business owners. Two victims of child homicide were presented with ChE activity approximately 6 and 9 per cent of the average, considering healthy children. It was concluded that children's plasma ChE activity lower than 10 per cent of normal, could be a lethal indicator of anti-ChE insecticide poisoning.

  8. Relationship between the photospheric Poynting flux and the active region luminosity

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Canfield, Richard C.; Fisher, George H.; Hudson, Hugh S.; Welsch, Brian

    2014-06-01

    How does energy radiated by active regions compare with magnetic energy that propagates lower across the photosphere? This is a fundamental question for energy storage and release in active regions, yet it is presently poorly understood. In this work we quantify and compare both energy terms using SDO observations of the active region (AR) 11520. To quantify the magnetic energy crossing the photosphere, or the Poynting flux, we need to know both the magnetic field vector B and electric field vector E as well. Our current electric field inversion technique, PDFI, combines the Poloidal-Toroidal-Decomposition method with information from Doppler measurements, Fourier local correlation tracking (FLCT) results, and the ideal MHD constraint, to determine the electric field from vector magnetic field and Doppler data. We apply the PDFI method to a sequence of Helioseismic and Magnetic Imager (HMI/SDO) vector magnetogram data, to find the electric-field and hence the Poynting-flux evolution in AR 11520. We find that most of the magnetic energy in this AR is injected in the range of $10^7$ to $10^8$ $ergs/{cm^2 s}$, with the largest fluxes reaching $10^{10}$ $ergs/{cm^2 s}$. Integrating over the active region this yields a total energy of order $10^{28}$ ergs/s. To quantify the active region luminosity, we use EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA) spectrally resolved observations. We find the active region luminosity of order $10^{28}$ ergs/s. We compare derived magnetic and radiated energy fluxes on different temporal and spatial scales and estimate their uncertainties. We also discuss the roles that potential/non-potential and emerging/shearing terms play in the total magnetic energy budget.

  9. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio E-mail: yosimura@solar.physics.montana.edu

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  10. Alkaline ribonuclease and phosphodiesterase activity in rat liver plasma membranes

    PubMed Central

    Prospero, Terence D.; Burge, Malcolm L. E.; Norris, Kenneth A.; Hinton, Richard H.; Reid, Eric

    1973-01-01

    The ribonuclease and phosphodiesterase activities of rat liver plasma membranes, purified from the crude nuclear fraction by centrifugation in an A-XII zonal rotor and flotation, were examined and compared. The plasma membrane is responsible for between 65 and 90% of the phosphodiesterase activity of the cell and between 25 and 30% of the particulate ribonuclease activity measured at pH8.7 in the presence of 7.5mm-MgCl2. Both enzymes were most active between pH8.5 and 8.9. Close to the pH optimum, both enzymes were more active in Tris buffer than in Bicine or glycine buffer. Both plasma-membrane phosphodiesterase and ribonuclease were strongly activated by Mg2+, there being at least a 12-fold difference between the activity in the presence of Mg2+ and of EDTA. There is, however, a difference in the response of the enzymes to Mg2+ and EDTA in that the phosphodiesterase is fully activated by 1.0mm-MgCl2 and fully inhibited by 1.0mm-EDTA, whereas the ribonuclease requires 7.5mm-MgCl2 for full activation and 5mm-EDTA for full inhibition. Density-gradient centrifugation has indicated that on solubilization in Triton X-100 most of the ribonuclease activity is released into a small fragment of the same size as that containing the phosphodiesterase activity. The relationship between the two activities is discussed in view of these results. PMID:4353377

  11. Active Trans-Plasma Membrane Water Cycling in Yeast Is Revealed by NMR

    PubMed Central

    Zhang, Yajie; Poirier-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2011-01-01

    Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity. PMID:22261073

  12. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.

    PubMed

    Demidchik, Vadim; Tester, Mark

    2002-02-01

    The aim of the present work was to characterize Na(+) currents through nonselective cation channels (NSCCs) in protoplasts derived from root cells of Arabidopsis. The procedure of the protoplast isolation was modified to increase the stability of Arabidopsis root protoplasts in low external Ca(2+) by digesting tissue in elevated Ca(2+). Experiments in whole-cell and outside-out modes were carried out. We found that Na(+) currents in Arabidopsis root protoplasts were mediated by cation channels that were insensitive to externally applied tetraethylammonium(+) and verapamil, had no time-dependent activation (permanently opened or completely activated within 1-2 ms), were voltage independent, and were weakly selective for monovalent cations. The selectivity sequence was as follows: K(+) (1.49) > NH(4)(+) (1.24) > Rb(+) (1.15) approximately equal to Cs(+) (1.10) approximately equal to Na(+) (1.00) > Li(+) (0.73) > tetraethylammonium(+) (0.47). Arabidopsis root NSCCs were blocked by H(+) (pK approximately equal to 6.0), Ca(2+) (K(1/2) approximately equal to 0.1 mM), Ba(2+), Zn(2+), La(3+), Gd(3+), quinine, and the His modifier diethylpyrocarbonate. They were insensitive to most organic blockers (nifedipine, verapamil, flufenamate, and amiloride) and to the SH-group modifier p-chloromercuriphenyl sulfonic acid. Voltage-insensitive, Ca(2+)-sensitive single channels were also resolved. Properties of Arabidopsis root NSCCs are discussed and compared with characteristics of similar conductances studied previously in plants and animals. It is suggested that NSCCs present a distinct group of plant ion channels, mediating toxic Na(+) influx to the cell and probably having other important roles in physiological processes of plants.

  13. Analysis of the Flux Growth Rate in Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Abramenko, V. I.; Kutsenko, A. S.; Tikhonova, O. I.; Yurchyshyn, V. B.

    2017-04-01

    We studied the emergence process of 42 active regions (ARs) by analyzing the time derivative, R(t), of the total unsigned flux. Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) were used. A continuous piecewise linear fitting to the R(t)-profile was applied to detect an interval, Δ t2, of nearly constant R(t) covering one or several local maxima. The magnitude of R(t) averaged over Δ t2 was accepted as an estimate of the maximum value of the flux growth rate, R_{MAX}, which varies in a range of (0.5 - 5)×10^{20} Mx hour^{-1} for ARs with a maximum total unsigned flux of (0.5 - 3)× 10^{22} Mx. The normalized flux growth rate, RN, was defined under the assumption that the saturated total unsigned flux, F_{MAX}, equals unity. Out of 42 ARs in our initial list, 36 events were successfully fitted, and they form two subsets (with a small overlap of eight events): the ARs with a short (<13 hours) interval Δ t2 and a high (>0.024 hour^{-1}) normalized flux emergence rate, RN, form the "rapid" emergence event subset. The second subset consists of "gradual" emergence events, and it is characterized by a long (>13 hours) interval Δ t2 and a low RN (<0.024 hour^{-1}). In diagrams of R_{MAX} plotted versus F_{MAX}, the events from different subsets do not overlap, and each subset displays an individual power law. The power-law index derived from the entire ensemble of 36 events is 0.69 ± 0.10. The rapid emergence is consistent with a two-step emergence process of a single twisted flux tube. The gradual emergence is possibly related to a consecutive rising of several flux tubes emerging at nearly the same location in the photosphere.

  14. THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2011-11-01

    We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.

  15. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  16. Spectroscopic diagnostics of active screen plasma nitriding processes: on the interplay of active screen and model probe plasmas

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Röpcke, J.

    2015-09-01

    In a reactor used for active screen plasma nitriding (ASPN) the interplay of two plasma types, (i) the plasma of the cylindrical active screen driven in a pulsed dc mode (f = 1 kHz, 60% duty cycle) and (ii) the plasma at an internal model probe driven in a cw dc mode, ignited in a low pressure H2-N2 gas mixture (p = 3 mbar) containing small amounts of CH4 and CO2 have been studied by tunable diode laser infrared absorption (TDLAS) and optical emission spectroscopy (OES) techniques. Applying in situ TDLAS the evolution of the carbon containing precursors, CH4 and CO2, and of the reaction products, NH3, HCN, CO and H2O, has been monitored. The degree of dissociation of the carbon containing precursor molecules varied between 70% and 92%. The concentrations of the reaction products were found to be in the range 1012…1015 molecules cm-3. By analyzing the development of the molecular concentrations at changes of gas mixtures and plasma power values, it was found that (i) HCN and NH3 are the main products of plasma conversion in the case of methane admixture and (ii) CO, HCN and NH3 in the carbon dioxide case. The fragmentation efficiencies of methane and carbon dioxide (RF(CH4)  ≈  1…2   ×   1015 molecules J-1, RF(CO2)  ≈  0.5…1.0   ×   1016 molecules J-1) and the respective conversion efficiencies to the product molecules (R C(product) ≈ 1013-1015 molecules J-1) have been determined for different gas mixtures and plasma power values, while the influence of probe and screen plasmas, i.e. the phenomena caused by the interplay of both plasma sources, was analyzed. The additional usage of the plasma at the model probe has a sensitive influence on the generation of the reaction products, in particular that of NH3 and HCN. With the help of OES the rotational temperature of the screen plasma could be determined, which increases with power from 770 K to 950 K. Also with power the ionic component of nitrogen molecules, i

  17. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    NASA Astrophysics Data System (ADS)

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, Seunghyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-03-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine.

  18. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity.

    PubMed

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-03-02

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine.

  19. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    PubMed Central

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  20. Galactic cosmic ray flux in the mid of 1700 from 44Ti activity of Agen meteorite

    NASA Astrophysics Data System (ADS)

    Taricco, Carla; Sinha, Neeharika; Bhandari, Narendra; Colombetti, Paolo; Mancuso, Salvatore; Rubinetti, Sara; Barghini, Dario

    2016-04-01

    Cosmogenic isotopes produced by galactic cosmic rays (GCR) in meteorites offer the opportunity to reveal the heliospheric magnetic field modulation in the interplanetary space between heliocentric distances of 1 and 3 AU. We present the gamma-activity measurement of Agen meteorite, a H5 chondrite that fell on September 5, 1814 in Aquitaine, France. Its 44Ti activity reflects GCR flux integrated since the mid of 1700 to the time of fall and confirms the decreasing trend of GCR flux that we previously suggested on the basis of measurements of other meteorites which fell in the last 250 years as well as the centennial modulation of GCR due to the Gleissberg solar cycle This result was obtained thanks to the high-efficiency and selective configuration of the gamma-ray spectrometer (HPGe+NaI) operating at the underground Laboratory of Monte dei Cappuccini (OATo, INAF) in Torino, Italy.

  1. TAE modes and MHD activity in TFTR DT plasmas

    SciTech Connect

    Fredrickson, E.; Batha, S.; Bell, M.

    1995-03-01

    The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas.

  2. Flux-tube geometry and solar wind speed during an activity cycle

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Brun, A. S.; Rouillard, A. P.

    2016-07-01

    Context. The solar wind speed at 1 AU shows cyclic variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal (asymptotic) wind speed in a given magnetic flux-tube is generally anti-correlated with its total expansion ratio, which motivated the definition of widely used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad hoc corrections (especially for the slow wind in the vicinities of streamer/coronal hole boundaries) and empirical fits to in situ spacecraft data. A predictive law based solely on physical principles is still missing. Aims: We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes (close to and far from streamer boundaries) using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. Methods: We use numerical magneto-hydrodynamical simulations of the corona and wind coupled to a dynamo model to determine the properties of the coronal magnetic field and of the wind velocity (as a function of time and latitude) during a whole 11-yr activity cycle. These simulations provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Results: Our study confirms that the terminal (asymptotic) speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the

  3. Influence of Photospheric Magnetic Conditions on the Catastrophic Behaviors of Flux Ropes in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui; Liu, Jiajia

    2017-02-01

    Since only the magnetic conditions at the photosphere can be routinely observed in current observations, it is of great significance to determine the influences of photospheric magnetic conditions on solar eruptive activities. Previous studies about catastrophe indicated that the magnetic system consisting of a flux rope in a partially open bipolar field is subject to catastrophe, but not if the bipolar field is completely closed under the same specified photospheric conditions. In order to investigate the influence of the photospheric magnetic conditions on the catastrophic behavior of this system, we expand upon the 2.5-dimensional ideal magnetohydrodynamic model in Cartesian coordinates to simulate the evolution of the equilibrium states of the system under different photospheric flux distributions. Our simulation results reveal that a catastrophe occurs only when the photospheric flux is not concentrated too much toward the polarity inversion line and the source regions of the bipolar field are not too weak; otherwise no catastrophe occurs. As a result, under certain photospheric conditions, a catastrophe could take place in a completely closed configuration, whereas it ceases to exist in a partially open configuration. This indicates that whether the background field is completely closed or partially open is not the only necessary condition for the existence of catastrophe, and that the photospheric conditions also play a crucial role in the catastrophic behavior of the flux rope system.

  4. HDAC6 activity is not required for basal autophagic flux in metastatic prostate cancer cells

    PubMed Central

    Watson, Gregory W; Wickramasekara, Samanthi; Fang, Yufeng; Maier, Claudia S; Williams, David E; Dashwood, Roderick H; Perez, Viviana I

    2015-01-01

    Histone deacetylase 6 is a multifunctional lysine deacetylase that is recently emerging as a central facilitator of response to stress and may play an important role in cancer cell proliferation. The histone deacetylase 6-inhibitor tubacin has been shown to slow the growth of metastatic prostate cancer cells and sensitize cancer cells to chemotherapeutic agents. However, the proteins histone deacetylase 6 interacts with, and thus its role in cancer cells, remains poorly characterized. Histone deacetylase 6 deacetylase activity has recently been shown to be required for efficient basal autophagic flux. Autophagy is often dysregulated in cancer cells and may confer stress resistance and allow for cell maintenance and a high proliferation rate. Tubacin may therefore slow cancer cell proliferation by decreasing autophagic flux. We characterized the histone deacetylase 6-interacting proteins in LNCaP metastatic prostate cancer cells and found that histone deacetylase 6 interacts with proteins involved in several cellular processes, including autophagy. Based on our interaction screen, we assessed the impact of the histone deacetylase 6-inhibitor tubacin on autophagic flux in two metastatic prostate cancer cell lines and found that tubacin does not influence autophagic flux. Histone deacetylase 6 therefore influences cell proliferation through an autophagy-independent mechanism. PMID:26643866

  5. Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas

    NASA Astrophysics Data System (ADS)

    van Helden, J. H.; Wagemans, W.; Yagci, G.; Zijlmans, R. A. B.; Schram, D. C.; Engeln, R.; Lombardi, G.; Stancu, G. D.; Röpcke, J.

    2007-02-01

    We investigated the efficiency and formation mechanism of ammonia generation in recombining plasmas generated from mixtures of N2 and H2 under various plasma conditions. In contrast to the Haber-Bosch process, in which the molecules are dissociated on a catalytic surface, under these plasma conditions the precursor molecules, N2 and H2, are already dissociated in the gas phase. Surfaces are thus exposed to large fluxes of atomic N and H radicals. The ammonia production turns out to be strongly dependent on the fluxes of atomic N and H radicals to the surface. By optimizing the atomic N and H fluxes to the surface using an atomic nitrogen and hydrogen source ammonia can be formed efficiently, i.e., more than 10% of the total background pressure is measured to be ammonia. The results obtained show a strong similarity with results reported in literature, which were explained by the production of ammonia at the surface by stepwise addition reactions between adsorbed nitrogen and hydrogen containing radicals at the surface and incoming N and H containing radicals. Furthermore, our results indicate that the ammonia production is independent of wall material. The high fluxes of N and H radicals in our experiments result in a passivated surface, and the actual chemistry, leading to the formation of ammonia, takes place in an additional layer on top of this passivated surface.

  6. Betaine increases the butyrylcholinesterase activity in rat plasma.

    PubMed

    Šišková, K; Dubničková, M; Pašková, Ľ; Rajdl, D; Ďuračková, Z; Muchová, J; Pauliková, I; Racek, J

    2016-01-01

    The physiological function of butyrylcholinesterase (EC 3.1.1.8, BChE) is not clearly understood, but a role was suggested in the fat utilization process, resulting in positive correlation between plasma triglyceride (TG) levels and BChE activity. Consequently we tested the hypothesis that regular intake of betaine, a natural compound intervening in the liver TG metabolism could influence the BChE activity. The BChE activity was estimated spectrophotometrically in plasma of rats fed with betaine enriched standard (B) or high-fat diet (HFB). The results confirmed decreased TG plasma levels after betaine treatment independently on the type of diet (0.15+/-0.03 (B) vs. 0.27+/-0.08 (control) mmol/l; p=0.003 and 0.13+/-0.03 (HFB) vs. 0.27+/-0.08 (control) mmol/l; p=0.005). The BChE activity increased significantly with betaine administration, however the change was more distinct in the HFB group (0.84+/-0.34 (HFB) vs. 0.22+/-0.04 (control) O.D./min/mg; p<0.001 and 0.41+/-0.11 (B) vs. 0.22+/-0.04 (control) O.D./min/mg; p=0.001). In conclusion, betaine intake led to elevated BChE activity in plasma and this effect was potentiated by the HF diet. Since betaine is in general used as a supplement in the treatment of liver diseases accompanied by TG overload, its impact on the BChE activity in the role of the liver function marker should be taken into account.

  7. Glucose-induced activation of rubidium transport and water flux in sunflower root systems.

    PubMed

    Quintero, J M; Molina, R; Fournier, J M; Benlloch, M; Ramos, J

    2001-01-01

    Excised 20-d-old sunflower roots (Helianthus annuus L. cv. Sun-Gro 393) were used to study the effect of different sugars on rubidium and water fluxes. The roots sensed and absorbed glucose from the external medium inducing the activation of rubidium accumulated in the root (Rb(+) root), the flux of exuded rubidium (J(Rb)) and, to a lesser degree, the exudation rate (J(v)). These effects were also triggered by fructose, but not by 6-deoxyglucose (6-dG), a glucose analogue which is not a substrate for hexokinase (HXK). The effect of 2-deoxyglucose (2-dG), an analogue that is phosphorylated but not further metabolized, was complex, suggesting an inhibitory effect on solute transport to the xylem. The amounts of glucose required to activate rubidium and water fluxes were similar to those previously reported to regulate different processes in other plants (0.5--10 mM). When sorbitol was used instead of glucose, neither rubidium uptake (Rb(+) root plus J(Rb)) nor J(v) was activated. It is proposed that glucose present in the root plays an important signalling role in the regulation of Rb(+) (K(+)) and water transport in plant roots.

  8. Measurement of surface mercury fluxes at active industrial gold mines in Nevada (USA).

    PubMed

    Eckley, C S; Gustin, M; Marsik, F; Miller, M B

    2011-01-01

    Mercury (Hg) may be naturally associated with the rock units hosting precious and base metal deposits. Active gold mines are known to have point source releases of Hg associated with ore processing facilities. The nonpoint source release of Hg to the air from the large area (hundreds to thousands of hectares) of disturbed and processed material at industrial open pit gold mines has not been quantified. This paper describes the field data collected as part of a project focused on estimating nonpoint source emissions of Hg from two active mines in Nevada, USA. In situ Hg flux data were collected on diel and seasonal time steps using a dynamic flux chamber from representative mine surfaces. Hg fluxes ranged from <1500 ng m(-2) day(-1) for waste rock piles (0.6-3.5 μg g(-1)) to 684,000 ng m(-2) day(-1) for tailings (2.8-58 μg g(-1)). Releases were positively correlated with material Hg concentrations, surface grain size, and moisture content. Highest Hg releases occurred from materials under active cyanide leaching and from tailings impoundments containing processed high-grade ore. Data collected indicate that as mine sites are reclaimed and material disturbance ceases, emissions will decline. Additionally local cycling of atmospheric Hg (deposition and re-emission) was found to occur.

  9. HADES RV Programme with HARPS-N at TNG . III. Flux-flux and activity-rotation relationships of early-M dwarfs

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Scandariato, G.; Stelzer, B.; Biazzo, K.; Lanza, A. F.; Maggio, A.; Micela, G.; González-Álvarez, E.; Affer, L.; Claudi, R. U.; Cosentino, R.; Damasso, M.; Desidera, S.; González Hernández, J. I.; Gratton, R.; Leto, G.; Messina, S.; Molinari, E.; Pagano, I.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; Sozzetti, A.; Suárez Mascareño, A.; Zanmar Sanchez, R.

    2017-01-01

    Context. Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres and for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. Aims: We test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships previously investigated for main-sequence FGK stars and for pre-main-sequence M stars also hold for early-M dwarfs on the main-sequence. Although several attempts have been made so far, here we analyse a large sample of stars undergoing relatively low activity. Methods: We analyse in a homogeneous and coherent way a well-defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-N red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cross-correlation technique, while emission flux excesses in the Ca ii H & K and Balmer lines from Hα up to Hɛ are obtained by using the spectral subtraction technique. The relationships between the emission excesses and the stellar parameters (projected rotational velocity, effective temperature, kinematics, and age) are studied. Relations between pairs of fluxes of different chromospheric lines (flux-flux relationships) are also studied and compared with the literature results for other samples of stars. Results: We find that the strength of the chromospheric emission in the Ca ii H & K and Balmer lines is roughly constant for stars in the M0-M3 spectral range. Although our sample is likely to be biased towards inactive stars, our data suggest that a moderate but significant correlation between activity and rotation might be present, as well as a hint of kinematically selected young stars showing higher levels of emission in the calcium line and in most of the Balmer lines. We find our sample of M dwarfs to be complementary in terms of chromospheric and X-ray fluxes with

  10. Immunoradiometric quantitation of tissue plasminogen activator-related antigen in human plasma: crypticity phenomenon and relationship to plasma fibrinolysis

    SciTech Connect

    Wun, T.C.; Capuano, A.

    1987-05-01

    A two-site immunoradiometric assay for tissue plasminogen activator (tPA) antigen has been developed using immunoaffinity purified antibody. Various treatments enhanced the detection of tPA antigen in the plasma samples. Maximum detection was obtained by acidification of plasma to pH 4.8 to 6.5 or addition of 0.5 mol/L of L-lysine or L-arginine. Acidification or addition of lysine to plasma is also required for maximum immunoadsorption of plasma tPA antigen on anti-tPA-Ig-sepharose. These results indicate that plasma tPA antigen is partially cryptic to antibody in untreated plasma. The plasma tPA antigen isolated by immunoadsorption of either untreated plasma or acidified plasma on anti-tPA-Ig-sepharose consists mainly of a 100-kd plasminogen activator species as determined by fibrin-agar zymography. The 100-kd activity is possibly a tPA:inhibitor complex. A standardized sample preparation method was conveniently adopted by mixing 3 vol of plasma and 1 vol of 2 mol/L of L-lysine for the assay. Reconstitution and recovery studies showed that the method is specific and permits full detection of both free tPA and tPA:inhibitor complex. The validity of the assay is further supported by the finding that the spontaneous plasma fibrinolysis previously demonstrated to be dependent on plasma tPA antigen is correlated with tPA antigen content. Using the standardized assay, we found that tPA antigen concentrations in 16 blood bank plasmas are equivalent to 3.7 to 20 ng of 60 kd tPA/mL. In all the plasma tested, more than half of the antigen is undetected unless the plasma is treated as described above.

  11. YANA – a software tool for analyzing flux modes, gene-expression and enzyme activities

    PubMed Central

    Schwarz, Roland; Musch, Patrick; von Kamp, Axel; Engels, Bernd; Schirmer, Heiner; Schuster, Stefan; Dandekar, Thomas

    2005-01-01

    Background A number of algorithms for steady state analysis of metabolic networks have been developed over the years. Of these, Elementary Mode Analysis (EMA) has proven especially useful. Despite its low user-friendliness, METATOOL as a reliable high-performance implementation of the algorithm has been the instrument of choice up to now. As reported here, the analysis of metabolic networks has been improved by an editor and analyzer of metabolic flux modes. Analysis routines for expression levels and the most central, well connected metabolites and their metabolic connections are of particular interest. Results YANA features a platform-independent, dedicated toolbox for metabolic networks with a graphical user interface to calculate (integrating METATOOL), edit (including support for the SBML format), visualize, centralize, and compare elementary flux modes. Further, YANA calculates expected flux distributions for a given Elementary Mode (EM) activity pattern and vice versa. Moreover, a dissection algorithm, a centralization algorithm, and an average diameter routine can be used to simplify and analyze complex networks. Proteomics or gene expression data give a rough indication of some individual enzyme activities, whereas the complete flux distribution in the network is often not known. As such data are noisy, YANA features a fast evolutionary algorithm (EA) for the prediction of EM activities with minimum error, including alerts for inconsistent experimental data. We offer the possibility to include further known constraints (e.g. growth constraints) in the EA calculation process. The redox metabolism around glutathione reductase serves as an illustration example. All software and documentation are available for download at . Conclusion A graphical toolbox and an editor for METATOOL as well as a series of additional routines for metabolic network analyses constitute a new user-friendly software for such efforts. PMID:15929789

  12. Activated partial thromboplastin time of owl monkey (Aotus trivirgatus) plasma.

    PubMed

    Mrema, J E; Johnson, G S; Kelley, S T; Green, T J

    1984-06-01

    Owl monkey plasma samples produced short, reproducible activated partial thromboplastin times, similar to those obtained with samples from many other mammalian species. This was an apparent contradiction to an earlier report of long irreproducible activated partial thromboplastin times from owl monkey samples. The discrepant data could not be explained by differences in anticoagulants (citrate or oxalate), assay reagents (partial thromboplastin with either diatomaceous earth or ellagic acid), or activation incubation times (2, 5, or 10 minutes); nor could they be explained by differences in the monkeys' sex, age or previous experimental exposure to Plasmodium falciparum malaria.

  13. Numerical model for swirl cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    NASA Astrophysics Data System (ADS)

    Milora, S. L.; Combs, S. K.; Foster, C. A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code was used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cu cm, is modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/sq cm occur at the water cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes with straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  14. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    SciTech Connect

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm/sup 2/, has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm/sup 2/ occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented.

  15. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    SciTech Connect

    Hamann, S. Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  16. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  17. Plasma catecholamines and renin activity in wrestlers following vigorous swimming.

    PubMed

    Vigas, M; Celko, J; Juránková, E; Jezová, D; Kvetnanský, R

    1998-01-01

    Cardiovascular and neuroendocrine responses to exercise in a physically fit and an untrained group of young healthy subjects were compared to study the significance of physical fitness for performance in a discipline for which the athletes were not trained. Ten wrestlers of national rank prepared for an international competition (age 18 years) and 9 untrained healthy males (age 21 years). Exercise consisted of 27-min swimming, freestyle, in water of 29 degrees C, with last 3 min increased to maximal effort. The blood pressure, heart rate and sublingual temperature were measured and blood samples were withdrawn before exercise, immediately after and after a 30 min period of rest. Catecholamines were analyzed by radioenzymatic method and plasma renin activity (PRA) using commercial kits. Systolic blood pressure and heart rate after swimming were increased comparably in the two groups, diastolic pressure was unchanged in the controls and decreased in the wrestlers. Plasma cortisol remained unchanged. Plasma glucose tended to increase in the controls and so decrease in wrestlers, with a significant difference between them after swimming (p < 0.05). However, plasma adrenaline was concomitantly increased in both groups (p < 0.01). Noradrenaline and PRA were increased after swimming in both the control and trained group. The increments of noradrenaline and PRA in wrestlers were significantly reduced compared to the control group (p < 0.01, p < 0.05, respectively). Higher physical fitness in athletes significantly reduced plasma noradrenaline and angiotensin responses to maximal exercise demanding special skill in work performance which had not been included in their training program. Training of wrestlers did not cause an exaggerated plasma adrenaline response to exercise.

  18. Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences

    NASA Astrophysics Data System (ADS)

    Zibrov, M.; Balden, M.; Morgan, T. W.; Mayer, M.

    2017-04-01

    Deuterium (D) retention and surface modifications of hot-rolled polycrystalline tungsten (W) exposed to a low-energy (~40 eV D‑1), high-flux (2–5  ×  1023 D m‑2 s‑1) D plasma at temperatures of ~380 K and ~1140 K to fluences up to 1.2  ×  1028 D m‑2 have been examined by using nuclear reaction analysis, thermal desorption spectroscopy, and scanning electron microscopy. The samples exposed at ~380 K exhibited various types of surface modifications: dome-shaped blister-like structures, stepped flat-topped protrusions, and various types of nanostructures. It was observed that a large fraction of the surface was covered with blisters and protrusions, but their average size and the number density showed almost no fluence dependence. The D depth distributions and total D inventories also barely changed with increasing fluence at ~380 K. A substantial amount of D was retained in the subsurface region, and thickness correlated with the depth where the cavities of blisters and protrusions were located. It is therefore suggested that defects appearing during creation of blisters and protrusions govern the D trapping in the investigated fluence range. In addition, a large number of small cracks was observed on the exposed surfaces, which can serve as fast D release channels towards the surface, resulting in a reduction of the effective D influx into the W bulk. On the samples exposed at ~1140 K no blisters and protrusions were found. However, wave-like and faceted terrace-like structures were formed instead. The concentrations of trapped D were very low (<10‑5 at. fr.) after the exposure at ~1140 K.

  19. Numerical investigation of edge plasma phenomena in an enhanced D-alpha discharge at Alcator C-Mod: Parallel heat flux and quasi-coherent edge oscillations

    SciTech Connect

    Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.; LaBombard, B.; Terry, J. L.; Zweben, S. J.

    2012-08-15

    Reduced-model scrape-off layer turbulence (SOLT) simulations of an enhanced D-alpha (EDA) H-mode shot observed in the Alcator C-Mod tokamak were conducted to compare with observed variations in the scrape-off-layer (SOL) width of the parallel heat flux profile. In particular, the role of the competition between sheath- and conduction-limited parallel heat fluxes in determining that width was studied for the turbulent SOL plasma that emerged from the simulations. The SOL width decreases with increasing input power and with increasing separatrix temperature in both the experiment and the simulation, consistent with the strong temperature dependence of the parallel heat flux in balance with the perpendicular transport by turbulence and blobs. The particularly strong temperature dependence observed in the case analyzed is attributed to the fact that these simulations produce SOL plasmas which are in the conduction-limited regime for the parallel heat flux. A persistent quasi-coherent (QC) mode dominates the SOLT simulations and bears considerable resemblance to the QC mode observed in C-Mod EDA operation. The SOLT QC mode consists of nonlinearly saturated wave-fronts located just inside the separatrix that are convected poloidally by the mean flow, continuously transporting particles and energy and intermittently emitting blobs into the SOL.

  20. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  1. First fusion proton measurements in TEXTOR plasmas using activation technique.

    PubMed

    Bonheure, G; Mlynar, J; Van Wassenhove, G; Hult, M; González de Orduña, R; Lutter, G; Vermaercke, P; Huber, A; Schweer, B; Esser, G; Biel, W

    2012-10-01

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R&D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -~6 times more--compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  2. First fusion proton measurements in TEXTOR plasmas using activation techniquea)

    NASA Astrophysics Data System (ADS)

    Bonheure, G.; Mlynar, J.; Wassenhove, G. Van; Hult, M.; González de Orduña, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-01

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R&D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -˜6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  3. CXCL13 is a plasma biomarker of germinal center activity

    PubMed Central

    Havenar-Daughton, Colin; Lindqvist, Madelene; Heit, Antje; Wu, Jennifer E.; Reiss, Samantha M.; Kendric, Kayla; Bélanger, Simon; Kasturi, Sudhir Pai; Landais, Elise; McGuire, Helen M.; Bothwell, Marcella; Vagefi, Parsia A.; Scully, Eileen; Tomaras, Georgia D.; Davis, Mark M.; Poignard, Pascal; Ahmed, Rafi; Walker, Bruce D.; Pulendran, Bali; McElrath, M. Juliana; Kaufmann, Daniel E.; Crotty, Shane

    2016-01-01

    Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4+ T follicular helper (GC Tfh) cells problematic. The CXCL13–CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS+ (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings. PMID:26908875

  4. Temperature dependence of emission measure in solar X-ray plasmas. 1: Non-flaring active regions

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    1974-01-01

    X-ray and ultraviolet line emission from hot, optically thin material forming coronal active regions on the sun may be described in terms of an emission measure distribution function, Phi (T). A relationship is developed between line flux and Phi (T), a theory which assumes that the electron density is a single-valued function of temperature. The sources of error involved in deriving Phi (T) from a set of line fluxes are examined in some detail. These include errors in atomic data (collisional excitation rates, assessment of other mechanisms for populating excited states of transitions, element abundances, ion concentrations, oscillator strengths) and errors in observed line fluxes arising from poorly - known instrumental responses. Two previous analyses are discussed in which Phi (T) for a non-flaring active region is derived. A least squares method of Batstone uses X-ray data of low statistical significance, a fact which appears to influence the results considerably. Two methods for finding Phi (T) ab initio are developed. The coefficients are evaluated by least squares. These two methods should have application not only to active-region plasmas, but also to hot, flare-produced plasmas.

  5. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  6. Quasi-biennial modulation of solar neutrino flux: connections with solar activity

    NASA Astrophysics Data System (ADS)

    Vecchio, A.; Laurenza, M.; D'alessi, L.; Carbone, V.; Storini, M.

    2011-12-01

    A quasi-biennial periodicity has been recently found (Vecchio et al., 2010) in the solar neutrino flux, as detected at the Homestake experiment, as well as in the flux of solar energetic protons, by means of the Empirical Modes Decomposition technique. Moreover, both fluxes have been found to be significantly correlated at the quasi-biennial timescale, thus supporting the hypothesis of a connection between solar neutrinos and solar activity. The origin of this connection is investigated, by modeling how the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect (the process for which the well-known neutrino flavor oscillations are modified in passing through the material) could be influenced by matter fluctuations. As proposed by Burgess et al., 2004, by introducing a background magnetic field in the helioseismic model, density fluctuations can be excited in the radiative zone by the resonance between helioseismic g-modes and Alfvén waves. In particular, with reasonable values of the background magnetic field (10-100 kG), the distance between resonant layers could be of the same order of neutrino oscillation length. We study the effect over this distance of a background magnetic field which is variable with a ~2 yr period, in agreement with typical variations of solar activity. Our findings suggest that the quasi-biennial modulation of the neutrino flux is theoretically possible as a consequence of the magnetic field variations in the solar interior. A. Vecchio, M. Laurenza, V. Carbone, M. Storini, The Astrophysical Journal Letters, 709, L1-L5 (2010). C. Burgess, N. S. Dzhalilov, T. I. Rashba, V., B.Semikoz, J. W. F. Valle, Mon. Not. R. Astron. Soc., 348, 609-624 (2004).

  7. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    SciTech Connect

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  8. [Age-related changes in blood plasma antioxidant activity in population of the southern Altai].

    PubMed

    Chanchaev, E A; Aĭzman, R I

    2012-01-01

    The blood plasma antioxidant activity was studied in the Russian and Kazakh aborigines of the southern Altai low and high mountains. There was established a decrease of the blood plasma antioxidant activity with age and a relatively low plasma antioxidant activity in the mid-mountain population; in its senior age groups, the gender differences of this parameter were revealed.

  9. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  10. Plasma drug activity assay for treatment optimization in tuberculosis patients.

    PubMed

    Heysell, Scott K; Mtabho, Charles; Mpagama, Stellah; Mwaigwisya, Solomon; Pholwat, Suporn; Ndusilo, Norah; Gratz, Jean; Aarnoutse, Rob E; Kibiki, Gibson S; Houpt, Eric R

    2011-12-01

    Low antituberculosis (TB) drug levels are common, but their clinical significance remains unclear, and methods of measurement are resource intensive. Subjects initiating treatment for sputum smear-positive pulmonary TB were enrolled from Kibong'oto National TB Hospital, Tanzania, and levels of isoniazid, rifampin, ethambutol, and pyrazinamide were measured at the time of typical peak plasma concentration (C(2 h)). To evaluate the significance of the effect of observed drug levels on Mycobacterium tuberculosis growth, a plasma TB drug activity (TDA) assay was developed using the Bactec MGIT system. Time to detection of plasma-cocultured M. tuberculosis versus time to detection of control growth was defined as a TDA ratio. TDA assays were later performed using the subject's own M. tuberculosis isolate and C(2 h) plasma from the Tanzanian cohort and compared to drug levels and clinical outcomes. Sixteen subjects with a mean age of 37.8 years ± 10.7 were enrolled. Fourteen (88%) had C(2 h) rifampin levels and 11 (69%) had isoniazid levels below 90% of the lower limit of the expected range. Plasma spiked with various concentrations of antituberculosis medications found TDA assay results to be unaffected by ethambutol or pyrazinamide. Yet with a range of isoniazid and rifampin concentrations, TDA exhibited a statistically significant correlation with drug level and drug MIC, and a TDA of ~1.0 indicated the presence of multidrug-resistant TB. In Tanzania, low (≤ 2.0) TDA was significantly associated with both lower isoniazid and rifampin C(2 h) levels, and very low (≤ 1.5) TDA corresponded to a trend toward lack of cure. Study of TDA compared to additional clinical outcomes and as a therapeutic management tool is warranted.

  11. X-ray flux variability of active galactic nuclei observed using NuSTAR

    NASA Astrophysics Data System (ADS)

    Rani, Priyanka; Stalin, C. S.; Rakshit, Suvendu

    2017-04-01

    We present results of a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of four BL Lac objects (BL Lacs), three flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and eight narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65 per cent of the sources in our sample show significant variations on hourly time-scales. Using the Mann-Whitney U-test and the Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87 per cent), followed by BL Lacs (82 per cent), Seyfert galaxies (56 per cent) and FSRQs (23 per cent). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.

  12. Integrin activation by a cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael

    2012-05-01

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ˜30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly.

  13. Analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma

    SciTech Connect

    Shukla, Arun; Jat, K. L.

    2015-07-31

    An analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma has been reported. In the present analytical investigation, the lattice displacement, acousto-optical polarization, susceptibility, acousto-optical gain constant arising due to the induced nonlinear current density and acousto-optical process are deduced in an acoustically perturbed Brillouin active magnetized semiconductor plasma using the hydrodynamical model of plasma and coupled mode scheme. The influence of wave number and magnetic field has been explored. The analysis has been applied to centrosymmetric crystal. Numerical estimates are made for n-type InSb crystal duly irradiated by a frequency doubled 10.6 µm CO{sub 2} laser. It is found that lattice displacement, susceptibility and acousto-optical gain increase linearly with incident wave number and applied dc magnetic field, while decrease with scattering angle. The gain also increases with electric amplitude of incident laser beam. Results are found to be well in agreement with available literature.

  14. Comparisons of Simulated and Observed Stormtime Magnetic Intensities, Ion Plasma Parameters, and ENA Proton Flux in the Ring Current During Storms

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Lemon, C.; Guild, T. B.; Schulz, M.; Roeder, J. L.; Le, G.; Lui, T.; Goldstein, J.

    2010-12-01

    In this study we compare simulated and observed stormtime magnetic intensities, proton flux spectra and/or ENA fluxes for two storm events to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet using the magnetically and electrostatically self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a time-varying magnetopause driven by upstream solar wind and interplanetary magnetic field (IMF) conditions. Using either in-situ data (e.g., LANL/MPA and SOPA) or the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 Earth radii as the plasma boundary location in the RCM-E. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 Earth radii) and any other available satellite. We simulate a larger (11 August 2000; minimum Dst = -106 nT) and a smaller (6 April 2010; minimum Dst = 73 nT) storm. For the 11 August 2000 storm, we compare simulated and observed proton spectra (LANL/MPA and SOPA and Polar/CAMMICE). For the more recent 6 April 2010 storm we compare simulated and observed proton spectra (THEMIS) and energetic neutral atom (ENA) flux (TWINS). We discuss the response of the ring current magnetic field and ion flux distribution to expansions and compressions of the magnetosphere associated with the dynamic solar wind pressure for these storm events.

  15. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  16. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  17. Paraoxonase status and plasma butyrylcholinesterase activity in chlorpyrifos manufacturing workers.

    PubMed

    Albers, James W; Garabrant, David H; Berent, Stanley; Richardson, Rudy J

    2010-01-01

    Chlorpyrifos is an organophosphorus (OP) anticholinesterase insecticide. Paraoxonase (PON1) is an enzyme found in liver and plasma that hydrolyzes a number of OP compounds. PON1 polymorphisms include a glutamine (Q)/arginine (R) substitution at position 192 (PON1(Q192R)) that affects hydrolysis of OP substrates, with the PON1(192Q) allotype hydrolyzing chlorpyrifos oxon less efficiently than the PON1(192R) allotype, a variation potentially important in determining susceptibility to chlorpyrifos. We studied 53 chlorpyrifos workers and 60 referents during 1 year and estimated chlorpyrifos exposure using industrial hygiene and employment records and excretion of the chlorpyrifos metabolite 3,5,6-trichloro-2-pyridinol (TCP). Plasma butyrylcholinesterase (BuChE) activity, which may by inhibited by chlorpyrifos exposure, was measured monthly. In addition, plasma samples were assayed for paraoxonase (PONase), diazoxonase (DZOase), and chlorpyrifosoxonase (CPOase) activity to determine PON1 status (inferred genotypes and their functional activity). Linear regression analyses modeled BuChE activity as a function of chlorpyrifos exposure and covariates. We postulated that the level of CPOase activity and the inferred PON1(192) genotype (together reflecting PON1 status) would differ between groups and that PON1 status would modify the models of chlorpyrifos exposure on BuChE activity. Chlorpyrifos workers and referents had a 100-fold difference in cumulative chlorpyrifos exposure. Contrary to our hypotheses, mean CPOase activity was similar in both groups (P=0.58) and PON1(192Q) showed a slight overrepresentation, not an underrepresentation, in the chlorpyrifos group compared with referents (PON1(192QQ), 51% chlorpyrifos, 40% referent; PON(192QR), 43% chlorpyrifos, 40% referent; PON(192RR), 6% chlorpyrifos, 20% referent, P=0.08). In our models, BuChE activity was significantly inversely associated with measures of interim chlorpyrifos exposure, but the biological effects of

  18. Impacts of membrane flux enhancers on activated sludge respiration and nutrient removal in MBRs.

    PubMed

    Iversen, Vera; Koseoglu, Hasan; Yigit, Nevzat O; Drews, Anja; Kitis, Mehmet; Lesjean, Boris; Kraume, Matthias

    2009-02-01

    This paper presents the findings of experimental investigations regarding the influence of 13 different flux enhancing chemicals (FeCl3, polyaluminium chloride, 2 chitosans, 5 synthetic polymers, 2 starches and 2 activated carbons) on respirometric characteristics and nitrification/denitrification performance of membrane bioreactor (MBR) mixed liquor. Flux enhancing chemicals are a promising method to reduce the detrimental effects of fouling phenomena via the modification of mixed liquor characteristics. However, potentially inhibiting effects of these chemicals on mixed liquor biological activity triggered the biokinetic studies (in jar tests) conducted in this work. The tested polyaluminium chloride (PACl) strongly impacted on nitrification (-16%) and denitrification rate (-43%). The biodegradable nature of chitosan was striking in endogenous and exogenous tests. Considering the relatively high costs of this chemical, an application for wastewater treatment does thus not seem to be advisable. Also, addition of one of the tested activated carbons strongly impacted on the oxygen uptake rate (-28%), nitrification (-90%) and denitrification rate (-43%), due to a decrease of pH. Results show that the changes in kLa values were mostly not significant, however, a decrease of 13% in oxygen transfer was found for sludge treated with PACl.

  19. On the area expansion of magnetic flux tubes in solar active regions

    SciTech Connect

    Dudík, Jaroslav; Dzifčáková, Elena; Cirtain, Jonathan W. E-mail: elena@asu.cas.cz

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  20. Rapid loss of factor XII and XI activity in ellagic acid-activated normal plasma: role of plasma inhibitors and implications for automated activated partial thromboplastin time recording.

    PubMed

    Joist, J H; Cowan, J F; Khan, M

    1977-12-01

    Rapid prolongation of the aPTT of normal plasma upon incubation with ellagic acid containing aPTT reagents was observed. The aPTT prolongation was not due to time-dependent changes in pH in the incubation mixture or loss of activity of the labile coagulation factors VIII and V but occurred as a result of rapid progressive inactivation of ellagic acid-activated factors XII and XI. Prolongation of the aPTT and loss of contact factor activities was not observed in plasma incubated with particulate activator reagents. This finding seemed to indicate that adsorption of factors XII and XI to larger particles during the activation process might protect these factors from inactivation by naturally occurring plasma inhibitors. Evidence is presented which supports previous findings that C1-INH, alpha1-AT, and antithrombin (in the presence of heparin) contribute to factor XIIa and XI a inactivation in ellagic acid-activated plasma and that plasma albumin may compete with factor XII for ellagic acid binding. The data indicate that ellagic acid-containing aPTT reagents have unfavorable properties which seriously limit their usefulness in the clinical laboratory, particularly in respect to recording of the aPTT with certain fully automated clot timers.

  1. Effect of the thermal pressure on upward plasma fluxes due to ponderomotive force of Alfvén ion cyclotron waves

    NASA Astrophysics Data System (ADS)

    Nekrasov, Anatoly; Feygin, Felix

    2010-05-01

    In a number of papers devoted to the effect of the ponderomotive force of Alfvén ion cyclotron waves on plasma fluxes in the Earth's magnetosphere, it was shown that the plasma density increases in the vicinity of the equator (e.g. Guglielmi et al. 1993). The increase of density takes place as a result of plasma fluxes flowing upward along the magnetic field lines under the action of the ponderomotive force. This force emerges due to inhomogeneity of the background number density and magnetic field (Guglielmi et al. 1993, Nekrasov and Feygin 2005). However, the experimental data by Olsen (1992) show that the plasma density accumulation at the equator is not observed. On the contrary, the density at the equator is lower than outside of it. In the present paper, we show that the quasi-stationary density evolution always tends to decrease under the action of the ponderomotive force. This decrease is proportional to the local wave amplitude, i.e. it is deeper in regions, where the wave amplitude is larger. As a result, the thermal pressure prevents the flux from flowing upward and the stationary state is settled. A typical time of this process is the ratio of the wave amplitude inhomogeneity length to the sound speed. In the stationary state, the flux is equal to zero. As it is known, a part of the ponderomotive force is proportional to the nonlinear magnetic moment of the medium and gradient of the background magnetic field. We show that the well-known Pitayevsky's formula for the magnetic moment in the cold plasma (Pitayevsky 1960) is not complete. This formula does not take into account the part of the magnetic moment induced by the nonlinear current connected with the quasi-stationary velocities of charged species. References Guglielmi, A. V., O. A. Pokhotelov, L. Stenflo, and P. K. Shukla, Astrophys. Space Sci. 200, 91 (1993). Nekrasov, A. K. and F. Z. Feygin, Physica Scripta 71, 310 (2005). Olsen, R. C., J. Geophys. Res. 97, 1135 (1992). Pitayevsky, L. P

  2. Physical Properties of Cooling Plasma in Quiescent Active Region Loops

    NASA Astrophysics Data System (ADS)

    Landi, E.; Miralles, M. P.; Curdt, W.; Hara, H.

    2009-04-01

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 <= log T <= 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 <= log T <= 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242°and 253fdg EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  3. High-time resolution measurements of upstream magnetic field and plasma conditions during flux transfer events at the Earth's dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Jacob, Jamey D.; Carrell, Cynthia

    1993-01-01

    We present preliminary results of a study of upstream magnetic field and plasma conditions measured by IRM during flux transfer events observed at the Earth's magnetopause by CCE. This study was designed to determine the importance of various upstream factors in the formation of bipolar magnetic field signatures called flux transfer events (FTEs). Six FTE encounters were examined. In three cases, the two satellites were on similar magnetic field lines. Preliminary investigation showed that fluctuations occurred in the Bz component of the interplanetary magnetic field (IMF) resulting in a southward field preceding the FTE in all three of these cases. In two of these cases, the changes were characterized by a distinct rotation from a strong southward to a strong northward field. There were also accompanying changes in the dynamic and thermal pressure in the solar wind immediately before the FTE was encountered. Examination of the 3D plasma distributions showed that these pulses were due to the addition of energetic upstreaming foreshock particles. There were no consistent changes in either Bz or the plasma pressure at IRM for the three events when the satellites were not connected by the IMF.

  4. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  5. Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells.

    PubMed

    Triantafilou, Kathy; Kar, Satwik; van Kuppeveld, Frank J M; Triantafilou, Martha

    2013-12-01

    Human rhinoviruses have been linked with underlying lung disorders, such as asthma and chronic obstructive pulmonary disease, in children and adults. However, the mechanism of virus-induced airway inflammation is poorly understood. In this study, using virus deletion mutants and silencing for nucleotide-binding oligomerization domain-like receptors (NLRs), we show that the rhinovirus ion channel protein 2B triggers NLRP3 and NLRC5 inflammasome activation and IL-1β secretion in bronchial cells. 2B protein targets the endoplasmic reticulum and Golgi and induces Ca(2+) reduction in these organelles, thereby disturbing the intracellular calcium homeostasis. NLRP3 and NLRC5 act in a cooperative manner during the inflammasome assembly by sensing intracellular Ca(2+) fluxes and trigger IL-1β secretion. These results reveal for the first time that human rhinovirus infection in primary bronchial cells triggers inflammasome activation.

  6. Changes of human plasma dopamine-beta-hydroxylase activity after intravenous administration of theophylline.

    PubMed

    Aunis, D; Mandel, P; Miras-Portugal, M T; Coquillat, G; Rohmer, F; Warter, J M

    1975-03-01

    The intravenous administration of theophylline to ten healthy human subjects produced either an increase of circulating plasma dopamine-beta-hydroxylase or no change. The rise of plasma enzyme activity may reflect the increased peripheral catecholamine release induced by theophylline.

  7. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    PubMed

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-08

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  8. Mass spectrometry-based microassay of 2H and 13C plasma glucose labeling to quantify liver metabolic fluxes in vivo

    PubMed Central

    Hasenour, Clinton M.; Wall, Martha L.; Ridley, D. Emerson; Hughey, Curtis C.; James, Freyja D.; Wasserman, David H.

    2015-01-01

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [13C3]propionate, [2H2]water, and [6,6-2H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  9. Crystal Structure of Human Plasma Platelet-Activating Factor Acetylhydrolase

    SciTech Connect

    Samanta, U.; Bahnson, B

    2008-01-01

    Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and high density lipoprotein particles and is also referred to as lipoprotein-associated phospholipase A{sub 2}. The crystal structure of this enzyme has been solved from x-ray diffraction data collected to a resolution of 1.5{angstrom}. It has a classic lipase {alpha}/{beta}-hydrolase fold, and it contains a catalytic triad of Ser{sup 273}, His{sup 351}, and Asp{sup 296}. Two clusters of hydrophobic residues define the probable interface-binding region, and a prediction is given of how the enzyme is bound to lipoproteins. Additionally, an acidic patch of 10 carboxylate residues and a neighboring basic patch of three residues are suggested to play a role in high density lipoprotein/low density lipoprotein partitioning. A crystal structure is also presented of PAF acetylhydrolase reacted with the organophosphate compound paraoxon via its active site Ser{sup 273}. The resulting diethyl phosphoryl complex was used to model the tetrahedral intermediate of the substrate PAF to the active site. The model of interface binding begins to explain the known specificity of lipoprotein-bound substrates and how the active site can be both close to the hydrophobic-hydrophilic interface and at the same time be accessible to the aqueous phase.

  10. Distribution of the Effect of Solar Proton Flux And Geomagnetic Activity on the Stratospheric Ozone Profile

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Tassev, Y.; Yanev, T.; Tomova, D.

    Two-way MANOVA was used to examine the impact of two factors: 1) the proton flux intensity and 2) the geomagnetic activity on the dependant variable "ozone mixing ratio" which characterizes the stratospheric ozone profiles. The examination was carried out with fixed levels of two other factors: a) the heights at which the "ozone mixing ratio" was recorded, i,e, 35 km, 30.2 km, 24.5 km, 18.4 km, 15.6 km and b) the energetic intervals within which the proton flux was measured, i.e. =0,6-4,2 MeV; 4,2-8,7 MeV; 8,7-14,5 MeV; 15-44 MeV; 39-82 MeV; 84-200 MeV; 110-500 MeV. The analysis was performed for all combinations of levels of the factors a) and b) for which data was available. It was aimed at revealing which of the factors 1) and 2) were dominating with different combinations of the factors a) and b) with fixed levels. For this purpose a post hoc analysis was performed as well. The main results are as follows: factors 1) and 2) exert statistically significant impact on the dependant variable at all of the heights examined, but not for all of energetic intervals; increase of the ozone mixing ratio was observed as a main effect of the proton flux intensity at heights 24.5 km, 18.4 km, 15.6 km, but the analysis of the simultaneous acting of factors 1) and 2) revealed a decrease of the dependant variable at these heights; these effects possibly indicate the existence of two different mechanisms of impact on the ozone mixing ratio; the afore- discussed effects decrease with the height and therefore their graphical image was named "Christmas tree".

  11. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  12. How to Patch Active Plasma and Collisionless Sheath: Pragmatical Guide

    NASA Astrophysics Data System (ADS)

    Shneider, Mikhail N.; Kaganovich, Igor D.

    2002-11-01

    Most plasmas have very thin sheath compared with plasma dimension. This necessitates separate calculation of plasma and sheath. Bohm criterion provides boundary condition for calculation of plasma profiles. To calculate sheath properties a value of electric field at the plasma-sheath interface has to be specified in addition to Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy is reported. Additional information on the subject will be posted in http://www.pppl.gov/pub/report/2002/ http://arxiv.org/abs/physics/ Work supported by the Princeton Plasma Physics Laboratory through a University Research Support Program.

  13. Influence of decavanadate on rat synaptic plasma membrane ATPases activity.

    PubMed

    Krstić, Danijela; Colović, Mirjana; Bosnjaković-Pavlović, Nada; Spasojević-De Bire, Anne; Vasić, Vesna

    2009-09-01

    The in vitro influence of decameric vanadate species on Na+/K+-ATPase, plasma membrane Ca2+-ATPase (PMCA)-calcium pump and ecto-ATPase activity, using rat synaptic plasma membrane (SPM) as model system was investigated, whereas the commercial porcine cerebral cortex Na+/K+-ATPase served as a reference. The thermal behaviour of the synthesized decavanadate (V10) has been studied by differential scanning calorimetry and thermogravimetric analysis, while the type of polyvanadate anion was identified using the IR spectroscopy. The concentration-dependent responses to V10 of all enzymes were obtained. The half-maximum inhibitory concentration (IC50) of the enzyme activity was achieved at (4.74 +/- 1.15) x 10(-7) mol/l for SPM Na+/K+-ATPase, (1.30 +/- 0.10) x 10(-6) mol/l for commercial Na+/K+-ATPase and (3.13 +/- 1.70) x 10(-8) mol/l for Ca2+-ATPase, while ecto-ATPase is significantly less sensitive toward V10 (IC50 = (1.05 +/- 0.10) x 10(-4) mol/l) than investigated P-type ATPases. Kinetic analysis showed that V10 inhibited Na+/K+-ATPase by reducing the maximum enzymatic velocity and apparent affinity for ATP (increasing K(m) value), implying a mixed mode of interaction between V10 and P-type ATPases.

  14. Thermally activated flux flow in superconducting epitaxial FeSe0.6Te0.4 thin film

    NASA Astrophysics Data System (ADS)

    Ahmad, D.; Choi, W. J.; Seo, Y. I.; Seo, Sehun; Lee, Sanghan; Kwon, Yong Seung

    The thermally activated flux flow effect has been studied in epitaxial FeSe0.6Te0.4 thin film grown by a PLD method through the electrical resistivity measurement under various magnetic fields for B//c and B//ab. The results showed that the thermally activated flux flow effect is well described by the nonlinear temperature-dependent activation energy. The evaluated apparent activation energy U0 (B) is one order larger than the reported results and showed the double-linearity in both magnetic field directions. Furthermore, the FeSe0.6Te0.4 thin film shows the anisotropy of 5.6 near Tc and 2D-like superconducting behavior in thermally activated flux flow region. In addition, the vortex glass transition and the temperature dependence of the high critical fields were determined.

  15. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  16. Shift in principal equilibrium current from a vertical to a toroidal one towards the initiation of a closed flux surface in ECR plasmas in the LATE device

    NASA Astrophysics Data System (ADS)

    Kuroda, Kengoh; Wada, Manato; Uchida, Masaki; Tanaka, Hitoshi; Maekawa, Takashi

    2016-02-01

    In toroidal electron cyclotron resonance (ECR) plasmas under a weak external vertical field {{B}\\text{V}} a part of the pressure driven vertical charge separation current returns along the helical field lines, generating a toroidal current. The rest circulates via the conducting vacuum vessel. Only the toroidal current contributes to the production of a closed flux surface. Both the toroidal and vertical currents are an equilibrium current that provides a radial force by the interaction with the vertical field and the toroidal field, respectively, to counter-balance the outward pressure ballooning force. We have done experiments using 2.45 GHz microwaves in the low aspect ratio torus experiment (LATE) device to investigate in what way and how much the toroidal current is generated towards the initiation of a closed flux surface. In steady discharges by {{P}\\text{inj}}=1.5 kW under various {{B}\\text{V}} both the pressure and the toroidal current become large with {{B}\\text{V}} . When {{B}\\text{V}}=6.8 G, a toroidal current of 290 A is generated and the vertical field is reduced to 1.2 G inside the current channel, being close to the initiation of a closed flux surface. In this plasma the return current does not obey Ohm’s law. Instead, the return current flows so that the electric force on the electron fluid is balanced with the pressure gradient along the field lines. Near the top and bottom boundaries superthermal electrons flow beyond the potential barrier onto the walls along the field lines. In another discharge by the low power of {{P}\\text{inj}}=1.0 kW under {{B}\\text{V}}=8.3 G, both the toroidal current and the pressure steadily increase for an initial duration of 1.1 s and then abruptly jump, generating an initial closed flux surface. While the counter force from the vertical current is initially dominant, that from the toroidal current gradually increases and becomes four times larger than that from the vertical current just before the initiation

  17. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-08-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding "hot-spots", and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  18. δ-SUNSPOT FORMATION IN SIMULATION OF ACTIVE-REGION-SCALE FLUX EMERGENCE

    SciTech Connect

    Fang, Fang; Fan, Yuhong

    2015-06-10

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  19. δ-Sunspot Formation in Simulation of Active-region-scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Fan, Yuhong

    2015-06-01

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  20. Formation of δ-Sunspot in Simulations of Active-Region-Scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Fan, Yuhong

    2015-04-01

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging pattherns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the -spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  1. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity

    NASA Astrophysics Data System (ADS)

    Wu, D. J.; Feng, H. Q.; Chao, J. K.

    2008-03-01

    Context: Recent observations of the solar wind show that interplanetary magnetic flux ropes (IMFRs) have a continuous scale-distribution from small-scale flux ropes to large-scale magnetic clouds. Aims: In this work, we investigate the energy spectrum of IMFRs and its possible connection with solar activity. Methods: In consideration of the detectable probability of an IMFR to be proportional to its diameter, the actual energy spectrum of IMFRs can be obtained from the observed spectrum based on spacecraft observations in the solar wind. Results: It is found that IMFRs have a negative power-law spectrum with an index α = 1.36±0.03, which is similar to that of solar flares, and is probably representative of interplanetary energy spectrum of coronal mass ejections (CMEs), that is, the energy spectrum of interplanetary CMEs (ICMEs). This indicates that the energy distribution of CMEs has a similar negative power-law spectrum. In particular, there are numerous small-scale CMEs in the solar corona, and their interplanetary consequences may be directly detected in situ by spacecraft in the solar wind as small-scale IMFRs, although they are too weak to appear clearly in current coronagraph observations. Conclusions: The presence of small-scale CMEs, especially the energy spectrum of CMEs is potentially important for understanding both the solar magneto-atmosphere and CMEs.

  2. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  3. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  4. High flux irradiations of Li coatings on polycrystalline W and ATJ graphite with D, He, and He-seeded D plasmas at Magnum PSI

    NASA Astrophysics Data System (ADS)

    Neff, A. L.; Allain, J. P.; Bedoya, F.; Morgan, T. W.; De Temmerman, G.

    2015-08-01

    Lithium wall conditioning on PFCs (Plasma Facing Components) on a variety of substrate platforms (e.g. graphite, Mo, etc.) has resulted in improved plasma performance on multiple magnetic fusion devices. On graphite, this improvement occurs through the control of retention and recycling of hydrogen at the plasma-material interface by the chemical bonding of Li, O, and D at the surface. Moderate fluence (1 × 1021 m-2) studies of Li on W, performed in PRIHSM (Particle Radiation in Soft and Hard Matter), demonstrated that H retention is similar to Li on ATJ graphite but He ions, when mixed in a D beam, can inhibit the retention. To expand these studies closer to reactor relevant regimes like inside ITER, irradiations were carried out in Magnum-PSI at DIFFER up to fluences of ∼1025 m-2 with D, He, and He-seeded D plasmas (He 5-10%). Results show that D is still retained at higher fluxes and fluences.

  5. Diagnostics and two-dimensional simulation of low-frequency inductively coupled plasmas with neutral gas heating and electron heat fluxes

    NASA Astrophysics Data System (ADS)

    Ostrikov, K. N.; Denysenko, I. B.; Tsakadze, E. L.; Xu, S.; Storer, R. G.

    2002-11-01

    This article presents the results on the diagnostics and numerical modeling of low-frequency (approx460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers[greater-than-or-equal, slanted]0.55 kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.

  6. Progress Report for Activities of the U. S. Burning Plasma Organization

    SciTech Connect

    Van Dam, James W

    2009-04-07

    This report describes the activities of the past year of the U. S. Burning Plasma Organization (USBPO), a national organization of scientists involved in researching the properties of magnetically confined burning fusion plasmas. Its main activities are the coordination, facilitation, and promotion of research activities in the U. S. fusion energy sciences program relevant to burning plasma science and, specifically, of preparations for U. S. participation in the international ITER experiment. Specifically, the USBPO mission is to advance the scientific understanding of burning plasmas and to ensure the greatest benefit from a burning plasma experiment by coordinating relevant U. S. fusion research with broad community participation.

  7. Non-thermal atmospheric pressure plasma activates lactate in Ringer's solution for anti-tumor effects.

    PubMed

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-08

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer's solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer's lactate solution has anti-tumor effects, but of the four components in Ringer's lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer's lactate solution. Overall, these results suggest that plasma-activated Ringer's lactate solution is promising for chemotherapy.

  8. Plasma ADAMTS13 activity and von Willebrand Factor Antigen and Activity In Patients with Subarachnoid Hemorrhage

    PubMed Central

    Kumar, Monisha; Cao, Wenjing; McDaniel, Jenny K.; Pham, Huy P.; Raju, Dheeraj; Nawalinski, Kelsey; Frangos, Suzanne; Kung, David; Zager, Eric E.; Kasner, Scott E.; Levine, Joshua M.; Zheng, X. Long

    2017-01-01

    Summary Background Increased von Willebrand factor (VWF) and reduced ADAMTS13 activity are associated with arterial thrombosis. This may also be the culprit mechanism implicated in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (SAH). Objective To determine plasma VWF and ADAMTS13 in patients with SAH and healthy subjects; and to explore the levels of those markers and outcome after SAH. Methods 40 consecutive patients were enrolled between September 2007 and April 2014 in a pilot study. Plasma samples were collected from SAH patients on post-bleed day (PBD) 0, 1, 3, 5, 7 and 10 and healthy controls. VWF antigen (VWFAg) and VWF activity (VWFAc) were determined by enzyme-linked immunoassay and collagen binding assay, respectively. ADAMTS13 activity was determined by the cleavage of a fluorescent substrate. Univariate descriptive statistics and cluster analyses were performed based on outcomes in the group with SAH only. Results Mean age of SAH patients was 52.4 years (26–84 years) and 30 (75%) were women. 12/40 (30%) had a high Hunt and Hess grade (IV–V) and 25 (62.5%) were treated with coil embolization. Plasma VWFAg and VWFAc were significantly higher in SAH patients than those in healthy subjects on each PBD (p<0.0001). Concurrently, plasma ADAMTS13 activity in SAH patients was significantly lower than that in healthy subjects (p<0.0001). Among those with SAH, cluster analysis demonstrated that patients with higher VWFAg and VWFAc and/or lower ADAMTS13 activity might be at risk of increased mortality. Conclusions The relative deficiency of plasma ADAMTS13 activity in SAH patients may associate with worse outcome. PMID:28102428

  9. Plasma ADAMTS13 activity and von Willebrand factor antigen and activity in patients with subarachnoid haemorrhage.

    PubMed

    Kumar, Monisha; Cao, Wenjing; McDaniel, Jenny K; Pham, Huy P; Raju, Dheeraj; Nawalinski, Kelsey; Frangos, Suzanne; Kung, David; Zager, Eric; Kasner, Scott E; Levine, Joshua M; Zheng, X Long

    2017-01-19

    Increased von Willebrand factor (VWF) and reduced ADAMTS13 activity are associated with arterial thrombosis. This may also be the culprit mechanism implicated in delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage (SAH). It was our objective to determine plasma VWF and ADAMTS13 in patients with SAH and healthy subjects; and to explore the levels of those markers and outcome after SAH. Forty consecutive patients were enrolled between September 2007 and April 2014 in a pilot study. Plasma samples were collected from SAH patients on post-bleed day (PBD) 0, 1, 3, 5, 7 and 10 and healthy controls. VWF antigen (VWFAg) and VWF activity (VWFAc) were determined by enzyme-linked immunoassay and collagen binding assay, respectively. ADAMTS13 activity was determined by the cleavage of a fluorescent substrate. Univariate descriptive statistics and cluster analyses were performed based on outcomes in the group with SAH only. Mean age of SAH patients was 52.4 years (26-84 years) and 30 (75 %) were women. 12/40 (30 %) had a high Hunt and Hess grade (IV-V) and 25 (62.5 %) were treated with coil embolisation. Plasma VWFAg and VWFAc were significantly higher in SAH patients than those in healthy subjects on each PBD (p<0.0001). Concurrently, plasma ADAMTS13 activity in SAH patients was significantly lower than that in healthy subjects (p<0.0001). Among those with SAH, cluster analysis demonstrated that patients with higher VWFAg and VWFAc and/or lower ADAMTS13 activity might be at risk of increased mortality. In conclusion, the relative deficiency of plasma ADAMTS13 activity in SAH patients may associate with worse outcome.

  10. Interplanetary proton flux and solar wind conditions for different solar activities interacting with spacecraft and astronauts in space

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2014-01-01

    The goal of this research is to determine the interplanetary proton flux and solar wind conditions by using data from several satellites such as Advanced Composition Explorer (ACE), Geostationary Operational Environmental Satellites (GOES) in particular GOES 9, GOES 11, GOES 12, GOES 13, and Solar Heliospheric Observatory (SOHO) to determine proton flux in different solar wind conditions. The data from above satellites were used to determine space weather conditions in which the goals are to evaluate proton fluxes for four periods of solar cycle activity: a solar cycle 23/24 minimum (2008), close to a solar cycle 22/23 minimum (1997), with intermediate activity (2011) and for about maximum activity for the cycle 23 (2003), to compare data of two period of solar cycle in 2003 and 2008 (Max vs. Min), to compare data of two period of solar cycle in 1997 and 2008 (Min vs. Min), to compare soft X-ray flux from SOHO with proton 1-10 MeV flux from GOES 9 for strong flare in 1997. To conclude the above evaluations are being used to determine the interaction between the space weather conditions and the following consequences of these conditions important for astronautics and everyday human activity: 1- Satellite and Spacecraft charging, 2-Dangerous conditions for onboard electronics and astronauts during strong solar flare events, and 3- Total Electron Content (TEC), Global Positioning System (GPS), and radio communication problems related to solar activity.

  11. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  12. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s-1. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  13. Development of an Active Plasma Control System for Pegasus

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.

    2005-10-01

    The Phase II Pegasus ST experiment includes fully programmable power supplies for all magnet coils. These will be integrated with a digital feedback plasma control system (PCS), based on the PCS in use on DIII-D, to provide active feedback control of the plasma evolution. The initial goal is to control Ip(t), R(t), and Z(t). The feedback cycle consists of: 1) sampling magnetic diagnostics, 2) applying a response matrix derived from equilibrium reconstructions, 3) accounting for induced vessel currents and power supply frequency responses, and 4) adjusting the current demand, all on a timescale that is fast compared to the shot duration of ˜25 ms. Data is sampled via a 500 kHz, 96-channel CPCI digitizer from DTACQ Solutions, Ltd. The power supply control signals are generated by 16 analog waveform generators, with the option to utilize 32 digital I/O lines in the future. The PCS digitizer is controlled via a system of Linux-based computers that perform requisite computation-intensive tasks and interface to the existing LabVIEW control codes via a TCP/IP network link.

  14. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  15. [Development and optimization of the methods for determining activity of plasminogen activator inhibitor-1 in plasma].

    PubMed

    Roka-Moĭia, Ia M; Zhernosiekov, D D; Kondratiuk, A S; Hrynenko, T V

    2013-01-01

    The activity and content of plasminogen activator inhibitor-1 (PAI-1) are important indicators of pathological processes, because its content in plasma increases at acute myocardium infarction, tumor, diabetes mellitus, etc. The present work is dedicated to the development and optimization of the methods of PAI-1 activity definition, which can be used in clinical practice. We have proposed the modification of the method COATEST PAI with the usage of chromogenic substrate S2251. According to our modification, the cyanogen bromide fragments of human fibrinogen have been changed into bovine desAB-fibrin. We have also developed the method with the usage of fibrin films. In this method fibrin is used as a stimulator of activation reaction and as a substrate at the same time. Using fibrin, the native substrate of plasmin, we provide high specificity of the reaction and exclude the cross-reaction with other plasma enzymes.

  16. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    SciTech Connect

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L.

    1984-01-01

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics.

  17. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    SciTech Connect

    Marcus, F. A.; Beyer, P.; Fuhr, G.; Monnier, A.; Benkadda, S.

    2014-08-15

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work, we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry, the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m – 1, and m + 1.

  18. The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

    SciTech Connect

    Ahn, J W; Boedo, J A; Maingi, R; Soukhanovskii, V A

    2009-01-05

    The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target heat flux decay length ({lambda}{sub q}) is {lambda}{sub Te} = 7/2{lambda}{sub q}, whereas the newly-derived relation, assuming offset exponential functional forms, implies {lambda}{sub Te} = (2-2.5){lambda}{sub q}. The measured values of {lambda}{sub Te}/{lambda}{sub q} differ from the new prediction by 25-30%. The measured {lambda}{sub q} values in the far SOL (R-R{sub sep} > 2-3cm) are 9-10cm, while the expected values are 2.7 < {lambda}{sub q} < 4.9 cm (for sheath-limited regime). We propose that the ion heat flux profile is substantially broader than the electron heat flux profile as an explanation for this discrepancy in the far SOL.

  19. Investigating Possible Links between Incoming Cosmic Ray Fluxes and Lightning Activity

    NASA Astrophysics Data System (ADS)

    Chronis, Themis

    2010-05-01

    During the past two decades, particular scientific attention has been drawn to the potential cosmic ray-atmospheric coupling. Galactic cosmic rays reaching the upper troposphere are suggested as the key modulators of the global electric circuit with further implications on cloud microphysical processes. Unfortunately, the scarcity of the associated observations renders the evaluation of the theoritized mechanisms rather difficult. This contribution proposes a different approach by introducing observations provided by the National Lightning Detection Network for the period 1990-2005. The study area encompasses the greater part of continental U.S. and the surrounding waters. The results highlight a statistically significant positive trend between monthly lightning activity and galactic cosmic ray fluxes during the winter season. During the summer season the trend becomes statistically non-significant. In addition, the featured analysis introduces a technique to assess the potential impact of Forbush Events on daily lightning activity. Results illustrate that lightning activity may be responsive (minimized) 4-5 days following a Forbush Event.

  20. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays

    PubMed Central

    Barnard, Sunelle A.; Loots, Du Toit; Rijken, Dingeman C.

    2017-01-01

    Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of

  1. Plasma parameters and active species kinetics in CF4/O2/Ar gas mixture: effects of CF4/O2 and O2/Ar mixing ratios

    NASA Astrophysics Data System (ADS)

    Lee, Junmyung; Kwon, Kwang-Ho; Efremov, A.

    2016-12-01

    The effects of both CF4/O2 and O2/Ar mixing ratios in three-component CF4/O2/Ar mixture on plasma parameters, densities and fluxes of active species determining the dry etching kinetics were analyzed. The investigation combined plasma diagnostics by Langmuir probes and zero-dimensional plasma modeling. It was found that the substitution of CF4 for O2 at constant fraction of Ar in a feed gas produces the non-monotonic change in F atom density, as it was repeatedly reported for the binary CF4/O2 gas mixtures. At the same time, the substitution of Ar for O2 at constant fraction of CF4 results in the monotonic increase in F atom density toward more oxygenated plasmas. The natures of these phenomena as well as theirs possible impacts on the etching/polymerization kinetics were discussed in details.

  2. Recent Data Research Activities on Basic Plasma Research in Korea

    SciTech Connect

    Yoon, Jung-Sik; Song, Mi-Young; Kwon, Deuk-Chul; Chang, Won-Seok

    2011-05-11

    Since the characteristics of plasmas depend strongly on the interactions between plasma particles such as electron, ion, and neutrals, a well-established atomic and molecular database is needed to understand and produce various types of plasma. Thus, here the work conducted at the Data Center for Plasma Properties over last 5 years on the systematic synthesis and assessment of fundamental knowledge on low-energy electron interactions with plasma processing gases is briefly summarized and discussed. This work mostly emphasis on the electron interaction processes.

  3. Enhanced ionospheric plasma bubble generation in more active ITCZ

    NASA Astrophysics Data System (ADS)

    Li, Guozhu; Otsuka, Yuichi; Ning, Baiqi; Abdu, M. A.; Yamamoto, M.; Wan, Weixing; Liu, Libo; Abadi, Prayitno

    2016-03-01

    A close link between the atmospheric Intertropical Convergence Zone (ITCZ) and ionospheric plasma bubble has been proposed since the last century. But this relationship has often appeared to be less than convincing due to the simultaneous roles played by several other factors in shaping the global distribution of ionospheric bubbles. From simultaneous collaborative radar multibeam steering measurements at Kototabang (0.2°S, 100.3°E) and Sanya (18.4°N, 109.6°E), conducted during September-October of 2012 and 2013, we find that the total numbers of nights with bubble (i.e., occurrence rates) at the two closely located longitudes (Kototabang and Sanya) are comparable. But interestingly, the total number of nights with locally generated bubble (i.e., generation rate) over Kototabang is clearly more than that over Sanya. Further analysis reveals that a more active ITCZ is situated around the longitude of Kototabang. We surmise that the enhanced ionospheric bubble generation at Kototabang longitude could be caused by a higher gravity wave activity associated with the more active ITCZ.

  4. INVESTIGATING TWO SUCCESSIVE FLUX ROPE ERUPTIONS IN A SOLAR ACTIVE REGION

    SciTech Connect

    Cheng, X.; Zhang, J.; Ding, M. D.; Guo, Y.; Olmedo, O.; Sun, X. D.; Liu, Y.

    2013-06-01

    We investigate two successive flux rope (FR1 and FR2) eruptions resulting in two coronal mass ejections (CMEs) on 2012 January 23. Both flux ropes (FRs) appeared as an EUV channel structure in the images of high temperature passbands of the Atmospheric Imaging Assembly prior to the CME eruption. Through fitting their height evolution with a function consisting of linear and exponential components, we determine the onset time of the FR impulsive acceleration with high temporal accuracy for the first time. Using this onset time, we divide the evolution of the FRs in the low corona into two phases: a slow rise phase and an impulsive acceleration phase. In the slow rise phase of FR1, the appearance of sporadic EUV and UV brightening and the strong shearing along the polarity inverse line indicates that the quasi-separatrix-layer reconnection likely initiates the slow rise. On the other hand, for FR2, we mainly contribute its slow rise to the FR1 eruption, which partially opened the overlying field and thus decreased the magnetic restriction. At the onset of the impulsive acceleration phase, FR1 (FR2) reaches the critical height of 84.4 ± 11.2 Mm (86.2 ± 13.0 Mm) where the decline of the overlying field with height is fast enough to trigger the torus instability. After a very short interval (∼2 minutes), the flare emission began to enhance. These results reveal the compound activity involving multiple magnetic FRs and further suggest that the ideal torus instability probably plays the essential role of initiating the impulsive acceleration of CMEs.

  5. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Freezing at -25?C had confounding effects on cholinesterase (ChE) activity in blood plasma from breeding female quail, but did not affect ChE activity in plasma from males. Plasma ChE activity of control females increased consistently during 28 days of storage while both carbamate- and cidrotophos-inhibited ChE decreased. Refrigeration of plasma at 4?C for 2 days had little effect of ChE activity. Plasma ChE activity was averaged about 34% higher in breeding males than in females. Extreme caution should be exercised in use of blood plasma for evaluation of anti ChE exposure in free-living birds.

  6. Fossil fuel burning in Taylor Valley, southern Victoria Land, Antarctica: Estimating the role of scientific activities on carbon and nitrogen reservoirs and fluxes

    SciTech Connect

    Lyons, W.B.; Nezat, C.A.; Welch, K.A.; Kottmeier, S.T.; Doran, P.T.

    2000-05-01

    Particulate organic and elemental carbon and nitrogen as well as NO{sub x} fluxes from scientific activities have been computed for Taylor Valley, Antarctica ({approximately}78{degree} S). These authropogenic fluxes have been compared to both the natural fluxes and landscape reservoirs as determined from Long-Term Ecological Research (LTER) investigations in the valley. The anthropogenic, nongaseous carbon fluxes are minor compared to the natural fluxes, while the anthropogenic NO{sub x} flux may be potentially important over decadal time scales.

  7. How to Patch Active Plasma and Collisionless Sheath: Pragmatical Guide

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor D.

    2002-10-01

    Most plasmas have very thin sheath compared with plasma dimension. This necessitates separate calculation of plasma and sheath. Bohm criterion provides boundary condition for calculation of plasma profiles. To calculate sheath properties a value of electric field at the plasma-sheath interface has to be specified in addition to Bohm criterion. The value of the boundary electric field and robust procedure to approximately patch plasma and collisionless sheath with a very good accuracy is reported. Additional information on the subject is posted on the web http://www.pppl.gov/pub/report/2002/ http://arxiv.org/abs/physics/0208041. Work supported by the Department of Energy via the University Research Support Program of Princeton Plasma Physics Laboratory.

  8. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    NASA Technical Reports Server (NTRS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  9. Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source.

    PubMed

    Junker, Björn H; Lonien, Joachim; Heady, Lindsey E; Rogers, Alistair; Schwender, Jörg

    2007-01-01

    After the completion of the genomic sequencing of model organisms, numerous post-genomic studies, integrating transcriptome and metabolome data, are aimed at developing a more complete understanding of cell physiology. Here, we measure in vivo metabolic fluxes by steady state labeling, and in parallel, the activity of enzymes in central metabolism in cultured developing embryos of Brassica napus. Embryos were grown on either the amino acids glutamine and alanine as an organic nitrogen source, or on ammonium nitrate as an inorganic nitrogen source. The type of nitrogen made available to developing embryos caused substantial differences in fluxes associated with the tricarboxylic acid cycle, including flux reversion. The changes observed in enzyme activity were not consistent with our estimates of metabolic flux. Furthermore, most extractable enzyme activities are in large surplus relative to the requirements for the observed in vivo fluxes. The results demonstrate that in this model system the metabolic response of central metabolism to changes in environmental conditions can be achieved largely without regulatory reprogramming of the enzyme machinery.

  10. Effects of solar and geomagnetic activity on the occurrence of equatorial plasma bubbles over Hong Kong

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Chen, Wu; Liu, Zhizhao; Ji, Shengyue

    2016-09-01

    In the present study, the occurrence and characteristics of equatorial plasma bubble (EPB) has been analyzed using the GPS data from continuously operating reference stations network over Hong Kong during 2001-2012. The analysis found maximum EPB occurrences during the equinoctial months and minimum EPB occurrences during the December solstice throughout 2001-2012 except during the solar minimum in 2007-2009. The maximum EPB occurrences were observed in June solstice during 2007-2008, whereas for 2009, EPB occurrences were quite higher for June solstice but slightly smaller than the March equinox. The seasonal maximum in EPB occurrences have been discussed in terms of plasma density seed perturbation caused by gravity waves as well as the post sunset F-layer rise due to the pre-reversal enhancement of zonal electric field. Generally, EPB occurrences are found to be more prominent during nighttime hours (19:00-24:00 h) than daytime hours. The day and nighttime EPB occurrences were inferred and found to vary linearly with solar activity and have an annual correlation coefficient (R) of 0.92 with F10.7 cm solar flux and 0.88 with sunspot number. Moreover, the impact of solar activity on EPB occurrences is found to be dependent on seasons with maximum during the equinox (R = 0.80) and minimum during the summer season (R = 0.68). The detail study of EPB occurrences during two typical cases of geomagnetic storms on 6 November and 24 November 2001 found that the storm on 24 November triggered the EPB occurrence whereas storm on 6 November suppressed the EPB occurrence. The enhancement/suppression of EPB occurrences during storms periods is a consequence of a storm-induced prompt penetration electric field as well as disturbance dynamo electric field effects associated with the main phase of the geomagnetic storm.

  11. Thermal behavior and temperature measurements of melting beryllium plasma-facing components exposed to high heat flux

    NASA Astrophysics Data System (ADS)

    Gauthier, E.; Pocheau, C.; Kovari, M.; Barnard, J. M.; Crowley, B.; Godwin, J.; Lane, C.

    2015-08-01

    The emissivity of metallic materials is low and varies with temperature and wavelength inducing errors on surface temperature measurements. High heat flux experiments on beryllium were carried out to investigate the thermal behavior of bulk Be tiles. Thermal modeling aiming at determining the surface and bulk temperatures have been performed using ANSYS®. A Be tile was exposed to heat flux with power density ranging between 1 and 7 MW/m2. Surface temperatures were measured using an infrared camera in the 3-5 μm range and two-color pyrometers, one at short wavelengths (1.5-1.7 μm) and one at mid IR range wavelengths (2-4 μm) range. Both the IR camera and two-color pyrometers do not provide accurate temperature measurements on melted Be due to changes in the emissivities and emissivity ratio induced by surface modifications.

  12. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A.; Gutkin, M.; Sleptsov, V.

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  13. An influence of long-lasting and gradual magnetic flux transport on fate of magnetotail fast plasma flows: An energetic particle injection substorm event study

    NASA Astrophysics Data System (ADS)

    Nowada, Motoharu; Fu, Suiyan; Parks, George K.; Pulkkinen, Tuija I.; Pu, Zuyin

    2014-10-01

    Based on multi-satellite and ground observations, we investigated an influence of long-lasting and gradual enhancements of magnetic flux transport rate on the magnetotail fast flow duration. On March 10th, 2009, THEMIS-B, which was located in the central plasma sheet of middle distant magnetotail (XGSM ~-25.8 RE), observed the fast flows with the velocity exceeding 300 km/s, lasting over 3 h for intense southward Interplanetary Magnetic Field (IMF) period. During long-lasting fast flows, AL index variations were very extensive and their recovery was much slow. Pi 2 waves were observed at the ground observatories around the THEMIS's footpoints and at low-/mid-latitudes. The aspect for these AL variations suggests Steady Magnetospheric Convection (SMC), but clear substorm signatures were also observed. Further magnetic dipolarization was detected by THEMIS-A at XGSM ~-8.2 RE and its nearby THEMIS-E. Only THEMIS-A observed the associated energetic electron flux enhancements. Therefore, the fast flows occurred during substorm with energetic particle injections at “imitative” SMC, which would be driven by prolonged intense southward IMF. The cumulative transport rates of magnetic and Poynting fluxes consecutively and gradually enhanced. On the other hand, THEMIS-C detected much shorter fast flows with the duration of 37 min at XGSM ~-18.1 RE and weak/gradual substorm-associated dipolarization. However, the cumulative magnetic flux transport rate was enhanced only during the fast flow interval and was saturated after the fast flows. From different magnetic transport rate profiles at THEMIS-B and THEMIS-C, the realms of dipolar-configured field lines expanded to near THEMIS-C's position responsible for long-lasting fast flow-associated consecutive and gradual magnetic flux pileup. Because the resultant “high-speed flow braking” region was retreated into a few RE tailward direction, long-lasting fast flows were almost stemmed. These results suggest that the

  14. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    NASA Astrophysics Data System (ADS)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  15. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  16. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    NASA Astrophysics Data System (ADS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-05-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of Csbnd N, Cdbnd N, and Ctbnd N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  17. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    NASA Astrophysics Data System (ADS)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  18. Longitudinal photons in a relativistic magneto-active plasma

    SciTech Connect

    Tsintsadze, N. L.; Rehman, Ayesha; Murtaza, G.; Shah, H. A.

    2007-10-15

    This paper presents some aspects of interaction of superstrong high-frequency electromagnetic waves with strongly magnetized plasmas. The case in which the photon-photon interaction dominates the photon-plasma particle interaction is considered. Strictly speaking, the photon and photon bunch interaction leads to the self-modulation of the photon gas. Assuming that the density of the plasma does not change, the dispersion relation, which includes relativistic self-modulation, is investigated. The existence of longitudinal photons in a strong magnetic field has the well-known Bogoliubov-type energy spectrum. The stability of the photon flow is investigated and an expression for Landau damping of the photons is obtained. Finally, it has been shown that the interaction of even a very strong electromagnetic radiation with a plasma does not always lead to instability, but causes only a change in plasma properties, whereby the plasma remains stable.

  19. Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin.

    PubMed

    Mueller, Patrick J

    2008-09-01

    Physical inactivity is an independent risk factor for cardiovascular disease. Sedentary animals compared to physically active controls exhibit enhanced sympathoexcitatory responses, including arterial baroreflex-mediated sympathoexcitation. Hypotension-induced sympathoexcitation is also associated with the release of vasoactive hormones. We hypothesized that sedentary conditions may enhance release of the vasoactive hormones AVP and ANG II. To test this hypothesis, the humoral response to hypotension was examined in conscious rats after 9-12 wk of sedentary conditions or "normally active" conditions. Normally active conditions were produced by allowing rats access to running wheels in their home cages. Running distance peaked after 4 wk (4.5 +/- 0.7 km/day), and the total distance run after 9 wk was 174 +/- 23 km (n = 25). Similar levels of hypotension were induced in conscious sedentary or physically active animals with the arterial vasodilator, diazoxide (25 mg/kg iv). Control experiments used a saline injection of equivalent volume. Plasma samples were collected and assayed for plasma AVP concentration and plasma renin activity (PRA). Sedentary conditions significantly enhanced resting and hypotension-induced PRA relative to normal physical activity. In contrast, resting and hypotension-induced AVP levels were not statistically different between groups. These data suggest that baroreflex-mediated activation of the renin-angiotensin system, but not AVP secretion, is enhanced by sedentary conditions. We speculate that augmented activation of the renin-angiotensin system may be related to enhanced sympathetic outflow observed in sedentary animals and may contribute to increased risk of cardiovascular disease in the sedentary population.

  20. Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

    NASA Astrophysics Data System (ADS)

    van der Laan, Sander; Manohar, Swagath; Vermeulen, Alex; Bosveld, Fred; Meijer, Harro; Manning, Andrew; van der Molen, Michiel; van der Laan-Luijkx, Ingrid

    2016-11-01

    We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC), to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn) surface flux is calculated from short-term changes in ambient (222Rn) activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels) and space (i.e. over the footprint of the observations). The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual) means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW) and Lutjewad station (LUT). For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02) atoms cm-2 s-1 with values > 0.5 atoms cm-2 s-1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04) atoms cm-2 s-1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include calibration of process-based 222Rn soil flux models, validation

  1. Fuel injector utilizing non-thermal plasma activation

    DOEpatents

    Coates, Don M.; Rosocha, Louis A.

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  2. Inhibition of intrinsic proteolytic activities moderates preanalytical variability and instability of human plasma.

    PubMed

    Yi, Jizu; Kim, Changki; Gelfand, Craig A

    2007-05-01

    Human plasma and serum proteins are subject to intrinsic proteolytic degradation both during and after blood collection. By monitoring peptides, we investigated the stability of plasma and serum samples and the effects of anticoagulants and protease inhibitors on the plasma samples. Serum and plasma were subjected to time-course incubation, and the peptides (750-3200 Da) were extracted and analyzed with MALDI-TOF MS. Peptides of interest were further identified by MALDI-TOF/TOF MS and ESI-MS/MS analyses. Our observations indicate that plasma peptides are significantly different from serum peptides. Intrinsic proteases cause these differences between plasma and serum samples, as well as the differences among three plasma samples using either EDTA, sodium citrate, or heparin as the anticoagulant, which accounts for partial inhibitory effects on plasma proteolytic activities. Proteases and peptidases, including both aminopeptidases and carboxypeptidases, also cause time-dependent, sequential generation and digestion of the peptides in serum and all three plasmas, specifically during early sample collection and processing. Protease inhibitors within an EDTA-plasma-collection device inhibit both intrinsic plasma peptidases and proteases and moderate the time-dependent changes of the plasma peptides, including bradykinin, and complement C4- and C3- derived peptides. Our results suggest that mixing protease inhibitors immediately with blood during blood collection provides enhanced stabilization of the plasma proteome.

  3. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  4. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean

    NASA Astrophysics Data System (ADS)

    Isla, Alejandro; Scharek, Renate; Latasa, Mikel

    2015-03-01

    The diel vertical migration (DVM) of zooplankton contributes to the biological pump transporting material from surface to deep waters. We examined the DVM of the zooplankton community in different size fractions (53-200 μm, 200-500 μm, 500-1000 μm, 1000-2000 μm and > 2000 μm) during three cruises carried out in the open NW Mediterranean Sea. We assessed their metabolic rates from empirical published relationships and estimated the active fluxes of dissolved carbon to the mesopelagic zone driven by migrant zooplankton. Within the predominantly oligotrophic Mediterranean Sea, the NW region is one of the most productive ones, with a seasonal cycle characterized by a prominent spring bloom. The study area was visited at three different phases of the seasonal cycle: during the spring bloom, the post-bloom, and strongly stratified oligotrophic conditions. We found seasonal differences in DVM, less evident during the bloom. Changes in DVM intensity were related to the composition of the zooplanktonic assemblage, which also varied between cruises. Euphausiids appeared as the most active migrants in all seasons, and their life cycle conditioned the observed pattern. Immature stages, which are unable to perform large diel vertical movements, dominated during the bloom, in contrast to the higher relative importance of migrating adults in the other two sampling periods. The amount of dissolved carbon exported was determined by the migrant zooplankton biomass, being highest during the post-bloom (2.2 mmol C respired m- 2 d- 1, and up to 3.1 mmol C exported m- 2 d- 1 when DOC release estimations are added). The active transport by diel migrants represented a substantial contribution to total carbon export to deep waters, especially under stratified oligotrophic conditions, revealing the importance of zooplankton in the biological pump operating in the study area.

  5. Measurements of Ion Energy and Ion Flux Distributions in Inductively Coupled Plasmas in CF4/O2/Ar Mixtures

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Kim, J. S.; Cappelli, M. A.; Sharma, Surendra; Partridge, Harry (Technical Monitor)

    1999-01-01

    We report mass spectrometric studies of energy distributions and absolute concentrations of ions generated in CF4/O2/Ar inductively coupled rf plasmas. The ions were collected through a 100 mm orifice in the grounded and water cooled lower electrode in a GEC cell configuration. The measurements were made at gas pressures in the 10-50 mTorr range and rf coil power in the 100-300 W range. The observed ions are CF3(+), CF2(+), CF(+), C(+), F(+), COF(+), CO(+), O2(+), and O(+). The relative abundance of these ions varies with pressure and rf power. The energy distribution and absolute concentrations are correlated with electron number density and floating plasma potential measured by a compensated Langmuir probe.

  6. Plasma-enhanced atomic layer deposition of silicon dioxide films using plasma-activated triisopropylsilane as a precursor

    SciTech Connect

    Jeon, Ki-Moon; Shin, Jae-Su; Yun, Ju-Young; Jun Lee, Sang; Kang, Sang-Woo

    2014-05-15

    The plasma-enhanced atomic layer deposition (PEALD) process was developed as a growth technique of SiO{sub 2} thin films using a plasma-activated triisopropylsilane [TIPS, ((iPr){sub 3}SiH)] precursor. TIPS was activated by an argon plasma at the precursor injection stage of the process. Using the activated TIPS, it was possible to control the growth rate per cycle of the deposited films by adjusting the plasma ignition time. The PEALD technique allowed deposition of SiO{sub 2} films at temperatures as low as 50 °C without carbon impurities. In addition, films obtained with plasma ignition times of 3 s and 10 s had similar values of root-mean-square surface roughness. In order to evaluate the suitability of TIPS as a precursor for low-temperature deposition of SiO{sub 2} films, the vapor pressure of TIPS was measured. The thermal stability and the reactivity of the gas-phase TIPS with respect to water vapor were also investigated by analyzing the intensity changes of the C–H and Si–H peaks in the Fourier-transform infrared spectrum of TIPS.

  7. Evaluation of the effects of a plasma activated medium on cancer cells

    SciTech Connect

    Mohades, S.; Laroussi, M. Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  8. Evaluation of the effects of a plasma activated medium on cancer cells

    NASA Astrophysics Data System (ADS)

    Mohades, S.; Laroussi, M.; Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-01

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  9. Plasma phospholipid mass transfer rate: relationship to plasma phospholipid and cholesteryl ester transfer activities and lipid parameters.

    PubMed

    Cheung, M C; Wolfbauer, G; Albers, J J

    1996-09-27

    Human plasma phospholipid transfer protein (PLTP) has been shown to facilitate the transfer of phospholipid from liposomes or isolated very low and low density lipoproteins to high density lipoproteins. Its activity in plasma and its physiological function are presently unknown. To elucidate the role of PLTP in lipoprotein metabolism and to delineate factors that may affect the rate of phospholipid transfer between lipoproteins, we determined the plasma phospholipid mass transfer rate (PLTR) in 16 healthy adult volunteers and assessed its relationship to plasma lipid levels, and to phospholipid transfer activity (PLTA) and cholesteryl ester transfer activity (CETA) measured by radioassays. The plasma PLTR in these subjects was 27.2 +/- 11.8 nmol/ml per h at 37 degrees C (mean +/- S.D.), and their PLTA and CETA were 13.0 +/- 1.7 mumol/ml per h and 72.8 +/- 15.7 nmol/ml per h, respectively. Plasma PLTR was correlated directly with total, non-HDL, and HDL triglyceride (rs = 0.76, P < 0.001), total and non-HDL phospholipid (rs > 0.53, P < 0.05), and inversely with HDL free cholesterol (rs = -0.54, P < 0.05), but not with plasma PLTA and CETA. When 85% to 96% of the PLTA in plasma was removed by polyclonal antibodies against recombinant human PLTP, phospholipid mass transfer from VLDL and LDL to HDL was reduced by 50% to 72%, but 80% to 100% of CETA could still be detected. These studies demonstrate that PLTP plays a major role in facilitating the transfer of phospholipid between lipoproteins, and suggest that triglyceride is a significant modulator of intravascular phospholipid transport. Furthermore, most of the PLTP and CETP in human plasma is associated with different particles. Plasma PLTA and CETA were also measured in mouse, rat, hamster, guinea pig, rabbit, dog, pig, and monkey. Compared to human, PLTA in rat and mouse was significantly higher and in rabbit and guinea pig was significantly lower while the remaining animal species had PLTA similar to humans. No

  10. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging.

  11. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  12. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    SciTech Connect

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-09-04

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster.

  13. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus.

    PubMed

    Xu, Yingyin; Tian, Ying; Ma, Ruonan; Liu, Qinghong; Zhang, Jue

    2016-04-15

    Non-thermal plasma is a new approach to improving microbiological safety while maintaining the sensory attributes of the treated foods. Recent research has reported that plasma activated water (PAW) can also efficiently inactivate a wide variety of microorganisms. This study invested the effects of plasma-activated water soaking on the postharvest preservation of button mushrooms (Agaricus bisporus) over seven days of storage at 20°C. Plasma activated water reduced the microbial counts by 1.5 log and 0.5 log for bacteria and fungi during storage, respectively. Furthermore, the corresponding physicochemical and biological properties were assessed between plasma activated water soaking groups and control groups. The results for firmness, respiration rate and relative electrical conductivity suggested that plasma activated water soaking can delay mushroom softening. Meanwhile, no significant change was observed in the color, pH, or antioxidant properties of A. bisporus treated with plasma activated water. Thus, plasma activated water soaking is a promising method for postharvest fresh-keeping of A. bisporus.

  14. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.

    PubMed

    Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo

    2014-04-01

    Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

  15. Magnetic Flux Cancellation and Formation of Prominence

    NASA Astrophysics Data System (ADS)

    Miley, George; Kim, Mun Song; Chon Nam, Sok; Kim, Kyong Chol

    2015-08-01

    Magnetic flux cancellation appears to be closely related to various kinds of solar activities such as flares, microflares/surges/jets, X-ray bright points, erupting mini-filaments, transition region explosive events, filament formation, filament activation and eruption, and coronal mass ejections. It is commonly believed that magnetic reconnections in the low atmosphere are responsible for canceling magnetic features, and magnetic fragments are observed to originate as bipoles. According to the Sweet-Parker type reconnection model, the inflow speed closely corresponds to the converging speed of each pole in a canceling magnetic feature and the rate of flux cancellation must be explained by the observed converging speed. As distinct from the corona, the efficiency of photospheric magnetic reconnection may be due to the small Cowling conductivity, instead of the Spitzer, of weakly ionized and magnetized plasma in the low atmosphere of the sun. Using the VAL-C atmospheric model and Cowling conductivity, we have computed the parameters describing Sweet-Parker type reconnecting current sheets in the plasma of the solar photosphere and chromosphere, and particularly for the phenomena of magnetic flux cancellation and dark filament formation which occurred on July 2, 1994 we have estimated the rate of flux cancellation, the inflow speed(the converging speed) and the upward mass flux to compare with the observation. The results show that when taking account of the Cowling conductivity in the low atmosphere, large flux cancellation rates(>1019Mxhr-1) in solar active regions are better explained than by the Spitzer conductivity-considered reconnection model. Particularly for the flux cancellation event on July 2, 1994, the inflow speed(0.26kms-1)is almost similar to the converging speed(0.22kms-1)and the upward mass flux(3.3X1012gs-1) in the model is sufficient for the large dark filament formation in a time of several hours through magnetic flux cancellation process.

  16. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog.

    PubMed

    Freitag, Thomas E; Toet, Sylvia; Ineson, Phil; Prosser, James I

    2010-07-01

    The relationship between biogeochemical process rates and microbial functional activity was investigated by analysis of the transcriptional dynamics of the key functional genes for methanogenesis (methyl coenzyme M reductase; mcrA) and methane oxidation (particulate methane monooxygenase; pmoA) and in situ methane flux at two peat soil field sites with contrasting net methane-emitting and -oxidizing characteristics. qPCR was used to quantify the abundances of mcrA and pmoA genes and transcripts at two soil depths. Total methanogen and methanotroph transcriptional dynamics, calculated from mcrA and pmoA gene : transcript abundance ratios, were similar at both sites and depths. However, a linear relationship was demonstrated between surface mcrA and pmoA transcript dynamics and surface flux rates at the methane-emitting and methane-oxidizing sites, respectively. Results indicate that methanotroph activity was at least partially substrate-limited at the methane-emitting site and by other factors at the methane-oxidizing site. Soil depth also contributed to the control of surface methane fluxes, but to a lesser extent. Small differences in the soil water content may have contributed to differences in methanogen and methanotroph activities. This study therefore provides a first insight into the regulation of in situ, field-level surface CH(4) flux at the molecular level by an accurate reflection of gene : transcript abundance ratios for the key genes in methane generation and consumption.

  17. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    SciTech Connect

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u

    2010-09-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  18. Aerobic and resistance training do not influence plasma carnosinase content or activity in type 2 diabetes.

    PubMed

    Stegen, Sanne; Sigal, Ronald J; Kenny, Glen P; Khandwala, Farah; Yard, Benito; De Heer, Emile; Baelde, Hans; Peersman, Wim; Derave, Wim

    2015-10-01

    A particular allele of the carnosinase gene (CNDP1) is associated with reduced plasma carnosinase activity and reduced risk for nephropathy in diabetic patients. On the one hand, animal and human data suggest that hyperglycemia increases plasma carnosinase activity. On the other hand, we recently reported lower carnosinase activity levels in elite athletes involved in high-intensity exercise compared with untrained controls. Therefore, this study investigates whether exercise training and the consequent reduction in hyperglycemia can suppress carnosinase activity and content in adults with type 2 diabetes. Plasma samples were taken from 243 males and females with type 2 diabetes (mean age = 54.3 yr, SD = 7.1) without major microvascular complications before and after a 6-mo exercise training program [4 groups: sedentary control (n = 61), aerobic exercise (n = 59), resistance exercise (n = 63), and combined exercise training (n = 60)]. Plasma carnosinase content and activity, hemoglobin (Hb) A1c, lipid profile, and blood pressure were measured. A 6-mo exercise training intervention, irrespective of training modality, did not decrease plasma carnosinase content or activity in type 2 diabetic patients. Plasma carnosinase content and activity showed a high interindividual but very low intraindividual variability over the 6-mo period. Age and sex, but not Hb A1c, were significantly related to the activity or content of this enzyme. It can be concluded that the beneficial effects of exercise training on the incidence of diabetic complications are probably not related to a lowering effect on plasma carnosinase content or activity.

  19. Formation of sunspots and active regions through the emergence of magnetic flux generated in a solar convective dynamo

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Rempel, Matthias D.; Fan, Yuhong

    2016-05-01

    We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the near surface layer radiation MHD simulations of magneto-convection and flux emergence with the MURaM code. The latter code simulates the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere.The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries come most probably from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted and the leading sides of the emerging flux tubes are usually up against the downdraft lanes of the giant cells. It is also found that penumbrae with numerous filamentary structures form in regions of strong horizontal magnetic fields that naturally comes from the ongoing flux emergence. In contrast to previous models, the penumbrae and umbrae are divided by very sharp boarders, which is highly consistent with observations.

  20. Bactericidal active ingredient in cryopreserved plasma-treated water with the reduced-pH method for plasma disinfection

    NASA Astrophysics Data System (ADS)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2016-09-01

    For the plasma disinfection of human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition. Physicochemical properties of PTW is discussed based on chemical kinetics. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. High performance PTW, corresponding to the disinfection power of 22 log reduction (B. subtilis spore), can be obtained by special plasma system equipped with cooling device. This is equivalent to 65% H2O2, 14% sodium hypochlorite and 0.33% peracetic acid, which are deadly poison for human. But, it is deactivated soon at higher temperature (4 sec. at body temperature), and toxicity to human body seems low. For dental application, PTW was effective on infected models of human extracted tooth. Although PTW has many chemical components, respective chemical components in PTW were isolated by ion chromatography. In addition to peaks of H2O2, NO2- and NO3-, a specific peak was detected. and only this fraction had bactericidal activity. Purified active ingredient of PTW is the precursor of HOO, and further details will be discussed in the presentation. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  1. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    SciTech Connect

    Koski, J. A.; Keltner, N. R.; Nicolette, V. F.; Wix, S. D.

    1992-01-01

    For final qualification of shipping containers for transport of hazardous materials, thermal testing in accordance with regulations such as 10CFR71 must be completed. Such tests typically consist of 30 minute exposures with the container fully engulfed in flames from a large, open pool of JP4 jet engine fuel. Despite careful engineering analyses of the container, testing often reveals design problems that must be solved by modification and expensive retesting of the container. One source of this problem is the wide variation in surface heat flux to the container that occurs in pool fires. Average heat fluxes of 50 to 60 kW/m{sup 2} are typical and close the values implied by the radiation model in 10CFR71, but peak fluxes up to 150 kW/m{sup 2} are routinely observed in fires. Heat fluxes in pool fires have been shown to be a function of surface temperature of the container, height above the pool, surface orientation, wind, and other variables. If local variations in the surface heat flux to the container could be better predicted, design analyses would become more accurate, and fewer problems will be uncovered during testing. The objective of the calorimeter design described in this paper is to measure accurately pool fire heat fluxes under controlled conditions, and to provide data for calibration of improved analytical models of local flame-surface interactions.

  2. Gravity wave activity in the thermosphere inferred from GOCE data, and its dependence on solar flux conditions.

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael F.; Bruinsma, Sean; Doornbos, Eelco; Massarweh, Lotfi

    2016-04-01

    This study is focused on the effect of solar flux conditions on the dynamics of Gravity Waves (GW) in thermosphere. Air density and cross-wind in situ estimates from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometers are analyzed for the whole mission duration. The analysis was performed in the Fourier spectral domain averaging spectral results over periods of 2 months close to solstices. First the Amplitude Spectral Density (ASD) and the Magnitude Squared Coherence (MSC) of physical parameters are linked to local gravity waves. Then, a new GW marker (called Cf3) was introduced here to constrain GWs activity under Low, Medium and High solar flux conditions, showing a clear solar dumping effect on GW activity. Most of GW signal has been found in a spectral range above 8 mHz in GOCE data, meaning a maximum horizontal wavelength around 1000 km. The level GW activity at GOCE altitude is strongly decreasing with increasing solar flux. Furthermore, a shift in the dominant frequency with solar flux conditions has been noted, leading to a larger horizontal wavelengths (from 200 to 500 km) during high solar flux conditions. The influence of correlated error sources, between air density and cross-winds, is discussed. Consistency of the spectral domain results has been verified in time-domain with a global mapping of high frequency perturbations along GOCE orbit. This analysis shows a clear dependence with geomagnetic latitude with strong perturbations at magnetic poles, and an extension to lower latitudes favoured by low solar activity conditions. Various possible causes of this spatial trend are discussed.

  3. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions

    NASA Astrophysics Data System (ADS)

    Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph

    2016-09-01

    Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.

  4. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    DOE PAGES

    Jaworski, M. A.; Brooks, A.; Kaita, R.; ...

    2016-08-08

    Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physicsmore » and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.« less

  5. Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U

    SciTech Connect

    Jaworski, M. A.; Brooks, A.; Kaita, R.; Lopes-Cardozo, N.; Ono, M.; Rindt, P.

    2016-08-08

    Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid-material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physics and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. As a result, two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs.

  6. Impact of seabird activity on nitrous oxide and methane fluxes from High Arctic tundra in Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Zhu, Renbin; Chen, Qingqing; Ding, Wei; Xu, Hua

    2012-12-01

    In this study, tundra N2O and CH4 fluxes were measured from one seabird sanctuary (SBT) and two non-seabird colonies (NST-I and NST-II) in Ny-Ålesund (79°55'N, 11°56'E), Svalbard during the summers of 2008 and 2009. N2O and CH4 fluxes from SBT showed large temporal and spatial variations depending on the intensity of seabird activity. High seabird activity sites showed large N2O and CH4 emissions while low N2O and CH4 emissions, even CH4 uptake occurred at medium and low seabird activity sites. Overall the mean fluxes were 18.3 ± 3.6 μg N2O m-2 h-1 and 53.5 ± 20.3 μg CH4 m-2 h-1 from tundra SBT whereas tundra NST-I and NST-II represented a relatively weak N2O source (8.3 ± 13.2 μg N2O m-2 h-1) and strong CH4 sink (-82.8 ± 22.3 μg CH4 m-2 h-1). Seabird activity was the strongest control of N2O and CH4 fluxes compared with soil temperature and moisture, and high N2O and CH4 emissions were created by soil physical and chemical processes (the sufficient supply of nutrients NH4+-N, NO3--N, total nitrogen, total phosphorus and total carbon from seabird guano, seabird tramp and appropriate water content) related to the seabird activity. Our work suggests that tundra ecosystems impacted by seabird activity are the potential "hotspots" for N2O and CH4 emissions although these sources have been largely neglected at present. Furthermore the combination of seabird activity and warming climate will likely further enhance N2O and CH4 emissions from the High Arctic tundra.

  7. Validity of "sputtering and re-condensation" model in active screen cage plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Khan, A. W.; Jan, F.; Abrar, M.; Khalid, M.; Zakaullah, M.

    2013-05-01

    The validity of "sputtering and re-condensation" model in active screen plasma nitriding for nitrogen mass transfer mechanism is investigated. The dominant species including NH, Fe-I, N2+, N-I and N2 along with Hα and Hβ lines are observed in the optical emission spectroscopy (OES) analysis. Active screen cage and dc plasma nitriding of AISI 316 stainless steel as function of treatment time is also investigated. The structure and phases composition of the nitrided layer is studied by X-ray diffraction (XRD). Surface morphology is studied by scanning electron microscopy (SEM) and hardness profile is obtained by Vicker's microhardness tester. Increasing trend in microhardness is observed in both cases but the increase in active screen plasma nitriding is about 3 times greater than that achieved by dc plasma nitriding. On the basis of metallurgical and OES observations the use of "sputtering and re-condensation" model in active screen plasma nitriding is tested.

  8. Enzyme activities in plasma, liver, and kidney of black ducks and mallards

    USGS Publications Warehouse

    Franson, J. Christian

    1982-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine phosphokinase (CPK), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were measured in plasma, liver, and kidney, and gamma-glutamyl transferase (GGT) was measured in liver and kidney of black ducks (Anas rubripes). Activities of ALT, AST, GGT, and ornithine carbamyl transferase (OCT) were assayed in plasma, liver, and kidney of game-farm mallards (Anas platyrhynchos). Appreciable OCT and AST activity occurred in both liver and kidney. Activities of ALT, CPK, ALP and GGT were higher in kidney, while LDH was higher in liver, GGT was detected in plasma from one of four mallards.

  9. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    PubMed

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux.

  10. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  11. Plasma parameters of an active cathode during relativistic magnetron operation

    NASA Astrophysics Data System (ADS)

    Hadas, Y.; Kweller, T.; Sayapin, A.; Krasik, Ya. E.; Bernshtam, V.

    2009-09-01

    The results of time- and space-resolved spectroscopic studies of the plasma produced at the surface of the ferroelectric cathode during the operation of an S-band relativistic magnetron generating ˜50 MW microwave power at f =3005 MHz and powered by a linear induction accelerator (LIA) (150 kV, 1.5 kA, 250 ns) are presented. The surface plasma was produced by a driving pulse (3 kV, 150 ns) prior to the application of the LIA accelerating high-voltage pulse. The cathode plasma electron density and temperature were obtained by analyzing hydrogen Hα and Hβ, and carbon ions CII and CIII spectral lines, and using the results of nonstationary collision radiative modeling. It was shown that the microwave generation causes an increase in plasma ion and electron temperature up to ˜4 and ˜7 eV, respectively, and the plasma density increases up to ˜7×1014 cm-3. Estimates of the plasma transport parameters and its interaction with microwave radiation are also discussed.

  12. Plasma renin activity and hypertension in diabetes mellitus.

    PubMed

    Christlieb, A R; Kaldany, A; D'Elia, J A

    1976-10-01

    Plasma renin activity (PRA) was determined in 48 patients with diabetes mellitus in sodium balance on a 10-20 mEq. Na diet. Nine were normotensive (group I), 11 11 were hypertensive without diabetic nephropathy (group III). Results were compared with those in 16 normal subjects and 49 nondiabetic patients with essential hypertension in similar Na balance. Mean supine PRA did not differ significantly among groups I and II, normal subjects, and patients with essential hypertension. Group III diabetics had a supine PRA of 2.4 +/- 0.4 ng./ml./hr. (x +/- S.E.M.), significantly lower than the other diabetic groups (P less than 0.005) and normal subjects (P less than 0.05). Upright PRA was 12.8 +/- 2.2 in group I diabetics, similar to that in normal subjects (13.3 +/- 2.3), and 8.1 +/- 1.4 in group II diabetics, similar to that in essential hypertensives (6.8 +/- 0.8). In group III diabetics, upright PRA was 4.0 +/- 0.5, significantly lower than that in any other group. These results suggest that (1) PRA is normal in normotensive diabetics, (2) upright PRA in diabetics with hypertension but no nephropathy is similar to that in essential hypertension, and (3) patients with diabetes, hypertension, and nephropathy have "low renin hypertension," explaining the virtual absence of malignant hypertension in this group. Although the major mechanism for this low PRA may be volume expansion, indicating the need for potent diuretics, other mechanisms include hyalinization of the afferent arteriole, decreased cathecholamine stimulation of renin release, and inadequate conversion of prorenin to renin.

  13. Combined effects of crystallography, heat treatment and surface polishing on blistering in tungsten exposed to high-flux deuterium plasma

    NASA Astrophysics Data System (ADS)

    Zayachuk, Y.; Tanyeli, I.; Van Boxel, S.; Bystrov, K.; Morgan, T. W.; Roberts, S. G.

    2016-08-01

    For tungsten exposed to low-energy hydrogen-plasmas, it has been thought that grains with < \\text{1} \\text{1} \\text{1}> surface normal are most susceptible to blistering while those with < \\text{0} \\text{0} \\text{1}> surface normal are virtually impervious to it. Here, we report results showing that non-uniformity of blister distribution depends on the state of the surface due to polishing. In electrochemically polished material blisters appear on the grains with all orientations, while in mechanically polished material blister-free areas associated with particular orientations emerge. On the other hand, blistering is shown to have a strong dependence on the level of deformation within particular grains in partially recrystallized material.

  14. Mitigated blistering and deuterium retention in tungsten exposed to high-flux deuterium–neon mixed plasmas

    NASA Astrophysics Data System (ADS)

    Cheng, L.; De Temmerman, G.; Morgan, T. W.; Schwarz-Selinger, T.; Yuan, Y.; Zhou, H. B.; Wang, B.; Zhang, Y.; Lu, G. H.

    2017-04-01

    Surface morphology and deuterium retention in tungsten exposed at surface temperature of ~550 K to mixed deuterium–neon plasmas of different neon concentrations are investigated. It is found that the addition of neon up to 20% mitigates blistering on the surface. Cross-section view of the surface shows the formation of pores near the surface in the depth less than 100 nm. Deuterium depth profile is featured by an enhanced deuterium concentration within a depth of 16 nm but a mitigated penetration in depth larger than 1 µm. Deuterium retention is reduced by up to a factor of four. It is suggested the open pores formed in the surface serves as an escaping channel, mitigates deuterium penetration towards bulk and retention in the bulk.

  15. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H+-ATPase

    PubMed Central

    De Michelis, Maria Ida; Pugliarello, Maria Chiara; Rasi-Caldogno, Franca

    1989-01-01

    The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor. PMID:16666723

  16. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  17. Changes in ventricular size and plasma renin activity after cardiac surgery in children.

    PubMed Central

    Bourgeois, B D; Oberhänsli, I; Rouge, J C; Paunier, L; Friedli, B; Vallotton, M B

    1980-01-01

    Plasma renin activity and one-dimensional echocardiographic measurements of the left atrium and left ventricle as well as function indices were studied repeatedly in 20 children with various cardiopathies (ages: 9 months to 15 years) before and after corrective surgery. Nine children had tetralogy of Fallot, four had pulmonary stenosis, four had rheumatic heart disease, two had ventricular septal defect, and one had atrial septal defect. Plasma renin activity was normal preoperatively, but increased significantly immediately after surgery, was still significantly higher on the 12th postoperative day and returned to normal six to eight weeks after surgery. Patients with tetralogy of Fallot and pulmonary stenosis had higher plasma renin activity values than the others. There was a positive correlation between plasma renin activity and postoperative percentage change of the left ventricular dimension. In patients with tetralogy of Fallot and pulmonary stenosis, this meant that plasma renin activity became normal when the preoperatively small left ventricle reached its normal dimension. This adjustment occurred slowly over a period of two months. In rheumatic heart disease and left-to-right shunt lesions, plasma renin activities became normal when the preoperatively dilated left ventricle decreased in size towards normal values; the plasma renin activities of these patients had reached normal levels by the fifth postoperative day. The renin secretion is modulated by various factors: of these, ventricular size and pulmonary venous return seem to be of importance. PMID:7000103

  18. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes.

    PubMed

    Castaldi, S; Riondino, M; Baronti, S; Esposito, F R; Marzaioli, R; Rutigliano, F A; Vaccari, F P; Miglietta, F

    2011-11-01

    Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m(-2)) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N(2)O, CH(4) and CO(2) fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N(2)O fluxes were from 26% to 79% lower than N(2)O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N(2)O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH(4) fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.

  19. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  20. Helium Generated Cold Plasma Finely Regulates Activation of Human Fibroblast-Like Primary Cells

    PubMed Central

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2′,7′-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be

  1. Enhancement of photocatalytic activity of TiO2 by plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yoshida, Tomoko; Ohno, Noriyasu; Ishida, Tomoya; Kitaoka, Daiki

    2016-10-01

    In this study, plasma irradiations to titanium were conducted to enhance the photocatalytic activity of titanium oxide. When titanium is exposed to He plasmas, various morphology changes occur as forming nano-bubbles near the surface. Photocatalytic activity of the oxidized helium plasma irradiated titanium samples with nano-cones and microstructures were assessed by the hydrogen production from aqueous methanol solution. It is shown that the He plasma irradiation increases the photocatalytic activity more than double. Moreover, nitrogen mixture plasma irradiation to titanium (oxide) was conducted for doping nitrogen, which has been regarded as method to create visible light reactivity. It is shown from X-ray photoelectron spectroscopy (XPS) analysis that nitrogen doping has been successfully conducted under specific conditions.

  2. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    PubMed Central

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S.

    2015-01-01

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface. PMID:26133881

  3. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    SciTech Connect

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S.

    2015-06-15

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  4. Changes of human plasma dopamine-beta-hydroxylase activity after intravenous administration of theophylline.

    PubMed Central

    Aunis, D; Mandel, P; Miras-Portugal, M T; Coquillat, G; Rohmer, F; Warter, J M

    1975-01-01

    The intravenous administration of theophylline to ten healthy human subjects produced either an increase of circulating plasma dopamine-beta-hydroxylase or no change. The rise of plasma enzyme activity may reflect the increased peripheral catecholamine release induced by theophylline. PMID:1137731

  5. Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type 1

    SciTech Connect

    Brandi, M.L.; Aurbach, G.D.; Fitzpatrick, L.A.; Quarto, R.; Spiegel, A.M.; Bliziotes, M.M.; Norton, J.A.; Doppman, J.L.; Marx, S.J.

    1986-05-15

    Hyperplasia of the parathyroid glands is a central feature of familial multiple endocrine neoplasia type 1. We used cultured bovine parathyroid cells to test for mitogenic activity in plasma from patients with this disorder. Normal plasma stimulated (/sup 3/H)thymidine incorporation, on the average, to the same extent as it was stimulated in a plasma-free control culture. This contrasted with the results of the tests with plasma from patients with familial multiple endocrine neoplasia type 1, in which parathyroid mitogenic activity increased 2400 percent over the control value (P less than 0.001). Plasma from these patients also stimulated the proliferation of bovine parathyroid cells in culture, whereas plasma from normal subjects inhibited it. Parathyroid mitogenic activity in plasma from the patients with familial multiple endocrine neoplasia type 1 was greater than that in plasma from patients with various other disorders, including sporadic primary hyperparathyroidism (with adenoma, hyperplasia, or cancer of the parathyroid), sporadic primary hypergastrinemia, sporadic pituitary tumor, familial hypocalciuric hypercalcemia, and multiple endocrine neoplasia type 2 (P less than 0.05). Parathyroid mitogenic activity in the plasma of patients with familial multiple endocrine neoplasia type 1 persisted for up to four years after total parathyroidectomy. The plasma also had far more mitogenic activity in cultures of parathyroid cells than did optimal concentrations of known growth factors or of any parathyroid secretagogue. This mitogenic activity had an apparent molecular weight of 50,000 to 55,000. We conclude that primary hyperparathyroidism in familial multiple endocrine neoplasia type 1 may have a humoral cause.

  6. Alternative pathways of thromboplastin-dependent activation of human factor X in plasma

    SciTech Connect

    Marlar, R.A.; Griffin, J.H.

    1981-01-01

    To determine the interrelationships of the major coagulation pathways, the activation of 3H-labeled factor X in normal and various deficient human plasmas was evaluated when clotting was triggered by dilute rabbit or human thromboplastin. Various dilutions of thromboplastin and calcium were added to plasma samples containing 3H-factor X, and the time course of factor X activation was determined. At a 1/250 dilution of rabbit brain thromboplastin, the rate of factor X activation in plasmas deficient in factor VIII or factor IX was 10% of the activation rate of normal plasma or of factor XI deficient plasma. Reconstitution of the deficient plasmas with factors VIII or IX, respectively, reconstituted normal factor X activation. Similar results were obtained when various dilutions of human thromboplastin replaced the rabbit thromboplastin. From these plasma experiments, it is inferred that the dilute thromboplastin-dependent activation of factor X requires factors VII, IX, and VIII. An alternative extrinsic pathway that involves factors IX and VIII may be the physiologic extrinsic pathway and hence help to explain the consistent clinical observations of bleeding diatheses in patients deficient in factors IX or VIII.

  7. Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin.

    PubMed

    Kim, Hyun-Joo; Yong, Hae In; Park, Sanghoo; Kim, Kijung; Kim, Tae Hoon; Choe, Wonho; Jo, Cheorun

    2014-10-01

    The biological activity of naringin treated with atmospheric pressure plasma was evaluated to investigate whether exposure to plasma can be used as a method to improve the biological activity of natural materials. Naringin was dissolved in methanol (at 500 ppm) and transferred to a container. A dielectric barrier discharge (DBD) (250 W, 15 kHz, ambient air) was then generated. Treatment with the plasma for 20 min increased the radical-scavenging activity, FRAP value, and the total phenolic compound content of naringin from 1.45% to 38.20%, from 27.78 to 207.78 μM/g, and from 172.50 to 225.83 ppm, respectively. Moreover, the tyrosinase-inhibition effect of naringin increased from 6.12% to 83.30% upon plasma treatment. Naringin treated with plasma exhibited antimicrobial activity against foodborne pathogens, especially Salmonella Typhimurium; an activity that was absent before plasma treatment. Structural modifications induced in the naringin molecule by plasma might be responsible for improving the biological activity of naringin.

  8. CYP3A activity based on plasma 4β-hydroxycholesterol during the early postpartum period has an effect on the plasma disposition of amlodipine.

    PubMed

    Naito, Takafumi; Kubono, Naoko; Ishida, Takuya; Deguchi, Shuhei; Sugihara, Masahisa; Itoh, Hiroaki; Kanayama, Naohiro; Kawakami, Junichi

    2015-12-01

    This study aimed to evaluate plasma 4β-hydroxycholesterol as an endogenous marker of CYP3A4/5 activity in early postpartum women and its impact on the plasma disposition of amlodipine. Twenty-seven early postpartum women treated with amlodipine for pregnancy-induced hypertension were enrolled. The plasma concentration of 4β-hydroxycholesterol and its ratio to cholesterol in postpartum and in non-perinatal women were evaluated. The predose plasma concentration of amlodipine was determined at steady state. The medians of the plasma 4β-hydroxycholesterol concentration at day 0-3 and 8-21 after delivery were 146 and 161 ng/mL, respectively. No significant difference was observed in the plasma concentration of 4β-hydroxycholesterol between the postpartum periods. The plasma concentration of 4β-hydroxycholesterol and its ratio to cholesterol in postpartum women were significantly higher than those in non-perinatal women. A large individual variability was observed in the dose-normalized plasma concentration of amlodipine in early postpartum women. A weak negative correlation was observed between the dose-normalized plasma concentration of amlodipine and the plasma concentration of 4β-hydroxycholesterol. In conclusion, early postpartum women possessed higher CYP3A activity based on plasma 4β-hydroxycholesterol and had a large pharmacokinetic variability in amlodipine. CYP3A activity during the early postpartum period had an effect on the plasma disposition of amlodipine.

  9. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma

    NASA Astrophysics Data System (ADS)

    Pavlenko, Denys; van Geffen, Esmée; van Steenbergen, Mies J.; Glorieux, Griet; Vanholder, Raymond; Gerritsen, Karin G. F.; Stamatialis, Dimitrios

    2016-10-01

    Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients’ outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal).

  10. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma

    PubMed Central

    Pavlenko, Denys; van Geffen, Esmée; van Steenbergen, Mies J.; Glorieux, Griet; Vanholder, Raymond; Gerritsen, Karin G. F.; Stamatialis, Dimitrios

    2016-01-01

    Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients’ outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal). PMID:27703258

  11. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    SciTech Connect

    Gilmore, Mark Allen

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  12. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  13. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly

    PubMed Central

    Mendes, Pedro; Oliver, Stephen G.; Kell, Douglas B.

    2015-01-01

    A recent paper in this journal argued that reported expression levels, kcat and Km for drug transporters could be used to estimate the likelihood that drug fluxes through Caco-2 cells could be accounted for solely by protein transporters. It was in fact concluded that if five such transporters contributed ‘randomly’ they could account for the flux of the most permeable drug tested (verapamil) 35% of the time. However, the values of permeability cited for verapamil were unusually high; this and other drugs have much lower permeabilities. Even for the claimed permeabilities, we found that a single ‘random’ transporter could account for the flux 42% of the time, and that two transporters can achieve 10 · 10−6 cm·s−1 90% of the time. Parameter optimisation methods show that even a single transporter can account for Caco-2 drug uptake of the most permeable drug. Overall, the proposal that ‘phospholipid bilayer diffusion (of drugs) is negligible’ is not disproved by the calculations of ‘likely’ transporter-based fluxes. PMID:26538313

  14. Activation of autophagy flux by metformin downregulates cellular FLICE–like inhibitory protein and enhances TRAIL- induced apoptosis

    PubMed Central

    Nazim, Uddin MD; Moon, Ji-Hong; Lee, Ju-Hee; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL is regarded as one of the most promising anticancer agents, because it can destruct cancer cells without showing any toxicity to normal cells. Metformin is an anti-diabetic drug with anticancer activity by inhibiting tumor cell proliferation. In this study, we demonstrated that metformin could induce TRAIL-mediated apoptotic cell death in TRAIL-resistant human lung adenocarcinoma A549 cells. Pretreatment of metformindownregulation of c-FLIP and markedly enhanced TRAIL-induced tumor cell death by dose-dependent manner. Treatment with metformin resulted in slight increase in the accumulation of microtubule-associated protein light chain LC3-II and significantly decreased the p62 protein levels by dose-dependent manner indicated that metformin induced autophagy flux activation in the lung cancer cells. Inhibition of autophagy flux using a specific inhibitor and genetically modified ATG5 siRNA blocked the metformin-mediated enhancing effect of TRAIL. These data demonstrated that downregulation of c-FLIP by metformin enhanced TRAIL-induced tumor cell death via activating autophagy flux in TRAIL-resistant lung cancer cells and also suggest that metformin may be a successful combination therapeutic strategy with TRAIL in TRAIL-resistant cancer cells including lung adenocarcinoma cells. PMID:26992204

  15. Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder.

    PubMed

    Eaton, D C; Frace, A M; Silverthorn, S U

    1982-01-01

    The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal 22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions, n, with a maximal flux, MMAX, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value for MMAX of 287.8 pM cm-2 sec-1 with an intracellular Na concentration of 2.0 mM Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40 +/- 0.07 for the transport process.

  16. Proliferation-Related Activity in Endothelial Cells Is Enhanced by Micropower Plasma

    PubMed Central

    Suzuki, Kotaro

    2016-01-01

    Nonthermal plasma has received a lot of attention as a medical treatment technique in recent years. It can easily create various reactive chemical species (ROS) and is harmless to living body. Although plasma at gas-liquid interface has a potential for a biomedical application, the interactions between the gas-liquid plasma and living cells remain unclear. Here, we show characteristics of a micropower plasma with 0.018 W of the power input, generated at gas-liquid interface. We also provide the evidence of plasma-induced enhancement in proliferation activity of endothelial cells. The plasma produced H2O2, HNO2, and HNO3 in phosphate buffered saline containing Mg++ and Ca++ (PBS(+)), and their concentration increased linearly during 600-second discharge. The value of pH in PBS(+) against the plasma discharge time was stable at about 7.0. Temperature in PBS(+) rose monotonically, and its rise was up to 0.8°C at the bottom of a cell-cultured dish by the plasma discharge for 600 s. Short-time treatment of the plasma enhanced proliferation activity of endothelial cells. In contrast, the treatment of H2O2 does not enhance the cell proliferation. Thus, the ROS production and the nuclear factor-kappa B (NF-κB) activation due to the plasma treatment might be related to enhancement of the cell proliferation. Our results may potentially provide the basis for developing the biomedical applications using the gas-liquid plasma. PMID:28058258

  17. Effect of capture stress on plasma enzyme activities in rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Bouck, G.R.; Cairns, M. A.; Christian, A. R.

    1978-01-01

    Four capture methods were used to collect domesticated rainbow trout (Salmo gairdneri): angling, electroshocking, seining, and direct netting (control). Blood was sampled rapidly upon capture, usually within 2 min. No significant differences were noted within the time frame of the experiment between the four capture groups for plasma protein concentration, lactate dehydrogenase activity, or leucine aminonaphthylamidase activity. Creatine phosphokinase activity was elevated among electroshocked fish. Acid phosphatase activity was too low for accurate measurement. Hematocrits were significantly elevated by capture struggles. These results indicate that these capture methods do not preclude the use of plasma enzyme levels for investigating the health of wild fish. Key words: plasma enzyme, capture stress, physiology, plasma protein, rainbow trout, lactate dehydrogenase, leucine aminonaphthylamidase, creatine phosphokinase

  18. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  19. An improvement of Barter's method for assaying plasma cholesterol ester transfer activity: experimental and clinical applications.

    PubMed

    Harvengt, C; Desager, J P; Mailleux, P; Heller, F R

    1989-01-01

    The use of a discontinuous density gradient and of a vertical rotor to separate plasma lipoproteins are modifications of Barter's described method for assaying cholesteryl ester transfer activity (CETA) in plasma. The original feature of our approach is the fast preparation of the labeled substrate by a physiologic-like process, which renders the assay easy and suitable for measurement of this activity in both man and animals.

  20. Determination of aluminum and phosphorus in biological materials by reactor activation analysis using germanium as integral flux monitor and comparator.

    PubMed

    Furnari, J C; Cohen, I M

    1994-01-01

    A method for determination of aluminum and phosphorus in biological materials, based on activation in a nuclear reactor and measurement of 28Al, produced by the 27Al(n, gamma)28Al and 31P(n, alpha)28Al reactions, is described. Irradiations in the undisturbed and epicadmium spectra provide a two-equation system in order to determine the contributions of aluminum and phosphorus to the total activities. Germanium is used as an integral flux monitor and comparator, through the reactions: 74Ge(n, gamma)75Ge, 76Ge(n, gamma)77Ge, and 72Ge(n,p)72Ga.

  1. Electron heat flux instability

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  2. Cholesteryl ester transfer activity in hamster plasma: increase by fat and cholesterol rich diets.

    PubMed

    Stein, Y; Dabach, Y; Hollander, G; Stein, O

    1990-01-16

    We investigated the presence of cholesteryl ester transfer activity (CETA) in plasma of hamsters kept on various dietary regimens. In hamsters kept on a regular diet, CETA activity was about 5 units/4 mg protein of d greater than 1.21 g/ml fraction of plasma, as compared to about 35 units present in human d greater than 1.21 g/ml fraction. Addition of 15% margarine or butter alone or together with 2% cholesterol resulted in a 2-3-fold increase in plasma CETA. The increase in plasma CETA was correlated with plasma cholesterol levels (r = 0.78; P less than 0.001) and plasma triacylglycerol levels (r = 0.56, P less than 0.001). Hamsters consuming the cholesterol + butter-supplemented diets had the highest plasma CETA, cholesterol and triacylglycerol levels, while CETA in plasma of rats and mice remained nondetectable even after 4 weeks on the diet. The causal relation between hypercholesterolemia, hypertriglyceridemia and evaluation in CETA in hamsters remains to be elucidated.

  3. Biochemical quantification of sympathetic nervous activity in humans using radiotracer methodology: fallibility of plasma noradrenaline measurements

    SciTech Connect

    Esler, M.; Leonard, P.; O'Dea, K.; Jackman, G.; Jennings, G.; Korner, P.

    1982-01-01

    We have developed radiotracer techniques for studying noradrenaline kinetics, to assess better sympathetic nervous system function in humans. Tritiated l-noradrenaline was infused intravenously (0.35 microCi/m2/min) to plateau plasma concentration. Noradrenaline plasma clearance was calculated from plasma tritiated noradrenaline concentration at steady state, and the rate of spillover of noradrenaline to plasma derived from plasma noradrenaline specific radioactivity. Mean noradrenaline spillover at rest in 34 normal subjects was 0.33 micrograms/m2/min (range 0.17-0.61 micrograms/m2/min). Predictably, noradrenaline spillover was reduced in patients with subnormal sympathetic nervous system activity, 0.16 +/- 0.09 micrograms/m2/min in eight patients with idiopathic peripheral autonomic insufficiency, and 0.11 +/- 0.07 micrograms/m2/min (mean +/- SD) in six patients with essential hypertension treated with clonidine (0.45 mg daily). Noradrenaline line plasma clearance in normal subjects was 1.32 +/- 0.28 L/m2/min. Clearance fell with age, causing the previously described rise in plasma noradrenaline concentration with aging. Unexpected effects of drugs were encountered, for example chronic beta-adrenergic blockade in patients with essential hypertension reduced noradrenaline clearance. Plasma noradrenaline concentration measurements were not in agreement with noradrenaline release rate values, and do not reliably indicate sympathetic nervous system activity, in instances such as these where noradrenaline clearance is abnormal.

  4. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  5. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity.

    PubMed

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-05-07

    The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  6. Influence of High Nitrogen Flux on Crystal Quality of Plasma-Assisted MBE Grown GaN Layers Using Raman Spectroscopy: Part-II

    SciTech Connect

    Asghar, M.; Hussain, I.; Islah u din; Saleemi, F.

    2007-05-09

    We have investigated lattice properties of plasma assisted MBE grown hexagonal GaN layers at varying nitrogen and gallium fluxes using Raman spectroscopy. Room temperature Raman spectra of Ga-rich layers and stoichiometric GaN are similar showing excitation modes at 434 cm-1, 567 cm-1 and 729 cm-1 identified as residual laser line, E{sub 2}{sup H} and A1(LO) mode, respectively. Similarity of Ga-rich and stoichiometric GaN layers is interpreted as the indication of comparable crystal quality of both GaN layers. In contrast, Raman scattering associated with N-rich GaN samples mere exhibit a broad band of excitations in the range of 250-650cm-1 leaving out A1(LO) mode. This typical observation along with intensity distribution of the peaks, is correlated with rough surface, bad crystal quality and high concentration of defects. Based on atomic displacement scheme, the broad band is identified as Ga- vacancies.

  7. Effects of magnetic flux density and substrate bias voltage on Ni films prepared on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma

    SciTech Connect

    Koda, Tatsunori; Toyota, Hiroshi

    2014-03-15

    The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S} = −40 V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C} = 0, 3, and 5 mT was 88.2, 95.4, and 104.4 nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities of I(111)/I(200) increased with V{sub S}. For V{sub S} = −40 V and B{sub C} = 3 mT, a film resistivity ρ of 8.96 × 10{sup −6} Ω cm was observed, which is close to the Ni bulk value of 6.84 × 10{sup −6} Ω cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.

  8. MECHANISMS OF ACTIVATION OF C'1 ESTERASE IN HEREDITARY ANGIONEUROTIC EDEMA PLASMA IN VITRO

    PubMed Central

    Donaldson, Virginia H.

    1968-01-01

    The generation of C'1 esterase activity in siliconed plasma obtained from individuals with hereditary angioneurotic edema in remission tends to occur spontaneously, but can be hastened during its incubation with preparations of activated Hageman factor. This effect of activated Hageman factor could not be shown during its incubation with normal siliconed plasma, nor could consumption of normal serum inhibition of C'1 esterase be clearly shown. Soy bean trypsin inhibitor and heparin could impair this enhanced generation of C'1 esterase but neither inhibits the esterolytic function of C'1 esterase once formed. Trasylol was less effective in blocking this effect of activated Hageman factor. While the mechanism of the effect of activated Hageman factor upon C'1 activation remains obscure, it is apparent that some intermediate steps, possibly involving a kinin-forming system of plasma, may play a role. PMID:5299945

  9. Plasma alkaline phosphatase activity: a screening test for rickets in preterm neonates.

    PubMed

    Kovar, I; Mayne, P; Barltrop, D

    1982-02-06

    Both rickets and raised plasma alkaline phosphatase activity are common in the preterm infant. Measurement of plasma alkaline phosphatase activity is valuable in screening for active disease and in diagnosis, but normal reference data are not available for preterm babies. In 30 consecutive preterm infants (birthweight 1580 +/- 410 g, gestational age 31 +/- 2.5 weeks) serial measurements of plasma alkaline phosphatase activity, plasma levels of calcium and inorganic phosphorus, and the pattern of alkaline phosphatase isoenzymes were made. Four patterns of changes in plasma alkaline phosphatase activity with time were seen. 4 of the 30 infants were shown to have rickets; these children and 14 of the 26 non-rachitic infants showed an increasing/peak/decreasing pattern with increasing age, but levels were much higher in the rachitic infants. The activity in all 30 was raised above the adult and childhood reference ranges at some point in time. The data suggest that an activity of five times the upper limit of the normal adult reference range is acceptable in the preterm infant but an activity higher than this may suggest rickets.

  10. Formation of tissue factor activity following incubation of recombinant human tissue factor apoprotein with plasma lipoproteins

    SciTech Connect

    Sakai, T.; Kisiel, W. )

    1990-11-01

    Incubation of recombinant human tissue factor apoprotein (Apo-TF) with human plasma decreased the recalcified clotting time of this plasma in a time-and dose-dependent manner suggesting relipidation of the Apo-TF by plasma lipoproteins. Incubation of Apo-TF with purified preparations of human very low density, low density and high density lipoproteins resulted in tissue factor activity in a clotting assay. The order of effectiveness was VLDL greater than LDL much greater than HDL. Tissue factor activity generated by incubation of a fixed amount of Apo-TF with plasma lipoproteins was lipoprotein concentration-dependent and saturable. The association of Apo-TF with lipoprotein particles was supported by gel filtration studies in which {sup 125}I-Apo-TF coeluted with the plasma lipoprotein in the void volume of a Superose 6 column in the presence and absence of calcium ions. In addition, void-volume Apo-TF-lipoprotein fractions exhibited tissue factor activity. These results suggest that the factor VIII-bypassing activity of bovine Apo-TF observed in a canine hemophilic model may be due, in part, to its association with plasma lipoproteins and expression of functional tissue factor activity.

  11. Use of Temperature and Surface Gas Flux as Novel Measures of Microbial Activity at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Warren, E.; Sihota, N. J.; Hostettler, F. D.

    2012-12-01

    Degradation of crude oil in the subsurface has been studied for over 30 years at a spill site located near Bemidji, Minnesota, USA. The well-characterized site is being used to experiment with the use of surface gas flux and temperature measurements as novel methods for quantifying microbial activity. In the largest subsurface oil body, a 2-m-thick smear zone spans the water table 6-8 m below the surface. Methane produced from degradation of the oil diffuses upward and mixes with oxygen from the surface supporting aerobic methanotrophy at 2-4 m depth. The methane oxidation produces CO2 and heat at rates which are hypothetically proportional to other measures of subsurface microbial activity. To test this hypothesis, vertical profiles of temperature and microbial populations, surface CO2 flux, and oil degradation state were measured at three sites in the oil body and one background site. Temperature increases in the oil zone near the water table were 1-4°C above the background site. The site with the highest temperature increase at the water table also had the highest concentrations of gene copy numbers for methanogens (mcrA) and methanotrophs (pmoA) along with the most degraded oil. Surface CO2 flux over the oil sites averaged more than twice that at the background site but was not consistently highest over the site with the highest activity by other measures. One possible explanation for this discrepancy is variation in the effective diffusion coefficient of the vadose zone between the methanotrophic zone and the surface. At the level of the methanotrophic zone, temperatures were elevated 2-6°C over the background values but again the site with greatest average annual temperature increase was not at the most active site. This may be due to enhanced recharge at the most active site, which lies at the center of a local topographic depression where focused recharge occurs. Overall, the temperature and flux data showed significant increases at the oil sites compared

  12. Plasma effects of active ion beam injections in the ionosphere at rocket altitudes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.

  13. Polar Spacecraft Based Comparisons of Intense Electric Fields and Poynting Flux Near and Within the Plasma Sheet-Tail Lobe Boundary to UVI Images: An Energy Source for the Aurora

    NASA Technical Reports Server (NTRS)

    Wygant, J. R.; Keiling, A.; Cattell, C. A.; Johnson, M.; Lysak, R. L.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J. D.; Peterson, W.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward

  14. Effect of Erbium substitution on temperature and field dependence of thermally activated flux flow resistance in Bi-2212 superconductor

    NASA Astrophysics Data System (ADS)

    Paladhi, D.; Mandal, P.; Sahoo, R. C.; Giri, S. K.; Nath, T. K.

    2016-12-01

    Thermally activated flux flow (TAFF) regime of Er doped Bi2Sr2Ca1-xErxCu2O8+δ (x=0.0, 0.1, 0.3) polycrystalline systems have been investigated using magneto-transport measurements up to 70 kOe magnetic field. High quality single phase samples have been prepared by standard solid state reaction method. The activation energy or pinning strength (U0) have been calculated using thermally activated flux flow (TAFF) model by linear fitting from the semi-logarithmic curve of ln ρ vs 1/T. It has been observed that activation energy (U0) decreases with Er substitution and U0 follows power law dependence with magnetic field for all three samples. Irreversibility lines (IL) have been drawn from the magneto-transport data for all three samples and it is observed that IL shifts to lower temperature with higher Er concentration. It is confirmed from the above results that pinning strength becomes weaker with Er doping. Finally, the variation of U0 have been shown with temperature by re-plotting -T(ln (ρ/ρ100)) vs T for three samples showing non-linear dependence with temperature.

  15. Enzyme activities in plasma, kidney, liver, and muscle of five avian species

    USGS Publications Warehouse

    Franson, J.C.; Murray, H.C.; Bunck, C.

    1985-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.

  16. Antibacterial activity of plasma from crocodile (Crocodylus siamensis) against pathogenic bacteria

    PubMed Central

    2012-01-01

    Background The Siamese crocodile (Crocodylus siamensis) is a critically endangered species of freshwater crocodiles. Crocodilians live with opportunistic bacterial infection but normally suffer no adverse effects. They are not totally immune to microbial infection, but their resistance thereto is remarkably effective. In this study, crude and purified plasma extracted from the Siamese crocodile were examined for antibacterial activity against clinically isolated, human pathogenic bacterial strains and the related reference strains. Methods Crude plasma was prepared from whole blood of the Siamese crocodile by differential sedimentation. The crude plasma was examined for antibacterial activity by the liquid growth inhibition assay. The scanning electron microscopy was performed to confirm the effect of crude crocodile plasma on the cells of Salmonella typhi ATCC 11778. Effect of crude crocodile plasma on cell viability was tested by MTT assay. In addition, the plasma was purified by anion exchange column chromatography with DEAE-Toyopearl 650 M and the purified plasma was tested for antibacterial activity. Results Crude plasma was prepared from whole blood of the Siamese crocodile and exhibited substantial antibacterial activities of more than 40% growth inhibition against the six reference strains of Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus epidermidis, and the four clinical isolates of Staphylococcus epidermidis, Pseudomonas aeruginosa, Salmonella typhi, and Vibrio cholerae. Especially, more than 80% growth inhibition was found in the reference strains of Salmonella typhi, Vibrio cholerae, and Staphylococcus epidermidis and in the clinical isolates of Salmonella typhi and Vibrio cholerae. The effect of the crude plasma on bacterial cells of Salmonella typhi, a certain antibacterial material probably penetrates progressively into the cytoplasmic space, perturbing and damaging bacterial

  17. Low-energy electron flux and its reaction to active experimentation of Spacelab

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.

    1981-01-01

    An instrument capable of observing the natural electron flux in the energy range from 0.1 to 12.0 kiloelectron volts is discussed for use in an experiment intended as a forerunner of a method that will utilize artificially accelerated electrons as tracer particles for electron fields parallel to the magnetic field. Effects that are of importance either as means of detecting the echo beam or as causes of beam perturbations (e.g., spacecraft charging effects and electron background) are to be studied. The use of electron accelerators as a tool to probe magnetospheric processes rather than to modify them is planned.

  18. Thermal and electrical interaction of tantalum with a low temperature chemically active plasma flow

    NASA Technical Reports Server (NTRS)

    Zake, M. V.; Liyepinya, V. E.; Melnikov, V. K.

    1983-01-01

    The paper deals with an experimental study of radiative heat transfer and charge transfer processes from the surface of tantalum plates under conditions of unsteady high-temperature heating and oxidation. It is shown that at plate temperatures of 1800 K, the heat flux may be as high as 400 kW/sq m. Heating is shown to stimulate the emissivity of tantalum and the temperature of the free electrons which surface, through a gas boundary layer, from the plasma onto the metal.

  19. Plasma chitotriosidase activity in patients with beta-thalassemia.

    PubMed

    Altarescu, G; Rudensky, B; Abrahamov, A; Goldfarb, A; Rund, D; Zimran, A; Elstein, D

    2002-09-01

    Variable increases in chitotriosidase levels have been reported in Italian patients with beta-thalassemia major and intermedia. We measured plasma chitotriosidase levels in Israeli patients with beta-thalassemia to ascertain its use as a universal marker of disease and/or response to therapy. Chitotriosidase levels in 39 adults (16-53 years; 30 with beta-thalassemia major, 9 with intermedia), and in 14 children (0.7-15 years; 12 with beta-thalassemia major, 2 with intermedia) were compared with other measures of disease, such as ferritin, hemoglobin, liver function tests, and genotype. Plasma chitotriosidase levels were normal (0.37 +/- 0.04 mU/mL) in all children. Twelve adults (31%) had elevated levels (>1.33 mU/mL): 11 patients (37%) with thalassemia major and 1 patient (11%) with thalassemia intermedia. A significant correlation was only found between plasma chitotriosidase levels and ferritin levels, and with mean number of transfusions per year. The patient with the highest chitotriosidase (1,440 nmol/mL/hr) had the highest ferritin (5,175 microg/L), required the most transfusions per year (40), and had abnormal liver tests. Normal chitotriosidase levels in the pediatric cohort and increased levels in only some adults may reflect status of iron overload in macrophages; thus there may be a role for monitoring chitotriosidase in patients with beta-thalassemia. Our results confirm results of the Italian cohort; however, in the latter, a more universal correlation was noted and chitotriosidase levels were much higher.

  20. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons

    SciTech Connect

    Duysen, Ellen G.; Lockridge, Oksana

    2011-09-01

    The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher than the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.

  1. Using Plasma-Activated High Performance Fibers with Nanocrystalline Structure in Producing New Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Kudinov, V.; Korneeva, N.

    2008-08-01

    A wet-pull-out method for investigation of interaction between the high performance polyethylene (HPPE) fiber and polymer matrix is discussed. The paper concerns a cold plasma technique for improving the bond of the HPPE fibers to the matrices and the fibers impregnation with the matrix. Controlled parameters are pull-out force and the height of the matrix capillary lifting along the fiber both in air and in vacuum, in combination with plasma activation of the fibers. The method allows one to estimate the wetting and impregnation of multi-filament fiber with the matrix and simultaneously measure the joint strength. Coupled action of plasma treatment and vacuum impregnation of the fibers improves the joint strength by a factor of 3. Plasma activated HPPE fibers impregnated in air show the value of shear strength τ of 4 Kg/mm2. To understand the effect of treatment initial and plasma-activated fibers were used to fabricate composite materials (CM). The properties and failure modes were compared to those of CM reinforced with untreated fibers. The failure mode of CM reinforced with plasma-activated fibers points to a high strength of the bond between the fibers and the matrix.

  2. Vampire bat salivary plasminogen activator is quiescent in human plasma in the absence of fibrin unlike human tissue plasminogen activator.

    PubMed

    Gardell, S J; Hare, T R; Bergum, P W; Cuca, G C; O'Neill-Palladino, L; Zavodny, S M

    1990-12-15

    The vampire bat salivary plasminogen activator (Bat-PA) is a potent PA that exhibits remarkable selectivity toward fibrin-bound plasminogen (Gardell et al, J Biol Chem 256: 3568, 1989). Herein, we describe the activity of recombinant DNA-derived Bat-PA (rBat-PA) in a human plasma milieu. rBat-PA and recombinant human single-chain tissue plasminogen activator (rt-PA) are similarly efficacious at lysing plasma clots. In stark contrast to rt-PA, the addition of 250 nmol/L rBat-PA to plasma in the absence of a clot failed to deplete plasminogen, alpha 2-antiplasmin and fibrinogen. The lytic activities exhibited by finger-domain minus Bat-PA (F- rBat-PA) and finger and epidermal growth factor-like domains minus Bat-PA (FG- rBat-PA) were less than rBat-PA, especially at low concentrations of PA; nevertheless, these truncated forms also possessed a strict requirement for a fibrin cofactor. The loss of PA activity following the addition of rBat-PA to plasma was slower than that observed when either rt-PA or two-chain rt-PA was added. The efficacy, fibrin selectivity, and decreased susceptibility to inactivation exhibited by rBat-PA in vitro in a human plasma milieu suggests that rBat-PA may be superior to rt-PA for the treatment of thrombotic complications.

  3. Plasma renin activities, angiotensin II concentrations, atrial natriuretic peptide concentrations and cardiopulmonary function values in dogs with severe heartworm disease.

    PubMed

    Kitagawa, H; Kitoh, K; Inoue, H; Ohba, Y; Suzuki, F; Sasaki, Y

    2000-04-01

    Relationships among plasma renin activities (PRA), plasma angiotensin II (ATII) concentrations, atrial natriuretic peptide (ANP) concentrations and cardiopulmonary function values were examined in dogs with ascitic pulmonary heartworm disease and acute- and chronic-vena caval syndrome (CS). PRA, plasma ATII concentration and plasma ANP concentration tended to be higher or were significantly higher in dogs with ascites, acute- and chronic-CS. PRA correlated significantly with plasma ATII concentration, WBC count, ALP activity, plasma concentrations of urea nitrogen, creatinine, sodium, potassium, and chloride, right ventricular endodiastolic pressure and right atrial pressure. Plasma ATII concentration correlated significantly with WBC count, plasma concentrations of urea nitrogen, sodium, and potassium, right ventricular endodiastolic pressure and right atrial pressure. Plasma ANP concentration did not correlate with PRA or ATII concentration, but correlated significantly only with pulmonary arterial pressure.

  4. Neutron flux measurement using activated radioactive isotopes at the Baksan underground scintillation telescope

    NASA Astrophysics Data System (ADS)

    Kochkarov, M. M.; Alikhanov, I. A.; Boliev, M. M.; Dzaparova, I. M.; Novoseltseva, R. V.; Novoseltsev, Yu. F.; Petkov, V. B.; Volchenko, V. I.; Volchenko, G. V.; Yanin, A. F.

    2016-11-01

    Preliminary results of a neutron background measurement at the Baksan underground scintillation telescope (BUST) are presented. The external planes of the BUST are fully covered with standard scintillation detectors shielding the internal planes and suppressing thus background events due to cosmogenic and local radioactivity. The shielded internal planes were used as target for the neutron flux registration. The experimental method is based on the delayed coincidences between signals from any of the BUST counters. It is assumed that the first signal is due to inelastic interaction of a neutron with the organic scintillator, while the second signal comes from the decay of an unstable radioactive isotope formed when the fast neutron interacts with the 12C nuclei. Using the Monte-Carlo method (GEANT4) we also simulated propagation of neutrons through a layer of scintillator. The experimentally found muon induced neutron flux is j =1.3 -0.3 +0.7 ×10-10cm-2s-1 for neutron energies E ≥ 22MeV, which is in a qualitative agreement with similar measurements of other underground laboratories as well as with predictions of the GEANT4.

  5. Mapping fluxes of radicals from the combination of electrochemical activation and optical microscopy.

    PubMed

    Munteanu, Sorin; Roger, Jean Paul; Fedala, Yasmina; Amiot, Fabien; Combellas, Catherine; Tessier, Gilles; Kanoufi, Frédéric

    2013-01-01

    The coating of gold (Au) electrode surfaces with nitrophenyl (NP) layers is studied by combination of electrochemical actuation and optical detection. The electrochemical actuation of the reduction of the nitrobenzenediazonium (NBD) precursor is used to generate NP radicals and therefore initiate the electrografting. The electrografting process is followed in situ and in real time by light reflectivity microscopy imaging, allowing for spatio-temporal imaging with sub-micrometer lateral resolution and sub-nanometer thickness sensitivity of the local growth of a transparent organic coating onto a reflecting Au electrode. The interest of the electrochemical actuation resides in its ability to finely control the grafting rate of the NP layer through the electrode potential. Coupling the electrochemical actuation with microscopic imaging of the electrode surface allows quantitative estimates of the local grafting rates and subsequently a real time and in situ mapping of the reacting fluxes of NP radicals on the surface. Over the 2 orders of magnitude range of grafting rates (from 0.04 to 4 nm s(-1)), it is demonstrated that the edge of Au electrodes are grafted -1.3 times more quickly than their centre, illustrating the manifestation of edge-effects on flux distribution at an electrode. A model is proposed to explain the observed edge-effect, it relies on the short lifetime of the intermediate NP radical species.

  6. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  7. Circadian variation of intercompartmental potassium fluxes in man

    NASA Technical Reports Server (NTRS)

    Moore Ede, M. C.; Brennan, M. F.; Ball, M. R.

    1975-01-01

    Circadian rhythms of plasma potassium concentration and urinary potassium excretion persisted in three normal volunteers when diurnal variations in activity, posture, and dietary intake were eliminated for 3-10 days. Measurements of the arteriovenous difference in plasma potassium concentration across the resting forearm and of erythrocyte potassium concentration suggested that there is a net flux of potassium from ICF to ECF in the early morning and a reverse net flux later in the day. The total net ICF-ECF fluxes were estimated from the diurnal variations in extracellular potassium content corrected for dietary intake and urinary potassium loss. The net fluxes between ICF and ECF were found to be counterbalanced by the circadian rhythm in urinary potassium excretion. Desynchronization of these rhythms would result in marked fluctuations in extracellular potassium content. These findings suggest that some revision is required of the concept of basal state in potassium homeostasis.

  8. Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system

    NASA Astrophysics Data System (ADS)

    Tang, Shoufeng; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    To understand the reactions taking place in the dielectric barrier discharge (DBD) plasma system of activated carbon regeneration, the determination of active species is necessary. A method based on High Performance Liquid Chromatography with radical trapping by salicylic acid, has been developed to measure hydroxyl radical (•OH) in the DBD plasma reactor. The effects of applied voltage, treatment time, and gas flow rate and atmosphere were investigated. Experimental results indicated that increasing voltage, treatment time and air flow rate could enhance the formation of •OH. Oxygen atmosphere and a suitable GAC water content were contributed to •OH generation. The results give an insight into plasma chemical processes, and can be helpful to optimize the design and application for the plasma system.

  9. Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.

    PubMed

    Wang, Qingzhao; Ou, Mark S; Kim, Y; Ingram, L O; Shanmugam, K T

    2010-04-01

    During anaerobic growth of Escherichia coli, pyruvate formate-lyase (PFL) and lactate dehydrogenase (LDH) channel pyruvate toward a mixture of fermentation products. We have introduced a third branch at the pyruvate node in a mutant of E. coli with a mutation in pyruvate dehydrogenase (PDH*) that renders the enzyme less sensitive to inhibition by NADH. The key starting enzymes of the three branches at the pyruvate node in such a mutant, PDH*, PFL, and LDH, have different metabolic potentials and kinetic properties. In such a mutant (strain QZ2), pyruvate flux through LDH was about 30%, with the remainder of the flux occurring through PFL, indicating that LDH is a preferred route of pyruvate conversion over PDH*. In a pfl mutant (strain YK167) with both PDH* and LDH activities, flux through PDH* was about 33% of the total, confirming the ability of LDH to outcompete the PDH pathway for pyruvate in vivo. Only in the absence of LDH (strain QZ3) was pyruvate carbon equally distributed between the PDH* and PFL pathways. A pfl mutant with LDH and PDH* activities, as well as a pfl ldh double mutant with PDH* activity, had a surprisingly low cell yield per mole of ATP (Y(ATP)) (about 7.0 g of cells per mol of ATP) compared to 10.9 g of cells per mol of ATP for the wild type. The lower Y(ATP) suggests the operation of a futile energy cycle in the absence of PFL in this strain. An understanding of the controls at the pyruvate node during anaerobic growth is expected to provide unique insights into rational metabolic engineering of E. coli and related bacteria for the production of various biobased products at high rates and yields.

  10. Enhancement of NOx and hydrocarbon conversion in plasma-activated catalysis

    NASA Astrophysics Data System (ADS)

    Graham, Bill; Adress, Wahmeed; Goguet, Alexandre; Yang, Hui; De Rosa, Fabio; Hardacre, Christopher; Stere, Cristina

    2016-09-01

    Atmospheric pressure, non-thermal plasma-activated-catalysis is showing real promise in a number of applications. Here we report on how electrical, visible and FTIR spectroscopy and mass spectroscopy measurements in a kHz atmospheric pressure He plasma jet coupled with a Ag/Al2O3 catalyst allowed us produce and confirm a strong enhancement of both NOx and hydrocarbon conversion at a measured gas temperature of <= 250° C. How these and other measurements have provided an insight into the fundamental physical and chemical processes in the plasma environment that have helped us move to a more efficient system and other processes will be discussed.

  11. Commitment to differentiation of murine erythroleukemia cells involves a modulated plasma membrane depolarization through Ca2+-activated K+ channels.

    PubMed

    Arcangeli, A; Ricupero, L; Olivotto, M

    1987-09-01

    The role of the plasma membrane potential (delta psi p) in the commitment to differentiation of murine erythroleukemia (MEL) cells has been studied by analyzing the ionic basis and the time course of this potential in the absence or the presence of different types of inducers. delta psi p was determined by measuring the distribution of tetraphenylphosphonium (TPP+) across the plasma membrane and displayed a 22-hour depolarization phase (from -28 to +5 mV) triggered by factors contained in foetal calf serum (FCS) and followed by a nearly symmetrical repolarization phase. After measuring the electrochemical equilibrium potential of Na+, K+, and Cl-, the relative contribution of these ions to delta psi p was evaluated by means of ion substitution experiments and by the addition of ion flux inhibitors (tetrodotoxin [TTX], 4-acetoamide-4'-isothiocyanostilbene-2,2'-disulfonate [SITS]) and ionophores (Valinomycin, A23187). The Na+ contribution to delta psi p appeared negligible, the potential being essentially generated by K+ and Cl- fluxes. When evaluated by a new mathematical approach, the effects of Valinomycin and A23187 at different times of incubation provided evidence that both the depolarization and the repolarization phase were due to variations of the K+ permeability across the plasma membrane (PK) mediated by Ca2+-activated K+ channels. All the inducers tested (dimethylsulfoxide [DMSO], hexamethylen-bis-acetamide [HMBA], diazepam), although they did not modify the ionic basis of delta psi p, strongly attenuated the depolarization rate of this potential. This attenuation was not brought about when the inducers were added to noninducible MEL cell clonal sublines. Cell commitment occurred only during the depolarization phase and increased proportionally to the attenuation of this phase up to a threshold beyond which the further increase of the attenuation was associated with the inhibition of commitment. The