Science.gov

Sample records for activating histone marks

  1. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes.

    PubMed

    Mahrez, Walid; Arellano, Minerva Susana Trejo; Moreno-Romero, Jordi; Nakamura, Miyuki; Shu, Huan; Nanni, Paolo; Köhler, Claudia; Gruissem, Wilhelm; Hennig, Lars

    2016-03-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5' end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  2. Three distinct patterns of histone H3Y41 phosphorylation mark active genes.

    PubMed

    Dawson, Mark A; Foster, Samuel D; Bannister, Andrew J; Robson, Samuel C; Hannah, Rebecca; Wang, Xiaonan; Xhemalce, Blerta; Wood, Andrew D; Green, Anthony R; Göttgens, Berthold; Kouzarides, Tony

    2012-09-27

    The JAK2 tyrosine kinase is a critical mediator of cytokine-induced signaling. It plays a role in the nucleus, where it regulates transcription by phosphorylating histone H3 at tyrosine 41 (H3Y41ph). We used chromatin immunoprecipitation coupled to massively parallel DNA sequencing (ChIP-seq) to define the genome-wide pattern of H3Y41ph in human erythroid leukemia cells. Our results indicate that H3Y41ph is located at three distinct sites: (1) at a subset of active promoters, where it overlaps with H3K4me3, (2) at distal cis-regulatory elements, where it coincides with the binding of STAT5, and (3) throughout the transcribed regions of active, tissue-specific hematopoietic genes. Together, these data extend our understanding of this conserved and essential signaling pathway and provide insight into the mechanisms by which extracellular stimuli may lead to the coordinated regulation of transcription. PMID:22999934

  3. Three Distinct Patterns of Histone H3Y41 Phosphorylation Mark Active Genes

    PubMed Central

    Dawson, Mark A.; Foster, Samuel D.; Bannister, Andrew J.; Robson, Samuel C.; Hannah, Rebecca; Wang, Xiaonan; Xhemalce, Blerta; Wood, Andrew D.; Green, Anthony R.; Göttgens, Berthold; Kouzarides, Tony

    2012-01-01

    Summary The JAK2 tyrosine kinase is a critical mediator of cytokine-induced signaling. It plays a role in the nucleus, where it regulates transcription by phosphorylating histone H3 at tyrosine 41 (H3Y41ph). We used chromatin immunoprecipitation coupled to massively parallel DNA sequencing (ChIP-seq) to define the genome-wide pattern of H3Y41ph in human erythroid leukemia cells. Our results indicate that H3Y41ph is located at three distinct sites: (1) at a subset of active promoters, where it overlaps with H3K4me3, (2) at distal cis-regulatory elements, where it coincides with the binding of STAT5, and (3) throughout the transcribed regions of active, tissue-specific hematopoietic genes. Together, these data extend our understanding of this conserved and essential signaling pathway and provide insight into the mechanisms by which extracellular stimuli may lead to the coordinated regulation of transcription. PMID:22999934

  4. Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing.

    PubMed

    Moshkin, Yuri M; Kan, Tsung Wai; Goodfellow, Henry; Bezstarosti, Karel; Maeda, Robert K; Pilyugin, Maxim; Karch, Francois; Bray, Sarah J; Demmers, Jeroen A A; Verrijzer, C Peter

    2009-09-24

    Histone chaperones are involved in a variety of chromatin transactions. By a proteomics survey, we identified the interaction networks of histone chaperones ASF1, CAF1, HIRA, and NAP1. Here, we analyzed the cooperation of H3/H4 chaperone ASF1 and H2A/H2B chaperone NAP1 with two closely related silencing complexes: LAF and RLAF. NAP1 binds RPD3 and LID-associated factors (RLAF) comprising histone deacetylase RPD3, histone H3K4 demethylase LID/KDM5, SIN3A, PF1, EMSY, and MRG15. ASF1 binds LAF, a similar complex lacking RPD3. ASF1 and NAP1 link, respectively, LAF and RLAF to the DNA-binding Su(H)/Hairless complex, which targets the E(spl) NOTCH-regulated genes. ASF1 facilitates gene-selective removal of the H3K4me3 mark by LAF but has no effect on H3 deacetylation. NAP1 directs high nucleosome density near E(spl) control elements and mediates both H3 deacetylation and H3K4me3 demethylation by RLAF. We conclude that histone chaperones ASF1 and NAP1 differentially modulate local chromatin structure during gene-selective silencing. PMID:19782028

  5. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes1[OPEN

    PubMed Central

    Arellano, Minerva Susana Trejo; Shu, Huan; Gruissem, Wilhelm

    2016-01-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5′ end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  6. Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark.

    PubMed

    Zaidi, Sayyed K; Boyd, Joseph R; Grandy, Rodrigo A; Medina, Ricardo; Lian, Jane B; Stein, Gary S; Stein, Janet L

    2016-09-01

    Embryonic stem cells (ESCs) exhibit unrestricted and indefinite, but stringently controlled, proliferation, and can differentiate into any lineage in the body. In the current study, we test the hypothesis that expression of ribosomal RNA (rRNA) and ribosomal protein genes (RPGs) contribute to the ability of hESCs to proliferate indefinitely. Consistent with the accelerated growth rate of hESCs, we find that hESC lines H1 and H9 both exhibit significantly higher levels of rRNA when compared to a panel of normal and cancer human cell lines. Although many RPGs are expressed at levels that comparable to other human cell lines, a few RPGs also exhibit higher expression levels. In situ nuclear run-on assays reveal that both nucleoli in hESCs actively transcribe nascent rRNA. Employing genome-wide chromatin immunoprecipitation-deep sequencing and bioinformatics approaches, we discovered that, RPGs are dominantly marked by the activating H3K4me3 histone mark in the G1, M, and G2 phases of the cell cycle. Interestingly, the rDNA repeats are marked by the activating H3K4me3 only in the M phase, and repressive H3K27me3 histone mark in all three cell cycle phases. Bioinformatics analyses also reveal that Myc, a known regulator of cell growth and proliferation, occupies both the rRNA genes and RPGs. Functionally, down-regulation of Myc expression by siRNA results in a concomitant decrease in rRNA levels. Together, our results show that expression of rRNA, which is regulated by the Myc pluripotency transcription factor, and of RPGs in hESCs is associated with the activating H3K4me3 modification. J. Cell. Physiol. 231: 2007-2013, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755341

  7. The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation

    PubMed Central

    Paranjape, Neha P.; Calvi, Brian R.

    2016-01-01

    Eukaryotic DNA replication begins from multiple origins. The origin recognition complex (ORC) binds origin DNA and scaffolds assembly of a prereplicative complex (pre-RC), which is subsequently activated to initiate DNA replication. In multicellular eukaryotes, origins do not share a strict DNA consensus sequence, and their activity changes in concert with chromatin status during development, but mechanisms are ill-defined. Previous genome-wide analyses in Drosophila and other organisms have revealed a correlation between ORC binding sites and the histone variant H3.3. This correlation suggests that H3.3 may designate origin sites, but this idea has remained untested. To address this question, we examined the enrichment and function of H3.3 at the origins responsible for developmental gene amplification in the somatic follicle cells of the Drosophila ovary. We found that H3.3 is abundant at these amplicon origins. H3.3 levels remained high when replication initiation was blocked, indicating that H3.3 is abundant at the origins before activation of the pre-RC. H3.3 was also enriched at the origins during early oogenesis, raising the possibility that H3.3 bookmarks sites for later amplification. However, flies null mutant for both of the H3.3 genes in Drosophila did not have overt defects in developmental gene amplification or genomic replication, suggesting that H3.3 is not essential for the assembly or activation of the pre-RC at origins. Instead, our results imply that the correlation between H3.3 and ORC sites reflects other chromatin attributes that are important for origin function. PMID:27172191

  8. The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation.

    PubMed

    Paranjape, Neha P; Calvi, Brian R

    2016-01-01

    Eukaryotic DNA replication begins from multiple origins. The origin recognition complex (ORC) binds origin DNA and scaffolds assembly of a prereplicative complex (pre-RC), which is subsequently activated to initiate DNA replication. In multicellular eukaryotes, origins do not share a strict DNA consensus sequence, and their activity changes in concert with chromatin status during development, but mechanisms are ill-defined. Previous genome-wide analyses in Drosophila and other organisms have revealed a correlation between ORC binding sites and the histone variant H3.3. This correlation suggests that H3.3 may designate origin sites, but this idea has remained untested. To address this question, we examined the enrichment and function of H3.3 at the origins responsible for developmental gene amplification in the somatic follicle cells of the Drosophila ovary. We found that H3.3 is abundant at these amplicon origins. H3.3 levels remained high when replication initiation was blocked, indicating that H3.3 is abundant at the origins before activation of the pre-RC. H3.3 was also enriched at the origins during early oogenesis, raising the possibility that H3.3 bookmarks sites for later amplification. However, flies null mutant for both of the H3.3 genes in Drosophila did not have overt defects in developmental gene amplification or genomic replication, suggesting that H3.3 is not essential for the assembly or activation of the pre-RC at origins. Instead, our results imply that the correlation between H3.3 and ORC sites reflects other chromatin attributes that are important for origin function. PMID:27172191

  9. Reader interactome of epigenetic histone marks in birds.

    PubMed

    Bluhm, Alina; Casas-Vila, Nuria; Scheibe, Marion; Butter, Falk

    2016-02-01

    Lysine methylation is part of the posttranscriptional histone code employed to recruit modification specific readers to chromatin. Unbiased, quantitative mass spectrometry approaches combined with peptide pull-downs have been used to study histone methylation-dependent binders in mammalian cells. Here, we extend the study to birds by investigating the interaction partners for H3K4me3, H3K9me3, H3K27me3 and H3K36me3 in chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) using label-free quantitative proteomics. In general, we find very strong overlap in interaction partners for the trimethyl marks in birds compared to mammals, underscoring the known conserved function of these modifications. In agreement with their epigenetic role, we find binding of PHF2 and members of the TFIID, SAGA, SET1 and NURF complex to the activation mark H3K4me3. Our data furthermore supports the existence of a LID complex in vertebrates recruited to the H3K4me3 mark. The repressive marks are bound by the HP1 proteins and the EED subunit of the PRC2 complex as well as by WIZ. Like reported in the previous mammalian screens, we found ZNF462, ZNF828 and POGZ enriched at H3K9me3. However, we noted some unexpected differences. N-PAC (also known as GLYR1), an H3K36me3 interactor in mammals, is reproducible not enriched at this modification in our screen in birds. This initial finding suggests that despite strong conservation of the histone tail sequence, a few species-specific differences in epigenetic readers may have evolved between birds and mammals. All MS data have been deposited in the ProteomeXchange with identifier PXD002282 (http://proteomecentral.proteomexchange.org/dataset/PXD002282). PMID:26703087

  10. The Arabidopsis transcription factor NAI1 is required for enhancing the active histone mark but not for removing the repressive mark on PYK10, a seedling–specific gene upon embryonic-to-postgerminative developmental phase transition

    PubMed Central

    Yoshii, Masakatsu; Yamamoto, Akiko; Kagaya, Yasuaki; Takeda, Shin; Hattori, Tsukaho

    2015-01-01

    We have recently shown that the expression onset of a seedling-specific gene, PYK10, occurs in a cell-by-cell manner upon the transition from the embryonic to the postgerminative phase and during embryogenesis in seed maturation regulator mutants such as lec1, and implicated epigenetic mechanisms in the process. Here, the role of the NAI1 transcription factor required for PYK10 expression in the developmental switching of PYK10 was investigated. The cell-by-cell onset of PYK10-EGFP in lec1 embryo was still observed in the nai1 background, but at greatly reduced levels. Decreases in the level of the repressive histone mark, H3K27 trimethylation observed upon the transition to the postgeminative phase normally occurred in nai1. However, concomitant increases in the level of the active mark, H3K4 trimethylation observed in wild type was significantly compromised in nai1. These results indicate that the switching of PYK10 upon developmental phase transition involves 2 separable steps of chromatin state change. PMID:26479492

  11. Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.

    PubMed

    Chen, Yong; Wang, Xiaoyan; Xiang, Wei; He, Lin; Tang, Minghai; Wang, Fang; Wang, Taijin; Yang, Zhuang; Yi, Yuyao; Wang, Hairong; Niu, Ting; Zheng, Li; Lei, Lei; Li, Xiaobin; Song, Hang; Chen, Lijuan

    2016-06-01

    In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer. PMID:27186676

  12. An NF-Y-Dependent Switch of Positive and Negative Histone Methyl Marks on CCAAT Promoters

    PubMed Central

    Dolfini, Diletta; Fossati, Andrea; Ceribelli, Michele; Mantovani, Roberto

    2008-01-01

    Background Histone tails have a plethora of different post-translational modifications, which are located differently in “open” and “closed” parts of genomes. H3K4me3/H3K79me2 and H4K20me3 are among the histone marks associated with the early establishment of active and inactive chromatin, respectively. One of the most widespread promoter elements is the CCAAT box, bound by the NF-Y trimer. Two of NF-Y subunits have an H2A-H2B-like structure. Principal findings We established the causal relationship between NF-Y binding and positioning of methyl marks, by ChIP analysis of mouse and human cells infected with a dominant negative NF-YA: a parallel decrease in NF-Y binding, H3K4me3, H3K79me2 and transcription was observed in promoters that are dependent upon NF-Y. On the contrary, changes in the levels of H3K9-14ac were more subtle. Components of the H3K4 methylating MLL complex are not recruited in the absence of NF-Y. As for repressed promoters, NF-Y removal leads to a decrease in the H4K20me3 mark and deposition of H3K4me3. Conclusions Two relevant findings are reported: (i) NF-Y gains access to its genomic locations independently from the presence of methyl histone marks, either positive or negative; (ii) NF-Y binding has profound positive or negative consequences on the deposition of histone methyl marks. Therefore NF-Y is a fundamental switch at the heart of decision between gene activation and repression in CCAAT regulated genes. PMID:18446193

  13. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach

    PubMed Central

    Bao, Xiucong; Wang, Yi; Li, Xin; Li, Xiao-Meng; Liu, Zheng; Yang, Tangpo; Wong, Chi Fat; Zhang, Jiangwen; Hao, Quan; Li, Xiang David

    2014-01-01

    Posttranslational modifications (PTMs) play a crucial role in a wide range of biological processes. Lysine crotonylation (Kcr) is a newly discovered histone PTM that is enriched at active gene promoters and potential enhancers in mammalian cell genomes. However, the cellular enzymes that regulate the addition and removal of Kcr are unknown, which has hindered further investigation of its cellular functions. Here we used a chemical proteomics approach to comprehensively profile ‘eraser’ enzymes that recognize a lysine-4 crotonylated histone H3 (H3K4Cr) mark. We found that Sirt1, Sirt2, and Sirt3 can catalyze the hydrolysis of lysine crotonylated histone peptides and proteins. More importantly, Sirt3 functions as a decrotonylase to regulate histone Kcr dynamics and gene transcription in living cells. This discovery not only opens opportunities for examining the physiological significance of histone Kcr, but also helps to unravel the unknown cellular mechanisms controlled by Sirt3, that have previously been considered solely as a deacetylase. DOI: http://dx.doi.org/10.7554/eLife.02999.001 PMID:25369635

  14. Release and activity of histone in diseases.

    PubMed

    Chen, R; Kang, R; Fan, X-G; Tang, D

    2014-01-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies, activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and novel therapeutic targets in human diseases. PMID:25118930

  15. A Phosphotyrosine Switch Controls the Association of Histone Mark Readers with Methylated Proteins.

    PubMed

    Irving-Hooper, Bronwyn Kate; Binda, Olivier

    2016-03-22

    Although histone post-translational modifications play a paramount role in controlling access to genetic information, our understanding of the precise mechanisms regulating chromatin signaling remains superficial. For instance, histone H3 trimethylated on lysine 9 (H3K9(me3)) favors the association of chromodomain proteins such as heterochromatin protein 1α (HP1α) with chromatin. However, HP1α and other such chromatin proteins are not covering all specific histone marks at all times. Thus, how are these reader-histone interactions regulated? We propose tyrosine phosphorylation within the aromatic cage of histone mark readers as a molecular switch that can either turn ON or OFF and even alter the specificity of reader-histone interactions. We have identified tyrosine phosphorylation events on the chromatin proteins HP1α and M-phase phosphoprotein 8 that regulate their association with methylated histones in vitro (synthetic peptides, calf thymus purified histones, and nucleosomes), but also in cells, thus controlling access to genetic information. PMID:26562627

  16. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast.

    PubMed

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung; Lee, Daeyoup

    2016-08-01

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5' promoter and 3' termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast. PMID:27268234

  17. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro

    PubMed Central

    Lutz, Lisa; Fitzner, Ingrid Coutiño; Ahrens, Theresa; Geißler, Anna-Lena; Makowiec, Frank; Hopt, Ulrich T; Bogatyreva, Lioudmila; Hauschke, Dieter; Werner, Martin; Lassmann, Silke

    2016-01-01

    Little is known about histone modifiers and histone marks in colorectal cancers (CRC). The present study therefore addressed the role of histone acetylation and histone deacetylases (HDAC) in CRCs in situ and in vitro. Immunohistochemistry of primary CRCs (n=47) revealed that selected histone marks were frequently present (H3K4me3: 100%; H3K9me3: 77%; H3K9ac: 75%), partially displayed intratumoral heterogeneity (H3K9me3; H3K9ac) and were significantly linked to higher pT category (H3K9me3: p=0.023; H3K9ac: p=0.028). Furthermore, also HDAC1 (62%), HDAC2 (100%) and HDAC3 (72%) expression was frequent, revealing four CRC types: cases expressing 1) HDAC1, HDAC2 and HDAC3 (49%), 2) HDAC2 and HDAC3 (30%), 3) HDAC1 and HDAC2 (10.5%) and 4) exclusively HDAC2 (10.5%). Correlation to clinico-pathological parameters (pT, pN, G, MSI status) revealed that heterogeneous HDAC1 expression correlated with lymph node status (p=0.012). HDAC expression in situ was partially reflected by six CRC cell lines, with similar expression of all three HDACs (DLD1, LS174T), preferential HDAC2 and HDAC3 expression (SW480, Caco2) or lower HDAC2 and HDAC3 expression (HCT116, HT29). HDAC activity was variably higher in HCT116, HT29, DLD1 and SW480 compared to LS174T and Caco2 cells. Treatment with broad (SAHA) and specific (MS-275; FK228) HDAC inhibitors (HDACi) caused loss of cell viability in predominantly MSIpositive CRC cells (HCT116, LS174T, DLD1; SAHA, MS-275 and in part FK228). In contrast, MSI-negative CRC cells (Caco2, HT29, SW480) were resistant, except for high doses of FK228 (Caco2, HT29). Cell viability patterns were not linked to different efficacies of HDACi on reduction of HDAC activity or histone acetylation, p21 expression and/or induction of DNA damage (γH2A-X levels). In summary, this study reveals inter- and intra-tumoral heterogeneity of histone marks and HDAC expression in CRCs. This is reflected by diverse HDACi responses in vitro, which do not follow known modes of action

  18. Histone modifiers and marks define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro.

    PubMed

    Lutz, Lisa; Fitzner, Ingrid Coutiño; Ahrens, Theresa; Geißler, Anna-Lena; Makowiec, Frank; Hopt, Ulrich T; Bogatyreva, Lioudmila; Hauschke, Dieter; Werner, Martin; Lassmann, Silke

    2016-01-01

    Little is known about histone modifiers and histone marks in colorectal cancers (CRC). The present study therefore addressed the role of histone acetylation and histone deacetylases (HDAC) in CRCs in situ and in vitro. Immunohistochemistry of primary CRCs (n=47) revealed that selected histone marks were frequently present (H3K4me3: 100%; H3K9me3: 77%; H3K9ac: 75%), partially displayed intratumoral heterogeneity (H3K9me3; H3K9ac) and were significantly linked to higher pT category (H3K9me3: p=0.023; H3K9ac: p=0.028). Furthermore, also HDAC1 (62%), HDAC2 (100%) and HDAC3 (72%) expression was frequent, revealing four CRC types: cases expressing 1) HDAC1, HDAC2 and HDAC3 (49%), 2) HDAC2 and HDAC3 (30%), 3) HDAC1 and HDAC2 (10.5%) and 4) exclusively HDAC2 (10.5%). Correlation to clinico-pathological parameters (pT, pN, G, MSI status) revealed that heterogeneous HDAC1 expression correlated with lymph node status (p=0.012). HDAC expression in situ was partially reflected by six CRC cell lines, with similar expression of all three HDACs (DLD1, LS174T), preferential HDAC2 and HDAC3 expression (SW480, Caco2) or lower HDAC2 and HDAC3 expression (HCT116, HT29). HDAC activity was variably higher in HCT116, HT29, DLD1 and SW480 compared to LS174T and Caco2 cells. Treatment with broad (SAHA) and specific (MS-275; FK228) HDAC inhibitors (HDACi) caused loss of cell viability in predominantly MSIpositive CRC cells (HCT116, LS174T, DLD1; SAHA, MS-275 and in part FK228). In contrast, MSI-negative CRC cells (Caco2, HT29, SW480) were resistant, except for high doses of FK228 (Caco2, HT29). Cell viability patterns were not linked to different efficacies of HDACi on reduction of HDAC activity or histone acetylation, p21 expression and/or induction of DNA damage (γH2A-X levels). In summary, this study reveals inter- and intra-tumoral heterogeneity of histone marks and HDAC expression in CRCs. This is reflected by diverse HDACi responses in vitro, which do not follow known modes of action

  19. Histone epigenetic marks in heterochromatin and euchromatin of the Chagas' disease vector, Triatoma infestans.

    PubMed

    Alvarenga, Elenice M; Rodrigues, Vera L C C; Moraes, Alberto S; Naves, Luisa S; Mondin, Mateus; Felisbino, Marina B; Mello, Maria Luiza S

    2016-05-01

    Triatoma infestans, a vector of Chagas' disease, shows several particular cell biology characteristics, including the presence of conspicuous heterochromatic bodies (chromocenters) where DNA methylation has not been previously detected. Whether histone modifications contribute to the condensed state of these bodies has not yet been studied. Here, we investigated epigenetic modifications of histones H3 and H4 and presence of the non-histone heterochromatin protein (HP1-α) in the chromocenters and euchromatin of T. infestans cell nuclei, using immunocytochemistry. The effect of different concentrations of the histone deacetylase inhibitors valproic acid (VPA) and sodium butyrate (NaBt) on chromocenter condensation was visually examined; in VPA-treated specimens, this effect was also analyzed by image analysis. Trimethylated H3K9 signals, which were revealed in chromocenter and non-chromocenter areas, were strongest in chromocenters, whereas selected acetylated histone marks and mono- and dimethylated H3K9 and H4K20 signals were detected only in euchromatin. Weak trimethylated H4K20 signals and variable distribution of HP1-α were detected in chromocenters of part of the cellular population analyzed. Although specific VPA and NaBt treatment conditions affected the heterochromatin condensation pattern, they did not induce a decrease in survival and molting rates of the T. infestans nymphs. The VPA-induced chromatin remodeling was not accompanied by induction of H3K9 acetylation in chromocenters. Present findings regarding histone modifications and effects following VPA or NaBt treatments did not yet solve the question of which factors are responsible for maintenance of the condensed state of chromocenters in T. infestans. A possibility requiring further investigation remains on histone methylation marks and/or non-histone proteins. PMID:27079857

  20. Structural insights into the regulation and the recognition of histone marks by the SET domain of NSD1

    SciTech Connect

    Morishita, Masayo; Di Luccio, Eric

    2011-08-26

    Highlights: {yields} NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 are histone methyltransferases linked to numerous cancers. {yields} Little is known about the NSD pathways and HMTase inhibitors are sorely needed in the epigenetic therapy of cancers. {yields} We investigate the regulation and the recognition of histone marks by the SET domain of NSD1. {yields} A unique and key mechanism is driven by a loop at the interface of the SET and postSET region. {yields} Implications for developing specific and selective HMTase inhibitors are presented. -- Abstract: The development of epigenetic therapies fuels cancer hope. DNA-methylation inhibitors, histone-deacetylase and histone-methyltransferase (HMTase) inhibitors are being developed as the utilization of epigenetic targets is emerging as an effective and valuable approach to chemotherapy as well as chemoprevention of cancer. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 that are critical in maintaining the chromatin integrity. A growing number of studies have reported alterations or amplifications of NSD1, NSD2, or NSD3 in numerous carcinogenic events. Reducing NSDs activity through specific lysine-HMTase inhibitors appears promising to help suppressing cancer growth. However, little is known about the NSD pathways and our understanding of the histone lysine-HMTase mechanism is partial. To shed some light on both the recognition and the regulation of epigenetic marks by the SET domain of the NSD family, we investigate the structural mechanisms of the docking of the histone-H4 tail on the SET domain of NSD1. Our finding exposes a key regulatory and recognition mechanism driven by the flexibility of a loop at the interface of the SET and postSET region. Finally, we prospect the special value of this regulatory region for developing specific and selective NSD inhibitors for the epigenetic therapy of cancers.

  1. Histone Methylation Marks on Circulating Nucleosomes as Novel Blood-Based Biomarker in Colorectal Cancer

    PubMed Central

    Gezer, Ugur; Yörüker, Ebru E.; Keskin, Metin; Kulle, Cemil Burak; Dharuman, Yoganiranjana; Holdenrieder, Stefan

    2015-01-01

    Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer as potential non-invasive biomarkers, as stable structure in circulation nucleosomes could be valuable sources for detection of cancer-specific alterations in histone modifications. Our interest is in histone methylation marks with a focus on colorectal cancer, one of the leading cancers respective the incidence and mortality. Our previous work included the analysis of trimethylations of lysine 9 on histone 3 (H3K9me3) and of lysine 20 on histone 4 (H4K20me3) by chromatin immuno- precipitation-related PCR in circulating nucleosomes. Here we asked whether global immunologic measurement of histone marks in circulation could be a suitable approach to show their potential as biomarkers. In addition to H3K9me3 and H4K20me3 we also measured H3K27me3 in plasma samples from CRC patients (n = 63) and cancer free individuals (n = 40) by ELISA-based methylation assays. Our results show that of three marks, the amounts of H3K27me3 (p = 0.04) and H4K20me3 (p < 0.001) were significantly lower in CRC patients than in healthy controls. For H3K9me3 similar amounts were measured in both groups. Areas under the curve (AUC) in receiver operating characteristic (ROC) curves indicating the power of CRC detection were 0.620 for H3K27me3, 0.715 for H4K20me3 and 0.769 for the combination of both markers. In conclusion, findings of this preliminary study reveal the potential of blood-based detection of CRC by quantification of histone methylation marks and the additive effect of the marker combination. PMID:26690425

  2. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information. PMID:25299455

  3. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  4. Absence of canonical active chromatin marks in developmentally regulated genes

    PubMed Central

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  5. Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development

    PubMed Central

    2014-01-01

    enriched on nucleosomes containing both active and repressive histone PTMs in human A549 cells and Xenopus embryos. Conclusions Significantly, we demonstrated that H2A phosphorylation and H4 arginine methylation form a new class of bona fide pre-deposition modifications in the vertebrate embryo. We show that S1ph and R3me containing chromatin domains are not correlated with H3 regulatory PTMs, suggesting a unique role for phosphorylation and arginine methylation. PMID:25302076

  6. Functional responses and molecular mechanisms involved in histone-mediated platelet activation.

    PubMed

    Carestia, A; Rivadeneyra, L; Romaniuk, M A; Fondevila, C; Negrotto, S; Schattner, M

    2013-11-01

    Histones are highly alkaline proteins found in cell nuclei and they can be released by either dying or inflammatory cells. The recent observations that histones are major components of neutrophil extracellular traps and promote platelet aggregation and platelet-dependent thrombin generation have shown that these proteins are potent prothrombotic molecules. Because the mechanism(s) of platelet activation by histones are not completely understood, we explored the ability of individual recombinant human histones H1, H2A, H2B, H3 and H4 to induce platelet activation as well as the possible molecular mechanisms involved. All histones were substrates for platelet adhesion and spreading and triggered fibrinogen binding, aggregation, von Willebrand factor release, P-selectin and phosphatidylserine (PS) exposure and the formation of platelet-leukocyte aggregates; however, H4 was the most potent. Histone-mediated fibrinogen binding, P-selectin and PS exposure and the formation of mixed aggregates were potentiated by thrombin. Histones induced the activation of ERK, Akt, p38 and NFκB. Accordingly, histone-induced platelet activation was significantly impaired by pretreatment of platelets with inhibitors of ERK (U 0126), PI3K/Akt (Ly 294002), p38 (SB 203580) and NFκB (BAY 11-7082 and Ro 106-9920). Preincubation of platelets with either aspirin or dexamethasone markedly decreased fibrinogen binding and the adhesion mediated by histones without affecting P-selectin exposure. Functional platelet responses induced by H3 and H4, but not H1, H2A and H2B, were partially mediated through interaction with Toll-like receptors -2 and -4. Our data identify histones as important triggers of haemostatic and proinflammatory platelet responses, and only haemostatic responses are partially inhibited by anti-inflammatory drugs. PMID:23965842

  7. Promoter-restricted histone code, not the differentially methylated DNA regions or antisense transcripts, marks the imprinting status of IGF2R in human and mouse.

    PubMed

    Vu, Thanh H; Li, Tao; Hoffman, Andrew R

    2004-10-01

    Imprinting of the mouse Igf2r depends upon an intronic differentially methylated DNA region (DMR) and the presence of the Air antisense transcript. However, biallelic expression of mouse Igf2r in brain occurs despite the presence of Air, and biallelic expression of human IGF2R in peripheral tissues occurs despite the presence of an intronic DMR. We examined histone modifications throughout the mouse and human Igf2r/IGF2R using chromatin immuno-precipitation (ChIP) assays in combination with quantitative real time PCR. Methylation of Lys4 and Lys9 of histone H3 in the promoter regions marks the active and silenced alleles, respectively. We measured di- and tri-methyl Lys4 and Lys9 across the Igf2r and Air promoters. While both di- and tri-methyl Lys4 marked the active Igf2r and the active Air allele, tri-methyl Lys9, but not di-methyl Lys9, marked the suppressed Air allele. We show here that enrichment of parental allele-specific histone modifications in the promoter region, rather than the presence of DNA methylation or antisense transcription, correctly identifies the tissue- and species- specific imprinting status of Igf2r/IGF2R. We discuss these findings in light of recent progress in identifying specific components of the epigenetic marks in imprinted genes. PMID:15294879

  8. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators

    PubMed Central

    Hassan, Ahmed H.; Awad, Salma; Al-Natour, Zeina; Othman, Samah; Mustafa, Farah; Rizvi, Tahir A.

    2006-01-01

    Bromodomains are present in many chromatin-associated proteins such as the SWI/SNF and RSC chromatin remodelling and the SAGA HAT (histone acetyltransferase) complexes, and can bind to acetylated lysine residues in the N-terminal tails of the histones. Lysine acetylation is a histone modification that forms a stable epigenetic mark on chromatin for bromodomain-containing proteins to dock and in turn regulate gene expression. In order to better understand how bromodomains read the ‘histone code’ and interact with acetylated histones, we have tested the interactions of several bromodomains within transcriptional co-activators with differentially acetylated histone tail peptides and HAT-acetylated histones. Using GST (glutathione S-transferase) pull-down assays, we show specificity of binding of some bromodomains to differentially acetylated H3 and H4 peptides as well as HAT-acetylated histones. Our results reveal that the Swi2/Snf2 bromodomain interacts with various acetylated H3 and H4 peptides, whereas the Gcn5 bromodomain interacts only with acetylated H3 peptides and tetra-acetylated H4 peptides. Additionally we show that the Spt7 bromodomain interacts with acetylated H3 peptides weakly, but not with acetylated H4 peptides. Some bromodomains such as the Bdf1-2 do not interact with most of the acetylated peptides tested. Results of the peptide experiments are confirmed with tests of interactions between these bromodomains and HAT-acetylated histones. Furthermore, we demonstrate that the Swi2/Snf2 bromodomain is important for the binding and the remodelling activity of the SWI/SNF complex on hyperacetylated nucleosomes. The selective recognition of the bromodomains observed in the present study accounts for the broad effects of bromodomain-containing proteins observed on binding to histones. PMID:17049045

  9. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes.

    PubMed

    Neumann, Pavel; Schubert, Veit; Fuková, Iva; Manning, Jasper E; Houben, Andreas; Macas, Jiří

    2016-01-01

    Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes. PMID:26973677

  10. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes

    PubMed Central

    Neumann, Pavel; Schubert, Veit; Fuková, Iva; Manning, Jasper E.; Houben, Andreas; Macas, Jiří

    2016-01-01

    Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes. PMID:26973677

  11. Cadmium Induces Histone H3 Lysine Methylation by Inhibiting Histone Demethylase Activity

    PubMed Central

    Xiao, Chunlian; Liu, Yin; Xie, Chengfeng; Tu, Wei; Xia, Yujie; Costa, Max; Zhou, Xue

    2015-01-01

    Cadmium is an established human lung carcinogen with weak mutagenicity. However, the mechanisms underlying cadmium-induced carcinogenesis remain obscure. It has been suggested that epigenetic mechanisms may play a role in cadmium-induced carcinogenesis. In this study, we investigated the effects of cadmium on histone methylation and histone demethylases, and the role of histone methylation in transformation of immortalized normal human bronchial epithelial (BEAS-2B) cells. Exposure to 0.625, 1.25, 2.5, and 5.0 μM of cadmium for 6, 24, and 48 h increased global trimethylated histone H3 on lysine 4 (H3K4me3) and dimethylated histone H3 on lysine 9 (H3K9me2) in BEAS-2B cells compared with untreated cells, and most of these changes remained after the removal of cadmium (P < .05 or P < .01 for most modifications). Meanwhile, cadmium inhibited the activities of histone H3 on lysine 4 (H3K4) and histone H3 on lysine 9 (H3K9) demethylases which were detected by histone demethylation assay. However, there was no significant change in the protein levels of the H3K4 demethylase lysine-specific demethylase 5A (KDM5A) and the H3K9 demethylase lysine-specific demethylase 3A (KDM3A). Interestingly, during transformation of BEAS-2B cells by 20 weeks of exposure to 2.0 μM cadmium as assessed by anchorage-independent growth in soft agar, global H3K4me3, and H3K9me2 were significantly increased at 4 weeks (P < .05 or P < .01), whereas no significant change was observed at 8, 12, 16, and 20 weeks compared with control. Our study suggests that cadmium increases global H3K4me3 and H3K9me2 by inhibiting the activities of histone demethylases, and aberrant histone methylation that occurs early (48 h) and at 4 weeks is associated with cadmium-induced transformation of BEAS-2B cells at the early stage. PMID:25673502

  12. ZMYND8 Reads the Dual Histone Mark H3K4me1-H3K14ac to Antagonize the Expression of Metastasis-Linked Genes.

    PubMed

    Li, Na; Li, Yuanyuan; Lv, Jie; Zheng, Xiangdong; Wen, Hong; Shen, Hongjie; Zhu, Guangjing; Chen, Tsai-Yu; Dhar, Shilpa S; Kan, Pu-Yeh; Wang, Zhibin; Shiekhattar, Ramin; Shi, Xiaobing; Lan, Fei; Chen, Kaifu; Li, Wei; Li, Haitao; Lee, Min Gyu

    2016-08-01

    Histone acetylation, including acetylated H3K14 (H3K14ac), is generally linked to gene activation. Monomethylated histone H3 lysine 4 (H3K4me1), together with other gene-activating marks, denotes active genes. In contrast to usual gene-activating functions of H3K14ac and H3K4me1, we here show that the dual histone modification mark H3K4me1-H3K14ac is recognized by ZMYND8 (also called RACK7) and can function to counteract gene expression. We identified ZMYND8 as a transcriptional corepressor of the H3K4 demethylase JARID1D. ZMYND8 antagonized the expression of metastasis-linked genes, and its knockdown increased the cellular invasiveness in vitro and in vivo. The plant homeodomain (PHD) and Bromodomain cassette in ZMYND8 mediated the combinatorial recognition of H3K4me1-H3K14ac and H3K4me0-H3K14ac by ZMYND8. These findings uncover an unexpected role for the signature H3K4me1-H3K14ac in attenuating gene expression and reveal a metastasis-suppressive epigenetic mechanism in which ZMYND8's PHD-Bromo cassette couples H3K4me1-H3K14ac with downregulation of metastasis-linked genes. PMID:27477906

  13. Balancing Histone Methylation Activities in Psychiatric Disorders

    PubMed Central

    Peter, Cyril Jayakumar; Akbarian, Schahram

    2011-01-01

    Alterations in histone lysine methylation and other epigenetic regulators of gene expression contribute to changes in brain transcriptomes in mood and psychosis spectrum disorders, including depression and schizophrenia. Genetic association studies and animal models implicate multiple lysine methyltransferases (KMTs) and demethylases (KDMs) in the neurobiology of emotion and cognition. Here, we review the role of histone lysine methylation and transcriptional regulation in normal and diseased neurodevelopment and discuss various KMTs and KDMs as potential therapeutic targets in the treatment of neuropsychiatric disease. PMID:21429800

  14. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters.

    PubMed

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G; Zhao, Yingming; Khochbin, Saadi

    2016-04-21

    Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  15. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters

    PubMed Central

    Goudarzi, Afsaneh; Zhang, Di; Huang, He; Barral, Sophie; Kwon, Oh Kwang; Qi, Shankang; Tang, Zhanyun; Buchou, Thierry; Vitte, Anne-Laure; He, Tieming; Cheng, Zhongyi; Montellier, Emilie; Gaucher, Jonathan; Curtet, Sandrine; Debernardi, Alexandra; Charbonnier, Guillaume; Puthier, Denis; Petosa, Carlo; Panne, Daniel; Rousseaux, Sophie; Roeder, Robert G.; Zhao, Yingming; Khochbin, Saadi

    2016-01-01

    Summary Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features. PMID:27105113

  16. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3

    PubMed Central

    Lindroth, Anders M; Shultis, David; Jasencakova, Zuzana; Fuchs, Jörg; Johnson, Lianna; Schubert, Daniel; Patnaik, Debasis; Pradhan, Sriharsa; Goodrich, Justin; Schubert, Ingo; Jenuwein, Thomas; Khorasanizadeh, Sepideh; Jacobsen, Steven E

    2004-01-01

    Both DNA methylation and post-translational histone modifications contribute to gene silencing, but the mechanistic relationship between these epigenetic marks is unclear. Mutations in two Arabidopsis genes, the KRYPTONITE (KYP) histone H3 lysine 9 (H3K9) methyltransferase and the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase, cause a reduction of CNG DNA methylation, suggesting that H3K9 methylation controls CNG DNA methylation. Here we show that the chromodomain of CMT3 can directly interact with the N-terminal tail of histone H3, but only when it is simultaneously methylated at both the H3K9 and H3K27 positions. Furthermore, using chromatin immunoprecipitation analysis and immunohistolocalization experiments, we found that H3K27 methylation colocalizes with H3K9 methylation at CMT3-controlled loci. The H3K27 methylation present at heterochromatin was not affected by mutations in KYP or in several Arabidopsis PcG related genes including the Enhancer of Zeste homologs, suggesting that a novel pathway controls heterochromatic H3K27 methylation. Our results suggest a model in which H3K9 methylation by KYP, and H3K27 methylation by an unknown enzyme provide a combinatorial histone code for the recruitment of CMT3 to silent loci.

  17. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    PubMed Central

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  18. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    PubMed

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  19. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation.

    PubMed

    Li, Zhenfei; Nie, Fen; Wang, Sheng; Li, Lin

    2011-02-22

    Histone methylation has an important role in transcriptional regulation. However, unlike H3K4 and H3K9 methylation, the role of H4K20 monomethylation (H4K20me-1) in transcriptional regulation remains unclear. Here, we show that Wnt3a specifically stimulates H4K20 monomethylation at the T cell factor (TCF)-binding element through the histone methylase SET8. Additionally, SET8 is crucial for activation of the Wnt reporter gene and target genes in both mammalian cells and zebrafish. Furthermore, SET8 interacts with lymphoid enhancing factor-1 (LEF1)/TCF4 directly, and this interaction is regulated by Wnt3a. Therefore, we conclude that SET8 is a Wnt signaling mediator and is recruited by LEF1/TCF4 to regulate the transcription of Wnt-activated genes, possibly through H4K20 monomethylation at the target gene promoters. Our findings also indicate that H4K20me-1 is a marker for gene transcription activation, at least in canonical Wnt signaling. PMID:21282610

  20. Histone phosphorylation

    PubMed Central

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-01-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes. PMID:22948226

  1. Chemical tools for probing histone deacetylase (HDAC) activity.

    PubMed

    Minoshima, Masafumi; Kikuchi, Kazuya

    2015-01-01

    Histone deacetylases (HDACs) enzymes are responsible for removing epigenetic markers on histone proteins, which results in chromatin inactivation and gene repression. An evaluation of HDAC activity is essential for not only determining the physiological function of HDACs, but also for developing HDAC-targeting drugs. This review focuses on the chemical tools used to detect HDAC activity. We highlight activity-based probes and positron emission tomography probes based on the chemical structure of the inhibitors. We also summarize fluorogenic probes used in single-step methods for HDAC detection. These fluorogenic probes are designed based on the nucleophilicity of the amino group, aggregation via electrostatic interactions, and changes in the DNA binding properties. These fluorogenic systems may enable facile and rapid screening to evaluate HDAC inhibitors, which will contribute to the development of epigenetic drugs. PMID:25864671

  2. Histone mono-ubiquitination by a Clock–Bmal1 complex marks Per1 and Per2 genes for circadian feedback

    PubMed Central

    Tamayo, Alfred G.; Duong, Hao A.; Robles, Maria S.; Mann, Matthias; Weitz, Charles J.

    2015-01-01

    Circadian rhythms in mammals are driven by a feedback loop in which the transcription factor Clock–Bmal1 activates expression of Per and Cry proteins, which together form a large nuclear complex (Per complex) that represses Clock–Bmal1 activity. We found that mouse Clock–Bmal1 recruits the Ddb1–Cullin-4 ubiquitin ligase to Per, Cry, and other circadian target genes. Histone 2B mono-ubiquitination at Per genes was rhythmic and depended on Bmal1, Ddb1, and Cullin-4a. Depletion of Ddb1–Cullin-4a or independent reduction of Histone 2B mono-ubiquitination caused defective circadian feedback and reduced the association of the Per complex with DNA-bound Clock–Bmal1. Clock–Bmal1 thus covalently marks Per genes for subsequent recruitment of the Per complex. Our results reveal a chromatin-mediated signal from the positive to the negative limb of the clock that provides a licensing mechanism for circadian feedback. PMID:26323038

  3. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity.

    PubMed

    Yin, Jie; Leavenworth, Jianmei W; Li, Yang; Luo, Qi; Xie, Huafeng; Liu, Xinhua; Huang, Shan; Yan, Han; Fu, Zheng; Zhang, Liyun Y; Zhang, Litao; Hao, Junwei; Wu, Xudong; Deng, Xianming; Roberts, Charles W M; Orkin, Stuart H; Cantor, Harvey; Wang, Xi

    2015-12-29

    Changes of histone modification status at critical lineage-specifying gene loci in multipotent precursors can influence cell fate commitment. The contribution of these epigenetic mechanisms to natural killer (NK) cell lineage determination from common lymphoid precursors is not understood. Here we investigate the impact of histone methylation repressive marks (H3 Lys27 trimethylation; H3K27(me3)) on early NK cell differentiation. We demonstrate that selective loss of the histone-lysine N-methyltransferase Ezh2 (enhancer of zeste homolog 2) or inhibition of its enzymatic activity with small molecules unexpectedly increased generation of the IL-15 receptor (IL-15R) CD122(+) NK precursors and mature NK progeny from both mouse and human hematopoietic stem and progenitor cells. Mechanistic studies revealed that enhanced NK cell expansion and cytotoxicity against tumor cells were associated with up-regulation of CD122 and the C-type lectin receptor NKG2D. Moreover, NKG2D deficiency diminished the positive effects of Ezh2 inhibitors on NK cell commitment. Identification of the contribution of Ezh2 to NK lineage specification and function reveals an epigenetic-based mechanism that regulates NK cell development and provides insight into the clinical application of Ezh2 inhibitors in NK-based cancer immunotherapies. PMID:26668377

  4. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity

    PubMed Central

    Yin, Jie; Leavenworth, Jianmei W.; Li, Yang; Luo, Qi; Xie, Huafeng; Liu, Xinhua; Huang, Shan; Yan, Han; Fu, Zheng; Zhang, Liyun Y.; Zhang, Litao; Hao, Junwei; Wu, Xudong; Deng, Xianming; Roberts, Charles W. M.; Orkin, Stuart H.; Cantor, Harvey; Wang, Xi

    2015-01-01

    Changes of histone modification status at critical lineage-specifying gene loci in multipotent precursors can influence cell fate commitment. The contribution of these epigenetic mechanisms to natural killer (NK) cell lineage determination from common lymphoid precursors is not understood. Here we investigate the impact of histone methylation repressive marks (H3 Lys27 trimethylation; H3K27me3) on early NK cell differentiation. We demonstrate that selective loss of the histone-lysine N-methyltransferase Ezh2 (enhancer of zeste homolog 2) or inhibition of its enzymatic activity with small molecules unexpectedly increased generation of the IL-15 receptor (IL-15R) CD122+ NK precursors and mature NK progeny from both mouse and human hematopoietic stem and progenitor cells. Mechanistic studies revealed that enhanced NK cell expansion and cytotoxicity against tumor cells were associated with up-regulation of CD122 and the C-type lectin receptor NKG2D. Moreover, NKG2D deficiency diminished the positive effects of Ezh2 inhibitors on NK cell commitment. Identification of the contribution of Ezh2 to NK lineage specification and function reveals an epigenetic-based mechanism that regulates NK cell development and provides insight into the clinical application of Ezh2 inhibitors in NK-based cancer immunotherapies. PMID:26668377

  5. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    SciTech Connect

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-04-15

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis.

  6. Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939

    PubMed Central

    Sumanadasa, Subathdrage D. M.; Goodman, Christopher D.; Lucke, Andrew J.; Skinner-Adams, Tina; Sahama, Ishani; Haque, Ashraful; Do, Tram Anh; McFadden, Geoffrey I.; Fairlie, David P.

    2012-01-01

    Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria. PMID:22508312

  7. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  8. Distinct patterns of the histone marks associated with recruitment of the methionine chain-elongation pathway from leucine biosynthesis.

    PubMed

    Xue, Ming; Long, Jingcheng; Jiang, Qinlong; Wang, Minghui; Chen, Sixue; Pang, Qiuying; He, Yan

    2015-02-01

    Aliphatic glucosinolates (GLSs) are derived from chain-elongated methionine produced by an iterative three-step process, known to be evolutionarily recruited from leucine biosynthesis. The divergence of homologous genes between two pathways is mainly linked to the alterations in biochemical features. In this study, it was discovered that a distinct pattern of histone modifications is associated with and/or contributes to the divergence of the two pathways. In general, genes involved in leucine biosynthesis were robustly associated with H3k4me2 and H3K4me3. In contrast, despite the considerable abundances of H3K4me2 observed in some of genes involved in methionine chain elongation, H3K4me3 was completely missing. This H3K4m3-depleted pattern had no effect on gene transcription, whereas it seemingly co-evolved with the entire pathway of aliphatic GLS biosynthesis. The results reveal a novel association of the epigenetic marks with plant secondary metabolism, and may help to understand the recruitment of the methionine chain-elongation pathway from leucine biosynthesis. PMID:25428994

  9. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    SciTech Connect

    Pena, AndreAna N.; Tominaga, Kaoru; Pereira-Smith, Olivia M.

    2011-07-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  10. H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in Drosophila and rat.

    PubMed

    Dottermusch-Heidel, Christine; Gärtner, Stefanie M K; Tegeder, Isabel; Rathke, Christina; Barckmann, Bridlin; Bartkuhn, Marek; Bhushan, Sudhanshu; Steger, Klaus; Meinhardt, Andreas; Renkawitz-Pohl, Renate

    2014-01-01

    During spermiogenesis, haploid spermatids undergo extensive chromatin remodeling events in which histones are successively replaced by more basic protamines to generate highly compacted chromatin. Here we show for the first time that H3K79 methylation is a conserved feature preceding the histone-to-protamine transition in Drosophila melanogaster and rat. During Drosophila spermatogenesis, the Dot1-like methyltransferase Grappa (Gpp) is primarily expressed in canoe stage nuclei. The corresponding H3K79 methylation is a histone modification that precedes the histone-to-protamine transition and correlates with histone H4 hyperacetylation. When acetylation was inhibited in cultured Drosophila testes, nuclei were smaller and chromatin was compact, Gpp was little synthesized, H3K79 methylation was strongly reduced, and protamines were not synthesized. The Gpp isoform Gpp-D has a unique C-terminus, and Gpp is essential for full fertility. In rat, H3K79 methylation also correlates with H4 hyperacetylation but not with active RNA polymerase II, which might point towards a conserved function in chromatin remodeling during the histone-to-protamine transition in both Drosophila and rat. PMID:24795146

  11. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres

    PubMed Central

    Udugama, Maheshi; M. Chang, Fiona T.; Chan, F. Lyn; Tang, Michelle C.; Pickett, Hilda A.; R. McGhie, James D.; Mayne, Lynne; Collas, Philippe; Mann, Jeffrey R.; Wong, Lee H.

    2015-01-01

    In addition to being a hallmark at active genes, histone variant H3.3 is deposited by ATRX at repressive chromatin regions, including the telomeres. It is unclear how H3.3 promotes heterochromatin assembly. We show that H3.3 is targeted for K9 trimethylation to establish a heterochromatic state enriched in trimethylated H3.3K9 at telomeres. In H3f3a−/− and H3f3b−/− mouse embryonic stem cells (ESCs), H3.3 deficiency results in reduced levels of H3K9me3, H4K20me3 and ATRX at telomeres. The H3f3b−/− cells show increased levels of telomeric damage and sister chromatid exchange (t-SCE) activity when telomeres are compromised by treatment with a G-quadruplex (G4) DNA binding ligand or by ASF1 depletion. Overexpression of wild-type H3.3 (but not a H3.3K9 mutant) in H3f3b−/− cells increases H3K9 trimethylation level at telomeres and represses t-SCE activity induced by a G4 ligand. This study demonstrates the importance of H3.3K9 trimethylation in heterochromatin formation at telomeres. It provides insights into H3.3 function in maintaining integrity of mammalian constitutive heterochromatin, adding to its role in mediating transcription memory in the genome. PMID:26304540

  12. Replication-dependent histone genes are actively transcribed in differentiating and aging retinal neurons.

    PubMed

    Banday, Abdul Rouf; Baumgartner, Marybeth; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Venkatesh, Aditya; Congdon, Sean; Lemoine, Christopher; Kilcollins, Ashley M; Mandoiu, Ion; Punzo, Claudio; Kanadia, Rahul N

    2014-01-01

    In the mammalian genome, each histone family contains multiple replication-dependent paralogs, which are found in clusters where their transcription is thought to be coupled to the cell cycle. Here, we wanted to interrogate the transcriptional regulation of these paralogs during retinal development and aging. We employed deep sequencing, quantitative PCR, in situ hybridization (ISH), and microarray analysis, which revealed that replication-dependent histone genes were not only transcribed in progenitor cells but also in differentiating neurons. Specifically, by ISH analysis we found that different histone genes were actively transcribed in a subset of neurons between postnatal day 7 and 14. Interestingly, within a histone family, not all paralogs were transcribed at the same level during retinal development. For example, expression of Hist1h1b was higher embryonically, while that of Hist1h1c was higher postnatally. Finally, expression of replication-dependent histone genes was also observed in the aging retina. Moreover, transcription of replication-dependent histones was independent of rapamycin-mediated mTOR pathway inactivation. Overall, our data suggest the existence of variant nucleosomes produced by the differential expression of the replication-dependent histone genes across retinal development. Also, the expression of a subset of replication-dependent histone isotypes in senescent neurons warrants re-examining these genes as "replication-dependent." Thus, our findings underscore the importance of understanding the transcriptional regulation of replication-dependent histone genes in the maintenance and functioning of neurons. PMID:25486194

  13. Activation and Inhibition of Histone Deacetylase 8 by Monovalent Cations*

    PubMed Central

    Gantt, Stephanie L.; Joseph, Caleb G.; Fierke, Carol A.

    2010-01-01

    The metal-dependent histone deacetylases (HDACs) catalyze hydrolysis of acetyl groups from acetyllysine side chains and are targets of cancer therapeutics. Two bound monovalent cations (MVCs) of unknown function have been previously observed in crystal structures of HDAC8; site 1 is near the active site, whereas site 2 is located >20 Å from the catalytic metal ion. Here we demonstrate that one bound MVC activates catalytic activity (K1/2 = 3.4 mm for K+), whereas the second, weaker-binding MVC (K1/2 = 26 mm for K+) decreases catalytic activity by 11-fold. The weaker binding MVC also enhances the affinity of the HDAC inhibitor suberoylanilide hydroxamic acid by 5-fold. The site 1 MVC is coordinated by the side chain of Asp-176 that also forms a hydrogen bond with His-142, one of two histidines important for catalytic activity. The D176A and H142A mutants each increase the K1/2 for potassium inhibition by ≥40-fold, demonstrating that the inhibitory cation binds to site 1. Furthermore, the MVC inhibition is mediated by His-142, suggesting that this residue is protonated for maximal HDAC8 activity. Therefore, His-142 functions either as an electrostatic catalyst or a general acid. The activating MVC binds in the distal site and causes a time-dependent increase in activity, suggesting that the site 2 MVC stabilizes an active conformation of the enzyme. Sodium binds more weakly to both sites and activates HDAC8 to a lesser extent than potassium. Therefore, it is likely that potassium is the predominant MVC bound to HDAC8 in vivo. PMID:20029090

  14. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo

    PubMed Central

    Kuo, Min-Hao; Zhou, Jianxin; Jambeck, Per; Churchill, Mair E.A.; Allis, C. David

    1998-01-01

    Gcn5p is a transcriptional coactivator required for correct expression of various genes in yeast. Several transcriptional regulators, including Gcn5p, possess intrinsic histone acetyltransferase (HAT) activity in vitro. However, whether the HAT activity of any of these proteins is required for gene activation remains unclear. Here, we demonstrate that the HAT activity of Gcn5p is critical for transcriptional activation of target genes in vivo. Core histones are hyperacetylated in cells overproducing functional Gcn5p, and promoters of Gcn5p-regulated genes are associated with hyperacetylated histones upon activation by low-copy Gcn5p. Point mutations within the Gcn5p catalytic domain abolish both promoter-directed histone acetylation and Gcn5p-mediated transcriptional activation. These data provide the first in vivo evidence that promoter-specific histone acetylation, catalyzed by functional Gcn5p, plays a critical role in gene activation. PMID:9499399

  15. Upregulation in response to infection and antibacterial activity of oyster histone H4.

    PubMed

    Dorrington, Tarquin; Villamil, Luisa; Gómez-chiarri, Marta

    2011-01-01

    Several histones and histone-derived peptides have been shown to have antimicrobial activity and a potential role in innate immune defenses. A histone H4 sequence was identified in a subtractive suppression library containing genes upregulated in American cupped oysters, Crassostrea virginica, in response to challenge with the protozoan parasite Perkinsus marinus. Oyster histone H4 protein levels significantly increased in hemocyte lysates and cell free hemolymph of oysters experimentally challenged with P. marinus. The complete histone H4 coding sequence of C. virginica was cloned into a Saccharomyces cerevisiae yeast expression system and recombinant expression was confirmed using SDS-PAGE analysis and western blot. Delivery of yeast cells expressing recombinant oyster histone H4 into the gut of brine shrimp, Artemia salinas, challenged with a streptomycin resistant strain of Vibrio anguillarum resulted in a significant and dose-dependent decrease in the load of V. anguillarum. Purified recombinant histone H4 showed antimicrobial activity against V. anguillarum and Escherichia coli at micromolar concentrations, but did not affect the viability of P. marinus in culture. These results support the role of histone H4 in the defense of oysters against bacterial infection and validate the use of a novel oyster antimicrobial H4 in a yeast feed-based delivery system for the treatment of bacterial infections in aquaculture applications. PMID:20883794

  16. Urine marking in male common voles: does behavioural activity matter?

    PubMed

    Lantová, Petra; Brixová, Lenka; Lanta, Vojtěch

    2012-06-01

    Rodent urine provides animals with a large amount of information, from the identity of the animal through its physical condition to social status. Many studies therefore focus on rodent urine-marking behaviour and use marking frequency as an indicator of social status or competitive ability. However, marking, like many other aspects of rodent behaviour, may be affected by individual behavioural activity, a factor that has not been examined so far. We therefore studied a relationship between male urine-marking in reaction to another male's marks (standard opponent) and individual personality profile, characterised by behavioural activity in an open field test (OFT). The marking appeared to be consistent and specific for particular individuals as there was a significant positive relationship between individual markings in two different phases of the experiment. The linkage between behavioural activity in the OFT and urine-marking frequency was non-linear (quadratic), which suggested that males with intermediate activity marked more intensively than males from the extremes of the behavioural spectra. The relationship between the opponent's and the tested males' markings was positive, however, we found no statistically significant evidence that the voles would attempt to overmark the opponent. Marking thus seems to have more of a self-advertising than a competitive function in the common vole. Further, as high marking activity is under strong intra- or intersexual selection, the result might suggest a stabilising selection of the personality trait described as behavioural activity in our study. PMID:22285890

  17. Unexpected Histone H3 Tail-clipping Activity of Glutamate Dehydrogenase*

    PubMed Central

    Mandal, Papita; Verma, Naveen; Chauhan, Sakshi; Tomar, Raghuvir S.

    2013-01-01

    Clipping of histone tails has been reported in several organisms. However, the significance and regulation of histone tail clipping largely remains unclear. According to recent discoveries H3 clipping has been found to be involved in regulation of gene expression and chromatin dynamics. Earlier we had provided evidence of tissue-specific proteolytic processing of histone H3 in White Leghorn chicken liver nuclei. In this study we identify a novel activity of glutamate dehydrogenase (GDH) as a histone H3-specific protease in chicken liver tissue. This protease activity is regulated by divalent ions and thiol-disulfide conversion in vitro. GDH specifically clips H3 in its free as well as chromatin-bound form. Furthermore, we have found an inhibitor that inhibits the H3-clipping activity of GDH. Like previously reported proteases, GDH too may have the potential to regulate/modulate post-translational modifications of histone H3 by removing the N-terminal residues of the histone. In short, our findings identify an unexpected proteolytic activity of GDH specific to histone H3 that is regulated by redox state, ionic concentrations, and a cellular inhibitor in vitro. PMID:23673664

  18. Regulation of Arabidopsis Flowering by the Histone Mark Readers MRG1/2 via Interaction with CONSTANS to Modulate FT Expression

    PubMed Central

    Liu, Yanchao; Jiang, Wen; Huang, Ying; Dong, Ai-Wu

    2014-01-01

    Day-length is important for regulating the transition to reproductive development (flowering) in plants. In the model plant Arabidopsis thaliana, the transcription factor CONSTANS (CO) promotes expression of the florigen FLOWERING LOCUS T (FT), constituting a key flowering pathway under long-day photoperiods. Recent studies have revealed that FT expression is regulated by changes of histone modification marks of the FT chromatin, but the epigenetic regulators that directly interact with the CO protein have not been identified. Here, we show that the Arabidopsis Morf Related Gene (MRG) group proteins MRG1 and MRG2 act as H3K4me3/H3K36me3 readers and physically interact with CO to activate FT expression. In vitro binding analyses indicated that the chromodomains of MRG1 and MRG2 preferentially bind H3K4me3/H3K36me3 peptides. The mrg1 mrg2 double mutant exhibits reduced mRNA levels of FT, but not of CO, and shows a late-flowering phenotype under the long-day but not short-day photoperiod growth conditions. MRG2 associates with the chromatin of FT promoter in a way dependent of both CO and H3K4me3/H3K36me3. Vice versa, loss of MRG1 and MRG2 also impairs CO binding at the FT promoter. Crystal structure analyses of MRG2 bound with H3K4me3/H3K36me3 peptides together with mutagenesis analysis in planta further demonstrated that MRG2 function relies on its H3K4me3/H3K36me3-binding activity. Collectively, our results unravel a novel chromatin regulatory mechanism, linking functions of MRG1 and MRG2 proteins, H3K4/H3K36 methylations, and CO in FT activation in the photoperiodic regulation of flowering time in plants. PMID:25211338

  19. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation

    PubMed Central

    Vicent, Guillermo Pablo; Nacht, A. Silvina; Font-Mateu, Jofre; Castellano, Giancarlo; Gaveglia, Laura; Ballaré, Cecilia; Beato, Miguel

    2011-01-01

    Gene regulation by external signals requires access of transcription factors to DNA sequences of target genes, which is limited by the compaction of DNA in chromatin. Although we have gained insight into how core histones and their modifications influence this process, the role of linker histones remains unclear. Here we show that, within the first minute of progesterone action, a complex cooperation between different enzymes acting on chromatin mediates histone H1 displacement as a requisite for gene induction and cell proliferation. First, activated progesterone receptor (PR) recruits the chromatin remodeling complexes NURF and ASCOM (ASC-2 [activating signal cointegrator-2] complex) to hormone target genes. The trimethylation of histone H3 at Lys 4 by the MLL2/MLL3 subunits of ASCOM, enhanced by the hormone-induced displacement of the H3K4 demethylase KDM5B, stabilizes NURF binding. NURF facilitates the PR-mediated recruitment of Cdk2/CyclinA, which is required for histone H1 displacement. Cooperation of ATP-dependent remodeling, histone methylation, and kinase activation, followed by H1 displacement, is a prerequisite for the subsequent displacement of histone H2A/H2B catalyzed by PCAF and BAF. Chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) and expression arrays show that H1 displacement is required for hormone induction of most hormone target genes, some of which are involved in cell proliferation. PMID:21447625

  20. Gamma irradiation or hydrocortisone treatment of rats increases the proteinase activity associated with histones of thymus nuclei

    SciTech Connect

    Kutsyi, M.P.; Gaziev, A.I.

    1994-11-01

    An increase in the activity of histone-associated rat thymus nucleus proteinases specific for histones H2A, H2B and H1 was shown after {gamma} irradiation or hydrocortisone treatment of animals. Histone H1-specific proteinase activity is dependent on DNA and increases in the presence of denatured DNA, whereas proteinases specific for core histones are inhibited in the presence of denatured DNA. The increase in the activity of histone-associated proteinases depends on the radiation dose and the time after irradiation or hydrocortisone injection. In the presence of dithiothreitol and sodium dodecyl sulfate, these proteinases dissociate from histones. It was found by gel electrophoresis that several proteinases of various molecular masses are closely associated with histones obtained from thymus nuclei of irradiated or hydrocortisone-treated rats. 43 refs., 7 figs.

  1. Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity.

    PubMed Central

    Brickman, T J; Barry, C E; Hackstadt, T

    1993-01-01

    Two DNA-binding proteins with similarity to eukaryotic histone H1 have been described in Chlamydia trachomatis. In addition to the 18-kDa histone H1 homolog Hc1, elementary bodies of C. trachomatis possess an antigenically related histone H1 homolog, which we have termed Hc2, that varies in apparent molecular mass among strains. We report the molecular cloning, expression, and nucleotide sequence of the hctB gene encoding Hc2 and present evidence for in vivo DNA-binding activity of the expressed product. Expression of Hc2 in Escherichia coli induces a compaction of bacterial chromatin that is distinct from that observed upon Hc1 expression. Moreover, isolated nucleoids from Hc2-expressing E. coli exhibit markedly reduced sensitivity to DNase I. These properties of Hc2 are consistent with a postulated role in establishing the nucleoid structure of elementary bodies. Images PMID:7687246

  2. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors. PMID:27173004

  3. In vivo Study of the Histone Chaperone Activity of Nucleolin by FRAP

    PubMed Central

    Gaume, Xavier; Monier, Karine; Argoul, Françoise; Mongelard, Fabien; Bouvet, Philippe

    2011-01-01

    Nucleolin is a major nucleolar protein involved in various aspects of ribosome biogenesis such as regulation of polymerase I transcription, pre-RNA maturation, and ribosome assembly. Nucleolin is also present in the nucleoplasm suggesting that its functions are not restricted to nucleoli. Nucleolin possesses, in vitro, chromatin co-remodeler and histone chaperone activities which could explain numerous functions of nucleolin related to the regulation of gene expression. The goal of this report was to investigate the consequences of nucleolin depletion on the dynamics of histones in live cells. Changes in histone dynamics occurring in nucleolin silenced cells were measured by FRAP experiments on eGFP-tagged histones (H2B, H4, and macroH2A). We found that nuclear histone dynamics was impacted in nucleolin silenced cells; in particular we measured higher fluorescence recovery kinetics for macroH2A and H2B but not for H4. Interestingly, we showed that nucleolin depletion also impacted the dissociation constant rate of H2B and H4. Thus, in live cells, nucleolin could play a role in chromatin accessibility by its histone chaperone and co-remodeling activities. PMID:21403913

  4. In vivo Study of the Histone Chaperone Activity of Nucleolin by FRAP.

    PubMed

    Gaume, Xavier; Monier, Karine; Argoul, Françoise; Mongelard, Fabien; Bouvet, Philippe

    2011-01-01

    Nucleolin is a major nucleolar protein involved in various aspects of ribosome biogenesis such as regulation of polymerase I transcription, pre-RNA maturation, and ribosome assembly. Nucleolin is also present in the nucleoplasm suggesting that its functions are not restricted to nucleoli. Nucleolin possesses, in vitro, chromatin co-remodeler and histone chaperone activities which could explain numerous functions of nucleolin related to the regulation of gene expression. The goal of this report was to investigate the consequences of nucleolin depletion on the dynamics of histones in live cells. Changes in histone dynamics occurring in nucleolin silenced cells were measured by FRAP experiments on eGFP-tagged histones (H2B, H4, and macroH2A). We found that nuclear histone dynamics was impacted in nucleolin silenced cells; in particular we measured higher fluorescence recovery kinetics for macroH2A and H2B but not for H4. Interestingly, we showed that nucleolin depletion also impacted the dissociation constant rate of H2B and H4. Thus, in live cells, nucleolin could play a role in chromatin accessibility by its histone chaperone and co-remodeling activities. PMID:21403913

  5. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives.

    PubMed

    Song, Yongcheng; Wu, Fangrui; Wu, Jingyu

    2016-01-01

    Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed. PMID:27316347

  6. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity1

    PubMed Central

    Kapoor-Vazirani, Priya; Kagey, Jacob D.; Powell, Doris R.; Vertino, Paula M.

    2008-01-01

    Epigenetic silencing of tumor suppressor genes in human cancers is associated with aberrant methylation of promoter region CpG islands and local alterations in histone modifications. However, the mechanisms that drive these events remain unclear. Here, we establish an important role for histone H4 lysine 16 acetylation (H4K16Ac) and the histone acetyltransferase hMOF in the regulation of TMS1/ASC, a proapoptotic gene that undergoes epigenetic silencing in human cancers. In the unmethylated and active state, the TMS1 CpG island is spanned by positioned nucleosomes and marked by histone H3K4 methylation. H4K16Ac was uniquely localized to two sharp peaks that flanked the unmethylated CpG island and corresponded to strongly positioned nucleosomes. Aberrant methylation and silencing of TMS1 was accompanied by loss of the H4K16Ac peaks, loss of nucleosome positioning, hypomethylation of H3K4 and hypermethylation of H3K9. In addition, a single peak of histone H4 lysine 20 trimethylation was observed near the transcription start site. Downregulation of hMOF or another component of the MSL complex resulted in a gene-specific decrease in H4K16Ac, loss of nucleosome positioning and silencing of TMS1. Gene silencing induced by H4K16 deacetylation occurred independently of changes in histone methylation and DNA methylation and was reversed upon hMOF re-expression. These results indicate that the selective marking of nucleosomes flanking the CpG island by hMOF is required to maintain TMS1 gene activity, and suggest that the loss of H4K16Ac, mobilization of nucleosomes and transcriptional downregulation may be important events in the epigenetic silencing of certain tumor suppressor genes in cancer. PMID:18701507

  7. Protein profiling and histone deacetylation activities in somaclonal variants of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Yaacob, Jamilah Syafawati; Loh, Hwei-San; Mat Taha, Rosna

    2013-01-01

    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants. PMID:23844406

  8. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity.

    PubMed Central

    Bab, I; Gazit, D; Chorev, M; Muhlrad, A; Shteyer, A; Greenberg, Z; Namdar, M; Kahn, A

    1992-01-01

    It has been established that regenerating marrow induces an osteogenic response in distant skeletal sites and that this activity is mediated by factors released into the circulation by the healing tissue. In the present study we have characterized one of these factors, a 14 amino acid peptide named osteogenic growth peptide (OGP). Synthetic OGP, identical in structure to the native molecule, stimulates the proliferation and alkaline phosphatase activity of osteoblastic cells in vitro and increases bone mass in rats when injected in vivo. Immunoreactive OGP in high abundance is present physiologically in the serum, mainly in the form of an OGP-OGP binding protein complex. A marked increase in serum bound and unbound OGP accompanies the osteogenic phase of post-ablation marrow regeneration and associated systemic osteogenic response. Authentic OGP is identical to the C-terminus of histone H4 and shares a five residue motif with a T-cell receptor beta-chain V-region and the Bacillus subtilis outB locus. Since these latter proteins have not been implicated previously in the control of cell proliferation or differentiation, OGP may belong to a novel, heretofore unrecognized family of regulatory peptides. Perhaps more importantly, OGP appears to represent a new class of molecules involved in the systemic control of osteoblast proliferation and differentiation. Images PMID:1582415

  9. Chromatin H3K27me3/H3K4me3 histone marks define gene sets in high-grade serous ovarian cancer that distinguish malignant, tumour-sustaining and chemo-resistant ovarian tumour cells.

    PubMed

    Chapman-Rothe, N; Curry, E; Zeller, C; Liber, D; Stronach, E; Gabra, H; Ghaem-Maghami, S; Brown, R

    2013-09-19

    In embryonic stem (ES) cells, bivalent chromatin domains containing H3K4me3 and H3K27me3 marks silence developmental genes, while keeping them poised for activation following differentiation. We have identified gene sets associated with H3K27me3 and H3K4me3 marks at transcription start sites in a high-grade ovarian serous tumour and examined their association with epigenetic silencing and malignant progression. This revealed novel silenced bivalent marked genes, not described previously for ES cells, which are significantly enriched for the PI3K (P<10(-7)) and TGF-β signalling pathways (P<10(-5)). We matched histone marked gene sets to gene expression sets of eight normal fallopian tubes and 499 high-grade serous malignant ovarian samples. This revealed a significant decrease in gene expression for the H3K27me3 and bivalent gene sets in malignant tissue. We then correlated H3K27me3 and bivalent gene sets to gene expression data of ovarian tumour 'stem cell-like' sustaining cells versus non-sustaining cells. This showed a significantly lower expression for the H3K27me3 and bivalent gene sets in the tumour-sustaining cells. Similarly, comparison of matched chemo-sensitive and chemo-resistant ovarian cell lines showed a significantly lower expression of H3K27me3/bivalent marked genes in the chemo-resistant compared with the chemo-sensitive cell line. Our analysis supports the hypothesis that bivalent marks are associated with epigenetic silencing in ovarian cancer. However it also suggests that additional tumour specific bivalent marks, to those known in ES cells, are present in tumours and may potentially influence the subsequent development of drug resistance and tumour progression. PMID:23128397

  10. Histone modifications defining active genes persist after transcriptional and mitotic inactivation.

    PubMed

    Kouskouti, Antigone; Talianidis, Iannis

    2005-01-26

    We examined various histone modifications across the promoter and the coding regions of constitutively active hepatic genes in G0/G1-enriched, mitotically arrested and alpha-amanitin-blocked cells. Gene activation correlated with localized histone hyperacetylation, H3-K4 tri- or dimethylation and H3-K79 dimethylation and localized nucleosome remodeling at the promoter and the 5' portion of the coding regions. Nucleosomes at more downstream locations were monomethylated at H3-K4. CBP, PCAF, Brg-1, SNF2H and FACT were recruited to the coding regions in a gene-specific manner, in a similarly restricted promoter-proximal pattern. Elongator, however, associated with the more downstream regions. While all factors were dissociated from the chromatin after transcriptional inactivation by alpha-amanitin, the histone modifications remained stable. In mitotic cells, histone modifications on parental nucleosomes were preserved and were regenerated in a transcription-dependent manner at the newly deposited nucleosomes, as the cells entered the next G1 phase. The findings suggest that histone modifications may function as molecular memory bookmarks for previously active locations of the genome, thus contributing to the maintenance of active chromatin states through cell division. PMID:15616580

  11. Probing the structure-activity relationship of endogenous histone deacetylase complexes with immobilized peptide-inhibitors.

    PubMed

    Sindlinger, Julia; Bierlmeier, Jan; Geiger, Lydia-Christina; Kramer, Katharina; Finkemeier, Iris; Schwarzer, Dirk

    2016-05-01

    Histone deacetylases (HDACs) are key regulators of numerous cellular proteins by removing acetylation marks from modified lysine residues. Peptide-based HDAC probes containing α-aminosuberic acid ω-hydroxamate have been established as useful tools for investigating substrate selectivity and composition of endogenous HDAC complexes in cellular lysates. Here we report a structure-activity study of potential HDAC-probes containing derivatives of the hydroxamate moieties. While most of these probes did not recruit significant amounts of endogenous HDACs from cellular lysates, peptides containing Nε-acetyl-Nε-hydroxy-L-lysine served as HDAC probe. The recruitment efficiency varied between HDACs and was generally lower than that of α-aminosuberic acid ω-hydroxamate probes, but showed a similar global interaction profile. These findings indicate that Nε-acetyl-Nε-hydroxy-L-lysine might be a useful tool for investigations on HDAC complexes and the development of HDAC inhibitors. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27071932

  12. The Histone Demethylase KDM5 Activates Gene Expression by Recognizing Chromatin Context through Its PHD Reader Motif.

    PubMed

    Liu, Xingyin; Secombe, Julie

    2015-12-15

    KDM5 family proteins are critically important transcriptional regulators whose physiological functions in the context of a whole animal remain largely unknown. Using genome-wide gene expression and binding analyses in Drosophila adults, we demonstrate that KDM5 (Lid) is a direct regulator of genes required for mitochondrial structure and function. Significantly, this occurs independently of KDM5's well-described JmjC domain-encoded histone demethylase activity. Instead, it requires the PHD motif of KDM5 that binds to histone H3 that is di- or trimethylated on lysine 4 (H3K4me2/3). Genome-wide, KDM5 binding overlaps with the active chromatin mark H3K4me3, and a fly strain specifically lacking H3K4me2/3 binding shows defective KDM5 promoter recruitment and gene activation. KDM5 therefore plays a central role in regulating mitochondrial function by utilizing its ability to recognize specific chromatin contexts. Importantly, KDM5-mediated regulation of mitochondrial activity is likely to be key in human diseases caused by dysfunction of this family of proteins. PMID:26673323

  13. The Histone Variant MacroH2A1.2 is Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor Pbx1

    PubMed Central

    Dell’Orso, Stefania; Wang, A. Hongjun; Shih, Han-Yu; Saso, Kayoko; Berghella, Libera; Gutierrez-Cruz, Gustavo; Ladurner, Andreas G.; O’Shea, John J.; Sartorelli, Vittorio; Zare, Hossein

    2016-01-01

    SUMMARY Histone variants complement and integrate histone post-translational modifications in regulating transcription. The histone variant macroH2A1 (mH2A1) is almost three times the size of its canonical H2A counterpart due to the presence of a ~25kDa evolutionarily conserved non-histone macro domain. Strikingly, mH2A1 can mediate both gene repression and activation. However, the molecular determinants conferring these alternative functions remain elusive. Here, we report that mH2A1.2 is required for the activation of the myogenic gene regulatory network and muscle cell differentiation. H3K27 acetylation at prospective enhancers is exquisitely sensitive to mH2A1.2, indicating a role of mH2A1.2 in imparting enhancer activation. Both H3K27 acetylation and recruitment of the transcription factor Pbx1 at prospective enhancers are regulated by mH2A1.2. Overall, our findings indicate a role of mH2A1.2 in marking regulatory regions for activation. PMID:26832413

  14. Histone deacetylase activity and recurrent bacterial bronchitis in severe eosinophilic asthma.

    PubMed

    Zuccaro, L; Cox, A; Pray, C; Radford, K; Novakowski, K; Dorrington, M; Surette, M G; Bowdish, D; Nair, P

    2016-04-01

    An increase in P13 Kinase activity and an associated reduction in histone deacetylase activity may contribute to both relative steroid insensitivity in patients with severe eosinophilic asthma and impaired macrophage scavenger function and susceptibility to recurrent infective bronchitis that may, in turn, contribute to further steroid insensitivity. PMID:26715426

  15. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.

    PubMed

    Pundhir, Sachin; Bagger, Frederik O; Lauridsen, Felicia B; Rapin, Nicolas; Porse, Bo T

    2016-05-19

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  16. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    PubMed Central

    Pundhir, Sachin; Bagger, Frederik O.; Lauridsen, Felicia B.; Rapin, Nicolas; Porse, Bo T.

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  17. Butyrate Induced IGF2 Activation Correlated with Distinct Chromatin Signatures Due to Histone Modification.

    PubMed

    Shin, Joo Heon; Li, Robert W; Gao, Yuan; Bickhart, Derek M; Liu, George E; Li, Weizhong; Wu, Sitao; Li, Cong-Jun

    2013-01-01

    Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes, including proliferation and apoptosis. H19 gene is closely linked to IGF2 gene, and IGF2 and H19 are reciprocally regulated imprinted genes. The epigenetic signature of H19 promoter (hypermethylation) on the paternal allele plays a vital role in allowing the expression of the paternal allele of IGF2.46 Our previous studies demonstrate that butyrate regulates the expression of IGF2 as well as genes encoding IGF Binding proteins. To obtain further understanding of histone modification and its regulatory potentials in controlling IGF2/H19 gene expression, we investigated the histone modification status of some key histones associated with the expression of IGF2/H19 genes in bovine cells using RNA-seq in combination with Chip-seq technology. A high-resolution map of the major chromatin modification at the IGF2/H19 locus induced by butyrate was constructed to illustrate the fundamental association of the chromatin modification landscape that may play a role in the activation of the IGF2 gene. High-definition epigenomic landscape mapping revealed that IGF2 and H19 have distinct chromatin modification patterns at their coding and promoter regions, such as TSSs and TTSs. Moreover, the correlation between the differentially methylated regions (DMRs) of IGF2/H19 locus and histone modification (acetylation and methylation) indicated that epigenetic signatures/markers of DNA methylation, histone methylation and histone acetylation were differentially distributed on the expressed IGF2 and silenced H19 genes. Our evidence also suggests that butyrate-induced regional changes of histone acetylation statusin the upstream regulation domain of H19 may be related to the reduced expression of H19 and strong activation of IGF2. Our results provided insights into the mechanism

  18. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells

    PubMed Central

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A.; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A.; Colman, Alan; Itahana, Koji

    2016-01-01

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs. PMID:27346849

  19. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.

    PubMed

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A; Colman, Alan; Itahana, Koji

    2016-01-01

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs. PMID:27346849

  20. Methods for Activity Analysis of the Proteins that Regulate Histone Methylation

    PubMed Central

    Quinn, Amy M; Simeonov, Anton

    2011-01-01

    The enzymes that regulate histone methylation states and the protein domains that recognize methylated histone residues have been implicated in a number of human diseases, including cancer, as a result of their ability to affect transcriptional changes by altering chromatin structure. These proteins are recognized as potential therapeutic targets for the treatment of diseases associated with epigenetic disruption; however, few inhibitors of their activity have been identified. The majority of histone demethylase and methyltransferase enzyme inhibitors have been discovered on the basis of their structural similarity to substrates or known inhibitors of enzymes with analogous mechanisms. The general lack of potency and specificity of these compounds indicates that novel chemotypes are needed to address the large number of recently discovered histone-modifying enzymes. High-throughput screening (HTS) allows rapid testing of chemically diverse small molecule libraries, provided assays amenable to HTS exist. Here we review the biochemical and cellular assays available for testing the proteins and enzymes that regulate histone methylation. Progress in the development of high-throughput, sensitive, and robust assays will enable discovery of small molecules for epigenetic therapy. PMID:21966349

  1. Histone Deacetylases

    PubMed Central

    Parbin, Sabnam; Kar, Swayamsiddha; Shilpi, Arunima; Sengupta, Dipta; Deb, Moonmoon; Rath, Sandip Kumar

    2014-01-01

    In the current era of genomic medicine, diseases are identified as manifestations of anomalous patterns of gene expression. Cancer is the principal example among such maladies. Although remarkable progress has been achieved in the understanding of the molecular mechanisms involved in the genesis and progression of cancer, its epigenetic regulation, particularly histone deacetylation, demands further studies. Histone deacetylases (HDACs) are one of the key players in the gene expression regulation network in cancer because of their repressive role on tumor suppressor genes. Higher expression and function of deacetylases disrupt the finely tuned acetylation homeostasis in both histone and non-histone target proteins. This brings about alterations in the genes implicated in the regulation of cell proliferation, differentiation, apoptosis and other cellular processes. Moreover, the reversible nature of epigenetic modulation by HDACs makes them attractive targets for cancer remedy. This review summarizes the current knowledge of HDACs in tumorigenesis and tumor progression as well as their contribution to the hallmarks of cancer. The present report also describes briefly various assays to detect histone deacetylase activity and discusses the potential role of histone deacetylase inhibitors as emerging epigenetic drugs to cure cancer. PMID:24051359

  2. Cell Signaling Switches HOX-PBX Complexes from Repressors to Activators of Transcription Mediated by Histone Deacetylases and Histone Acetyltransferases

    PubMed Central

    Saleh, Maya; Rambaldi, Isabel; Yang, Xiang-Jiao; Featherstone, Mark S.

    2000-01-01

    The Hoxb1 autoregulatory element comprises three HOX-PBX binding sites. Despite the presence of HOXB1 and PBX1, this enhancer fails to activate reporter gene expression in retinoic acid-treated P19 cell monolayers. Activation requires cell aggregation in addition to RA. This suggests that HOX-PBX complexes may repress transcription under some conditions. Consistent with this, multimerized HOX-PBX binding sites repress reporter gene expression in HEK293 cells. We provide a mechanistic basis for repressor function by demonstrating that a corepressor complex, including histone deacetylases (HDACs) 1 and 3, mSIN3B, and N-CoR/SMRT, interacts with PBX1A. We map a site of interaction with HDAC1 to the PBX1 N terminus and show that the PBX partner is required for repression by the HOX-PBX complex. Treatment with the deacetylase inhibitor trichostatin A not only relieves repression but also converts the HOX-PBX complex to a net activator of transcription. We show that this activation function is mediated by the recruitment of the coactivator CREB-binding protein by the HOX partner. Interestingly, HOX-PBX complexes are switched from transcriptional repressors to activators in response to protein kinase A signaling or cell aggregation. Together, our results suggest a model whereby the HOX-PBX complex can act as a repressor or activator of transcription via association with corepressors and coactivators. The model implies that cell signaling is a direct determinant of HOX-PBX function in the patterning of the animal embryo. PMID:11046157

  3. Graphene oxide-peptide nanoassembly as a general approach for monitoring the activity of histone deacetylases.

    PubMed

    Liang, Ping; Li, Qing; Wu, Zhan; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-06-20

    A novel fluorescent sensor using graphene oxide (GO)-peptide nanoassembly is developed for histone deacetylases (HDACs) based on deacetylation mediated cleavage of substrate peptides, which provides a simple, cost-effective platform for monitoring the activity of HDACs. PMID:27194207

  4. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  5. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes

    PubMed Central

    Angelov, Dimitar; Bondarenko, Vladimir A; Almagro, Sébastien; Menoni, Hervé; Mongélard, Fabien; Hans, Fabienne; Mietton, Flore; Studitsky, Vasily M; Hamiche, Ali; Dimitrov, Stefan; Bouvet, Philippe

    2006-01-01

    Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A–H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A–H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription. PMID:16601700

  6. A Placental Polypeptide Activator of a Membranous Protein Kinase and Its Relation to Histone 1

    NASA Astrophysics Data System (ADS)

    Abdel-Ghany, M.; Riegler, C.; Racker, E.

    1984-12-01

    Crude transforming growth factor preparations of placenta contain a polypeptide that is required for the activity of a protein kinase that has been purified from plasma membrane preparations of Ehrlich ascites tumor cells. The kinase activator has been separated from transforming growth factor β by reversed-phase HPLC and affinity chromatography. Like the transforming growth factor, it is heat stable and trypsin labile, but it is not inactivated by dithiothreitol. In sodium dodecyl sulfate/polyacrylamide gel electrophoresis the purified preparation shows a major double band at about 31,000 daltons. Comparisons of electrophoretic mobility, protein kinase stimulatory activity, and cross-reactivity with an antibody against histone 1 suggest that the placental activator is identical with histone 1.

  7. Integration of Bioorthogonal Probes and Q-FRET for the Detection of Histone Acetyltransferase Activity.

    PubMed

    Han, Zhen; Luan, Yepeng; Zheng, Yujun George

    2015-12-01

    Histone acetyltransferases (HATs) are key players in the epigenetic regulation of gene function. The recent discovery of diverse HAT substrates implies a broad spectrum of cellular functions of HATs. Many pathological processes are also intimately associated with the dysregulation of HAT levels and activities. However, detecting the enzymatic activity of HATs has been challenging, and this has significantly impeded drug discovery. To advance the field, we developed a convenient one-pot, mix-and-read strategy that is capable of directly detecting the acylated histone product through a fluorescent readout. The strategy integrates three technological platforms-bioorthogonal HAT substrate labeling, alkyne-azide click chemistry, and quenching FRET-into one system for effective probing of HAT enzyme activity. PMID:26455821

  8. The U4/U6 Recycling Factor SART3 Has Histone Chaperone Activity and Associates with USP15 to Regulate H2B Deubiquitination*

    PubMed Central

    Long, Lindsey; Thelen, Joseph P.; Furgason, Melonnie; Haj-Yahya, Mahmood; Brik, Ashraf; Cheng, Dongmei; Peng, Junmin; Yao, Tingting

    2014-01-01

    Post-translational modifications of histone proteins produce dynamic signals that regulate the structure and function of chromatin. Mono-ubiquitination of H2B in the histone tail (at Lys-123 in yeast or Lys-120 in humans) is a conserved modification that has been implicated in the regulation of transcription, replication, and DNA repair processes. In a search for direct effectors of ubH2B, we identified a deubiquitinating enzyme, Usp15, through affinity purification with a nonhydrolyzable ubH2B mimic. In the nucleus, Usp15 indirectly associates with the ubH2B E3 ligase, RNF20/RNF40, and directly associates with a component of the splicing machinery, SART3 (also known as TIP110 or p110). These physical interactions place Usp15 in the vicinity of actively transcribed DNA. Importantly we found that SART3 has previously unrecognized histone chaperone activities. SART3, but not the well-characterized histone chaperone Nap1, enhances Usp15 binding to ubH2B and facilitates deubiquitination of ubH2B in free histones but not in nucleosomes. These results suggest that SART3 recruits ubH2B, which may be evicted from DNA during transcription, for deubiquitination by Usp15. In light of the function played by SART3 in U4/U6 di-snRNP formation, our discovery points to a direct link between eviction-coupled erasure of the ubiquitin mark from ubH2B and co-transcriptional pre-mRNA splicing. PMID:24526689

  9. CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain.

    PubMed

    Wang, Jing; Weaver, Ian C G; Gauthier-Fisher, Andrée; Wang, Haoran; He, Ling; Yeomans, John; Wondisford, Frederic; Kaplan, David R; Miller, Freda D

    2010-01-19

    Increasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization behavior. cbp haploinsufficiency or genetic knockdown with siRNAs inhibited differentiation of embryonic cortical precursors into all three neural lineages, coincident with decreased CBP binding and histone acetylation at promoters of neuronal and glial genes. Inhibition of histone deacetylation rescued these deficits. Moreover, CBP phosphorylation by atypical protein kinase C zeta was necessary for histone acetylation at neural gene promoters and appropriate differentiation. These data support a model in which environmental cues regulate CBP activity and histone acetylation to control neural precursor competency to differentiate, and indicate that cbp haploinsufficiency disrupts this mechanism, thereby likely causing cognitive dysfunction in RTS. PMID:20152182

  10. Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors

    PubMed Central

    Kawamura, Akane; Rose, Nathan R.; Ng, Stanley S.; Quinn, Amy M.; Rai, Ganesha; Mott, Bryan T.; Beswick, Paul; Klose, Robert J.; Oppermann, Udo; Jadhav, Ajit; Heightman, Tom D.; Maloney, David J.; Schofield, Christopher J.; Simeonov, Anton

    2010-01-01

    Background Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. Nε-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. Nε-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. Principal Findings High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4) family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II) and to modulate demethylation at the H3K9 locus in a cell-based assay. Conclusions These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation. PMID:21124847

  11. Feedback Activation of Leukemia Inhibitory Factor Receptor Limits Response to Histone Deacetylase Inhibitors in Breast Cancer.

    PubMed

    Zeng, Hanlin; Qu, Jia; Jin, Nan; Xu, Jun; Lin, Chenchu; Chen, Yi; Yang, Xinying; He, Xiang; Tang, Shuai; Lan, Xiaojing; Yang, Xiaotong; Chen, Ziqi; Huang, Min; Ding, Jian; Geng, Meiyu

    2016-09-12

    Histone deacetylase (HDAC) inhibitors have demonstrated clinical benefits in subtypes of hematological malignancies. However, the efficacy of HDAC inhibitors in solid tumors remains uncertain. This study takes breast cancer as a model to understand mechanisms accounting for limited response of HDAC inhibitors in solid tumors and to seek combination solutions. We discover that feedback activation of leukemia inhibitory factor receptor (LIFR) signaling in breast cancer limits the response to HDAC inhibition. Mechanistically, HDAC inhibition increases histone acetylation at the LIFR gene promoter, which recruits bromodomain protein BRD4, upregulates LIFR expression, and activates JAK1-STAT3 signaling. Importantly, JAK1 or BRD4 inhibition sensitizes breast cancer to HDAC inhibitors, implicating combination inhibition of HDAC with JAK1 or BRD4 as potential therapies for breast cancer. PMID:27622335

  12. CBP histone acetyltransferase activity is a critical component of memory consolidation.

    PubMed

    Korzus, Edward; Rosenfeld, Michael G; Mayford, Mark

    2004-06-24

    The stabilization of learned information into long-term memories requires new gene expression. CREB binding protein (CBP) is a coactivator of transcription that can be independently regulated in neurons. CBP functions both as a platform for recruiting other required components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. To dissect the chromatin remodeling versus platform function of CBP or the developmental versus adult role of this gene, we generated transgenic mice that express CBP in which HAT activity is eliminated. Acquisition of new information and short-term memory is spared in these mice, while the stabilization of short-term memory into long-term memory is impaired. The behavioral phenotype is due to an acute requirement for CBP HAT activity in the adult as it is rescued by both suppression of transgene expression or by administration of the histone deacetylase inhibitor Trichostatin A (TSA) in adult animals. PMID:15207240

  13. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase

    PubMed Central

    Le, Ly-Thuy-Tram; Vu, Hong-Lien; Nguyen, Chi-Hung; Molla, Annie

    2013-01-01

    Summary Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors. PMID:23616922

  14. Thanatos-associated protein 7 associates with template activating factor-Ibeta and inhibits histone acetylation to repress transcription.

    PubMed

    Macfarlan, Todd; Parker, J Brandon; Nagata, Kyosuke; Chakravarti, Debabrata

    2006-02-01

    The posttranslational modifications of histones on chromatin or a lack thereof is critical in transcriptional regulation. Emerging studies indicate a role for histone-binding proteins in transcriptional activation and repression. We have previously identified template-activating factor-Ibeta (TAF-Ibeta, also called PHAPII, SET, and I(2)(pp2A)) as a component of a cellular complex called inhibitor of acetyltransferases (INHAT) that masks histone acetylation in vitro and blocks histone acetyltransferase (HAT)-dependent transcription in living cells. TAF-Ibeta has also been shown to associate with transcription factors, including nuclear receptors, to regulate their activities. To identify novel interactors of TAF-Ibeta, we employed a yeast two-hybrid screen and identified a previously uncharacterized human protein called thanatos-associated protein-7 (THAP7), a member of a large family of THAP domain-containing putative DNA-binding proteins. In this study we demonstrate that THAP7 associates with TAF-Ibeta in vitro and map their association domains to a C-terminal predicted coiled-coil motif on THAP7 and the central region of TAF-Ibeta. Similarly, stably transfected THAP7 associates with endogenous TAF-Ibeta in intact cells. Like TAF-Ibeta, THAP7 associates with histone H3 and histone H4 and inhibits histone acetylation. The histone-interacting domain of THAP7 is sufficient for this activity in vitro. Promoter-targeted THAP7 can also recruit TAF-Ibeta and silencing mediator of retinoid and thyroid receptors/nuclear hormone receptor corepressor (NCoR) proteins to promoters, and knockdown of TAF-Ibeta by small interfering RNA relieves THAP7-mediated repression, indicating that, like nuclear hormone receptors, THAP7 may represent a novel class of transcription factor that uses TAF-Ibeta as a corepressor to maintain histones in a hypoacetylated, repressed state. PMID:16195249

  15. Activation Domain-Specific and General Transcription Stimulation by Native Histone Acetyltransferase Complexes

    PubMed Central

    Ikeda, Keiko; Steger, David J.; Eberharter, Anton; Workman, Jerry L.

    1999-01-01

    Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions. PMID:9858608

  16. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins

    PubMed Central

    Irie, Yasuyuki; Saeki, Makio; Kamisaki, Yoshinori; Martin, Emil; Murad, Ferid

    2003-01-01

    Several reports have described an activity that modifies nitrotyrosine-containing proteins and their immunoreactivity to nitrotyrosine Abs. Without knowing the product of the reaction, this new activity has been called a “denitrase.” In those studies, some nonspecific proteins, which have multiple tyrosine residues, e.g., albumin, were used as a substrate. Therefore, the studies were based on an unknown mechanism of reaction and potentially a high background. To solve these problems, one of the most important things is to find a more suitable substrate for assay of the enzyme. We developed an assay strategy for determining the substrate for denitrase combining 2D-gel electrophoresis and an on-blot enzyme assay. The resulting substrate from RAW 264.7 cells was Histone H1.2, an isoform protein of linker histone. Histone H1.2 has only one tyrosine residue in the entire molecule, which ensures the exact position of the substrate to be involved. It has been reported that Histones are the most prominent nitrated proteins in cancer tissues. It was also demonstrated that tyrosine nitration of Histone H1 occurs in vivo. These findings lead us to the idea that Histone H1.2 might be an intrinsic substrate for denitrase. We nitrated recombinant and purified Histone H1.2 chemically and subjected it to an on-blot enzyme assay to characterize the activity. Denitrase activity behaved as an enzymatic activity because the reaction was time dependent and was destroyed by heat or trypsin treatment. The activity was shown to be specific for Histone H1.2, to differ from proteasome activity, and to require no additional cofactors. PMID:12719531

  17. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification.

    PubMed

    Li, Cong-Jun; Li, Robert W; Baldwin, Ransom L; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  18. Transcriptomic Sequencing Reveals a Set of Unique Genes Activated by Butyrate-Induced Histone Modification

    PubMed Central

    Li, Cong-Jun; Li, Robert W.; Baldwin, Ransom L.; Blomberg, Le Ann; Wu, Sitao; Li, Weizhong

    2016-01-01

    Butyrate is a nutritional element with strong epigenetic regulatory activity as a histone deacetylase inhibitor. Based on the analysis of differentially expressed genes in the bovine epithelial cells using RNA sequencing technology, a set of unique genes that are activated only after butyrate treatment were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network, using Ingenuity Pathways Analysis, indicated that these genes activated by butyrate treatment are related to major cellular functions, including cell morphological changes, cell cycle arrest, and apoptosis. Our results offered insight into the butyrate-induced transcriptomic changes and will accelerate our discerning of the molecular fundamentals of epigenomic regulation. PMID:26819550

  19. Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer.

    PubMed

    Ganai, Shabir Ahmad

    2016-07-01

    Epigenetic modifications are closely involved in the patho-physiology of prostate cancer. Histone deacetylases (HDACs), the transcriptional corepressors have strong crosstalk with prostate cancer progression as they influence various genes related to tumour suppression. HDACs play a marked role in myriad of human cancers and as such are emerging as striking molecular targets for anticancer drugs and therapy. Histone deacetylase inhibitors (HDACi), the small-molecules interfering HDACs are emerging as promising chemotherapeutic agents. These inhibitors have shown multiple effects including cell growth arrest, differentiation and apoptosis in prostate cancer. The limited efficacy of HDACi as single agents in anticancer therapy has been strongly improved via novel therapeutic strategies like doublet therapy (combined therapy). More than 20HDACi have already entered into the journey of clinical trials and four have been approved by FDA against diverse cancers. This review deals with plant derived HDACi sulphoraphane (SFN; 1-isothiocyanato-4-(methylsulfinyl)-butane) and its potential role in prostate cancer therapy along with the underlying molecular mechanism being involved. The article further highlights the therapeutic strategy that can be utilized for sensitizing conventional therapy resistant cases and for acquiring the maximum therapeutic benefit from this promising inhibitor in the upcoming future. PMID:27261601

  20. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity.

    PubMed

    Zhaunova, Liudmila; Ohkura, Hiroyuki; Breuer, Manuel

    2016-08-01

    During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity. PMID:27494704

  1. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity

    PubMed Central

    Zhaunova, Liudmila; Ohkura, Hiroyuki; Breuer, Manuel

    2016-01-01

    During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity. PMID:27494704

  2. Histone II-A stimulates glucose-6-phosphatase and reveals mannose-6-phosphatase activities without permeabilization of liver microsomes.

    PubMed Central

    St-Denis, J F; Annabi, B; Khoury, H; van de Werve, G

    1995-01-01

    The effect of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase activities was investigated in relation to microsomal membrane permeability. It was found that glucose-6-phosphatase activity in histone II-A-pretreated liver microsomes was stimulated to the same extent as in detergent-permeabilized microsomes, and that the substrate specificity of the enzyme for glucose 6-phosphate was lost in histone II-A-pretreated microsomes, as [U-14C]glucose-6-phosphate hydrolysis was inhibited by mannose 6-phosphate and [U-14C]mannose 6-phosphate hydrolysis was increased. The accumulation of [U-14C]glucose from [U-14C]glucose 6-phosphate into untreated microsomes was completely abolished in detergent-treated vesicles, but was increased in histone II-A-treated microsomes, accounting for the increased glucose-6-phosphatase activity, and demonstrating that the microsomal membrane was still intact. The stimulation of glucose-6-phosphatase and mannose-6-phosphatase activities by histone II-A was found to be reversed by EGTA. It is concluded that the effects of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase are not caused by the permeabilization of the microsomal membrane. The measurement of mannose-6-phosphatase latency to evaluate the intactness of the vesicles is therefore inappropriate. PMID:7646448

  3. Control of transposon activity by a histone H3K4 demethylase in rice

    PubMed Central

    Cui, Xiekui; Jin, Ping; Cui, Xia; Gu, Lianfeng; Lu, Zhike; Xue, Yongming; Wei, Liya; Qi, Jianfei; Song, Xianwei; Luo, Ming; An, Gynheung; Cao, Xiaofeng

    2013-01-01

    Transposable elements (TEs) are ubiquitously present in plant genomes and often account for significant fractions of the nuclear DNA. For example, roughly 40% of the rice genome consists of TEs, many of which are retrotransposons, including 14% LTR- and ∼1% non-LTR retrotransposons. Despite their wide distribution and abundance, very few TEs have been found to be transpositional, indicating that TE activities may be tightly controlled by the host genome to minimize the potentially mutagenic effects associated with active transposition. Consistent with this notion, a growing body of evidence suggests that epigenetic silencing pathways such as DNA methylation, RNA interference, and H3K9me2 function collectively to repress TE activity at the transcriptional and posttranscriptional levels. It is not yet clear, however, whether the removal of histone modifications associated with active transcription is also involved in TE silencing. Here, we show that the rice protein JMJ703 is an active H3K4-specific demethylase required for TEs silencing. Impaired JMJ703 activity led to elevated levels of H3K4me3, the misregulation of numerous endogenous genes, and the transpositional reactivation of two families of non-LTR retrotransposons. Interestingly, loss of JMJ703 did not affect TEs (such as Tos17) previously found to be silenced by other epigenetic pathways. These results indicate that the removal of active histone modifications is involved in TE silencing and that different subsets of TEs may be regulated by distinct epigenetic pathways. PMID:23319643

  4. Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones

    PubMed Central

    Yang, Chunzhang; Rahimpour, Shervin; Lu, Jie; Pacak, Karel; Ikejiri, Barbara; Brady, Roscoe O.; Zhuang, Zhengping

    2013-01-01

    Gaucher disease is caused by mutations of the GBA gene that encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA mutations often result in protein misfolding and premature degradation, but usually exert less effect on catalytic activity. In this study, we identified the molecular mechanism by which histone deacetylase inhibitors increase the quantity and activity of GCase. Specifically, these inhibitors limit the deacetylation of heat shock protein 90, resulting in less recognition of the mutant peptide and GCase degradation. These findings provide insight into a possible therapeutic strategy for Gaucher disease and other genetic disorders by modifying molecular chaperone and protein degradation pathways. PMID:23277556

  5. Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2.

    PubMed

    Verma, Sharad K; Tian, Xinrong; LaFrance, Louis V; Duquenne, Céline; Suarez, Dominic P; Newlander, Kenneth A; Romeril, Stuart P; Burgess, Joelle L; Grant, Seth W; Brackley, James A; Graves, Alan P; Scherzer, Daryl A; Shu, Art; Thompson, Christine; Ott, Heidi M; Aller, Glenn S Van; Machutta, Carl A; Diaz, Elsie; Jiang, Yong; Johnson, Neil W; Knight, Steven D; Kruger, Ryan G; McCabe, Michael T; Dhanak, Dashyant; Tummino, Peter J; Creasy, Caretha L; Miller, William H

    2012-12-13

    The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2. PMID:24900432

  6. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    SciTech Connect

    Song, Yuan; Wu, Keqiang; Dhaubhadel, Sangeeta; An, Lizhe; Tian, Lining

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  7. Synthesis and Preclinical Evaluation of a Highly Improved Anticancer Prodrug Activated by Histone Deacetylases and Cathepsin L

    PubMed Central

    Ueki, Nobuhide; Wang, Wei; Swenson, Cooper; McNaughton, Caroline; Sampson, Nicole S.; Hayman, Michael J.

    2016-01-01

    Lack of absolute selectivity against cancer cells is a major limitation for current cancer therapies. In the previous study, we developed a prodrug strategy for selective cancer therapy using a masked cytotoxic agent puromycin [Boc-Lys(Ac)-Puromycin], which can be sequentially activated by histone deacetylases (HDACs) and cathepsin L (CTSL) to kill cancer cells expressing high levels of both enzymes. Despite the promise as a selective cancer therapy, its requirement of relatively high dosage could be a potential issue in the clinical setting. To address this issue, we aimed to further improve the overall efficacy of our prodrug strategy. Since the proteolytic cleavage by CTSL is the rate-limiting step for the drug activation, we sought to improve the substrate structure for CTSL activity by modifying the α-amino protecting group of lysine. Here we show that protection with Fmoc [Fmoc-Lys(Ac)-Puromycin] exhibits a marked improvement in overall anticancer efficacy compared to the original Boc-Lys(Ac)-Puromycin and this is mainly due to the highly efficient cellular uptake besides its improved substrate structure. Furthermore, to address a concern that the improved drug efficacy might direct high toxicity to the normal cells, we confirmed that Fmoc-Lys(Ac)-Puromycin still retains excellent cancer selectivity in vitro and no obvious systemic off-target toxicity in vivo. Thus our preclinical evaluation data presented here demonstrate that the Fmoc-Lys(Ac)-Puromycin exhibits substantially improved anticancer efficacy, further supporting our approach for the selective cancer therapy. PMID:27162551

  8. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α

    PubMed Central

    Zhu, Τao; Liang, Chen; Li, Dongdong; Tian, Miaomiao; Liu, Sanxiong; Gao, Guanjun; Guan, Ji-Song

    2016-01-01

    Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning. PMID:27229316

  9. Runx1 Phosphorylation by Src Increases Trans-activation via Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased DNA Affinity, and Activated Runx1 Favors Granulopoiesis.

    PubMed

    Leong, Wan Yee; Guo, Hong; Ma, Ou; Huang, Hui; Cantor, Alan B; Friedman, Alan D

    2016-01-01

    Src phosphorylates Runx1 on one central and four C-terminal tyrosines. We find that activated Src synergizes with Runx1 to activate a Runx1 luciferase reporter. Mutation of the four Runx1 C-terminal tyrosines to aspartate or glutamate to mimic phosphorylation increases trans-activation of the reporter in 293T cells and allows induction of Cebpa or Pu.1 mRNAs in 32Dcl3 myeloid cells, whereas mutation of these residues to phenylalanine to prevent phosphorylation obviates these effects. Three mechanisms contribute to increased Runx1 activity upon tyrosine modification as follows: increased stability, reduced histone deacetylase (HDAC) interaction, and increased DNA binding. Mutation of the five modified Runx1 tyrosines to aspartate markedly reduced co-immunoprecipitation with HDAC1 and HDAC3, markedly increased stability in cycloheximide or in the presence of co-expressed Cdh1, an E3 ubiquitin ligase coactivator, with reduced ubiquitination, and allowed DNA-binding in gel shift assay similar to wild-type Runx1. In contrast, mutation of these residues to phenylalanine modestly increased HDAC interaction, modestly reduced stability, and markedly reduced DNA binding in gel shift assays and as assessed by chromatin immunoprecipitation with the -14-kb Pu.1 or +37-kb Cebpa enhancers after stable expression in 32Dcl3 cells. Affinity for CBFβ, the Runx1 DNA-binding partner, was not affected by these tyrosine modifications, and in vitro translated CBFβ markedly increased DNA affinity of both the translated phenylalanine and aspartate Runx1 variants. Finally, further supporting a positive role for Runx1 tyrosine phosphorylation during granulopoiesis, mutation of the five Src-modified residues to aspartate but not phenylalanine allows Runx1 to increase Cebpa and granulocyte colony formation by Runx1-deleted murine marrow. PMID:26598521

  10. Mitotic Activation of a Novel Histone Deacetylase 3-Linker Histone H1.3 Protein Complex by Protein Kinase CK2*

    PubMed Central

    Patil, Hemangi; Wilks, Carrie; Gonzalez, Rhiannon W.; Dhanireddy, Sudheer; Conrad-Webb, Heather; Bergel, Michael

    2016-01-01

    Histone deacetylase 3 (HDAC3) and linker histone H1 are involved in both chromatin compaction and the regulation of mitotic progression. However, the mechanisms by which HDAC3 and H1 regulate mitosis and the factors controlling HDAC3 and H1 activity during mitosis are unclear. Furthermore, as of now, no association between class I, II, or IV (non-sirtuin) HDACs and linker histones has been reported. Here we describe a novel HDAC3-H1.3 complex containing silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and nuclear receptor corepressor 1 (N-CoR) that accumulated in synchronized HeLa cells in late G2 phase and mitosis. Nonetheless, the deacetylation activity by HDAC3 in the complex was evident only in mitotic complexes. HDAC3 associated with H1.3 was highly phosphorylated on Ser-424 only during mitosis. Isolation of inactive HDAC3-H1.3 complexes from late G2 phase cells, and phosphorylation of HDAC3 in the complexes at serine 424 by protein kinase CK2 (also known as casein kinase 2) activated the HDAC3 in vitro. In vivo, CK2α and CK2α' double knockdown cells demonstrated a significant decrease in HDAC3 Ser-424 phosphorylation during mitosis. HDAC3 and H1.3 co-localized in between the chromosomes, with polar microtubules and spindle poles during metaphase through telophase, and partially co-localized with chromatin during prophase and interphase. H1 has been reported previously to associate with microtubules and, therefore, could potentially function in targeting HDAC3 to the microtubules. We suggest that phosphorylation of HDAC3 in the complex by CK2 during mitosis activates the complex for a dual role: compaction of the mitotic chromatin and regulation of polar microtubules dynamic instability. PMID:26663086

  11. Combined oral contraceptive synergistically activates mineralocorticoid receptor through histone code modifications.

    PubMed

    Igunnu, Adedoyin; Seok, Young-Mi; Olatunji, Lawrence A; Kang, Seol-Hee; Kim, Inkyeom

    2015-12-15

    Clinical studies have shown that the use of combined oral contraceptive in pre-menopausal women is associated with fluid retention. However, the molecular mechanism is still elusive. We hypothesized that combined oral contraceptive (COC) ethinyl estradiol (EE) and norgestrel (N) synergistically activates mineralocorticoid receptor (MR) through histone code modifications. Twelve-week-old female Sprague-Dawley rats were treated with olive oil (control), a combination of 0.1µg EE and 1.0µg N (low COC) or 1.0µg EE and 10.0µg N (high COC) as well as 0.1 or 1.0µg EE and 1.0 or 10.0µg N daily for 6 weeks. Expression of MR target genes in kidney cortex was determined by quantitative real-time polymerase chain reaction. MR was quantified by western blot. Recruitment of MR and RNA polymerase II (Pol II) on promoters of target genes as well as histone code modifications was analyzed by chromatin immunoprecipitation assay. Treatment with COC increased renal cortical expression of MR target genes such as serum and glucocorticoid-regulated kinase 1 (Sgk-1), glucocorticoid-induced leucine zipper (Gilz), epithelial Na(+)channel (Enac) and Na(+)-K(+)-ATPase subunit α1 (Atp1a1). Although COC increased neither serum aldosterone nor MR expression in kidney cortex, it increased recruitment of MR and Pol II in parallel with increased H3Ac and H3K4me3 on the promoter regions of MR target genes. However, treatment with EE or N alone did not affect renal cortical expression of Sgk-1, Gilz, Enac or Atp1a1. These results indicate that COC synergistically activates MR through histone code modifications. PMID:26506558

  12. Histone Deacetylase Inhibition Enhances Tissue Plasminogen Activator Release Capacity in Atherosclerotic Man

    PubMed Central

    Svennerholm, Kristina; Haney, Michael; Biber, Björn; Ulfhammer, Erik; Saluveer, Ott; Larsson, Pia; Omerovic, Elmir; Jern, Sverker; Bergh, Niklas

    2015-01-01

    The expression of the tissue plasminogen activator (t-PA) gene appears to be under epigenetic control and can be affected by histone deacetylation inhibition. The study aimed to test if histone deacetalyase inhibitor treatment lead to increased t-PA release or reduced exhaustion in t-PA release in response to stimulation, as well as change in plasminogen activator inhibitor-1 (PAI-1) in subjects with coronary disease. In this clinical study, 16 post-myocardial infarction subjects, the perfused forearm model was used with isoprenaline provocation during 20 minutes, to stimulate local t-PA release. Each subject was measured twice on the same day (repeated stimuli sequences) as well as on two different occasions, without treatment and after four weeks of treatment with valproic acid (500 mg, twice daily). Net forearm release for t-PA in response to isoprenaline at minutes 1.5, 3, 6, 9, 12, 15 and 18 was measured, allowing assessment of cumulative t-PA release. There was a reduction in the exhaustion of cumulative t-PA release during repeated and prolonged stimulation with valproic acid treatment compared to non-treatment. Plasma PAI-1 antigen was decreased following treatment compared to non-treatment (18.4 ± 10.0 vs. 11.0 ± 7.1 nanograms/ml respectively, mean with 95% confidence interval). These findings demonstrate that histone deacetylation inhibition increases the capacity for endogenous t-PA release in subjects with vascular disease. Furthermore, the fibrinolytic balance is favored with suppressed PAI-1 levels. More studies are needed to establish the clinical relevance of these findings. Trial registration EU Clinical Trials Register 2012-004950-27 PMID:25807501

  13. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic

    SciTech Connect

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Voronova, Anastassia; Skerjanc, Ilona; Couture, Jean-Francois

    2011-08-24

    The SET1 family of methyltransferases carries out the bulk of histone H3 Lys-4 methylation in vivo. One of the common features of this family is the regulation of their methyltransferase activity by a tripartite complex composed of WDR5, RbBP5, and Ash2L. To selectively probe the role of the SET1 family of methyltransferases, we have developed a library of histone H3 peptide mimetics and report herein the characterization of an N{alpha} acetylated form of histone H3 peptide (N{alpha}H3). Binding and inhibition studies reveal that the addition of an acetyl moiety to the N terminus of histone H3 significantly enhances its binding to WDR5 and prevents the stimulation of MLL1 methyltransferase activity by the WDR5-RbBP5-Ash2L complex. The crystal structure of N{alpha}H3 in complex with WDR5 reveals that a high-affinity hydrophobic pocket accommodates the binding of the acetyl moiety. These results provide the structural basis to control WDR5-RbBP5-Ash2L-MLL1 activity and a tool to manipulate stem cell differentiation programs.-Avdic, V., Zhang, P., Lanouette, S., Voronova, A., Skerjanc, I., Couture, J.-F. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic.

  14. Modulation of Histone Deacetylase Activity by Dietary Isothiocyanates and Allyl Sulfides: Studies with Sulforaphane and Garlic Organosulfur Compounds

    PubMed Central

    Nian, Hui; Delage, Barbara; Ho, Emily; Dashwood, Roderick H.

    2009-01-01

    Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur compounds can be metabolized to allyl mercaptan (AM), a competitive HDAC inhibitor that induced rapid and sustained histone hyperacetylation in human colon cancer cells. Inhibition of HDAC activity by AM was associated with increased histone acetylation and Sp3 transcription factor binding to the promoter region of the P21WAF1 gene, resulting in elevated p21 protein expression and cell cycle arrest. Collectively, the results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention. PMID:19197985

  15. Global turnover of histone post-translational modifications and variants in human cells

    PubMed Central

    2010-01-01

    Background Post-translational modifications (PTMs) on the N-terminal tails of histones and histone variants regulate distinct transcriptional states and nuclear events. Whereas the functional effects of specific PTMs are the current subject of intense investigation, most studies characterize histone PTMs/variants in a non-temporal fashion and very few studies have reported kinetic information about these histone forms. Previous studies have used radiolabeling, fluorescence microscopy and chromatin immunoprecipitation to determine rates of histone turnover, and have found interesting correlations between increased turnover and increased gene expression. Therefore, histone turnover is an understudied yet potentially important parameter that may contribute to epigenetic regulation. Understanding turnover in the context of histone modifications and sequence variants could provide valuable additional insight into the function of histone replacement. Results In this study, we measured the metabolic rate of labeled isotope incorporation into the histone proteins of HeLa cells by combining stable isotope labeling of amino acids in cell culture (SILAC) pulse experiments with quantitative mass spectrometry-based proteomics. In general, we found that most core histones have similar turnover rates, with the exception of the H2A variants, which exhibit a wider range of rates, potentially consistent with their epigenetic function. In addition, acetylated histones have a significantly faster turnover compared with general histone protein and methylated histones, although these rates vary considerably, depending on the site and overall degree of methylation. Histones containing transcriptionally active marks have been consistently found to have faster turnover rates than histones containing silent marks. Interestingly, the presence of both active and silent marks on the same peptide resulted in a slower turnover rate than either mark alone on that same peptide. Lastly, we observed

  16. Synthesis and Structure Activity Relationship of 3-Hydroxypyridin-2-thione Based Histone Deacetylase Inhibitors

    PubMed Central

    Sodji, Quaovi H.; Patil, Vishal; Kornacki, James R.; Mrksich, Milan; Oyelere, Adegboyega K.

    2014-01-01

    We have previously identified 3-hydroxypyridin-2-thione (3HPT) as a novel zinc binding group for histone deacetylase (HDAC) inhibition. Early structure activity relationship (SAR) studies led to various small molecules possessing selective inhibitory activity against HDAC6 or HDAC8 but are devoid of HDAC1 inhibition. To further delineate the depth of the SAR of 3HPT-derived HDAC inhibitors (HDACi), we have extended the SAR studies to include the linker region and the surface recognition group to optimize the HDAC inhibition. The current efforts resulted in the identification of two lead compounds 10d and 14e with potent HDAC6 and HDAC8 activities, but that are inactive against HDAC1. These new HDACi possess anti-cancer activities against various cancer cell lines including Jurkat J-γ1 against which SAHA and the previously disclosed 3HPT-derived HDACi were inactive. PMID:24304348

  17. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2

    PubMed Central

    Golonzhka, Olga; Chonkar, Apurva; Tamang, David; van Duzer, John H.; Jones, Simon S.; Jarpe, Matthew B.

    2016-01-01

    Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF) is a promising approach for ameliorating sickle cell disease (SCD) and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC) 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2), elicits a dose and time dependent induction of γ-globin mRNA (HBG) and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB). Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq) of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene. PMID:27073918

  18. IRF1 marks activated genes in SLE and can induce target gene expression

    PubMed Central

    Zhang, Zhe; Shi, Lihua; Song, Li; Ephrem, Elshaddai; Petri, Michelle; Sullivan, Kathleen E.

    2014-01-01

    Objective IRF1 both mediates responses to type I interferons and the induction of interferons. It has been implicated in murine lupus models as a critical mediator of inflammation. A previous study of chromatin modifications in SLE patient monocytes implicated IRF1 as associated with increased histone acetylation in SLE patients. This study directly investigated IRF1 binding sites on chromatin using ChIP-seq. Methods Nine female SLE patients and seven female controls were examined. Monocytes were purified from peripheral blood and subjected to library preparation using a validated antibody to IRF1. The effect of IRF1 on target gene expression was confirmed using an overexpression system in cell lines and co-immunoprecipitation was used to define protein interactions. Results IRF1 binding around transcribed regions was increased in SLE patient monocytes but histone modifications at potential IRF1 binding sites without detectable IRF1 binding were also increased. IRF1 overexpression was sufficient to drive transcription of target genes. IRF1 overexpression was also able to alter histone modifications at a focus set of target genes and the use of an IRF1 inhibitor decreased both expression and histone modifications at target genes. IRF1 was found to interact with a select set of histone modifying enzymes and other transcription factors. Conclusions IRF1 is an important signaling protein in the interferon pathway. IRF1 not only activates gene expression as a transcription factor but may perpetuate disease by leading to a dysregulated epigenome. PMID:25418955

  19. Essential Nonredundant Function of the Catalytic Activity of Histone Deacetylase 2 in Mouse Development

    PubMed Central

    Hagelkruys, Astrid; Mattes, Katharina; Moos, Verena; Rennmayr, Magdalena; Ringbauer, Manuela; Sawicka, Anna

    2015-01-01

    The class I histone deacetylases (HDACs) HDAC1 and HDAC2 play partially redundant roles in the regulation of gene expression and mouse development. As part of multisubunit corepressor complexes, these two deacetylases exhibit both enzymatic and nonenzymatic functions. To examine the impact of the catalytic activities of HDAC1 and HDAC2, we generated knock-in mice expressing catalytically inactive isoforms, which are still incorporated into the HDAC1/HDAC2 corepressor complexes. Surprisingly, heterozygous mice expressing catalytically inactive HDAC2 die within a few hours after birth, while heterozygous HDAC1 mutant mice are indistinguishable from wild-type littermates. Heterozygous HDAC2 mutant mice show an unaltered composition but reduced associated deacetylase activity of corepressor complexes and exhibit a more severe phenotype than HDAC2-null mice. They display changes in brain architecture accompanied by premature expression of the key regulator protein kinase C delta. Our study reveals a dominant negative effect of catalytically inactive HDAC2 on specific corepressor complexes resulting in histone hyperacetylation, transcriptional derepression, and, ultimately, perinatal lethality. PMID:26598605

  20. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers.

    PubMed

    Iizuka, Masayoshi; Takahashi, Yoshihisa; Mizzen, Craig A; Cook, Richard G; Fujita, Masatoshi; Allis, C David; Frierson, Henry F; Fukusato, Toshio; Smith, M Mitchell

    2009-05-01

    In addition to the well-characterized proteins that comprise the pre-replicative complex, recent studies suggest that chromatin structure plays an important role in DNA replication initiation. One of these chromatin factors is the histone acetyltransferase (HAT) Hbo1 which is unique among HAT enzymes in that it serves as a positive regulator of DNA replication. However, several of the basic properties of Hbo1 have not been previously examined, including its intrinsic catalytic activity, its molecular abundance in cells, and its pattern of expression in primary cancer cells. Here we show that recombinant Hbo1 can acetylate nucleosomal histone H4 in vitro, with a preference for lysines 5 and 12. Using semi-quantitative western blot analysis, we find that Hbo1 is approximately equimolar with the number of active replication origins in normal human fibroblasts but is an order of magnitude more abundant in both MCF7 and Saos-2 established cancer cell lines. Immunohistochemistry for Hbo1 in 11 primary human tumor types revealed strong Hbo1 protein expression in carcinomas of the testis, ovary, breast, stomach/esophagus, and bladder. PMID:19393168

  1. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c

    PubMed Central

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A.

    2015-01-01

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin’s transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ’s histone chaperone activity. PMID:26216969

  2. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.

    PubMed

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A

    2015-08-11

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity. PMID:26216969

  3. Histones activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury

    PubMed Central

    Huang, Hai; Chen, Hui-Wei; Evankovich, John; Yan, Wei; Rosborough, Brian R.; Nace, Gary W.; Ding, Qing; Loughran, Patricia; Beer-Stolz, Donna; Billiar, Timothy R.; Esmon, Charles T.; Tsung, Allan

    2013-01-01

    Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests it also plays a role in inflammation driven by endogenous danger-associate molecular pattern (DAMP) molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. Here we report that both NLRP3 and its downstream target Caspase-1 are activated I/R and are essential for hepatic I/R injury as both NLRP3 and Caspase-1 KO mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on Caspase-1 expression in liver non-parenchymal cells. While upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through Toll-like Receptor-9 (TLR9). This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and activation of innate immunity during sterile inflammation. PMID:23904166

  4. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl–mediated drug resistance

    PubMed Central

    Carew, Jennifer S.; Nawrocki, Steffan T.; Kahue, Charissa N.; Zhang, Hui; Yang, Chunying; Chung, Linda; Houghton, Janet A.; Huang, Peng; Giles, Francis J.

    2007-01-01

    Novel therapeutic strategies are needed to address the emerging problem of imatinib resistance. The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) is being evaluated for imatinib-resistant chronic myelogenous leukemia (CML) and has multiple cellular effects, including the induction of autophagy and apoptosis. Considering that autophagy may promote cancer cell survival, we hypothesized that disrupting autophagy would augment the anticancer activity of SAHA. Here we report that drugs that disrupt the autophagy pathway dramatically augment the antineoplastic effects of SAHA in CML cell lines and primary CML cells expressing wild-type and imatinib-resistant mutant forms of Bcr-Abl, including T315I. This regimen has selectivity for malignant cells and its efficacy was not diminished by impairing p53 function, another contributing factor in imatinib resistance. Disrupting autophagy by chloroquine treatment enhances SAHA-induced superoxide generation, triggers relocalization and marked increases in the lysosomal protease cathepsin D, and reduces the expression of the cathepsin-D substrate thioredoxin. Finally, knockdown of cathepsin D diminishes the potency of this combination, demonstrating its role as a mediator of this therapeutic response. Our data suggest that, when combined with HDAC inhibitors, agents that disrupt autophagy are a promising new strategy to treat imatinib-refractory patients who fail conventional therapy. PMID:17363733

  5. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    PubMed

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. PMID:26505494

  6. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2.

    PubMed

    Jiao, Lianying; Liu, Xin

    2015-10-16

    Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site. PMID:26472914

  7. ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons

    PubMed Central

    Noh, Kyung-Min; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W.; Shen, Li; Li, Haitao; Allis, C. David

    2015-01-01

    ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of “repressive” histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX’s ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this “methyl/phos” switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction. PMID:25538301

  8. Anticolon Cancer Activity of Largazole, a Marine-Derived Tunable Histone Deacetylase InhibitorS⃞

    PubMed Central

    Liu, Yanxia; Salvador, Lilibeth A.; Byeon, Seongrim; Ying, Yongcheng; Kwan, Jason C.; Law, Brian K.; Hong, Jiyong

    2010-01-01

    Histone deacetylases (HDACs) are validated targets for anticancer therapy as attested by the approval of suberoylanilide hydroxamic acid (SAHA) and romidepsin (FK228) for treating cutaneous T cell lymphoma. We recently described the bioassay-guided isolation, structure determination, synthesis, and target identification of largazole, a marine-derived antiproliferative natural product that is a prodrug that releases a potent HDAC inhibitor, largazole thiol. Here, we characterize the anticancer activity of largazole by using in vitro and in vivo cancer models. Screening against the National Cancer Institute's 60 cell lines revealed that largazole is particularly active against several colon cancer cell types. Consequently, we tested largazole, along with several synthetic analogs, for HDAC inhibition in human HCT116 colon cancer cells. Enzyme inhibition strongly correlated with the growth inhibitory effects, and differential activity of largazole analogs was rationalized by molecular docking to an HDAC1 homology model. Comparative genomewide transcript profiling revealed a close overlap of genes that are regulated by largazole, FK228, and SAHA. Several of these genes can be related to largazole's ability to induce cell cycle arrest and apoptosis. Stability studies suggested reasonable bioavailability of the active species, largazole thiol. We established that largazole inhibits HDACs in tumor tissue in vivo by using a human HCT116 xenograft mouse model. Largazole strongly stimulated histone hyperacetylation in the tumor, showed efficacy in inhibiting tumor growth, and induced apoptosis in the tumor. This effect probably is mediated by the modulation of levels of cell cycle regulators, antagonism of the AKT pathway through insulin receptor substrate 1 down-regulation, and reduction of epidermal growth factor receptor levels. PMID:20739454

  9. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  10. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription.

    PubMed

    Zhao, J; Kennedy, B K; Lawrence, B D; Barbie, D A; Matera, A G; Fletcher, J A; Harlow, E

    2000-09-15

    In eukaryotic cells, histone gene expression is one of the major events that mark entry into S phase. While this process is tightly linked to cell cycle position, how it is regulated by the cell cycle machinery is not known. Here we show that NPAT, a substrate of the cyclin E-Cdk2 complex, is associated with human replication-dependent histone gene clusters on both chromosomes 1 and 6 in S phase. We demonstrate that NPAT activates histone gene transcription and that this activation is dependent on the promoter elements (SSCSs) previously proposed to mediate cell cycle-dependent transcription. Cyclin E is also associated with the histone gene loci, and cyclin E-Cdk2 stimulates the NPAT-mediated activation of histone gene transcription. Thus, our results both show that NPAT is involved in a key S phase event and provide a link between the cell cycle machinery and activation of histone gene transcription. PMID:10995386

  11. Identification of the KDM2/7 Histone Lysine Demethylase Subfamily Inhibitor and its Antiproliferative Activity

    PubMed Central

    2013-01-01

    Histone Nε-methyl lysine demethylases KDM2/7 have been identified as potential targets for cancer therapies. On the basis of the crystal structure of KDM7B, we designed and prepared a series of hydroxamate analogues bearing an alkyl chain. Enzyme assays revealed that compound 9 potently inhibits KDM2A, KDM7A, and KDM7B, with IC50s of 6.8, 0.2, and 1.2 μM, respectively. While inhibitors of KDM4s did not show any effect on cancer cells tested, the KDM2/7-subfamily inhibitor 9 exerted antiproliferative activity, indicating the potential for KDM2/7 inhibitors as anticancer agents. PMID:23964788

  12. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth

    PubMed Central

    Wang, Lei; Chang, Jianjun; Varghese, Diana; Dellinger, Michael; Kumar, Subodh; Best, Anne M.; Ruiz, Julio; Bruick, Richard; Peña-Llopis, Samuel; Xu, Junjie; Babinski, David J.; Frantz, Doug E.; Brekken, Rolf A.; Quinn, Amy M.; Simeonov, Anton; Easmon, Johnny; Martinez, Elisabeth D.

    2013-01-01

    The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signaling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) which specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumors in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumor burden and prolongs survival. Importantly, we find that patients with breast tumors that overexpress Jumonji demethylases have significantly lower survival. Thus JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. PMID:23792809

  13. A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis.

    PubMed

    Kabelitz, Tina; Brzezinka, Krzysztof; Friedrich, Thomas; Górka, Michał; Graf, Alexander; Kappel, Christian; Bäurle, Isabel

    2016-05-01

    Transposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways, and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as antisilencing factors and prevent silencing of genes next to TEs Whether TE silencing is counterbalanced by the activity of antisilencing factors is still unclear. Here, we characterize JMJ24 as a regulator of TE silencing. We show that loss of JMJ24 results in increased silencing of the DNA transposon AtMu1c, while overexpression of JMJ24 reduces silencing. JMJ24 has a JumonjiC (JmjC) domain and two RING domains. JMJ24 autoubiquitinates in vitro, demonstrating E3 ligase activity of the RING domain(s). JMJ24-JmjC binds the N-terminal tail of histone H3, and full-length JMJ24 binds histone H3 in vivo. JMJ24 activity is anticorrelated with histone H3 Lys 9 dimethylation (H3K9me2) levels at AtMu1c Double mutant analyses with epigenetic silencing mutants suggest that JMJ24 antagonizes histone H3K9me2 and requires H3K9 methyltransferases for its activity on AtMu1c Genome-wide transcriptome analysis indicates that JMJ24 affects silencing at additional TEs Our results suggest that the JmjC domain of JMJ24 has lost demethylase activity but has been retained as a binding domain for histone H3. This is in line with phylogenetic analyses indicating that JMJ24 (with the mutated JmjC domain) is widely conserved in angiosperms. Taken together, this study assigns a role in TE silencing to a conserved JmjC-domain protein with E3 ligase activity, but no demethylase activity. PMID:26979329

  14. Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment

    PubMed Central

    Li, Pei-Tzu; Tsai, Yi-Jane; Lee, Ming-Jen; Chen, Chin-Tin

    2015-01-01

    Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ0 cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation. PMID:26473836

  15. E3-Independent Constitutive Monoubiquitination Complements Histone Methyltransferase Activity of SETDB1.

    PubMed

    Sun, Lidong; Fang, Jia

    2016-06-16

    Ubiquitination typically occurs through the sequential action of three enzymes catalyzing ubiquitin activation (E1), conjugation (E2), and ligation (E3) and regulates diverse eukaryotic cellular processes. Although monoubiquitination commonly confers nondegradative activities, mechanisms underlying its temporal and spatial regulation and functional plasticity still remain largely unknown. Here we demonstrate that SETDB1, a major histone H3K9 methyltransferase is monoubiquitinated at the evolutionarily conserved lysine-867 in its SET-Insertion domain. This ubiquitination is directly catalyzed by UBE2E family of E2 enzymes in an E3-independent manner while the conjugated-ubiquitin (Ub) is protected from active deubiquitination. The resulting constitutive lysine-867 monoubiquitination is essential for SETDB1's enzymatic activity and endogenous retrovirus silencing in murine embryonic stem cells. Furthermore, the canonical hydrophobic patch on the conjugated-Ub is critical for Ub protection and function. Together, our findings highlight an E3-independent mechanism for monoubiquitination and reveal mechanistic details of SETDB1's enzymatic activity and the functional significance of its SET-Insertion. PMID:27237050

  16. Antimalarial and Antileishmanial Activities of Histone Deacetylase Inhibitors with Triazole-Linked Cap Group

    PubMed Central

    Patil, Vishal; Guerrant, William; Chen, Po C.; Gryder, Berkley; Benicewicz, Derek B.; Khan, Shabana I.; Tekwani, Babu L.; Oyelere, Adegboyega K.

    2009-01-01

    Histone deacetylase inhibitors (HDACi) are endowed with plethora of biological functions including anti-proliferative, anti-inflammatory, anti-parasitic, and cognition-enhancing activities. Parsing the structure–activity relationship (SAR) for each disease condition is vital for long-term therapeutic applications of HDACi. We report in the present study specific cap group substitution patterns and spacer-group chain lengths that enhance the antimalarial and antileishmanial activity of aryltriazolylhydroxamates-based HDACi. We identified many compounds that are several folds selectively cytotoxic to the plasmodium parasites compared to standard HDACi. Also, a few of these compounds have antileishmanial activity that rivals that of miltefosine, the only currently available oral agent against visceral leishmaniasis. The anti-parasite properties of several of these compounds tracked well with their anti-HDAC activities. The results presented here provide further evidence on the suitability of HDAC inhibition as a viable therapeutic option to curb infections caused by apicomplexan protozoans and trypanosomatids. PMID:19914074

  17. Histone Chaperone SSRP1 is Essential for Wnt Signaling Pathway Activity During Osteoblast Differentiation.

    PubMed

    Hossan, Tareq; Nagarajan, Sankari; Baumgart, Simon J; Xie, Wanhua; Magallanes, Roberto Tirado; Hernandez, Céline; Chiaroni, Pierre-Marie; Indenbirken, Daniela; Spitzner, Melanie; Thomas-Chollier, Morgane; Grade, Marian; Thieffry, Denis; Grundhoff, Adam; Wegwitz, Florian; Johnsen, Steven A

    2016-05-01

    Cellular differentiation is accompanied by dramatic changes in chromatin structure which direct the activation of lineage-specific transcriptional programs. Structure-specific recognition protein-1 (SSRP1) is a histone chaperone which is important for chromatin-associated processes such as transcription, DNA replication and repair. Since the function of SSRP1 during cell differentiation remains unclear, we investigated its potential role in controlling lineage determination. Depletion of SSRP1 in human mesenchymal stem cells elicited lineage-specific effects by increasing expression of adipocyte-specific genes and decreasing the expression of osteoblast-specific genes. Consistent with a role in controlling lineage specification, transcriptome-wide RNA-sequencing following SSRP1 depletion and the induction of osteoblast differentiation revealed a specific decrease in the expression of genes involved in biological processes related to osteoblast differentiation. Importantly, we observed a specific downregulation of target genes of the canonical Wnt signaling pathway, which was accompanied by decreased nuclear localization of active β-catenin. Together our data uncover a previously unknown role for SSRP1 in promoting the activation of the Wnt signaling pathway activity during cellular differentiation. Stem Cells 2016;34:1369-1376. PMID:27146025

  18. Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity

    SciTech Connect

    Catania, Annunziata; Iavarone, Carlo; Carlomagno, Stella M.; Chiariello, Mario . E-mail: chiariel@unina.it

    2006-05-05

    Histone deacetylases (HDACs) are key regulatory enzymes involved in the control of gene expression and their inhibition by specific drugs has been widely correlated to cell cycle arrest, terminal differentiation, and apoptosis. Here, we investigated whether HDAC activity was required for PDGF-dependent signal transduction and cellular proliferation. Exposure of PDGF-stimulated NIH3T3 fibroblasts to the HDAC inhibitor trichostatin A (TSA) potently repressed the expression of a group of genes correlated to PDGF-dependent cellular growth and pro-survival activity. Moreover, we show that TSA interfered with STAT3-dependent transcriptional activity induced by PDGF. Still, neither phosphorylation nor nuclear translocation and DNA-binding in vitro and in vivo of STAT3 were affected by using TSA to interfere with PDGF stimulation. Finally, TSA treatment resulted in the suppression of PDGF-dependent cellular proliferation without affecting cellular survival of NIH3T3 cells. Our data indicate that inhibition of HDAC activity antagonizes the mitogenic effect of PDGF, suggesting that these drugs may specifically act on the expression of STAT-dependent, PDGF-responsive genes.

  19. Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity.

    PubMed

    Cabanel, Mariana; Brand, Camila; Oliveira-Nunes, Maria Cecilia; Cabral-Piccin, Mariela Pires; Lopes, Marcela Freitas; Brito, Jose Marques; de Oliveira, Felipe Leite; El-Cheikh, Marcia Cury; Carneiro, Katia

    2015-01-01

    Inflammatory chronic pathologies are complex processes characterized by an imbalance between the resolution of the inflammatory phase and the establishment of tissue repair. The main players in these inflammatory pathologies are bone marrow derived monocytes (BMDMs). However, how monocyte differentiation is modulated to give rise to specific macrophage subpopulations (M1 or M2) that may either maintain the chronic inflammatory process or lead to wound healing is still unclear. Considering that inhibitors of Histone Deacetylase (HDAC) have an anti-inflammatory activity, we asked whether this enzyme would play a role on monocyte differentiation into M1 or M2 phenotype and in the cell shape transition that follows. We then induced murine bone marrow progenitors into monocyte/macrophage differentiation pathway using media containing GM-CSF and the HDAC blocker, Trichostatin A (TSA). We found that the pharmacological inhibition of HDAC activity led to a shape transition from the typical macrophage pancake-like shape into an elongated morphology, which was correlated to a mixed M1/M2 profile of cytokine and chemokine secretion. Our results present, for the first time, that HDAC activity acts as a regulator of macrophage differentiation in the absence of lymphocyte stimuli. We propose that HDAC activity down regulates macrophage plasticity favoring the pro-inflammatory phenotype. PMID:26196676

  20. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    SciTech Connect

    Herr, Michael J.; Longhurst, Celia M.; Baker, Benjamin; Homayouni, Ramin; Speich, Henry E.; Kotha, Jayaprakash; Jennings, Lisa K.

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  1. Inhibition of histone deacetylase 6 activity reduces cyst growth in polycystic kidney disease.

    PubMed

    Cebotaru, Liudmila; Liu, Qiangni; Yanda, Murali K; Boinot, Clement; Outeda, Patricia; Huso, David L; Watnick, Terry; Guggino, William B; Cebotaru, Valeriu

    2016-07-01

    Abnormal proliferation of cyst-lining epithelium and increased intracystic fluid secretion via the cystic fibrosis transmembrane conductance regulator (CFTR) are thought to contribute to cyst growth in autosomal dominant polycystic kidney disease (ADPKD). Histone deacetylase 6 (HDAC6) expression and activity are increased in certain cancers, neurodegenerative diseases, and in Pkd1-mutant renal epithelial cells. Inhibition of HDAC6 activity with specific inhibitors slows cancer growth. Here we studied the effect of tubacin, a specific HDAC6 inhibitor, on cyst growth in polycystic kidney disease. Treatment with tubacin prevented cyst formation in MDCK cells, an in vitro model of cystogenesis. Cyclic AMP stimulates cell proliferation and activates intracystic CFTR-mediated chloride secretion in ADPKD. Treatment with tubacin downregulated cyclic AMP levels, inhibited cell proliferation, and inhibited cyclic AMP-activated CFTR chloride currents in MDCK cells. We also found that tubacin reduced cyst growth by inhibiting proliferation of cyst-lining epithelial cells, downregulated cyclic AMP levels, and improved renal function in a Pkd1-conditional mouse model of ADPKD. Thus, HDAC6 could play a role in cyst formation and could serve as a potential therapeutic target in ADPKD. PMID:27165822

  2. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. PMID:26905748

  3. Histone H3 globular domain acetylation identifies a new class of enhancers.

    PubMed

    Pradeepa, Madapura M; Grimes, Graeme R; Kumar, Yatendra; Olley, Gabrielle; Taylor, Gillian C A; Schneider, Robert; Bickmore, Wendy A

    2016-06-01

    Histone acetylation is generally associated with active chromatin, but most studies have focused on the acetylation of histone tails. Various histone H3 and H4 tail acetylations mark the promoters of active genes. These modifications include acetylation of histone H3 at lysine 27 (H3K27ac), which blocks Polycomb-mediated trimethylation of H3K27 (H3K27me3). H3K27ac is also widely used to identify active enhancers, and the assumption has been that profiling H3K27ac is a comprehensive way of cataloguing the set of active enhancers in mammalian cell types. Here we show that acetylation of lysine residues in the globular domain of histone H3 (lysine 64 (H3K64ac) and lysine 122 (H3K122ac)) marks active gene promoters and also a subset of active enhancers. Moreover, we find a new class of active functional enhancers that is marked by H3K122ac but lacks H3K27ac. This work suggests that, to identify enhancers, a more comprehensive analysis of histone acetylation is required than has previously been considered. PMID:27089178

  4. Histone H3 phosphorylation – A versatile chromatin modification for different occasions

    PubMed Central

    Sawicka, Anna; Seiser, Christian

    2012-01-01

    Post-translation modifications of histones modulate the accessibility and transcriptional competence of specific chromatin regions within the eukaryotic genome. Phosphorylation of histone H3 is unique in the sense that it associates on one hand with open chromatin during gene activation and marks on the other hand highly condensed chromatin during mitosis. Phosphorylation of serine residues at histone H3 is a highly dynamic process that creates together with acetylation and methylation marks at neighboring lysine residues specific combinatorial patterns that are read by specific detector proteins. In this review we describe the importance of different histone H3 phosphorylation marks for chromatin condensation during mitosis. In addition, we review the signals that trigger histone H3 phosphorylation and the factors that control this reversible modification during interphase and mediate the biological readout of the signal. Finally, we discuss different models describing the role of histone H3 phosphorylation in the activation of transcription of poised genes or by transient derepression of epigenetically silenced genes. We propose that histone H3 phosphorylation in the context with lysine methylation might temporarily relieve the silencing of specific genes without affecting the epigenetic memory. PMID:22564826

  5. Histones and basic polypeptides activate Ca2+/cation influx in various cell types.

    PubMed Central

    Gamberucci, A; Fulceri, R; Marcolongo, P; Pralong, W F; Benedetti, A

    1998-01-01

    Histone H2A (1-10 microg/ml) added to Ehrlich ascite cell suspensions promoted: (i) Ca2+ influx, but no apparent intracellular Ca2+ mobilization; (ii) plasma-membrane depolarization and Na+ influx in Ca2+-free medium, which were recovered by Ca2+ readmission; (iii) influx of other cations such as Ba2+, Mn2+, choline+ and N-methyl-d-glucamine+, but not of propidium+, ethidium bromide and Trypan Blue. H2A-induced Ca2+ influx and cell depolarization were: (i) blocked by La3+ and Gd3+, but not by various inhibitors of receptor-activated Ca2+-influx pathways/channels; (ii) mimicked by various basic polypeptides, with Mr>4000; (iii) prevented or reversed by polyanions such as polyglutamate or heparin; (iv) present in other cell types, such as Jurkat, PC12 and Friend erythroleukaemia cells, but virtually absent from rat hepatocytes and thymocytes. We conclude that cationic proteins/polypeptides, by interacting in a cell-specific manner with the cell surface, can activate in those cells putative non-selective Ca2+ channels and membrane depolarization. PMID:9531506

  6. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers.

    PubMed

    Potthoff, Matthew J; Wu, Hai; Arnold, Michael A; Shelton, John M; Backs, Johannes; McAnally, John; Richardson, James A; Bassel-Duby, Rhonda; Olson, Eric N

    2007-09-01

    Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239

  7. Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers

    PubMed Central

    Potthoff, Matthew J.; Wu, Hai; Arnold, Michael A.; Shelton, John M.; Backs, Johannes; McAnally, John; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2007-01-01

    Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239

  8. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis.

    PubMed

    Hutt, Darren M; Herman, David; Rodrigues, Ana P C; Noel, Sabrina; Pilewski, Joseph M; Matteson, Jeanne; Hoch, Ben; Kellner, Wendy; Kelly, Jeffery W; Schmidt, Andre; Thomas, Philip J; Matsumura, Yoshihiro; Skach, William R; Gentzsch, Martina; Riordan, John R; Sorscher, Eric J; Okiyoneda, Tsukasa; Yates, John R; Lukacs, Gergely L; Frizzell, Raymond A; Manning, Gerard; Gottesfeld, Joel M; Balch, William E

    2010-01-01

    Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach for modifying the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation, which lead to system failures. The DeltaF508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) results in the absence of the cell surface chloride channel and a loss of airway hydration, leading to the premature lung failure and reduced lifespan responsible for cystic fibrosis. We now show that the HDACi suberoylanilide hydroxamic acid (SAHA) restores surface channel activity in human primary airway epithelia to levels that are 28% of those of wild-type CFTR. Biological silencing of all known class I and II HDACs reveals that HDAC7 plays a central role in restoration of DeltaF508 function. We suggest that the tunable capacity of HDACs can be manipulated by chemical biology to counter the onset of cystic fibrosis and other human misfolding disorders. PMID:19966789

  9. Reduced Histone Deacetylase 7 Activity Restores Function to Misfolded CFTR in Cystic Fibrosis

    PubMed Central

    Hutt, Darren M.; Herman, David; Rodrigues, Ana P. C.; Noel, Sabrina; Pilewski, Joseph M.; Matteson, Jeanne; Hoch, Ben; Kellner, Wendy; Kelly, Jeffery W.; Schmidt, Andre; Thomas, Philip J.; Matsumura, Yoshihiro; Skach, William R.; Gentzsch, Martina; Riordan, John R.; Sorscher, Eric J.; Okiyoneda, Tsukasa; Lukacs, Gergely L.; Frizzell, Raymond A.; Manning, Gerard; Gottesfeld, Joel M.; Balch, William E.

    2010-01-01

    Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach to modify the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation leading to system failures. The ΔF508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) results in the absence of the cell surface chloride channel and a loss of airway hydration, leading to premature lung failure and reduced lifespan responsible for cystic fibrosis (CF). We now show that the HDACi suberoylanilide hydroxamic acid (SAHA) restores surface channel activity in human primary airway epithelia to levels that are 28% of wild-type CFTR. Biological silencing of all known class I and II HDACs reveals that HDAC7 plays a central role in restoration of ΔF508 function. We suggest that the tunable capacity of HDACs can be manipulated by chemical biology to counter the onset of CF and other human misfolding disorders. PMID:19966789

  10. Oxidative and Nitrosative Stress and Histone Deacetylase-2 Activity in Exacerbations of COPD

    PubMed Central

    Footitt, Joseph; Mallia, Patrick; Durham, Andrew L.; Ho, W. Eugene; Trujillo-Torralbo, Maria-Belen; Telcian, Aurica G.; Del Rosario, Ajerico; Chang, Cheng; Peh, Hong-Yong; Kebadze, Tatiana; Aniscenko, Julia; Stanciu, Luminita; Essilfie-Quaye, Sarah; Ito, Kazuhiro; Barnes, Peter J.; Elkin, Sarah L.; Kon, Onn M.; Wong, W. S. Fred; Adcock, Ian M.; Johnston, Sebastian L.

    2016-01-01

    Background Respiratory virus infections are commonly associated with COPD exacerbations, but little is known about the mechanisms linking virus infection to exacerbations. Pathogenic mechanisms in stable COPD include oxidative and nitrosative stress and reduced activity of histone deacetylase-2 (HDAC2), but their roles in COPD exacerbations is unknown. We investigated oxidative and nitrosative stress (O&NS) and HDAC2 in COPD exacerbations using experimental rhinovirus infection. Methods Nine subjects with COPD (Global Initiative for Chronic Obstructive Lung Disease stage II), 10 smokers, and 11 nonsmokers were successfully infected with rhinovirus. Markers of O&NS-associated cellular damage, and inflammatory mediators and proteases were measured in sputum, and HDAC2 activity was measured in sputum and bronchoalveolar macrophages. In an in vitro model, monocyte-derived THP-1 cells were infected with rhinovirus and nitrosylation and activity of HDAC2 was measured. Results Rhinovirus infection induced significant increases in airways inflammation and markers of O&NS in subjects with COPD. O&NS markers correlated with virus load and inflammatory markers. Macrophage HDAC2 activity was reduced during exacerbation and correlated inversely with virus load, inflammatory markers, and nitrosative stress. Sputum macrophage HDAC2 activity pre-infection was inversely associated with sputum virus load and inflammatory markers during exacerbation. Rhinovirus infection of monocytes induced nitrosylation of HDAC2 and reduced HDAC2 activity; inhibition of O&NS inhibited rhinovirus-induced inflammatory cytokines. Conclusions O&NS, airways inflammation, and impaired HDAC2 may be important mechanisms of virus-induced COPD exacerbations. Therapies targeting these mechanisms offer potential new treatments for COPD exacerbations. PMID:25790167

  11. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor

    SciTech Connect

    Kim, Dong Hoon; Lee, Jiyong; Kim, Kyung Noo; Kim, Hye Jin; Jeung, Hei Cheul; Chung, Hyun Cheol; Kwon, Ho Jeong . E-mail: kwonhj@yonsei.ac.kr

    2007-04-27

    Histone deacetylase (HDAC), a key enzyme in gene expression and carcinogenesis, is considered an attractive target molecule for cancer therapy. Here, we report a new synthetic small molecule, N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), as a HDAC inhibitor with anti-tumor activity both in vitro and in vivo. The compound inhibited HDAC enzyme activity as well as proliferation of human fibrosarcoma cells (HT1080) in vitro. Treatment of cells with HNHA elicited histone hyperacetylation leading to an up-regulation of p21 transcription, cell cycle arrest, and an inhibition of HT1080 cell invasion. Moreover, HNHA effectively inhibited the growth of tumor tissue in a mouse xenograph assay in vivo. Together, these data demonstrate that this novel HDAC inhibitor could be developed as a potential anti-tumor agent targeting HDAC.

  12. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    SciTech Connect

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  13. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1

    PubMed Central

    Martínez-Bonet, Marta; Isabel Clemente, Maria; Jesús Serramía, Maria; Muñoz, Eduardo; Moreno, Santiago; Ángeles Muñoz-Fernández, Maria

    2015-01-01

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these combinations an attractive novel and safe option for future clinical trials. PMID:26563568

  14. Structural Basis of the Antiproliferative Activity of Largazole a Depsipeptide Inhibitor of the Histone Deacetylases

    SciTech Connect

    K Cole; D Dowling; M Boone; A Phillips; D Christianson

    2011-12-31

    Largazole is a macrocyclic depsipeptide originally isolated from the marine cyanobacterium Symploca sp., which is indigenous to the warm, blue-green waters of Key Largo, Florida (whence largazole derives its name). Largazole contains an unusual thiazoline-thiazole ring system that rigidifies its macrocyclic skeleton, and it also contains a lipophilic thioester side chain. Hydrolysis of the thioester in vivo yields largazole thiol, which exhibits remarkable antiproliferative effects and is believed to be the most potent inhibitor of the metal-dependent histone deacetylases (HDACs). Here, the 2.14 {angstrom}-resolution crystal structure of the HDAC8-largazole thiol complex is the first of an HDAC complexed with a macrocyclic inhibitor and reveals that ideal thiolate-zinc coordination geometry is the key chemical feature responsible for its exceptional affinity and biological activity. Notably, the core structure of largazole is conserved in romidepsin, a depsipeptide natural product formulated as the drug Istodax recently approved for cancer chemotherapy. Accordingly, the structure of the HDAC8-largazole thiol complex is the first to illustrate the mode of action of a new class of therapeutically important HDAC inhibitors.

  15. Class IIa Histone Deacetylases are Hormone-activated regulators of FOXO and Mammalian Glucose Homeostasis

    PubMed Central

    Mihaylova, Maria M.; Vasquez, Debbie S.; Ravnskjaer, Kim; Denechaud, Pierre-Damien; Yu, Ruth T.; Alvarez, Jacqueline G.; Downes, Michael; Evans, Ronald M.; Montminy, Marc; Shaw, Reuben J.

    2011-01-01

    SUMMARY Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, Class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, Class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of Foxo family transcription factors. Loss of Class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of Class IIa HDACs in mouse models of Type 2 Diabetes ameliorates hyperglycemia, suggesting that inhibitors of Class I/II HDACs may be potential therapeutics for metabolic syndrome. PMID:21565617

  16. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    PubMed

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  17. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin

    PubMed Central

    Svensson, J. Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C.; Allshire, Robin C.; Ekwall, Karl

    2015-01-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation–exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation. PMID:25778913

  18. Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies.

    PubMed

    Ganai, Shabir Ahmad

    2016-08-01

    Histone acetyl transferases and histone deacetylases (HDACs) are counteracting epigenetic enzymes regulating the turnover of histone acetylation thereby regulating transcriptional events in a precise manner. Deregulation of histone acetylation caused by aberrant expression of HDACs plays a key role in tumour onset and progression making these enzymes as candidate targets for anticancer drugs and therapy. Small-molecules namely histone deacetylase inhibitors (HDACi) modulating the biological function of HDACs have shown multiple biological effects including differentiation, cell cycle arrest and apoptosis in tumour models. HDACi in general have been described in plethora of reviews with respect to various cancers. However, no review article is available describing thoroughly the role of inhibitor givinostat (ITF2357 or [6-(diethylaminomethyl) naphthalen-2-yl] methyl N-[4-(hydroxycarbamoyl) phenyl] carbamate) in haematological malignancies. Thus, the present review explores the intricate role of novel inhibitor givinostat in the defined malignancies including multiple myeloma, acute myelogenous leukaemia, Hodgkin's and non-Hodgkin's lymphoma apart from myeloproliferative neoplasms. The distinct molecular mechanisms triggered by this small-molecule inhibitor in these cancers to exert cytotoxic effect have also been dealt with. The article also highlights the combination strategy that can be used for enhancing the therapeutic efficiency of this inhibitor in the upcoming future. PMID:27121910

  19. Droxinostat, a Histone Deacetylase Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cell Lines via Activation of the Mitochondrial Pathway and Downregulation of FLIP1

    PubMed Central

    Liu, Jing; Li, Guangming; Wang, Xiang; Wang, Liang; Zhao, Rui; Wang, Juanxia; Kong, Yin; Ding, Jie; Li, Juan; Zhang, Lingyi

    2016-01-01

    Background: The current chemotherapeutic outcomes for hepatocellular carcinoma (HCC) are not encouraging, and long-term survival of this patient group remains poor. Recent studies have demonstrated the utility of histone deacetylase inhibitors that can disrupt cell proliferation and survival in HCC management. However, the effects of droxinostat, a type of histone deacetylase inhibitor, on HCC remain to be established. Methods: The effects of droxinostat on HCC cell lines SMMC-7721 and HepG2 were investigated. Histone acetylation and apoptosis-modulating proteins were assessed via Western blot. Proliferation was examined with 3-(4, 5 dimetyl-2-thiazolyl)-2, 5-diphenyl 2H-tetrazolium bromide, cell proliferation, and real-time cell viability assays, and apoptosis with flow cytometry. Results: Droxinostat inhibited proliferation and colony formation of the HCC cell lines examined. Hepatoma cell death was induced through activation of the mitochondrial apoptotic pathway and downregulation of FLIP expression. Droxinostat suppressed histone deacetylase (HDAC) 3 expression and promoted acetylation of histones H3 and H4. Knockdown of HDAC3 induced hepatoma cell apoptosis and histone H3 and H4 acetylation. Conclusions: Droxinostat suppresses HDAC3 expression and induces histone acetylation and HCC cell death through activation of the mitochondrial apoptotic pathway and downregulation of FLIP, supporting its potential application in the treatment of HCC. PMID:26947884

  20. Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat.

    PubMed

    Sooraj, Dhanya; Xu, Dakang; Cain, Jason E; Gold, Daniel P; Williams, Bryan R G

    2016-07-01

    Improved treatment strategies are required for bladder cancer due to frequent recurrence of low-grade tumors and poor survival rate from high-grade tumors with current therapies. Histone deacetylase inhibitors (HDACi), approved as single agents for specific lymphomas, have shown promising preclinical results in solid tumors but could benefit from identification of biomarkers for response. Loss of activating transcription factor 3 (ATF3) expression is a feature of bladder tumor progression and correlates with poor survival. We investigated the utility of measuring ATF3 expression as a marker of response to the HDACi pracinostat in bladder cancer models. Pracinostat treatment of bladder cancer cell lines reactivated the expression of ATF3, correlating with significant alteration in proliferative, migratory, and anchorage-dependent growth capacities. Pracinostat also induced growth arrest at the G0-G1 cell-cycle phase, coincident with the activation of tumor suppressor genes. In mouse xenograft bladder cancer models, pracinostat treatment significantly reduced tumor volumes compared with controls, accompanied by reexpression of ATF3 in nonproliferating cells from early to late stage of therapy and in parallel induced antiangiogenesis and apoptosis. Importantly, cells in which ATF3 expression was depleted were less sensitive to pracinostat treatment in vitro, exhibiting significantly higher proliferative and migratory properties. In vivo, control xenograft tumors were significantly more responsive to treatment than ATF3 knockdown xenografts. Thus, reactivation of ATF3 is an important factor in determining sensitivity to pracinostat treatment, both in vitro and in vivo, and could serve as a potential biomarker of response and provide a rationale for therapeutic utility in HDACi-mediated treatments for bladder cancer. Mol Cancer Ther; 15(7); 1726-39. ©2016 AACR. PMID:27196751

  1. Heterogeneous Antibody-Based Activity Assay for Lysine Specific Demethylase 1 (LSD1) on a Histone Peptide Substrate.

    PubMed

    Schmitt, Martin L; Ladwein, Kathrin I; Carlino, Luca; Schulz-Fincke, Johannes; Willmann, Dominica; Metzger, Eric; Schilcher, Pierre; Imhof, Axel; Schüle, Roland; Sippl, Wolfgang; Jung, Manfred

    2014-07-01

    Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity. We used a biotinylated histone 3 peptide (amino acids 1-21) with monomethylated lysine 4 (H3K4me) as the substrate for the detection of LSD1 activity with antibody-mediated quantitation of the demethylated product. We have successfully used the assay to measure the potency of reference inhibitors. The advantage of the heterogeneous format is shown with cumarin-based LSD1 inhibitor candidates that we have identified using virtual screening. They had shown good potency in an established LSD1 screening assay. The new heterogeneous assay identified them as false positives, which was verified using mass spectrometry. PMID:24687155

  2. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation.

    PubMed

    Xie, Zhongyu; Zhang, Di; Chung, Dongjun; Tang, Zhanyun; Huang, He; Dai, Lunzhi; Qi, Shankang; Li, Jingya; Colak, Gozde; Chen, Yue; Xia, Chunmei; Peng, Chao; Ruan, Haibin; Kirkey, Matt; Wang, Danli; Jensen, Lindy M; Kwon, Oh Kwang; Lee, Sangkyu; Pletcher, Scott D; Tan, Minjia; Lombard, David B; White, Kevin P; Zhao, Hongyu; Li, Jia; Roeder, Robert G; Yang, Xiaoyong; Zhao, Yingming

    2016-04-21

    Here we report the identification and verification of a β-hydroxybutyrate-derived protein modification, lysine β-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated β-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone β-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and diverse functions of β-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia. PMID:27105115

  3. The Arabidopsis DNA Polymerase δ Has a Role in the Deposition of Transcriptionally Active Epigenetic Marks, Development and Flowering

    PubMed Central

    Iglesias, Francisco M.; Bruera, Natalia A.; Dergan-Dylon, Sebastián; Marino-Buslje, Cristina; Lorenzi, Hernán; Mateos, Julieta L.; Turck, Franziska; Coupland, George; Cerdán, Pablo D.

    2015-01-01

    DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes. PMID:25693187

  4. Synthesis of azobenzenealkylmaleimide probes to photocontrol the enzyme activity of a bacterial histone deacetylase-like amidohydrolase.

    PubMed

    Horstmann, Benjamin; Korbus, Michael; Friedmann, Tatjana; Wolff, Christiane; Thiele, Christina Marie; Meyer-Almes, Franz-Josef

    2014-12-01

    A series of azobenzenealkylmaleimides (AMDs) with different spacer length was synthesized and coupled via Michael-Addition to a specific mutant of a bacterial histone deacetylase-like amidohydrolase (HDAH). Michaelis-Menten parameters (Vmax and Km) were employed to characterize the effect of both, the spacer length and the configuration (cis vs. trans) of the attached azobenzene moiety, on the HDAH enzyme activity. The photoswitch behavior of the AMD/enzyme conjugate activity was clearly influenced by the AMD spacer length. This study highlights the importance of steric rearrangement of the photoswitch with respect to the active site and describes a strategy to optimize the photocontrol of HDAH. PMID:25462992

  5. Genome-wide histone acetylation correlates with active transcription in maize.

    PubMed

    Zhang, Wei; Garcia, Nelson; Feng, Yaping; Zhao, Han; Messing, Joachim

    2015-10-01

    Gene expression is regulated at many different levels during the life cycle of all plant species. Recent investigations have taken advantage of next-generation sequencing to study the relevance of DNA methylation and sRNAs in controlling tissue-specific gene expression in maize at the genome-wide level. Here, we profiled H3K27ac in maize, which has one of the largest sequenced plant genomes due to the amplification of retrotransposons. Because transcribed genes represent only a small proportion of its genome, gene-specific epigenetic modifications are concentrated in a relatively small percentage of the genome. Indeed, H3K27ac marks are mostly in gene-rich, in contrast to gene-poor regions. A large proportion of those marks are located in transcribed regions of genes, including 111 out of 458 known genetic loci. Moreover, increased transcription correlates with the presence of H3K27ac modification in gene bodies. Using maize as an example, we suggest that H3K27ac marks actively transcribed genes in plants. PMID:26021446

  6. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes

    PubMed Central

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S.; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation. PMID:26918332

  7. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    PubMed

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation. PMID:26918332

  8. TRIM24 Links a Non-canonical Histone Signature to Breast Cancer

    SciTech Connect

    W Tsai; Z Wang; T Yiu; K Akdemir; W Xia; S Winter; C Tsai; X Shi; D Schwarzer; et al.

    2011-12-31

    Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.

  9. Human Erythropoietin Dimers with Markedly Enhanced in vivo Activity

    NASA Astrophysics Data System (ADS)

    Sytkowski, Arthur J.; Dotimas Lunn, Elizabeth; Davis, Kerry Lynn; Feldman, Laurie; Siekman, Suvia

    1998-02-01

    Human erythropoietin, a widely used and important therapeutic glycoprotein, has a relatively short plasma half-life due to clearance by glomerular filtration as well as by other mechanisms. We hypothesized that an erythropoietin species with a larger molecular size would exhibit an increased plasma half-life and, potentially, an enhanced biological activity. We now report the production of biologically active erythropoietin dimers and trimers by chemical crosslinking of the conventional monomeric form. We imparted free sulfhydryl residues to a pool of erythropoietin monomer by chemical modification. A second pool was reacted with another modifying reagent to yield monomer with male-imido groups. Upon mixing these two pools, covalently linked dimers and trimers were formed that were biologically active in vitro. The plasma half-life of erythropoietin dimers in rabbits was >24 h compared with 4 h for the monomers. Importantly, erythropoietin dimers were biologically active in vivo as shown by their ability to increase the hematocrits of mice when injected subcutaneously. In addition, the dimers exhibited >26-fold higher activity in vivo than did the monomers and were very effective after only one dose. Dimeric and other oligomeric forms of Epo may have an important role in therapy.

  10. Histone Modifications and Cancer.

    PubMed

    Audia, James E; Campbell, Robert M

    2016-01-01

    SUMMARYHistone posttranslational modifications represent a versatile set of epigenetic marks involved not only in dynamic cellular processes, such as transcription and DNA repair, but also in the stable maintenance of repressive chromatin. In this article, we review many of the key and newly identified histone modifications known to be deregulated in cancer and how this impacts function. The latter part of the article addresses the challenges and current status of the epigenetic drug development process as it applies to cancer therapeutics. PMID:27037415

  11. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance.

    PubMed

    Krumm, Andrea; Barckhausen, Christina; Kücük, Pelin; Tomaszowski, Karl-Heinz; Loquai, Carmen; Fahrer, Jörg; Krämer, Oliver Holger; Kaina, Bernd; Roos, Wynand Paul

    2016-05-15

    DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR. PMID:26980768

  12. A "Marked Success": Physical Activity at Miss White's School

    ERIC Educational Resources Information Center

    Morice, Linda C.

    2008-01-01

    This article examines the career of Flora White, who operated a school for girls in Concord, Massachusetts (USA) from 1897 to 1914. The school promoted individualised learning and physical activity for young women. Its programme of female exercise and sports ran counter to prevailing scholarly, medical, and popular opinion in the US. White faced…

  13. 77 FR 6815 - Agency Information Collection Activities: Country of Origin Marking Requirements for Containers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Country of Origin... requirement concerning Country of Origin Marking Requirements for Containers or Holders. This request for...: Title: Country of Origin Marking Requirements for Containers or Holders. OMB Number: 1651-0057....

  14. Histone demethylation and steroid receptor function in cancer.

    PubMed

    Stratmann, Antje; Haendler, Bernard

    2012-01-01

    Steroid receptors recruit various cofactors to form multi-protein complexes which locally alter chromatin structure and control DNA accessibility in order to regulate gene transcription. Some of these factors are enzymes that add or remove histone marks in the vicinity of regulatory regions of target genes. Numerous histone modifications added by specific writer enzymes and removed by eraser enzymes have been identified. Histone methylation is a modification with a complex outcome, as it can lead to gene activation or repression, depending on the modified residue and the context. Methylation marks are added by different enzyme families displaying exquisite substrate specificity. Lysine methylation is reversible and two different demethylase families have been identified in humans, the Jumonji C and the lysine-specific demethylase families. A regulatory role of histone demethylases in fine-tuning the function of steroid receptors, especially the androgen receptor and estrogen receptor, has emerged in recent years. This is mostly inferred from in vitro studies, but more recently first in vivo data have further supported this concept. This and the deregulated expression observed for several histone demethylases suggest a role in tumours such as prostate and breast cancer. PMID:21958694

  15. Differential Acetylation of Histone H3 at the Regulatory Region of OsDREB1b Promoter Facilitates Chromatin Remodelling and Transcription Activation during Cold Stress

    PubMed Central

    Roy, Dipan; Paul, Amit; Roy, Adrita; Ghosh, Ritesh; Ganguly, Payel; Chaudhuri, Shubho

    2014-01-01

    The rice ortholog of DREB1, OsDREB1b, is transcriptionally induced by cold stress and over-expression of OsDREB1b results in increase tolerance towards high salt and freezing stress. This spatio-temporal expression of OsDREB1b is preceded by the change in chromatin structure at the promoter and the upstream region for gene activation. The promoter and the upstream region of OsDREB1b genes appear to be arranged into a nucleosome array. Nucleosome mapping of ∼700bp upstream region of OsDREB1b shows two positioned nucleosomes between −610 to −258 and a weakly positioned nucleosome at the core promoter and the TSS. Upon cold stress, there is a significant change in the nucleosome arrangement at the upstream region with increase in DNaseI hypersensitivity or MNase digestion in the vicinity of cis elements and TATA box at the core promoter. ChIP assays shows hyper-acetylation of histone H3K9 throughout the locus whereas region specific increase was observed in H3K14ac and H3K27ac. Moreover, there is an enrichment of RNA PolII occupancy at the promoter region during transcription activation. There is no significant change in the H3 occupancy in OsDREB1b locus negating the possibility of nucleosome loss during cold stress. Interestingly, cold induced enhanced transcript level of OsDREB1b as well as histone H3 acetylation at the upstream region was found to diminish when stressed plants were returned to normal temperature. The result indicates absolute necessity of changes in chromatin conformation for the transcription up-regulation of OsDREB1b gene in response to cold stress. The combined results show the existence of closed chromatin conformation at the upstream and promoter region of OsDREB1b in the transcription “off” state. During cold stress, changes in region specific histone modification marks promote the alteration of chromatin structure to facilitate the binding of transcription machinery for proper gene expression. PMID:24940877

  16. Antitumor activity of a small-molecule inhibitor of the histone kinase Haspin

    PubMed Central

    Huertas, D; Soler, M; Moreto, J; Villanueva, A; Martinez, A; Vidal, A; Charlton, M; Moffat, D; Patel, S; McDermott, J; Owen, J; Brotherton, D; Krige, D; Cuthill, S; Esteller, M

    2012-01-01

    The approval of histone deacetylase inhibitors for treatment of lymphoma subtypes has positioned histone modifications as potential targets for the development of new classes of anticancer drugs. Histones also undergo phosphorylation events, and Haspin is a protein kinase the only known target of which is phosphorylation of histone H3 at Thr3 residue (H3T3ph), which is necessary for mitosis progression. Mitotic kinases can be blocked by small drugs and several clinical trials are underway with these agents. As occurs with Aurora kinase inhibitors, Haspin might be an optimal candidate for the pharmacological development of these compounds. A high-throughput screening for Haspin inhibitors identified the CHR-6494 compound as being one promising such agent. We demonstrate that CHR-6494 reduces H3T3ph levels in a dose-dependent manner and causes a mitotic catastrophe characterized by metaphase misalignment, spindle abnormalities and centrosome amplification. From the cellular standpoint, the identified small-molecule Haspin inhibitor causes arrest in G2/M and subsequently apoptosis. Importantly, ex vivo assays also demonstrate its anti-angiogenetic features; in vivo, it shows antitumor potential in xenografted nude mice without any observed toxicity. Thus, CHR-6494 is a first-in-class Haspin inhibitor with a wide spectrum of anticancer effects that merits further preclinical research as a new member of the family of mitotic kinase inhibitors. PMID:21804608

  17. Epigenomic landscape modified by histone modification correlated with activation of IGF2 gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The links of histone post-translational modifications and chromatin structure to cell cycle progression, DNA replication, and overall chromosome functions are very clear. The modulation of genome expression as a consequence of chromatin structural changes is most likely a basic mechanism. The epige...

  18. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory

    PubMed Central

    Hait, Nitai C; Wise, Laura E; Allegood, Jeremy C; O’Brien, Megan; Avni, Dorit; Reeves, Thomas M; Knapp, Pamela E; Lu, Junyan; Luo, Cheng; Miles, Michael F; Milstien, Sheldon; Lichtman, Aron H; Spiegel, Sarah

    2014-01-01

    FTY720 (fingolimod), an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. We show that FTY720 enters the nucleus, where it is phosphorylated by sphingosine kinase 2 (SphK2), and that nuclear FTY720-P binds and inhibits class I histone deacetylases (HDACs), enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in the brain, including the hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning, and rescues memory deficits independently of its immunosuppressive actions. Sphk2−/− mice have lower levels of hippocampal sphingosine-1-phosphate, an endogenous HDAC inhibitor, and reduced histone acetylation, and display deficits in spatial memory and impaired contextual fear extinction. Thus, sphingosine-1-phosphate and SphK2 play specific roles in memory functions and FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories. PMID:24859201

  19. Butyrate induced IGF2 activation correlated with distinct chromatin landscapes due to histone modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes such as proliferation and apoptosis. IGF2 and H19 are reciprocally regulated imprinted ...

  20. Beyond Histone and Deacetylase: An Overview of Cytoplasmic Histone Deacetylases and Their Nonhistone Substrates

    PubMed Central

    Yao, Ya-Li; Yang, Wen-Ming

    2011-01-01

    Acetylation of lysines is a prominent form of modification in mammalian proteins. Deacetylation of proteins is catalyzed by histone deacetylases, traditionally named after their role in histone deacetylation, transcriptional modulation, and epigenetic regulation. Despite the link between histone deacetylases and chromatin structure, some of the histone deacetylases reside in various compartments in the cytoplasm. Here, we review how these cytoplasmic histone deacetylases are regulated, the identification of nonhistone substrates, and the functional implications of their nondeacetylase enzymatic activities. PMID:21234400

  1. Diversity and Divergence of Dinoflagellate Histone Proteins

    PubMed Central

    Marinov, Georgi K.; Lynch, Michael

    2015-01-01

    Histone proteins and the nucleosomal organization of chromatin are near-universal eukaroytic features, with the exception of dinoflagellates. Previous studies have suggested that histones do not play a major role in the packaging of dinoflagellate genomes, although several genomic and transcriptomic surveys have detected a full set of core histone genes. Here, transcriptomic and genomic sequence data from multiple dinoflagellate lineages are analyzed, and the diversity of histone proteins and their variants characterized, with particular focus on their potential post-translational modifications and the conservation of the histone code. In addition, the set of putative epigenetic mark readers and writers, chromatin remodelers and histone chaperones are examined. Dinoflagellates clearly express the most derived set of histones among all autonomous eukaryote nuclei, consistent with a combination of relaxation of sequence constraints imposed by the histone code and the presence of numerous specialized histone variants. The histone code itself appears to have diverged significantly in some of its components, yet others are conserved, implying conservation of the associated biochemical processes. Specifically, and with major implications for the function of histones in dinoflagellates, the results presented here strongly suggest that transcription through nucleosomal arrays happens in dinoflagellates. Finally, the plausible roles of histones in dinoflagellate nuclei are discussed. PMID:26646152

  2. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    SciTech Connect

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; Chen, Kuan-Bei; Stonestrom, Aaron; Long, Maria; Keller, Cheryl A.; Cheng, Yong; Jain, Deepti; Visel, Axel; Pennacchio, Len A.; Weiss, Mitchell J.; Blobel, Gerd A.; Hardison, Ross C.

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the results of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.

  3. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    DOE PAGESBeta

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; Chen, Kuan-Bei; Stonestrom, Aaron; Long, Maria; Keller, Cheryl A.; Cheng, Yong; Jain, Deepti; Visel, Axel; et al

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less

  4. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation.

    PubMed

    Schwämmle, Veit; Sidoli, Simone; Ruminowicz, Chrystian; Wu, Xudong; Lee, Chung-Fan; Helin, Kristian; Jensen, Ole N

    2016-08-01

    Histones are abundant chromatin constituents carrying numerous post-translational modifications (PTMs). Such PTMs mediate a variety of biological functions, including recruitment of enzymatic readers, writers and erasers that modulate DNA replication, transcription and repair. Individual histone molecules contain multiple coexisting PTMs, some of which exhibit crosstalk, i.e. coordinated or mutually exclusive activities. Here, we present an integrated experimental and computational systems level molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse embryonic stem cells (mESCs) knocked out in components of the Polycomb Repressive Complex 2 (PRC2, Suz12(-/-)), PRC1 (Ring1A/B(-/-)) and (Dnmt1/3a/3b(-/-)) we performed comprehensive PTM analysis of histone H3 tails (50 aa) by utilizing quantitative middle-down proteome analysis by tandem mass spectrometry. We characterized combinatorial PTM features across the four mESC lines and then applied statistical data analysis to predict crosstalk between histone H3 PTMs. We detected an overrepresentation of positive crosstalk (codependent marks) between adjacent mono-methylated and acetylated marks, and negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated lysine residues in the H3 tails. We report novel features of PTM interplay involving hitherto poorly characterized arginine methylation and lysine methylation sites, including H3R2me, H3R8me and H3K37me. Integration of the H3 data with RNAseq data by coabundance clustering analysis of histone PTMs and histone modifying enzymes revealed correlations between PTM and enzyme levels. We conclude that middle-down proteomics is a powerful tool to determine conserved or dynamic interdependencies between histone marks, which paves the way for detailed investigations of the histone code. Histone H3 PTM data is publicly available in the CrossTalkDB repository at http

  5. Histone mimics: digging down under

    PubMed Central

    LIN, Yiwei; ZHOU, Binhua P.

    2014-01-01

    Epigenetic deregulation is intimately associated with the development of human diseases. Intensive studies are currently underway to clarify the mechanism for the sake of achieving ideal diagnostic and therapeutic goals. It has been demonstrated that enzymes with histone-modifying activities can also target non-histone proteins, with the underlying mechanism remaining obscure. In this review, we focus on a novel histone mimicry strategy that may be wildly adapted during the non-histone substrate recognition process. Its potential clinical implications are also discussed. PMID:24966873

  6. Calcium-Dependent Dephosphorylation of the Histone Chaperone DAXX Regulates H3.3 Loading and Transcription upon Neuronal Activation

    PubMed Central

    Michod, David; Bartesaghi, Stefano; Khelifi, Amel; Bellodi, Cristian; Berliocchi, Laura; Nicotera, Pierluigi; Salomoni, Paolo

    2012-01-01

    Summary Activity-dependent modifications of chromatin are believed to contribute to dramatic changes in neuronal circuitry. The mechanisms underlying these modifications are not fully understood. The histone variant H3.3 is incorporated in a replication-independent manner into different regions of the genome, including gene regulatory elements. It is presently unknown whether H3.3 deposition is involved in neuronal activity-dependent events. Here, we analyze the role of the histone chaperone DAXX in the regulation of H3.3 incorporation at activity-dependent gene loci. DAXX is found to be associated with regulatory regions of selected activity-regulated genes, where it promotes H3.3 loading upon membrane depolarization. DAXX loss not only affects H3.3 deposition but also impairs transcriptional induction of these genes. Calcineurin-mediated dephosphorylation of DAXX is a key molecular switch controlling its function upon neuronal activation. Overall, these findings implicate the H3.3 chaperone DAXX in the regulation of activity-dependent events, thus revealing a new mechanism underlying epigenetic modifications in neurons. PMID:22500635

  7. The role of MyoD1 and histone modifications in the activation of muscle enhancers

    PubMed Central

    Blum, Roy; Dynlacht, Brian D

    2013-01-01

    MyoD1 is a key regulator that orchestrates skeletal muscle differentiation through the regulation of gene expression. Although many studies have focused on its role in transcriptional control at gene promoters, less is known regarding the role of MyoD1 in the assembly of active enhancers. Here, we discuss novel data that point to the ability of MyoD1 to mediate the assembly of active enhancers that augment the transcription of genes essential for muscle development and lineage specification. Based on genome-wide studies of epigenetic marks that typify active enhancers, we recently identified the compendium of distal regulatory elements that dictate transcriptional programs during myogenesis. Superimposition of MyoD1 binding sites upon the locations of muscle enhancers revealed its unequivocal binding to a core region of nearly a third of condition-specific muscle enhancers. Further studies exploring deposition of enhancer-related epigenetic marks in myoblasts lacking MyoD1 demonstrate the dependence of muscle enhancer assembly on the presence of MyoD1. We propose a model wherein MyoD1 mediates recruitment of Set7, H3K4me1, H3K27ac, p300, and RNAP II to MyoD1-bound enhancers to establish condition-specific activation of muscle genes. Moreover, muscle enhancers are modulated through coordinated binding of transcription factors, including c-Jun, Jdp2, Meis, and Runx1, which are recruited to muscle enhancers in a MyoD1-dependent manner. Thus, MyoD1 and enhancer-associated transcription factors function coordinately to assemble and regulate enhancers, thereby augmenting expression of muscle-related genes. PMID:23880568

  8. Histone Deacetylase HDAC8 Promotes Insulin Resistance and β-Catenin Activation in NAFLD-Associated Hepatocellular Carcinoma.

    PubMed

    Tian, Yuan; Wong, Vincent W S; Wong, Grace L H; Yang, Weiqin; Sun, Hanyong; Shen, Jiayun; Tong, Joanna H M; Go, Minnie Y Y; Cheung, Yue S; Lai, Paul B S; Zhou, Mingyan; Xu, Gang; Huang, Tim H M; Yu, Jun; To, Ka F; Cheng, Alfred S L; Chan, Henry L Y

    2015-11-15

    The growing epidemic of obesity, which causes nonalcoholic fatty liver disease (NAFLD) and the more severe phenotype nonalcoholic steatohepatitis (NASH), has paralleled the increasing incidence of hepatocellular carcinoma (HCC). Accumulating evidence demonstrates that overnutrition and metabolic pathways can trigger modifications of DNA and histones via deregulation of chromatin modifiers, resulting in aberrant transcriptional activity. However, the epigenetic regulation of HCC development in NAFLD remains obscure. Here, we uncover key epigenetic regulators using both dietary and genetic obesity-promoted HCC models through quantitative expression profiling and characterize the oncogenic activities of histone deacetylase HDAC8 in NAFLD-associated hepatocarcinogenesis. HDAC8 is directly upregulated by the lipogenic transcription factor SREBP-1 where they are coexpressed in dietary obesity models of NASH and HCC. Lentiviral-mediated HDAC8 attenuation in vivo reversed insulin resistance and reduced NAFLD-associated tumorigenicity. HDAC8 modulation by genetic and pharmacologic approaches inhibited p53/p21-mediated apoptosis and G2-M phase cell-cycle arrest and stimulated β-catenin-dependent cell proliferation. Mechanistically, HDAC8 physically interacted with the chromatin modifier EZH2 to concordantly repress Wnt antagonists via histone H4 deacetylation and H3 lysine 27 trimethylation. In human NAFLD-associated HCC, levels of SREBP-1, HDAC8, EZH2, H4 deacetylation, H3K27me3, and active β-catenin were all correlated positively in tumors compared with nontumor tissues. Overall, our findings show how HDAC8 drives NAFLD-associated hepatocarcinogenesis, offering a novel epigenetic target to prevent or treat HCC in obese patients. PMID:26383163

  9. Histone H3 lysine 36 methyltransferase Whsc1 promotes the association of Runx2 and p300 in the activation of bone-related genes.

    PubMed

    Lee, Yu Fei; Nimura, Keisuke; Lo, Wan Ning; Saga, Kotaro; Kaneda, Yasufumi

    2014-01-01

    The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1-/- embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression. PMID:25188294

  10. Histone H3 Variants in Trichomonas vaginalis.

    PubMed

    Zubácová, Zuzana; Hostomská, Jitka; Tachezy, Jan

    2012-05-01

    The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G(1) phase and G(2) phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle. PMID:22408228

  11. Proteomics demonstration that histone H4 is a colchicine-induced retro-modulator of growth and alkaline phosphatase activity in hair follicle dermal papilla culture.

    PubMed

    Hsia, Ching-Wu; Shui, Hao-Ai; Wang, Chih-Yuan; Yu, Hui-Ming; Ho, Ming-Yi; Cheng, Kur-Ta; Tseng, Min-Jen

    2011-05-16

    Dermal papilla cells (DPCs) control the development of hair follicles via cell-cell interactions and extracellular molecules. Colchicine affected active anagen DPCs to result in hair loss in the clinical setting. The purpose of this study was to identify the retro-modulator released by DPCs exposed to sub-toxic dose of colchicine and elucidate its effect on dermal papilla culture. The molecular-weight cutoff ultrafiltration and HPLC were used to purify the components of colchicine-treated DPC secretomes and examined their ability to down-regulate the growth and alkaline phosphatase (ALP) activity of DPCs. The active product was identified by in-gel trypsin digestion, nano-LC-ESI-MS/MS and validated by Western blot to be histone H4 (P62804), which inhibited the proliferation and diminished the ALP activity of cultured DPCs. Treating DPCs with recombinant histone H4 reproduced the growth inhibition effect whereas adding antibody to immunoneutralize histone H4 abolished this growth inhibitory consequence. DPCs with high ALP activity can induce the neogenesis of hair follicles and support the hair fiber growth in vivo. Our results indicated that sub-lethal colchicine can inactivate DPCs through releasing histone H4. Through the investigation of the retro-modulation of histone H4 on dermal papillae may give implications for understanding the mechanism of colchicine-induced hair disorder. PMID:21362507

  12. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  13. Histone H3 K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae.

    PubMed

    Ingvarsdottir, Kristin; Edwards, Chris; Lee, Min Gyu; Lee, Jung Shin; Schultz, David C; Shilatifard, Ali; Shiekhattar, Ramin; Berger, Shelley L

    2007-11-01

    In mammalian cells, histone lysine demethylation is carried out by two classes of enzymes, the LSD1/BHC110 class and the jumonji class. The enzymes of the jumonji class in the yeast Saccharomyces cerevisiae have recently also been shown to have lysine demethylation activity. Here we report that the protein encoded by YJR119c (termed KDM5), coding for one of five predicted jumonji domain proteins in yeast, specifically demethylates trimethylated histone H3 lysine 4 (H3K4me3), H3K4me2, and H3K4me1 in vitro. We found that loss of KDM5 increased mono-, di-, and trimethylation of lysine 4 during activation of the GAL1 gene. Interestingly, cells deleted of KDM5 also displayed a delayed reduction of K4me3 upon reestablishment of GAL1 repression. These results indicate that K4 demethylation has two roles at GAL1, first to establish appropriate levels of K4 methylation during gene activation and second to remove K4 trimethylation during the attenuation phase of transcription. Thus, analysis of lysine demethylation in yeast provides new insight into the physiological roles of jumonji demethylase enzymes. PMID:17875926

  14. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4–DNA complexes

    PubMed Central

    Donham, Douglas C.; Scorgie, Jean K.; Churchill, Mair E. A.

    2011-01-01

    The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone–histone interactions or the direct role of Asf1 in the formation or disassembly of histone–DNA complexes. Here, we show that Saccharomyces cerevisiae Asf1 shields H3/H4 from unfavorable DNA interactions and aids the formation of favorable histone–DNA interactions through the formation of disomes. However, Asf1 was unable to disengage histones from DNA for tetrasomes formed with H3/H4 and strong nucleosome positioning DNA sequences or tetrasomes weakened by mutant (H3K56Q/H4) histones or non-positioning DNA sequences. Furthermore, Asf1 did not associate with preformed tetrasomes. These results are consistent with the measured affinity of Asf1 for H3/H4 dimers of 2.5 nM, which is weaker than the association of H3/H4 for DNA. These studies support a mechanism by which Asf1 aids H3/H4 deposition onto DNA but suggest that additional factors or post-translational modifications are required for Asf1 to remove H3/H4 from tetrasome intermediates in chromatin. PMID:21447559

  15. Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6.

    PubMed

    Liu, Helene Minyi; Jiang, Fuguo; Loo, Yueh Ming; Hsu, ShuZhen; Hsiang, Tien-Ying; Marcotrigiano, Joseph; Gale, Michael

    2016-07-01

    Retinoic acid inducible gene-I (RIG-I) is a cytosolic pathogen recognition receptor that initiates the immune response against many RNA viruses. Upon RNA ligand binding, RIG-I undergoes a conformational change facilitating its homo-oligomerization and activation that results in its translocation from the cytosol to intracellular membranes to bind its signaling adaptor protein, mitochondrial antiviral-signaling protein (MAVS). Here we show that RIG-I activation is regulated by reversible acetylation. Acetyl-mimetic mutants of RIG-I do not form virus-induced homo-oligomers, revealing that acetyl-lysine residues of the RIG-I repressor domain prevent assembly to active homo-oligomers. During acute infection, deacetylation of RIG-I promotes its oligomerization upon ligand binding. We identify histone deacetylase 6 (HDAC6) as the deacetylase that promotes RIG-I activation and innate antiviral immunity to recognize and restrict RNA virus infection. PMID:27372014

  16. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    PubMed Central

    Klein, Hans-Ulrich; Hascher, Antje; Isken, Fabienne; Tickenbrock, Lara; Thoennissen, Nils; Agrawal-Singh, Shuchi; Tschanter, Petra; Disselhoff, Christine; Wang, Yipeng; Becker, Anke; Thiede, Christian; Ehninger, Gerhard; zur Stadt, Udo; Koschmieder, Steffen; Seidl, Matthias; Müller, Frank U.; Schmitz, Wilhelm; Schlenke, Peter; McClelland, Michael; Berdel, Wolfgang E.; Dugas, Martin; Serve, Hubert

    2010-01-01

    Acute myeloid leukemia (AML) is commonly associated with alterations in transcription factors because of altered expression or gene mutations. These changes might induce leukemia-specific patterns of histone modifications. We used chromatin-immunoprecipitation on microarray to analyze histone 3 lysine 9 trimethylation (H3K9me3) patterns in primary AML (n = 108), acute lymphoid leukemia (n = 28), CD34+ cells (n = 21) and white blood cells (n = 15) specimens. Hundreds of promoter regions in AML showed significant alterations in H3K9me3 levels. H3K9me3 deregulation in AML occurred preferentially as a decrease in H3K9me3 levels at core promoter regions. The altered genomic regions showed an overrepresentation of cis-binding sites for ETS and cyclic adenosine monophosphate response elements (CREs) for transcription factors of the CREB/CREM/ATF1 family. The decrease in H3K9me3 levels at CREs was associated with increased CRE-driven promoter activity in AML blasts in vivo. AML-specific H3K9me3 patterns were not associated with known cytogenetic abnormalities. But a signature derived from H3K9me3 patterns predicted event-free survival in AML patients. When the H3K9me3 signature was combined with established clinical prognostic markers, it outperformed prognosis prediction based on clinical parameters alone. These findings demonstrate widespread changes of H3K9me3 levels at gene promoters in AML. Signatures of histone modification patterns are associated with patient prognosis in AML. PMID:20498303

  17. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells.

    PubMed

    Valente, Sergio; Trisciuoglio, Daniela; De Luca, Teresa; Nebbioso, Angela; Labella, Donatella; Lenoci, Alessia; Bigogno, Chiara; Dondio, Giulio; Miceli, Marco; Brosch, Gerald; Del Bufalo, Donatella; Altucci, Lucia; Mai, Antonello

    2014-07-24

    We describe 1,3,4-oxadiazole-containing hydroxamates (2) and 2-aminoanilides (3) as histone deacetylase inhibitors. Among them, 2t, 2x, and 3i were the most potent and selective against HDAC1. In U937 leukemia cells, 2t was more potent than SAHA in inducing apoptosis, and 3i displayed cell differentiation with a potency similar to MS-275. In several acute myeloid leukemia (AML) cell lines, as well as in U937 cells in combination with doxorubicin, 3i showed higher antiproliferative effects than SAHA. PMID:24972008

  18. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer

    SciTech Connect

    Yao, Lushuai; Li, Yanyan; Du, Fengxia; Han, Xiao; Li, Xiaohua; Niu, Yuanjie; Ren, Shancheng; Sun, Yingli

    2014-07-18

    Highlights: • Dihydrotestosterone stimulates H4K20me1 enrichment at the PSA promoter. • SET8 promotes AR-mediated transcription activation. • SET8 interacts with AR and promotes cell proliferation. - Abstract: Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.

  19. tert-Butylcarbamate-containing histone deacetylase inhibitors: apoptosis induction, cytodifferentiation, and antiproliferative activities in cancer cells.

    PubMed

    Valente, Sergio; Trisciuoglio, Daniela; Tardugno, Maria; Benedetti, Rosaria; Labella, Donatella; Secci, Daniela; Mercurio, Ciro; Boggio, Roberto; Tomassi, Stefano; Di Maro, Salvatore; Novellino, Ettore; Altucci, Lucia; Del Bufalo, Donatella; Mai, Antonello; Cosconati, Sandro

    2013-05-01

    Herein we report novel pyrrole- and benzene-based hydroxamates (8, 10) and 2'-aminoanilides (9, 11) bearing the tert-butylcarbamate group at the CAP moiety as histone deacetylase (HDAC) inhibitors. Compounds 8 b and 10 c selectively inhibited HDAC6 at the nanomolar level, whereas the other hydroxamates effected an increase in acetyl-α-tubulin levels in human acute myeloid leukemia U937 cells. In the same cell line, compounds 8 b and 10 c elicited 18.4 and 21.4 % apoptosis, respectively (SAHA: 16.9 %), and the pyrrole anilide 9 c displayed the highest cytodifferentiating effect (90.9 %). In tests against a wide range of various cancer cell lines to determine its antiproliferative effects, compound 10 c exhibited growth inhibition from sub-micromolar (neuroblastoma LAN-5 and SH-SY5Y cells, chronic myeloid leukemia K562 cells) to low-micromolar (lung H1299 and A549, colon HCT116 and HT29 cancer cells) concentrations. In HT29 cells, 10 c increased histone H3 acetylation, and decreased the colony-forming potential of the cancer cells by up to 60 %. PMID:23526814

  20. Histone and Non-Histone Targets of Dietary Deacetylase Inhibitors.

    PubMed

    Kim, Eunah; Bisson, William H; Löhr, Christiane V; Williams, David E; Ho, Emily; Dashwood, Roderick H; Rajendran, Praveen

    2016-01-01

    Acetylation is an important, reversible post-translational modification affecting histone and non-histone proteins with critical roles in gene transcription, DNA replication, DNA repair, and cell cycle progression. Key regulatory enzymes include histone deacetylase (HDACs) and histone acetyltransferases (HATs). Overexpressed HDACs have been identified in many human cancers, resulting in repressed chromatin states that interfere with vital tumor suppressor functions. Inhibition of HDAC activity has been pursued as a mechanism for re-activating repressed genes in cancers, with some HDAC inhibitors showing promise in the clinical setting. Dietary compounds and their metabolites also have been shown to modulate HDAC activity or expression. Out of this body of research, attention increasingly has shifted towards non-histone targets of HDACs and HATs, such as transcriptions factors, hormone receptors, DNA repair proteins, and cytoskeletal components. These aspects are covered in present review, along with the possible clinical significance. Where such data are available, examples are cited from the literature of studies with short chain fatty acids, polyphenols, isoflavones, indoles, organosulfur compounds, organoselenium compounds, sesquiterpene lactones, isoflavones, and various miscellaneous agents. By virtue of their effects on both histone and non-histone proteins, dietary chemopreventive agents modulate the cellular acetylome in ways that are only now becoming apparent. A better understanding of the molecular mechanisms will likely enhance the potential to more effectively combat diseases harboring altered epigenetic landscapes and dysregulated protein signaling. PMID:26303421

  1. Short chain fatty acids potently induce latent HIV-1 in T-cells by activating P-TEFb and multiple histone modifications.

    PubMed

    Das, Biswajit; Dobrowolski, Curtis; Shahir, Abdel-Malek; Feng, Zhimin; Yu, Xiaolan; Sha, Jinfeng; Bissada, Nabil F; Weinberg, Aaron; Karn, Jonathan; Ye, Fengchun

    2015-01-01

    HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3-9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients. PMID:25463605

  2. Short Chain Fatty Acids Potently Induce Latent HIV-1 in T-cells by Activating P-TEFb and Multiple Histone Modifications

    PubMed Central

    Das, Biswajit; Dobrowolski, Curtis; Shahir, Abdel-Malek; Feng, Zhimin; Yu, Xiaolan; Sha, Jinfeng; Bissada, Nabil F.; Weinberg, Aaron; Karn, Jonathan; Ye, Fengchun

    2014-01-01

    HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3–9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients. PMID:25463605

  3. Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Shen, Sida; Benoy, Veronick; Bergman, Joel A; Kalin, Jay H; Frojuello, Mariana; Vistoli, Giulio; Haeck, Wanda; Van Den Bosch, Ludo; Kozikowski, Alan P

    2016-02-17

    Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A. PMID:26599234

  4. Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity.

    PubMed

    Nervi, C; Borello, U; Fazi, F; Buffa, V; Pelicci, P G; Cossu, G

    2001-02-15

    Remodeling of the chromatin template by inhibition of histone deacetylase (HDAC) activities represents a major goal for transcriptional therapy in neoplastic diseases. Recently, a number of specific and potent HDAC-inhibitors that modulate in vitro cell growth and differentiation have been developed. In this study we analyzed the effect of trichostatin A (TSA), a specific and potent HDAC-inhibitor, on mouse embryos developing in vivo. When administered i.p. to pregnant mice (at a concentration of 0.5-1 mg/kg) at postimplantation stages (embryonic day 8 to embryonic day 10), TSA was not toxic for the mother and did not cause any obvious malformation during somitogenesis or at later stages of development. Treated embryos were born at similar frequency and were indistinguishable from control animals, developed normally, and were fertile. Interestingly, embryos from TSA-treated mice killed during somitogenesis were modestly but consistently larger than control embryos and presented an increased (+2 to +6) number of somites. This correlated with an increased acetylation of histone H4, the number of somites expressing the myogenic factor Myf-5, and the expression of Notch, RARalpha2, and RARbeta2 mRNAs. These data indicate that the effects of TSA on transcription: (a) are not toxic for the mother; (b) transiently accelerated growth in mouse embryos without perturbing embryogenesis; and (c) do not result in teratogenesis, at least in rodents. Thus, TSA might represent a nontoxic and effective agent for the transcriptional therapy of neoplasia. PMID:11245412

  5. Cooperative binding of the yeast Spt10p activator to the histone upstream activating sequences is mediated through an N-terminal dimerization domain

    PubMed Central

    Mendiratta, Geetu; Eriksson, Peter R.; Clark, David J.

    2007-01-01

    The yeast Spt10p activator is a putative histone acetyltransferase (HAT) possessing a sequence-specific DNA-binding domain (DBD) which binds to the upstream activation sequences (UAS elements) in the histone gene promoters. Spt10p binds to a pair of histone UAS elements with extreme positive cooperativity. The molecular basis of this cooperativity was addressed. Spt10p (640 residues) is an elongated dimer, but the isolated DBD (residues 283–396) is a monomer and binds non-cooperatively to DNA. A Spt10p fragment comprising the N-terminal domain (NTD), HAT domain and DBD (residues 1–396) binds cooperatively and is a dimer, whereas an overlapping Spt10p fragment comprising the DBD and C-terminal domains (residues 283–640) binds non-cooperatively and is a monomer. These observations imply that cooperative binding requires dimerization. The isolated NTD (residues 1–98) is a dimer and is responsible for dimerization. We propose that cooperativity involves a conformational change in the Spt10p dimer which facilitates the simultaneous recognition of two UAS elements. In vivo, deletion of the NTD results in poor growth, but does not prevent the binding at the HTA1 promoter, suggesting that dimerization is biologically important. Residues 1–396 are sufficient for normal growth, indicating that the critical functions of Spt10p reside in the N-terminal domains. PMID:17202156

  6. Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs

    PubMed Central

    Luu, Phuc-Loi; Schöler, Hans R.; Araúzo-Bravo, Marcos J.

    2013-01-01

    Gene expression regulation is gated by promoter methylation states modulating transcription factor binding. The known DNA methylation/unmethylation mechanisms are sequence unspecific, but different cells with the same genome have different methylomes. Thus, additional processes bringing specificity to the methylation/unmethylation mechanisms are required. Searching for such processes, we demonstrated that CpG methylation states are influenced by the sequence context surrounding the CpGs. We used such a property to develop a CpG methylation motif discovery algorithm. The newly discovered motifs reveal “methylation/unmethylation factors” that could recruit the “methylation/unmethylation machinery” to the loci specified by the motifs. Our methylation motif discovery algorithm provides a synergistic approach to the differently methylated region algorithms. Since our algorithm searches for commonly methylated regions inside the same sample, it requires only a single sample to operate. The motifs that were found discriminate between hypomethylated and hypermethylated regions. The hypomethylation-associated motifs have a high CG content, their targets appear in conserved regions near transcription start sites, they tend to co-occur within transcription factor binding sites, they are involved in breaking the H3K4me3/H3K27me3 bivalent balance, and they transit the enhancers from repressive H3K27me3 to active H3K27ac during ES cell differentiation. The new methylation motifs characterize the pluripotent state shared between ES and iPS cells. Additionally, we found a collection of motifs associated with the somatic memory inherited by the iPS from the initial fibroblast cells, thus revealing the existence of epigenetic somatic memory on a fine methylation scale. PMID:24149073

  7. Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair

    PubMed Central

    Sato, Koichi; Ishiai, Masamichi; Toda, Kazue; Furukoshi, Satoshi; Osakabe, Akihisa; Tachiwana, Hiroaki; Takizawa, Yoshimasa; Kagawa, Wataru; Kitao, Hiroyuki; Dohmae, Naoshi; Obuse, Chikashi; Kimura, Hiroshi; Takata, Minoru; Kurumizaka, Hitoshi

    2012-01-01

    Fanconi anaemia (FA) is a rare hereditary disorder characterized by genomic instability and cancer susceptibility. A key FA protein, FANCD2, is targeted to chromatin with its partner, FANCI, and plays a critical role in DNA crosslink repair. However, the molecular function of chromatin-bound FANCD2-FANCI is still poorly understood. In the present study, we found that FANCD2 possesses nucleosome-assembly activity in vitro. The mobility of histone H3 was reduced in FANCD2-knockdown cells following treatment with an interstrand DNA crosslinker, mitomycin C. Furthermore, cells harbouring FANCD2 mutations that were defective in nucleosome assembly displayed impaired survival upon cisplatin treatment. Although FANCI by itself lacked nucleosome-assembly activity, it significantly stimulated FANCD2-mediated nucleosome assembly. These observations suggest that FANCD2-FANCI may regulate chromatin dynamics during DNA repair. PMID:22828868

  8. Steric structure-activity relationship of cyproheptadine derivatives as inhibitors of histone methyltransferase Set7/9.

    PubMed

    Fujiwara, Takashi; Ohira, Kasumi; Urushibara, Ko; Ito, Akihiro; Yoshida, Minoru; Kanai, Misae; Tanatani, Aya; Kagechika, Hiroyuki; Hirano, Tomoya

    2016-09-15

    Set7/9 is a histone lysine methyltransferase, but it is also thought to be involved in a wide variety of pathophysiological functions. We previously identified cyproheptadine, which has a characteristic butterfly-like molecular conformation with bent tricyclic dibenzosuberene and chair-form N-methylpiperidine moieties, as a Set7/9 inhibitor. In this work, we synthesized several derivatives in order to examine the steric structure-inhibitory activity relationship. We found that even a small change of molecular shape due to reduction or replacement of the 10,11-olefinic bond of the tricyclic ring generally resulted in a drastic decrease of the inhibitory activity. Our results should be useful not only for development of more potent and selective inhibitors, but also for the construction of novel inhibitor scaffolds. PMID:27448773

  9. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells.

    PubMed

    Lamparter, Christina L; Winn, Louise M

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5mM VPA over 24h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. PMID:27381264

  10. Pluripotency Activity of Nanog Requires Biochemical Stabilization by Variant Histone Protein H2A.Z.

    PubMed

    Wang, Jiaxu; Qiao, Mengran; He, Qianqian; Shi, Ronghua; Loh, Sharon Jia Hui; Stanton, Lawrence W; Wu, Mian

    2015-07-01

    The variant histone protein H2A.Z plays a critical role in early development. Likewise, Nanog, a master regulator of embryonic stem cells (ESCs), is essential for proper development in early embryogenesis. In this study, we establish that these two factors work together to maintain pluripotency. It is shown that H2A.Z influences the protein level of Nanog through the ubiquitin-proteasome pathway. Knockdown of H2A.Z causes differentiation of mouse ESCs and disrupts the reprogramming of somatic cells, which can be partially rescued by overexpression of Nanog. We conclude that the H2A.Z-Nanog partnership is involved in ESC pluripotency and reprogramming of somatic cells. Stem Cells 2015;33:2126-2134. PMID:25809870

  11. Trichostatin A, a histone deacetylase inhibitor stimulate CYP3A4 proximal promoter activity in Hepa-I cells.

    PubMed

    Ahn, Mee Ryung; Kim, Dae-Kee; Sheen, Yhun Yhong

    2004-04-01

    Cytochrome P450 3A4 (CYP3A4) is the most abundant CYPs in human liver, comprising approximately 30% of the total liver CYPs contents and is involved in the metabolism of more than 60% of currently used therapeutic drugs. However, the molecular mechanisms underlying regulation of CYP3A4 gene expression have not been understood. Thus, this study has been carried out to gain the insight of the molecular mechanism of CYP3A4 gene expression, investigating if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter. Also SXR was investigated to see if they were involved in the regulation of CYP3A4 proximal promoter activity. Hepa-I cells were transfected with a plasmid containing approximately 1 kb of the human CYP3A4 proximal promoter region (863 to +64 bp) cloned in front of a reporter gene, luciferase, in the presence or absence of SXR. Transfected cells were treated with CYP3A4 inducers such as rifampicin, PCN and RU 486, in order to examine the regulation of CYP3A4 gene expression in the presence or absence of trichostatin A (TSA). In Hepa-I cells, CYP3A4 inducers increased modestly the luciferase activity when TSA was co-treated, but this increment was not enhanced by SXR cotransfection. Taken together, these results indicated that the inhibition of histone deacetylation was required to SXR-mediated increase in CYP3A4 proximal promoter region when rifampicin, or PCN was treated. Further a trans-activation by SXR may demand other species-specific transcription factors. PMID:15180307

  12. Structural and functional characterization of mouse U7 small nuclear RNA active in 3' processing of histone pre-mRNA

    SciTech Connect

    Soldati, D.; Schumperli, D.

    1988-04-01

    Oligonucleotides derived from the spacer element of the histone RNA 3' processing signal were used to characterize mouse U7 small nuclear RNA (snRNA), i.e., the snRNA component active in 3' processing of histone pre-mRNA. Under RNase H conditions, such oligonucleotides inhibited the processing reaction, indicating the formation of a DNA-RNA hybrid with a functional ribonucleoprotein component. Moreover, these oligonucleotides hybridized to a single nuclear RNA species of approximately 65 nucleotides. The sequence of this RNA was determined by primer extension experiments and was found to bear several structural similarities with sea urchin U7 snRNA. The comparison of mouse and sea urchin U7 snRNA structure yields some further insight into the mechanism of histone RNA 3' processing.

  13. 77 FR 23490 - Agency Information Collection Activities: Country of Origin Marking Requirements for Containers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Country of Origin... review and approval in accordance with the Paperwork Reduction Act: Country of Origin Marking... information collection was previously published in the Federal Register (77 FR 6817) on February 9,...

  14. Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4

    PubMed Central

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora

    2014-01-01

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity. PMID:25392500

  15. Total synthesis of bicyclic depsipeptides spiruchostatins C and D and investigation of their histone deacetylase inhibitory and antiproliferative activities.

    PubMed

    Narita, Koichi; Fukui, Yurie; Sano, Yui; Yamori, Takao; Ito, Akihiro; Yoshida, Minoru; Katoh, Tadashi

    2013-02-01

    The bicyclic depsipeptide histone deacetylase (HDAC) inhibitors spiruchostatins C and D were synthesized for the first time in a highly convergent and unified manner. The method features the amide coupling of a D-leucine-D-cysteine- or D-valine-D-cysteine-containing segment with a D-alanine- or D-valine-containing segment to directly assemble the corresponding seco-acids, key precursors of macrolactonization. The HDAC inhibitory assay and cell-growth inhibition analysis of the synthesized depsipeptides determined the order of potency of spiruchostatins A-D in comparison with the clinically approved depsipeptide FK228 (romidepsin). Novel aspects of structure-activity relationships (SAR) were revealed. PMID:23313638

  16. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells

    PubMed Central

    Sobolewski, Cyril; Sanduja, Sandhya; Blanco, Fernando F.; Hu, Liangyan; Dixon, Dan A.

    2015-01-01

    The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer. PMID:26343742

  17. Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling.

    PubMed

    Illi, Barbara; Dello Russo, Claudio; Colussi, Claudia; Rosati, Jessica; Pallaoro, Michele; Spallotta, Francesco; Rotili, Dante; Valente, Sergio; Ragone, Gianluca; Martelli, Fabio; Biglioli, Paolo; Steinkuhler, Christian; Gallinari, Paola; Mai, Antonello; Capogrossi, Maurizio C; Gaetano, Carlo

    2008-01-01

    Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27-275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation. PMID:17975112

  18. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-{beta}1-mediated gene activation

    SciTech Connect

    Zhuang, Yan; Nguyen, Hong T.; Lasky, Joseph A.; Cao, Subing; Li, Cui; Hu, Jiyao; Guo, Xinyue; Burow, Matthew E.; Shan, Bin

    2010-02-19

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of {alpha}-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-{beta}1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against {alpha}-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-{beta}1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  19. Studies of the 5' exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing.

    PubMed

    Yang, Xiao-cui; Sullivan, Kelly D; Marzluff, William F; Dominski, Zbigniew

    2009-01-01

    Processing of histone pre-mRNA requires a single 3' endonucleolytic cleavage guided by the U7 snRNP that binds downstream of the cleavage site. Following cleavage, the downstream cleavage product (DCP) is rapidly degraded in vitro by a nuclease that also depends on the U7 snRNP. Our previous studies demonstrated that the endonucleolytic cleavage is catalyzed by the cleavage/polyadenylation factor CPSF-73. Here, by using RNA substrates with different nucleotide modifications, we characterize the activity that degrades the DCP. We show that the degradation is blocked by a 2'-O-methyl nucleotide and occurs in the 5'-to-3' direction. The U7-dependent 5' exonuclease activity is processive and continues degrading the DCP substrate even after complete removal of the U7-binding site. Thus, U7 snRNP is required only to initiate the degradation. UV cross-linking studies demonstrate that the DCP and its 5'-truncated version specifically interact with CPSF-73, strongly suggesting that in vitro, the same protein is responsible for the endonucleolytic cleavage of histone pre-mRNA and the subsequent degradation of the DCP. By using various RNA substrates, we define important space requirements upstream and downstream of the cleavage site that dictate whether CPSF-73 functions as an endonuclease or a 5' exonuclease. RNA interference experiments with HeLa cells indicate that degradation of the DCP does not depend on the Xrn2 5' exonuclease, suggesting that CPSF-73 degrades the DCP both in vitro and in vivo. PMID:18955505

  20. Interaction with the histone chaperone Vps75 promotes nuclear localization and HAT activity of Rtt109 in vivo

    PubMed Central

    Keck, Kristin M.; Pemberton, Lucy F.

    2011-01-01

    Modification of histones is critical for the regulation of all chromatin-templated processes. Yeast Rtt109 is a histone acetyltransferase (HAT) that acetylates H3 lysines 9, 27 and 56. Rtt109 associates with and is stabilized by Nap1 family histone chaperone Vps75. Our data suggest Vps75 and Nap1 have some overlapping functions despite their different cellular localization and histone binding specificity. We determined that Vps75 contains a classical nuclear localization signal and is imported by Kap60–Kap95. Rtt109 nuclear localization depends on Vps75, and nuclear localization of the Vps75-Rtt109 complex is not critical for Rtt109-dependent functions, suggesting Rtt109 may be able to acetylate nascent histones before nuclear import. To date, the effects of VPS75 deletion on Rtt109 function had not been separated from the resulting Rtt109 degradation; thus, we used an Rtt109 mutant lacking the Vps75-interaction domain that is stable without Vps75. Our data show that in addition to promoting Rtt109 stability, Vps75 binding is necessary for Rtt109 acetylation of the H3 tail. Direct interaction of Vps75 with H3 likely allows Rtt109 access to the histone tail. Furthermore, our genetic interaction data support the idea of Rtt109-independent functions of Vps75. In summary, our data suggest that Vps75 influences chromatin structure by regulating histone modification and through its histone chaperone functions. PMID:21463458

  1. Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity

    SciTech Connect

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.

    2010-10-18

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.

  2. Pharmacological modulation of histone demethylase activity by a small molecule isolated from subcritical water extracts of Sasa senanensis leaves prolongs the lifespan of Drosophila melanogaster

    PubMed Central

    2012-01-01

    Background Extracts of Sasa senanensis Rehder are used in traditional Japanese medicine; however, little is known about the underlying mechanisms of their potential health benefits. Methods S. senanensis leaves were extracted with subcritical water. An active small-molecule was isolated using reversed-phase high-performance liquid chromatography (HPLC), and identified as 3,4-dihydroxybenzaldehyde (protocatechuic aldehyde or PA). The effects of PA on the activity of histone demethylase, the Drosophila melanogaster lifespan and gene expression in Drosophila S2 cells were investigated. Results PA inhibited the activity of Jumonji domain-containing protein 2A (JMJD2A) histone demethylase in a dose-dependent manner with a half-maximal inhibitory concentration (IC50) of 11.6 μM. However, there was no effect on lysine-specific demethylase 1 (LSD1), histone deacetylase 1 (HDAC1) or HDAC8. PA significantly extended the lifespan of female, but not male, Drosophila. In Drosophila S2 cells, the eukaryotic translation initiation factor 4E binding protein (4E-BP) was up-regulated by PA exposure. Conclusions Our findings provide insight into the possible relationship between the pharmacological modulation of histone demethylation and lifespan extension by PA; they might also be important in the development of alternative therapies for age-related disorders. PMID:22809229

  3. Inhibitors of Histone Deacetylase and DNA Methyltransferase Synergistically Activate the Methylated Metallothionein I Promoter by Activating the Transcription Factor MTF-1 and Forming an Open Chromatin Structure

    PubMed Central

    Ghoshal, Kalpana; Datta, Jharna; Majumder, Sarmila; Bai, Shoumei; Dong, Xiaocheng; Parthun, Mark; Jacob, Samson T.

    2002-01-01

    Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of

  4. Histones in protistan evolution.

    PubMed

    Rizzo, P J

    1985-01-01

    The potential of comparative studies on histones for use in protistan evolution is discussed, using algal histones as specific examples. A basic premise for the importance of histones in protistan evolution is the observation that these proteins are completely absent in prokaryotes (and cytoplasmic organelles), but with few exceptions, the same five major histone types are found in all higher plants and animals. Since the histone content of the algae and other protists is not constant, some of these organisms may represent transition forms between the prokaryotic and eukaryotic modes of packaging the genetic material. Comparative studies of protistan histones may thus be of help in determining evolutionary relationships. However, several problems are encounter with protistan histones, including difficulties in isolating nuclei, proteolytic degradation, anomalous gel migration of histones, and difficulties in histone identification. Because of the above problems, and the observed variability in protistan histones, it is suggested that several criteria be employed for histone identification in protists. PMID:3910133

  5. Histone deacetylase inhibitors as cancer therapeutics.

    PubMed

    Clawson, Gary A

    2016-08-01

    Cancer cells contain significant alterations in their epigenomic landscape, which several enzyme families reversibly contribute to. One class of epigenetic modifying enzymes is that of histone deacetylases (HDAC), which are receiving considerable scrutiny clinically as a therapeutic target in many cancers. The underlying rationale is that inhibiting HDACs will reverse dysregulated target gene expression by modulating functional histone (or other) acetylation marks. This perspective will discuss a recent paper by Markozashvili and co-workers which appeared in Gene, which indicates that the mechanisms by which HDAC inhibitors (HDACis) alter the epigenetic landscape include widespread alternative effects beyond simply controlling regional epigenetic marks. HDACs are involved in many processes/diseases, and it is not surprising that HDACis have considerable off-target effects, and thus a major effort is being directed toward identification of inhibitors which are selective for HDAC isoforms often uniquely implicated in various cancers. This Perspective will also discuss some representative work with inhibitors targeting individual HDAC classes or isoforms. At present, it is not really clear that isoform-specific HDACis will avoid non-selective effects on other unrecognized activities of HDACs. PMID:27568481

  6. Histone deacetylase inhibitors as cancer therapeutics

    PubMed Central

    2016-01-01

    Cancer cells contain significant alterations in their epigenomic landscape, which several enzyme families reversibly contribute to. One class of epigenetic modifying enzymes is that of histone deacetylases (HDAC), which are receiving considerable scrutiny clinically as a therapeutic target in many cancers. The underlying rationale is that inhibiting HDACs will reverse dysregulated target gene expression by modulating functional histone (or other) acetylation marks. This perspective will discuss a recent paper by Markozashvili and co-workers which appeared in Gene, which indicates that the mechanisms by which HDAC inhibitors (HDACis) alter the epigenetic landscape include widespread alternative effects beyond simply controlling regional epigenetic marks. HDACs are involved in many processes/diseases, and it is not surprising that HDACis have considerable off-target effects, and thus a major effort is being directed toward identification of inhibitors which are selective for HDAC isoforms often uniquely implicated in various cancers. This Perspective will also discuss some representative work with inhibitors targeting individual HDAC classes or isoforms. At present, it is not really clear that isoform-specific HDACis will avoid non-selective effects on other unrecognized activities of HDACs. PMID:27568481

  7. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation.

    PubMed

    Hedtke, Maren; Rauscher, Stefan; Röhrig, Julian; Rodríguez-Romero, Julio; Yu, Zhenzhong; Fischer, Reinhard

    2015-08-01

    The ability for light sensing is found from bacteria to humans but relies only on a small number of evolutionarily conserved photoreceptors. A large number of fungi react to light, mostly to blue light. Aspergillus nidulans also responds to red light using a phytochrome light sensor, FphA, for the control of hundreds of light-regulated genes. Here, we show that photoinduction of one light-induced gene, ccgA, occurs mainly through red light. Induction strictly depends on phytochrome and its histidine-kinase activity. Full light activation also depends on the Velvet protein, VeA. This putative transcription factor binds to the ccgA promoter in an fphA-dependent manner but independent of light. In addition, the blue light receptor LreA binds to the ccgA promoter in the dark but is released after blue or red light illumination and together with FphA modulates gene expression through histone H3 modification. LreA interacts with the acetyltransferase GcnE and with the histone deacetylase HdaA. ccgA induction is correlated to an increase of the acetylation level of lysine 9 in histone H3. Our results suggest regulation of red light-induced genes at the transcriptional level involving transcription factor(s) and epigenetic control through modulation of the acetylation level of histone H3. PMID:25980340

  8. Histone H2AX participates the DNA damage-induced ATM activation through interaction with NBS1

    SciTech Connect

    Kobayashi, Junya Tauchi, Hiroshi; Chen, Benjamin; Bruma, Sandeep; Tashiro, Satoshi; Matsuura, Shinya; Tanimoto, Keiji; Chen, David J.; Komatsu, Kenshi

    2009-03-20

    Phosphorylated histone H2AX ({gamma}-H2AX) functions in the recruitment of DNA damage response proteins to DNA double-strand breaks (DSBs) and facilitates DSB repair. ATM also co-localizes with {gamma}-H2AX at DSB sites following its auto-phosphorylation. However, it is unclear whether {gamma}-H2AX has a role in activation of ATM-dependent cell cycle checkpoints. Here, we show that ATM as well as NBS1 is recruited to damaged-chromatin in a {gamma}-H2AX-dependent manner. Foci formation of phosphorylated ATM and ATM-dependent phosphorylation is repressed in H2AX-knockdown cells. Furthermore, anti-{gamma}-H2AX antibody co-immunoprecipitates an ATM-like protein kinase activity in vitro and recombinant H2AX increases in vitro kinase activity of ATM from un-irradiated cells. Moreover, H2AX-deficient cells exhibited a defect in ATM-dependent cell cycle checkpoints. Taken together, {gamma}-H2AX has important role for effective DSB-dependent activation of ATM-related damage responses via NBS1.

  9. Computer-aided identification of new histone deacetylase 6 selective inhibitor with anti-sepsis activity.

    PubMed

    Yoo, Jakyung; Kim, So-Jin; Son, Dohyun; Seo, Heewon; Baek, Seung Yeop; Maeng, Cheol-Young; Lee, Changsik; Kim, In Su; Jung, Young Hoon; Lee, Sun-Mee; Park, Hyun-Ju

    2016-06-30

    Histone deacetylase (HDAC) inhibitors have been recognized as promising approaches to the treatment of various human diseases including cancer, inflammation, neurodegenerative diseases, and metabolic disorders. Several pan-HDAC inhibitors are currently approved only as anticancer drugs. Interestingly, SAHA (vorinostat), one of clinically available pan-HDAC inhibitors, shows an anti-inflammatory effect at concentrations lower than those required for inhibition of tumor cell growth. It was also reported that HDAC6 selective inhibitor tubastatin A has anti-inflammatory and anti-rheumatic effect. In our efforts to develop novel HDAC inhibitors, we rationally designed various HDAC inhibitors based on the structures of two hit compounds identified by virtual screening of chemical database. Among them, 9a ((E)-N-hydroxy-4-(2-styrylthiazol-4-yl)butanamide) was identified as a HDAC6 selective inhibitor (IC50 values of 0.199 μM for HDAC6 versus 13.8 μM for HDAC1), and it did not show significant cytotoxicity against HeLa cells. In vivo biological evaluation of 9a was conducted on a lipopolysaccharide (LPS)-induced mouse model of sepsis. The compound 9a significantly improved 40% survival rate (P = 0.0483), and suppressed the LPS-induced increase of TNF-α and IL-6 mRNA expression in the liver of mice. Our study identified novel HDAC6 selective inhibitor 9a, which may serve as a potential lead for the development of anti-inflammatory or anti-sepsis agents. PMID:27060764

  10. Biomarkers of Histone Deacetylase Inhibitor Activity in a Phase 1 Combined-Modality Study with Radiotherapy

    PubMed Central

    Ree, Anne Hansen; Saelen, Marie Grøn; Kalanxhi, Erta; Østensen, Ingrid H. G.; Schee, Kristina; Røe, Kathrine; Abrahamsen, Torveig Weum; Dueland, Svein; Flatmark, Kjersti

    2014-01-01

    Background Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, combining fractionated radiotherapy with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy. Patients and Methods Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients' peripheral blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the patients had received vorinostat. Results This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients' PBMC and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed. Conclusion Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting. PMID:24587009

  11. Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation

    PubMed Central

    Sen, Nilkantha; Snyder, Solomon H.

    2011-01-01

    Epigenetic regulation of histones mediates neurotrophin actions with histone acetylation enhancing cAMP response element-binding (CREB)-associated transcription elicited by brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF). Roles for histone methylation in CREB's transcriptional activity have not been well characterized. We show that depletion of the histone methyltransferase suppressor of variegation 3–9 homolog 1 (SUV39H1) selectively augments BDNF- and NGF-mediated neurite outgrowth. SUV39H1 is the principal enzyme responsible for trimethylation of histone H3 at lysine 9, a molecular mark associated with transcriptional silencing. BDNF and NGF act via a signaling cascade wherein degradation of SUV39H1 down-regulates trimethylation of H3K9 in a nitric oxide-dependent pathway. BDNF activates neuronal NOS with the nitrosylated GAPDH/seven in absentia (Siah) homolog complex translocating to the nucleus. Degradation of SUV39H1 by Siah facilitates histone H3 on lysine 9 acetylation, CREB binding to DNA, enhanced expression of CREB-regulated genes and neurite outgrowth. PMID:22123949

  12. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP) enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day) for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus could cause in vivo

  13. Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma

    PubMed Central

    Lindemann, R. K.; Newbold, A.; Whitecross, K. F.; Cluse, L. A.; Frew, A. J.; Ellis, L.; Williams, S.; Wiegmans, A. P.; Dear, A. E.; Scott, C. L.; Pellegrini, M.; Wei, A.; Richon, V. M.; Marks, Paul A.; Lowe, S. W.; Smyth, M. J.; Johnstone, R. W.

    2007-01-01

    Histone deacetylase inhibitors (HDACi) can elicit a range of biological responses that affect tumor growth and survival, including inhibition of cell cycle progression, induction of tumor cell-selective apoptosis, suppression of angiogenesis, and modulation of immune responses, and show promising activity against hematological malignancies in clinical trials. Using the Eμ-myc model of B cell lymphoma, we screened tumors with defined genetic alterations in apoptotic pathways for therapeutic responsiveness to the HDACi vorinostat. We demonstrated a direct correlation between induction of tumor cell apoptosis in vivo and therapeutic efficacy. Vorinostat did not require p53 activity or a functional death receptor pathway to kill Eμ-myc lymphomas and mediate a therapeutic response but depended on activation of the intrinsic apoptotic pathway with the proapoptotic BH3-only proteins Bid and Bim playing an important role. Our studies provide important information regarding the mechanisms of action of HDACi that have broad implications regarding stratification of patients receiving HDACi therapy alone or in combination with other anticancer agents. PMID:17470784

  14. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  15. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress.

    PubMed

    Yolcu, Seher; Ozdemir, Filiz; Güler, Aybüke; Bor, Melike

    2016-03-01

    Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively. PMID:26773543

  16. Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells.

    PubMed

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (-)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  17. Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast-Acting Molecules with Activity against Different Species Causing Malaria in Humans

    PubMed Central

    Sundriyal, Sandeep; Caron, Joachim; Chen, Patty; Witkowski, Benoit; Menard, Didier; Suwanarusk, Rossarin; Renia, Laurent; Nosten, Francois; Jiménez-Díaz, María Belén; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura M.; Gamo, Francisco-Javier; Wittlin, Sergio; Duffy, Sandra; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael J.; Sinden, Robert E.; Fuchter, Matthew J.

    2014-01-01

    Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria. PMID:25421480

  18. Histone methyltransferase inhibitors are orally bioavailable, fast-acting molecules with activity against different species causing malaria in humans.

    PubMed

    Malmquist, Nicholas A; Sundriyal, Sandeep; Caron, Joachim; Chen, Patty; Witkowski, Benoit; Menard, Didier; Suwanarusk, Rossarin; Renia, Laurent; Nosten, Francois; Jiménez-Díaz, María Belén; Angulo-Barturen, Iñigo; Santos Martínez, María; Ferrer, Santiago; Sanz, Laura M; Gamo, Francisco-Javier; Wittlin, Sergio; Duffy, Sandra; Avery, Vicky M; Ruecker, Andrea; Delves, Michael J; Sinden, Robert E; Fuchter, Matthew J; Scherf, Artur

    2015-02-01

    Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria. PMID:25421480

  19. macroH2A1 Histone Variants Are Depleted on Active Genes but Concentrated on the Inactive X Chromosome†

    PubMed Central

    Changolkar, Lakshmi N.; Pehrson, John R.

    2006-01-01

    Using a novel thiol affinity chromatography approach to purify macroH2A1-containing chromatin fragments, we examined the distribution of macroH2A1 histone variants in mouse liver chromatin. We found that macroH2A1 was depleted on the transcribed regions of active genes. This depletion was observed on all of the 20 active genes that we probed, with only one site showing a small amount of enrichment. In contrast, macroH2A1 was concentrated on the inactive X chromosome, consistent with our previous immunofluorescence studies. This preferential localization was seen on genes that are active in liver, genes that are inactive in liver, and intergenic regions but was absent from four regions that escape X inactivation. These results support the hypothesis that macroH2As function as transcriptional repressors. Also consistent with this hypothesis is our finding that the heterochromatin protein HP1β copurifies with the macroH2A1-containing chromatin fragments. This study presents the first detailed examination of the distribution of macroH2A1 variants on specific sequences. Our results indicate that macroH2As have complex distribution patterns that are influenced by both local factors and long-range mechanisms. PMID:16738309

  20. 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells

    SciTech Connect

    Beaver, Laura M.; Yu, Tian-Wei; Sokolowski, Elizabeth I.; Williams, David E.; Dashwood, Roderick H.; Ho, Emily

    2012-09-15

    Increased consumption of cruciferous vegetables is associated with a reduced risk of developing prostate cancer. Indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) are phytochemicals derived from cruciferous vegetables that have shown promise in inhibiting prostate cancer in experimental models. Histone deacetylase (HDAC) inhibition is an emerging target for cancer prevention and therapy. We sought to examine the effects of I3C and DIM on HDACs in human prostate cancer cell lines: androgen insensitive PC-3 cells and androgen sensitive LNCaP cells. I3C modestly inhibited HDAC activity in LNCaP cells by 25% but no inhibition of HDAC activity was detected in PC-3 cells. In contrast, DIM significantly inhibited HDAC activity in both cell lines by as much as 66%. Decreases in HDAC activity correlated with increased expression of p21, a known target of HDAC inhibitors. DIM treatment caused a significant decrease in the expression of HDAC2 protein in both cancer cell lines but no significant change in the protein levels of HDAC1, HDAC3, HDAC4, HDAC6 or HDAC8 was detected. Taken together, these results show that inhibition of HDAC activity by DIM may contribute to the phytochemicals' anti-proliferative effects in the prostate. The ability of DIM to target aberrant epigenetic patterns, in addition to its effects on detoxification of carcinogens, may make it an effective chemopreventive agent by targeting multiple stages of prostate carcinogenesis. -- Highlights: ► DIM inhibits HDAC activity and decreases HDAC2 expression in prostate cancer cells. ► DIM is significantly more effective than I3C at inhibiting HDAC activity. ► I3C has no effect on HDAC protein expression. ► Inhibition of HDAC activity by DIM is associated with increased p21 expression. ► HDAC inhibition may be a novel epigenetic mechanism for cancer prevention with DIM.

  1. Unravelling a histone code for malaria virulence.

    PubMed

    Comeaux, Christy A; Duraisingh, Manoj T

    2007-12-01

    Epigenetic phenomena have been shown to play a role in the regulated expression of virulence genes in several pathogenic organisms, including the var gene family in Plasmodium falciparum. A better understanding of how P. falciparum can both maintain a single active var gene locus through many erythrocytic cycles and also achieve successive switching to different loci in order to evade the host immune system is greatly needed. Disruption of this tightly co-ordinated expression system presents an opportunity for increased clearance of the parasites by the immune system and, in turn, reduced mortality and morbidity. In the current issue of Molecular Microbiology, Lopez-Rubio and colleagues investigate the correlation of specific post-translational histone modifications with different transcriptional states of a single var gene, var2csa. Quantitative chromatin immunoprecipitation is used to demonstrate that different histone methylation marks are enriched at the 5' flanking and coding regions of active, poised or silenced var genes. They identify an increase of H3K4me2 and H3K4me3 in the 5' flanking region of an active var locus and expand on an earlier finding that H3K9me3 is enriched in the coding regions of silenced var genes. The authors also present evidence that H3K4me2 bookmarks the active var gene locus during later developmental stages for expression in the subsequent asexual cycle, hinting at a potential mechanism for transcriptional 'memory'. The stage is now set for work generating a complete catalogue of all histone modifications associated with var gene regulation as well as functional studies striving to uncover the precise mechanisms underlying these observations. PMID:18028316

  2. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2'-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells.

    PubMed

    Shaker, Sepideh; Bernstein, Mark; Momparler, Louise F; Momparler, Richard L

    2003-05-01

    During the development of leukemia, genes that suppress growth and induce differentiation can be silenced by aberrant DNA methylation and by changes in chromatin structure that involve histone deacetylation. It has been reported that a positive interaction between DNA methylation and histone deacetylation takes place to inhibit transcription. Based on this observation, our working hypothesis was that a combination of inhibitors of these processes should produce an enhancement of their antineoplastic activity on leukemic cells. The cytosine nucleoside analog, 5-aza-2'-deoxycytidine (5AZA), is a potent inhibitor of DNA methylation, which can activate tumor suppressor genes in leukemic cells that have been silenced by aberrant methylation. In clinical trials, 5AZA was demonstrated to be an active antileukemic agent. Histone deacetylase inhibitors (HDI) can also activate gene expression in leukemic cell lines by producing changes in chromatin configuration, and show antineoplastic activity in preclinical studies. In this report, we investigated the in vitro antineoplastic activity of 5AZA, alone and in combination with the HDI, trichostatin A (TSA) and depsipeptide (FR901228, depsi), on the human myeloid leukemic cell lines, HL-60 and KG1a. The results showed that the combination of 5AZA with TSA or depsi produced a greater inhibition of growth and DNA synthesis and a greater loss of clonogenicity than either agent alone. These results suggest that 5AZA used in combination with HDI may be an interesting chemotherapeutic regimen to investigate in patients with acute myeloid leukemia that is resistant to conventional chemotherapy. PMID:12620295

  3. CpG islands under selective pressure are enriched with H3K4me3, H3K27ac and H3K36me3 histone modifications

    PubMed Central

    2013-01-01

    Background Histone modification is an epigenetic mechanism that influences gene regulation in eukaryotes. In particular, histone modifications in CpG islands (CGIs) are associated with different chromatin states and with transcription activity. Changes in gene expression play a crucial role in adaptation and evolution. Results In this paper, we have studied, using a computational biology approach, the relationship between histone modifications in CGIs and selective pressure in Homo sapiens. We considered three histone modifications: histone H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 27 acetylation (H3K27ac) and histone H3 lysine 36 trimethylation (H3K36me3), and we used the publicly available genomic-scale histone modification data of thirteen human cell lines. To define regions under selective pressure, we used three distinct signatures that mark selective events from different evolutionary periods. We found that CGIs under selective pressure showed significant enrichments for histone modifications. Conclusion Our result suggests that, CGIs that have undergone selective events are characterized by epigenetic signatures, in particular, histone modifications that are distinct from CGIs with no evidence of selection. PMID:23837650

  4. Histone deacetylase inhibitors stimulate the susceptibility of A549 cells to a plasma-activated medium treatment.

    PubMed

    Adachi, Tetsuo; Kano, Ayame; Nonomura, Saho; Kamiya, Tetsuro; Hara, Hirokazu

    2016-09-15

    The number of potential applications of non-thermal atmospheric pressure plasma (NTAPP) discharges in medicine, particularly in cancer therapy, has increased in recent years. NTAPP has been shown to affect cells not only by direct irradiation, but also by an indirect treatment with previously prepared plasma-activated medium (PAM). Histone deacetylase (HDAC) inhibitors have the potential to enhance susceptibility to anticancer drugs and radiation. The aim of the present study was to demonstrate the advantage of the combined application of PAM and HDAC inhibitors on A549 cancer cell survival and elucidate the underlying mechanisms. Cell death with DNA breaks in the nucleus was greater using combined regimens of PAM and HDAC inhibitors such as trichostatin A (TSA) and valproic acid (VPA) than a single PAM treatment and was accompanied by the activation of poly (ADP-ribose) polymerase-1 (PARP-1), depletion of ATP, and elevations in intracellular calcium levels. Moreover, the expression of Rad 51, a DNA repair factor in homologous recombination pathways, was significantly suppressed by the treatment with HDAC inhibitors. These results demonstrate that HDAC inhibitors may synergistically induce the sensitivity of cancer cells to PAM components. PMID:27470189

  5. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases

    PubMed Central

    Das Gupta, Kaustav; Shakespear, Melanie R; Iyer, Abishek; Fairlie, David P; Sweet, Matthew J

    2016-01-01

    Macrophages have central roles in danger detection, inflammation and host defense, and consequently, these cells are intimately linked to most disease processes. Major advances in our understanding of the development and function of macrophages have recently come to light. For example, it is now clear that tissue-resident macrophages can be derived from either blood monocytes or through local proliferation of phagocytes that are originally seeded during embryonic development. Metabolic state has also emerged as a major control point for macrophage activation phenotypes. Herein, we review recent literature linking the histone deacetylase (HDAC) family of enzymes to macrophage development and activation, particularly in relation to these recent developments. There has been considerable interest in potential therapeutic applications for small molecule inhibitors of HDACs (HDACi), not only for cancer, but also for inflammatory and infectious diseases. However, the enormous range of molecular and cellular processes that are controlled by different HDAC enzymes presents a potential stumbling block to clinical development. We therefore present examples of how classical HDACs control macrophage functions, roles of specific HDACs in these processes and approaches for selective targeting of drugs, such as HDACi, to macrophages. Development of selective inhibitors of macrophage-expressed HDACs and/or selective delivery of pan HDACi to macrophages may provide avenues for enhancing efficacy of HDACi in therapeutic applications, while limiting unwanted side effects. PMID:26900475

  6. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis.

    PubMed

    Hu, Zhaorong; Song, Na; Zheng, Mei; Liu, Xinye; Liu, Zhenshan; Xing, Jiewen; Ma, Junhua; Guo, Weiwei; Yao, Yingyin; Peng, Huiru; Xin, Mingming; Zhou, Dao-Xiu; Ni, Zhongfu; Sun, Qixin

    2015-12-01

    Exposure to temperatures exceeding the normal optimum levels, or heat stress (HS), constitutes an environmental disruption for plants, resulting in severe growth and development retardation. Here we show that loss of function of the Arabidopsis histone acetyltransferase GCN5 results in serious defects in terms of thermotolerance, and considerably impairs the transcriptional activation of HS-responsive genes. Notably, expression of several key regulators such as the HS transcription factors HSFA2 and HSFA3, Multiprotein Bridging Factor 1c (MBF1c) and UV-HYPERSENSITIVE 6 (UVH6) is down-regulated in the gcn5 mutant under HS compared with the wild-type. Chromatin immunoprecipitation (ChIP) assays indicated that GCN5 protein is enriched at the promoter regions of HSFA3 and UVH6 genes, but not in HSFA2 and MBF1c, and that GCN5 facilitates H3K9 and H3K14 acetylation, which are associated with HSFA3 and UVH6 activation under HS. Moreover, constitutive expression of UVH6 in the gcn5 mutant partially restores heat tolerance. Taken together, our data indicate that GCN5 plays a key role in the preservation of thermotolerance via versatile regulation in Arabidopsis. In addition, expression of the wheat TaGCN5 gene re-establishes heat tolerance in Arabidopsis gcn5 mutant plants, suggesting that GCN5-mediated thermotolerance may be conserved between Arabidopsis and wheat. PMID:26576681

  7. Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes.

    PubMed

    Wang, Junjian; Duan, Zhijian; Nugent, Zoann; Zou, June X; Borowsky, Alexander D; Zhang, Yanhong; Tepper, Clifford G; Li, Jian Jian; Fiehn, Oliver; Xu, Jianzhen; Kung, Hsing-Jien; Murphy, Leigh C; Chen, Hong-Wu

    2016-08-10

    Metabolic reprogramming such as the aerobic glycolysis or Warburg effect is well recognized as a common feature of tumorigenesis. However, molecular mechanisms underlying metabolic alterations for tumor therapeutic resistance are poorly understood. Through gene expression profiling analysis we found that histone H3K36 methyltransferase NSD2/MMSET/WHSC1 expression was highly elevated in tamoxifen-resistant breast cancer cell lines and clinical tumors. IHC analysis indicated that NSD2 protein overexpression was associated with the disease recurrence and poor survival. Ectopic expression of NSD2 wild type, but not the methylase-defective mutant, drove endocrine resistance in multiple cell models and xenograft tumors. Mechanistically, NSD2 was recruited to and methylated H3K36me2 at the promoters of key glucose metabolic enzyme genes. Its overexpression coordinately up-regulated hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD), two key enzymes of glycolysis and the pentose phosphate pathway (PPP), as well as TP53-induced glycolysis regulatory phosphatase TIGAR. Consequently, NSD2-driven tamoxifen-resistant cells and tumors displayed heightened PPP activity, elevated NADPH production, and reduced ROS level, without significantly altered glycolysis. These results illustrate a coordinated, epigenetic activation of key glucose metabolic enzymes in therapeutic resistance and nominate methyltransferase NSD2 as a potential therapeutic target for endocrine resistant breast cancer. PMID:27164560

  8. Clusterless Decoding of Position From Multiunit Activity Using A Marked Point Process Filter

    PubMed Central

    Deng, Xinyi; Liu, Daniel F.; Kay, Kenneth; Frank, Loren M.; Eden, Uri T.

    2016-01-01

    Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain. PMID:25973549

  9. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    SciTech Connect

    Takaoka, Yuki; Kawamoto, Seiji; Katayama, Akiko; Nakano, Toshiaki; Yamanaka, Yasushi; Takahashi, Miki; Shimada, Yayoi; Chiang, Kuei-Chen; Ohmori, Naoya; Aki, Tsunehiro; Goto, Takeshi; Sato, Shuji; Goto, Shigeru; Chen, Chao-Long; Ono, Kazuhisa

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.

  10. CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1.

    PubMed

    Yang, Pei-Ming; Lin, Pei-Jie; Chen, Ching-Chow

    2012-04-01

    CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1. PMID:22419072

  11. ChIPnorm: A Statistical Method for Normalizing and Identifying Differential Regions in Histone Modification ChIP-seq Libraries

    PubMed Central

    Bucher, Philipp; Moret, Bernard M. E.

    2012-01-01

    The advent of high-throughput technologies such as ChIP-seq has made possible the study of histone modifications. A problem of particular interest is the identification of regions of the genome where different cell types from the same organism exhibit different patterns of histone enrichment. This problem turns out to be surprisingly difficult, even in simple pairwise comparisons, because of the significant level of noise in ChIP-seq data. In this paper we propose a two-stage statistical method, called ChIPnorm, to normalize ChIP-seq data, and to find differential regions in the genome, given two libraries of histone modifications of different cell types. We show that the ChIPnorm method removes most of the noise and bias in the data and outperforms other normalization methods. We correlate the histone marks with gene expression data and confirm that histone modifications H3K27me3 and H3K4me3 act as respectively a repressor and an activator of genes. Compared to what was previously reported in the literature, we find that a substantially higher fraction of bivalent marks in ES cells for H3K27me3 and H3K4me3 move into a K27-only state. We find that most of the promoter regions in protein-coding genes have differential histone-modification sites. The software for this work can be downloaded from http://lcbb.epfl.ch/software.html. PMID:22870189

  12. Histone Deacetylase 6-Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity.

    PubMed

    Jiménez-Canino, Rubén; Lorenzo-Díaz, Fabián; Jaisser, Frederic; Farman, Nicolette; Giraldez, Teresa; Alvarez de la Rosa, Diego

    2016-06-01

    The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell. PMID:27100623

  13. Inhibition of histone deacetylase activity in reduced oxygen environment enhances the osteogenesis of mouse adipose-derived stromal cells.

    PubMed

    Xu, Yue; Hammerick, Kyle E; James, Aaron W; Carre, Antoine L; Leucht, Philipp; Giaccia, Amato J; Longaker, Michael T

    2009-12-01

    Recent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O(2)). Significant growth inhibition was observed with NaB or VPA treatment in each oxygen tension. Osteogenesis was enhanced by treatment with NaB or VPA, particularly in reduced oxygen tensions (10% and 1% O(2)). Conversely, adipogenesis was decreased with treatments of NaB or VPA at all oxygen tensions. Finally, NaB- or VPA-treated, reduced oxygen tension-exposed (1% O(2)) ASCs were grafted into surgically created mouse tibial defects and resulted in significantly increased bone regeneration. In conclusion, HDACi significantly promote the osteogenic differentiation of mASCs exposed to reduced oxygen tension; HDACi may hold promise for future clinical applications of ASCs for skeletal regeneration. PMID:19505250

  14. Inhibition of Histone Deacetylase Activity in Reduced Oxygen Environment Enhances the Osteogenesis of Mouse Adipose-Derived Stromal Cells

    PubMed Central

    Xu, Yue; Hammerick, Kyle E.; James, Aaron W.; Carre, Antoine L.; Leucht, Philipp; Giaccia, Amato J.

    2009-01-01

    Recent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O2). Significant growth inhibition was observed with NaB or VPA treatment in each oxygen tension. Osteogenesis was enhanced by treatment with NaB or VPA, particularly in reduced oxygen tensions (10% and 1% O2). Conversely, adipogenesis was decreased with treatments of NaB or VPA at all oxygen tensions. Finally, NaB- or VPA-treated, reduced oxygen tension–exposed (1% O2) ASCs were grafted into surgically created mouse tibial defects and resulted in significantly increased bone regeneration. In conclusion, HDACi significantly promote the osteogenic differentiation of mASCs exposed to reduced oxygen tension; HDACi may hold promise for future clinical applications of ASCs for skeletal regeneration. PMID:19505250

  15. Raman and surface enhanced Raman spectroscopic studies of specific, small molecule activator of histone acetyltransferase p300

    NASA Astrophysics Data System (ADS)

    Kundu, Partha P.; Pavan Kumar, G. V.; Mantelingu, Kempegowda; Kundu, Tapas K.; Narayana, Chandrabhas

    2011-07-01

    We report for the first time, the Raman and surface enhanced Raman scattering (SERS) studies of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB). This molecule is specific activator of human histone acetyltransferase (HAT), p300, and serves as lead molecule to design anti-neoplastic therapeutics. A detailed Raman and SERS band assignments have been performed for CTB, which are compared with the density functional theory calculations. The observed red shift of N sbnd H stretching frequency from the computed wavenumber indicates the weakening of N sbnd H bond resulting from proton transfer to the neighboring oxygen atom. We observe Ag sbnd N vibrational mode at 234 cm -1 in SERS of CTB. This indicates there is a metal-molecule bond leading to chemical enhancement in SERS. We also observe, enhancement in the modes pertaining to substituted benzene rings and methyl groups. Based on SERS analysis we propose the adsorption sites and the orientation of CTB on silver surface.

  16. Dynamic regulation and function of histone monoubiquitination in plants

    PubMed Central

    Feng, Jing; Shen, Wen-Hui

    2014-01-01

    Polyubiquitin chain deposition on a target protein frequently leads to proteasome-mediated degradation whereas monoubiquitination modifies target protein property and function independent of proteolysis. Histone monoubiquitination occurs in chromatin and is in nowadays recognized as one critical type of epigenetic marks in eukaryotes. While H2A monoubiquitination (H2Aub1) is generally associated with transcription repression mediated by the Polycomb pathway, H2Bub1 is involved in transcription activation. H2Aub1 and H2Bub1 levels are dynamically regulated via deposition and removal by specific enzymes. We review knows and unknowns of dynamic regulation of H2Aub1 and H2Bub1 deposition and removal in plants and highlight the underlying crucial functions in gene transcription, cell proliferation/differentiation, and plant growth and development. We also discuss crosstalks existing between H2Aub1 or H2Bub1 and different histone methylations for an ample mechanistic understanding. PMID:24659991

  17. Epigenetic regulation of proliferation and invasion in hepatocellular carcinoma cells by CBP/p300 histone acetyltransferase activity.

    PubMed

    Inagaki, Yuji; Shiraki, Katsuya; Sugimoto, Kazushi; Yada, Takazumi; Tameda, Masahiko; Ogura, Suguru; Yamamoto, Norihiko; Takei, Yoshiyuki; Ito, Masaaki

    2016-02-01

    Altered epigenetic control of gene expression plays a substantial role in tumor development and progression. Accumulating studies suggest that somatic mutations of CREB binding proteins (CBP)/p300 occur in some cancer cells. CBP/p300 possess histone acetyltransferase (HAT) activity, and are involved in many cellular processes. In this study, we investigated the expression and functional role of CBP/p300 in hepatocellular carcinoma (HCC) using the specific inhibitor C646 of CBP/p300 HAT activity. We examined its effect on several apoptosis-related proteins and invasion-related genes. The results showed that CBP/p300 were highly expressed in HCC tissues and that expression of p300, but not of CBP, was strongly correlated with the malignant character of HCC. C646 inhibited proliferation of HCC cell lines in a dose dependent manner. C646 significantly augmented TRAIL-induced apoptotic sensitivity, which was accompanied by reduced levels of survivin, in HepG2, HLE and SK-HEP1 cells. C646 significantly inhibited invasion of Huh7, HLE and SK-HEP1 cells. The level of matrix metallopeptidase 15 (MMP15) mRNA expression was significantly reduced, whereas the level of laminin alpha 3 (LAMA3) and secreted phosphoprotein 1 (SPP1) mRNA expression was significantly increased in Huh7 cells following exposure to C646. In conclusion, our results suggest that CBP/p300 HAT activity has an important role in malignant transformation, proliferation, apoptotic sensitivity and invasion in HCC. CBP/p300 could be a promising therapeutic target in HCC. PMID:26676548

  18. Histone methyltransferases: novel targets for tumor and developmental defects

    PubMed Central

    Yi, Xin; Jiang, Xue-Jun; Li, Xiao-Yan; Jiang, Ding-Sheng

    2015-01-01

    Histone lysine methylation plays a critical role in epigenetic regulation of eukaryotes. To date, studies have shown that lysine residues of K4, K9, K27, K36 and K79 in histone H3 and K20 in histone H4 can be modified by histone methyltransferases (HMTs). Such histone methylation can specifically activate or repress the transcriptional activity to play a key role in gene expression/regulation and biological genetics. Importantly, abnormities of patterns or levels of histone methylation in higher eukaryotes may result in tumorigenesis and developmental defects, suggesting histone methylation will be one of the important targets or markers for treating these diseases. This review will outline the structural characteristics, active sites and specificity of HMTs, correlation between histone methylation and human diseases and lay special emphasis on the progress of the research on H3K36 methylation. PMID:26807165

  19. Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors

    PubMed Central

    Lapierre, Marion; Linares, Aurélien; Dalvai, Mathieu; Duraffourd, Céline; Bonnet, Sandrine; Boulahtouf, Abdelhay; Rodriguez, Carmen; Jalaguier, Stéphan; Assou, Said; Orsetti, Beatrice; Balaguer, Patrick; Maudelonde, Thierry; Blache, Philippe; Bystricky, Kerstin; Boulle, Nathalie; Cavaillès, Vincent

    2016-01-01

    Histone lysine acetylation is an epigenetic mark regulated by histone acetyltransferases and histone deacetylases (HDAC) which plays an important role in tumorigenesis. In this study, we observed a strong overexpression of class IIa HDAC9, at the mRNA and protein levels, in the most aggressive human breast cancer cell lines (i.e. in basal breast cancer cells vs luminal ones or in malignant vs begnin MCF10A breast epithelial cell lines). HDAC9 overexpression was associated with higher rates of gene transcription and increased epigenetic marks on the HDAC9 promoter. Ectopic expression of HDAC9 in MCF7 luminal breast cancer cells led to an increase in cell proliferation and to a decrease in apoptosis. These effects were associated with a deregulated expression of several genes controlled by HDAC inhibitors such as CDKN1A, BAX and TNFRSF10A. Inversely, knock-down of HDAC9 expression in MDA-MB436 basal breast cancer cells reduced cell proliferation. Moreover, high HDAC9 expression decreased the efficacy of HDAC inhibitors to reduce cell proliferation and to regulate CDKN1A gene expression. Interestingly, the gene encoding the transcription factor SOX9 was identified by a global transcriptomic approach as an HDAC9 target gene. In stably transfected MCF7 cells, SOX9 silencing significantly decreased HDAC9 mitogenic activity. Finally, in a large panel of breast cancer biopsies, HDAC9 expression was significantly increased in tumors of the basal subtype, correlated with SOX9 expression and associated with poor prognosis. Altogether, these results indicate that HDAC9 is a key factor involved in mammary carcinogenesis and in the response to HDAC inhibitors. PMID:26930713

  20. 75 FR 55366 - In the Matter of Mark M. Ficek; Order Prohibiting Involvement in NRC-Licensed Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION [Docket No. 030-20836, License No. 25-21479-01, NRC-2009-0120, A-10- 028] In the Matter of Mark M. Ficek; Order Prohibiting Involvement in NRC-Licensed Activities (Effective Immediately) Mr. Mark M. Ficek is the President, owner, and...

  1. The heat shock protein 90 inhibitor SNX5422 has a synergistic activity with histone deacetylase inhibitors in induction of death of anaplastic thyroid carcinoma cells.

    PubMed

    Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin

    2016-02-01

    The influence of the heat shock protein 90 (hsp90) inhibitor SNX5422 alone or in combination with the histone deacetylase (HDAC) inhibitors PXD101, suberoylanilide hydroxamic acid (SAHA), and trichostatin A (TSA) on survival of anaplastic thyroid carcinoma (ATC) cells was investigated. In 8505C and CAL62 cells, SNX5422 caused cell death with concomitant changes in the expression of hsp90 client proteins. After treatment of both SNX5422 and PXD101, SAHA and TSA, compared with treatment of SNX5422 alone, cell viability was diminished, whereas inhibition rate and cytotoxic activity were enhanced. All of the combination index values were lower than 1.0, suggesting the synergism between SNX5422 and PXD101, SAHA and TSA in induction of cell death. In cells treated with both SNX5422 and PXD101, SAHA and TSA, compared with cells treated with SNX5422 alone, the protein levels of Akt, phospho-4EBP1, phospho-S6 K, and survivin were diminished, while those of γH2AX, acetyl. histone H3, acetyl. histone H4, cleaved PARP, and cleaved caspase-3 were enhanced. In conclusion, these results demonstrate that SNX5422 has a cytotoxic activity in conjunction with alterations in the expression of hsp90 client proteins in ATC cells. Moreover, SNX5422 synergizes with HDAC inhibitors in induction of cytotoxicity accompanied by the suppression of PI3K/Akt/mTOR signaling and survivin, and the overexpression of DNA damage-related proteins in ATC cells. PMID:26219406

  2. Marked behavioral activation from inhibitory stimulation of locus coeruleus α1-adrenoceptors by a full agonist

    PubMed Central

    Stone, Eric A.; Lin, Yan; Sarfraz, Yasmeen; Quartermain, David

    2009-01-01

    α1-Adrenoceptors are concentrated in the locus coeruleus (LC) where they appear to regulate various active behaviors but have been difficult to stimulate effectively. The present study examined the behavioral, pharmacological and neural effects of possible stimulation of these receptors with 6-fluoronorepinephrine (6FNE), the only known selective α-agonist that has full efficacy at all brain α-receptors. Infusion of this compound in the mouse LC was found to produce extreme activation of diverse motivated behaviors of exploration, wheel running and operant approach responding in different environments consistent with a global behavioral function of the dorsal noradrenergic system. Infusion of selective antagonists of α1- (terazosin) or α2-(atipamezole) receptors or of either the partial α1-agonist, phenylephrine, or full α2-agonist, dexmedetomidine, indicated that the behavioral effects of 6FNE were due largely due to activation of LC α1-receptors consistent with the known greater density of α1-than α2-adrenoreceptors in the mouse nucleus. Immunohistochemistry of fos in tyrosine hydroxylase-positive LC neurons following IV ventricular infusions indicated that 6FNE markedly depressed whereas terazosin strongly enhanced the apparent functional activity of the nucleus. The changes in fos expression following 6FNE and terazosin were significantly greater than those following dexmedetomidine and atipamezole. It is hypothesized that the α1-receptors of the mouse LC are strongly activated by 6FNE and serve to potently inhibit its tonic or stress-induced activity which in turn disinhibits prepotent motivated behaviors. PMID:19632210

  3. Structural Insights into Selective Histone H3 Recognition by the Human Polybromo bromodomain 2

    SciTech Connect

    Charlop-Powers, Z.; Zeng, L; Zhang, Q; Zhou, M

    2010-01-01

    The Polybromo (PB) protein functions as a key component of the human PBAF chromatin remodeling complex in regulation of gene transcription. PB is made up of modular domains including six bromodomains that are known as acetyl-lysine binding domains. However, histone-binding specificity of the bromodomains of PB has remained elusive. In this study, we report biochemical characterization of all six PB bromodomains' binding to a suite of lysine-acetylated peptides derived from known acetylation sites on human core histones. We demonstrate that bromodomain 2 of PB preferentially recognizes acetylated lysine 14 of histone H3 (H3K14ac), a post-translational mark known for gene transcriptional activation. We further describe the molecular basis of the selective H3K14ac recognition of bromodomain 2 by solving the protein structures in both the free and bound forms using X-ray crystallography and NMR, respectively.

  4. Upstream Anti-sense Promoters are Hubs of Transcription Factor Binding and Active Histone Modifications

    PubMed Central

    Scruggs, Benjamin S.; Gilchrist, Daniel A.; Nechaev, Sergei; Muse, Ginger W.; Burkholder, Adam; Fargo, David C.; Adelman, Karen

    2015-01-01

    SUMMARY Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find that coupled sense and anti-sense TSSs precisely define the boundaries of a nucleosome-depleted region (NDR) that is highly enriched in transcription factor (TF) motifs. Notably, as the distance between sense and anti-sense TSSs increases, so does the size of the NDR, the level of signal-dependent TF binding and gene activation. We further discover a group of anti-sense TSSs in macrophages with an enhancer-like chromatin signature. Interestingly, this signature identifies divergent promoters that are activated during immune challenge. We propose that anti-sense promoters serve as platforms for TF binding and establishment of active chromatin to further regulate or enhance sense-strand mRNA expression. PMID:26028540

  5. Antiepileptic drugs with histone deacetylase inhibition activity and prostate cancer risk: a population-based case-control study.

    PubMed

    Salminen, Jukka K; Tammela, Teuvo L J; Auvinen, Anssi; Murtola, Teemu J

    2016-05-01

    Previous studies suggest that antiepileptic drugs with histone deacetylase (HDAC) inhibitor properties may have prostate cancer preventive effects. We evaluated the association between antiepileptic drug use and prostate cancer risk in a population-based case-control study. The study included all new prostate cancer cases diagnosed in Finland in 1995-2002 and matched controls (24,657 case-control pairs) identified from the Finnish Cancer Registry and the Population Register Center, respectively. Information on antiepileptic drug purchases was obtained from the national prescription reimbursement database. Odds ratios and their 95 % confidence intervals were estimated using age-adjusted and multivariable-adjusted conditional logistic regression analysis. Compared to never-users of antiepileptic drugs, the overall prostate cancer risk was decreased among users of phenobarbital, carbamazepine, and valproic acid (multivariable-adjusted odds ratio (OR) 0.47, 95 % CI 0.24-0.92; OR 0.82, 95 % CI 0.71-0.94, and OR 0.62, 95 % CI 0.42-0.92, respectively), but not among users of other antiepileptic drugs. Overall prostate cancer risk decreased in a dose-dependent manner by cumulative amount, duration and yearly dosage (intensity) of HDAC inhibitors valproic acid and carbamazepine. The risk of advanced prostate cancer was decreased only among carbamazepine users (OR 0.65, 95 % CI 0.44-0.96). Our results support possible prostate cancer preventive effects of HDAC inhibitors. However, also phenobarbital use was associated with decreased prostate cancer risk, despite not having HDAC inhibiting activity. The mechanism of action for antiepileptic drugs in prostate cancer deserves further study. PMID:27038166

  6. Transcriptional Activation of the General Amino Acid Permease Gene per1 by the Histone Deacetylase Clr6 Is Regulated by Oca2 Kinase ▿ † ¶

    PubMed Central

    Kaufmann, Isabelle; White, Eleanor; Azad, Abul; Marguerat, Samuel; Bähler, Jürg; Proudfoot, Nicholas J.

    2010-01-01

    Expression of nitrogen metabolism genes is regulated by the quality of the nitrogen supply. Here, we describe a mechanism for the transcriptional regulation of the general amino acid permease gene per1 in Schizosaccharomyces pombe. We show that when ammonia is used as the nitrogen source, low levels of per1 are transcribed and histones in the coding and surrounding regions of per1 are acetylated. In the presence of proline, per1 transcription is upregulated and initiates from a more upstream site, generating 5′-extended mRNAs. Concomitantly, histones at per1 are deacetylated in a Clr6-dependent manner, suggesting a positive role for Clr6 in transcriptional regulation of per1. Upstream initiation and histone deactylation of per1 are constitutive in cells lacking the serine/threonine kinase oca2, indicating that Oca2 is a repressor of per1. Oca2 interacts with a protein homologous to the Saccharomyces cerevisiae transcriptional activator Cha4 and with Ago1. Loss of Cha4 or Ago1 causes aberrant induction of per1 under noninducing conditions, suggesting that these proteins are also involved in per1 regulation and hence in nitrogen utilization. PMID:20404084

  7. Histone deacetylase inhibition protects hearing against acute ototoxicity by activating the Nf-κB pathway

    PubMed Central

    Layman, WS; Williams, DM; Dearman, JA; Sauceda, MA; Zuo, J

    2015-01-01

    Auditory hair cells have repeatedly been shown to be susceptible to ototoxicity from a multitude of drugs including aminoglycoside antibiotics. Here, we found that systemic HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) on adult mice offers almost complete protection against hair cell loss and hearing threshold shifts from acute ototoxic insult from kanamycin potentiated with furosemide. We also found that the apparent lack of hair cell loss was completely independent of spontaneous or facilitated (ectopic Atoh1 induction) hair cell regeneration. Rather, SAHA treatment correlated with RelA acetylation (K310) and subsequent activation of the Nf-κB pro-survival pathway leading to expression of pro-survival genes such as Cflar (cFLIP) and Bcl2l1 (Bcl-xL). In addition, we also detected increased expression of pro-survival genes Cdkn1a (p21) and Hspa1a (Hsp70), and decreased expression of the pro-apoptosis gene Bcl2l11 (Bim). These data combined provide evidence that class I HDACs control the transcriptional activation of pro-survival pathways in response to ototoxic insult by regulating the acetylation status of transcription factors found at the crossroads of cell death and survival in the mammalian inner ear. PMID:26279947

  8. Analysis of histone modifications at human ribosomal DNA in liver cancer cell

    PubMed Central

    Yu, Feng; Shen, Xingyong; Fan, Li; Yu, Zhaocai

    2015-01-01

    Human liver cancer is the cancer commonly seen clinically. The transcription of ribosomal DNA (rDNA) is a critical step for cells, and epigenetic marks such as post-translational histone modifications have been involved in the regulation of rDNA transcription. But less is known about the pathogenesis of the liver cancers concerning the rDNA transcription regulation. Here we aligned the ChIP-seq data of histone modification markers and CTCF to the human genome assembly which contains a single rDNA repeat in human liver cancer cell and validated their distribution with ChIP-QPCR. Human liver cancer cell possesses a higher enrichment of H3K4me1 and H3K27me3 at ~28 kb within the intergenic spacer (IGS) of rDNA and a higher enrichment of H3K4me3 and H3K27ac upstream of TSS. Furtherly, we studied whether UBF could affect histone modification markers and CTCF at rDNA in human liver cancer cell. UBF depletion leads to a decrease of gene activation mark H3K4me3 across the rDNA promoter. And other histone modification marks and CTCF were not altered after UBF depletion. Taken together, our data showed a high resolution map of histone modification marks at rDNA in human liver cancer cell and provide novel evidence to decipher chromatin-mediated regulation of rDNA in liver cancer. PMID:26657029

  9. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease

    PubMed Central

    Ryu, Hoon; Lee, Junghee; Hagerty, Sean W.; Soh, Byoung Yul; McAlpin, Sara E.; Cormier, Kerry A.; Smith, Karen M.; Ferrante, Robert J.

    2006-01-01

    Chromatin remodeling and transcription regulation are tightly controlled under physiological conditions. It has been suggested that altered chromatin modulation and transcription dysfunction may play a role in the pathogenesis of Huntington's disease (HD). Increased histone methylation, a well established mechanism of gene silencing, results in transcriptional repression. ERG-associated protein with SET domain (ESET), a histone H3 (K9) methyltransferase, mediates histone methylation. We show that ESET expression is markedly increased in HD patients and in transgenic R6/2 HD mice. Similarly, the protein level of trimethylated histone H3 (K9) was also elevated in HD patients and in R6/2 mice. We further demonstrate that both specificity protein 1 (Sp1) and specificity protein 3 (Sp3) act as transcriptional activators of the ESET promoter in neurons and that mithramycin, a clinically approved guanosine–cytosine-rich DNA binding antitumor antibiotic, interferes with the DNA binding of these Sp family transcription factors, suppressing basal ESET promoter activity in a dose dependent manner. The combined pharmacological treatment with mithramycin and cystamine down-regulates ESET gene expression and reduces hypertrimethylation of histone H3 (K9). This polytherapy significantly ameliorated the behavioral and neuropathological phenotype in the R6/2 mice and extended survival over 40%, well beyond any existing reported treatment in HD mice. Our data suggest that modulation of gene silencing mechanisms, through regulation of the ESET gene is important to neuronal survival and, as such, may be a promising treatment in HD patients. PMID:17142323

  10. Histone H4 lysine 20 acetylation is associated with gene repression in human cells

    PubMed Central

    Kaimori, Jun-Ya; Maehara, Kazumitsu; Hayashi-Takanaka, Yoko; Harada, Akihito; Fukuda, Masafumi; Yamamoto, Satoko; Ichimaru, Naotsugu; Umehara, Takashi; Yokoyama, Shigeyuki; Matsuda, Ryo; Ikura, Tsuyoshi; Nagao, Koji; Obuse, Chikashi; Nozaki, Naohito; Takahara, Shiro; Takao, Toshifumi; Ohkawa, Yasuyuki; Kimura, Hiroshi; Isaka, Yoshitaka

    2016-01-01

    Histone acetylation is generally associated with gene activation and chromatin decondensation. Recent mass spectrometry analysis has revealed that histone H4 lysine 20, a major methylation site, can also be acetylated. To understand the function of H4 lysine 20 acetylation (H4K20ac), we have developed a specific monoclonal antibody and performed ChIP-seq analysis using HeLa-S3 cells. H4K20ac was enriched around the transcription start sites (TSSs) of minimally expressed genes and in the gene body of expressed genes, in contrast to most histone acetylation being enriched around the TSSs of expressed genes. The distribution of H4K20ac showed little correlation with known histone modifications, including histone H3 methylations. A motif search in H4K20ac-enriched sequences, together with transcription factor binding profiles based on ENCODE ChIP-seq data, revealed that most transcription activators are excluded from H4K20ac-enriched genes and a transcription repressor NRSF/REST co-localized with H4K20ac. These results suggest that H4K20ac is a unique acetylation mark associated with gene repression. PMID:27064113

  11. Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a "two-active site" model for multiple histone H3 lysine 4 methylation.

    PubMed

    Patel, Anamika; Vought, Valarie E; Swatkoski, Stephen; Viggiano, Susan; Howard, Benny; Dharmarajan, Venkatasubramanian; Monteith, Kelsey E; Kupakuwana, Gillian; Namitz, Kevin E; Shinsky, Stephen A; Cotter, Robert J; Cosgrove, Michael S

    2014-01-10

    The mixed lineage leukemia-1 (MLL1) core complex predominantly catalyzes mono- and dimethylation of histone H3 at lysine 4 (H3K4) and is frequently altered in aggressive acute leukemias. The molecular mechanisms that account for conversion of mono- to dimethyl H3K4 (H3K4me1,2) are not well understood. In this investigation, we report that the suppressor of variegation, enhancer of zeste, trithorax (SET) domains from human MLL1 and Drosophila Trithorax undergo robust intramolecular automethylation reactions at an evolutionarily conserved cysteine residue in the active site, which is inhibited by unmodified histone H3. The location of the automethylation in the SET-I subdomain indicates that the MLL1 SET domain possesses significantly more conformational plasticity in solution than suggested by its crystal structure. We also report that MLL1 methylates Ash2L in the absence of histone H3, but only when assembled within a complex with WDR5 and RbBP5, suggesting a restraint for the architectural arrangement of subunits within the complex. Using MLL1 and Ash2L automethylation reactions as probes for histone binding, we observed that both automethylation reactions are significantly inhibited by stoichiometric amounts of unmethylated histone H3, but not by histones previously mono-, di-, or trimethylated at H3K4. These results suggest that the H3K4me1 intermediate does not significantly bind to the MLL1 SET domain during the dimethylation reaction. Consistent with this hypothesis, we demonstrate that the MLL1 core complex assembled with a catalytically inactive SET domain variant preferentially catalyzes H3K4 dimethylation using the H3K4me1 substrate. Taken together, these results are consistent with a "two-active site" model for multiple H3K4 methylation by the MLL1 core complex. PMID:24235145

  12. Automethylation Activities within the Mixed Lineage Leukemia-1 (MLL1) Core Complex Reveal Evidence Supporting a “Two-active Site” Model for Multiple Histone H3 Lysine 4 Methylation*

    PubMed Central

    Patel, Anamika; Vought, Valarie E.; Swatkoski, Stephen; Viggiano, Susan; Howard, Benny; Dharmarajan, Venkatasubramanian; Monteith, Kelsey E.; Kupakuwana, Gillian; Namitz, Kevin E.; Shinsky, Stephen A.; Cotter, Robert J.; Cosgrove, Michael S.

    2014-01-01

    The mixed lineage leukemia-1 (MLL1) core complex predominantly catalyzes mono- and dimethylation of histone H3 at lysine 4 (H3K4) and is frequently altered in aggressive acute leukemias. The molecular mechanisms that account for conversion of mono- to dimethyl H3K4 (H3K4me1,2) are not well understood. In this investigation, we report that the suppressor of variegation, enhancer of zeste, trithorax (SET) domains from human MLL1 and Drosophila Trithorax undergo robust intramolecular automethylation reactions at an evolutionarily conserved cysteine residue in the active site, which is inhibited by unmodified histone H3. The location of the automethylation in the SET-I subdomain indicates that the MLL1 SET domain possesses significantly more conformational plasticity in solution than suggested by its crystal structure. We also report that MLL1 methylates Ash2L in the absence of histone H3, but only when assembled within a complex with WDR5 and RbBP5, suggesting a restraint for the architectural arrangement of subunits within the complex. Using MLL1 and Ash2L automethylation reactions as probes for histone binding, we observed that both automethylation reactions are significantly inhibited by stoichiometric amounts of unmethylated histone H3, but not by histones previously mono-, di-, or trimethylated at H3K4. These results suggest that the H3K4me1 intermediate does not significantly bind to the MLL1 SET domain during the dimethylation reaction. Consistent with this hypothesis, we demonstrate that the MLL1 core complex assembled with a catalytically inactive SET domain variant preferentially catalyzes H3K4 dimethylation using the H3K4me1 substrate. Taken together, these results are consistent with a “two-active site” model for multiple H3K4 methylation by the MLL1 core complex. PMID:24235145

  13. Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Binder, Hans; Steiner, Lydia; Przybilla, Jens; Rohlf, Thimo; Prohaska, Sonja; Galle, Jörg

    2013-04-01

    Chromatin-related mechanisms, as e.g. histone modifications, are known to be involved in regulatory switches within the transcriptome. Only recently, mathematical models of these mechanisms have been established. So far they have not been applied to genome-wide data. We here introduce a mathematical model of transcriptional regulation by histone modifications and apply it to data of trimethylation of histone 3 at lysine 4 (H3K4me3) and 27 (H3K27me3) in mouse pluripotent and lineage-committed cells. The model describes binding of protein complexes to chromatin which are capable of reading and writing histone marks. Molecular interactions of the complexes with DNA and modified histones create a regulatory switch of transcriptional activity. The regulatory states of the switch depend on the activity of histone (de-) methylases, the strength of complex-DNA-binding and the number of nucleosomes capable of cooperatively contributing to complex-binding. Our model explains experimentally measured length distributions of modified chromatin regions. It suggests (i) that high CpG-density facilitates recruitment of the modifying complexes in embryonic stem cells and (ii) that re-organization of extended chromatin regions during lineage specification into neuronal progenitor cells requires targeted de-modification. Our approach represents a basic step towards multi-scale models of transcriptional control during development and lineage specification.

  14. Working memory delay period activity marks a domain-unspecific attention mechanism.

    PubMed

    Katus, Tobias; Müller, Matthias M

    2016-03-01

    Working memory (WM) recruits neural circuits that also perform perception- and action-related functions. Among the functions that are shared between the domains of WM and perception is selective attention, which supports the maintenance of task-relevant information during the retention delay of WM tasks. The tactile contralateral delay activity (tCDA) component of the event-related potential (ERP) marks the attention-based rehearsal of tactile information in somatosensory brain regions. We tested whether the tCDA reflects the competition for shared attention resources between a WM task and a perceptual task under dual-task conditions. The two tasks were always performed on opposite hands. In different blocks, the WM task had higher or lower priority than the perceptual task. The tCDA's polarity consistently reflected the hand where the currently prioritized task was performed. This suggests that the process indexed by the tCDA is not specific to the domain of WM, but mediated by a domain-unspecific attention mechanism. The analysis of transient ERP components evoked by stimuli in the two tasks further supports the interpretation that the tCDA marks a goal-directed bias in the allocation of selective attention. Larger spatially selective modulations were obtained for stimulus material related to the high-, as compared to low-priority, task. While our results generally indicate functional overlap between the domains of WM and perception, we also found evidence suggesting that selection in internal (mnemonic) and external (perceptual) stimulus representations involves processes that are not active during shifts of preparatory attention. PMID:26756177

  15. Toxoplasma histone acetylation remodelers as novel drug targets

    PubMed Central

    Vanagas, Laura; Jeffers, Victoria; Bogado, Silvina S; Dalmasso, Maria C; Sullivan, William J; Angel, Sergio O

    2013-01-01

    Toxoplasma gondii is a leading cause of neurological birth defects and a serious opportunistic pathogen. The authors and others have found that Toxoplasma uses a unique nucleosome composition supporting a fine gene regulation together with other factors. Post-translational modifications in histones facilitate the establishment of a global chromatin environment and orchestrate DNA-related biological processes. Histone acetylation is one of the most prominent post-translational modifications influencing gene expression. Histone acetyltransferases and histone deacetylases have been intensively studied as potential drug targets. In particular, histone deacetylase inhibitors have activity against apicomplexan parasites, underscoring their potential as a new class of antiparasitic compounds. In this review, we summarize what is known about Toxoplasma histone acetyltransferases and histone deacetylases, and discuss the inhibitors studied to date. Finally, the authors discuss the distinct possibility that the unique nucleosome composition of Toxoplasma, which harbors a nonconserved H2Bv variant histone, might be targeted in novel therapeutics directed against this parasite. PMID:23199404

  16. Coordinated regulation of Nrf2 and histone H3 serine 10 phosphorylation in arsenite-activated transcription of the human heme oxygenase-1 gene.

    PubMed

    Ray, Paul D; Huang, Bo-Wen; Tsuji, Yoshiaki

    2015-10-01

    Expression of the antioxidant gene heme oxygenase-1 (HO-1) is primarily induced through NF-E2-related factor 2 (Nrf2)-mediated activation of the antioxidant response element (ARE). Gene transcription is coordinately regulated by transcription factor activity at enhancer elements and epigenetic alterations such as the posttranslational modification of histone proteins. However, the role of histone modifications in the Nrf2-ARE axis remains largely uncharacterized. The environmental contaminant arsenite is a potent inducer of both HO-1 expression and phosphorylation of histone H3 serine 10 (H3S10); therefore, we investigated the relationships between Nrf2 and H3S10 phosphorylation in arsenite-induced, ARE-dependent, transcriptional activation of the human HO-1 gene. Arsenite increased phosphorylation of H3S10 both globally and at the HO-1 promoter concomitantly with HO-1 transcription in human HaCaT keratinocytes. Conversely, arsenite-induced H3S10 phosphorylation and HO-1 expression were blocked by N-acetylcysteine (NAC), the c-Jun N-terminal kinase (JNK) inhibitor SP600125, and JNK knockdown (siJNK). Interestingly, ablation of arsenite-induced H3S10 phosphorylation by SP600125 or siJNK did not inhibit Nrf2 nuclear accumulation nor ARE binding, despite inhibiting HO-1 expression. In response to arsenite, binding of Nrf2 to the HO-1 ARE preceded phosphorylation of H3S10 at the HO-1 ARE. Furthermore, arsenite-mediated occupancy of phosphorylated H3S10 at the HO-1 ARE was decreased in Nrf2-deficient mouse embryonic fibroblasts. These results suggest the involvement of H3S10 phosphorylation in the Nrf2-ARE axis by proposing that Nrf2 may influence H3S10 phosphorylation at the HO-1 ARE and additional promoter regions. Our data highlights the complex interplay between Nrf2 and H3S10 phosphorylation in arsenite-activated HO-1 transcription. PMID:26291278

  17. Stable 5-Hydroxymethylcytosine (5hmC) Acquisition Marks Gene Activation During Chondrogenic Differentiation.

    PubMed

    Taylor, Sarah Eb; Li, Ye Henry; Smeriglio, Piera; Rath, Madhusikta; Wong, Wing H; Bhutani, Nidhi

    2016-03-01

    Regulation of gene expression changes during chondrogenic differentiation by DNA methylation and demethylation is little understood. Methylated cytosines (5mC) are oxidized by the ten-eleven-translocation (TET) proteins to 5-hydroxymethylcytosines (5hmC), 5-formylcytosines (5fC), and 5-carboxylcytosines (5caC), eventually leading to a replacement by unmethylated cytosines (C), ie, DNA demethylation. Additionally, 5hmC is stable and acts as an epigenetic mark by itself. Here, we report that global changes in 5hmC mark chondrogenic differentiation in vivo and in vitro. Tibia anlagen and growth plate analyses during limb development at mouse embryonic days E 11.5, 13.5, and 17.5 showed dynamic changes in 5hmC levels in the differentiating chondrocytes. A similar increase in 5hmC levels was observed in the ATDC5 chondroprogenitor cell line accompanied by increased expression of the TET proteins during in vitro differentiation. Loss of TET1 in ATDC5 decreased 5hmC levels and impaired differentiation, demonstrating a functional role for TET1-mediated 5hmC dynamics in chondrogenic differentiation. Global analyses of the 5hmC-enriched sequences during early and late chondrogenic differentiation identified 5hmC distribution to be enriched in the regulatory regions of genes preceding the transcription start site (TSS), as well as in the gene bodies. Stable gains in 5hmC were observed in specific subsets of genes, including genes associated with cartilage development and in chondrogenic lineage-specific genes. 5hmC gains in regulatory promoter and enhancer regions as well as in gene bodies were strongly associated with activated but not repressed genes, indicating a potential regulatory role for DNA hydroxymethylation in chondrogenic gene expression. © 2015 American Society for Bone and Mineral Research. PMID:26363184

  18. Transcription factor binding predicts histone modifications in human cell lines

    PubMed Central

    Benveniste, Dan; Sonntag, Hans-Joachim; Sanguinetti, Guido; Sproul, Duncan

    2014-01-01

    Gene expression in higher organisms is thought to be regulated by a complex network of transcription factor binding and chromatin modifications, yet the relative importance of these two factors remains a matter of debate. Here, we show that a computational approach allows surprisingly accurate prediction of histone modifications solely from knowledge of transcription factor binding both at promoters and at potential distal regulatory elements. This accuracy significantly and substantially exceeds what could be achieved by using DNA sequence as an input feature. Remarkably, we show that transcription factor binding enables strikingly accurate predictions across different cell lines. Analysis of the relative importance of specific transcription factors as predictors of specific histone marks recapitulated known interactions between transcription factors and histone modifiers. Our results demonstrate that reported associations between histone marks and gene expression may be indirect effects caused by interactions between transcription factors and histone-modifying complexes. PMID:25187560

  19. Synthesis, Activity and Metabolic Stability of Non-Ribose Containing Inhibitors of Histone Methyltransferase DOT1L

    PubMed Central

    Deng, Lisheng; Zhang, Li; Yao, Yuan; Wang, Cong; Redell, Michele S.; Dong, Shuo

    2013-01-01

    Histone methyltransferase DOT1L is a drug target for MLL leukemia. We report an efficient synthesis of a cyclopentane-containing compound that potently and selectively inhibits DOT1L (Ki = 1.1 nM) as well as H3K79 methylation (IC50 ~ 200 nM). Importantly, this compound exhibits a high stability in plasma and liver microsomes, suggesting it is a better drug candidate. PMID:23795283

  20. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3

    PubMed Central

    Jayaram, Hariharan; Hoelper, Dominik; Jain, Siddhant U.; Cantone, Nico; Lundgren, Stefan M.; Poy, Florence; Allis, C. David; Cummings, Richard; Bellon, Steven; Lewis, Peter W.

    2016-01-01

    Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases. PMID:27185940

  1. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3.

    PubMed

    Jayaram, Hariharan; Hoelper, Dominik; Jain, Siddhant U; Cantone, Nico; Lundgren, Stefan M; Poy, Florence; Allis, C David; Cummings, Richard; Bellon, Steven; Lewis, Peter W

    2016-05-31

    Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases. PMID:27185940

  2. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor.

    PubMed

    Macfarlan, Todd; Kutney, Sara; Altman, Brian; Montross, Rebecca; Yu, Jiujiu; Chakravarti, Debabrata

    2005-02-25

    The identities of signal transducer proteins that integrate histone hypoacetylation and transcriptional repression are largely unknown. Here we demonstrate that THAP7, an uncharacterized member of the recently identified THAP (Thanatos-associated protein) family of proteins, is ubiquitously expressed, associates with chromatin, and represses transcription. THAP7 binds preferentially to hypoacetylated (un-, mono-, and diacetylated) histone H4 tails in vitro via its C-terminal 77 amino acids. Deletion of this domain, or treatment of cells with the histone deacetylase inhibitor TSA, which leads to histone hyperacetylation, partially disrupts THAP7/chromatin association in living cells. THAP7 coimmunoprecipitates with histone deacetylase 3 (HDAC3) and the nuclear hormone receptor corepressor (NCoR) and represses transcription as a Gal4 fusion protein. Chromatin immunoprecipitation assays demonstrate that these corepressors are recruited to promoters in a THAP7 dependent manner and promote histone H3 hypoacetylation. The conserved THAP domain is a key determinant for full HDAC3 association in vitro, and both the THAP domain and the histone interaction domain are important for the repressive properties of THAP7. Full repression mediated by THAP7 is also dependent on NCoR expression. We hypothesize that THAP7 is a dual function repressor protein that actively targets deacetylation of histone H3 necessary to establish transcriptional repression and functions as a signal transducer of the repressive mark of hypoacetylated histone H4. This is the first demonstration of the transcriptional regulatory properties of a human THAP domain protein, and a critical identification of a potential transducer of the repressive signal of hypoacetylated histone H4 in higher eukaryotes. PMID:15561719

  3. Histone H3 Acetylation and H3 K4 Methylation Define Distinct Chromatin Regions Permissive for Transgene Expression

    PubMed Central

    Yan, Chunhong; Boyd, Douglas D.

    2006-01-01

    Histone modifications are associated with distinct transcription states and serve as heritable epigenetic markers for chromatin structure and function. While H3 K9 methylation defines condensed heterochromatin that is able to silence a nearby gene, how gene silencing within euchromatin regions is achieved remains elusive. We report here that histone H3 K4 methylation or K9/K14 acetylation defines distinct chromatin regions permissive or nonpermissive for transgene expression. A permissive chromatin region is enriched in H3 K4 methylation and H3 acetylation, while a nonpermissive region is poor in or depleted of these two histone modifications. The histone modification states of the permissive chromatin can spread to transgenic promoters. However, de novo histone H3 acetylation and H3 K4 methylation at a transgenic promoter in a nonpermissive chromatin region are stochastic, leading to variegated transgene expression. Moreover, nonpermissive chromatin progressively silences a transgene, an event that is accompanied by the reduction of H3 K4 methylation and H3 acetylation levels at the transgenic promoter. These repressive effects of nonpermissive chromatin cannot be completely countered by strong transcription activators, indicating the dominance of the chromatin effects. We therefore propose a model in which histone H3 acetylation and H3 K4 methylation localized to discrete sites in the mammalian genome mark distinct chromatin functions that dictate transgene expression or silencing. PMID:16914722

  4. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells.

    PubMed

    Fiskus, Warren; Sharma, Sunil; Qi, Jun; Valenta, John A; Schaub, Leasha J; Shah, Bhavin; Peth, Karissa; Portier, Bryce P; Rodriguez, Melissa; Devaraj, Santhana G T; Zhan, Ming; Sheng, Jianting; Iyer, Swaminathan P; Bradner, James E; Bhalla, Kapil N

    2014-05-01

    The bromodomain and extra-terminal (BET) protein family members, including BRD4, bind to acetylated lysines on histones and regulate the expression of important oncogenes, for example, c-MYC and BCL2. Here, we demonstrate the sensitizing effects of the histone hyperacetylation-inducing pan-histone deacetylase (HDAC) inhibitor panobinostat on human acute myelogenous leukemia (AML) blast progenitor cells (BPC) to the BET protein antagonist JQ1. Treatment with JQ1, but not its inactive enantiomer (R-JQ1), was highly lethal against AML BPCs expressing mutant NPM1c+ with or without coexpression of FLT3-ITD or AML expressing mixed lineage leukemia fusion oncoprotein. JQ1 treatment reduced binding of BRD4 and RNA polymerase II to the DNA of c-MYC and BCL2 and reduced their levels in the AML cells. Cotreatment with JQ1 and the HDAC inhibitor panobinostat synergistically induced apoptosis of the AML BPCs, but not of normal CD34(+) hematopoietic progenitor cells. This was associated with greater attenuation of c-MYC and BCL2, while increasing p21, BIM, and cleaved PARP levels in the AML BPCs. Cotreatment with JQ1 and panobinostat significantly improved the survival of the NOD/SCID mice engrafted with OCI-AML3 or MOLM13 cells (P < 0.01). These findings highlight cotreatment with a BRD4 antagonist and an HDAC inhibitor as a potentially efficacious therapy of AML. PMID:24435446

  5. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a.

    PubMed

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan; Yang, Zhihong; Huang, Yi; Bennett, Jason; Wang, Li

    2016-08-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. PMID:27217333

  6. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev; Singh, Sumel

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent studies have investigated the involvement of epigenetic modifications in PD. Histone deacetylase (HDAC) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study was designed to investigate the effect of sodium butyrate, a HDAC inhibitor in 6-hydroxydopamine (6-OHDA) - induced experimental PD like symptoms in rats. To produce motor deficit, 6-OHDA was administered unilaterally in the right medial forebrain bundle. Three weeks after 6-OHDA administration, the rats were challenged with apomorphine. Following this, the animals were treated with sodium butyrate (150 and 300 mg/kg i.p.) once daily for 14 days. Movement abnormalities were assessed by battery of behavioral tests. Biochemically, oxidative stress markers, neuroinflammation and dopamine were measured in striatal brain homogenate. Further, to explore the molecular mechanism(s), we measured the level of global H3 histone acetylation and brain derived neurotrophic factor (BDNF). 6-OHDA administration results in significant motor deficit along with reduction in striatal dopamine level. 6-OHDA treated rats showed elevated oxidative stress and neuroinflammatory markers. Treatment with sodium butyrate results in significant attenuation of motor deficits and increased striatal dopamine level. Moreover, sodium butyrate treatment attenuated the oxidative stress and neuroinflammatory markers. These effects occur concurrently with increased global H3 histone acetylation and BDNF levels. Thus, the observed results of the present study are indicative for the therapeutic potential of HDAC inhibitors in PD. PMID:26048426

  7. Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment.

    PubMed

    Cortopassi, Wilian A; Simion, Robert; Honsby, Charles E; França, Tanos C C; Paton, Robert S

    2015-12-21

    JMJD2A catalyses the demethylation of di- and trimethylated lysine residues in histone tails and is a target for the development of new anticancer medicines. Mechanistic details of demethylation are yet to be elucidated and are important for the understanding of epigenetic processes. We have evaluated the initial step of histone demethylation by JMJD2A and demonstrate the dramatic effect of the protein environment upon oxygen binding using quantum mechanics/molecular mechanics (QM/MM) calculations. The changes in electronic structure have been studied for possible spin states and different conformations of O2 , using a combination of quantum and classical simulations. O2 binding to this histone demethylase is computed to occur preferentially as an end-on superoxo radical bound to a high-spin ferric centre, yielding an overall quintet ground state. The favourability of binding is strongly influenced by the surrounding protein: we have quantified this effect using an energy decomposition scheme into electrostatic and dispersion contributions. His182 and the methylated lysine assist while Glu184 and the oxoglutarate cofactor are deleterious for O2 binding. Charge separation in the superoxo-intermediate benefits from the electrostatic stabilization provided by the surrounding residues, stabilizing the binding process significantly. This work demonstrates the importance of the extended protein environment in oxygen binding, and the role of energy decomposition in understanding the physical origin of binding/recognition. PMID:26577067

  8. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing.

    PubMed

    Zhao, Quan; Rank, Gerhard; Tan, Yuen T; Li, Haitao; Moritz, Robert L; Simpson, Richard J; Cerruti, Loretta; Curtis, David J; Patel, Dinshaw J; Allis, C David; Cunningham, John M; Jane, Stephen M

    2009-03-01

    Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human beta-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA methylation. H4R3me2s serves as a direct binding target for the DNA methyltransferase DNMT3A, which interacts through the ADD domain containing the PHD motif. Loss of the H4R3me2s mark through short hairpin RNA-mediated knockdown of PRMT5 leads to reduced DNMT3A binding, loss of DNA methylation and gene activation. In primary erythroid progenitors from adult bone marrow, H4R3me2s marks the inactive methylated globin genes coincident with localization of PRMT5. Our findings define DNMT3A as both a reader and a writer of repressive epigenetic marks, thereby directly linking histone and DNA methylation in gene silencing. PMID:19234465

  9. The interplay of histone modifications – writers that read

    PubMed Central

    Zhang, Tianyi; Cooper, Sarah; Brockdorff, Neil

    2015-01-01

    Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development. PMID:26474904

  10. Purification of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a possible mechanism for its periodic activation.

    PubMed

    Labbe, J C; Picard, A; Peaucellier, G; Cavadore, J C; Nurse, P; Doree, M

    1989-04-21

    MPF extracted from starfish oocytes copurifies with an M phase-specific H1 histone kinase encoded by a homolog of the fission yeast cell cycle control gene cdc2+. The most purified preparations contain p34cdc2 as the only major protein. Activation of the p34cdc2 kinase is correlated with appearance of the MPF activity both in vivo and in vitro. The increase in protein kinase activity is associated with p34cdc2 dephosphorylation and the decrease in protein kinase activity on leaving M phase with rephosphorylation. Microinjection of a peptide perfectly conserved in p34cdc2 from yeast to humans induces meiotic maturation, suggesting that an inhibitory component in G2 arrested oocytes interacts with this region of the p34cdc2 kinase. We propose that initiation of M phase is brought about by the dephosphorylation of p34cdc2, leading to increase in its protein kinase activity. PMID:2649251

  11. Histone Modifiers in Cancer

    PubMed Central

    Cohen, Idan; Poręba, Elżbieta; Kamieniarz, Kinga; Schneider, Robert

    2011-01-01

    Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors. PMID:21941619

  12. Histone variants and epigenetics.

    PubMed

    Henikoff, Steven; Smith, M Mitchell

    2015-01-01

    Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory. PMID:25561719

  13. Regulation and function of histone acetyltransferase MOF.

    PubMed

    Yang, Yang; Han, Xiaofei; Guan, Jingyun; Li, Xiangzhi

    2014-03-01

    The mammalian MOF (male absent on the first), a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (HATs), is the major enzyme that catalyzes the acetylation of histone H4 on lysine 16. Acetylation of K16 is a prevalent mark associated with chromatin decondensation. MOF has recently been shown to play an essential role in maintaining normal cell functions. In this study, we discuss the important roles of MOF in DNA damage repair, apoptosis, and tumorigenesis. We also analyze the role of MOF as a key regulator of the core transcriptional network of embryonic stem cells. PMID:24452550

  14. Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition.

    PubMed

    Li, Xiao-Yong; Harrison, Melissa M; Villalta, Jacqueline E; Kaplan, Tommy; Eisen, Michael B

    2014-01-01

    We describe the genome-wide distributions and temporal dynamics of nucleosomes and post-translational histone modifications throughout the maternal-to-zygotic transition in embryos of Drosophila melanogaster. At mitotic cycle 8, when few zygotic genes are being transcribed, embryonic chromatin is in a relatively simple state: there are few nucleosome free regions, undetectable levels of the histone methylation marks characteristic of mature chromatin, and low levels of histone acetylation at a relatively small number of loci. Histone acetylation increases by cycle 12, but it is not until cycle 14 that nucleosome free regions and domains of histone methylation become widespread. Early histone acetylation is strongly associated with regions that we have previously shown to be bound in early embryos by the maternally deposited transcription factor Zelda, suggesting that Zelda triggers a cascade of events, including the accumulation of specific histone modifications, that plays a role in the subsequent activation of these sequences. PMID:25313869

  15. c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene.

    PubMed

    Wolter, Sabine; Doerrie, Anneke; Weber, Axel; Schneider, Heike; Hoffmann, Elke; von der Ohe, Juliane; Bakiri, Latifa; Wagner, Erwin F; Resch, Klaus; Kracht, Michael

    2008-07-01

    Interleukin-1 (IL-1)-induced mRNA expression of ccl2 (also called MCP-1), a prototypic highly regulated inflammatory gene, is severely suppressed in cells lacking c-Jun or Jun N-terminal protein kinase 1 (JNK1)/JNK2 genes and is only partially restored in cells expressing a c-Jun(SS63/73AA) mutant protein. We used chromatin immunoprecipitation to identify three c-Jun-binding sites located in the far 5' region close to the transcriptional start site and in the far 3' region of murine and human ccl2 genes. Mutational analysis revealed that the latter two sites contribute to ccl2 transcription in response to the presence of IL-1 or of ectopically expressed c-Jun-ATF-2 dimers. Further experiments comparing wild-type and c-Jun-deficient cells revealed that c-Jun regulates Ser10 phosphorylation of histone H3, acetylation of histones H3 and H4, and recruitment of histone deacetylase 3 (HDAC3), NF-kappaB subunits, and RNA polymerase II across the ccl2 locus. c-Jun also coimmunoprecipitated with p65 NF-kappaB and HDAC3. Based on DNA microarray analysis, c-Jun was required for full expression of 133 out of 162 IL-1-induced genes. For inflammatory genes, these data support the idea of an activator function of c-Jun that is executed by multiple mechanisms, including phosphorylation-dependent interaction with p65 NF-kappaB and HDAC3 at the level of chromatin. PMID:18443042

  16. c-Jun Controls Histone Modifications, NF-κB Recruitment, and RNA Polymerase II Function To Activate the ccl2 Gene▿ †

    PubMed Central

    Wolter, Sabine; Doerrie, Anneke; Weber, Axel; Schneider, Heike; Hoffmann, Elke; von der Ohe, Juliane; Bakiri, Latifa; Wagner, Erwin F.; Resch, Klaus; Kracht, Michael

    2008-01-01

    Interleukin-1 (IL-1)-induced mRNA expression of ccl2 (also called MCP-1), a prototypic highly regulated inflammatory gene, is severely suppressed in cells lacking c-Jun or Jun N-terminal protein kinase 1 (JNK1)/JNK2 genes and is only partially restored in cells expressing a c-Jun(SS63/73AA) mutant protein. We used chromatin immunoprecipitation to identify three c-Jun-binding sites located in the far 5′ region close to the transcriptional start site and in the far 3′ region of murine and human ccl2 genes. Mutational analysis revealed that the latter two sites contribute to ccl2 transcription in response to the presence of IL-1 or of ectopically expressed c-Jun-ATF-2 dimers. Further experiments comparing wild-type and c-Jun-deficient cells revealed that c-Jun regulates Ser10 phosphorylation of histone H3, acetylation of histones H3 and H4, and recruitment of histone deacetylase 3 (HDAC3), NF-κB subunits, and RNA polymerase II across the ccl2 locus. c-Jun also coimmunoprecipitated with p65 NF-κB and HDAC3. Based on DNA microarray analysis, c-Jun was required for full expression of 133 out of 162 IL-1-induced genes. For inflammatory genes, these data support the idea of an activator function of c-Jun that is executed by multiple mechanisms, including phosphorylation-dependent interaction with p65 NF-κB and HDAC3 at the level of chromatin. PMID:18443042

  17. SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer.

    PubMed

    Novotny-Diermayr, Veronica; Sangthongpitag, Kanda; Hu, Chang Yong; Wu, Xiaofeng; Sausgruber, Nina; Yeo, Pauline; Greicius, Gediminas; Pettersson, Sven; Liang, Ai Leng; Loh, Yung Kiang; Bonday, Zahid; Goh, Kee Chuan; Hentze, Hannes; Hart, Stefan; Wang, Haishan; Ethirajulu, Kantharaj; Wood, Jeanette Marjorie

    2010-03-01

    Although clinical responses in liquid tumors and certain lymphomas have been reported, the clinical efficacy of histone deacetylase inhibitors in solid tumors has been limited. This may be in part due to the poor pharmacokinetic of these drugs, resulting in inadequate tumor concentrations of the drug. SB939 is a new hydroxamic acid based histone deacetylase inhibitor with improved physicochemical, pharmaceutical, and pharmacokinetic properties. In vitro, SB939 inhibits class I, II, and IV HDACs, with no effects on other zinc binding enzymes, and shows significant antiproliferative activity against a wide variety of tumor cell lines. It has very favorable pharmacokinetic properties after oral dosing in mice, with >4-fold increased bioavailability and 3.3-fold increased half-life over suberoylanilide hydroxamic acid (SAHA). In contrast to SAHA, SB939 accumulates in tumor tissue and induces a sustained inhibition of histone acetylation in tumor tissue. These excellent pharmacokinetic properties translated into a dose-dependent antitumor efficacy in a xenograft model of human colorectal cancer (HCT-116), with a tumor growth inhibition of 94% versus 48% for SAHA (both at maximum tolerated dose), and was also effective when given in different intermittent schedules. Furthermore, in APC(min) mice, a genetic mouse model of early-stage colon cancer, SB939 inhibited adenoma formation, hemocult scores, and increased hematocrit values more effectively than 5-fluorouracil. Emerging clinical data from phase I trials in cancer patients indicate that the pharmacokinetic and pharmacologic advantages of SB939 are translated to the clinic. The efficacy of SB939 reported here in two very different models of colorectal cancer warrants further investigation in patients. PMID:20197387

  18. Structural characteristics of two wheat histone H2A genes encoding distinct types of variants and functional differences in their promoter activity.

    PubMed

    Huh, G H; Nakayama, T; Meshi, T; Iwabuchi, M

    1997-03-01

    To investigate the regulation of plant histone H2A gene expression, we isolated two H2A genes (TH254 and TH274) from wheat, which encode two variants of H2A. Both genes had an intron in the coding region. In the promoters, some characteristic sequences, such as Oct and Nona motifs, which are conserved among plant histone genes, were located in a short region (about 120 bp) upstream from the putative TATA box. Transient expression analyses of promoter activity with H2A-GUS fusion genes using tobacco protoplasts revealed novel types of positive cis-acting sequences in the TH254 promoter: a direct repeat of a 13 bp sequence (AGTTACATTATTG) and a stretch composed of an AT-rich sequence (ATATAGAAAATTAAAA) and a G-box (CACGTG). Quantitative S1 assay of the mRNA amounts from the TH254/GUS and TH274/GUS chimeric genes in stably transformed and cell cycle-synchronized tobacco cell lines showed that the promoters of both genes contained at least one cis-acting element responsible for S phase-specific expression. Histochemical analysis of transgenic tobacco plants carrying the chimeric genes showed that the promoters of the two H2A genes were active in developing seedlings and flower organs but were regulated in a different manner. PMID:9106503

  19. The Histone Methyltransferase Smyd2 Is a Negative Regulator of Macrophage Activation by Suppressing Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNF-α) Production

    PubMed Central

    Xu, Guiliang; Liu, Guilin; Xiong, Sidong; Liu, Haiyan; Chen, Xi; Zheng, Biao

    2015-01-01

    SET and MYND domain-containing 2 (Smyd2), a histone 3 lysine 4- and histone 3 lysine 36 (H3K36)-specific methyltransferase, plays critical roles in cardiac development and tumorigenesis. However, the role of Smyd2 in immunity and inflammation remains poorly understood. In this study, we report that Smyd2 is a novel negative regulator for macrophage activation and M1 polarization. Elevated Smyd2 expression suppresses the production of proinflammatory cytokines, including IL-6 and TNF, and inhibits the expression of important cell surface molecules, including major MHC-II and costimulatory molecules. Furthermore, macrophages with high Smyd2 expression inhibit Th-17 cell differentiation but promote regulatory T cell differentiation as a result of increased TGF-β production and decreased IL-6 secretion. In macrophages, Smyd2 specifically facilitates H3K36 dimethylation at Tnf and Il6 promoters to suppress their transcription and inhibits NF-κB and ERK signaling. Therefore, our data demonstrate that epigenetic modification by Smyd2-mediated H3K36 dimethylation at Tnf and Il6 promoters plays an important role in the regulation of macrophage activation during inflammation. PMID:25583990

  20. The Histone Acetylase PCAF Is a Phorbol-Ester-Inducible Coactivator of the IRF Family That Confers Enhanced Interferon Responsiveness

    PubMed Central

    Masumi, Atsuko; Wang, I-Ming; Lefebvre, Bruno; Yang, Xing-Jiao; Nakatani, Yoshihiro; Ozato, Keiko

    1999-01-01

    Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-α-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-α-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness. PMID:10022868

  1. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities.

    PubMed

    Yang, Feifei; Peng, Shihong; Li, Yunqi; Su, Liqiang; Peng, Yangrui; Wu, Jing; Chen, Huang; Liu, Mingyao; Yi, Zhengfang; Chen, Yihua

    2016-02-01

    A series of novel histone deacetylase (HDAC) inhibitors were designed, synthesized and evaluated based on the strategies of a hybrid of the classic pharmacophore of HDAC inhibitors with the thiazolidinone scaffold. Some of the compounds 12i showed potent HDAC1 inhibition with nM IC50 values, more importantly, compound displayed much better anti-metastatic effects than vorinostat (SAHA) against migration of the A549 cell line. Further mechanism exploration implied that compound 12i may inhibit tumor metastasis via modulating the epithelial-mesenchymal transition (EMT) and upregulating the acetylation of α-tubulin. PMID:26732459

  2. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms. PMID:26518266

  3. Inhibition of Histone Acetyltransferase by Glycosaminoglycans

    PubMed Central

    Buczek-Thomas, Jo Ann; Hsia, Edward; Rich, Celeste B.; Foster, Judith A.; Nugent, Matthew A.

    2008-01-01

    Histone acetyltransferases (HATs) are a class of enzymes that participate in modulating chromatin structure and gene expression. Altered HAT activity has been implicated in a number of diseases, yet little is known about the regulation of HATs. In this study, we report that glycosaminoglycans are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and heparan sulfate proteoglycans being the most potent inhibitors. The mechanism of inhibition by heparin was investigated. The ability of heparin to inhibit HAT activity was in part dependent upon its size and structure, as small heparin-derived oligosaccharides (> 8 sugars) and N-desulfated or O-desulfated heparin showed reduced inhibitory activity. Heparin was shown to bind to pCAF; and enzyme assays indicated that heparin shows the characteristics of a competitive-like inhibitor causing an ~50-fold increase in the apparent Km of pCAF for histone H4. Heparan sulfate proteoglycans isolated from corneal and pulmonary fibroblasts inhibited HAT activity with similar effectiveness as heparin. As evidence that endogenous glycosaminoglycans might be involved in modulating histone acetylation, the direct addition of heparin to pulmonary fibroblasts resulted in an ~50% reduction of histone H3 acetylation after 6 hours of treatment. In addition, Chinese hamster ovary cells deficient in glycosaminoglycan synthesis showed increased levels of acetylated histone H3 compared to wild-type parent cells. Glycosaminoglycans represent a new class of HAT inhibitors that might participate in modulating cell function by regulating histone acetylation. PMID:18459114

  4. Tax abolishes histone H1 repression of p300 acetyltransferase activity at the human T-cell leukemia virus type 1 promoter.

    PubMed

    Konesky, Kasey L; Nyborg, Jennifer K; Laybourn, Paul J

    2006-11-01

    Upon infection of human T-cell leukemia virus type 1 (HTLV-1), the provirus is integrated into the host cell genome and subsequently packaged into chromatin that contains histone H1. Consequently, transcriptional activation of the virus requires overcoming the environment of chromatin and H1. To efficiently activate transcription, HTLV-1 requires the virally encoded protein Tax and cellular transcription factor CREB. Together Tax and CREB interact with three cis-acting promoter elements called viral cyclic-AMP response elements (vCREs). Binding of Tax and CREB to the vCREs promotes association of p300/CBP into the complex and leads to transcriptional activation. Therefore, to fully understand the mechanism of Tax transactivation, it is necessary to examine transcriptional activation from chromatin assembled with H1. Using a DNA template harboring the complete HTLV-1 promoter sequence and a highly defined recombinant assembly system, we demonstrate proper incorporation of histone H1 into chromatin. Addition of H1 to the chromatin template reduces HTLV-1 transcriptional activation through a novel mechanism. Specifically, H1 does not inhibit CREB or Tax binding to the vCREs or p300 recruitment to the promoter. Rather, H1 directly targets p300 acetyltransferase activity. Interestingly, in determining the mechanism of H1 repression, we have discovered a previously undefined function of Tax, overcoming the repressive effects of H1-chromatin. Tax specifically abrogates the H1 repression of p300 enzymatic activity in a manner independent of p300 recruitment and without displacement of H1 from the promoter. PMID:16943293

  5. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis

    PubMed Central

    2010-01-01

    Introduction The purpose of this study was to investigate the profile of histone deacetylase (HDAC) expression in the synovial tissue of rheumatoid arthritis (RA) compared with that of normal control and osteoarthritis (OA), and to examine whether there is a link between HDAC activity and synovial inflammation. Methods HDAC activity and histone acetyltransferase (HAT) activity were determined in nuclear extracts of total synovial tissue surgically obtained from normal, OA and RA joints. The level of cytoplasmic tumor necrosis factor a (TNFα) fraction was measured by ELISA. Total RNA of synovial tissue was used for RT-PCR of HDAC1-8. In synovial fibroblasts from RA (RASFs), the effects of TNFα on nuclear HDAC activity and class I HDACs (1, 2, 3, 8) mRNA expressions were examined by quantitative real-time PCR. The protein expression and distribution of class I HDACs were examined by Western blotting. Results Nuclear HDAC activity was significantly higher in RA than in OA and normal controls and correlated with the amount of cytoplasmic TNFα. The mRNA expression of HDAC1 in RA synovial tissue was higher than in OA and normal controls, and showed positive correlation with TNFα mRNA expression. The protein level of nuclear HDAC1 was higher in RA synovial tissue compared with OA synovial tissue. Stimulation with TNFα significantly increased the nuclear HDAC activity and HDAC1 mRNA expression at 24 hours and HDAC1 protein expression at 48 hours in RASFs. Conclusions Our results showed nuclear HDAC activity and expression of HDAC1 were significantly higher in RA than in OA synovial tissues, and they were upregulated by TNFα stimulation in RASFs. These data might provide important clues for the development of specific small molecule HDAC inhibitors. PMID:20609223

  6. Synthesis and Biological Evaluation of 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indoles as Potent Histone Deacetylase Inhibitors with Antitumor Activity in Vivo

    PubMed Central

    Lai, Mei-Jung; Huang, Han-Li; Pan, Shiow-Lin; Liu, Yi-Min; Peng, Chieh-Yu; Lee, Hsueh-Yun; Yeh, Teng-Kuang; Huang, Po-Hsien; Teng, Che-Ming; Chen, Ching-Shih; Chuang, Hsun-Yueh; Liou, Jing-Ping

    2014-01-01

    A series of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles has been identified as a new class of histone deacetylase inhibitors. Compounds 8, 11, 12, 13, and 14 demonstrated stronger antiproliferative activities than 1 (SAHA) with GI50 values ranging from 0.36 to 1.21 μM against Hep3B, MDA-MB-231, PC-3, and A549 human cancer cell lines. Lead compound 8 showed remarkable HDAC 1, 2, and 6 isoenzymes inhibitory activities with IC50 values of 12.3, 4.0, 1.0 nM, respectively, which are comparable to 1. In in vivo efficacy evaluation against lung A549 xenograft model, 8 displayed better antitumor activity than compound 1. PMID:22439863

  7. Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells.

    PubMed

    Zha, Lin; Cao, Qiang; Cui, Xin; Li, Fenfen; Liang, Houjie; Xue, Bingzhong; Shi, Hang

    2016-03-01

    Decreased epithelial cadherin (E-cadherin) gene expression, a hallmark of epithelial-mesenchymal transition (EMT), is essential for triggering metastatic advantage of the colon cancer. Genetic mechanisms underlying the regulation of E-cadherin expression in EMT have been extensively investigated; however, much is unknown about the epigenetic mechanism underlying this process. Here, we identified ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase involved in demethylating di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), as a positive regulator for the expression of E-cadherin in the colon cancer cell line HCT-116. We showed that inactivation of UTX down-regulated E-cadherin gene expression, while overexpression of UTX did the opposite. Notably, overexpression of UTX inhibited migration and invasion of HCT-116 cells. Moreover, UTX demethylated H3K27me3, a histone transcriptional repressive mark, leading to decreased H3K27me3 at the E-cadherin promoter. Further, UTX interacted with the histone acetyltransferase (HAT) protein CBP and recruited it to the E-cadherin promoter, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulates E-cadherin expression through coordinated regulation of H3K27 demethylation and acetylation, switching the transcriptional repressive state to the transcriptional active state at the E-cadherin promoter. We conclude that UTX may play a role in regulation of E-cadherin gene expression in HCT-116 cells and that UTX may serve as a therapeutic target against the metastasis in the treatment of colon cancer. PMID:26819089

  8. Protein encoded by oncogene 6b from Agrobacterium tumefaciens has a reprogramming potential and histone chaperone-like activity

    PubMed Central

    Ishibashi, Nanako; Kitakura, Saeko; Terakura, Shinji; Machida, Chiyoko; Machida, Yasunori

    2014-01-01

    Crown gall tumors are formed mainly by actions of a group of genes in the T-DNA that is transferred from Agrobacterium tumefaciens and integrated into the nuclear DNA of host plants. These genes encode enzymes for biosynthesis of auxin and cytokinin in plant cells. Gene 6b in the T-DNA affects tumor morphology and this gene alone is able to induce small tumors on certain plant species. In addition, unorganized calli are induced from leaf disks of tobacco that are incubated on phytohormone-free media; shooty teratomas, and morphologically abnormal plants, which might be due to enhanced competence of cell division and meristematic states, are regenerated from the calli. Thus, the 6b gene appears to stimulate a reprogramming process in plants. To uncover mechanisms behind this process, various approaches including the yeast-two-hybrid system have been exploited and histone H3 was identified as one of the proteins that interact with 6b. It has been also demonstrated that 6b acts as a histone H3 chaperon in vitro and affects the expression of various genes related to cell division competence and the maintenance of meristematic states. We discuss current views on a role of 6b protein in tumorigenesis and reprogramming in plants. PMID:25389429

  9. Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements.

    PubMed

    Myers, Fiona A; Lefevre, Pascal; Mantouvalou, Evangelia; Bruce, Kimberley; Lacroix, Claire; Bonifer, Constanze; Thorne, Alan W; Crane-Robinson, Colyn

    2006-01-01

    Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the -2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression. PMID:16914441

  10. Histone modifications: implications in renal cell carcinoma

    PubMed Central

    Ramakrishnan, Swathi; Ellis, Leigh; Pili, Roberto

    2013-01-01

    In 2012, an estimated 64,770 men and women were diagnosed with malignancy of the kidney and renal pelvis, of which 13,570 succumbed to their disease. Common genetic aberrations in renal cell carcinomas (RCCs) include loss of function of the VHL gene in clear-cell RCC, overexpression of the c-MET gene in papillary RCC type I, deficiency in the FH gene in papillary RCC type II and loss of heterozygozity of the BHD gene in chromophobe RCC. Recent studies illustrate epigenetic silencing of VHL, as well as alterations in histone modifications and their governing enzymes. The possibility of reversing these epigenetic marks has resulted in efforts to target these changes by utilizing inhibitors of HDACs, DNA methyltransferases and, recently, histone methyltransferases in preclinical and clinical studies. This article focuses on potential therapeutic interventions, and the implications of histone modifications and related enzyme alterations in RCC. PMID:23895657

  11. WHSC1 links transcription elongation to HIRA-mediated histone H3.3 deposition.

    PubMed

    Sarai, Naoyuki; Nimura, Keisuke; Tamura, Tomohiko; Kanno, Tomohiko; Patel, Mira C; Heightman, Tom D; Ura, Kiyoe; Ozato, Keiko

    2013-08-28

    Actively transcribed genes are enriched with the histone variant H3.3. Although H3.3 deposition has been linked to transcription, mechanisms controlling this process remain elusive. We investigated the role of the histone methyltransferase Wolf-Hirschhorn syndrome candidate 1 (WHSC1) (NSD2/MMSET) in H3.3 deposition into interferon (IFN) response genes. IFN treatment triggered robust H3.3 incorporation into activated genes, which continued even after cessation of transcription. Likewise, UV radiation caused H3.3 deposition in UV-activated genes. However, in Whsc1(-/-) cells IFN- or UV-triggered H3.3 deposition was absent, along with a marked reduction in IFN- or UV-induced transcription. We found that WHSC1 interacted with the bromodomain protein 4 (BRD4) and the positive transcription elongation factor b (P-TEFb) and facilitated transcriptional elongation. WHSC1 also associated with HIRA, the H3.3-specific histone chaperone, independent of BRD4 and P-TEFb. WHSC1 and HIRA co-occupied IFN-stimulated genes and supported prolonged H3.3 incorporation, leaving a lasting transcriptional mark. Our results reveal a previously unrecognized role of WHSC1, which links transcriptional elongation and H3.3 deposition into activated genes through two molecularly distinct pathways. PMID:23921552

  12. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules

    SciTech Connect

    Collins, Robert E.; Northrop, Jeffrey P.; Horton, John R.; Lee, David Y.; Zhang, Xing; Stallcup, Michael R.; Cheng, Xiaodong

    2008-03-19

    Histone modifications have important roles in transcriptional control, mitosis and heterochromatin formation. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by mono- and dimethylating histone H3 at Lys9 (H3K9). Here we demonstrate that the ankyrin repeat domains of G9a and GLP bind with strong preference to N-terminal H3 peptides containing mono- or dimethyl K9. X-ray crystallography revealed the basis for recognition of the methylated lysine by a partial hydrophobic cage with three tryptophans and one acidic residue. Substitution of key residues in the cage eliminated the H3 tail interaction. Hence, G9a and GLP contain a new type of methyllysine binding module (the ankyrin repeat domains) and are the first examples of protein (histone) methyltransferases harboring in a single polypeptide the activities that generate and read the same epigenetic mark.

  13. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity*

    PubMed Central

    Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.

    2015-01-01

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  14. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity.

    PubMed

    Samant, Sadhana A; Pillai, Vinodkumar B; Sundaresan, Nagalingam R; Shroff, Sanjeev G; Gupta, Mahesh P

    2015-06-19

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107

  15. Histone Deacetylases and Mechanisms of Regulation of Gene Expression (Histone deacetylases in cancer)

    PubMed Central

    Chen, Hong Ping; Zhao, Yu Tina; Zhao, Ting C

    2016-01-01

    In recent years, it has become widely recognized that histone modification plays a pivotal role in controlling gene expression, and is involved in a wide spectrum of disease regulation. Histone acetylation is a major modification that affects gene transcription and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDAC). HATs acetylate lysines of histone proteins, resulting in relaxation of chromatin structure, and they also facilitate gene activation. Conversely, HDACs remove acetyl groups from hyperacetylated histones and suppress general gene transcription. In addition to histones, numerous non-histone proteins can be acetylated and deacetylated, and they are also involved in a wide range of disease regulation. To date, there are 18 HDACs in mammals classified into four classes based on homology to yeast HDACs. Accumulating evidence has revealed that HDACs play crucial roles in a variety of biological processes including inflammation, cell proliferation, apoptosis, and carcinogenesis. In this review, we summarize the current state of knowledge of HDACs in carcinogenesis and describe the involvement of HDACs in cancer-associated molecular processes. It is hoped than our understanding of the role of HDACs in cancer will lead to the design of more potent and specific drugs targeting selective HDAC proteins for the treatment of the disease. PMID:25746103

  16. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells

    PubMed Central

    Steiner, Laurie A.; Schulz, Vincent; Makismova, Yelena; Lezon-Geyda, Kimberly; Gallagher, Patrick G.

    2016-01-01

    Background CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human hematopoietic stem and progenitor cells (HSPC) and primary human erythroid cells from single donors. Results Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone H3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner. Conclusion These genome wide data, changes in sites of protein occupancy, chromatin architecture, and related gene expression, support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. These data from primary human erythroid cells provide a resource for studies of normal and perturbed erythropoiesis. PMID:27219007

  17. DNA methylation pathways and their crosstalk with histone methylation

    PubMed Central

    Du, Jiamu; Johnson, Lianna M.; Jacobsen, Steven E.; Patel, Dinshaw J.

    2015-01-01

    Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk. PMID:26296162

  18. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages.

    PubMed

    Yang, Se-Ran; Chida, Asiya S; Bauter, Mark R; Shafiq, Nusrat; Seweryniak, Kathryn; Maggirwar, Sanjay B; Kilty, Iain; Rahman, Irfan

    2006-07-01

    Cigarette smoke-mediated oxidative stress induces an inflammatory response in the lungs by stimulating the release of proinflammatory cytokines. Chromatin remodeling due to histone acetylation and deacetylation is known to play an important role in transcriptional regulation of proinflammatory genes. The aim of this study was to investigate the molecular mechanism(s) of inflammatory responses caused by cigarette smoke extract (CSE) in the human macrophage-like cell line MonoMac6 and whether the treatment of these cells with the antioxidant glutathione (GSH) monoethyl ester, or modulation of the thioredoxin redox system, can attenuate cigarette smoke-mediated IL-8 release. Exposure of MonoMac6 cells to CSE (1% and 2.5%) increased IL-8 and TNF-alpha production vs. control at 24 h and was associated with significant depletion of GSH levels associated with increased reactive oxygen species release in addition to activation of NF-kappaB. Inhibition of IKK ablated the CSE-mediated IL-8 release, suggesting that this process is dependent on the NF-kappaB pathway. CSE also reduced histone deacetylase (HDAC) activity and HDAC1, HDAC2, and HDAC3 protein levels. This was associated with posttranslational modification of HDAC1, HDAC2, and HDAC3 protein by nitrotyrosine and aldehyde-adduct formation. Pretreatment of cells with GSH monoethyl ester, but not thioredoxin/thioredoxin reductase, reversed cigarette smoke-induced reduction in HDAC levels and significantly inhibited IL-8 release. Thus cigarette smoke-induced release of IL-8 is associated with activation of NF-kappaB via IKK and reduction in HDAC levels/activity in macrophages. Moreover, cigarette smoke-mediated proinflammatory events are regulated by the redox status of the cells. PMID:16473865

  19. Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma.

    PubMed

    Chen, Mei-Chuan; Huang, Hui-Hsuan; Lai, Chin-Yu; Lin, Yi-Jyun; Liou, Jing-Ping; Lai, Mei-Jung; Li, Yu-Hsuan; Teng, Che-Ming; Yang, Chia-Ron

    2016-01-01

    Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)-a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound-demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy. PMID:26587975

  20. Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma

    PubMed Central

    Lai, Chin-Yu; Lin, Yi-Jyun; Liou, Jing-Ping; Lai, Mei-Jung; Li, Yu-Hsuan; Teng, Che-Ming; Yang, Chia-Ron

    2016-01-01

    Hepatocellular carcinoma (HCC) is a frequent cause of cancer-related death; therefore, more effective anticancer therapies for the treatment of HCC are needed. Histone deacetylase (HDAC) inhibitors serve as promising anticancer drugs because they can induce cell growth arrest and apoptosis. We previously reported that 3-[1-(4-methoxybenzenesulfonyl)-2,3-dihydro-1H-indol-5-yl]-N-hydroxyacrylamide (MPT0G009)—a novel 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines compound—demonstrated potent pan-HDAC inhibition and anti-inflammatory effects. In this study, we evaluated the anti-HCC activity of MPT0G009 in vitro and in vivo. Growth inhibition, apoptosis, and inhibited HDAC activity induced by MPT0G009 were more potent than a marketed HDAC inhibitor SAHA (Vorinostat). Furthermore, MPT0G009-induced apoptosis of Hep3B cells was characterized by an increase in apoptotic (sub-G1) population, loss of mitochondrial membrane potential, activation of caspase cascade, increased levels of pro-apoptotic protein (Bim), and decreased levels of anti-apoptotic proteins (Bcl-2, Bcl-xL, and FLICE-inhibitory protein); the downregulation FLIP by MPT0G009 is mediated through proteasome-mediated degradation and transcriptional suppression. In addition, combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with lower concentrations (0.1 μM) of MPT0G009 were synergistic in cell growth inhibition and apoptosis in HCC cells. In the in vivo model, MPT0G009 markedly reduced Hep3B xenograft tumor volume, inhibited HDAC activities, and induced apoptosis in the Hep3B xenografts. Our results demonstrate that MPT0G009 is a potential new candidate drug for HCC therapy. PMID:26587975

  1. Folate deficiency affects histone methylation.

    PubMed

    Garcia, Benjamin A; Luka, Zigmund; Loukachevitch, Lioudmila V; Bhanu, Natarajan V; Wagner, Conrad

    2016-03-01

    that the bound THF serves to protect the FAD class of histone demethylases from the destructive effects of formaldehyde generation by formation of 5,10-methylene-THF. We present pilot data showing that decreased folate in livers as a result of dietary folate deficiency is associated with increased levels of methylated lysine 4 of histone 3. This can be a result of decreased LSD1 activity resulting from the decreased folate available to scavenge the formaldehyde produced at the active site caused by the folate deficiency. Because LSD1 can regulate gene expression this suggests that folate may play a more important role than simply serving as a carrier of one-carbon units and be a factor in other diseases associated with low folate. PMID:26880641

  2. Global histone deacetylase enzymatic activity is an independent prognostic marker associated with a shorter overall survival in chronic lymphocytic leukemia patients

    PubMed Central

    Van Damme, Michaël; Crompot, Emerence; Meuleman, Nathalie; Mineur, Philippe; Dessars, Barbara; El Housni, Hakim; Bron, Dominique; Lagneaux, Laurence; Stamatopoulos, Basile

    2014-01-01

    Histone deacetylases (HDAC) play a crucial role in transcriptional regulation and are often deregulated in many cancers. However, global HDAC enzymatic activity has never been investigated in Chronic Lymphocytic Leukemia (CLL). We measured HDAC activity in protein extracts from CD19+ B-cells purified from 114 CLL patients with a median follow-up of 91 months (range: 11–376). HDAC activity was equivalent in CLL and normal B-cells but higher in patients who died during the study than in living patients (152.1 vs. 65.04 pmol; P = 0.0060). Furthermore, HDAC activity correlated with treatment-free survival (TFS; P = 0.0156) and overall survival (OS; P < 0.0001): patients with low HDAC activity (n = 75) had a median TFS and OS of 101 and >376 months, respectively, whereas patients with high HDAC activity (n = 39) had a median TFS and OS of 47 and 137 months, respectively. Multivariate analyses indicated that HDAC activity is an independent predictor of OS (hazard ratio = 7.68; P = 0.0017). Finally, HDAC activity increased after B-cell receptor stimulation using IgM, suggesting a role for microenvironment stimuli (n = 10; P = 0.0371). In conclusion, high HDAC activity in CLL B-cells is associated with shorter TFS and OS and is an independent marker of OS, refining the use of other prognostic factors. This work provides a biological base for the use of HDAC inhibitors in CLL treatment. PMID:25437053

  3. Histone modifications and mitosis: countermarks, landmarks, and bookmarks.

    PubMed

    Wang, Fangwei; Higgins, Jonathan M G

    2013-04-01

    The roles of post-translational histone modifications in regulating transcription and DNA damage have been widely studied and discussed. Although mitotic histone marks, particularly phosphorylation, were discovered four decades ago, their roles in mitosis have been outlined only in the past few years. Here we aim to provide an integrated view of how histone modifications act as 'countermarks', 'landmarks', and 'bookmarks' to displace, recruit, and 'remember' the location of regulatory proteins during and shortly after mitosis. These capabilities allow histone marks to help downregulate interphase functions such as transcription during mitosis, to facilitate chromatin events required to accomplish chromosome segregation, and to contribute to the maintenance of epigenetic states through mitosis. PMID:23246430

  4. Marks caused by the scavenging activity of Necrobia rufipes (Coleoptera: Cleridae) under laboratory conditions.

    PubMed

    Zanetti, Noelia I; Visciarelli, Elena C; Centeno, Néstor D

    2015-07-01

    Insects are an important group involved in carrion consumption and are thus of forensic interest. In the laboratory we studied the taphonomic marks that Necrobia rufipes (Cleridae) can produce. Pig trotters were exposed to adult beetles at 21 ± 3 °C and 12:12 h day/night cycle. We made observations and took photographs every 4-5 days for 12 months. Marks were noted after a month. We found scratches, pits, holes, and tunnels in several kinds of tissue such as integumental, connective and muscular. This work contributes preliminary data of significant application in biology, ecology, anthropology and forensics. Until now, no study has provided taphonomic information with N. rufipes. PMID:26048510

  5. The D-isoAsp-25 variant of histone H2B is highly enriched in active chromatin: potential role in the regulation of gene expression?

    PubMed

    Qin, Zhenxia; Zhu, Jeff X; Aswad, Dana W

    2016-02-01

    Approximately 12 % of histone H2B in mammalian brain contains an unusual D-aspartate residue in its N-terminal tail. Most of this D-aspartate is linked to the C-flanking glycine via an isopeptide bond. To explore the possible significance of these modifications, we generated an antibody to the D-isoaspartyl form of H2B, and used it to assess its levels in H2B associated with "active" vs. "silent" chromatin. We found that the D-isoaspartyl form of H2B appears to be highly enriched in the former. This irreversible modification could serve a novel regulatory function in gene expression. PMID:26666674

  6. Activation of Latent Human Immunodeficiency Virus by the Histone Deacetylase Inhibitor Panobinostat: A Pilot Study to Assess Effects on the Central Nervous System

    PubMed Central

    Rasmussen, Thomas A.; Tolstrup, Martin; Møller, Holger Jon; Brinkmann, Christel R.; Olesen, Rikke; Erikstrup, Christian; Laursen, Alex L.; Østergaard, Lars; Søgaard, Ole S.

    2015-01-01

    In a substudy of a clinical trial, we assessed whether activation of latent human immunodeficiency virus (HIV) by the histone deacetylase inhibitor panobinostat had detrimental effects on the central nervous system (CNS). Adults infected with HIV received oral panobinostat 20 mg 3 times per week every other week for 8 weeks. In cerebrospinal fluid (CSF), we assayed panobinostat concentration, HIV RNA, and the level of neuroinflammatory or degenerative biomarkers in 11 individuals before and during study therapy. Neither panobinostat nor HIV RNA was detected in CSF. In addition, there was no change from baseline in CSF biomarkers. Thus, panobinostat administration was not associated with CNS adverse effects as assessed by CSF biomarkers. PMID:26034779

  7. Linker histone variants control chromatin dynamics during early embryogenesis

    PubMed Central

    Saeki, Hideaki; Ohsumi, Keita; Aihara, Hitoshi; Ito, Takashi; Hirose, Susumu; Ura, Kiyoe; Kaneda, Yasufumi

    2005-01-01

    Complex transitions in chromatin structure produce changes in genome function during development in metazoa. Linker histones, the last component of nucleosomes to be assembled into chromatin, comprise considerably divergent subtypes as compared with core histones. In all metazoa studied, their composition changes dramatically during early embryogenesis concomitant with zygotic gene activation, leading to distinct functional changes that are still poorly understood. Here, we show that early embryonic linker histone B4, which is maternally expressed, is functionally different from somatic histone H1 in influencing chromatin structure and dynamics. We developed a chromatin assembly system with nucleosome assembly protein-1 as a linker histone chaperone. This assay system revealed that maternal histone B4 allows chromatin to be remodeled by ATP-dependent chromatin remodeling factor, whereas somatic histone H1 prevents this remodeling. Structural analysis shows that histone B4 does not significantly restrict the accessibility of linker DNA. These findings define the functional significance of developmental changes in linker histone variants. We propose a model that holds that maternally expressed linker histones are key molecules specifying nuclear dynamics with respect to embryonic totipotency. PMID:15821029

  8. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination

    PubMed Central

    Qin, Weihua; Wolf, Patricia; Liu, Nan; Link, Stephanie; Smets, Martha; Mastra, Federica La; Forné, Ignasi; Pichler, Garwin; Hörl, David; Fellinger, Karin; Spada, Fabio; Bonapace, Ian Marc; Imhof, Axel; Harz, Hartmann; Leonhardt, Heinrich

    2015-01-01

    DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance. PMID:26065575

  9. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination.

    PubMed

    Qin, Weihua; Wolf, Patricia; Liu, Nan; Link, Stephanie; Smets, Martha; La Mastra, Federica; Forné, Ignasi; Pichler, Garwin; Hörl, David; Fellinger, Karin; Spada, Fabio; Bonapace, Ian Marc; Imhof, Axel; Harz, Hartmann; Leonhardt, Heinrich

    2015-08-01

    DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance. PMID:26065575

  10. Scent-marking and sexual activity may reflect social hierarchy among group-living male Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Shimozuru, Michito; Kikusui, Takefumi; Takeuchi, Yukari; Mori, Yuji

    2006-12-30

    Social hierarchy plays an important role in the lives of gregarious species. We investigated how social hierarchy between male Mongolian gerbils (Meriones unguiculatus) housed together before sexual maturity affected their scent-marking behavior, endocrine status and physical traits as adults. The social rank between paired males was assessed based on sexual activity in adulthood at 18 and 20 weeks of age. In most cases, the male that showed higher sexual activity at 18 weeks also exhibited greater sexual performance at 20 weeks, suggesting a precedence relationship between paired males regarding reproductive opportunity. Sexually active males scent-marked more often than their cage mate, particularly after a sexual experience. No significant differences in physical traits (e.g., the weight of the ventral gland, testes and adrenal glands) or endocrine status (e.g., fecal testosterone and corticosterone levels) were found between the two males. These findings suggest that social rank between familiar males formed during cohabitation, and rank was closely correlated with scent-marking activity, but not with endocrine status. PMID:16959280

  11. The Histone Demethylase PHF8 Is Essential for Endothelial Cell Migration

    PubMed Central

    Gu, Lunda; Hitzel, Juliane; Moll, Franziska; Kruse, Christoph; Malik, Randa Abdel; Preussner, Jens; Looso, Mario; Leisegang, Matthias S.; Steinhilber, Dieter; Brandes, Ralf P.; Fork, Christian

    2016-01-01

    Epigenetic marks critically control gene expression and thus the cellular activity state. The functions of many epigenetic modifiers in the vascular system have not yet been studied. We screened for histone modifiers in endothelial cells and observed a fairly high expression of the histone plant homeodomain finger protein 8 (PHF8). Given its high expression, we hypothesize that this histone demethylase is important for endothelial cell function. Overexpression of PHF8 catalyzed the removal of methyl-groups from histone 3 lysine 9 (H3K9) and H4K20, whereas knockdown of the enzyme increased H3K9 methylation. Knockdown of PHF8 by RNAi also attenuated endothelial proliferation and survival. As a functional readout endothelial migration and tube formation was studied. PHF8 siRNA attenuated the capacity for migration and developing of capillary-like structures. Given the impact of PHF8 on cell cycle genes, endothelial E2F transcription factors were screened, which led to the identification of the gene repressor E2F4 to be controlled by PHF8. Importantly, PHF8 maintains E2F4 but not E2F1 expression in endothelial cells. Consistently, chromatin immunoprecipitation revealed that PHF8 reduces the H3K9me2 level at the E2F4 transcriptional start site, demonstrating a direct function of PHF8 in endothelial E2F4 gene regulation. Conclusion: PHF8 by controlling E2F4 expression maintains endothelial function. PMID:26751588

  12. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication.

    PubMed

    Jacob, Yannick; Bergamin, Elisa; Donoghue, Mark T A; Mongeon, Vanessa; LeBlanc, Chantal; Voigt, Philipp; Underwood, Charles J; Brunzelle, Joseph S; Michaels, Scott D; Reinberg, Danny; Couture, Jean-François; Martienssen, Robert A

    2014-03-14

    Histone variants have been proposed to act as determinants for posttranslational modifications with widespread regulatory functions. We identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine-27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically "reads" alanine-31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine-31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog, ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication. PMID:24626927

  13. The histone acetyltransferase hMOF suppresses hepatocellular carcinoma growth.

    PubMed

    Zhang, Jin; Liu, Hui; Pan, Hao; Yang, Yuan; Huang, Gang; Yang, Yun; Zhou, Wei-Ping; Pan, Ze-Ya

    2014-09-26

    Males absent on the first (MOF) is a histone acetyltransferase belongs to the MYST (MOZ, Ybf2/Sas3, Sas2 and TIP60) family. In mammals, MOF plays critical roles in transcription activation by acetylating histone H4K16, a prevalent mark associated with chromatin decondensation. MOF can also acetylate transcription factor p53 on K120, which is important for activation of pro-apoptotic genes; and TIP5, the largest subunit of NoRC, on K633. However, the role of hMOF in hepatocellular carcinoma remains unknown. Here we find that the expression of hMOF is significantly down-regulated in human hepatocellular carcinoma and cell lines. Furthermore, our survival analysis indicates that low hMOF expression predicts poor overall and disease-free survival. We demonstrate that hMOF knockdown promotes hepatocellular carcinoma growth in vitro and in vivo, while hMOF overexpression reduces hepatocellular carcinoma growth in vitro and in vivo. Mechanically, we show that hMOF regulates the expression of SIRT6 and its downstream genes. In summary, our findings demonstrate that hMOF participates in human hepatocellular carcinoma by targeting SIRT6, and hMOF activators may serve as potential drug candidates for hepatocellular carcinoma therapy. PMID:25181338

  14. Differential patterns of histone methylase EHMT2 and its catalyzed histone modifications H3K9me1 and H3K9me2 during maturation of central auditory system.

    PubMed

    Ebbers, Lena; Runge, Karen; Nothwang, Hans Gerd

    2016-08-01

    Histone methylation is an important epigenetic mark leading to changes in DNA accessibility and transcription. Here, we investigate immunoreactivity against the euchromatic histone-lysine N-methyltransferase EHMT2 and its catalyzed mono- and dimethylation marks at histone 3 lysine 9 (H3K9me1 and H3K9me2) during postnatal differentiation of the mouse central auditory system. In the brainstem, expression of EHMT2 was high in the first postnatal week and down-regulated thereafter. In contrast, immunoreactivity in the auditory cortex (AC) remained high during the first year of life. This difference might be related to distinct demands for adult plasticity. Analyses of two deaf mouse models, namely Cldn14 (-/-) and Cacna1d (-/-), demonstrated that sound-driven or spontaneous activity had no influence on EHMT2 immunoreactivity. The methylation marks H3K9me1 and H3K9me2 were high throughout the auditory system up to 1 year. Young auditory neurons showed immunoreactivity against both methylations at similar intensities, whereas many mature neurons showed stronger labeling for either H3K9me1 or H3K9me2. These differences were only poorly correlated with cell types. To identify methyltransferases contributing to the persistent H3K9me1 and H3K9me2 marks in the adult brainstem, EHMT1 and the retinoblastoma-interacting zinc-finger protein RIZ1 were analyzed. Both were down-regulated during brainstem development, similar to EHMT2. Contrary to EHMT2, EHMT1 was also down-regulated in adult cortical areas. Together, our data reveal a marked difference in EHMT2 levels between mature brainstem and cortical areas and a decoupling between EHMT2 abundance and histone 3 lysine 9 methylations during brainstem differentiation. Furthermore, EHMT1 and EHMT2 are differentially expressed in cortical areas. PMID:27083448

  15. Synergistic Transcriptional Activation by TATA-Binding Protein and hTAFII28 Requires Specific Amino Acids of the hTAFII28 Histone Fold

    PubMed Central

    Lavigne, Anne-Claire; Gangloff, Yann-Gaël; Carré, Lucie; Mengus, Gabrielle; Birck, Catherine; Poch, Olivier; Romier, Christophe; Moras, Dino; Davidson, Irwin

    1999-01-01

    Coexpression of the human TATA-binding protein (TBP)-associated factor 28 (hTAFII28) with the altered-specificity mutant TBP spm3 synergistically enhances transcriptional activation by the activation function 2 of the nuclear receptors (NRs) for estrogen and vitamin D3 from a reporter plasmid containing a TGTA element in mammalian cells. This synergy is abolished by mutation of specific amino acids in the α2-helix of the histone fold in the conserved C-terminal region of hTAFII28. Critical amino acids are found on both the exposed hydrophilic face of this helix and the hydrophobic interface with TAFII18. This α-helix of hTAFII28 therefore mediates multiple interactions required for coactivator activity. We further show that mutation of specific residues in the H1′ α-helix of TBP either reduces or increases interactions with hTAFII28. The mutations which reduce interactions with hTAFII28 do not affect functional synergy, whereas the TBP mutation which increases interaction with hTAFII28 is defective in its ability to synergistically enhance activation by NRs. However, this TBP mutant supports activation by other activators and is thus specifically defective for its ability to synergize with hTAFII28. PMID:10373554

  16. High-throughput screening uncovers a compound that activates latent HIV-1 and acts cooperatively with a histone deacetylase (HDAC) inhibitor.

    PubMed

    Micheva-Viteva, Sofiya; Kobayashi, Yoshifumi; Edelstein, Leonard C; Pacchia, Annmarie L; Lee, Hui-Ling Rose; Graci, Jason D; Breslin, Jamie; Phelan, Bradley D; Miller, Leia K; Colacino, Joseph M; Gu, Zhengxian; Ron, Yacov; Peltz, Stuart W; Dougherty, Joseph P

    2011-06-17

    Current antiretroviral therapy (ART) provides potent suppression of HIV-1 replication. However, ART does not target latent viral reservoirs, so persistent infection remains a challenge. Small molecules with pharmacological properties that allow them to reach and activate viral reservoirs could potentially be utilized to eliminate the latent arm of the infection when used in combination with ART. Here we describe a cell-based system modeling HIV-1 latency that was utilized in a high-throughput screen to identify small molecule antagonists of HIV-1 latency. A more detailed analysis is provided for one of the hit compounds, antiviral 6 (AV6), which required nuclear factor of activated T cells for early mRNA expression while exhibiting RNA-stabilizing activity. It was found that AV6 reproducibly activated latent provirus from different lymphocyte-based clonal cell lines as well as from latently infected primary resting CD4(+) T cells without causing general T cell proliferation or activation. Moreover, AV6 complemented the latency antagonist activity of a previously described histone deacetylase (HDAC) inhibitor. This is a proof of concept showing that a high-throughput screen employing a cell-based model of HIV-1 latency can be utilized to identify new classes of compounds that can be used in concert with other persistent antagonists with the aim of viral clearance. PMID:21498519

  17. A pathogenic long noncoding RNA redesigns the epigenetic landscape of the infected cells by subverting host Histone Deacetylase 6 activity.

    PubMed

    Castellano, Mayte; Pallas, Vicente; Gomez, Gustavo

    2016-09-01

    Viroids - ancient plant-pathogenic long noncoding RNAs - have developed a singular evolutionary strategy based on reprogramming specific phases of host-metabolism to ensure that their infection cycle can be completed in infected cells. However, the molecular aspects governing this transregulatory phenomenon remain elusive. Here, we use immunoprecipitation assays and bisulfite sequencing of rDNA to shown that, in infected cucumber and Nicotiana benthamina plants, Hop stunt viroid (HSVd) recruits and functionally subverts Histone Deacetylase 6 (HDA6) to promote host-epigenetic alterations that trigger the transcriptional alterations observed during viroid pathogenesis. This notion is supported by the demonstration that, during infection, the HSVd-HDA6 complex occurs in vivo and that endogenous HDA6 expression is increased in HSVd-infected cells. Moreover, transient overexpression of recombinant HDA6 reverts the hypomethylation status of rDNA observed in HSVd-infected plants and reduces viroid accumulation. We hypothesize that the host-transcriptional alterations induced as a consequence of viroid-mediated HDA6 recruitment favor spurious recognition of HSVd-RNA as an RNA Pol II template, thereby improving viroid replication. Our results constitute the first description of a physical and functional interaction between a pathogenic RNA and a component of the host RNA silencing mechanism, providing novel evidence of the potential of these pathogenic lncRNAs to physically redesign the host-cell environment and reprogram their regulatory mechanisms. PMID:27174164

  18. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    SciTech Connect

    Compagnucci, Claudia; Barresi, Sabina; Petrini, Stefania; Bertini, Enrico; Zanni, Ginevra

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  19. Effects of prenatal Poly I:C exposure on global histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity in the mouse brain.

    PubMed

    Pujol Lopez, Yara; Kenis, Gunter; Stettinger, Waldtraud; Neumeier, Karin; de Jonge, Sylvia; Steinbusch, Harry W M; Zill, Peter; van den Hove, Daniel L A; Myint, Aye M

    2016-07-01

    The aim of our study was to investigate the brain-specific epigenetic effects on global enzymatic histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity after prenatal exposure to maternal immune challenge by polyinosinic:polycytidylic acid (Poly I:C) at gestational day (GD) 17 in C57BL/6JRccHsd mouse offspring. Pregnant mice were randomly divided into 2 groups, receiving either 5 mg/kg Poly I:C or phosphate buffered saline (PBS) intravenously at GD 17. Subsequently, the effects on whole brain enzymatic HDAC and DNMT activity and the protein levels of various HDAC isoforms were assessed in the offspring. Overall, a significant sex × treatment interaction effect was observed after prenatal exposure to maternal immune challenge by Poly I:C, indicative of increased global HDAC activity particularly in female offspring from mothers injected with Poly I:C when compared to controls. Results on the levels of specific HDAC isoforms suggested that neither differences in the levels of HDAC1, HDAC2, HDAC3, HDAC4 or HDAC6 could explain the increased global HDAC activity observed in female Poly I:C offspring. In conclusion, we show that Poly I:C administration to pregnant mice alters global brain HDAC, but not DNMT activity in adult offspring, whereas it is still unclear which specific HDAC(s) mediate(s) this effect. These results indicate the necessity for further research on the epigenetic effects of Poly I:C. PMID:27216537

  20. Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    PubMed

    Ando, Kanae; Oka, Mikiko; Ohtake, Yosuke; Hayashishita, Motoki; Shimizu, Sawako; Hisanaga, Shin-Ichi; Iijima, Koichi M

    2016-09-16

    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains. PMID:27520376

  1. HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast histone deacetylase HDA1

    PubMed Central

    Wu, Jiansheng; Carmen, Andrew A.; Kobayashi, Ryuji; Suka, Noriyuki; Grunstein, Michael

    2001-01-01

    Histone deacetylase HDA1, the prototype for the class II mammalian deacetylases, is likely the catalytic subunit of the HDA1-containing complex that is involved in TUP1-specific repression and global deacetylation in yeast. Although the class I RPD3-like enzymatic complexes have been well characterized, little is known about the identity and interactions of the factors that associate to form the HDA1 complex. In this paper, we identify related HDA2 and HDA3 proteins that are found in the HDA1 complex and show that HDA1 interacts with itself and with the HDA2-HDA3 subcomplex to form a likely tetramer. These interactions are necessary for catalytic activity because mutations in any of the three components disrupt activity both in vitro and in vivo. In this respect the HDA1 complex differs from yeast RPD3, which has components such as SIN3 that are not essential for activity in vitro, and yeast HOS3, which has intrinsic in vitro activity as a homodimer in the absence of other subunits. PMID:11287668

  2. The Human CDK8 Subcomplex Is a Histone Kinase That Requires Med12 for Activity and Can Function Independently of Mediator▿

    PubMed Central

    Knuesel, Matthew T.; Meyer, Krista D.; Donner, Aaron J.; Espinosa, Joaquin M.; Taatjes, Dylan J.

    2009-01-01

    The four proteins CDK8, cyclin C, Med12, and Med13 can associate with Mediator and are presumed to form a stable “CDK8 subcomplex” in cells. We describe here the isolation and enzymatic activity of the 600-kDa CDK8 subcomplex purified directly from human cells and also via recombinant expression in insect cells. Biochemical analysis of the recombinant CDK8 subcomplex identifies predicted (TFIIH and RNA polymerase II C-terminal domain [Pol II CTD]) and novel (histone H3, Med13, and CDK8 itself) substrates for the CDK8 kinase. Notably, these novel substrates appear to be metazoan-specific. Such diverse targets imply strict regulation of CDK8 kinase activity. Along these lines, we observe that Mediator itself enables CDK8 kinase activity on chromatin, and we identify Med12—but not Med13—to be essential for activating the CDK8 kinase. Moreover, mass spectrometry analysis of the endogenous CDK8 subcomplex reveals several associated factors, including GCN1L1 and the TRiC chaperonin, that may help control its biological function. In support of this, electron microscopy analysis suggests TRiC sequesters the CDK8 subcomplex and kinase assays reveal the endogenous CDK8 subcomplex—unlike the recombinant submodule—is unable to phosphorylate the Pol II CTD. PMID:19047373

  3. Histone Deacetylase 1 (HDAC1) Negatively Regulates Thermogenic Program in Brown Adipocytes via Coordinated Regulation of Histone H3 Lysine 27 (H3K27) Deacetylation and Methylation.

    PubMed

    Li, Fenfen; Wu, Rui; Cui, Xin; Zha, Lin; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-02-26

    Inhibiting class I histone deacetylases (HDACs) increases energy expenditure, reduces adiposity, and improves insulin sensitivity in obese mice. However, the precise mechanism is poorly understood. Here, we demonstrate that HDAC1 is a negative regulator of the brown adipocyte thermogenic program. The Hdac1 level is lower in mouse brown fat (BAT) than white fat, is suppressed in mouse BAT during cold exposure or β3-adrenergic stimulation, and is down-regulated during brown adipocyte differentiation. Remarkably, overexpressing Hdac1 profoundly blocks, whereas deleting Hdac1 significantly enhances, β-adrenergic activation-induced BAT-specific gene expression in brown adipocytes. β-Adrenergic activation in brown adipocytes results in a dissociation of HDAC1 from promoters of BAT-specific genes, including uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ co-activator 1α (Pgc1α), leading to increased acetylation of histone H3 lysine 27 (H3K27), an epigenetic mark of gene activation. This is followed by dissociation of the polycomb repressive complexes, including the H3K27 methyltransferase enhancer of zeste homologue (EZH2), suppressor of zeste 12 (SUZ12), and ring finger protein 2 (RNF2) from (and concomitant recruitment of H3K27 demethylase ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) to) Ucp1 and Pgc1α promoters, leading to decreased H3K27 trimethylation, a histone transcriptional repression mark. Thus, HDAC1 negatively regulates the brown adipocyte thermogenic program, and inhibiting Hdac1 promotes BAT-specific gene expression through a coordinated control of increased acetylation and decreased methylation of H3K27, thereby switching the transcriptional repressive state to the active state at the promoters of Ucp1 and Pgc1α. Targeting HDAC1 may be beneficial in prevention and treatment of obesity by enhancing BAT thermogenesis. PMID:26733201

  4. Epigenetic Modifications of Histones in Periodontal Disease.

    PubMed

    Martins, M D; Jiao, Y; Larsson, L; Almeida, L O; Garaicoa-Pazmino, C; Le, J M; Squarize, C H; Inohara, N; Giannobile, W V; Castilho, R M

    2016-02-01

    Periodontitis is a chronic infectious disease driven by dysbiosis, an imbalance between commensal bacteria and the host organism. Periodontitis is a leading cause of tooth loss in adults and occurs in about 50% of the US population. In addition to the clinical challenges associated with treating periodontitis, the progression and chronic nature of this disease seriously affect human health. Emerging evidence suggests that periodontitis is associated with mechanisms beyond bacteria-induced protein and tissue degradation. Here, we hypothesize that bacteria are able to induce epigenetic modifications in oral epithelial cells mediated by histone modifications. In this study, we found that dysbiosis in vivo led to epigenetic modifications, including acetylation of histones and downregulation of DNA methyltransferase 1. In addition, in vitro exposure of oral epithelial cells to lipopolysaccharides resulted in histone modifications, activation of transcriptional coactivators, such as p300/CBP, and accumulation of nuclear factor-κB (NF-κB). Given that oral epithelial cells are the first line of defense for the periodontium against bacteria, we also evaluated whether activation of pathogen recognition receptors induced histone modifications. We found that activation of the Toll-like receptors 1, 2, and 4 and the nucleotide-binding oligomerization domain protein 1 induced histone acetylation in oral epithelial cells. Our findings corroborate the emerging concept that epigenetic modifications play a role in the development of periodontitis. PMID:26496800

  5. Histone deacetylase inhibition regulates miR-449a levels in skeletal muscle cells.

    PubMed

    Poddar, Shagun; Kesharwani, Devesh; Datta, Malabika

    2016-08-01

    microRNAs (miRNAs) are small non-coding RNAs that regulate cellular processes by fine-tuning the levels of their target mRNAs. However, the regulatory elements determining cellular miRNA levels are not well studied. Previously, we had described an altered miRNA signature in the skeletal muscle of db/db mice. Here, we sought to explore the role of epigenetic mechanisms in altering these miRNAs. We show that histone deacetylase (HDAC) protein levels and activity are upregulated in the skeletal muscle of diabetic mice. In C2C12 cells, HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) altered the levels of 24 miRNAs: 15 were downregulated and 9 were upregulated. miR-449a, an intronic miRNA localized within the Cdc20b gene, while being downregulated in the skeletal muscle of diabetic mice, was the most highly upregulated during HDAC inhibition. The host gene, Cdc20b, was also significantly upregulated during HDAC inhibition. Bioinformatics analyses identified a common promoter for both Cdc20b and miR-449a that harbors significant histone acetylation marks, suggesting the possibility of regulation by histone acetylation-deacetylation. These observations suggest an inverse correlation between miR-449a levels and HDAC activity, in both SAHA-treated skeletal muscle cells and db/db mice skeletal muscle. Further, in SAHA-treated C2C12 cells, we observed augmented occupancy of acetylated histones on the Cdc20b/miR-449a promoter, which possibly promotes their upregulation. In vivo injection of SAHA to db/db mice significantly restored skeletal muscle miR-449a levels. Our results provide insights into the potential regulatory role of epigenetic histone acetylation of the miR-449a promoter that may regulate its expression in the diabetic skeletal muscle. PMID:27184529

  6. Full activation of p34CDC28 histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Stueland, C S; Lew, D J; Cismowski, M J; Reed, S I

    1993-01-01

    In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation. Images PMID:8388545

  7. Natural variation of histone modification and its impact on gene expression in the rat genome

    PubMed Central

    Rintisch, Carola; Heinig, Matthias; Bauerfeind, Anja; Schafer, Sebastian; Mieth, Christin; Patone, Giannino; Hummel, Oliver; Chen, Wei; Cook, Stuart; Cuppen, Edwin; Colomé-Tatché, Maria; Johannes, Frank; Jansen, Ritsert C.; Neil, Helen; Werner, Michel; Pravenec, Michal; Vingron, Martin; Hubner, Norbert

    2014-01-01

    Histone modifications are epigenetic marks that play fundamental roles in many biological processes including the control of chromatin-mediated regulation of gene expression. Little is known about interindividual variability of histone modification levels across the genome and to what extent they are influenced by genetic variation. We annotated the rat genome with histone modification maps, identified differences in histone trimethyl-lysine levels among strains, and described their underlying genetic basis at the genome-wide scale using ChIP-seq in heart and liver tissues in a panel of rat recombinant inbred and their progenitor strains. We identified extensive variation of histone methylation levels among individuals and mapped hundreds of underlying cis- and trans-acting loci throughout the genome that regulate histone methylation levels in an allele-specific manner. Interestingly, most histone methylation level variation was trans-linked and the most prominent QTL identified influenced H3K4me3 levels at 899 putative promoters throughout the genome in the heart. Cis- acting variation was enriched in binding sites of distinct transcription factors in heart and liver. The integrated analysis of DNA variation together with histone methylation and gene expression levels showed that histoneQTLs are an important predictor of gene expression and that a joint analysis significantly enhanced the prediction of gene expression traits (eQTLs). Our data suggest that genetic variation has a widespread impact on histone trimethylation marks that may help to uncover novel genotype–phenotype relationships. PMID:24793478

  8. Natural variation of histone modification and its impact on gene expression in the rat genome.

    PubMed

    Rintisch, Carola; Heinig, Matthias; Bauerfeind, Anja; Schafer, Sebastian; Mieth, Christin; Patone, Giannino; Hummel, Oliver; Chen, Wei; Cook, Stuart; Cuppen, Edwin; Colomé-Tatché, Maria; Johannes, Frank; Jansen, Ritsert C; Neil, Helen; Werner, Michel; Pravenec, Michal; Vingron, Martin; Hubner, Norbert

    2014-06-01

    Histone modifications are epigenetic marks that play fundamental roles in many biological processes including the control of chromatin-mediated regulation of gene expression. Little is known about interindividual variability of histone modification levels across the genome and to what extent they are influenced by genetic variation. We annotated the rat genome with histone modification maps, identified differences in histone trimethyl-lysine levels among strains, and described their underlying genetic basis at the genome-wide scale using ChIP-seq in heart and liver tissues in a panel of rat recombinant inbred and their progenitor strains. We identified extensive variation of histone methylation levels among individuals and mapped hundreds of underlying cis- and trans-acting loci throughout the genome that regulate histone methylation levels in an allele-specific manner. Interestingly, most histone methylation level variation was trans-linked and the most prominent QTL identified influenced H3K4me3 levels at 899 putative promoters throughout the genome in the heart. Cis- acting variation was enriched in binding sites of distinct transcription factors in heart and liver. The integrated analysis of DNA variation together with histone methylation and gene expression levels showed that histoneQTLs are an important predictor of gene expression and that a joint analysis significantly enhanced the prediction of gene expression traits (eQTLs). Our data suggest that genetic variation has a widespread impact on histone trimethylation marks that may help to uncover novel genotype-phenotype relationships. PMID:24793478

  9. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas.

    PubMed

    Ding, Mao-Hua; Wang, Zhen; Jiang, Lei; Fu, Hua-Lin; Gao, Jie; Lin, Xian-Bin; Zhang, Chun-Lei; Liu, Zhen-Yang; Shi, Yi-Fei; Qiu, Guan-Zhong; Ma, Yue; Cui, Da-Xiang; Hu, Guo-Han; Jin, Wei-Lin

    2015-07-01

    Malignant meningiomas are a rare meningioma subtype and tend to have post-surgical recurrence. Significant endeavors have been taken to identify functional therapeutic targets to halt the growth of this aggressive cancer. We have recently discovered that RIZ1 is downregulated in high-grade meningiomas, and RIZ1 overexpression inhibits proliferation while promoting cell apoptosis of the IOMM-Lee malignant meningioma cell line. In this report, we show that the N-terminal PR domain of RIZ1 alone possessed growth-inhibitory activity and anticancer activity in primary human meningioma cells. Interestingly, the effects seem to be dependent on differential RIZ1 protein levels. Transducible TAT-RIZ1-PR protein could also inhibit meningioma tumor growth in nude mice models. We further demonstrate that PR protein exerts histone methyltransferase activity. A microarray analysis of TAT-RIZ1-PR-treated human malignant meningioma cells reveals 969 differentially expressed genes and 848 alternative splicing exons. Moreover, c-Myc and TXNIP, two putative downstream targets of H3K9 methylation, may be involved in regulating RIZ1 tumor-suppressive effects. The reciprocal relationship between RIZ1 and c-Myc was then validated in primary meningioma cells and human tumor samples. These findings provide insights into RIZ1 tumor suppression mechanisms and suggest that TAT-RIZ1-PR protein is a potential new epigenetic therapeutic agent for advanced meningiomas. PMID:25934289

  10. Two distinct modes for propagation of histone PTMs across the cell cycle

    PubMed Central

    Alabert, Constance; Barth, Teresa K.; Reverón-Gómez, Nazaret; Sidoli, Simone; Schmidt, Andreas; Jensen, Ole N.

    2015-01-01

    Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment of these marks extends over several cell generations. Together, our results reveal how histone marks propagate and demonstrate that chromatin states oscillate within the cell cycle. PMID:25792596

  11. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Quattrocchi, A.; Piccolo, S. A.

    2016-09-01

    Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.

  12. Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes

    PubMed Central

    Liu, Zhenjiang; Gan, Lu; Chen, Yizhe; Luo, Dan; Zhang, Zhenzhen; Cao, Weina; Zhou, Zhongjie; Lin, Xueting; Sun, Chao

    2016-01-01

    MAP/Microtubule affinity-regulating kinase 4 (Mark4) plays an important role in the regulation of microtubule organization, adipogenesis and apoptosis. However, the role of Mark4 plays in oxidative stress and inflammation are poorly understood. In this study, we found Mark4 was induced by high fat diet (HFD) while PPARγ was elevated significantly in mice adipocytes. Further analyses revealed Mark4 impaired mitochondrial oxidative respiration and increased reactive oxygen species (ROS) production. At same time, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) were greatly reduced. By treating cells with H2O2 and vitamin E (VE), Mark4 accentuated oxidative stress along with increased mRNA level of inflammatory factor interleukin-6 (IL-6) and decreased leptin mRNA. Furthermore, we found PPARγ bind to Mark4 promoter region and inhibited Mark4 expression. We showed PPARγ interacted with Mark4 and inhibited the stimulating effect of Mark4 on oxidative stress and inflammation. Finally, we demonstrated that the IKKα/NF-κB signal pathway was involved in Mark4 induced oxidative stress and inflammation, while PTDC, a special inhibitor of NF-κB signal pathway, reduced oxidative stress and inflammation. Thus, our study indicated that Mark4 was a potential drug target for treating metabolic diseases. PMID:26888669

  13. Marking Time

    ERIC Educational Resources Information Center

    Foster, Colin

    2011-01-01

    Teachers say that they would gladly teach a day in the classroom if at the end of the day they could leave and have no marking. There is a common staffroom perception that mathematics teachers have it easy when it comes to marking. In arts subjects, setting an essay can be a fairly straightforward matter--a one-line question may suffice--but…

  14. The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage

    SciTech Connect

    Heidor, Renato; Furtado, Kelly Silva; Ortega, Juliana Festa; Oliveira, Tiago Franco de; Tavares, Paulo Eduardo Latorre Martins; Vieira, Alessandra; Miranda, Mayara Lilian Paulino; Purgatto, Eduardo; Moreno, Fernando Salvador

    2014-04-15

    The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200 mg/100 g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100 g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p < 0.05) as well as the ACF with ≥ 4 crypts (p < 0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p < 0.05) and reduced DNA damage (p < 0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p < 0.05). TB administration resulted in increased colonic tissue concentrations of BA (p < 0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB. - Highlights: • Tributyrin is a chemopreventive agent for rat colon aberrant crypt foci. • Tributyrin increased apoptosis in an experimental rat colon carcinogenesis model. • Tributyrin treatment in a rat colon carcinogenesis model decreased DNA damage. • Tributyrin treatment induced H3K9 acetylation in a rat colon carcinogenesis model.

  15. Lead Induces Apoptosis and Histone Hyperacetylation in Rat Cardiovascular Tissues

    PubMed Central

    Xu, Li-Hui; Mu, Fang-Fang; Zhao, Jian-Hong; He, Qiang; Cao, Cui-Li; Yang, Hui; Liu, Qi; Liu, Xue-Hui; Sun, Su-Ju

    2015-01-01

    Acute and chronic lead (Pb) exposure might cause hypertension and cardiovascular diseases. The purpose of this study was to evaluate the effects of early acute exposure to Pb on the cellular morphology, apoptosis, and proliferation in rats and to elucidate the early mechanisms involved in the development of Pb-induced hypertension. Very young Sprague-Dawley rats were allowed to drink 1% Pb acetate for 12 and 40 days. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA) decreased in the tissues of the abdominal and thoracic aortas and increased in the cardiac tissue after 12 and 40 days of Pb exposure, respectively. Bax was upregulated and Bcl-2 was downregulated in vascular and cardiac tissues after 40 days of Pb exposure. In addition, an increase in caspase-3 activity was observed after 40 days of exposure to Pb. In terms of morphology, we found that the internal elastic lamina (IEL) of aorta lost the original curve and the diameter of cardiac cell was enlarged after 40 days. Furthermore, the exposure led to a marked increase in acetylated histone H3 levels in the aortas and cardiac tissue after 12 and 40 days, than that in the control group. These findings indicate that Pb might increase the level of histone acetylation and induce apoptosis in vascular and cardiac tissues. However, the mechanism involved need to be further investigated. PMID:26075388

  16. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity.

    PubMed

    Ieda, Naoya; Yamada, Sota; Kawaguchi, Mitsuyasu; Miyata, Naoki; Nakagawa, Hidehiko

    2016-06-15

    Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer. PMID:27143132

  17. Anticancer Activity of MPT0E028, a Novel Potent Histone Deacetylase Inhibitor, in Human Colorectal Cancer HCT116 Cells In Vitro and In Vivo

    PubMed Central

    Tsai, An-Chi; Peng, Chieh-Yu; Lai, Mei-Jung; Wang, Jing-Chi; Pan, Shiow-Lin; Teng, Che-Ming; Liou, Jing-Ping

    2012-01-01

    Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug. PMID:22928010

  18. Azobenzene switch with a long-lived cis-state to photocontrol the enzyme activity of a histone deacetylase-like amidohydrolase.

    PubMed

    Korbus, Michael; Balasubramanian, Ganesh; Müller-Plathe, Florian; Kolmar, Harald; Meyer-Almes, Franz-Josef

    2014-04-01

    The control of enzymes by use of an external stimulus such as light enables the temporal and spatial regulation of defined chemical reactions in a highly precise manner. In this work we investigated and characterized the reversible photocontrol of a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes strain FB188, which holds great potential to control deacetylation reactions of a broad spectrum of substrates in biotechnological and biomedical applications. Several HDAH variants with a single surface accessible cysteine close to the active site were developed and covalently modified by a monofunctional azobenzene-based photoswitch [4-phenylazomaleinanil (4-PAM)]. The enzymatic activity of three HDAH variants (M30C, S20C and M150C) were shown to be controlled by light. The thermal cis-to-trans relaxation of azobenzene conjugated to HDAH was up to 50-fold retarded compared to unbound 4-PAM allowing light pulse switching rather than continuing irradiation to maintain the thermodynamically less stable cis-state of covalently attached 4-PAM. PMID:24262648

  19. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    NASA Astrophysics Data System (ADS)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  20. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids.

    PubMed Central

    Keller, R; Fischer, W; Keist, R; Bassetti, S

    1992-01-01

    Lipoteichoic acids (LTAs) from various bacterial species, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Listeria monocytogenes, were examined for the ability to induce secretory and cellular responses in a pure population of bone marrow-derived mononuclear phagocytes. Some of the highly purified LTAs, in particular LTAs from Bacillus subtilis, S. pyogenes, E. faecalis, and Enterococcus hirae, were able to affect each of the macrophage parameters measured, i.e., reductive capacity, secretion of tumor necrosis factor and nitrite, and tumoricidal activity. As after stimulation with whole organisms or other bacterial products, secretion of tumor necrosis factor induced by these LTAs reached its maximum within the first few hours of the interaction, while secretion of nitrite and tumoricidal activity required 24 to 36 h for full expression. Other purified LTAs, i.e., LTAs from Streptococcus sanguis, S. pneumoniae, and L. monocytogenes, as well as lipomannan from Micrococcus luteus affected only some of these parameters, while native LTA from S. aureus was inactive. There was no obvious correlation between biological activity and chain length, kind of glycosyl substituents, glycolipid structures, or fatty acid composition of LTAs. Deacylation of LTAs resulted in a complete loss of activity, and deacylated LTAs did not impair the activity of their acylated counterparts, suggesting that acyl chains may be essential for binding of LTA to the cell surface. The results demonstrate that some LTA species are potent inducers of macrophage secretory and cellular activities. PMID:1500175

  1. Histone deacetylase inhibitor m-carboxycinnamic acid bis-hydroxamide attenuates plasminogen activator inhibitor-1 expression in human pleural mesothelial cells.

    PubMed

    Chung, Chi-Li; Sheu, Joen-Rong; Chen, Wei-Lin; Chou, Yung-Chen; Hsiao, Che-Jen; Hsiao, Shih-Hsin; Hsu, Ming-Jen; Cheng, Yu-Wen; Hsiao, George

    2012-04-01

    Plasminogen activator inhibitor-1 (PAI-1), primarily up-regulated by transforming growth factor (TGF)-β, is essential in the development of fibrosis. Histone deacetylase (HDAC) was shown to modulate gene expression and fibrogenesis in various tissues. However, the implications of HDAC in terms of PAI-1 expression and pleural fibrosis remain unclear. In this study, we examined the effects of m-carboxycinnamic acid bis-hydroxamide (CBHA), a hybrid-polar HDAC inhibitor, on the TGF-β1-induced expression of PAI-1 in a human pleural mesothelial cell line (MeT-5A). MeT-5A cells were treated with TGF-β1 in the presence or absence of CBHA. We assayed the expression and stability of PAI-1 mRNA and protein, PAI-1 promoter activity, the activation of Smad signaling, the protein-protein interactions of Smads with transcriptional cofactors Sp1 and coactivator p300, and the expression of the mRNA-stabilizing protein nucleolin. The results indicate that CBHA significantly inhibited TGF-β1-induced PAI-1 mRNA and protein expression, and attenuated PAI-1 promoter activity in MeT-5A cells. CBHA abrogated TGF-β1-induced Smad4 nuclear translocation, but not Smad2/3 activation. Furthermore, the association of Smad4 with p300, but not with Sp1, was disrupted by CBHA. Alternatively, CBHA suppressed TGF-β1-induced nucleolin expression, and thereby destabilized PAI-1 mRNA and decreased PAI-1 protein concentrations. These findings suggest that the inhibition of HDAC activity by CBHA may attenuate PAI-1 expression through the modulation of cellular signaling at multiple levels. Given the down-regulating effect of CBHA on PAI-1 expression, HDAC inhibitors should be tested further in animal models as potential therapeutic agents for pleural fibrosis. PMID:22033265

  2. Evaluation of neonatal exposure to cocaine on learning, activity, startle, scent marking, immobility, and plasma cocaine concentrations.

    PubMed

    Vorhees, C V; Inman-Wood, S L; Morford, L L; Reed, T M; Moran, M S; Pu, C; Cappon, G D

    2000-01-01

    Prenatal cocaine treatment produces equivocal effects on spatial learning and memory; however, no data are available on neonatal treatment as a model of human third-trimester exposure. Sprague-Dawley rats were treated on postnatal days (P) 1-10 or 11-20 with cocaine (15 mg/kg x 4 per day at 2-h intervals) or saline (P1-P20) and evaluated as adults in the Morris water maze and on tests of activity, startle, scent marking, swimming immobility, and sequential learning. Neonatal cocaine had no effect on mortality; however, early treatment reduced body weight, whereas later treatment did not. Neonatal cocaine had no effects on exploratory activity, swimming ability, sequential learning, multiday activity rhythms, scent marking, or swimming immobility, but augmented acoustic startle amplitude in the early-treated group. Neonatal cocaine also produced an interaction on spatial learning in which the cocaine early-treated males performed slightly more efficiently than controls. Plasma cocaine concentrations were significantly higher in the early-treated group than the later-treated group despite receiving the same weight-adjusted doses. It was concluded that neonatal cocaine, when administered during a stage of brain development analogous to human third trimester, induces few behavioral effects based on the assessments used in this study. PMID:10758355

  3. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum.

    PubMed

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen. PMID:27555062

  4. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum

    PubMed Central

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen. PMID:27555062

  5. Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity.

    PubMed

    Sun, Chao; Tian, Liang; Nie, Jia; Zhang, Hai; Han, Xiao; Shi, Yuguang

    2012-11-01

    MARK4, also known as Par-1d/MarkL1, is a member of the AMP-activated protein kinase (AMPK)-related family of kinases, which are implicated in the regulation of dynamic biological functions, including glucose and energy homeostasis. However, the physiological function of MARK4 in mammals remains elusive. Here, we investigated a role for MARK4 in regulating energy homeostasis by generating mice with targeted inactivation of the mark4 gene. We show that MARK4 deficiency in mice caused hyperphagia, hyperactivity, and hypermetabolism, leading to protection from diet-induced obesity and its related metabolic complications through up-regulation of brown fat activity. Consequently, MARK4 deficiency mitigated insulin resistance associated with diet-induced obesity by dramatically enhancing insulin-stimulated AKT phosphorylation in major metabolic tissues. Ablation of MARK4 also significantly improved glucose homeostasis by up-regulating the activity and expression of AMPK kinase in key metabolic tissues. Taken together, these data identify a key role of MARK4 in energy metabolism, implicating the kinase as a novel drug target for the treatment of obesity and type 2 diabetes. PMID:22992738

  6. Interactive Roles of Ets-1, Sp1, and Acetylated Histones in the Retinoic Acid-dependent Activation of Guanylyl Cyclase/Atrial Natriuretic Peptide Receptor-A Gene Transcription*

    PubMed Central

    Kumar, Prerna; Garg, Renu; Bolden, Gevoni; Pandey, Kailash N.

    2010-01-01

    Cardiac hormones atrial and brain natriuretic peptides activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which plays a critical role in reduction of blood pressure and blood volume. Currently, the mechanisms responsible for regulating the Npr1 gene (coding for GC-A/NPRA) transcription are not well understood. The present study was conducted to examine the interactive roles of all-trans retinoic acid (ATRA), Ets-1, Sp1, and histone acetylation on the transcriptional regulation and function of the Npr1 gene. Deletion analysis of the Npr1 promoter and luciferase assays showed that ATRA enhanced a 16-fold Npr1 promoter activity and greatly stimulated guanylyl cyclase (GC) activity of the receptor protein in both atrial natriuretic peptide (ANP)-dependent and -independent manner. As confirmed by gel shift and chromatin immunoprecipitation assays, ATRA enhanced the binding of both Ets-1 and Sp1 to the Npr1 promoter. The retinoic acid receptor α (RARα) was recruited by Ets-1 and Sp1 to form a transcriptional activator complex with their binding sites in the Npr1 promoter. Interestingly, ATRA also increased the acetylation of histones H3 and H4 and enhanced their recruitment to Ets-1 and Sp1 binding sites within the Npr1 promoter. Collectively, the present results demonstrate that ATRA regulates Npr1 gene transcription and GC activity of the receptor by involving the interactive actions of Ets-1, Sp1, and histone acetylation. PMID:20864529

  7. Epigenetic bivalent marking is permissive to the synergy of HDAC and PARP inhibitors on TXNIP expression in breast cancer cells.

    PubMed

    Baldan, Federica; Mio, Catia; Lavarone, Elisa; Di Loreto, Carla; Puglisi, Fabio; Damante, Giuseppe; Puppin, Cinzia

    2015-05-01

    Studies on stem cell differentiation led to the identification of paused genes, characterized by the contemporary presence of both activator and repressor epigenetic markers (bivalent marking). TXNIP is an oncosuppressor gene the expression of which was reduced in breast cancer. In the present study, we evaluated whether the concept of epigenetic bivalent marking can be applied to TXNIP gene in breast cancer cells. Using chromatin immunoprecipitation (ChIP), three histone modifications were investigated: two associated with transcriptional activation, lysines 9-14 acetylation of H3 histone (H3K9K14ac) and lysine 4 trimethylation of H3 histone (H3K4me3), and one associated with transcriptional silencing, lysine 27 trimethylation of H3 histone (H3K27me3). According to the bivalent marking model, TXNIP gene appears to be paused in MDA157 cells (markers of active and repressed transcription are present), but are definitively silenced in MDA468 cells (presence of only markers of transcription repression). This was proven by evaluating TXNIP mRNA and protein levels after the treatment of cell lines with a histone deacetylase inhibitor (SAHA) and a poly-ADP-ribose polymerases inhibitor (PJ34). In MDA157 cells, SAHA and PJ34 showed a synergistic effect: a large increment was observed in TXNIP mRNA and protein levels. By contrast, in MDA468 cells, synergy between the two compounds was not observed. Therefore, the pausing epigenetic signature was permissive for synergy between SAHA and PJ34 on TXNIP gene expression. The synergy between SAHA and PJ34 on TXNIP expression was associated with variation in cell viability and apoptosis. In MDA157 cells, but not in MDA468 cells, combined treatment of SAHA and PJ34 induced a decrease in cell viability and an increase of apoptosis. Thus, our data support the hypothesis that TXNIP is an effective target for the treatment of breast cancer. PMID:25812606

  8. Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes

    PubMed Central

    Messier, Terri L.; Gordon, Jonathan A. R.; Boyd, Joseph R.; Tye, Coralee E.; Browne, Gillian; Stein, Janet L.; Lian, Jane B.; Stein, Gary S.

    2016-01-01

    The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that result in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was over-represented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways. PMID:26783963

  9. Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes.

    PubMed

    Messier, Terri L; Gordon, Jonathan A R; Boyd, Joseph R; Tye, Coralee E; Browne, Gillian; Stein, Janet L; Lian, Jane B; Stein, Gary S

    2016-02-01

    The onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that result in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was over-represented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways. PMID:26783963

  10. PHARMACOLOGICAL SIRT1 ACTIVATION IMPROVES MORTALITY AND MARKEDLY ALTERS TRANSCRIPTIONAL PROFILES THAT ACCOMPANY EXPERIMENTAL SEPSIS.

    PubMed

    Opal, Steven M; Ellis, James L; Suri, Vipin; Freudenberg, Johannes M; Vlasuk, George P; Li, Yong; Chahin, Abdullah B; Palardy, John E; Parejo, Nicholas; Yamamoto, Michelle; Chahin, Abdulrahman; Kessimian, Noubar

    2016-04-01

    The sirtuin family consists of seven NAD+-dependent enzymes affecting a broad array of regulatory protein networks by primarily catalyzing the deacetylation of key lysine residues in regulatory proteins. The enzymatic activity of SIRT1 can be enhanced by small molecule activators known as SIRT1 activator compounds (STACs). We tested the therapeutic potential of the STAC SRT3025 in two preclinical models of severe infection, the murine cecal ligation and puncture (CLP) model to induce peritonitis and intratracheal installation of Streptococcus pneumoniae to induce severe bacterial pneumonia. SRT3025 provided significant survival benefits over vehicle control in both the peritonitis and pneumococcal pneumonia models when administered with appropriate antimicrobial agents. The survival benefit of SRT3025 in the CLP model was absent in SIRT1 knockout showing the SIRT1 dependency of SRT3025's effects. SRT3025 administration promoted bacterial clearance and significantly reduced inflammatory cytokines from the lungs of animals challenged with S. pneumoniae. SRT3025 treatment was also accompanied by striking changes in the transcription profiles in multiple inflammatory and metabolic pathways in liver, spleen, small bowel, and lung tissue. Remarkably, these organ-specific changes in the transcriptome analyses were similar following CLP or pneumococcal challenge despite different sets of pathogens at disparate sites of infection. Pharmacologic activation of SIRT1 modulates the innate host response and could represent a novel treatment strategy for severe infection. PMID:26974318

  11. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury

    PubMed Central

    Chaaban, Hala; Keshari, Ravi S.; Silasi-Mansat, Robert; Popescu, Narcis I.; Mehta-D’Souza, Padmaja; Lim, Yow-Pin

    2015-01-01

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma. PMID:25631771

  12. Increased Complement C1q Level Marks Active Disease in Human Tuberculosis

    PubMed Central

    Zhang, Mingxia; Liu, Haiying; Zhang, Guoliang; Deng, Qunyi; Huang, Jian; Gao, Zhiliang; Zhou, Boping; Feng, Carl G.; Chen, Xinchun

    2014-01-01

    Background Complement functions as an important host defense system and complement C5 and C7 have been implicated in immunopathology of tuberculosis. However, little is known about the role of other complement components in tuberculosis. Methods Complement gene expression in peripheral blood mononuclear cells of tuberculosis patients and controls were determined using whole genome transcriptional microarray assays. The mRNA and protein levels of three C1q components, C1qA, C1qB, and C1qC, were further validated by qRT-PCR and enzyme-linked immunosorbent assay, respectively. The percentages of C1q expression in CD14 positive cells were determined by flow cytometry. Finally, C1qC protein level was quantified in the pleural fluid of tuberculosis and non-tuberculosis pleurisy. Results C1q expression increases significantly in the peripheral blood of patients with active tuberculosis compared to healthy controls and individuals with latent TB infection. The percentage of C1q-expressing CD14 positive cells is significantly increased in active TB patients. C1q expression in the peripheral blood correlates with sputum smear positivity in tuberculosis patients and is reduced after anti-tuberculosis chemotherapy. Notably, receiver operating characteristic analysis showed that C1qC mRNA levels in peripheral blood efficiently discriminate active from latent tuberculosis infection and healthy controls. Additionally, C1qC protein level in pleural effusion shows improved power in discriminating tuberculosis from non-tuberculosis pleurisy when compared to other inflammatory markers, such as IL-6 and TNF-α. Conclusions C1q expression correlates with active disease in human tuberculosis. C1q could be a potential diagnostic marker to discriminate active tuberculosis from latent tuberculosis infection as well as tuberculosis pleurisy from non-tuberculosis pleurisy. PMID:24647646

  13. cAMP-Induced Histones H3 Dephosphorylation Is Independent of PKA and MAP Kinase Activations and Correlates With mTOR Inactivation.

    PubMed

    Rodriguez, Pedro; Rojas, Juan

    2016-03-01

    cAMP is a second messenger well documented to be involved in the phosphorylation of PKA, MAP kinase, and histone H3 (H3). Early, we reported that cAMP also induced H3 dephosphorylation in a variety of proliferating cell lines. Herein, it is shown that cAMP elicits a biphasic H3 dephosphorylation independent of PKA activation in cycling cells. H89, a potent inhibitor of PKA catalytic sub-unite, could not abolish this effect. Additionally, H89 induces a rapid and biphasic H3 serine 10 dephosphorylation, while a decline in the basal phosphorylation of CREB/ATF-1 is observed. Rp-cAMPS, an analog of cAMP and specific inhibitor of PKA, is unable to suppress cAMP-mediated H3 dephosphorylation, whereas Rp-cAMPS effectively blocks CREB/ATF-1 hyper-phosphorylation by cAMP and its inducers. Interestingly, cAMP exerts a rapid and profound H3 dephosphorylation at much lower concentration (50-fold lower, 0.125 mM) than the concentration required for maximal CREB/ATF-1 phosphorylation (5 mM). Much higher cAMP concentration is required to fully induce CREB/ATF-1 gain in phosphate (5 mM), which correlates with the inhibition of H3 dephosphorylation. Also, the dephosphorylation of H3 does not overlap at onset of MAP kinase phosphorylation pathways, p38 and ERK. Surprisingly, rapamycin (an mTOR inhibitor), cAMP, and its natural inducer isoproterenol, elicit identical dephosphorylation kinetics on both S6K1 ribosomal kinase (a downstream mTOR target) and H3. Finally, cAMP-induced H3 dephosphorylation is PP1/2-dependent. The results suggest that a pathway, requiring much lower cAMP concentration to that required for CREB/ATF-1 hyper-phosphorylation, is responsible for histone H3 dephosphorylation and may be linked to mTOR down regulation. PMID:26335579

  14. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man.

    PubMed

    Harr, Jennifer C; Gonzalez-Sandoval, Adriana; Gasser, Susan M

    2016-02-01

    It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation. PMID:26792937

  15. Antifungal Imidazole-Decorated Cationic Amphiphiles with Markedly Low Hemolytic Activity.

    PubMed

    Benhamou, Raphael I; Steinbuch, Kfir B; Fridman, Micha

    2016-08-01

    Herein we report that an imidazole-decorated cationic amphiphile derived from the pseudo-disaccharide nebramine has potent antifungal activity against strains of Candida glabrata pathogens. In combination with the natural bis-benzylisoquinoline alkaloid tetrandrine the reported antifungal cationic amphiphile demonstrated synergistic antifungal activity against Candida albicans pathogens. This unique membrane disruptor caused no detectible mammalian red blood cell hemolysis at concentrations up to more than two orders of magnitude greater than its minimal inhibitory concentrations against the tested C. glabrata strains. We provide evidence that potency against C. glabrata may be associated with differences between the drug efflux pumps of C. albicans and C. glabrata. Imidazole decorated-cationic amphiphiles show promise for the development of less toxic membrane-disrupting antifungal drugs and drug combinations. PMID:27258738

  16. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.

    PubMed

    Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim

    2015-10-01

    Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. PMID:25644111

  17. Novel oral histone deacetylase inhibitor, MPT0E028, displays potent growth-inhibitory activity against human B-cell lymphoma in vitro and in vivo

    PubMed Central

    Huang, Han-Li; Peng, Chieh-Yu; Lai, Mei-Jung; Chen, Chun-Han; Lee, Hsueh-Yun; Wang, Jing-Chi; Liou, Jing-Ping; Pan, Shiow-Lin; Teng, Che-Ming

    2015-01-01

    Histone deacetylase (HDAC) inhibitor has been a promising therapeutic option in cancer therapy due to its ability to induce growth arrest, differentiation, and apoptosis. In this study, we demonstrated that MPT0E028, a novel HDAC inhibitor, reduces the viability of B-cell lymphomas by inducing apoptosis and shows a more potent HDAC inhibitory effect compared to SAHA, the first HDAC inhibitor approved by the FDA. In addition to HDACs inhibition, MPT0E028 also possesses potent direct Akt targeting ability as measured by the kinome diversity screening assay. Also, MPT0E028 reduces Akt phosphorylation in B-cell lymphoma with an IC50 value lower than SAHA. Transient transfection assay revealed that both targeting HDACs and Akt contribute to the apoptosis induced by MPT0E028, with both mechanisms functioning independently. Microarray analysis also shows that MPT0E028 may regulate many oncogenes expression (e.g., TP53, MYC, STAT family). Furthermore, in vivo animal model experiments demonstrated that MPT0E028 (50–200 mg/kg, po, qd) prolongs the survival rate of mice bearing human B-cell lymphoma Ramos cells and inhibits tumor growth in BJAB xenograft model. In summary, MPT0E028 possesses strong in vitro and in vivo activity against malignant cells, representing a potential therapeutic approach for cancer therapy. PMID:25669976

  18. Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B

    PubMed Central

    Sharma, Mahima; Shivarama Shetty, Mahesh; Arumugam, Thiruma Valavan; Sajikumar, Sreedharan

    2015-01-01

    Aging is associated with impaired plasticity and memory. Altered epigenetic mechanisms are implicated in the impairment of memory with advanced aging. Histone deacetylase 3 (HDAC3) is an important negative regulator of memory. However, the role of HDAC3 in aged neural networks is not well established. Late long-term potentiation (late-LTP), a cellular correlate of memory and its associative mechanisms such as synaptic tagging and capture (STC) were studied in the CA1 area of hippocampal slices from 82–84 week old rats. Our findings demonstrate that aging is associated with deficits in the magnitude of LTP and impaired STC. Inhibition of HDAC3 augments the late-LTP and re-establishes STC. The augmentation of late-LTP and restoration of STC is mediated by the activation of nuclear factor kappa B (NFκB) pathway. We provide evidence for the promotion of associative plasticity in aged neural networks by HDAC3 inhibition and hence propose HDAC3 and NFκB as the possible therapeutic targets for treating age -related cognitive decline. PMID:26577291

  19. The histone H3K9 demethylase KDM3A promotes anoikis by transcriptionally activating pro-apoptotic genes BNIP3 and BNIP3L

    PubMed Central

    Pedanou, Victoria E; Gobeil, Stéphane; Tabariès, Sébastien; Simone, Tessa M; Zhu, Lihua Julie; Siegel, Peter M; Green, Michael R

    2016-01-01

    Epithelial cells that lose attachment to the extracellular matrix undergo a specialized form of apoptosis called anoikis. Here, using large-scale RNA interference (RNAi) screening, we find that KDM3A, a histone H3 lysine 9 (H3K9) mono- and di-demethylase, plays a pivotal role in anoikis induction. In attached breast epithelial cells, KDM3A expression is maintained at low levels by integrin signaling. Following detachment, integrin signaling is decreased resulting in increased KDM3A expression. RNAi-mediated knockdown of KDM3A substantially reduces apoptosis following detachment and, conversely, ectopic expression of KDM3A induces cell death in attached cells. We find that KDM3A promotes anoikis through transcriptional activation of BNIP3 and BNIP3L, which encode pro-apoptotic proteins. Using mouse models of breast cancer metastasis we show that knockdown of Kdm3a enhances metastatic potential. Finally, we find defective KDM3A expression in human breast cancer cell lines and tumors. Collectively, our results reveal a novel transcriptional regulatory program that mediates anoikis. DOI: http://dx.doi.org/10.7554/eLife.16844.001 PMID:27472901

  20. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  1. Stretch Marks

    MedlinePlus

    ... changes that can go with bodybuilding. People who use steroid-containing skin creams or ointments (such as hydrocortisone) for more than a few weeks may also get stretch marks. So might people who have to ... surgeon. These doctors may use one of many types of treatments — from actual ...

  2. Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling

    PubMed Central

    Tsurumi, Amy; Dutta, Pranabanada; Yan, Shian-Jang; Sheng, Robin; Li, Willis X.

    2013-01-01

    The dynamic regulation of chromatin structure by histone post-translational modification is an essential regulatory mechanism that controls global gene transcription. The Kdm4 family of H3K9me2,3 and H3K36me2,3 dual specific histone demethylases has been implicated in development and tumorigenesis. Here we show that Drosophila Kdm4A and Kdm4B are together essential for mediating ecdysteroid hormone signaling during larval development. Loss of Kdm4 genes leads to globally elevated levels of the heterochromatin marker H3K9me2,3 and impedes transcriptional activation of ecdysone response genes, resulting in developmental arrest. We further show that Kdm4A interacts with the Ecdysone Receptor (EcR) and colocalizes with EcR at its target gene promoter. Our studies suggest that Kdm4A may function as a transcriptional co-activator by removing the repressive histone mark H3K9me2,3 from cognate promoters. PMID:24100631

  3. Histone deacetylase 1 and 2 regulate Wnt and p53 pathways in the ureteric bud epithelium

    PubMed Central

    Chen, Shaowei; Yao, Xiao; Li, Yuwen; Saifudeen, Zubaida; Bachvarov, Dimcho; El-Dahr, Samir S.

    2015-01-01

    Histone deacetylases (HDACs) regulate a broad range of biological processes through removal of acetyl groups from histones as well as non-histone proteins. Our previous studies showed that Hdac1 and Hdac2 are bound to promoters of key renal developmental regulators and that HDAC activity is required for embryonic kidney gene expression. However, the existence of many HDAC isoforms in embryonic kidneys raises questions concerning the possible specificity or redundancy of their functions. We report here that targeted deletion of both the Hdac1 and Hdac2 genes from the ureteric bud (UB) cell lineage of mice causes bilateral renal hypodysplasia. One copy of either Hdac1 or Hdac2 is sufficient to sustain normal renal development. In addition to defective cell proliferation and survival, genome-wide transcriptional profiling revealed that the canonical Wnt signaling pathway is specifically impaired in UBHdac1,2−/− kidneys. Our results also demonstrate that loss of Hdac1 and Hdac2 in the UB epithelium leads to marked hyperacetylation of the tumor suppressor protein p53 on lysine 370, 379 and 383; these post-translational modifications are known to boost p53 stability and transcriptional activity. Genetic deletion of p53 partially rescues the development of UBHdac1,2−/− kidneys. Together, these data indicate that Hdac1 and Hdac2 are crucial for kidney development. They perform redundant, yet essential, cell lineage-autonomous functions via p53-dependent and -independent pathways. PMID:25758227

  4. The role of extracellular histones in haematological disorders.

    PubMed

    Alhamdi, Yasir; Toh, Cheng-Hock

    2016-06-01

    Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders. PMID:27062156

  5. Marked Antigiardial Activity of Yucca baccata Extracts: A Potential Natural Alternative for Treating Protozoan Infections

    PubMed Central

    Quihui-Cota, Luis; León-Trujillo, Rocio; Astiazarán-García, Humberto; Esparza-Romero, Julián; Robles, María del Refugio; Robles-Zepeda, Ramón E.; Canett, Rafael; Sánchez-Escalante, Jesús

    2014-01-01

    Human Giardiosis is a public health problem in Mexico, where the national prevalence was estimated to be up to 68%. Misuse of antiprotozoal drugs may result in low effectiveness and undesirable side effects. Research on natural products is a good strategy for discovering more effective antiparasitic compounds. This study evaluated the antigiardial activity of extracts of Yucca baccata, which is native to northwestern Mexico. Forty-two gerbils (females) were weighed and orally inoculated with 5 × 106 Giardia trophozoites. Two gerbils were selected at random to confirm infection. Forty living gerbils were randomly allocated into 5 treatment groups (8 per group). Gerbils were randomly assigned to be treated with 24.4 mg/mL, 12.2 mg/mL, and 6.1 mg/mL of extracts, metronidazole (2 mg/mL) or PBS, which were intragastrically administered once per day for 3 days. Nine gerbils died during the study course. On day 10 postinfection, gerbils were euthanized and trophozoites were quantified. Yucca extracts reduced, albeit not significantly, the trophozoite counts in the duodenum segment. Only the high-extract concentration significantly reduced the trophozoite counts in the proximal segment and it was similar to that of metronidazole. Extracts of Y. baccata may represent an effective and natural therapeutic alternative for human giardiosis. PMID:25250335

  6. Marked antigiardial activity of Yucca baccata extracts: a potential natural alternative for treating protozoan infections.

    PubMed

    Quihui-Cota, Luis; León-Trujillo, Rocio; Astiazarán-García, Humberto; Esparza-Romero, Julián; del Refugio Robles, María; Robles-Zepeda, Ramón E; Canett, Rafael; Sánchez-Escalante, Jesús

    2014-01-01

    Human giardiosis is a public health problem in Mexico, where the national prevalence was estimated to be up to 68%. Misuse of antiprotozoal drugs may result in low effectiveness and undesirable side effects. Research on natural products is a good strategy for discovering more effective antiparasitic compounds. This study evaluated the antigiardial activity of extracts of Yucca baccata, which is native to northwestern Mexico. Forty-two gerbils (females) were weighed and orally inoculated with 5 × 10(6) Giardia trophozoites. Two gerbils were selected at random to confirm infection. Forty living gerbils were randomly allocated into 5 treatment groups (8 per group). Gerbils were randomly assigned to be treated with 24.4 mg/mL, 12.2 mg/mL, and 6.1 mg/mL of extracts, metronidazole (2 mg/mL) or PBS, which were intragastrically administered once per day for 3 days. Nine gerbils died during the study course. On day 10 postinfection, gerbils were euthanized and trophozoites were quantified. Yucca extracts reduced, albeit not significantly, the trophozoite counts in the duodenum segment. Only the high-extract concentration significantly reduced the trophozoite counts in the proximal segment and it was similar to that of metronidazole. Extracts of Y. baccata may represent an effective and natural therapeutic alternative for human giardiosis. PMID:25250335

  7. Time-resolved phase-change recording mark formation with zinc oxide near-field optical active layer

    NASA Astrophysics Data System (ADS)

    Kao, Tsung Sheng; Chen, Mu-Ku; Chen, Jia-Wern; Chen, Yi-Hao; Wu, Pei Ru; Tsai, Din Ping

    2015-09-01

    In this paper, an optical active thin film of zinc oxide (ZnOx) nano-composites exploited for the enhancement of optical signals in an ultra-high density recording scheme has been demonstrated. Via the electron microscope investigation, the results display randomly distributed crystalline nanograins in the ZnOx thin films. Optical disks with the ZnOx nanostructured thin films show that the carrier-to-noise ratio (CNR) above 25 dB can be obtained at the mark trains of 100 nm, while the optimal writing power is reduced as a function of the increasing thickness of the ZnOx films. Furthermore, by conducting a series of the optical pump-probe experiments, the optical responses of recording marks on as-deposited phase-change Ge2Sb2Te5 (as-GST) recording layers present that the highly contrast bright recording bits can be acquired with the existence of the ZnOx nanostructured thin films, providing prospective potentials in future data storage and optoelectronic devices.

  8. Dual Roles of Histone H3 Lysine 9 Acetylation in Human Embryonic Stem Cell Pluripotency and Neural Differentiation*

    PubMed Central

    Qiao, Yunbo; Wang, Ran; Yang, Xianfa; Tang, Ke; Jing, Naihe

    2015-01-01

    Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4–8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0–4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4–8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation. PMID:25519907

  9. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation.

    PubMed

    Qiao, Yunbo; Wang, Ran; Yang, Xianfa; Tang, Ke; Jing, Naihe

    2015-01-23

    Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4-8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0-4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4-8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation. PMID:25519907

  10. Kluyveromyces lactis genome harbours a functional linker histone encoding gene.

    PubMed

    Staneva, Dessislava; Georgieva, Milena; Miloshev, George

    2016-06-01

    Linker histones are essential components of chromatin in eukaryotes. Through interactions with linker DNA and nucleosomes they facilitate folding and maintenance of higher-order chromatin structures and thus delicately modulate gene activity. The necessity of linker histones in lower eukaryotes appears controversial and dubious. Genomic data have shown that Schizosaccharomyces pombe does not possess genes encoding linker histones while Kluyveromyces lactis has been reported to have a pseudogene. Regarding this controversy, we have provided the first direct experimental evidence for the existence of a functional linker histone gene, KlLH1, in K. lactis genome. Sequencing of KlLH1 from both genomic DNA and copy DNA confirmed the presence of an intact open reading frame. Transcription and splicing of the KlLH1 sequence as well as translation of its mRNA have been studied. In silico analysis revealed homology of KlLH1p to the histone H1/H5 protein family with predicted three domain structure characteristic for the linker histones of higher eukaryotes. This strongly proves that the yeast K. lactis does indeed possess a functional linker histone gene thus entailing the evolutionary preservation and significance of linker histones. The nucleotide sequences of KlLH1 are deposited in the GenBank under accession numbers KT826576, KT826577 and KT826578. PMID:27189369

  11. Histone deacetylase inhibitors modulate KATP subunit transcription in HL-1 cardiomyocytes through effects on cholesterol homeostasis

    PubMed Central

    Fatima, Naheed; Cohen, Devin C.; Sukumar, Gauthaman; Sissung, Tristan M.; Schooley, James F.; Haigney, Mark C.; Claycomb, William C.; Cox, Rachel T.; Dalgard, Clifton L.; Bates, Susan E.; Flagg, Thomas P.

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are under investigation for the treatment of a number of human health problems. HDIs have proven therapeutic value in refractory cases of cutaneous T-cell lymphoma. Electrocardiographic ST segment morphological changes associated with HDIs were observed during development. Because ST segment morphology is typically linked to changes in ATP sensitive potassium (KATP) channel activity, we tested the hypothesis that HDIs affect cardiac KATP channel subunit expression. Two different HDIs, romidepsin and trichostatin A, caused ~20-fold increase in SUR2 (Abcc9) subunit mRNA expression in HL-1 cardiomyocytes. The effect was specific for the SUR2 subunit as neither compound causes a marked change in SUR1 (Abcc8) expression. Moreover, the effect was cell specific as neither HDI markedly altered KATP subunit expression in MIN6 pancreatic β-cells. We observe significant enrichment of the H3K9Ac histone mark specifically at the SUR2 promoter consistent with the conclusion that chromatin remodeling at this locus plays a role in increasing SUR2 gene expression. Unexpectedly, however, we also discovered that HDI-dependent depletion of cellular cholesterol is required for the observed effects on SUR2 expression. Taken together, the data in the present study demonstrate that KATP subunit expression can be epigenetically regulated in cardiomyocytes, defines a role for cholesterol homeostasis in mediating epigenetic regulation and suggests a potential molecular basis for the cardiac effects of the HDIs. PMID:26321954

  12. Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia.

    PubMed

    Schweizer, Sophie; Harms, Christoph; Lerch, Heike; Flynn, Jennifer; Hecht, Jochen; Yildirim, Ferah; Meisel, Andreas; Märschenz, Stefanie

    2015-10-01

    Cerebral ischemia induces a complex transcriptional response with global changes in gene expression. It is essentially regulated by transcription factors as well as epigenetic players. While it is well known that the inhibition of transcriptionally repressive histone deacetylases leads to neuroprotection, the role of histone methyltransferases in the postischemic transcriptional response remains elusive. We investigated the effects of inhibition of the repressive H3K9 histone methyltransferases SUV39H1 and G9a on neuronal survival, H3K9 promoter signatures and gene expression. Their inhibition either with the specific blocker chaetocin or by use of RNA interference promoted neuronal survival in oxygen glucose deprivation (OGD). Brain-derived neurotrophic factor (BDNF) was upregulated and BDNF promoter regions showed an increase in histone marks characteristic for active transcription. The BDNF blockade with K252a abrogated the protective effect of chaetocin treatment. In conclusion, inhibition of histone methyltransferases SUV39H1 and G9a confers neuroprotection in a model of hypoxic metabolic stress, which is at least in part mediated by BDNF. PMID:25966950

  13. The histone deacetylase inhibitor trichostatin A suppresses murine innate allergic inflammation by blocking group 2 innate lymphoid cell (ILC2) activation

    PubMed Central

    Toki, Shinji; Goleniewska, Kasia; Reiss, Sara; Zhou, Weisong; Newcomb, Dawn C; Bloodworth, Melissa H; Stier, Matthew T; Boyd, Kelli L; Polosukhin, Vasiliy V; Subramaniam, Sriram; Peebles, R Stokes

    2016-01-01

    Background Group 2 innate lymphoid cells (ILC2) are an important source of the type 2 cytokines interleukin (IL)-5 and IL-13 that are critical to the allergic airway phenotype. Previous studies reported that histone deacetylase (HDAC) inhibition by trichostatin A (TSA) downregulated adaptive allergic immune responses; however, the effect of HDAC inhibition on the early innate allergic immune response is unknown. Therefore, we investigated the effect of TSA on innate airway inflammation mediated by ILC2 activation. Methods BALB/c mice were challenged intranasally with Alternaria extract, exogenous recombinant mouse IL-33 (rmIL-33) or the respective vehicles for four consecutive days following TSA or vehicle treatment. Bronchoalveolar lavage (BAL) fluids and lungs were harvested 24 h after the last challenge. Results We found that TSA treatment significantly decreased the number of ILC2 expressing IL-5 and IL-13 in the lungs challenged with Alternaria extract or rmIL-33 compared with vehicle treatment (p<0.05). TSA treatment significantly decreased protein expression of IL-5, IL-13, CCL11 and CCL24 in the lung homogenates from Alternaria extract-challenged mice or rmIL-33-challenged mice compared with vehicle treatment (p<0.05). Further, TSA treatment significantly decreased the number of perivascular eosinophils and mucus production in the large airways that are critical components of the asthma phenotype (p<0.05). TSA did not change early IL-33 release in the BAL fluids; however, TSA decreased lung IL-33 expression from epithelial cells 24 h after last Alternaria extract challenge compared with vehicle treatment (p<0.05). Conclusions These results reveal that TSA reduces allergen-induced ILC2 activation and the early innate immune responses to an inhaled protease-containing aeroallergen. PMID:27071418

  14. Downregulation of the Ca(2+)-activated K(+) channel KC a3.1 by histone deacetylase inhibition in human breast cancer cells.

    PubMed

    Ohya, Susumu; Kanatsuka, Saki; Hatano, Noriyuki; Kito, Hiroaki; Matsui, Azusa; Fujimoto, Mayu; Matsuba, Sayo; Niwa, Satomi; Zhan, Peng; Suzuki, Takayoshi; Muraki, Katsuhiko

    2016-04-01

    The intermediate-conductance Ca(2+)-activated K(+) channel KC a3.1 is involved in the promotion of tumor growth and metastasis, and is a potential therapeutic target and biomarker for cancer. Histone deacetylase inhibitors (HDACis) have considerable potential for cancer therapy, however, the effects of HDACis on ion channel expression have not yet been investigated in detail. The results of this study showed a significant decrease in KC a3.1 transcription by HDAC inhibition in the human breast cancer cell line YMB-1, which functionally expresses KCa3.1. A treatment with the clinically available, class I, II, and IV HDAC inhibitor, vorinostat significantly downregulated KC a3.1 transcription in a concentration-dependent manner, and the plasmalemmal expression of the KC a3.1 protein and its functional activity were correspondingly decreased. Pharmacological and siRNA-based HDAC inhibition both revealed the involvement of HDAC2 and HDAC3 in KC a3.1 transcription through the same mechanism. The downregulation of KC a3.1 in YMB-1 was not due to the upregulation of the repressor element-1 silencing transcription factor, REST and the insulin-like growth factor-binding protein 5, IGFBP5. The significant decrease in KC a3.1 transcription by HDAC inhibition was also observed in the KC a3.1-expressing human prostate cancer cell line, PC-3. These results suggest that vorinostat and the selective HDACis for HDAC2 and/or HDAC3 are effective drug candidates for KC a3.1-overexpressing cancers. PMID:27069638

  15. Activating Transcription Factor 3 regulates in part the enhanced tumour cell cytotoxicity of the histone deacetylase inhibitor M344 and cisplatin in combination

    PubMed Central

    2010-01-01

    Background Activating Transcription Factor (ATF) 3 is a key regulator of the cellular integrated stress response whose expression has also been correlated with pro-apoptotic activities in tumour cell models. Combination treatments with chemotherapeutic drugs, such as cisplatin, and histone deacetylase (HDAC) inhibitors have been demonstrated to enhance tumour cell cytotoxicity. We recently demonstrated a role for ATF3 in regulating cisplatin-induced apoptosis and others have shown that HDAC inhibition can also induce cellular stress. In this study, we evaluated the role of ATF3 in regulating the co-operative cytotoxicity of cisplatin in combination with an HDAC inhibitor. Results The HDAC inhibitor M344 induced ATF3 expression at the protein and mRNA level in a panel of human derived cancer cell lines as determined by Western blot and quantitative RT-PCR analyses. Combination treatment with M344 and cisplatin lead to increased induction of ATF3 compared with cisplatin alone. Utilizing the MTT cell viability assay, M344 treatments also enhanced the cytotoxic effects of cisplatin in these cancer cell lines. The mechanism of ATF3 induction by M344 was found to be independent of MAPKinase pathways and dependent on ATF4, a known regulator of ATF3 expression. ATF4 heterozygote (+/-) and knock out (-/-) mouse embryonic fibroblast (MEF) as well as chromatin immunoprecipitation (ChIP) assays were utilized in determining the mechanistic induction of ATF3 by M344. We also demonstrated that ATF3 regulates the enhanced cytotoxicity of M344 in combination with cisplatin as evidenced by attenuation of cytotoxicity in shRNAs targeting ATF3 expressing cells. Conclusion This study identifies the pro-apoptotic factor, ATF3 as a novel target of M344, as well as a mediator of the co-operative effects of cisplatin and M344 induced tumour cell cytotoxicity. PMID:20828393

  16. Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages ▿ §

    PubMed Central

    Lefterova, Martina I.; Steger, David J.; Zhuo, David; Qatanani, Mohammed; Mullican, Shannon E.; Tuteja, Geetu; Manduchi, Elisabetta; Grant, Gregory R.; Lazar, Mitchell A.

    2010-01-01

    The nuclear receptor peroxisome proliferator activator receptor γ (PPARγ) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARγ is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARγ binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARγ cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARγ colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARγ, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARγ function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARγ binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation. PMID:20176806

  17. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    PubMed

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions. PMID:26368889

  18. The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants1[OPEN

    PubMed Central

    Carr, Craig; Asensi-Fabado, Maria A.; Donald, Naomi A.; Hannah, Matthew A.; Amtmann, Anna

    2016-01-01

    Intrinsically disordered proteins can adopt multiple conformations, thereby enabling interaction with a wide variety of partners. They often serve as hubs in protein interaction networks. We have previously shown that the Histone Deacetylase Complex 1 (HDC1) protein from Arabidopsis (Arabidopsis thaliana) interacts with histone deacetylases and quantitatively determines histone acetylation levels, transcriptional activity, and several phenotypes, including abscisic acid sensitivity during germination, vegetative growth rate, and flowering time. HDC1-type proteins are ubiquitous in plants, but they contain no known structural or functional domains. Here, we explored the protein interaction spectrum of HDC1 using a quantitative bimolecular fluorescence complementation assay in tobacco (Nicotiana benthamiana) epidermal cells. In addition to binding histone deacetylases, HDC1 directly interacted with histone H3-binding proteins and corepressor-associated proteins but not with H3 or the corepressors themselves. Surprisingly, HDC1 also was able to interact with variants of the linker histone H1. Truncation of HDC1 to the ancestral core sequence narrowed the spectrum of interactions and of phenotypic outputs but maintained binding to a H3-binding protein and to H1. Thus, HDC1 provides a potential link between H1 and histone-modifying complexes. PMID:26951436

  19. Overexpression of histone deacetylases in cancer cells is controlled by interplay of transcription factors and epigenetic modulators

    PubMed Central

    Yang, Hui; Salz, Tal; Zajac-Kaye, Maria; Liao, Daiqing; Huang, Suming; Qiu, Yi

    2014-01-01

    Histone deacetylases (HDACs) that deacetylate histone and nonhistone proteins play crucial roles in a variety of cellular processes. The overexpression of HDACs is reported in many cancer types and is directly linked to accelerated cell proliferation and survival. However, little is known about how HDAC expression is regulated in cancer cells. In this study, we found that HDAC1 and HDAC2 promoters are regulated through collaborative binding of transcription factors Sp1/Sp3 and epigenetic modulators, including histone H3K4 methyltransferase SET1 and histone acetyltransferase p300, whose levels are also elevated in colon cancer cell lines and patient samples. Interestingly, Sp1 and Sp3 differentially regulate HDAC1 and HDAC2 promoter activity. In addition, Sp1/Sp3 recruits SET1 and p300 to the promoters. SET1 knockdown (KD) results in a loss of the H3K4 trimethylation mark at the promoters, as well as destabilizes p300 at the promoters. Conversely, p300 also influences SET1 recruitment and H3K4me3 level, indicating a crosstalk between p300 and SET1. Further, SET1 KD reduces Sp1 binding to the HDAC1 promoter through the increase of Sp1 acetylation. These results indicate that interactions among transcription factors and epigenetic modulators orchestrate the activation of HDAC1 and HDAC2 promoter activity in colon cancer cells.—Yang, H., Salz, T., Zajac-Kaye, M., Liao, D., Huang, S., and Qiu, Y. Overexpression of histone deacetylases in cancer cells is controlled by interplay of transcription factors and epigenetic modulators. PMID:24948597

  20. The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia

    PubMed Central

    He, Yupeng; Ferguson, Debra; Jagadeeswaran, Sujatha; Osterling, Donald J.; Gao, Wenqing; Spence, Julie K.; Pliushchev, Marina; Sweis, Ramzi F.; Buchanan, Fritz G.; Michaelides, Michael R.; Shoemaker, Alexander R.; Tse, Chris; Chiang, Gary G.

    2015-01-01

    Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2) is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1), but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells. PMID:26147105

  1. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3

    PubMed Central

    Drané, Pascal; Ouararhni, Khalid; Depaux, Arnaud; Shuaib, Muhammad; Hamiche, Ali

    2010-01-01

    The histone variant H3.3 marks active chromatin by replacing the conventional histone H3.1. In this study, we investigate the detailed mechanism of H3.3 replication-independent deposition. We found that the death domain-associated protein DAXX and the chromatin remodeling factor ATRX (α-thalassemia/mental retardation syndrome protein) are specifically associated with the H3.3 deposition machinery. Bacterially expressed DAXX has a marked binding preference for H3.3 and assists the deposition of (H3.3–H4)2 tetramers on naked DNA, thus showing that DAXX is a H3.3 histone chaperone. In DAXX-depleted cells, a fraction of H3.3 was found associated with the replication-dependent machinery of deposition, suggesting that cells adapt to the depletion. The reintroduced DAXX in these cells colocalizes with H3.3 into the promyelocytic leukemia protein (PML) bodies. Moreover, DAXX associates with pericentric DNA repeats, and modulates the transcription from these repeats through assembly of H3.3 nucleosomes. These findings establish a new link between the PML bodies and the regulation of pericentric DNA repeat chromatin structure. Taken together, our data demonstrate that DAXX functions as a bona fide histone chaperone involved in the replication-independent deposition of H3.3. PMID:20504901

  2. Modeling the Dynamics of Bivalent Histone Modifications in Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Ku, Wai; Yuan, Guo; Sorrentino, Francesco; Girvan, Michelle; Ott, Edward

    2013-03-01

    Epigenetic modifications to histones may either promote the activation or repression of the transcription of nearby genes. Recent experiments have discovered bivalent domains of nucleosomes in which the domain as a whole contains both active and repressive marks. These domains occur in the promoters of most lineage-control genes in embryonic stem cells. It is generally agreed that bivalent domains play an important role in stem cell differentiation, but the mechanisms remain unclear. Here we propose and study a dynamical model of histone modification which, unlike previous models, captures the general features of the bivalent domains observed in experiments. A key feature of our model is the existence of ``A/R states,'' by which we mean states in which there are a significant number of nucleosomes each of which individually has both active and repressive marks. We use our model to investigate the formation and decay of A/R states, the localization of A/R nucleosomes, and the effect of DNA replication on the stability of A/R states. The goals of our model are to help understand the underlying principles and mechanisms of bivalent domain dynamics and to suggest directions for future experiments.

  3. Discovery of the First N-Hydroxycinnamamide-Based Histone Deacetylase 1/3 Dual Inhibitors with Potent Oral Antitumor Activity

    PubMed Central

    2015-01-01

    In our previous study, we designed and synthesized a novel series of N-hydroxycinnamamide-based HDAC inhibitors (HDACIs), among which the representative compound 14a exhibited promising HDACs inhibition and antitumor activity. In this current study, we report the development of a more potent class of N-hydroxycinnamamide-based HDACIs, using 14a as lead, among which, compound 11r gave IC50 values of 11.8, 498.1, 3.9, 2000.8, 5700.4, 308.2, and 900.4 nM for the inhibition of HDAC1, HDAC2, HDAC3, HDAC8, HDAC4, HDAC6, and HDAC11, exhibiting dual HDAC1/3 selectivity. Compounds 11e, 11r, 11w, and 11y showed excellent growth inhibition in multiple tumor cell lines. In vivo antitumor assay in U937 xenograft model identified compound 11r as a potent, orally active HDACI. To the best of our knowledge, this work constitutes the first report of oral active N-hydroxycinnamamide-based HDACIs with dual HDAC1/3 selectivity. PMID:24694055

  4. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic Acids as Novel Selective Histone Deacetylase-6 Inhibitors with Antiproliferative Activity

    PubMed Central

    Wang, Lei; Kofler, Marina; Brosch, Gerald; Melesina, Jelena; Sippl, Wolfgang; Martinez, Elisabeth D.; Easmon, Johnny

    2015-01-01

    We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-yl)piperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b) as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d) were active HDAC inhibitors, the meta substituted analogues (8a-d) were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1–1.0μM) over HDAC1 (IC50 = 0.9–6μM) and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity. PMID:26698121

  5. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang; Shin, Ki Soon; Kang, Shin Jung

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  6. macroH2A1 histone variant represses rDNA transcription.

    PubMed

    Cong, Rong; Das, Sadhan; Douet, Julien; Wong, Jiemin; Buschbeck, Marcus; Mongelard, Fabien; Bouvet, Philippe

    2014-01-01

    The regulation of ribosomal DNA transcription is an important step for the control of cell growth. Epigenetic marks such as DNA methylation and posttranslational modifications of canonical histones have been involved in this regulation, but much less is known about the role of histone variants. In this work, we show that the histone variant macroH2A1 is present on the promoter of methylated rDNA genes. The inhibition of the expression of macroH2A1 in human HeLa and HepG2 cells and in a mouse ES cell line resulted in an up to 5-fold increase of pre-rRNA levels. This increased accumulation of pre-rRNA is accompanied by an increase of the loading of RNA polymerase I and UBF on the rDNA without any changes in the number of active rDNA genes. The inhibition of RNA polymerase I transcription by actinomycin D or by knocking down nucleolin, induces the recruitment of macroH2A1 on the rDNA and the relocalization of macroH2A1 in the nucleolus. Interestingly, the inhibition of rDNA transcription induced by nucleolin depletion is alleviated by the inactivation of macroH2A1. These results demonstrate that macroH2A1 is a new factor involved in the regulation of rDNA transcription. PMID:24071584

  7. Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes

    PubMed Central

    Lhoumaud, Priscillia; Hennion, Magali; Gamot, Adrien; Cuddapah, Suresh; Queille, Sophie; Liang, Jun; Micas, Gael; Morillon, Pauline; Urbach, Serge; Bouchez, Olivier; Severac, Dany; Emberly, Eldon; Zhao, Keji; Cuvier, Olivier

    2014-01-01

    Chromosomal domains in Drosophila are marked by the insulator-binding proteins (IBPs) dCTCF/Beaf32 and cofactors that participate in regulating long-range interactions. Chromosomal borders are further enriched in specific histone modifications, yet the role of histone modifiers and nucleosome dynamics in this context remains largely unknown. Here, we show that IBP depletion impairs nucleosome dynamics specifically at the promoters and coding sequence of genes flanked by IBP binding sites. Biochemical purification identifies the H3K36 histone methyltransferase NSD/dMes-4 as a novel IBP cofactor, which specifically co-regulates the chromatin accessibility of hundreds of genes flanked by dCTCF/Beaf32. NSD/dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-dependent H3K36 trimethylation, nucleosome positioning, and RNA splicing. Our results unveil a model for how IBPs regulate nucleosome dynamics and gene expression through NSD/dMes-4, which may regulate H3K27me3 spreading. Our data uncover how IBPs dynamically regulate chromatin organization depending on distinct cofactors. PMID:24916307

  8. Genetically encoded molecular biosensors to image histone methylation in living animals.

    PubMed

    Sekar, Thillai V; Foygel, Kira; Gelovani, Juri G; Paulmurugan, Ramasamy

    2015-01-20

    Post-translational addition of methyl groups to the amino terminal tails of histone proteins regulates cellular gene expression at various stages of development and the pathogenesis of cellular diseases, including cancer. Several enzymes that modulate these post-translational modifications of histones are promising targets for development of small molecule drugs. However, there is no promising real-time histone methylation detection tool currently available to screen and validate potential small molecule histone methylation modulators in small animal models. With this in mind, we developed genetically encoded molecular biosensors based on the split-enzyme complementation approach for in vitro and in vivo imaging of lysine 9 (H3-K9 sensor) and lysine 27 (H3-K27 sensor) methylation marks of histone 3. These methylation sensors were validated in vitro in HEK293T, HepG2, and HeLa cells. The efficiency of the histone methylation sensor was assessed by employing methyltransferase inhibitors (Bix01294 and UNC0638), demethylase inhibitor (JIB-04), and siRNA silencing at the endogenous histone K9-methyltransferase enzyme level. Furthermore, noninvasive bioluminescence imaging of histone methylation sensors confirmed the potential of these sensors in monitoring histone methylation status in response to histone methyltransferase inhibitors in living animals. Experimental results confirmed that the developed H3-K9 and H3-K27 sensors are specific and sensitive to image the drug-induced histone methylation changes in living animals. These novel histone methylation sensors can facilitate the in vitro screening and in vivo characterization of new histone methyltransferase inhibitors and accelerate the pace of introduction of epigenetic therapies into the clinic. PMID:25506787

  9. Unaltered Angiogenesis-Regulating Activities of Platelets in Mild Type 2 Diabetes Mellitus despite a Marked Platelet Hyperreactivity.

    PubMed

    Miao, Xinyan; Zhang, Wei; Huang, Zhangsen; Li, Nailin

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is associated with platelet dysfunction and impaired angiogenesis. Aim of the study is to investigate if platelet dysfunction might hamper platelet angiogenic activities in T2DM patients. Sixteen T2DM patients and gender/age-matched non-diabetic controls were studied. Flow cytometry and endothelial colony forming cell (ECFC) tube formation on matrigel were used to assess platelet reactivity and angiogenic activity, respectively. Thrombin receptor PAR1-activating peptide (PAR1-AP) induced higher platelet P-selectin expression, and evoked more rapid and intense platelet annexin V binding in T2DM patients, seen as a more rapid increase of annexin V+ platelets (24.3±6.4% vs 12.6±3.8% in control at 2 min) and a higher elevation (30.9±5.1% vs 24.3±3.0% at 8 min). However, PAR1-AP and PAR4-AP induced similar releases of angiogenic regulators from platelets, and both stimuli evoked platelet release of platelet angiogenic regulators to similar extents in T2DM and control subjects. Thus, PAR1-stimulated platelet releasate (PAR1-PR) and PAR4-PR similarly enhanced capillary-like network/tube formation of ECFCs, and the enhancements did not differ between T2DM and control subjects. Direct supplementation of platelets to ECFCs at the ratio of 1:200 enhanced ECFC tube formation even more markedly, leading to approximately 100% increases of the total branch points of ECFC tube formation, for which the enhancements were also similar between patients and controls. In conclusion, platelets from T2DM subjects are hyperreactive. Platelet activation induced by high doses of PAR1-AP, however, results in similar releases of angiogenic regulators in mild T2DM and control subjects. Platelets from T2DM and control subjects also demonstrate similar enhancements on ECFC angiogenic activities. PMID:27612088

  10. The Histone Demethylase PHF2 Promotes Fat Cell Differentiation as an Epigenetic Activator of Both C/EBPα and C/EBPδ

    PubMed Central

    Lee, Kyoung-Hwa; Ju, Uk-Il; Song, Jung-Yup; Chun, Yang-Sook

    2014-01-01

    Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)α and C/EBPδ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation. PMID:25266703

  11. Mass Spectrometric Quantification of Histone Post-translational Modifications by a Hybrid Chemical Labeling Method

    PubMed Central

    Maile, Tobias M.; Izrael-Tomasevic, Anita; Cheung, Tommy; Guler, Gulfem D.; Tindell, Charles; Masselot, Alexandre; Liang, Jun; Zhao, Feng; Trojer, Patrick; Classon, Marie; Arnott, David

    2015-01-01

    Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a “one-pot” hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5. PMID:25680960

  12. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  13. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases.

    PubMed

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G J; Ourailidou, Maria E; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J; Dekker, Frank J

    2016-02-15

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, histone acetyltransferase inhibitors could reduce inflammatory responses. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4μM for histone acetyltransferase p300). C646 was described to affect the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. This pathway has been implicated in asthma and COPD. Therefore, we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, we demonstrate here that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  14. Histone demethylase LSD1 regulates adipogenesis.

    PubMed

    Musri, Melina M; Carmona, Mari Carmen; Hanzu, Felicia A; Kaliman, Perla; Gomis, Ramon; Párrizas, Marcelina

    2010-09-24

    Epigenetic mechanisms, in particular the enzymatic modification of histones, are a crucial element of cell differentiation, a regulated process that allows a precursor cell basically to turn into a different cell type while maintaining the same genetic equipment. We have previously described that the promoters of adipogenic genes display significant levels of dimethylation at the Lys(4) of histone H3 (H3K4) in preadipocytes, where these genes are still silenced, thus maintaining the chromatin of the precursor cell in a receptive state. Here, we show that the expression of several histone demethylases and methyltransferases increases during adipogenesis, suggesting an important role for these proteins in this process. Knockdown of the H3K4/K9 demethylase LSD1 results in markedly decreased differentiation of 3T3-L1 preadipocytes. This outcome is associated with decreased H3K4 dimethylation and increased H3K9 dimethylation at the promoter of transcription factor cebpa, whose expression must be induced >200-fold upon stimulation of differentiation. Thus, our data suggest that LSD1 acts to maintain a permissive state of the chromatin in this promoter by opposing the action of a H3K9 methyltransferase. Knockdown of H3K9 methyltransferase SETDB1 produced the opposite results, by decreasing H3K9 dimethylation and increasing H3K4 dimethylation levels at the cebpa promoter and favoring differentiation. These findings indicate that the histone methylation status of adipogenic genes as well as the expression and function of the proteins involved in its maintenance play a crucial role in adipogenesis. PMID:20656681

  15. Histone Demethylase LSD1 Regulates Adipogenesis*

    PubMed Central

    Musri, Melina M.; Carmona, Mari Carmen; Hanzu, Felicia A.; Kaliman, Perla; Gomis, Ramon; Párrizas, Marcelina

    2010-01-01

    Epigenetic mechanisms, in particular the enzymatic modification of histones, are a crucial element of cell differentiation, a regulated process that allows a precursor cell basically to turn into a different cell type while maintaining the same genetic equipment. We have previously described that the promoters of adipogenic genes display significant levels of dimethylation at the Lys4 of histone H3 (H3K4) in preadipocytes, where these genes are still silenced, thus maintaining the chromatin of the precursor cell in a receptive state. Here, we show that the expression of several histone demethylases and methyltransferases increases during adipogenesis, suggesting an important role for these proteins in this process. Knockdown of the H3K4/K9 demethylase LSD1 results in markedly decreased differentiation of 3T3-L1 preadipocytes. This outcome is associated with decreased H3K4 dimethylation and increased H3K9 dimethylation at the promoter of transcription factor cebpa, whose expression must be induced >200-fold upon stimulation of differentiation. Thus, our data suggest that LSD1 acts to maintain a permissive state of the chromatin in this promoter by opposing the action of a H3K9 methyltransferase. Knockdown of H3K9 methyltransferase SETDB1 produced the opposite results, by decreasing H3K9 dimethylation and increasing H3K4 dimethylation levels at the cebpa promoter and favoring differentiation. These findings indicate that the histone methylation status of adipogenic genes as well as the expression and function of the proteins involved in its maintenance play a crucial role in adipogenesis. PMID:20656681

  16. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation.

    PubMed

    Funato, Kosuke; Major, Tamara; Lewis, Peter W; Allis, C David; Tabar, Viviane

    2014-12-19

    Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis is not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice. PMID:25525250

  17. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation

    PubMed Central

    Funato, Kosuke; Major, Tamara; Lewis, Peter W.; Allis, C. David; Tabar, Viviane

    2016-01-01

    Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice. PMID:25525250

  18. Polar Markings

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02155 Polar Markings

    These bright and dark markings occurred near the end of summer in the south polar region. The dark material is likely dust that has been freed of frost cover.

    Image information: VIS instrument. Latitude -76.3N, Longitude 84.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Altered Memory Capacities and Response to Stress in p300/CBP-Associated Factor (PCAF) Histone Acetylase Knockout Mice

    PubMed Central

    Maurice, Tangui; Duclot, Florian; Meunier, Johann; Naert, Gaëlle; Givalois, Laurent; Meffre, Julie; Célérier, Aurélie; Jacquet, Chantal; Copois, Virginie; Mechti, Nadir; Ozato, Keiko; Gongora, Céline

    2008-01-01

    Chromatin remodeling by post-translational modification of histones plays an important role in brain plasticity, including memory, response to stress and depression. The importance of H3/4 histones acetylation by CREB binding protein (CBP) or related histone acetyltransferase, including p300, was specifically demonstrated using knockout (KO) mouse models. The physiological role of a related protein that also acts as a transcriptional coactivator with intrinsic histone acetylase activity, the p300/CBP associated factor (PCAF), is poorly documented. We analyzed the behavioral phenotype of homozygous male and female PCAF KO mice and report a marked impact of PCAF deletion on memory processes and stress response. PCAF KO animals showed short-term memory deficits at 2 months of age, measured using spontaneous alternation, object recognition or acquisition of a daily changing platform position in the water-maze. Acquisition of a fixed platform location was delayed, but preserved, and no passive avoidance deficit was noted. No gender-related difference was observed. These deficits were associated with hippocampal alterations in pyramidal cell layer organization, basal levels of Fos immunoreactivity and MAP kinase activation. PCAF KO mice also showed an exaggerated response to acute stress, forced swimming and conditioned fear, associated with increased plasma corticosterone levels. Moreover, learning and memory impairments worsened at 6 and 12 months of age, when animals failed to acquire the fixed platform location in the water-maze and showed passive avoidance deficits. These observations demonstrate that PCAF histone acetylase is involved lifelong in the chromatin remodeling necessary for memory formation and response to stress. PMID:17805310

  20. Histone H1--DNA interaction. On the mechanism of DNA strands crosslinking by histone H1.

    PubMed Central

    Glotov, B O; Nikolaev, L G; Severin, E S

    1978-01-01

    Crosslinking of DNA fibers by histone H1 or phosphorylated on Ser-37 histone H1, and by the individual fragments of the H1 polypeptide chain was studied by the method of turbidimetry. The dependence of the turbidity of DNA-protein complexes on the ionic strength in solution suggests that the condensation of H1.DNA complexes in vitro is apparently due to both specific histone-DNA interactions with the contribution of hydrogen and/or hydrophobic bonds and the formation of polycationic "bridges" fastening the DNA fibers. The effectiveness of the condensation is postulated to be a function of a proportion between the two mechanisms which in turn can be controlled by slight changes in ionic surroundings. The sharp dependence of shrinkage of H1.DNA complexes on ionic strength at "physiological" salt concentrations could provide a mechanism to regulate density and consequently the total activity of chromatin in the cell nuclei. The phosphorylation of histone H1 on Ser-37 by a specific histone kinase does not noticeably affect the pattern of DNA crosslinking by the H1. Images PMID:27766

  1. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    PubMed Central

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  2. Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis.

    PubMed

    Zhou, Yuanfei; Peng, Jian; Jiang, Siwen

    2014-04-01

    Adipogenesis is a complex process strictly regulated by a well-established cascade that has been thoroughly studied in the last two decades. This process is governed by complex regulatory networks that involve the activation/inhibition of multiple functional genes, and is controlled by histone-modifying enzymes. Among such modification enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the transcriptional regulation and post-translational modification of protein acetylation. HATs and HDACs have been shown to respond to signals that regulate cell differentiation, participate in the regulation of protein acetylation, mediate transcription and post-translation modifications, and directly acetylate/deacetylate various transcription factors and regulatory proteins. In this paper, we review the role of HATs and HDACs in white and brown adipocyte differentiation and adipogenesis, to expand our knowledge on fat formation and adipose tissue biology. PMID:24810880

  3. Nucleosomal structure at hyperacetylated loci probed in nuclei by DNA-histone crosslinking.

    PubMed Central

    Ebralidse, K K; Hebbes, T R; Clayton, A L; Thorne, A W; Crane-Robinson, C

    1993-01-01

    Chemically induced histone-DNA crosslinking in nuclei is used to monitor structural changes in chromosomal domains containing hyperacetylated histones. Core particles harbouring the crosslinks are immunofractionated with antibodies specific for acetylated histones. Crosslinking is revealed by gel separation of tryptic peptides from core histones that carry 32P-labelled residual nucleotide. The large number of DNA-histone crosslinks retained indicates that acetylated core histone tails are not totally displaced from the DNA. Changes in the patterns of crosslinked peptides imply a restructuring of hyperacetylated histone-DNA interactions at several points within the nucleosome. This demonstrates that a distinct conformational state is adopted in acetylated nucleosomes, known to be concentrated at transcriptionally active loci. Images PMID:8233821

  4. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis. PMID:25875381

  5. Mice expressing markedly reduced striatal dopamine transporters exhibit increased locomotor activity, dopamine uptake turnover rate, and cocaine responsiveness.

    PubMed

    Rao, Anjali; Sorkin, Alexander; Zahniser, Nancy R

    2013-10-01

    Variations in the expression levels of the dopamine transporter (DAT) can influence responsiveness to psychostimulant drugs like cocaine. To better understand this relationship, we studied a new DAT-low expresser (DAT-LE) mouse model and performed behavioral and biochemical studies with it. Immunoblotting and [(3) H]WIN 35,428 binding analyses revealed that these mice express ∼35% of wildtype (WT) mouse striatal DAT levels. Compared to WT mice, DAT-LE mice were hyperactive in a novel open-field environment. Despite their higher basal locomotor activity, cocaine (10 or 20 mg/kg, i.p.) induced greater locomotor activation in DAT-LE mice than in WT mice. The maximal velocity (Vmax ) of DAT-mediated [(3) H]DA uptake into striatal synaptosomes was reduced by 46% in DAT-LE mice, as compared to WT. Overall, considering the reduced number of DAT binding sites (Bmax ) along with the reduced Vmax in DAT-LE mice, a 2-fold increase in DA uptake turnover rate (Vmax /Bmax ) was found, relative to WT mice. This suggests that neuroadaptive changes have occurred in the DAT-LE mice that would help to compensate for their low DAT numbers. Interestingly, these changes do not include a reduction in tyrosine hydroxylase levels, as was previously reported in DAT knockout homozygous and heterozygous animals. Further, these changes are not sufficient to prevent elevated novelty- and cocaine-induced locomotor activity. Hence, these mice represent a unique model for studying changes of in vivo DAT function and regulation that result from markedly reduced levels of DAT expression. PMID:23564231

  6. Epigenetic change in kidney tumor: downregulation of histone acetyltransferase MYST1 in human renal cell carcinoma

    PubMed Central

    2013-01-01

    Background MYST1 (also known as hMOF), a member of the MYST family of histone acetyltransferases (HATs) as an epigenetic mark of active genes, is mainly responsible for histone H4K16 acetylation in the cells. Recent studies have shown that the abnormal gene expression of hMOF is involved in certain primary cancers. Here we examined the involvement of hMOF expression and histone H4K16 acetylation in primary renal cell carcinoma (RCC). Simultaneously, we investigated the correlation between the expression of hMOF and clear cell RCC (ccRCC) biomarker carbohydrase IX (CA9) in RCC. Materials and methods The frozen RCC tissues and RCC cell lines as materials, the reverse transcription polymerase chain reaction (RT-PCR), western blotting and immunohistochemical staining approaches were used. Results RT-PCR results indicate that hMOF gene expression levels frequently downregulated in 90.5% of patients (19/21) with RCC. The reduction of hMOF protein in both RCC tissues and RCC cell lines is tightly correlated with acetylation of histone H4K16. In addition, overexpression of CA9 was detected in 100% of ccRCC patients (21/21). However, transient transfection of hMOF in ccRCC 786–0 cells did not affect both the gene and protein expression of CA9. Conclusion hMOF as an acetyltransferase of H4K16 might be involved in the pathogenesis of kidney cancer, and this epigenetic changes might be a new CA9-independent RCC diagnostic maker. PMID:23394073

  7. Recognition of Multivalent Histone States Associated with Heterochromatin by UHRF1 Protein

    SciTech Connect

    Nady, Nataliya; Lemak, Alexander; Walker, John R.; Avvakumov, George V.; Kareta, Michael S.; Achour, Mayada; Xue, Sheng; Duan, Shili; Allali-Hassani, Abdellah; Zuo, Xiaobing; Wang, Yun-Xing; Bronner, Christian; Chédin, Frédéric; Arrowsmith, Cheryl H.; Dhe-Paganon, Sirano

    2012-09-19

    Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16{sup INK4A}, when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.

  8. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development

    PubMed Central

    Canovas, Sebastian; Cibelli, Jose B.; Ross, Pablo J.

    2012-01-01

    Understanding the mechanisms of epigenetic remodeling that follow fertilization is a fundamental step toward understanding the bases of early embryonic development and pluripotency. Extensive and dynamic chromatin remodeling is observed after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate embryonic genome activation. In particular, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcription repression. Global levels of this epigenetic mark are high in oocyte chromatin and decrease to minimal levels at the time of embryonic genome activation. We provide evidence that the decrease in H3K27me3 observed during early development is cell-cycle independent, suggesting an active mechanism for removal of this epigenetic mark. Among H3K27me3-specific demethylases, Jumonji domain-containing protein 3 (JMJD3), but not ubiquitously transcribed tetratricopeptide repeat X (UTX), present high transcript levels in oocytes. Soon after fertilization JMJD3 protein levels increase, concurrent with a decrease in mRNA levels. This pattern of expression suggests maternal inheritance of JMJD3. Knockdown of JMJD3 by siRNA injection in parthenogenetically activated metaphase II oocytes resulted in inhibition of the H3K27me3 decrease normally observed in preimplantation embryos. Moreover, knockdown of JMJD3 in oocytes reduced the rate of blastocyst development. Overall, these results indicate that JMJD3 is involved in active demethylation of H3K27me3 during early embryo development and that this mark plays an important role during the progression of embryos to blastocysts. PMID:22308433

  9. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development.

    PubMed

    Canovas, Sebastian; Cibelli, Jose B; Ross, Pablo J

    2012-02-14

    Understanding the mechanisms of epigenetic remodeling that follow fertilization is a fundamental step toward understanding the bases of early embryonic development and pluripotency. Extensive and dynamic chromatin remodeling is observed after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate embryonic genome activation. In particular, trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcription repression. Global levels of this epigenetic mark are high in oocyte chromatin and decrease to minimal levels at the time of embryonic genome activation. We provide evidence that the decrease in H3K27me3 observed during early development is cell-cycle independent, suggesting an active mechanism for removal of this epigenetic mark. Among H3K27me3-specific demethylases, Jumonji domain-containing protein 3 (JMJD3), but not ubiquitously transcribed tetratricopeptide repeat X (UTX), present high transcript levels in oocytes. Soon after fertilization JMJD3 protein levels increase, concurrent with a decrease in mRNA levels. This pattern of expression suggests maternal inheritance of JMJD3. Knockdown of JMJD3 by siRNA injection in parthenogenetically activated metaphase II oocytes resulted in inhibition of the H3K27me3 decrease normally observed in preimplantation embryos. Moreover, knockdown of JMJD3 in oocytes reduced the rate of blastocyst development. Overall, these results indicate that JMJD3 is involved in active demethylation of H3K27me3 during early embryo development and that this mark plays an important role during the progression of embryos to blastocysts. PMID:22308433

  10. Autoacetylation of the Histone Acetyltransferase Rtt109*

    PubMed Central

    Albaugh, Brittany N.; Arnold, Kevin M.; Lee, Susan; Denu, John M.

    2011-01-01

    Rtt109 is a yeast histone acetyltransferase (HAT) that associates with histone chaperones Asf1 and Vps75 to acetylate H3K56, H3K9, and H3K27 and is important in DNA replication and maintaining genomic integrity. Recently, mass spectrometry and structural studies of Rtt109 have shown that active site residue Lys-290 is acetylated. However, the functional role of this modification and how the acetyl group is added to Lys-290 was unclear. Here, we examined the mechanism of Lys-290 acetylation and found that Rtt109 catalyzes intramolecular autoacetylation of Lys-290 ∼200-times slower than H3 acetylation. Deacetylated Rtt109 was prepared by reacting with a sirtuin protein deacetylase, producing an enzyme with negligible HAT activity. Autoacetylation of Rtt109 restored full HAT activity, indicating that autoacetylation is necessary for HAT activity and is a fully reversible process. To dissect the mechanism of activation, biochemical, and kinetic analyses were performed with Lys-290 variants of the Rtt109-Vps75 complex. We found that autoacetylation of Lys-290 increases the binding affinity for acetyl-CoA and enhances the rate of acetyl-transfer onto histone substrates. This study represents the first detailed investigation of a HAT enzyme regulated by single-site intramolecular autoacetylation. PMID:21606491

  11. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation

    SciTech Connect

    Zhou Xue; Li Qin; Arita, Adriana; Sun Hong; Costa, Max

    2009-04-01

    Occupational exposure to nickel (Ni), chromium (Cr), and arsenic (As) containing compounds has been associated with lung cancer and other adverse health effects. Their carcinogenic properties may be attributable in part, to activation and/or repression of gene expression induced by changes in the DNA methylation status and histone tail post-translational modifications. Here we show that individual treatment with nickel, chromate, and arsenite all affect the gene activating mark H3K4 methylation. We found that nickel (1 mM), chromate (10 {mu}M), and arsenite (1 {mu}M) significantly increase tri-methyl H3K4 after 24 h exposure in human lung carcinoma A549 cells. Seven days of exposure to lower levels of nickel (50 and 100 {mu}M), chromate (0.5 and 1 {mu}M) or arsenite (0.1, 0.5 and 1 {mu}M) also increased tri-methylated H3K4 in A549 cells. This mark still remained elevated and inherited through cell division 7 days following removal of 1 {mu}M arsenite. We also demonstrate by dual staining immunofluorescence microscopy that both H3K4 tri-methyl and H3K9 di-methyl marks increase globally after 24 h exposure to each metal treatment in A549 cells. However, the tri-methyl H3K4 and di-methyl H3K9 marks localize in different regions in the nucleus of the cell. Thus, our study provides further evidence that a mechanism(s) of carcinogenicity of nickel, chromate, and arsenite metal compounds may involve alterations of various histone tail modifications that may in turn affect the expression of genes that may cause transformation.

  12. Identification of CKD-516: a potent tubulin polymerization inhibitor with marked antitumor activity against murine and human solid tumors.

    PubMed

    Lee, Jaekwang; Kim, Soo Jin; Choi, Hojin; Kim, Young Hoon; Lim, In Taek; Yang, Hyun-mo; Lee, Chang Sik; Kang, Hee Ryong; Ahn, Soon Kil; Moon, Seung Kee; Kim, Dal-Hyun; Lee, Sungsook; Choi, Nam Song; Lee, Kyung Joo

    2010-09-01

    Tubulin polymerization inhibitors had emerged as one of promising anticancer therapeutics because of their dual mechanism of action, i.e. apoptosis by cell-cycle arrest and VDA, vascular disrupting agent. VDAs are believed to be more efficient, less toxic, and several of them are currently undergoing clinical trials. To identify novel tubulin inhibitors that possess potent cytotoxicity and strong inhibition of tubulin polymerization as well as potent in vivo antitumor efficacy, we have utilized benzophenone scaffold. Complete SAR analysis of newly synthesized analogues that were prepared by incorporation of small heterocycles (C2, C4, and C5 position) into B-ring along with the evaluation of their in vitro cytotoxicity, tubulin polymerization inhibition, and in vivo antitumor activity allowed us to identify 22 (S516). Compound 22 was found to have potent cytotoxicity against several cancer cells including P-gp overexpressing MDR positive cell line (HCT15). It also induced cell cycle arrest at G(2)/M phase, which is associated with strong inhibition of tubulin polymerization. Its in vivo efficacy was improved by preparing its (l)-valine prodrug, 65 (CKD-516), which together with greatly improved aqueous solubility has shown marked antitumor efficacy against both murine tumors (CT26 and 3LL) and human xenogratfs (HCT116 and HCT15) in mice. PMID:20690624

  13. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

    PubMed Central

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A.; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies. PMID:25365782

  14. Characterization of histone H3K27 modifications in the {beta}-globin locus

    SciTech Connect

    Kim, Yea Woon; Kim, AeRi

    2011-02-11

    Research highlights: {yields} The {beta}-globin locus control region is hyperacetylated and monomethylated at histone H3K27. {yields} Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. {yields} Association of PRC2 subunits is comparable with H3K27me3 pattern. {yields} Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human {beta}-globin locus using the ChIP assay. The LCR of the human {beta}-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the {beta}-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  15. The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails

    PubMed Central

    Wilson, David R.; Norton, Darrell D.; Fugmann, Sebastian D.

    2008-01-01

    V(D)J recombination is a somatic gene rearrangement process that assembles antigen receptor genes from individual segments during lymphocyte development. The access of the RAG1/RAG2 recombinase to these gene segments is regulated at the level of chromatin modifications, in particular histone tail modifications. Trimethylation of lysine 4 in histone H3 (H3K4me3) correlates with actively recombining gene elements, and this mark is recognized and interpreted by the plant homeodomain (PHD) of RAG2. Here we report that the PHD domain of the only known invertebrate homolog of RAG2, the SpRAG2L protein of the purple sea urchin (Strongylocentrotus purpuratus) also binds to methylated histones, but with a unique preference for H3K4me2. While the cognate substrate for the sea urchin RAG1L/RAG2L complex remains elusive, the affinity for histone tails and the nuclear localization of ectopically expressed SpRAG2L strongly support the model that this enzyme complex exerts its activity on DNA in the context of chromatin. PMID:18499250

  16. The PHD domain of the sea urchin RAG2 homolog, SpRAG2L, recognizes dimethylated lysine 4 in histone H3 tails.

    PubMed

    Wilson, David R; Norton, Darrell D; Fugmann, Sebastian D

    2008-01-01

    V(D)J recombination is a somatic gene rearrangement process that assembles antigen receptor genes from individual segments during lymphocyte development. The access of the RAG1/RAG2 recombinase to these gene segments is regulated at the level of chromatin modifications, in particular histone tail modifications. Trimethylation of lysine 4 in histone H3 (H3K4me3) correlates with actively recombining gene elements, and this mark is recognized and interpreted by the plant homeodomain (PHD) of RAG2. Here we report that the PHD domain of the only known invertebrate homolog of RAG2, the SpRAG2L protein of the purple sea urchin (Strongylocentrotus purpuratus) also binds to methylated histones, but with a unique preference for H3K4me2. While the cognate substrate for the sea urchin RAG1L/RAG2L complex remains elusive, the affinity for histone tails and the nuclear localization of ectopically expressed SpRAG2L strongly support the model that this enzyme complex exerts its activity on DNA in the context of chromatin. PMID:18499250

  17. Synthesis of 1,2-benzisoxazole tethered 1,2,3-triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing p21 and tubulin acetylation.

    PubMed

    Ashwini, Nanjundaswamy; Garg, Manoj; Mohan, Chakrabhavi Dhananjaya; Fuchs, Julian E; Rangappa, Shobith; Anusha, Sebastian; Swaroop, Toreshettahally Ramesh; Rakesh, Kodagahalli S; Kanojia, Deepika; Madan, Vikas; Bender, Andreas; Koeffler, H Phillip; Basappa; Rangappa, Kanchugarakoppal S

    2015-09-15

    1,2,3-Triazole-based heterocycles have previously been shown to possess significant anticancer activity in various tumor models. In the present study, we attached a 1,2,3-triazole moiety to the third position of a 1,2-benzisoxazole heterocycle via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with various alkynes and established for the title compounds significant antiproliferative effect against human acute myeloid leukemia (AML) cells. Among the tested compounds, 3-(4-(4-phenoxyphenyl)-1H-1,2,3-triazol-1-yl)benzo[d]isoxazole (PTB) was found to be the most potent antiproliferative agent with an IC50 of 2 μM against MV4-11 cells using MTT assay. Notably, PTB induced cytotoxicity in MOLM13, MOLM14 and MV4-11 cells with selectivity over normal bone marrow cells (C57BL/6). Furthermore, PTB was found to induce cytotoxicity by increasing apoptosis of AML cells (MOLM13, MOLM14 and MV4-11) as well as sub-G1 cell population and apoptotic cells at submicromolar concentrations, as shown by flow cytometry and Annexin-V staining, respectively. On the protein level we suggested histone deacetylases (HDACs) as the potential protein target of those compounds in silico, and the predicted target was next experimentally validated by measuring the variations in the levels of p21, cyclin D and acetylation of histone H3 and tubulin. Molecular docking analysis of the title compounds with the second deacetylase domain of HDAC6 displayed high degree of shape complementarity to the binding site of the enzyme, forming multiple molecular interactions in the hydrophobic region as well as a hydrogen bond to the phenol side-chain of Tyr-782. Thus, 1,2,3-triazole derivatives appear to represent a class of novel, biologically active ligands against histone deacetylases which deserve to be further evaluated in their applications in the cancer field. PMID:26299825

  18. Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy

    PubMed Central

    Haery, Leila; Thompson, Ryan C.; Gilmore, Thomas D.

    2015-01-01

    The development of B and T cells from hematopoietic precursors and the regulation of the functions of these immune cells are complex processes that involve highly regulated signaling pathways and transcriptional control. The signaling pathways and gene expression patterns that give rise to these developmental processes are coordinated, in part, by two opposing classes of broad-based enzymatic regulators: histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs can modulate gene transcription by altering histone acetylation to modify chromatin structure, and by regulating the activity of non-histone substrates, including an array of immune-cell transcription factors. In addition to their role in normal B and T cells, dysregulation of HAT and HDAC activity is associated with a variety of B- and T-cell malignancies. In this review, we describe the roles of HATs and HDACs in normal B- and T-cell physiology, describe mutations and dysregulation of HATs and HDACs that are implicated lymphoma and leukemia, and discuss HAT and HDAC inhibitors that have been explored as treatment options for leukemias and lymphomas. PMID:26124919

  19. UpSET recruits HDAC complexes and restricts chromatin accessibility and histone acetylation at promoter regions

    PubMed Central

    Rincon-Arano, Hector; Halow, Jessica; Delrow, Jeffrey J.; Parkhurst, Susan M.; Groudine, Mark

    2012-01-01

    Developmental gene expression results from the orchestrated interplay between genetic and epigenetic mechanisms. Here we describe upSET, a transcriptional regulator encoding a SET domain-containing protein recruited to active and inducible genes in Drosophila. However, unlike other Drosophila SET proteins associated with gene transcription, UpSET is part of an Rpd3/Sin3-containing complex that restricts chromatin accessibility and histone acetylation to promoter regions. In the absence of UpSET, active chromatin marks and chromatin accessibility increase and spread to genic and flanking regions due to destabilization of the histone deacetylase complex. Consistent with this, transcriptional noise increases, as manifest by activation of repetitive elements and off-target genes. Interestingly, upSET mutant flies are female sterile due to up-regulation of key components of Notch signaling during oogenesis. Thus UpSET defines a class of metazoan transcriptional regulators required to fine tune transcription by preventing the spread of active chromatin. PMID:23177352

  20. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2

    PubMed Central

    Justin, Neil; Zhang, Ying; Tarricone, Cataldo; Martin, Stephen R.; Chen, Shuyang; Underwood, Elizabeth; De Marco, Valeria; Haire, Lesley F.; Walker, Philip A.; Reinberg, Danny; Wilson, Jon R.; Gamblin, Steven J.

    2016-01-01

    Polycomb repressive complex 2 (PRC2) silences gene expression through trimethylation of K27 of histone H3 (H3K27me3) via its catalytic SET domain. A missense mutation in the substrate of PRC2, histone H3K27M, is associated with certain pediatric brain cancers and is linked to a global decrease of H3K27me3 in the affected cells thought to be mediated by inhibition of PRC2 activity. We present here the crystal structure of human PRC2 in complex with the inhibitory H3K27M peptide bound to the active site of the SET domain, with the methionine residue located in the pocket that normally accommodates the target lysine residue. The structure and binding studies suggest a mechanism for the oncogenic inhibition of H3K27M. The structure also reveals how binding of repressive marks, like H3K27me3, to the EED subunit of the complex leads to enhancement of the catalytic efficiency of the SET domain and thus the propagation of this repressive histone modification. PMID:27121947

  1. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2.

    PubMed

    Justin, Neil; Zhang, Ying; Tarricone, Cataldo; Martin, Stephen R; Chen, Shuyang; Underwood, Elizabeth; De Marco, Valeria; Haire, Lesley F; Walker, Philip A; Reinberg, Danny; Wilson, Jon R; Gamblin, Steven J

    2016-01-01

    Polycomb repressive complex 2 (PRC2) silences gene expression through trimethylation of K27 of histone H3 (H3K27me3) via its catalytic SET domain. A missense mutation in the substrate of PRC2, histone H3K27M, is associated with certain pediatric brain cancers and is linked to a global decrease of H3K27me3 in the affected cells thought to be mediated by inhibition of PRC2 activity. We present here the crystal structure of human PRC2 in complex with the inhibitory H3K27M peptide bound to the active site of the SET domain, with the methionine residue located in the pocket that normally accommodates the target lysine residue. The structure and binding studies suggest a mechanism for the oncogenic inhibition of H3K27M. The structure also reveals how binding of repressive marks, like H3K27me3, to the EED subunit of the complex leads to enhancement of the catalytic efficiency of the SET domain and thus the propagation of this repressive histone modification. PMID:27121947

  2. Interrogating Substrate Selectivity and Composition of Endogenous Histone Deacetylase Complexes with Chemical Probes.

    PubMed

    Dose, Alexander; Sindlinger, Julia; Bierlmeier, Jan; Bakirbas, Ahmet; Schulze-Osthoff, Klaus; Einsele-Scholz, Stephanie; Hartl, Markus; Essmann, Frank; Finkemeier, Iris; Schwarzer, Dirk

    2016-01-18

    Histone deacetylases (HDACs) regulate the function and activity of numerous cellular proteins by removing acetylation marks from regulatory lysine residues. We have developed peptide-based HDAC probes that contain hydroxamate amino acids of various lengths to replace modified lysine residues in the context of known acetylation sites. The interaction profiles of all human HDACs were studied with three sets of probes, which derived from different acetylation sites, and sequence context was found to have a strong impact on substrate recognition and composition of HDAC complexes. By investigating K382 acetylation of the tumor suppressor p53 as an example, we further demonstrate that the interaction profiles reflect the catalytic activities of respective HDACs. These results underline the utility of the newly established probes for deciphering not only activity, but also substrate selectivity and composition of endogenous HDAC complexes, which can hardly be achieved otherwise. PMID:26662792

  3. HDAC8 Substrates: Histones and Beyond

    PubMed Central

    Wolfson, Noah A.; Pitcairn, Carol Ann; Fierke, Carol A.

    2012-01-01

    The lysine deacetylase family of enzymes (HDACs) was first demonstrated to catalyze deacetylation of acetyllysine residues on histones. In subsequent years, HDACs have been shown to recognize a large pool of acetylated non-histone proteins as substrates. Recently, thousands of acetylated proteins have been discovered, yet in most cases, the HDAC that catalyzes deacetylation in vivo has not been identified. This gap has created the need for better in vivo, in vitro, and in silico approaches for determining HDAC substrates. While HDAC8 is the best kinetically and structurally characterized HDAC, few efficient substrates have yet been substantiated in vivo. In this review we delineate factors that may be important for determining HDAC8 substrate recognition and catalytic activity, including structure, complex formation, and post-translational modifications. This summary provides insight into the challenges of identifying in vivo substrates for HDAC8, and provides a good vantage point for understanding the variables important for predicting HDAC substrate recognition. PMID:23175386

  4. LSD1 Histone Demethylase Assays and Inhibition.

    PubMed

    Hayward, D; Cole, P A

    2016-01-01

    The lysine-specific demethylase (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from histone H3 at the Lys4 position. Along with histone deacetylases 1 and 2, LSD1 is involved in epigenetically silencing gene expression. LSD1 has been implicated as a potential therapeutic target in cancer and other diseases. In this chapter, we discuss several approaches to measure LSD1 demethylase activity and their relative strengths and limitations for inhibitor discovery and mechanistic characterization. In addition, we review the principal established chemical functional groups derived from monoamine oxidase inhibitors that have been investigated in the context of LSD1 as demethylase inhibitors. Finally, we highlight a few examples of recently developed LSD1 mechanism-based inactivators and their biomedical applications. PMID:27372757

  5. DNA and histone methylation in gastric carcinogenesis

    PubMed Central

    Calcagno, Danielle Queiroz; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Burbano, Rommel Rodriguez; Smith, Marília de Arruda Cardoso

    2013-01-01

    Epigenetic alterations contribute significantly to the development and progression of gastric cancer, one of the leading causes of cancer death worldwide. Epigenetics refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches that target DNA methylation and histone modifications have emerged. A greater understanding of epigenetics and the therapeutic potential of manipulating these processes is necessary for gastric cancer treatment. Here, we review recent research on the effects of aberrant DNA and histone methylation on the onset and progression of gastric tumors and the development of compounds that target enzymes that regulate the epigenome. PMID:23482412

  6. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75

    SciTech Connect

    Berndsen, Christopher E; Tsubota, Toshiaki; Lindner, Scott E; Lee, Susan; Holton, James M; Kaufman, Paul D; Keck, James L; Denu, John M

    2010-01-12

    Histone acetylation and nucleosome remodeling regulate DNA damage repair, replication and transcription. Rtt109, a recently discovered histone acetyltransferase (HAT) from Saccharomyces cerevisiae, functions with the histone chaperone Asf1 to acetylate lysine K56 on histone H3 (H3K56), a modification associated with newly synthesized histones. In vitro analysis of Rtt109 revealed that Vps75, a Nap1 family histone chaperone, could also stimulate Rtt109-dependent acetylation of H3K56. However, the molecular function of the Rtt109-Vps75 complex remains elusive. Here we have probed the molecular functions of Vps75 and the Rtt109-Vps75 complex through biochemical, structural and genetic means. We find that Vps75 stimulates the kcat of histone acetylation by {approx}100-fold relative to Rtt109 alone and enhances acetylation of K9 in the H3 histone tail. Consistent with the in vitro evidence, cells lacking Vps75 showed a substantial reduction (60%) in H3K9 acetylation during S phase. X-ray structural, biochemical and genetic analyses of Vps75 indicate a unique, structurally dynamic Nap1-like fold that suggests a potential mechanism of Vps75-dependent activation of Rtt109. Together, these data provide evidence for a multifunctional HAT-chaperone complex that acetylates histone H3 and deposits H3-H4 onto DNA, linking histone modification and nucleosome assembly.

  7. Role of peroxynitrite induced structural changes on H2B histone by physicochemical method.

    PubMed

    Khan, M Asad; Alam, Khursheed; Dixit, Kiran; Rizvi, M Moshahid A

    2016-01-01

    Histones are small highly conserved cationic proteins which bind DNA and remain confined in the nucleus. These histones are quite vulnerable to oxidizing and nitrating agents. Peroxynitrite is a powerful oxidant and nitrating agent present in the biological system. In this study, peroxynitrite-induced nitration and oxidation of H2B was assessed by various physicochemical techniques. The carbonyl content and dityrosine were markedly elevated in peroxynitrite-modified H2B histone as compared to the native histone. Cross-linking of H2B was evident on polyacrylamide gel electrophoresis. 3-Nitrotyrosine was present only in peroxynitrite-modified H2B revealed by HPLC. The results showed that peroxynitrite-mediated nitration and oxidation in H2B histone exhibited hyperchromicity, decrease of tyrosine fluorescence accompanied by increase in ANS-binding specific fluorescence, loss of β-sheet structure, appearance of new peak in FT-IR, increase in melting temperature and also loss of α-helix to produce a partially folded structure in comparison to intrinsically disordered structure of native H2B histone. We concluded that the H2B histone, a constituent of core histones, is highly sensitive to peroxynitrite and can adopt different structures under nitrosative and oxidative stress in order to protect the packaged DNA from the deleterious insult of peroxynitrite. PMID:26536630

  8. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.

    PubMed

    Soldi, Monica; Cuomo, Alessandro; Bonaldi, Tiziana

    2016-07-01

    Histone PTMs play a crucial role in regulating chromatin structure and function, with impact on gene expression. MS is nowadays widely applied to study histone PTMs systematically. Because histones are rich in arginine and lysine, classical shot-gun approaches based on trypsin digestion are typically not employed for histone modifications mapping. Instead, different protocols of chemical derivatization of lysines in combination with trypsin have been implemented to obtain "Arg-C like" digestion products that are more suitable for LC-MS/MS analysis. Although widespread, these strategies have been recently described to cause various side reactions that result in chemical modifications prone to be misinterpreted as native histone marks. These artefacts can also interfere with the quantification process, causing errors in histone PTMs profiling. The work of Paternoster V. et al. is a quantitative assessment of methyl-esterification and other side reactions occurring on histones after chemical derivatization of lysines with propionic anhydride [Proteomics 2016, 16, 2059-2063]. The authors estimate the effect of different solvents, incubation times, and pH on the extent of these side reactions. The results collected indicate that the replacement of methanol with isopropanol or ACN not only blocks methyl-esterification, but also significantly reduces other undesired unspecific reactions. Carefully titrating the pH after propionic anhydride addition is another way to keep methyl-esterification under control. Overall, the authors describe a set of experimental conditions that allow reducing the generation of various artefacts during histone propionylation. PMID:27373704

  9. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3.

    PubMed

    Kim, Sophia; Natesan, Senthil; Cornilescu, Gabriel; Carlson, Samuel; Tonelli, Marco; McClurg, Urszula L; Binda, Olivier; Robson, Craig N; Markley, John L; Balaz, Stefan; Glass, Karen C

    2016-08-26

    Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities. PMID:27281824

  10. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3*

    PubMed Central

    Kim, Sophia; Natesan, Senthil; Cornilescu, Gabriel; Carlson, Samuel; Tonelli, Marco; McClurg, Urszula L.; Binda, Olivier; Robson, Craig N.; Markley, John L.; Balaz, Stefan

    2016-01-01

    Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities. PMID:27281824

  11. Supramolecular Affinity Labeling of Histone Peptides Containing Trimethyllysine and Its Application to Histone Deacetylase Assays.

    PubMed

    Gober, Isaiah N; Waters, Marcey L

    2016-08-01

    Lysine methylation is an important histone post-translational modification (PTM) for manipulating chromatin structure and regulating gene expression, and its dysregulation is associated with various diseases including many cancers. While characterization of Lys methylation has seen improvements over the past decade due to advances in proteomic mass spectrometry and methods involving antibodies, chemical methods for selective detection of proteins containing PTMs are still lacking. Here, we detail the development of a unique labeling method wherein a synthetic receptor probe for trimethyl lysine (Kme3), CX4-ONBD, is used to direct selective fluorescent labeling of Kme3 histone peptides. This supramolecular approach reverses the paradigm of ligand-directed affinity labeling by making the receptor the synthetic component and the ligand the component to be labeled. We show that the probe mediates a strong turn-on fluorescence response in the presence of a Kme3 histone peptide and shows >5-fold selectivity in covalent labeling over an unmethylated lysine peptide. We also demonstrate the utility of the probe through the design of a turn-on fluorescence assay for histone deacetylase (HDAC) activity and for inhibitor screening and IC50 determination. Our synthetic receptor-mediated affinity labeling approach broadens the scope of PTM detection by chemical means and may facilitate the development of more versatile in vitro enzymatic assays. PMID:27387477

  12. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    SciTech Connect

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  13. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L.

    PubMed

    Freitas, Aline Silva; Fontes Cunha, Isabela Martinez; Andrade-Vieira, Larissa Fonseca; Techio, Vânia Helena

    2016-02-01

    Spent Pot Liner (SPL) is a solid waste from the aluminum industry frequently disposed of in industrial landfills; it can be leached and contaminate the soil, sources of drinking water and plantations, and thus may pose a risk to human health and to ecosystems. Its composition is high variable, including cyanide, fluoride and aluminum salts, which are highly toxic and environmental pollutants. This study evaluated the effect of SPL and its main components on root growth and the mitosis of Lactuca sativa, by investigating the mechanisms of cellular and chromosomal alterations with the aid of immunolocalization. To this end, newly emerged roots of L. sativa were exposed to SPL and its main components (solutions of cyanide, fluoride and aluminum) and to calcium chloride (control) for 48h. After this, root length was measured and cell cycle was examined by means of conventional cytogenetics and immunolocalization. Root growth was inhibited in the treatments with SPL and aluminum; chromosomal and nuclear alterations were observed in all treatments. The immunolocalization evidenced normal dividing cells with regular temporal and spatial distribution of histone H3 phosphorylation at serine 10 (H3S10ph). However, SPL and its main components inhibited the phosphorylation of histone H3 at serine 10, inactivated pericentromeric regions and affected the cohesion of sister chromatids, thus affecting the arrangement of chromosomes in the metaphase plate and separation of chromatids in anaphase. In addition, these substances induced breaks in pericentromeric regions, characterized as fragile sites. PMID:26615478

  14. Inhibition of histone binding by supramolecular hosts

    PubMed Central

    Allen, Hillary F.; Daze, Kevin D.; Shimbo, Takashi; Lai, Anne; Musselman, Catherine A.; Sims, Jennifer K.; Wade, Paul A.; Hof†, Fraser; Kutateladze, Tatiana G.

    2015-01-01

    The tandem PHD (plant homeodomain) fingers of the CHD4 (chromodomain helicase DNA-binding protein 4) ATPase are epigenetic readers that bind either unmodified histone H3 tails or H3K9me3 (histone H3 trimethylated at Lys9). This dual function is necessary for the transcriptional and chromatin remodelling activities of the NuRD (nucleosome remodelling and deacetylase) complex. In the present paper, we show that calixarene-based supramolecular hosts disrupt binding of the CHD4 PHD2 finger to H3K9me3, but do not affect the interaction of this protein with the H3K9me0 (unmodified histone H3) tail. A similar inhibitory effect, observed for the association of chromodomain of HP1γ (heterochromatin protein 1γ) with H3K9me3, points to a general mechanism of methyl-lysine caging by calixarenes and suggests a high potential for these compounds in biochemical applications. Immunofluorescence analysis reveals that the supramolecular agents induce changes in chromatin organization that are consistent with their binding to and disruption of H3K9me3 sites in living cells. The results of the present study suggest that the aromatic macrocyclic hosts can be used as a powerful new tool for characterizing methylation-driven epigenetic mechanisms. PMID:24576085

  15. FERRITIN H INDUCTION BY HISTONE DEACETYLASE INHIBITORS

    PubMed Central

    Wang, Wei; Di, Xiumin; Torti, Suzy V.; Torti, Frank M.

    2010-01-01

    Because both iron deficiency and iron excess are deleterious to normal cell function, the intracellular level of iron must be tightly controlled. Ferritin, an iron binding protein, regulates iron balance by storing iron in a bioavailable but non-toxic form. Ferritin protein comprises two subunits: ferritin H, which contains ferroxidase activity, and ferritin L. Here we demonstrate that ferritin H mRNA and protein are induced by histone deacetylase inhibitors (HDAC inhibitors), a promising class of anti-cancer drugs, in cultured human cancer cells. Deletion analysis and EMSA assays reveal that the induction of ferritin H occurs at a transcriptional level via Sp1 and NF-Y binding sites near the transcriptional start site of the human ferritin H promoter. Classically, HDAC inhibitors modulate gene expression by increasing histone acetylation. However, ChIP assays demonstrate that HDAC inhibitors induce ferritin H transcription by increasing NF-Y binding to the ferritin H promoter without changes in histone acetylation. These results identify ferritin H as a new target of HDAC inhibitors, and recruitment of NF-Y as a novel mechanism of action of HDAC inhibitors. PMID:20385107

  16. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs. PMID:27606339

  17. WDR5 Intearcts with Mixed Lineage Leukemia (MLL) Protein via the Histone H3-binding Pocket

    SciTech Connect</