Science.gov

Sample records for activating intrinsic pathway

  1. The Role of Intrinsic Pathway in Apoptosis Activation and Progression in Peyronie's Disease

    PubMed Central

    Loreto, Carla; Caltabiano, Rosario; Vespasiani, Giuseppe; Castorina, Sergio; Ralph, David J.; Musumeci, Giuseppe; Djinovic, Rados; Sansalone, Salvatore

    2014-01-01

    Peyronie's disease (PD) is characterized with formation of fibrous plaques which result in penile deformity, pain, and erectile dysfunction. The aim of this study was to investigate the activation of the intrinsic apoptotic pathway in plaques from PD patients. Tunica albuginea from either PD or control patients was assessed for the expression of bax, bcl-2 and caspases 9 and 3 using immunohistochemistry and by measurement of apoptotic cells using TUNEL assay. Bax overexpression was observed in metaplastic bone tissue, in fibroblasts, and in myofibroblast of plaques from PD patients. Little or no bcl-2 immunostaining was detected in samples from either patients or controls. Caspase 3 immunostaining was very strong in fibrous tissue, in metaplasic bone osteocytes, and in primary ossification center osteoblasts. Moderate caspase 9 immunostaining was seen in fibrous cells plaques and in osteocytes and osteoblasts of primary ossification centers from PD patients. Control samples were negative for caspase 9 immunostaining. In PD patients the TUNEL immunoassay showed intense immunostaining of fibroblasts and myofibroblasts, the absence of apoptotic cells in metaplasic bone tissue and on the border between fibrous and metaplastic bone tissue. Apoptosis occurs in stabilized PD plaques and is partly induced by the intrinsic pathway. PMID:25197653

  2. Activation of the intrinsic pathway of coagulation in children with meningococcal septic shock.

    PubMed

    Wuillemin, W A; Fijnvandraat, K; Derkx, B H; Peters, M; Vreede, W; ten Cate, H; Hack, C E

    1995-12-01

    Meningococcal septic shock (MSS) is complicated by activation of coagulation, fibrinolytic, and complement systems. We studied the contact system of the intrinsic pathway of coagulation in thirteen children with MSS. Activation was assessed upon admittance to the intensive care unit and 48 h thereafter, based on the measurement of factor XII- (FXII), prekallikrein- and factor XI (FXI) antigen levels, as well as on the detection of FXIa-FXIa inhibitor, FXIIa-C1-inhibitor, and kallikrein-C1-inhibitor complexes, respectively. Levels of FXII, prekallikrein and FXI were reduced to about 50% in all patients on admission, and were significantly higher 48 h later. FXIIa-C1-inhibitor complexes were elevated in 7 patients, and kallikrein-C1-inhibitor complexes in 2 patients. FXIa-alpha 1-antitrypsin complexes were elevated in all patients, FXIa-C1-inhibitor complexes in nine, and FXIa-antithrombin III complexes in one patient. We conclude that patients with MSS have activation of the contact system, which may contribute to activation of coagulation, and thus to morbidity and mortality.

  3. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    PubMed

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release.

  4. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway.

    PubMed

    Vu, Trang T; Leslie, Beverly A; Stafford, Alan R; Zhou, Ji; Fredenburgh, James C; Weitz, Jeffrey I

    2016-01-01

    When triggered by factor (F) XII and nucleic acids, we showed that thrombosis in HRG-deficient mice is accelerated compared with that in wild-type mice. In this study, we set out to identify the mechanisms by which nucleic acids promote contact activation, and to determine whether HRG attenuates their effects. DNA or RNA addition to human plasma enhances thrombin generation via the intrinsic pathway and shortens the clotting time. Their effect on the clotting time is seven- to 14-fold greater in HRG-deficient plasma than in control plasma. Investigations into the mechanisms of activation reveal that nucleic acids a) promote FXII activation in the presence of prekallikrein- and high molecular weight kininogen (HK), and b) enhance thrombin-mediated FXI activation by 10- to 12-fold. Surface plasmon resonance studies show that DNA and RNA bind FXII, FXIIa, HK, FXI, FXIa and thrombin with high affinity. HRG attenuates DNA- and RNA-mediated FXII activation, and FXI activation by FXIIa or by thrombin, suggesting that HRG down regulates the capacity of DNA and RNA to activate the intrinsic pathway. Therefore, HRG attenuates the procoagulant activity of nucleic acids at multiple levels.

  5. Umbelliprenin from Ferula szowitsiana Activates both Intrinsic and Extrinsic Pathways of Apoptosis in Jurkat T-CLL cell line.

    PubMed

    Gholami, Omid; Jeddi-Tehrani, Mahmood; Iranshahi, Mehrdad; Zarnani, Amir Hassan; Ziai, Seyed Ali

    2013-01-01

    Umbelliprenin is a prenylated compound, which belongs to the class of sesquiterpene coumarins. It is extracted from dried roots of Ferula szwitsiana collected from the mountains of Golestan forest (Golestan Province, north of Iran). Induction of apoptosis in Jurkat T-CLL cells has been previously shown. In this study, effect of umbelliprenin on proapoptotic caspases (caspase-8 and -9) and antiapoptotic Bcl-2 family protein was studied. Jurkat cells were incubated with umbelliprenin. Cells were then lysed and activation of proteins was studied by Western blot analysis. In this study, we showed that umbelliprenin activates intrinsic and extrinsic pathways of apoptosis by the activation of caspase-8 and -9 respectively. Inhibition of Bcl-2 was also shown. In conclusion, umbelliprenin induced apoptosis in Jurkat cells through caspase-dependent apoptosis pathway.

  6. Umbelliprenin from Ferula szowitsiana Activates both Intrinsic and Extrinsic Pathways of Apoptosis in Jurkat T-CLL cell line

    PubMed Central

    Gholami, Omid; Jeddi-Tehrani, Mahmood; Iranshahi, Mehrdad; Zarnani, Amir Hassan; Ziai, Seyed Ali

    2013-01-01

    Umbelliprenin is a prenylated compound, which belongs to the class of sesquiterpene coumarins. It is extracted from dried roots of Ferula szwitsiana collected from the mountains of Golestan forest (Golestan Province, north of Iran). Induction of apoptosis in Jurkat T-CLL cells has been previously shown. In this study, effect of umbelliprenin on proapoptotic caspases (caspase-8 and -9) and antiapoptotic Bcl-2 family protein was studied. Jurkat cells were incubated with umbelliprenin. Cells were then lysed and activation of proteins was studied by Western blot analysis. In this study, we showed that umbelliprenin activates intrinsic and extrinsic pathways of apoptosis by the activation of caspase-8 and -9 respectively. Inhibition of Bcl-2 was also shown. In conclusion, umbelliprenin induced apoptosis in Jurkat cells through caspase-dependent apoptosis pathway. PMID:24250644

  7. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells.

    PubMed

    Horn, Adolfo; Fernandes, Christiane; Parrilha, Gabrieli L; Kanashiro, Milton M; Borges, Franz V; de Melo, Edésio J T; Schenk, Gerhard; Terenzi, Hernán; Pich, Claus T

    2013-11-01

    The nuclease activity and the cytotoxicity toward human leukemia cancer cells of iron complexes, [Fe(HPClNOL)Cl2]NO3 (1), [Cl(HPClNOL)Fe(μ-O)Fe(HPClNOL)Cl]Cl2·2H2O (2), and [(SO4)(HPClNOL)Fe(μ-O)Fe(HPClNOL)(SO4)]·6H2O (3) (HPClNOL=1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol), were investigated. Each complex was able to promote plasmid DNA cleavage and change the supercoiled form of the plasmid to circular and linear ones. Kinetic data revealed that (1), (2) and (3) increase the rate of DNA hydrolysis about 278, 192 and 339 million-fold, respectively. The activity of the complexes was inhibited by distamycin, indicating that they interact with the minor groove of the DNA. The cytotoxic activity of the complexes toward U937, HL-60, Jukart and THP-1 leukemia cancer cells was studied employing 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), fluorescence and electronic transmission microscopies, flow cytometry and a cytochrome C release assay. Compound (2) has the highest activity toward cancer cells and is the least toxic for normal ones (i.e. peripheral blood mononuclear cells (PBMCs)). In contrast, compound (1) is the least active toward cancer cells but displays the highest toxicity toward normal cells. Transmission electronic microscopy indicates that cell death shows features typical of apoptotic cells, which was confirmed using the annexin V-FITC/PI (fluorescein isothiocyanate/propidium iodide) assay. Furthermore, our data demonstrate that at an early stage during the treatment with complex (2) mitochondria lose their transmembrane potential, resulting in cytochrome C release. A quantification of caspases 3, 9 (intrinsic apoptosis pathway) and caspase 8 (extrinsic apoptosis pathway) indicated that both the intrinsic (via mitochondria) and extrinsic (via death receptors) pathways are involved in the apoptotic stimuli. PMID:23933562

  8. BisGMA-induced cytotoxicity and genotoxicity in macrophages are attenuated by wogonin via reduction of intrinsic caspase pathway activation.

    PubMed

    Huang, Fu-Mei; Chang, Yu-Chao; Lee, Shiuan-Shinn; Yeh, Chung-Hsin; Lee, Kevin Gee; Huang, Yi-Chun; Chen, Chun-Jung; Chen, Wen-Ying; Pan, Pin-Ho; Kuan, Yu-Hsiang

    2016-02-01

    Bisphenol-A-glycidyldimethacrylate (BisGMA) is a frequently used monomer in dental restorative resins. However, BisGMA could leach from dental restorative resins after polymerization leading to inflammation in the peripheral environment. Wogonin, a natural flavone derivative, has several benefits, such as antioxidative, anti-inflammatory and neuroprotective properties. Pretreatment of macrophage RAW264.7 cells with wogonin inhibited cytotoxicity which is induced by BisGMA in a concentration-dependent manner. BisGMA induced apoptotic responses, such as redistribution of phosphatidylserine from the internal to the external membrane and DNA fragmentation, were decreased by wogonin in a concentration-dependent manner. In addition, BisGMA-induced genotoxicity, which detected by cytokinesis-blocked micronucleus and single-cell gel electrophoresis assays, were inhibited by wogonin in a concentration-dependent manner. Furthermore, wogonin suppressed BisGMA-induced activation of intrinsic caspase pathways, such as caspases-3 and -8. Parallel trends were observed in inhibition of caspase-3 and -8 activities, apoptosis, and genotoxicity. These results indicate wogonin suppressed the BisGMA-induced apoptosis and genotoxicity mainly via intrinsic caspase pathway in macrophages. PMID:26756871

  9. Distinct spatial activation of intrinsic and extrinsic apoptosis pathways in natural scrapie: association with prion-related lesions

    PubMed Central

    Serrano, Carmen; Lyahyai, Jaber; Bolea, Rosa; Varona, Luis; Monleón, Eva; Badiola, Juan J.; Zaragoza, Pilar; Martín-Burriel, Inmaculada

    2009-01-01

    Neurodegeneration and gliosis are the main neuropathological features of prion diseases. However, the molecular mechanisms involved in these processes remain unclear. Several studies have demonstrated changes in the expression of apoptotic factors and inflammatory cytokines in animals with experimental infection. Here we present the expression profiles of 15 genes implicated in the intrinsic and extrinsic apoptotic pathways in the central nervous systems of sheep naturally infected with scrapie. Expression changes obtained by real-time RT-PCR were also compared with the extent of classical scrapie lesions, such as prion deposition, neuronal vacuolisation, spongiosis, and astrogliosis as well as with the activation of caspase-3, using a stepwise regression. The results suggest that the factors assessed participate in apoptotic or inflammatory functions, depending on the affected area. The mitochondrial apoptosis pathway was associated with prion deposition in the prefrontal cortex (the less affected area), and with activation of caspase-3-mediated cell death via over-expression of BAK. In addition to its known association with astroglial activation, the extrinsic apoptosis pathway was also related to cell death and neuronal vacuolisation. PMID:19401142

  10. γ-Tocotrienol induces apoptosis in human T cell lymphoma through activation of both intrinsic and extrinsic pathways.

    PubMed

    Wilankar, Chandan; Khan, Nazir M; Checker, Rahul; Sharma, Deepak; Patwardhan, Raghavendra; Gota, Vikram; Sandur, Santosh Kumar; Devasagayam, T P A

    2011-01-01

    Tocotrienols are members of vitamin E family and possess broad biological activities including antioxidant, anti-inflammatory and antitumor effects. In the present study, we examine the potential of α-tocotrienol (AT) and γ-tocotrienol (GT) in inhibiting the proliferation of human T cell lymphoma Jurkat cells and elucidate the pathways involved in anti tumor effects of GT. GT but not AT inhibited proliferation and induced apoptosis in Jurkat cells in a dose dependent manner. GT treatment resulted in elevated mitochondrial ROS production, activation of JNK and suppression of ERK and p38 MAPK. GT also induced calcium release, loss of mitochondrial membrane potential and cytochrome c release from the mitochondria. These changes were accompanied by increase in Bax expression with a concomitant decrease in Bcl-xl expression suggesting activation of mitochondrial apoptotic pathway. GT induced increase in mitochondrial ROS was abrogated by catalase. Besides, GT also up-regulated surface expression of Fas and FasL on Jurkat cells. Further, caspase activation and PARP degradation were also seen in cells treated with GT. Inhibitors of caspase-8 and caspase-9 significantly abrogated GT mediated apoptosis. In contrast GT was not toxic to normal human peripheral blood mononuclear cells suggesting differential cytotoxicity towards normal lymphocytes and transformed lymphoma cells. Cellular uptake studies with tocotrienols showed higher intracellular accumulation of GT as compared to AT which may be responsible for its better antitumor activity. Our results show antitumor effects of GT in human lymphoma cells via increased mitochondrial ROS generation and activation of both intrinsic and extrinsic apoptotic pathways.

  11. Photodynamic therapy activated STAT3 associated pathways: Targeting intrinsic apoptotic pathways to increase PDT efficacy in human squamous carcinoma cells.

    PubMed

    Qiao, Li; Xu, Chengshan; Li, Qiang; Mei, Zhusong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    5-Aminolaevulinic acid-based photodynamic therapy (ALA-PDT) has been used for part of squamous cell carcinoma (premalignant conditions or in situ cutaneous SCC-Bowen disease). However, mechanism of ALA-PDT is not fully understood yet on the cell apoptosis pathway. The aim of this study was to further investigate the effect and mechanism of 5-ALA-PDT on human squamous carcinoma A431cells. Apoptosis and cell viability after PDT were evaluated using Annexin V-FITC apoptosis detection kit and MTT assay. The mRNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Our data showed that 5-ALA-PDT significantly inhibited cell proliferation (p<0.05), but there was no significant difference when the photosensitizer reached to 4.8mM. The inhibition in cell proliferation after 5-ALA-PDT treatment was correlated to more cells being arrested in the G0/G1 phase of the cell cycle (p<0.01). Immunocytochemical observations using anti-active caspase-3 antibodies showed active caspase-3 was translocated from cytoplasm to nuclear during apoptosis. STAT3 and its downstream gene Bax and BCL-2 were changed after 5-ALA-PDT treatment for the mRNA and protein expression. Our studies confirmed that 5-ALA-PDT might be an effective treatment for human squamous carcinoma by inhibiting the tumor cell A431growth and for the first time demonstrated that the expression of STAT3 was significantly reduced at 24h after 5-ALA-PDT treatment. PMID:26607555

  12. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma.

    PubMed

    Kocak, H; Ackermann, S; Hero, B; Kahlert, Y; Oberthuer, A; Juraeva, D; Roels, F; Theissen, J; Westermann, F; Deubzer, H; Ehemann, V; Brors, B; Odenthal, M; Berthold, F; Fischer, M

    2013-04-11

    Neuroblastoma is an embryonal malignancy of the sympathetic nervous system. Spontaneous regression and differentiation of neuroblastoma is observed in a subset of patients, and has been suggested to represent delayed activation of physiologic molecular programs of fetal neuroblasts. Homeobox genes constitute an important family of transcription factors, which play a fundamental role in morphogenesis and cell differentiation during embryogenesis. In this study, we demonstrate that expression of the majority of the human HOX class I homeobox genes is significantly associated with clinical covariates in neuroblastoma using microarray expression data of 649 primary tumors. Moreover, a HOX gene expression-based classifier predicted neuroblastoma patient outcome independently of age, stage and MYCN amplification status. Among all HOX genes, HOXC9 expression was most prominently associated with favorable prognostic markers. Most notably, elevated HOXC9 expression was significantly associated with spontaneous regression in infant neuroblastoma. Re-expression of HOXC9 in three neuroblastoma cell lines led to a significant reduction in cell viability, and abrogated tumor growth almost completely in neuroblastoma xenografts. Neuroblastoma growth arrest was related to the induction of programmed cell death, as indicated by an increase in the sub-G1 fraction and translocation of phosphatidylserine to the outer membrane. Programmed cell death was associated with the release of cytochrome c from the mitochondria into the cytosol and activation of the intrinsic cascade of caspases, indicating that HOXC9 re-expression triggers the intrinsic apoptotic pathway. Collectively, our results show a strong prognostic impact of HOX gene expression in neuroblastoma, and may point towards a role of Hox-C9 in neuroblastoma spontaneous regression.

  13. Asymmetric processing of mutant factor X Arg386Cys reveals differences between intrinsic and extrinsic pathway activation.

    PubMed

    Baroni, M; Pavani, G; Pinotti, M; Branchini, A; Bernardi, F; Camire, R M

    2015-10-01

    Alterations in coagulation factor X (FX) activation, mediated by the extrinsic VIIa/tissue factor (FVIIa/TF) or the intrinsic factor IXa/factor VIIIa (FIXa/FVIIIa) complexes, can result in hemorrhagic/prothrombotic tendencies. However, the molecular determinants involved in substrate recognition by these enzymes are poorly defined. Here, we investigated the role of arginine 386 (chymotrypsin numbering c202), a surface-exposed residue on the FX catalytic domain. The naturally occurring FX386Cys mutant and FX386Ala variant were characterized. Despite the unpaired cysteine, recombinant (r)FX386Cys was efficiently secreted (88.6±21.3% of rFXwt) and possessed normal clearance in mice. rFX386Cys was also normally activated by FVIIa/TF and displayed intact amidolytic activity. In contrast, rFX386Cys activation by the FIXa/FVIIIa complex was 4.5-fold reduced, which was driven by a decrease in the kcat (1.6∗10(-4) s(-1) vs 5.8∗10(-4) s(-1), rFXwt). The virtually unaltered Km (70.6 nM vs 55.6nM, rFXwt) suggested no major alterations in the FX substrate exosite. Functional assays in plasma supplemented with rFX386Cys indicated a remarkable reduction in the thrombin generation rate and thus in coagulation efficiency. Consistently, the rFX386Ala variant displayed similar biochemical features suggesting that global changes at position 386 impact the intrinsic pathway activation. These data indicate that the FXArg386 is involved in FIXa/FVIIIa-mediated FX activation and help in elucidating the bleeding tendency associated with the FX386Cys in a rare FX deficiency case. Taking advantage of the unpaired cysteine, the rFX386Cys mutant may be efficiently targeted by thiol-specific ligands and represent a valuable tool to study FX structure-function relationships both in vitro and in vivo. PMID:26012870

  14. Chlorogenic acid protects MSCs against oxidative stress by altering FOXO family genes and activating intrinsic pathway.

    PubMed

    Li, Shiyong; Bian, Hetao; Liu, Zhe; Wang, Ye; Dai, Jianghua; He, Wenfeng; Liao, Xingen; Liu, Rongrong; Luo, Jun

    2012-01-15

    Chlorogenic acid as an antioxidant exists widely in edible and medicinal plants, and can protect cell against apoptosis induced by oxidative stress. However, its molecular mechanisms remain largely unknown. Here, we showed that Chlorogenic acid suppressed reactive oxygen species increase by activation of Akt phosphorylation,and increased FOXO family genes and anti-apoptotic protein Bcl-2 expression in MSCs culturing under oxidative stress. In addition, PI-3Kinase Inhibitor (2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, LY294002) could suppress the Chlorogenic acid-induced: (1) the cellular protective role, (2) the increase of the FOXO family genes expression, (3) increased expression of Bcl-2. These results suggested that Chlorogenic acid protected MSCs against apoptosis via PI3K/AKT signal and FOXO family genes.

  15. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways.

    PubMed

    Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J

    2014-12-18

    Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells.

  16. Dichloromethane fraction of Melissa officinalis induces apoptosis by activation of intrinsic and extrinsic pathways in human leukemia cell lines.

    PubMed

    Ebrahimnezhad Darzi, Salimeh; Amirghofran, Zahra

    2013-06-01

    Various components from medicinal plants are currently used in cancer therapy because of their apoptosis-inducing effects. The present study has aimed to investigate the growth inhibitory and apoptotic effects of Melissa officinalis on tumor cells. We prepared different fractions of this plant to investigate their inhibitory effects on two leukemia cell lines, Jurkat and K562. Fractions with the highest inhibitory effects were examined for induction of apoptosis by the annexin V/propidium iodide assay and cell cycle changes by flow cytometry. Real-time polymerase chain reaction evaluated the changes in expression of apoptosis-related genes. Among different fractions, dichloromethane and n-hexane dose-dependent showed the strongest inhibitory effects on both K562 and Jurkat cells. The dichloromethane fraction significantly induced apoptosis at concentration of 50 µg/ml on Jurkat (85.66 ± 4.9%) and K562 cells (65.04 ± 0.93%) at 24 h after treatment (p < 0.002). According to cell cycle analysis, more than 70% of the cells accumulated in the sub-G1 phase when cultured in the presence of the dichloromethane fraction. This fraction up-regulated Fas and Bax mRNA expression as well as the Bax/Bcl-2 ratio according to cell type, showing its effect on the activation of both extrinsic and intrinsic pathways of apoptosis. The expression of apoptosis-related genes did not significantly change following treatment with the n-hexane fraction. These data indicated that the dichloromethane fraction of M. officinalis had the ability to induce apoptosis and change apoptosis-related gene expression in leukemia cells.

  17. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways

    PubMed Central

    Haverkamp, Jessica M.; Smith, Amber M.; Weinlich, Ricardo; Dillon, Christopher P.; Qualls, Joseph E.; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J.; Green, Douglas R.; Opferman, Joseph T.; Murray, Peter J.

    2014-01-01

    Summary Non-resolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for anti-tumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor cell subset, but not the granulocytic subset requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, while their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival and function of myeloid suppressor cells. PMID:25500368

  18. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    SciTech Connect

    Yadav, Santosh; Shi Yongli; Wang Feng; Wang He

    2010-05-01

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs{sup III}) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs{sup III} induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs{sup III} in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs{sup III} can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  19. Melanopsin Variants as Intrinsic Optogenetic On and Off Switches for Transient versus Sustained Activation of G Protein Pathways.

    PubMed

    Spoida, Katharina; Eickelbeck, Dennis; Karapinar, Raziye; Eckhardt, Tobias; Mark, Melanie D; Jancke, Dirk; Ehinger, Benedikt Valerian; König, Peter; Dalkara, Deniz; Herlitze, Stefan; Masseck, Olivia A

    2016-05-01

    G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing. We compared the biophysical properties and optogenetic application of a human and a mouse melanopsin variant (hOpn4L and mOpn4L) on the control of Gi/o and Gq pathways in heterologous expression systems and mouse brain. We found that GPCR pathways can be switched on/off by blue/yellow light. The proteins differ in their kinetics and wavelength dependence to activate and deactivate G protein pathways. Whereas mOpn4L is maximally activated by very short light pulses, leading to sustained G protein activation, G protein responses of hOpn4L need longer light pulses to be activated and decline in amplitude. Based on the different biophysical properties, brief light activation of mOpn4L is sufficient to induce sustained neuronal firing in cerebellar Purkinje cells (PC), whereas brief light activation of hOpn4L induces AP firing, which declines in frequency over time. Most importantly, mOpn4L-induced sustained firing can be switched off by yellow light. Based on the biophysical properties, hOpn4L and mOpn4L represent the first GPCR optogenetic tools, which can be used to switch GPCR pathways/neuronal firing on an off with temporal precision and limited phototoxicity. We suggest to name these tools moMo and huMo for future optogenetic applications. PMID:27068418

  20. Melanopsin Variants as Intrinsic Optogenetic On and Off Switches for Transient versus Sustained Activation of G Protein Pathways.

    PubMed

    Spoida, Katharina; Eickelbeck, Dennis; Karapinar, Raziye; Eckhardt, Tobias; Mark, Melanie D; Jancke, Dirk; Ehinger, Benedikt Valerian; König, Peter; Dalkara, Deniz; Herlitze, Stefan; Masseck, Olivia A

    2016-05-01

    G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing. We compared the biophysical properties and optogenetic application of a human and a mouse melanopsin variant (hOpn4L and mOpn4L) on the control of Gi/o and Gq pathways in heterologous expression systems and mouse brain. We found that GPCR pathways can be switched on/off by blue/yellow light. The proteins differ in their kinetics and wavelength dependence to activate and deactivate G protein pathways. Whereas mOpn4L is maximally activated by very short light pulses, leading to sustained G protein activation, G protein responses of hOpn4L need longer light pulses to be activated and decline in amplitude. Based on the different biophysical properties, brief light activation of mOpn4L is sufficient to induce sustained neuronal firing in cerebellar Purkinje cells (PC), whereas brief light activation of hOpn4L induces AP firing, which declines in frequency over time. Most importantly, mOpn4L-induced sustained firing can be switched off by yellow light. Based on the biophysical properties, hOpn4L and mOpn4L represent the first GPCR optogenetic tools, which can be used to switch GPCR pathways/neuronal firing on an off with temporal precision and limited phototoxicity. We suggest to name these tools moMo and huMo for future optogenetic applications.

  1. The dirty side of the intrinsic pathway of coagulation.

    PubMed

    Cooley, Brian C

    2016-09-01

    Whereas the extrinsic pathway of coagulation seals off bleeding at the cut tissue edges, it is proposed that the intrinsic pathway exploits the dirt from the skin surface to generate an outer coagulum of the oozing blood. Activated Factor XII (FXIIa) in this outer cap generates Factor XIa, which triggers clotting, and kallikrein that feeds back to form more FXIIa to promote the process. This dirty-wound hypothesis of coagulation function by the intrinsic pathway is supported by the use of dirt-based compounds in activated partial thromboplastin time assays as well as the evolutionary record where marine life that do not have skin-adherent dirt lack Factor XII, including marine mammals that have returned to sea life. PMID:27373598

  2. The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells

    PubMed Central

    Ruiz-Magaña, María J.; Martínez-Aguilar, Rocío; Lucendo, Estefanía; Campillo-Davo, Diana; Schulze-Osthoff, Klaus; Ruiz-Ruiz, Carmen

    2016-01-01

    Epigenetic therapies have emerged as promising anticancer approaches, since epigenetic modifications play a major role in tumor initiation and progression. Hydralazine, an approved vasodilator and antihypertensive drug, has been recently shown to act as a DNA methylation inhibitor. Even though hydralazine is already tested in clinical cancer trials, its mechanism of antitumor action remains undefined. Here, we show that hydralazine induced caspase-dependent apoptotic cell death in human p53-mutant leukemic T cells. Moreover, we demonstrate that hydralazine triggered the mitochondrial pathway of apoptosis by inducing Bak activation and loss of the mitochondrial membrane potential. Hydralazine treatment further resulted in the accumulation of reactive oxygen species, whereas a superoxide dismutase mimetic inhibited hydralazine-induced cell death. Interestingly, caspase-9-deficient Jurkat cells or Bcl-2- and Bcl-xL-overexpressing cells were strongly resistant to hydralazine treatment, thereby demonstrating the dependence of hydralazine-induced apoptosis on the mitochondrial death pathway. Furthermore, we demonstrate that hydralazine treatment triggered DNA damage which might contribute to its antitumor effect. PMID:26942461

  3. The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells.

    PubMed

    Ruiz-Magaña, María J; Martínez-Aguilar, Rocío; Lucendo, Estefanía; Campillo-Davo, Diana; Schulze-Osthoff, Klaus; Ruiz-Ruiz, Carmen

    2016-04-19

    Epigenetic therapies have emerged as promising anticancer approaches, since epigenetic modifications play a major role in tumor initiation and progression. Hydralazine, an approved vasodilator and antihypertensive drug, has been recently shown to act as a DNA methylation inhibitor. Even though hydralazine is already tested in clinical cancer trials, its mechanism of antitumor action remains undefined. Here, we show that hydralazine induced caspase-dependent apoptotic cell death in human p53-mutant leukemic T cells. Moreover, we demonstrate that hydralazine triggered the mitochondrial pathway of apoptosis by inducing Bak activation and loss of the mitochondrial membrane potential. Hydralazine treatment further resulted in the accumulation of reactive oxygen species, whereas a superoxide dismutase mimetic inhibited hydralazine-induced cell death. Interestingly, caspase-9-deficient Jurkat cells or Bcl-2- and Bcl-xL-overexpressing cells were strongly resistant to hydralazine treatment, thereby demonstrating the dependence of hydralazine-induced apoptosis on the mitochondrial death pathway. Furthermore, we demonstrate that hydralazine treatment triggered DNA damage which might contribute to its antitumor effect.

  4. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27

    PubMed Central

    Karimian, Hamed; Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Golbabapour, Shahram; Razavi, Mahboubeh; Hajrezaie, Maryam; Arya, Aditya; Abdulla, Mahmood Ameen; Mohan, Syam; Ali, Hapipah Mohd; Noordin, Mohamad Ibrahim

    2014-01-01

    Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3±0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway. PMID:25278746

  5. Synthetic Triterpenoid Cyano Enone of Methyl Boswellate (CEMB) activates intrinsic, extrinsic, & endoplasmic reticulum stress cell death pathways in tumor cell lines

    PubMed Central

    Ravanan, Palaniyandi; Sano, Renata; Priti, Talwar; Osawagia, Satoshi; Matsuzawa, Shuichi; Cuddy, Michael; Singh, Sanjay K.; Rao, G.S.R.Subba; Kondaiah, Paturu; Reed, John C.

    2014-01-01

    We explored the effect of a novel synthetic triterpenoid compound Cyano Enone of Methyl Boswellates (CEMB) on various prostate cancer and glioma cancer cell lines. CEMB displayed concentration-dependent cytotoxic activity with submicromolar lethal dose 50% (LD50) values in ten of ten tumor cell lines tested. CEMB-induced cytotoxicity is accompanied by activation of downstream effector caspases (caspases 3 and 7) and by upstream initiator caspases involved in both the extrinsic (caspase 8) and intrinsic (caspase 9) apoptotic pathways. By using small interfering RNAs (siRNAs), we show evidence that knock down of caspase 8, death receptor 4 (DR4), Apaf-1, and Bid impairs CEMB-induced cell death. Similar to other proapoptotic synthetic triterpenoid compounds, CEMB-induced apoptosis involved endoplasmic reticulum (ER) stress, as demonstrated by partial rescue of tumor cells by siRNA-mediated knock-down of expression of genes involve in the unfolded protein response such as Ire1, Perk, and ATF6. Altogether our results suggest that CEMB stimulates several apoptotic pathways in cancer cells, suggesting that this compound should be evaluated further as a potential agent for cancer therapy. PMID:21746806

  6. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway.

    PubMed

    Shalaby, Karim H; Allard-Coutu, Alexandra; O'Sullivan, Michael J; Nakada, Emily; Qureshi, Salman T; Day, Brian J; Martin, James G

    2013-07-15

    Oxidative stress in allergic asthma may result from oxidase activity or proinflammatory molecules in pollens. Signaling via TLR4 and its adaptor Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF) has been implicated in reactive oxygen species-mediated acute lung injury and in Th2 immune responses. We investigated the contributions of oxidative stress and TLR4/TRIF signaling to experimental asthma induced by birch pollen exposure exclusively via the airways. Mice were exposed to native or heat-inactivated white birch pollen extract (BPEx) intratracheally and injected with the antioxidants, N-acetyl-L-cysteine or dimethylthiourea, prior to sensitization, challenge, or all allergen exposures, to assess the role of oxidative stress and pollen-intrinsic NADPH oxidase activity in allergic sensitization, inflammation, and airway hyperresponsiveness (AHR). Additionally, TLR4 signaling was antagonized concomitantly with allergen exposure, or the development of allergic airway disease was evaluated in TLR4 or TRIF knockout mice. N-acetyl-L-cysteine inhibited BPEx-induced eosinophilic airway inflammation and AHR except when given exclusively during sensitization, whereas dimethylthiourea was inhibitory even when administered with the sensitization alone. Heat inactivation of BPEx had no effect on the development of allergic airway disease. Oxidative stress-mediated AHR was also TLR4 and TRIF independent; however, TLR4 deficiency decreased, whereas TRIF deficiency increased BPEx-induced airway inflammation. In conclusion, oxidative stress plays a significant role in allergic sensitization to pollen via the airway mucosa, but the pollen-intrinsic NADPH oxidase activity and TLR4 or TRIF signaling are unnecessary for the induction of allergic airway disease and AHR. Pollen extract does, however, activate TLR4, thereby enhancing airway inflammation, which is restrained by the TRIF-dependent pathway.

  7. Intrinsic Patterns of Human Activity

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Hilton, Michael; Stanley, H. Eugene; Shea, Steven

    2003-03-01

    Activity is one of the defining features of life. Control of human activity is complex, being influenced by many factors both extrinsic and intrinsic to the body. The most obvious extrinsic factors that affect activity are the daily schedule of planned events, such as work and recreation, as well as reactions to unforeseen or random events. These extrinsic factors may account for the apparently random fluctuations in human motion observed over short time scales. The most obvious intrinsic factors are the body clocks including the circadian pacemaker that influences our sleep/wake cycle and ultradian oscillators with shorter time scales [2, 3]. These intrinsic rhythms may account for the underlying regularity in average activity level over longer periods of up to 24 h. Here we ask if the known extrinsic and intrinsic factors fully account for all complex features observed in recordings of human activity. To this end, we measure activity over two weeks from forearm motion in subjects undergoing their regular daily routine. Utilizing concepts from statistical physics, we demonstrate that during wakefulness human activity possesses previously unrecognized complex dynamic patterns. These patterns of activity are characterized by robust fractal and nonlinear dynamics including a universal probability distribution and long-range power-law correlations that are stable over a wide range of time scales (from minutes to hours). Surprisingly, we find that these dynamic patterns are unaffected by changes in the average activity level that occur within individual subjects throughout the day and on different days of the week, and between subjects. Moreover, we find that these patterns persist when the same subjects undergo time-isolation laboratory experiments designed to account for the phase of the circadian pacemaker, and control the known extrinsic factors by restricting behaviors and manipulating scheduled events including the sleep/wake cycle. We attribute these newly

  8. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    SciTech Connect

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T.; Musarrat, Javed

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  9. Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways.

    PubMed

    Chen, Chien-Wen; Wu, Ming-Shan; Huang, Yi-Jen; Lin, Pei-Wen; Shih, Chueh-Ju; Lin, Fu-Pang; Chang, Chi-Yao

    2015-01-01

    Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways.

  10. Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways

    PubMed Central

    Chen, Chien-Wen; Wu, Ming-Shan; Huang, Yi-Jen; Lin, Pei-Wen; Shih, Chueh-Ju; Lin, Fu-Pang; Chang, Chi-Yao

    2015-01-01

    Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways. PMID:26047333

  11. Ouabain Enhances ADPKD Cell Apoptosis via the Intrinsic Pathway.

    PubMed

    Venugopal, Jessica; Blanco, Gustavo

    2016-01-01

    Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3 nM) also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells). This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key "executioner" caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells). Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression. PMID:27047392

  12. Ouabain Enhances ADPKD Cell Apoptosis via the Intrinsic Pathway

    PubMed Central

    Venugopal, Jessica; Blanco, Gustavo

    2016-01-01

    Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3 nM) also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells). This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key “executioner” caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells). Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression. PMID:27047392

  13. Downregulation of PI3-K/Akt/PTEN pathway and activation of mitochondrial intrinsic apoptosis by Diclofenac and Curcumin in colon cancer.

    PubMed

    Rana, Chandan; Piplani, Honit; Vaish, Vivek; Nehru, Bimla; Sanyal, S N

    2015-04-01

    Phosphatidylinositol 3-kinase (PI3-K)/PTEN/Akt signaling is over activated in various tumors including colon cancer. Activation of this pathway regulates multiple biological processes such as apoptosis, metabolism, cell proliferation, and cell growth that underlie the biology of a cancer cell. In the present study, the chemopreventive effects have been observed of Diclofenac, a preferential COX-2 inhibitory non-steroidal anti-inflammatory drugs, and Curcumin, a natural anti-inflammatory agent, in the early stage of colorectal carcinogenesis induced by 1,2-dimethylhydrazine dihydrochloride in rats. The tumor-promoting role of PI3-K/Akt/PTEN signal transduction pathway and its association with anti-apoptotic family of proteins are also observed. Both Diclofenac and Curcumin downregulated the PI3-K and Akt expression while promoting the apoptotic mechanism. Diclofenac and Curcumin administration significantly increased the expression of pro-apoptotic Bcl-2 family members (Bad and Bax) while decreasing the anti-apoptotic Bcl-2 protein. An up-regulation of cysteine protease family apoptosis executioner, such as caspase-3 and -9, is seen. Diclofenac and Curcumin inhibited the Bcl-2 protein by directly interacting at the active site by multiple hydrogen bonding, as also evident by negative glide score of Bcl-2. These drugs stimulated apoptosis by increasing reactive oxygen species (ROS) generation and simultaneously decreasing the mitochondrial membrane potential (ΔΨ M). Diclofenac and Curcumin showed anti-neoplastic effects by downregulating PI3-K/Akt/PTEN pathway, inducing apoptosis, increasing ROS generation, and decreasing ΔΨ M. The anti-neoplastic and apoptotic effects were found enhanced when both Diclofenac and Curcumin were administered together, rather than individually.

  14. BCL-2 Antagonism to Target the Intrinsic Mitochondrial Pathway of Apoptosis.

    PubMed

    Gibson, Christopher J; Davids, Matthew S

    2015-11-15

    Despite significant improvements in treatment, cure rates for many cancers remain suboptimal. The rise of cytotoxic chemotherapy has led to curative therapy for a subset of cancers, though intrinsic treatment resistance is difficult to predict for individual patients. The recent wave of molecularly targeted therapies has focused on druggable-activating mutations, and is thus limited to specific subsets of patients. The lessons learned from these two disparate approaches suggest the need for therapies that borrow aspects of both, targeting biologic properties of cancer that are at once distinct from normal cells and yet common enough to make the drugs widely applicable across a range of cancer subtypes. The intrinsic mitochondrial pathway of apoptosis represents one such promising target for new therapies, and successfully targeting this pathway has the potential to alter the therapeutic landscape of therapy for a variety of cancers. Here, we discuss the biology of the intrinsic pathway of apoptosis, an assay known as BH3 profiling that can interrogate this pathway, early attempts to target BCL-2 clinically, and the recent promising results with the BCL-2 antagonist venetoclax (ABT-199) in clinical trials in hematologic malignancies. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." PMID:26567361

  15. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  16. The restless brain: how intrinsic activity organizes brain function.

    PubMed

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.

  17. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    NASA Astrophysics Data System (ADS)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  18. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway.

    PubMed

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  19. A Schiff Base-Derived Copper (II) Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Zorofchian Moghadamtousi, Soheil; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents. PMID:24737979

  20. The Intrinsic Pathway of Coagulation as a Target for Antithrombotic Therapy.

    PubMed

    Wheeler, Allison P; Gailani, David

    2016-10-01

    Plasma coagulation in the activated partial thromboplastin time assay is initiated by sequential activation of coagulation factors XII, XI, and IX. While this series of proteolytic reactions is not an accurate model for hemostasis in vivo, there is mounting evidence that factor XI and factor XII contribute to thrombosis, and that inhibiting them can produce an antithrombotic effect with a small effect on hemostasis. This article discusses the contributions of components of the intrinsic pathway to thrombosis in animal models and humans, and results of early clinical trials of drugs targeting factors IX, XI, and XII. PMID:27637310

  1. Amyloid β binds procaspase-9 to inhibit assembly of Apaf-1 apoptosome and intrinsic apoptosis pathway.

    PubMed

    Sharoar, Md Golam; Islam, Md Imamul; Shahnawaz, Md; Shin, Song Yub; Park, Il-Seon

    2014-04-01

    Apoptosis is essential in the death process induced by Amyloid-β (Aβ), a major constituent of diffuse plaques found in Alzheimer's disease patients. However, we have found that caspase activation and cell death induced by staurosporine, employed to induce the intrinsic mitochondria-dependent apoptotic pathway, were significantly reduced by 42 amino-acid Aβ42, implying that the peptide also has a negative effect on the apoptotic process. The inhibitory effect of Aβ42 on the apoptotic pathway is associated with its interaction with procaspase-9 and consequent inhibition of Apaf-1 apoptosome assembly. We detected the inhibitory effect in the early stage (<8h) of apoptosis, but later caspase activation becomes obvious. Thus we inferred that the inhibitory process on apoptosis begins at an early stage, and the later robust activation surpasses it. We propose that the apoptotic manifestation in Aβ-treated cells is a combined consequence of those anti- and pro-apoptotic processes. PMID:24424093

  2. 2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway.

    PubMed

    Schweikl, Helmut; Petzel, Christine; Bolay, Carola; Hiller, Karl-Anton; Buchalla, Wolfgang; Krifka, Stephanie

    2014-03-01

    Resin monomers of dental composites like 2-hydroxyethyl methacrylate (HEMA) disturb cell functions including responses of the innate immune system, mineralization and differentiation of dental pulp-derived cells, or induce cell death via apoptosis. The induction of apoptosis is related to the availability of the antioxidant glutathione, although a detailed understanding of the signaling pathways is still unknown. The present study provides insight into the causal relationship between oxidative stress, oxidative DNA damage, and the specific signaling pathway leading to HEMA-induced apoptosis in RAW264.7 mouse macrophages. The differential expression of the antioxidative enzymes superoxide dismutase, glutathione peroxidase, and catalase in HEMA-exposed cells indicated oxidative stress, which was associated with the cleavage of pro-caspase 3 as a critical apoptosis executioner. A 2-fold increase in the amount of mitochondrial superoxide anions after a 24 h exposure to HEMA (6-8 mM) was paralleled by a considerable decrease in the mitochondrial membrane potential (MMP). Additionally, expression of proteins critical for the signaling of apoptosis through the intrinsic mitochondrial pathway was detected. Transcription-dependent and transcription-independent mechanisms of p53-regulated apoptosis were activated, and p53 was translocated from the cytosol to mitochondria. HEMA-induced transcriptional activity of p53 was indicated by increased levels of PUMA localized to mitochondria as a potent inducer of apoptosis. The expression of Bcl-xL and Bax suggested that cells responded to stress caused by HEMA via the activation of a complicated and antagonistic machinery of pro- and anti-apoptotic Bcl-2 family members. A HEMA-induced and oxidative stress-sensitive delay of the cell cycle, indicating a DNA damage response, occurred independent of the influence of KU55399, a potent inhibitor of ATM (ataxia-telangiectasia mutated) activity. However, ATM, a protein kinase which

  3. Mitochondrial ROS and the Effectors of the Intrinsic Apoptotic Pathway in Aging Cells: The Discerning Killers!

    PubMed Central

    Hekimi, Siegfried; Wang, Ying; Noë, Alycia

    2016-01-01

    It has become clear that mitochondrial reactive oxygen species (mtROS) are not simply villains and mitochondria the hapless targets of their attacks. Rather, it appears that mitochondrial dysfunction itself and the signaling function of mtROS can have positive effects on lifespan, helping to extend longevity. If events in the mitochondria can lead to better cellular homeostasis and better survival of the organism in ways beyond providing ATP and biosynthetic products, we can conjecture that they act on other cellular components through appropriate signaling pathways. We describe recent advances in a variety of species which promoted our understanding of how changes of mtROS generation are part of a system of signaling pathways that emanate from the mitochondria to impact organism lifespan through global changes, including in transcriptional patterns. In unraveling this, many old players in cellular homeostasis were encountered. Among these, maybe most strikingly, is the intrinsic apoptotic signaling pathway, which is the conduit by which at least one class of mtROS exercise their actions in the nematode Caenorhabditis elegans. This is a pathway that normally contributes to organismal homeostasis by killing defective or otherwise unwanted cells, and whose various compounds have also been implicated in other cellular processes. However, it was a surprise that that appropriate activation of a cell killing pathway can in fact prolong the lifespan of the organism. In the soma of adult C. elegans, all cells are post-mitotic, like many of our neurons and possibly some of our immune cells. These cells cannot simply be killed and replaced when showing signs of dysfunction. Thus, we speculate that it is the ability of the apoptotic pathway to pull together information about the functional and structural integrity of different cellular compartments that is the key property for why this pathway is used to decide when to boost defensive and repair processes in irreplaceable

  4. Mitochondrial ROS and the Effectors of the Intrinsic Apoptotic Pathway in Aging Cells: The Discerning Killers!

    PubMed Central

    Hekimi, Siegfried; Wang, Ying; Noë, Alycia

    2016-01-01

    It has become clear that mitochondrial reactive oxygen species (mtROS) are not simply villains and mitochondria the hapless targets of their attacks. Rather, it appears that mitochondrial dysfunction itself and the signaling function of mtROS can have positive effects on lifespan, helping to extend longevity. If events in the mitochondria can lead to better cellular homeostasis and better survival of the organism in ways beyond providing ATP and biosynthetic products, we can conjecture that they act on other cellular components through appropriate signaling pathways. We describe recent advances in a variety of species which promoted our understanding of how changes of mtROS generation are part of a system of signaling pathways that emanate from the mitochondria to impact organism lifespan through global changes, including in transcriptional patterns. In unraveling this, many old players in cellular homeostasis were encountered. Among these, maybe most strikingly, is the intrinsic apoptotic signaling pathway, which is the conduit by which at least one class of mtROS exercise their actions in the nematode Caenorhabditis elegans. This is a pathway that normally contributes to organismal homeostasis by killing defective or otherwise unwanted cells, and whose various compounds have also been implicated in other cellular processes. However, it was a surprise that that appropriate activation of a cell killing pathway can in fact prolong the lifespan of the organism. In the soma of adult C. elegans, all cells are post-mitotic, like many of our neurons and possibly some of our immune cells. These cells cannot simply be killed and replaced when showing signs of dysfunction. Thus, we speculate that it is the ability of the apoptotic pathway to pull together information about the functional and structural integrity of different cellular compartments that is the key property for why this pathway is used to decide when to boost defensive and repair processes in irreplaceable

  5. Induction of intrinsic and extrinsic apoptosis pathways in the human leukemic MOLT-4 cell line by terpinen-4-ol.

    PubMed

    Khaw-on, Patompong; Banjerdpongchai, Ratana

    2012-01-01

    Terpinen-4-ol is a terpene found in the rhizome of Plai (Zingiber montanum (Koenig) Link ex Dietr.). In this study apoptogenic activity and mechanisms of cell death induced by terpinen-4-ol were investigated in the human leukemic MOLT-4 cell line. Terpinen-4-ol exhibited cytotoxicity in MOLT-4 cells, with characteristic morphological features of apoptosis by Wright's staining. The mode of cell death was confirmed to be apoptosis by flow cytometric analysis after staining with annexin V-FITC and propidium iodide. A sub-G1 peak in DNA histograms of cell cycle assays was observed. Terpinen-4-ol induced-MOLT-4 cell apoptosis mediated through an intrinsic pathway involving the loss of mitochondrial transmembrane potential (MTP) and release of cytochrome c into the cytosol. In addition, terpinen-4-ol also induced apoptosis via an extrinsic pathway by caspase-8 activation resulting in the cleavage of cytosolic Bid. Truncated-Bid (tBid) translocated to mitochondria and activated the mitochondrial pathway in conjunction with down-regulation of Bcl-2 protein expression. Caspase-3 activity also increased. In conclusion, terpinen-4-ol can induce human leukemic MOLT-4 cell apoptosis via both intrinsic and extrinsic pathways. PMID:22994712

  6. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells.

    PubMed

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.

  7. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells

    PubMed Central

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A.; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1) and 3′-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas. PMID:26907262

  8. Chalcone-Induced Apoptosis through Caspase-Dependent Intrinsic Pathways in Human Hepatocellular Carcinoma Cells.

    PubMed

    Ramirez-Tagle, Rodrigo; Escobar, Carlos A; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas. PMID:26907262

  9. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway

    PubMed Central

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Background: Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. Methods: To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. Results: The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Conclusion: Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment. PMID:26605009

  10. Apoptosis Cell Death Effect of Scrophularia Variegata on Breast Cancer Cells via Mitochondrial Intrinsic Pathway

    PubMed Central

    Azadmehr, Abbas; Hajiaghaee, Reza; Baradaran, Behzad; Haghdoost-Yazdi, Hashem

    2015-01-01

    Purpose: Scrophularia variegata M. Beib. (Scrophulariaceae) is an Iranian medicinal plant which is used for various inflammatory disorders in traditional medicine. In this study we evaluated the anti-cancer and cytotoxic effects of the Scrophularia variegata (S. variegata) ethanolic extract on the human breast cancer cell line. Methods: The cytotoxicity effect of the extract on MCF-7 cells was evaluated by MTT assay. In addition, Caspase activity, DNA ladder and Cell death were evaluated by ELISA, gel electrophoresis and Annexin V-FITC/PI staining, respectively. Results: The S. variegata extract showed significant effect cytotoxicity on MCF-7 human breast cancer cell line. Treatment with the extract induced apoptosis on the breast cancer cells by cell cycle arrest in G2/M phase. The results indicated that cytotoxicity activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation as well as an increase of the amount of caspase 3 and caspase 9. In addition, the phytochemical assay showed that the extract had antioxidant capacity and also flavonoids, phenolic compounds and phenyl propanoids were presented in the extract. Conclusion: Our findings indicated that S. variegata extract induced apoptosis via mitochondrial intrinsic pathway on breast cancer by cell cycle arrest in G2/M phase and an increase of caspase 3 and caspase 9. However future studies are needed. PMID:26504768

  11. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

    PubMed Central

    Rahman, Md. Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-01-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy. PMID:26674967

  12. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway.

    PubMed

    Rahman, Md Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-02-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy. PMID:26674967

  13. On the intrinsic disorder status of the major players in programmed cell death pathways

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways. PMID:24358900

  14. On the intrinsic disorder status of the major players in programmed cell death pathways.

    PubMed

    Uversky, Alexey V; Xue, Bin; Peng, Zhenling; Kurgan, Lukasz; Uversky, Vladimir N

    2013-01-01

    Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways.

  15. APP Overexpression Causes Aβ-Independent Neuronal Death through Intrinsic Apoptosis Pathway

    PubMed Central

    Cheng, Ning; Jiao, Song; Gumaste, Ankita; Bai, Li

    2016-01-01

    Abstract Accumulation of amyloid-β (Aβ) peptide in the brain is a central hallmark of Alzheimer’s disease (AD) and is thought to be the cause of the observed neurodegeneration. Many animal models have been generated that overproduce Aβ yet do not exhibit clear neuronal loss, questioning this Aβ hypothesis. We previously developed an in vivo mouse model that expresses a humanized amyloid precursor protein (hAPP) in olfactory sensory neurons (OSNs) showing robust apoptosis and olfactory dysfunction by 3 weeks of age, which is consistent with early OSN loss and smell deficits, as observed in AD patients. Here we show, by deleting the β-site APP cleaving enzyme 1 (BACE1) in two distinct transgenic mouse models, that hAPP-induced apoptosis of OSNs is Aβ independent and remains cell autonomous. In addition, we reveal that the intrinsic apoptosis pathway is responsible for hAPP-induced OSN death, as marked by mitochondrial damage and caspase-9 activation. Given that hAPP expression causes OSN apoptosis despite the absence of BACE1, we propose that Aβ is not the sole cause of hAPP-induced neurodegeneration and that the early loss of olfactory function in AD may be based on a cell-autonomous mechanism, which could mark an early phase of AD, prior to Aβ accumulation. Thus, the olfactory system could serve as an important new platform to study the development of AD, providing unique insight for both early diagnosis and intervention. PMID:27517085

  16. APP Overexpression Causes Aβ-Independent Neuronal Death through Intrinsic Apoptosis Pathway.

    PubMed

    Cheng, Ning; Jiao, Song; Gumaste, Ankita; Bai, Li; Belluscio, Leonardo

    2016-01-01

    Accumulation of amyloid-β (Aβ) peptide in the brain is a central hallmark of Alzheimer's disease (AD) and is thought to be the cause of the observed neurodegeneration. Many animal models have been generated that overproduce Aβ yet do not exhibit clear neuronal loss, questioning this Aβ hypothesis. We previously developed an in vivo mouse model that expresses a humanized amyloid precursor protein (hAPP) in olfactory sensory neurons (OSNs) showing robust apoptosis and olfactory dysfunction by 3 weeks of age, which is consistent with early OSN loss and smell deficits, as observed in AD patients. Here we show, by deleting the β-site APP cleaving enzyme 1 (BACE1) in two distinct transgenic mouse models, that hAPP-induced apoptosis of OSNs is Aβ independent and remains cell autonomous. In addition, we reveal that the intrinsic apoptosis pathway is responsible for hAPP-induced OSN death, as marked by mitochondrial damage and caspase-9 activation. Given that hAPP expression causes OSN apoptosis despite the absence of BACE1, we propose that Aβ is not the sole cause of hAPP-induced neurodegeneration and that the early loss of olfactory function in AD may be based on a cell-autonomous mechanism, which could mark an early phase of AD, prior to Aβ accumulation. Thus, the olfactory system could serve as an important new platform to study the development of AD, providing unique insight for both early diagnosis and intervention. PMID:27517085

  17. Hypercholesterolemic diet induces vascular smooth muscle cell apoptosis in sympathectomized rats via intrinsic pathway.

    PubMed

    Hachani, Rafik; Dab, Houcine; Feriani, Anouar; Saber, Sami; Sakly, Mohsen; Vicaut, Eric; Callebert, Jacques; Sercombe, Richard; Kacem, Kamel

    2014-07-01

    In this study, we intend to investigate the role of hypercholesterolemic diet, a high risk factor for atherosclerosis, on vascular cell apoptosis in rats that have been previously sympathectomized. Thus, newborn male Wistar rats received injections of guanethidine for sympathectomy. Sham received injections of vehicle. The two groups were fed 1% cholesterol diet for 3months. Sympathectomy alone group was also exploited. Apoptosis in abdominal aortic tissue was identified by TUNEL method and conventional agarose gel electrophoresis to detect specific DNA fragmentation. Caspases 3 and 9, Bcl-2, Bax and cytochrome c were examined by immunoblotting. Oil Red O staining was used to reveal lipid in the arterial wall. Vascular smooth muscle cells (VSMCs) and macrophages were identified by immunostaining for α-smooth muscle actin and rat macrophage marker (ED1), respectively. The efficacy of sympathectomy was evaluated by analysis of perivascular sympathetic fibers. Our study showed that hypercholesterolemic diet, when performed in rats with neonatal sympathectomy, 1) increased aortic TUNEL-positive cells compared to sham and sympathectomy alone groups, 2) illustrated a typical apoptotic DNA ladder on agarose gel electrophoresis, 3) induced Bax translocation from cytosol to mitochondria, 4) enhanced cytochrome c release from mitochondria to cytosol, 5) increased expression of active caspases 3 and 9, and 6) decreased Bcl-2 expression. VSMCs are identified as the major cell type exhibiting apoptosis in this model. Taken together, it can be concluded that hypercholesterolemic diet, when performed in rats with neonatal sympathectomy, induces vascular cell apoptosis in an intrinsic pathway.

  18. Luteolin induces cell cycle arrest and apoptosis through extrinsic and intrinsic signaling pathways in MCF-7 breast cancer cells.

    PubMed

    Park, Su-Ho; Ham, Sunyoung; Kwon, Tae Ho; Kim, Man Sub; Lee, Dong Hun; Kang, Jeoung-Woo; Oh, Sei-Ryang; Yoon, Do-Young

    2014-01-01

    Luteolin is a common flavonoid that exists in medicinal herbs, fruits, and vegetables. Luteolin has biochemical functions including anti-allergy, anti-inflammation, and anti-cancer functions. However, its efficacy and precise mode of action against breast cancer are still under study. To elucidate whether luteolin exhibits an anticancer effect in breast cancer, MCF-7 breast cancer cells were incubated with luteolin, and apoptosis was assessed by observing nuclear morphological changes and by performing cell viability assay, cell cycle analysis, annexin V-FITC/PI double staining, western blotting, RT-PCR, and mitochondrial membrane potential measurements. Luteolin inhibited growth through perturbation of cell cycle progression at the sub-G1 and G1 phases in MCF-7 cells. Furthermore, luteolin enhanced the expression of death receptors, such as DR5, and activated caspase cascades. It enhanced the activities of caspase-8/-9/-3 in a dose-dependent manner, followed by inactivation of PARP. Activation of caspase-8 and caspase-9 induced caspase-3 activity, respectively, in apoptosis of extrinsic and intrinsic pathways. Luteolin also induced mitochondrial membrane potential collapse and cytochrome c release, and increased Bax expression by inhibiting expression of Bcl-2. Taken together, these results suggest that luteolin provokes cell cycle arrest and induces apoptosis by activating the extrinsic and intrinsic pathways. PMID:25272060

  19. Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-xL and RIP.

    PubMed

    Mühlethaler-Mottet, Annick; Bourloud, Katia Balmas; Auderset, Katya; Joseph, Jean-Marc; Gross, Nicole

    2004-07-15

    Neuroblastoma (NB) is a childhood neoplasm which heterogeneous behavior can be explained by differential regulation of apoptosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces rapid apoptosis in most tumor cells and thus represents a promising anticancer agent. We have reported silencing of caspase-8 expression in highly malignant NB cells as a possible mechanism of resistance to TRAIL-induced apoptosis. To explore the particular contribution of caspase-8 in such resistance, retroviral-mediated stable caspase-8 expression was induced in the IGR-N91 cells. As a result, sensitivity to TRAIL was fully restored in the caspase-8-complemented cells. TRAIL-induced cell death could be further enhanced by cotreatment of IGR-N91-C8 and SH-EP cells with cycloheximide or subtoxic concentrations of chemotherapeutic drugs in a caspase-dependent manner. Sensitization to TRAIL involved enhanced death receptor DR5 expression, activation of Bid and the complete caspases cascade. Interestingly, combined treatments also enhanced the cleavage-mediated inactivation of antiapoptotic molecules, XIAP, Bcl-x(L) and RIP. Our results show that restoration of active caspase-8 expression in a caspase-8-deficient NB cell line is necessary and sufficient to fully restore TRAIL sensitivity. Moreover, the synergistic effect of drugs and TRAIL results from activation of the caspase cascade via a mitochondrial pathway-mediated amplification loop and from the inactivation of apoptosis inhibitors. PMID:15094781

  20. Involvement of the extrinsic and intrinsic pathways in ultraviolet B-induced apoptosis of corneal epithelial cells.

    PubMed

    Ubels, John L; Glupker, Courtney D; Schotanus, Mark P; Haarsma, Loren D

    2016-04-01

    The goal of this study was to elucidate the pathway by which UVB initiates efflux of K(+) and subsequently apoptosis in human corneal limbal epithelial (HCLE) cells. The initial focus of the study was on the extrinsic pathway involving Fas. HCLE cells transfected with Fas siRNA were exposed to 80-150 mJ/cm(2) UVB and incubated in culture medium with 5.5 mM K(+). Knockdown of Fas resulted in limited reduction in UVB-induced caspase-8 and -3 activity. Patch-clamp recordings showed no difference in UVB-induced normalized K(+) currents between Fas transfected and control cells. Knockdown of caspase-8 had no effect on the activation of caspase-3 following UVB exposure, while a caspase-8 inhibitor completely eliminated UVB activation of caspase-3. This suggests that caspase-8 is a robust enzyme, able to activate caspase-3 via residual caspase-8 present after knockdown, and that caspase-8 is directly involved in the UVB activation of caspase-3. Inhibition of caspase-9 significantly decreased the activation of caspases-8 and -3 in response to UVB. Knockdown of Apaf-1, required for activation of caspase-9, resulted in a significant reduction in UVB-induced activation of caspases-9, -8, and -3. Knockdown of Apaf-1 also inhibited intrinsic and UVB-induced levels of apoptosis, as determined by DNA fragmentation measured by TUNEL assay. In UVB exposed cultures treated with caspase-3 inhibitor, the percentage of apoptotic cells was reduced to control levels, confirming the necessity of caspase-3 activation in DNA fragmentation. The lack of effect of Fas knockdown on K(+) channel activation, as well as the limited effect on activation of caspases-8 and -3, strongly suggest that Fas and the extrinsic pathway is not of primary importance in the initiation of apoptosis in response to UVB in HCLE cells. Inhibition of caspase-8 and -3 activation following inhibition of caspase-9, as well as reduction in activation of caspases-9, -8, and -3 and DNA fragmentation in response to Apaf

  1. Involvement of the extrinsic and intrinsic pathways in ultraviolet B-induced apoptosis of corneal epithelial cells.

    PubMed

    Ubels, John L; Glupker, Courtney D; Schotanus, Mark P; Haarsma, Loren D

    2016-04-01

    The goal of this study was to elucidate the pathway by which UVB initiates efflux of K(+) and subsequently apoptosis in human corneal limbal epithelial (HCLE) cells. The initial focus of the study was on the extrinsic pathway involving Fas. HCLE cells transfected with Fas siRNA were exposed to 80-150 mJ/cm(2) UVB and incubated in culture medium with 5.5 mM K(+). Knockdown of Fas resulted in limited reduction in UVB-induced caspase-8 and -3 activity. Patch-clamp recordings showed no difference in UVB-induced normalized K(+) currents between Fas transfected and control cells. Knockdown of caspase-8 had no effect on the activation of caspase-3 following UVB exposure, while a caspase-8 inhibitor completely eliminated UVB activation of caspase-3. This suggests that caspase-8 is a robust enzyme, able to activate caspase-3 via residual caspase-8 present after knockdown, and that caspase-8 is directly involved in the UVB activation of caspase-3. Inhibition of caspase-9 significantly decreased the activation of caspases-8 and -3 in response to UVB. Knockdown of Apaf-1, required for activation of caspase-9, resulted in a significant reduction in UVB-induced activation of caspases-9, -8, and -3. Knockdown of Apaf-1 also inhibited intrinsic and UVB-induced levels of apoptosis, as determined by DNA fragmentation measured by TUNEL assay. In UVB exposed cultures treated with caspase-3 inhibitor, the percentage of apoptotic cells was reduced to control levels, confirming the necessity of caspase-3 activation in DNA fragmentation. The lack of effect of Fas knockdown on K(+) channel activation, as well as the limited effect on activation of caspases-8 and -3, strongly suggest that Fas and the extrinsic pathway is not of primary importance in the initiation of apoptosis in response to UVB in HCLE cells. Inhibition of caspase-8 and -3 activation following inhibition of caspase-9, as well as reduction in activation of caspases-9, -8, and -3 and DNA fragmentation in response to Apaf

  2. Bufalin reverses intrinsic and acquired drug resistance to cisplatin through the AKT signaling pathway in gastric cancer cells.

    PubMed

    Zhao, Hongyan; Zhao, Dali; Jin, Huilin; Li, Hongwei; Yang, Xiaoying; Zhuang, Liwei; Liu, Tiefu

    2016-08-01

    Cisplatin is the most common chemotherapeutic agent for gastric cancer (GC), however it activates AKT, which contributes to intrinsic and acquired resistance. Bufalin, a traditional Chinese medicine, shows significant anticancer activity by inhibiting the AKT pathway. It was therefore hypothesized that bufalin could counteract cisplatin resistance in GC cells. SGC7901, MKN‑45 and BGC823 human GC cells were cultured under normoxic and hypoxic conditions. Effects of cisplatin and bufalin on GC cells were measured by a cell counting kit, apoptosis was analyzed by flow cytometry, and immunoblotting was used to detect proteins associated with the AKT signaling pathway. It was demonstrated that bufalin synergized with cisplatin to inhibit proliferation and promote apoptosis of GC cells by diminishing the activation of cisplatin-induced AKT under normoxic and hypoxic conditions. Bufalin also inhibits cisplatin-activated molecules downstream of AKT that affect proliferation and apoptosis, including glycogen synthase kinase, mammalian target of rapamycin, ribosomal protein S6 Kinase and eukaryotic translation initiation factor-4E-binding protein-1. To investigate acquired cisplatin resistance, a cisplatin‑resistant cell line SGC7901‑CR was used. It was demonstrated that bufalin reversed acquired cisplatin resistance and significantly induced apoptosis through the AKT pathway. These results imply that bufalin could extend the therapeutic effect of cisplatin on GC cells when administered in combination. PMID:27357249

  3. Blood coagulation as an intrinsic pathway for proinflammation: a mini review.

    PubMed

    Chu, Arthur J

    2010-03-01

    Blood coagulation could be recognized as intrinsic inflammation. The coagulant mediators (FVIIa, FXa, thrombin (FIIa), FXIIa) and fibrin(ogen) activate cellular signaling, eliciting the production of cytokines, chemokines, growth factors, and other proinflammatory mediators. Hypercoagulability with elevated coagulant mediators would certainly trigger hyper-inflammatory state not to mention about the direct hypercoagulable actions on thrombosis, and platelet and complement activations, all of which contribute to inflammatory events. Furthermore, anticoagulant's anti-inflammatory effects readily reinforce the proposal that blood coagulation results in inflammation. The observations on protease activated receptor (PAR) activation and PAR antagonists modulating inflammation are also in line with the concept of coagulation-dependent inflammation.

  4. Factor XIa induced activation of the intrinsic cascade in vivo.

    PubMed

    ten Cate, H; Biemond, B J; Levi, M; Wuillemin, W A; Bauer, K A; Barzegar, S; Buller, H R; Hack, C E; ten Cate, J W; Rosenberg, R D

    1996-03-01

    Coagulation factor XI is a glycoprotein of the contact factor system. Its deficiency is associated with a highly variable bleeding tendency, thus a role in relation to hemostasis appears to exist. However, the importance of factor XI for stimulating intrinsic coagulation in vivo has not yet been determined. To study the procoagulant effects of human factor XIa in vivo, we infused the purified enzyme into normal chimpanzees (100 micrograms) in the absence or presence of the thrombin inhibitor rec-hirudin (1.0 mg/kg loading dose plus 0.3 mg/kg body wt continuous infusion). Factor XIa elicited an immediate activation of factors IX, X, and prothrombin, as measured by their respective activation fragments. However, whereas the activation of factors IX and X was immediate and shortlasting, (peak increments of 6- and 1.4-fold of baseline at 5 minutes after injection), the conversion of prothrombin gradually increased, reaching a summit of 6-fold baseline values after 60 min, and remaining elevated during the course of the experiments. Thrombin-antithrombin complexes also remained elevated during the study period. In the presence of hirudin, the initial activation of factors IX, X, and prothrombin was unchanged, however the further increment in prothrombin fragment F1 + 2 was markedly inhibited. These results demonstrate that factor XIa is a potential agonist of the intrinsic cascade in vivo, which activity is enhanced in the presence of thrombin.

  5. Robust active binocular vision through intrinsically motivated learning.

    PubMed

    Lonini, Luca; Forestier, Sébastien; Teulière, Céline; Zhao, Yu; Shi, Bertram E; Triesch, Jochen

    2013-01-01

    The efficient coding hypothesis posits that sensory systems of animals strive to encode sensory signals efficiently by taking into account the redundancies in them. This principle has been very successful in explaining response properties of visual sensory neurons as adaptations to the statistics of natural images. Recently, we have begun to extend the efficient coding hypothesis to active perception through a form of intrinsically motivated learning: a sensory model learns an efficient code for the sensory signals while a reinforcement learner generates movements of the sense organs to improve the encoding of the signals. To this end, it receives an intrinsically generated reinforcement signal indicating how well the sensory model encodes the data. This approach has been tested in the context of binocular vison, leading to the autonomous development of disparity tuning and vergence control. Here we systematically investigate the robustness of the new approach in the context of a binocular vision system implemented on a robot. Robustness is an important aspect that reflects the ability of the system to deal with unmodeled disturbances or events, such as insults to the system that displace the stereo cameras. To demonstrate the robustness of our method and its ability to self-calibrate, we introduce various perturbations and test if and how the system recovers from them. We find that (1) the system can fully recover from a perturbation that can be compensated through the system's motor degrees of freedom, (2) performance degrades gracefully if the system cannot use its motor degrees of freedom to compensate for the perturbation, and (3) recovery from a perturbation is improved if both the sensory encoding and the behavior policy can adapt to the perturbation. Overall, this work demonstrates that our intrinsically motivated learning approach for efficient coding in active perception gives rise to a self-calibrating perceptual system of high robustness. PMID:24223552

  6. Robust active binocular vision through intrinsically motivated learning.

    PubMed

    Lonini, Luca; Forestier, Sébastien; Teulière, Céline; Zhao, Yu; Shi, Bertram E; Triesch, Jochen

    2013-01-01

    The efficient coding hypothesis posits that sensory systems of animals strive to encode sensory signals efficiently by taking into account the redundancies in them. This principle has been very successful in explaining response properties of visual sensory neurons as adaptations to the statistics of natural images. Recently, we have begun to extend the efficient coding hypothesis to active perception through a form of intrinsically motivated learning: a sensory model learns an efficient code for the sensory signals while a reinforcement learner generates movements of the sense organs to improve the encoding of the signals. To this end, it receives an intrinsically generated reinforcement signal indicating how well the sensory model encodes the data. This approach has been tested in the context of binocular vison, leading to the autonomous development of disparity tuning and vergence control. Here we systematically investigate the robustness of the new approach in the context of a binocular vision system implemented on a robot. Robustness is an important aspect that reflects the ability of the system to deal with unmodeled disturbances or events, such as insults to the system that displace the stereo cameras. To demonstrate the robustness of our method and its ability to self-calibrate, we introduce various perturbations and test if and how the system recovers from them. We find that (1) the system can fully recover from a perturbation that can be compensated through the system's motor degrees of freedom, (2) performance degrades gracefully if the system cannot use its motor degrees of freedom to compensate for the perturbation, and (3) recovery from a perturbation is improved if both the sensory encoding and the behavior policy can adapt to the perturbation. Overall, this work demonstrates that our intrinsically motivated learning approach for efficient coding in active perception gives rise to a self-calibrating perceptual system of high robustness.

  7. Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways.

    PubMed

    Doley, Juwar; Singh, Lakshya Veer; Kumar, G Ravi; Sahoo, Aditya Prasad; Saxena, Lovleen; Chaturvedi, Uttara; Saxena, Shikha; Kumar, Rajiv; Singh, Prafull Kumar; Rajmani, R S; Santra, Lakshman; Palia, S K; Tiwari, S; Harish, D R; Kumar, Arvind; Desai, G S; Gupta, Smita; Gupta, Shishir K; Tiwari, A K

    2014-01-01

    The canine parvovirus type 2 (CPV-2) causes an acute disease in dogs. It has been found to induce cell cycle arrest and DNA damage leading to cellular lysis. In this paper, we evaluated the apoptotic potential of the "new CPV-2a" in MDCK cells and elucidated the mechanism of the induction of apoptosis. The exposure of MDCK cells to the virus was found to trigger apoptotic response. Apoptosis was confirmed by phosphatidylserine translocation, DNA fragmentation assays, and cell cycle analysis. Activation of caspases-3, -8, -9, and -12 and decrease in mitochondrial potential in CPV-2a-infected MDCK cells suggested that the CPV-2a-induced apoptosis is caspase dependent involving extrinsic, intrinsic, and endoplasmic reticulum pathways. Increase in p53 and Bax/Bcl2 ratio was also observed in CPV-2a-infected cells.

  8. Pulchrin A, a New Natural Coumarin Derivative of Enicosanthellum pulchrum, Induces Apoptosis in Ovarian Cancer Cells via Intrinsic Pathway

    PubMed Central

    Nordin, Noraziah; Fadaeinasab, Mehran; Mohan, Syam; Mohd Hashim, Najihah; Othman, Rozana; Karimian, Hamed; Iman, Venus; Ramli, Noorlela; Mohd Ali, Hapipah; Abdul Majid, Nazia

    2016-01-01

    Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments. PMID:27136097

  9. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Lizeng; Zhuang, Jie; Nie, Leng; Zhang, Jinbin; Zhang, Yu; Gu, Ning; Wang, Taihong; Feng, Jing; Yang, Dongling; Perrett, Sarah; Yan, Xiyun

    2007-09-01

    Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.

  10. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    , termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.

  11. Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant.

    PubMed

    Lan, Yu-Hsuan; Chiang, Jo-Hua; Huang, Wen-Wen; Lu, Chi-Cheng; Chung, Jing-Gung; Wu, Tian-Shung; Jhan, Jia-Hua; Lin, Kuei-Li; Pai, Shu-Jen; Chiu, Yu-Jen; Tsuzuki, Minoru; Yang, Jai-Sing

    2012-01-01

    Emilia sonchifolia (L.) DC (Compositae), an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE) on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%). ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic) were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer.

  12. Cinobufagin inhibits tumor growth by inducing intrinsic apoptosis through AKT signaling pathway in human nonsmall cell lung cancer cells

    PubMed Central

    Zhang, Guangxin; Wang, Chao; Sun, Mei; Li, Jindong; Wang, Bin; Jin, Chengyan; Hua, Peiyan; Song, Ge; Zhang, Yifan; Nguyen, Lisa L.H.; Cui, Ranji; Liu, Runhua; Wang, Lizhong; Zhang, Xingyi

    2016-01-01

    The cinobufagin (CB) has a broad spectrum of cytotoxicity to inhibit cell proliferation of various human cancer cell lines, but the molecular mechanisms still remain elusive. Here we observed that CB inhibited the cell proliferation and tumor growth, but induced cell cycle arrest and apoptosis in a dose-dependent manner in non-small cell lung cancer (NSCLC) cells. Treatment with CB significantly increased the reactive oxygen species but decreased the mitochondrial membrane potential in NSCLC cells. These effects were markedly blocked when the cells were pretreated with N-acetylcysteine, a specific reactive oxygen species inhibitor. Furthermore, treatment with CB induced the expression of BAX but reduced that of BCL-2, BCL-XL and MCL-1, leading to an activation of caspase-3, chromatin condensation and DNA degradation in order to induce programmed cell death in NSCLC cells. In addition, treatment with CB reduced the expressions of p-AKTT308 and p-AKTS473 and inhibited the AKT/mTOR signaling pathway in NSCLC cells in a time-dependent manner. Our results suggest that CB inhibits tumor growth by inducing intrinsic apoptosis through the AKT signaling pathway in NSCLC cells. PMID:26959116

  13. Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways

    PubMed Central

    Shao, Le-Wen; Huang, Li-Hua; Yan, Sheng; Jin, Jian-Di; Ren, Shao-Yan

    2016-01-01

    Cordycepin, also termed 3′-deoxyadenosine, is a nucleoside analogue from Cordyceps sinensis and has been reported to demonstrate numerous biological and pharmacological properties. Our previous study illustrated that the anti-tumor effect of cordycepin may be associated with apoptosis. In the present study, the apoptotic effect of cordycepin on HepG2 cells was investigated using 4′,6-diamidino-2-phenylindole, tetraethylbenzimidazolylcarbocyanine iodide and propidium iodide staining analysis and flow cytometry. The results showed that cordycepin exhibited the ability to inhibit HepG2 cells in a time- and dose-dependent manner when cells produced typical apoptotic morphological changes, including chromatin condensation, the accumulation of sub-G1 cells and change mitochondrial permeability. A potential mechanism for cordycepin-induced apoptosis of human liver cancer HepG2 cells may occur through the extrinsic signaling pathway mediated by the transmembrane Fas-associated with death domain protein. Apoptosis was also associated with Bcl-2 family protein regulation, leading to altered mitochondrial membrane permeability and resulting in the release of cytochrome c into the cytosol. The activation of the caspase cascade is responsible for the execution of apoptosis. In conclusion, cordycepin-induced apoptosis in HepG2 cells involved the extrinsic and intrinsic signaling pathway and was primarily regulated by the Bcl-2 family proteins. PMID:27446383

  14. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  15. 4-methylcatechol-Induced Oxidative Stress Induces Intrinsic Apoptotic Pathway in Metastatic Melanoma Cells

    PubMed Central

    Payton, Florastina; Bose, Rumu; Alworth, William L; Kumar, Addanki P; Ghosh, Rita

    2011-01-01

    There has been a steady rise in fatalities associated with thick melanomas (>4mm). Although understanding of the biology of the disease has improved, effective treatment strategies for patients with advanced metastatic melanoma remain elusive. Therefore, more intensive testing of agents with therapeutic potential are needed to improve survival of patients with metastatic malignant melanoma. We have tested the ability of 4-methylcatechol, a metabolite of quercetin; a naturally occurring compound that is commonly found in a variety of fruits for its potential as an anti-melanoma agent. Our results show that 4-methylcatechol inhibits proliferation of melanoma cells in culture while not affecting the growth of normal human epidermal melanocytes. Further, the ability of metastatic melanoma cells to form colonies on soft agar was also inhibited. 4-methylcatechol caused the accumulation of cells in G2/M phase of the cell cycle and induced apoptosis. There was an increase in reactive oxygen species following treatment with 4-methylcatechol that led to apoptosis through the intrinsic mitochondrial pathway. Treatment also inhibited cell survival mediated by Akt, a key player in melanoma cell survival. Taken together our results suggest that 4-methylcatechol exhibits cytotoxicity towards metastatic malignant melanoma cells while sparing normal melanocytes and should be tested further as a potential drug candidate for malignant melanoma. PMID:21419106

  16. MOFzyme: Intrinsic protease-like activity of Cu-MOF

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-10-01

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu2(C9H3O6)4/3 MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA.

  17. Extracts of Strawberry Fruits Induce Intrinsic Pathway of Apoptosis in Breast Cancer Cells and Inhibits Tumor Progression in Mice

    PubMed Central

    Somasagara, Ranganatha R.; Hegde, Mahesh; Chiruvella, Kishore K.; Musini, Anjaneyulu; Choudhary, Bibha; Raghavan, Sathees C.

    2012-01-01

    Background The consumption of berry fruits, including strawberries, has been suggested to have beneficial effects against oxidative stress mediated diseases. Berries contain multiple phenolic compounds and secondary metabolites that contribute to their biological properties. Methodology/Principal Findings Current study investigates the anticancer activity of the methanolic extract of strawberry (MESB) fruits in leukaemia (CEM) and breast cancer (T47D) cell lines ex vivo, and its cancer therapeutic and chemopreventive potential in mice models. Results of MTT, trypan blue and LDH assays suggested that MESB can induce cytotoxicity in cancer cells, irrespective of origin, in a concentration- and time-dependent manner. Treatment of mice bearing breast adenocarcinoma with MESB blocked the proliferation of tumor cells in a time-dependent manner and resulted in extended life span. Histological and immunohistochemical studies suggest that MESB treatment affected tumor cell proliferation by activating apoptosis and did not result in any side effects. Finally, we show that MESB can induce intrinsic pathway of apoptosis by activating p73 in breast cancer cells, when tumor suppressor gene p53 is mutated. Conclusions/Significance The present study reveals that strawberry fruits possess both cancer preventive and therapeutic values and we discuss the mechanism by which it is achieved. PMID:23071702

  18. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    PubMed

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  19. Dietary chlorophyllin inhibits the canonical NF-κB signaling pathway and induces intrinsic apoptosis in a hamster model of oral oncogenesis.

    PubMed

    Thiyagarajan, P; Senthil Murugan, R; Kavitha, K; Anitha, P; Prathiba, D; Nagini, S

    2012-03-01

    Chlorophyllin, a water-soluble, semi-synthetic derivative of the ubiquitous green pigment chlorophyll is shown to exert potent anticarcinogenic effects. In the present study, we investigated the chemopreventive effects of chlorophyllin on 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis by analyzing the expression of NF-κB family members and markers of intrinsic apoptosis. Dietary administration of chlorophyllin (4 mg/kg bw) suppressed the development of HBP carcinomas by inhibiting the canonical NF-κB signaling pathway by downregulating IKKβ, preventing the phosphorylation of IκB-α, and reducing the expression of nuclear NF-κB. Inactivation of NF-κB signaling by chlorophyllin was associated with the induction of intrinsic apoptosis as evidenced by modulation of Bcl-2 family proteins, enforced nuclear localization of survivin, upregulation of apoptogenic molecules, activation of caspases, and cleavage of PARP. The results of the present study demonstrate that chlorophyllin inhibits the development of DMBA-induced HBP carcinogenesis by targeting NF-κB and the intrinsic apoptotic pathway. Thus, dietary agents such as chlorophyllin that simultaneously target divergent pathways of cell survival and cell death are novel candidates for cancer chemoprevention. PMID:22210229

  20. Intrinsic mechanisms of pain inhibition: activation by stress.

    PubMed

    Terman, G W; Shavit, Y; Lewis, J W; Cannon, J T; Liebeskind, J C

    1984-12-14

    Portions of the brain stem seem normally to inhibit pain. In man and laboratory animals these brain areas and pathways from them to spinal sensory circuits can be activated by focal stimulation. Endogenous opioids appear to be implicated although separate nonopioid mechanisms are also evident. Stress seems to be a natural stimulus triggering pain suppression. Properties of electric footshock have been shown to determine the opioid or nonopioid basis of stress-induced analgesia. Two different opioid systems can be activated by different footshock paradigms. This dissection of stress analgesia has begun to integrate divergent findings concerning pain inhibition and also to account for some of the variance that has obscured the reliable measurement of the effects of stress on tumor growth and immune function.

  1. Maggot excretion products from the blowfly Lucilia sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions.

    PubMed

    Kahl, M; Gökçen, A; Fischer, S; Bäumer, M; Wiesner, J; Lochnit, G; Wygrecka, M; Vilcinskas, A; Preissner, K T

    2015-08-01

    For centuries, maggots have been used for the treatment of wounds by a variety of ancient cultures, as part of their traditional medicine. With increasing appearance of antimicrobial resistance and in association with diabetic ulcers, maggot therapy was revisited in the 1980s. Three mechanisms by which sterile maggots of the green bottle fly Lucilia sericata may improve healing of chronic wounds have been proposed: Biosurgical debridement, disinfecting properties, and stimulation of the wound healing process. However, the influence of maggot excretion products (MEP) on blood coagulation as part of the wound healing process has not been studied in detail. Here, we demonstrate that specific MEP-derived serine proteases from Lucilia sericata induce clotting of human plasma and whole blood, particularly by activating contact phase proteins factor XII and kininogen as well as factor IX, thereby providing kallikrein-bypassing and factor XIa-like activities, both in plasma and in isolated systems. In plasma samples deficient in contact phase proteins, MEP restored full clotting activity, whereas in plasma deficient in either factor VII, IX, X or II no effect was seen. The observed procoagulant/intrinsic pathway-like activity was mediated by (chymo-) trypsin-like proteases in total MEP, which were significantly blocked by C1-esterase inhibitor or other contact phase-specific protease inhibitors. No significant influence of MEP on platelet activation or fibrinolysis was noted. Together, MEP provides contact phase bypassing procoagulant activity and thereby induces blood clotting in the context of wound healing. Further characterisation of the active serine protease(s) may offer new perspectives for biosurgical treatment of chronic wounds. PMID:25948398

  2. Maggot excretion products from the blowfly Lucilia sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions.

    PubMed

    Kahl, M; Gökçen, A; Fischer, S; Bäumer, M; Wiesner, J; Lochnit, G; Wygrecka, M; Vilcinskas, A; Preissner, K T

    2015-08-01

    For centuries, maggots have been used for the treatment of wounds by a variety of ancient cultures, as part of their traditional medicine. With increasing appearance of antimicrobial resistance and in association with diabetic ulcers, maggot therapy was revisited in the 1980s. Three mechanisms by which sterile maggots of the green bottle fly Lucilia sericata may improve healing of chronic wounds have been proposed: Biosurgical debridement, disinfecting properties, and stimulation of the wound healing process. However, the influence of maggot excretion products (MEP) on blood coagulation as part of the wound healing process has not been studied in detail. Here, we demonstrate that specific MEP-derived serine proteases from Lucilia sericata induce clotting of human plasma and whole blood, particularly by activating contact phase proteins factor XII and kininogen as well as factor IX, thereby providing kallikrein-bypassing and factor XIa-like activities, both in plasma and in isolated systems. In plasma samples deficient in contact phase proteins, MEP restored full clotting activity, whereas in plasma deficient in either factor VII, IX, X or II no effect was seen. The observed procoagulant/intrinsic pathway-like activity was mediated by (chymo-) trypsin-like proteases in total MEP, which were significantly blocked by C1-esterase inhibitor or other contact phase-specific protease inhibitors. No significant influence of MEP on platelet activation or fibrinolysis was noted. Together, MEP provides contact phase bypassing procoagulant activity and thereby induces blood clotting in the context of wound healing. Further characterisation of the active serine protease(s) may offer new perspectives for biosurgical treatment of chronic wounds.

  3. Physicochemical characterization and biological activity of intrinsic factor in cystic fibrosis.

    PubMed

    Monin, B; Guéant, J L; Gérard, A; Michalski, J C; Vidailhet, M; Grignon, G; Nicolas, J P

    1990-01-01

    Absorption of crystalline labeled cobalamin is strongly decreased in cases of cystic fibrosis. In order to determine if this is due to an alteration or a lack of activation of intrinsic factor by proteases, the physicochemical properties and biological activity of intrinsic factor have been studied. Intrinsic factor was purified 800-fold from stimulated gastric juice of cystic fibrosis patients with a yield of 64.2%. Cystic fibrosis intrinsic factor had an estimated Mr of 57,000 in SDS-polyacrylamide gel electrophoresis. Its carbohydrate content resembled that of normal human intrinsic factor, except that the ratio fucose/sialic acid was higher (6.1 and 1.6, respectively) and that the content in N-acetylgalactosamine was decreased. The same alterations in carbohydrate composition were observed for Hc purified from cystic fibrosis saliva. Purified intrinsic factor from cystic fibrosis gastric juice was biologically active in vitro in the presence of ileal solubilized receptor as well as in vivo (Schilling test). The fate of iodinated cystic fibrosis intrinsic factor in guinea pig ileum studied by high-resolution radioautography was similar to that of normal intrinsic factor. In conclusion, despite modifications of the carbohydrate content of the molecule, the biological activity of intrinsic factor is not altered in cases of cystic fibrosis. The malassimilation of crystalline cobalamin observed in cystic fibrosis is due to a mechanism independent from intrinsic factor secretion. PMID:2324885

  4. Effective Blockage of Both the Extrinsic and Intrinsic Pathways of Apoptosis in Mice by TAT-crmA

    PubMed Central

    Krautwald, Stefan; Ziegler, Ekkehard; Rölver, Lars; Linkermann, Andreas; Keyser, Kirsten A.; Steen, Philip; Wollert, Kai C.; Korf-Klingebiel, Mortimer; Kunzendorf, Ulrich

    2010-01-01

    Evidence accumulates that in clinically relevant cell death, both the intrinsic and extrinsic apoptotic pathway synergistically contribute to organ failure. In search for an inhibitor of apoptosis that provides effective blockage of these pathways, we analyzed viral proteins that evolved to protect the infected host cells. In particular, the cowpox virus protein crmA has been demonstrated to be capable of blocking key caspases of both pro-apoptotic pathways. To deliver crmA into eukaryotic cells, we fused the TAT protein transduction domain of HIV to the N terminus of crmA. In vitro, the TAT-crmA fusion protein was efficiently translocated into target cells and inhibited apoptosis mediated through caspase-8, caspase-9, and caspase-3 after stimulation with α-Fas, etoposide, doxorubicin, or staurosporine. The extrinsic apoptotic pathway was investigated following α-Fas stimulation. In vivo 90% of TAT-crmA-treated animals survived an otherwise lethal dose of α-Fas and showed protection from Fas-induced organ failure. To examine the intrinsic apoptotic pathway, we investigated the survival of mice treated with an otherwise lethal dose of doxorubicin. Whereas all control mice died within 31 days, 40% of mice that concomitantly received intraperitoneal injections of TAT-crmA survived. To test the ability to comprehensively block both the intrinsic and extrinsic apoptotic pathway in a clinically relevant setting, we employed a murine cardiac ischemia-reperfusion model. TAT-crmA reduced infarction size by 40% and preserved left ventricular function. In summary, these results provide a proof of principle for the inhibition of apoptosis with TAT-crmA, which might provide a new treatment option for ischemia-reperfusion injuries. PMID:20427266

  5. Effective blockage of both the extrinsic and intrinsic pathways of apoptosis in mice by TAT-crmA.

    PubMed

    Krautwald, Stefan; Ziegler, Ekkehard; Rölver, Lars; Linkermann, Andreas; Keyser, Kirsten A; Steen, Philip; Wollert, Kai C; Korf-Klingebiel, Mortimer; Kunzendorf, Ulrich

    2010-06-25

    Evidence accumulates that in clinically relevant cell death, both the intrinsic and extrinsic apoptotic pathway synergistically contribute to organ failure. In search for an inhibitor of apoptosis that provides effective blockage of these pathways, we analyzed viral proteins that evolved to protect the infected host cells. In particular, the cowpox virus protein crmA has been demonstrated to be capable of blocking key caspases of both pro-apoptotic pathways. To deliver crmA into eukaryotic cells, we fused the TAT protein transduction domain of HIV to the N terminus of crmA. In vitro, the TAT-crmA fusion protein was efficiently translocated into target cells and inhibited apoptosis mediated through caspase-8, caspase-9, and caspase-3 after stimulation with alpha-Fas, etoposide, doxorubicin, or staurosporine. The extrinsic apoptotic pathway was investigated following alpha-Fas stimulation. In vivo 90% of TAT-crmA-treated animals survived an otherwise lethal dose of alpha-Fas and showed protection from Fas-induced organ failure. To examine the intrinsic apoptotic pathway, we investigated the survival of mice treated with an otherwise lethal dose of doxorubicin. Whereas all control mice died within 31 days, 40% of mice that concomitantly received intraperitoneal injections of TAT-crmA survived. To test the ability to comprehensively block both the intrinsic and extrinsic apoptotic pathway in a clinically relevant setting, we employed a murine cardiac ischemia-reperfusion model. TAT-crmA reduced infarction size by 40% and preserved left ventricular function. In summary, these results provide a proof of principle for the inhibition of apoptosis with TAT-crmA, which might provide a new treatment option for ischemia-reperfusion injuries. PMID:20427266

  6. Are there folding pathways in the functional stages of intrinsically disordered proteins?

    NASA Astrophysics Data System (ADS)

    Ilieva, N.; Liu, J.; Marinova, R.; Petkov, P.; Litov, L.; He, J.; Niemi, A. J.

    2016-10-01

    We proceed from the description of protein folding by means of molecular dynamics (MD) simulations with all-atom force fields, with folding pathways interpreted in terms of soliton structures, to identify possible systematic dynamical patterns of self-organisation that govern protein folding process. We perform in silico investigations of the conformational transformations of three different proteins - MYC protein (an α-helical protein), amylin and indolicidin (IDPs with different length and binding dynamics). We discuss the emergence of soliton-mediated secondary motifs, in the case of IDPs - in the context of their functional activity. We hypothesize that soliton-like quasi-ordered conformations appear as an important intermediate stage in this process.

  7. Plastic Change along the Intact Crossed Pathway in Acute Phase of Cerebral Ischemia Revealed by Optical Intrinsic Signal Imaging

    PubMed Central

    Guo, Xiaoli; He, Yongzhi; Lu, Hongyang; Li, Yao; Su, Xin; Jiang, Ying; Tong, Shanbao

    2016-01-01

    The intact crossed pathway via which the contralesional hemisphere responds to the ipsilesional somatosensory input has shown to be affected by unilateral stroke. The aim of this study was to investigate the plasticity of the intact crossed pathway in response to different intensities of stimulation in a rodent photothrombotic stroke model. Using optical intrinsic signal imaging, an overall increase of the contralesional cortical response was observed in the acute phase (≤48 hours) after stroke. In particular, the contralesional hyperactivation is more prominent under weak stimulations, while a strong stimulation would even elicit a depressed response. The results suggest a distinct stimulation-response pattern along the intact crossed pathway after stroke. We speculate that the contralesional hyperactivation under weak stimulations was due to the reorganization for compensatory response to the weak ipsilateral somatosensory input. PMID:27144032

  8. Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on Vm-Fluctuations during Network Activity

    PubMed Central

    Kolind, Jens; Hounsgaard, Jørn; Berg, Rune W.

    2012-01-01

    Neurons often receive massive concurrent bombardment of synaptic inhibition and excitation during functional network activity. This increases membrane conductance and causes fluctuations in membrane potential (Vm) and spike timing. The conductance increase is commonly attributed to synaptic conductance, but also includes the intrinsic conductances recruited during network activity. These two sources of conductance have contrasting dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated conductance changes abruptly and briefly with each presynaptic action potential. If the spikes arrive at random times the changes in synaptic conductance are therefore stochastic and rapid during intense network activity. In comparison, sub-threshold intrinsic conductances vary smoothly in time. In the present study this discrepancy is investigated using two conductance-based models: a (1) compartment model and a (2) compartment with realistic slow intrinsic conductances. We examine the effects of varying the relative contributions of non-fluctuating intrinsic conductance with fluctuating concurrent inhibitory and excitatory synaptic conductance. For given levels of correlation in the synaptic input we find that the magnitude of the membrane fluctuations uniquely determines the relative contribution of synaptic and intrinsic conductance. We also quantify how Vm-fluctuations vary with synaptic correlations for fixed ratios of synaptic and intrinsic conductance. Interestingly, the levels of Vm -fluctuations and conductance observed experimentally during functional network activity leave little room for intrinsic conductance to contribute. Even without intrinsic conductances the variance in Vm -fluctuations can only be explained by a high degree of correlated firing among presynaptic neurons. PMID:22783184

  9. Insulin and rabbit anti-insulin receptor antibodies stimulate additively the intrinsic receptor kinase activity.

    PubMed Central

    Ponzio, G; Dolais-Kitabgi, J; Louvard, D; Gautier, N; Rossi, B

    1987-01-01

    This paper describes the properties of rabbit polyclonal antibodies directed against purified human insulin receptor which strongly stimulate the intrinsic tyrosine kinase activity. The stimulatory effect of the antibodies on the kinase activity was obtained on the insulin receptor autophosphorylation as well as on the kinase activity towards a synthetic substrate. This stimulation is additive to that induced by insulin. Moreover, rabbit antibodies do not impair insulin binding. These data strongly suggest that antibodies and insulin act through separate pathways. This conclusion is reinforced by the differences observed on the phosphopeptide maps of the receptor's beta subunit whose phosphorylation was performed either in the presence of insulin or rabbit antibodies. Interestingly, these polyclonal antibodies can also induce an activation of the receptor autophosphorylation by interacting only with extracellular determinants. The anti-insulin receptor antibodies mimic insulin in their stimulatory effect on amino acid (AIB) uptake, but they have a different effect to that found on the kinase activity; the simultaneous addition of the antiserum and insulin failed to stimulate this amino acid transport over the level induced by a saturating concentration of hormone. Images Fig. 1. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:3034584

  10. Pulsed electromagnetic field affects intrinsic and endoplasmatic reticulum apoptosis induction pathways in MonoMac6 cell line culture.

    PubMed

    Kaszuba-Zwoinska, J; Chorobik, P; Juszczak, K; Zaraska, W; Thor, P J

    2012-10-01

    Current studies were aimed to elucidate influence of pulsed electromagnetic field stimulation on cell viability and apoptosis induction pathways. For the experimental model we have chosen monocytic cell line MonoMac6 and several apoptosis inducers with different mechanism of death induction like puromycin, colchicine, cyclophosphamide, minocycline and hydrogen peroxide. MonoMac6 cell line was grown at density 1x10(5) cells/well in 96-well culture plates. To induce cell death cell cultures were treated with different apoptosis inducers like puromycin, colchicine, cyclophosphamide, minocycline, hydrogen peroxide and at the same time with pulsed electromagnetic field 50 Hz, 45±5 mT (PEMF) for 4 hour per each stimulation, three times, in 24 hours intervals. Afterwards, cells were harvested for flow cytometry analysis of cell viability measured by annexin V-APC labeled and propidium iodide staining. Expression of apoptosis related genes was evaluated by semi quantitative reverse transcription (RT)-PCR assay. NuPAGE Novex Western blot analysis was carried out for apoptosis inducing factor (AIF) abundance in cytosolic and nuclear extracts of MonoMac6 cells. Puromycin, colchicine and minocycline activated cells and simultaneously treated with PEMF have shown out diminished percentage of annexinV positive (AnV+) cells comparing to controls without PEMF stimulation. MonaMac6 cells puromycin/colchicyne and PEMF treated were to a higher extent double stained (AnV+,PI+), which means increased late apoptotic as well as necrotic (PI+) cells, than non-stimulated controls. On the other hand, minocycline activated cells prior to PEMF treatment showed diminished amount of apoptotic and necrotic (annexin V, annexin V and propidium iodide, propidium iodide positive staining) cells. The opposite effect of PEMF on the percentage of annexin V positively stained cells has been achieved after treatment of MonoMac6 culture with cyclophoshamide and hydrogen peroxide. PEMF enhanced early

  11. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships.

    PubMed

    Qi, Wei; Liu, Wei; Guo, Xiaoling; Schlögl, Robert; Su, Dangsheng

    2015-11-01

    Physical and chemical insights into the nature and quantity of the active sites and the intrinsic catalytic activity of nanocarbon materials in alkane oxidative dehydrogenation (ODH) reactions are reported using a novel in situ chemical titration process. A study on the structure-function relationship reveals that the active sites are identical both in nature and function on various nanocarbon catalysts. Additionally, the quantity of the active sites could be used as a metric to normalize the reaction rates, and thus to evaluate the intrinsic activity of nanocarbon catalysts. The morphology of the nanocarbon catalysts at the microscopic scale exhibits a minor influence on their intrinsic ODH catalytic activity. The number of active sites calculated from the titration process indicates the number of catalytic centers that are active (that is, working) under the reaction conditions. PMID:26388451

  12. Activation of InsP3 receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons

    PubMed Central

    Ashhad, Sufyan; Johnston, Daniel

    2014-01-01

    The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. PMID:25552640

  13. PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway.

    PubMed

    Bao, Wen; Liu, Ran; Wang, Yonglu; Wang, Fei; Xia, Guohua; Zhang, Haijun; Li, Xueming; Yin, Haixiang; Chen, Baoan

    2015-01-01

    Chemotherapy offers a systemic cancer treatment; however, it is limited in clinical administration due to its serious side effects. In cancer medicine, the use of nanoparticles (NPs) drug delivery system (DDS) can sustainedly release anticancer drug at the specific site and reduce the incidence of toxicity in normal tissues. In the present study, we aimed to evaluate the benefit of a novel chemotherapeutic DDS and its underlying mechanisms. Daunorubicin (DNR) was loaded into poly (lactic-co-glycolic acid) (PLGA)-poly-L-lysine (PLL)-polyethylene glycol (PEG)-transferrin (Tf) NPs to construct DNR-PLGA-PLL-PEG-Tf-NPs (DNR-loaded NPs) as a DDS. After incubating with PLGA-PLL-PEG-Tf-NPs, DNR, and DNR-loaded NPs, the leukemia K562 cells were collected and the intracellular concentration of DNR was detected by flow cytometry, respectively. Furthermore, the effect of drugs on the growth of tumors in K562 xenografts was observed and the relevant toxicity of therapeutic drugs on organs was investigated in vivo. Meanwhile, cell apoptosis in the excised xenografts was measured by transferase-mediated dUTP nick-end labeling assay, and the expression of apoptosis-related proteins, including Bcl-2, Bax, Caspase-9, Caspase-3, and cleaved-PARP, was determined by Western blotting analysis. Results showed that DNR-loaded NPs increased intracellular concentration of DNR in K562 cells in vitro and induced a remarkable improvement in anticancer activity in the xenografts in vivo. The expression of Bcl-2 protein was downregulated and that of Bax, Caspase-9, Caspase-3, and cleaved-PARP proteins were obviously upregulated in the DNR-loaded NPs group than that in other ones. Interestingly, pathological assessment showed no apparent damage to the main organs. In summary, the results obtained from this study showed that the novel NPs DDS could improve the efficacy of DNR in the treatment of leukemia and induce apoptosis via intrinsic pathway. Thus, it can be inferred that the new drug

  14. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation

    PubMed Central

    Smorodinsky-Atias, Karina; Goshen-Lago, Tal; Goldberg-Carp, Anat; Melamed, Dganit; Shir, Alexei; Mooshayef, Navit; Beenstock, Jonah; Karamansha, Yael; Darlyuk-Saadon, Ilona; Livnah, Oded; Ahn, Natalie G.; Admon, Arie; Engelberg, David

    2016-01-01

    The receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade. Although all oncogenic mutations in the pathway result in strong activation of Erks, activating mutations in Erks themselves were not reported in cancers. Here we used spontaneously active Erk variants to check whether Erk’s activity per se is sufficient for oncogenic transformation. We show that Erk1(R84S) is an oncoprotein, as NIH3T3 cells that express it form foci in tissue culture plates, colonies in soft agar, and tumors in nude mice. We further show that Erk1(R84S) and Erk2(R65S) are intrinsically active due to an unusual autophosphorylation activity they acquire. They autophosphorylate the activatory TEY motif and also other residues, including the critical residue Thr-207 (in Erk1)/Thr-188 (in Erk2). Strikingly, Erk2(R65S) efficiently autophosphorylates its Thr-188 even when dually mutated in the TEY motif. Thus this study shows that Erk1 can be considered a proto-oncogene and that Erk molecules possess unusual autoregulatory properties, some of them independent of TEY phosphorylation. PMID:26658610

  15. Influenza A Virus and Influenza B Virus Can Induce Apoptosis via Intrinsic or Extrinsic Pathways and Also via NF-κB in a Time and Dose Dependent Manner

    PubMed Central

    El-Sayed, Ibrahim; Nokaly, Aziz; Abdelghani, Ahmed S.

    2016-01-01

    Influenza viruses are able to cause annual epidemics and pandemics due to their mutation rates and reassortment capabilities leading to antigenic shifts and drifts. To identify host response to influenza A and B viruses on A549 and MDCK II cells at low and high MOIs, expressions of MxA and caspases 3, 8, and 9 and BAD, TNFα, and IκBα genes were measured in the cells supernatants. H1N1 and H3N2 prefer to initially enhance the intrinsic pathway, determined by higher caspase 9 activity in MDCK II cells compared to caspase 8 activity and vice versa in A549 cells at different MOIs, while INF B prefers extrinsic pathway in A549 cells according to significant low or undetectable caspase 9 activity and high activity of caspase 8 but also can induce intrinsic pathway in MDCK II cells as determined by significant low or undetectable activity of caspase 8 and high caspase 9 activity at different MOIs; the considerable MxA expression was found in influenza A and B viruses infected A549 and MDCK II cells at low MOIs. In conclusion, influenza A and B viruses induced extrinsic and intrinsic apoptosis in parallel, and the induction was associated with viral infection in a dose dependent manner. PMID:27042352

  16. Intrinsic Brain Activity in Altered States of Consciousness

    PubMed Central

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

  17. A Novel Prostate-Specific Membrane-Antigen (PSMA) Targeted Micelle-Encapsulating Wogonin Inhibits Prostate Cancer Cell Proliferation via Inducing Intrinsic Apoptotic Pathway

    PubMed Central

    Zhang, Hailong; Liu, Xiaogang; Wu, Fengbo; Qin, Feifei; Feng, Ping; Xu, Ting; Li, Xiang; Yang, Li

    2016-01-01

    Prostate cancer (PCa) is a malignant tumor for which there are no effective treatment strategies. In this study, we developed a targeted strategy for prostate-specific membrane-antigen (PSMA)-positive PCa in vitro based on 2-(3-((S)-5-amino-1-carboxypentyl)ureido) pentanedioic acid (ACUPA) modified polyethylene glycol (PEG)-Cholesterol micelles containing wogonin (WOG), which was named ACUPA-M-WOG. ACUPA-M-WOG was conventionally prepared using a self-assembling method, which produced stable particle size and ζ potential. Moreover, ACUPA-M-WOG showed good drug encapsulating capacity and drug release profiles. Fluorescence activated cell sorting (FACS) results suggested that ACUPA modified PEG-Cholesterol micelles could effectively enhance the drug uptake on PSMA(+) PCa cells, and the cytotoxicity of ACUPA-M-WOG was stronger than other controls according to in vitro cellular proliferation and apoptosis assays, separately through methyl thiazolyl tetrazolium (MTT) and Annexin V/Propidium Iodide (PI) staining. Finally, the molecular mechanisms of ACUPA-M-WOG’s effects on human PSMA(+) PCa were investigated, and were mainly the intrinsic or extrinsic apoptosis signaling pathways. The Western blot results suggested that ACUPA-M-WOG could enhance the WOG-induced apoptosis, which was mainly via the intrinsic signaling pathway rather than the extrinsic signaling pathway. In conclusion, ACUPA-M-WOG was successfully developed for WOG-selective delivery to PSMA(+) PCa cells and had stronger inhibition than free drugs, which might make it an effective strategy for PSMA(+) PCa. PMID:27196894

  18. A Novel Prostate-Specific Membrane-Antigen (PSMA) Targeted Micelle-Encapsulating Wogonin Inhibits Prostate Cancer Cell Proliferation via Inducing Intrinsic Apoptotic Pathway.

    PubMed

    Zhang, Hailong; Liu, Xiaogang; Wu, Fengbo; Qin, Feifei; Feng, Ping; Xu, Ting; Li, Xiang; Yang, Li

    2016-01-01

    Prostate cancer (PCa) is a malignant tumor for which there are no effective treatment strategies. In this study, we developed a targeted strategy for prostate-specific membrane-antigen (PSMA)-positive PCa in vitro based on 2-(3-((S)-5-amino-1-carboxypentyl)ureido) pentanedioic acid (ACUPA) modified polyethylene glycol (PEG)-Cholesterol micelles containing wogonin (WOG), which was named ACUPA-M-WOG. ACUPA-M-WOG was conventionally prepared using a self-assembling method, which produced stable particle size and ζ potential. Moreover, ACUPA-M-WOG showed good drug encapsulating capacity and drug release profiles. Fluorescence activated cell sorting (FACS) results suggested that ACUPA modified PEG-Cholesterol micelles could effectively enhance the drug uptake on PSMA(+) PCa cells, and the cytotoxicity of ACUPA-M-WOG was stronger than other controls according to in vitro cellular proliferation and apoptosis assays, separately through methyl thiazolyl tetrazolium (MTT) and Annexin V/Propidium Iodide (PI) staining. Finally, the molecular mechanisms of ACUPA-M-WOG's effects on human PSMA(+) PCa were investigated, and were mainly the intrinsic or extrinsic apoptosis signaling pathways. The Western blot results suggested that ACUPA-M-WOG could enhance the WOG-induced apoptosis, which was mainly via the intrinsic signaling pathway rather than the extrinsic signaling pathway. In conclusion, ACUPA-M-WOG was successfully developed for WOG-selective delivery to PSMA(+) PCa cells and had stronger inhibition than free drugs, which might make it an effective strategy for PSMA(+) PCa. PMID:27196894

  19. Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression.

    PubMed

    Kumazaki, Minami; Shinohara, Haruka; Taniguchi, Kohei; Yamada, Nami; Ohta, Shozo; Ichihara, Kenji; Akao, Yukihiro

    2014-01-01

    Propolis cinnamic acid derivatives have a number of biological activities including anti-oxidant and anti-cancer ones. In this study, we aimed to elucidate the mechanism of the anti-cancer activity of 3 representative propolis cinnamic acid derivatives, i.e., Artepilin C, Baccharin and Drupanin in human colon cancer cell lines. Our study demonstrated that these compounds had a potent apoptosis-inductive effect even on drug-resistant colon cancer cells. Combination treatment of human colon cancer DLD-1 cells with 2 of these compounds, each at its IC20 concentration, induced apoptosis by stimulating both intrinsic and extrinsic apoptosis signaling pathways. Especially, Baccharin plus Drupanin exhibited a synergistic growth-inhibitory effect by strengthening both intrinsic and extrinsic apoptotic signaling transduction through TRAIL/DR4/5 and/or FasL/Fas death-signaling loops and by increasing the expression level of miR-143, resulting in decreased expression levels of the target gene MAPK/Erk5 and its downstream target c-Myc. These data suggest that the supplemental intake of these compounds found in propolis has enormous significance with respect to cancer prevention.

  20. What the brain's intrinsic activity can tell us about consciousness? A tri-dimensional view.

    PubMed

    Northoff, Georg

    2013-05-01

    Current neuroscience applies a bi-dimensional model to consciousness. Content and level of consciousness have been distinguished from each other in their underlying neuronal mechanisms. This though leaves open the role of the brain's intrinsic activity and its particular temporal and spatial structure in consciousness. I here review and investigate the spatial and temporal features of the brain's intrinsic activity in detail and postulate what I describe as spatiotemporal structure that implies a virtual (e.g., statistically based) spatiotemporal continuity. Such spatiotemporal continuity is supposed to structure and organize the neural processing of the incoming extrinsic stimuli and their potential association with consciousness. I therefore conclude that the current bi-dimensional view of consciousness focusing only on content and level may need to be complemented by a third dimension, the form, e.g., spatiotemporal structure, as provided by the intrinsic activity. In short, I here opt for tri-rather than bi-dimensional view of consciousness.

  1. Hippo Pathway Activity Influences Liver Cell Fate

    PubMed Central

    Yimlamai, Dean; Christodoulou, Constantina; Galli, Giorgio G.; Yanger, Kilangsungla; Pepe-Mooney, Brian; Gurung, Basanta; Shrestha, Kriti; Cahan, Patrick; Stanger, Ben Z.; Camargo, Fernando D.

    2014-01-01

    The Hippo signaling pathway is an important regulator of cellular proliferation and organ size. However, little is known about the role of this cascade in the control of cell fate. Employing a combination of lineage tracing, clonal analysis, and organoid culture approaches, we demonstrate that Hippo-pathway activity is essential for the maintenance of the differentiated hepatocyte state. Remarkably, acute inactivation of Hippo-pathway signaling in vivo is sufficient to de-differentiate, at very high efficiencies, adult hepatocytes into cells bearing progenitor characteristics. These hepatocyte-derived progenitor cells demonstrate self-renewal and engraftment capacity at the single cell level. We also identify the NOTCH signaling pathway as a functional important effector downstream of the Hippo transducer YAP. Our findings uncover a potent role for Hippo/YAP signaling in controlling liver cell fate, and reveal an unprecedented level of phenotypic plasticity in mature hepatocytes, which has implications for the understanding and manipulation of liver regeneration. PMID:24906150

  2. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    SciTech Connect

    Yliniemelae, A.; Gynther, J. ); Konschin, H.; Tylli, H. ); Rouvinen, J. )

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  3. Spermatocyte apoptosis, which involves both intrinsic and extrinsic pathways, explains the sterility of Graomys griseoflavus x Graomys centralis male hybrids.

    PubMed

    Rodriguez, Valeria; Diaz de Barboza, Gabriela; Ponce, Ruben; Merico, Valeria; Garagna, Silvia; Tolosa de Talamoni, Nori

    2010-01-01

    Spermatogenic impairment and the apoptotic pathways involved in establishing sterility of male hybrids obtained from crossing Graomys griseoflavus females with Graomys centralis males were studied. Testes from G. centralis, G. griseoflavus and hybrids were compared at different ages. Terminal transferase-mediated dUTP nick-end labelling assay (TUNEL), Fas, Bax and cytochrome c labelling were used for apoptosis evaluation, and calbindin D(28k) staining as an anti-apoptotic molecule. In 1-month-old animals, spermatocytes were positive for all apoptotic markers, but moderate TUNEL (+) spermatocyte frequency was only found in G. centralis. At subsequent ages, the apoptotic markers were downregulated in testes from parental cytotypes, but not in hybrid testes. TUNEL (+) spermatocytes were present at 78% and 44% per tubule cross-section in 2- and 3-month-old hybrid animals, respectively. Pachytene spermatocyte death in adult hybrids occurs via apoptosis, as revealed by high caspase-3 expression. Calbindin was highly expressed in spermatocytes of adult hybrids, in which massive cell death occurs via apoptosis. Calbindin co-localisation with TUNEL or Fas, Bax and cytochrome c was very limited, suggesting an inverse regulation of calbindin and apoptotic markers. Hybrid sterility is due to breakdown of spermatogenesis at the pachytene spermatocyte stage. Both extrinsic and intrinsic pathways are involved in apoptosis of spermatocytes, which are the most sensitive cell type to apoptotic stimuli.

  4. Flavonoids of Korean Citrus aurantium L. Induce Apoptosis via Intrinsic Pathway in Human Hepatoblastoma HepG2 Cells.

    PubMed

    Lee, Seung Hwan; Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won-Sup; Kim, Eun-Hee; Park, Hyeon Soo; Kim, Gon Sup

    2015-12-01

    Korean Citrus aurantium L. has long been used as a medicinal herb for its anti-inflammatory, antioxidant, and anticancer properties. The present study investigates the anticancer role of flavonoids extracted from C. aurantium on human hepatoblastoma cell, HepG2. The Citrus flavonoids inhibit the proliferation of HepG2 cells in a dose-dependent manner. This result was consistent with the in vivo xenograft results. Apoptosis was detected by cell morphology, cell cycle analysis, and immunoblot. Flavonoids decreased the level of pAkt and other downstream targets of phosphoinositide-3-kinase/Akt pathway - P-4EBP1 and P-p70S6K. The expressions of cleaved caspase 3, Bax, and Bak were increased, while those of Bcl-2 and Bcl-xL were decreased with an increase in the expression of Bax/Bcl-xL ratio in treated cells. Loss of mitochondrial membrane potential was also observed in flavonoid-treated HepG2 cells. It was also observed that the P-p38 protein level was increased both dose and time dependently in flavonoid-treated cells. Collectively, these results suggest that flavonoid extracted from Citrus inhibits HepG2 cell proliferation by inducing apoptosis via an intrinsic pathway. These findings suggest that flavonoids extracted from C. aurantium L. are potential chemotherapeutic agents against liver cancer.

  5. Intrinsic relative activities of κ opioid agonists in activating Gα proteins and internalizing receptor: Differences between human and mouse receptors.

    PubMed

    DiMattio, Kelly M; Ehlert, Frederick J; Liu-Chen, Lee-Yuan

    2015-08-15

    Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.

  6. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  7. The entropic enlightenment of organic photochemistry: strategic modifications of intrinsic decay pathways using an information-based approach.

    PubMed

    García-Garibay, Miguel A

    2010-12-01

    Early photochemistry flourished with sunlight plus the experimental and intellectual infrastructure provided by the chemistry of organic compounds. Through the pioneering work of Giacomo Ciamician and Emanuele Paternò, it was shown that photochemical reactions give rise to products that are not accessible by thermal methods, and the green chemistry potential of organic photoreactions was already recognized at the time. Over the last century, the photochemical behavior of many chromophores and functional groups has been well documented in solution. From those studies, it has become clear that applications in organic synthesis suffer from complications arising from competing decay pathways that are intrinsic to those excited states. While there are few opportunities to control the outcome of excited molecules in solution, the potential of organic photochemistry under the influence of highly ordered structures can be appreciated with examples from photobiology. Knowing that nature can synthesize triglycerides with light, CO(2), H(2)O and a few thermal reactions, organic photochemistry should have a great potential and aim high. With that in mind, after exploring the modes of action used by living organisms to take advantage of sunlight, one can identify an approach that relies on entropic factors that result from changes in the information content of the reactant. Analogies with information theory suggest a strategy that may be used to manage chemical information to modify the intrinsic properties of chromophores. Extrapolating from recent examples, it is suggested that an information-based approach to organic photochemistry may result in important advances not only in chemical synthesis and green chemistry, but also in many other applications. PMID:21060939

  8. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen.

    PubMed

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-06-21

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction.

  9. Cell Intrinsic and Extrinsic Activators of the Unfolded Protein Response in Cancer: Mechanisms and Targets for Therapy

    PubMed Central

    Tameire, Feven; Verginadis, Ioannis I.; Koumenis, Constantinos

    2015-01-01

    A variety of cell intrinsic or extrinsic stresses evoke perturbations in the folding environment of the endoplasmic reticulum (ER), collectively known as ER stress. Adaptation to stress and reestablishment of ER homeostasis is achieved by activation of an integrated signal transduction pathway called the unfolded protein response (UPR). Both ER stress and UPR activation have been implicated in a variety of human cancers. Although at early stages, or physiological conditions of ER stress, the UPR generally promotes survival, when the stress becomes more stringent or prolonged, its role can switch to a pro-cell death one. Here, we discuss historical and recent evidence supporting an involvement of the UPR in malignancy, describe the main mechanisms by which how tumor cells overcome ER stress to promote their survival, tumor progression and metastasis and discuss the current state of efforts to develop therapeutic approaches of targeting the UPR. PMID:25920797

  10. Sanguinarine induces apoptosis of human osteosarcoma cells through the extrinsic and intrinsic pathways

    SciTech Connect

    Park, Hyunjin; Bergeron, Eric; Senta, Helena; Guillemette, Kim; Beauvais, Sabrina; Blouin, Richard; Sirois, Joel; Faucheux, Nathalie

    2010-08-27

    Research highlights: {yields} We show for the first time the effect of sanguinarine (SA) on MG63 and SaOS-2 cells. {yields} SA altered osteosarcoma cell viability in a concentration and time dependent manner. {yields} SA induced osteosarcoma cell apoptosis and increased caspase-8 and -9 activities. {yields} SA decreased dose dependently the Bcl-2 protein level only in MG63 cells. {yields} SaOS-2 which are osteoblast-derived, seemed more resistant to SA than MG63. -- Abstract: The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma, a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 {mu}mol/L sanguinarine for 4 and 24 h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 {mu}mol/L sanguinarine killed almost 100% of both cell populations within 24 h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1 h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy.

  11. Altered Intrinsic Regional Activity and Interregional Functional Connectivity in Post-stroke Aphasia

    PubMed Central

    Yang, Mi; Li, Jiao; Li, Yibo; Li, Rong; Pang, Yajing; Yao, Dezhong; Liao, Wei; Chen, Huafu

    2016-01-01

    Several neuroimaging studies have examined cerebral function in patients who suffer from aphasia, but the mechanism underlying this disorder remains poorly understood. In this study, we examined alterations in the local regional and remote interregional network cerebral functions in aphasia combined with amplitude of low-frequency fluctuations and interregional functional connectivity (FC) using resting-state functional magnetic resonance imaging. A total of 17 post-stroke aphasic patients, all having suffered a stroke in the left hemisphere, as well as 20 age- and sex-matched healthy controls, were enrolled in this study. The aphasic patients showed significantly increased intrinsic regional activity mainly in the contralesional mesial temporal (hippocampus/parahippocampus, [HIP/ParaHIP]) and lateral temporal cortices. In addition, intrinsic regional activity in the contralesional HIP/ParaHIP was negatively correlated with construction score. Aphasic patients showed increased remote interregional FC between the contralesional HIP/ParaHIP and fusiform gyrus, but reduced FC in the ipsilesional occipital and parietal cortices. These findings suggested that the intrinsic regional brain dysfunctions in aphasia were related to interregional functional connectivity. Changes in the intrinsic regional brain activity and associated remote functional connectivity pattern would provide valuable information to enhance the understanding of the pathophysiological mechanisms of aphasia. PMID:27091494

  12. Crosstalk between tumor suppressors p53 and PKCδ: Execution of the intrinsic apoptotic pathways.

    PubMed

    Dashzeveg, Nurmaa; Yoshida, Kiyotsugu

    2016-07-28

    p53 and PKCδ are tumor suppressors that execute apoptotic mechanisms in response to various cellular stresses. p53 is a transcription factor that is frequently mutated in human cancers; it regulates apoptosis in transcription-dependent and -independent ways in response to genotoxic stresses. PKCδ is a serine/threonine protein kinase and mutated in human cancers. Available evidence shows that PKCδ activates p53 by direct and/or indirect mechanisms. Moreover, PKCδ is also implicated in the transcriptional regulation of p53 in response to DNA damage. Recent findings demonstrated that p53, in turn, binds onto the PKCδ promoter and induces its expression upon DNA damage to facilitate apoptosis. Both p53 and PKCδ are associated with the apoptotic mechanisms in the mitochondria by regulating Bcl-2 family proteins to provide mitochondrial outer membrane permeabilization. This review discusses the crosstalk between p53 and PKCδ in the context of apoptotic cell death and cancer therapy.

  13. Zfx facilitates tumorigenesis caused by activation of the Hedgehog pathway.

    PubMed

    Palmer, Colin J; Galan-Caridad, Jose M; Weisberg, Stuart P; Lei, Liang; Esquilin, Jose M; Croft, Gist F; Wainwright, Brandon; Canoll, Peter; Owens, David M; Reizis, Boris

    2014-10-15

    The Hedgehog (Hh) signaling pathway regulates normal development and cell proliferation in metazoan organisms, but its aberrant activation can promote tumorigenesis. Hh-induced tumors arise from various tissues and they may be indolent or aggressive, as is the case with skin basal cell carcinoma (BCC) or cerebellar medulloblastoma, respectively. Little is known about common cell-intrinsic factors that control the development of such diverse Hh-dependent tumors. Transcription factor Zfx is required for the self-renewal of hematopoietic and embryonic stem cells, as well as for the propagation of acute myeloid and T-lymphoblastic leukemias. We report here that Zfx facilitates the development of experimental BCC and medulloblastoma in mice initiated by deletion of the Hh inhibitory receptor Ptch1. Simultaneous deletion of Zfx along with Ptch1 prevented BCC formation and delayed medulloblastoma development. In contrast, Zfx was dispensable for tumorigenesis in a mouse model of glioblastoma. We used genome-wide expression and chromatin-binding analysis in a human medulloblastoma cell line to characterize direct, evolutionarily conserved targets of Zfx, identifying Dis3L and Ube2j1 as two targets required for the growth of the human medulloblastoma cells. Our results establish Zfx as a common cell-intrinsic regulator of diverse Hh-induced tumors, with implications for the definition of new therapeutic targets in these malignancies. PMID:25164012

  14. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

    PubMed Central

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-01-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536] PMID:26246284

  15. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  16. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2

  17. Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a "smart" drug delivery system to breast cancer cell therapy.

    PubMed

    Vivek, Raju; Thangam, Ramar; Nipunbabu, Varukattu; Ponraj, Thondhi; Kannan, Soundarapandian

    2014-04-01

    This study was to investigate "smart" pH-responsive drug delivery system (DDS) based on chitosan nano-carrier for its potential intelligent controlled release and enhancing chemotherapeutic efficiency of Oxalipaltin. Oxaliplatin was loaded onto chitosan by forming complexes with degradable to construct nano-carrier as a DDS. Oxaliplatin was released from the DDS much more rapidly at pH 4.5 than at pH 7.4, which is a desirable characteristic for tumor-targeted drug delivery. Furthermore, the possible intrinsic apoptotic signaling pathway was explored by Western blot. It was found that expression of Bax, Bik, cytochrome C, caspase-9 and -3 was significantly up-regulated while the Bcl-2 and Survivin were inhibited in breast cancer MCF-7 cells. For instance, nanoparticles inducing apoptosis in caspase-dependent manner indicate that chitosan nanoparticles could act as an efficient DDS importing Oxalipaltin to target cancer cells. These approaches suggest that "smart" Oxaliplatin delivery strategy is a promising approach to cancer therapy.

  18. Emodin induces apoptosis of human cervical cancer hela cells via intrinsic mitochondrial and extrinsic death receptor pathway

    PubMed Central

    2013-01-01

    Background Emodin is a natural anthraquinone derivative isolated from the Rheum palmatum L. Aim: The aim of the present study was to investigate the effect of emodin on the apoptosis of the human cervical cancer line HeLa and to identify the mechanisms involved. Methods Relative cell viability was assessed by MTT assay after treatment with emodin. Cell apoptosis was detected with TUNEL, Hoechst 33342 staining and quantified with flow cytometry using annexin FITC-PI staining. Results The percentage of apoptotic cells was 0.8, 8.2, 22.1, and 43.7%, respectively. The mRNA levels of Caspase-9, -8 and −3 detected by Real-time PCR after treatment with emodin were significantly increased. Emodin increased the protein levels of Cytochome c, Apaf-1, Fas, FasL, and FADD but decreased the protein levels of Pro-caspase-9, Pro-caspase-8 and Pro-caspase-3. Conclusion We conclude that the emodin inhibited HeLa proliferation by inducing apoptosis through the intrinsic mitochondrial and extrinsic death receptor pathways. PMID:23866157

  19. The Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Higher Basidiomycetes) Extract Induces Apoptosis in Ovarian Cancer Cells via Extrinsic and Intrinsic Apoptotic Pathways.

    PubMed

    Rouhana-Toubi, Amal; Wasser, Solomon P; Fares, Fuad

    2015-01-01

    In a previous study, ethyl acetate extract of Coprinus comatus was found to reduce viability of human ovarian cancer cells. The objective of the current research was to clarify the mechanism of action of this extract. Ovarian cancer cells (ES-2) were subjected to ethyl acetate extract of C. comatus for different concentrations or exposure times. Cell cycle analysis and annexin V staining were performed using an automated flow cytometer. DNA fragmentation was detected using the TUNEL assay. Western blot analysis was performed for the assessment of activation of caspases -3, -8, and -9. Results revealed that treatment of ES-2 cells with ethyl acetate extract of C. comatus (100 μg/ml medium), for 48 h or for 72 h resulted in an increased number of cells at the sub-G1 phase of the cell cycle. These treatments also resulted in an increased number of apoptotic cells (positively stained by annexin and positively labeled by TUNEL), in comparison to the control. Reduced levels of procaspases -3, -8, and-9 were also detected in treated cells. In conclusion, ethyl acetate extract of C. comatus induces apoptosis in ovarian cancer cells (ES-2), via both extrinsic and intrinsic pathways. Meanwhile, more investigations are needed to demonstrate weather the apoptotic effect on ovarian cancer cells is accomplished by one active compound, or combined activities of different compounds that exist in the extract.

  20. The Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Higher Basidiomycetes) Extract Induces Apoptosis in Ovarian Cancer Cells via Extrinsic and Intrinsic Apoptotic Pathways.

    PubMed

    Rouhana-Toubi, Amal; Wasser, Solomon P; Fares, Fuad

    2015-01-01

    In a previous study, ethyl acetate extract of Coprinus comatus was found to reduce viability of human ovarian cancer cells. The objective of the current research was to clarify the mechanism of action of this extract. Ovarian cancer cells (ES-2) were subjected to ethyl acetate extract of C. comatus for different concentrations or exposure times. Cell cycle analysis and annexin V staining were performed using an automated flow cytometer. DNA fragmentation was detected using the TUNEL assay. Western blot analysis was performed for the assessment of activation of caspases -3, -8, and -9. Results revealed that treatment of ES-2 cells with ethyl acetate extract of C. comatus (100 μg/ml medium), for 48 h or for 72 h resulted in an increased number of cells at the sub-G1 phase of the cell cycle. These treatments also resulted in an increased number of apoptotic cells (positively stained by annexin and positively labeled by TUNEL), in comparison to the control. Reduced levels of procaspases -3, -8, and-9 were also detected in treated cells. In conclusion, ethyl acetate extract of C. comatus induces apoptosis in ovarian cancer cells (ES-2), via both extrinsic and intrinsic pathways. Meanwhile, more investigations are needed to demonstrate weather the apoptotic effect on ovarian cancer cells is accomplished by one active compound, or combined activities of different compounds that exist in the extract. PMID:26854099

  1. Intrinsic brain activity as a diagnostic biomarker in children with benign epilepsy with centrotemporal spikes.

    PubMed

    Zhu, Yihong; Yu, Yang; Shinkareva, Svetlana V; Ji, Gong-Jun; Wang, Jue; Wang, Zhong-Jin; Zang, Yu-Feng; Liao, Wei; Tang, Ye-Lei

    2015-10-01

    Benign epilepsy with centrotemporal spikes (BECTS) is often associated with neural circuit dysfunction, particularly during the transient active state characterized by interictal epileptiform discharges (IEDs). Little is known, however, about the functional neural circuit abnormalities in BECTS without IEDs, or if such abnormalities could be used to differentiate BECTS patients without IEDs from healthy controls (HCs) for early diagnosis. To this end, we conducted resting-state functional magnetic resonance imaging (RS-fMRI) and simultaneous Electroencephalogram (EEG) in children with BECTS (n = 43) and age-matched HC (n = 28). The simultaneous EEG recordings distinguished BECTS with IEDs (n = 20) from without IEDs (n = 23). Intrinsic brain activity was measured in all three groups using the amplitude of low frequency fluctuation at rest. Compared to HC, BECTS patients with IEDs exhibited an intrinsic activity abnormality in the thalamus, suggesting that thalamic dysfunction could contribute to IED emergence while patients without IEDs exhibited intrinsic activity abnormalities in middle frontal gyrus and superior parietal gyrus. Using multivariate pattern classification analysis, we were able to differentiate BECTS without IEDs from HCs with 88.23% accuracy. BECTS without epileptic transients can be distinguished from HC and BECTS with IEDs by unique regional abnormalities in resting brain activity. Both transient abnormalities as reflected by IEDs and chronic abnormalities as reflected by RS-fMRI may contribute to BECTS development and expression. Intrinsic brain activity and multivariate pattern classification techniques are promising tools to diagnose and differentiate BECTS syndromes. Hum Brain Mapp 36:3878-3889, 2015. © 2015 Wiley Periodicals, Inc. PMID:26173095

  2. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole quinuclidine analogs.

    PubMed

    Franks, Lirit N; Ford, Benjamin M; Madadi, Nikhil R; Penthala, Narsimha R; Crooks, Peter A; Prather, Paul L

    2014-08-15

    Our laboratory recently reported that a group of novel indole quinuclidine analogs bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analog exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogs acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogs demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors.

  3. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  4. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP−/− Mice

    PubMed Central

    Fan, Jing; Stemkowski, Patrick L.; Gandini, Maria A.; Black, Stefanie A.; Zhang, Zizhen; Souza, Ivana A.; Chen, Lina; Zamponi, Gerald W.

    2016-01-01

    Genetic ablation of cellular prion protein (PrPC) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih), was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability. PMID:27047338

  5. Changes in At-Risk Boys' Intrinsic Motivation toward Physical Activity: A Three-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Liu, Jiling; Xiang, Ping; McBride, Ron E.; Su, Xiaoxia; Juzaily, Nasnoor

    2015-01-01

    Intrinsic motivation (IM) is an important predictor of children's physical activity participation. The present 3-year longitudinal study examined changes in IM toward physical activity among a group of at-risk boys (N = 92) at a summer sports camp. Results showed the boys were intrinsically motivated in their first camp year, but their IM levels…

  6. Plasma Membrane Intrinsic Proteins from Maize Cluster in Two Sequence Subgroups with Differential Aquaporin Activity1

    PubMed Central

    Chaumont, François; Barrieu, François; Jung, Rudolf; Chrispeels, Maarten J.

    2000-01-01

    The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins. PMID:10759498

  7. Bright light activates a trigeminal nociceptive pathway

    PubMed Central

    Okamoto, Keiichiro; Tashiro, Akimasa; Chang, Zheng; Bereiter, David A.

    2010-01-01

    Bright light can cause ocular discomfort and/or pain; however, the mechanism linking luminance to trigeminal nerve activity is not known. In this study we identify a novel reflex circuit necessary for bright light to excite nociceptive neurons in superficial laminae of trigeminal subnucleus caudalis (Vc/C1). Vc/C1 neurons encoded light intensity and displayed a long delay (>10 s) for activation. Microinjection of lidocaine into the eye or trigeminal root ganglion (TRG) inhibited light responses completely, whereas topical application onto the ocular surface had no effect. These findings indicated that light-evoked Vc/C1 activity was mediated by an intraocular mechanism and transmission through the TRG. Disrupting local vasomotor activity by intraocular microinjection of the vasoconstrictive agents, norepinephrine or phenylephrine, blocked light-evoked neural activity, whereas ocular surface or intra-TRG microinjection of norepinephrine had no effect. Pupillary muscle activity did not contribute since light-evoked responses were not altered by atropine. Microinjection of lidocaine into the superior salivatory nucleus diminished light-evoked Vc/C1 activity and lacrimation suggesting that increased parasympathetic outflow was critical for light-evoked responses. The reflex circuit also required input through accessory visual pathways since both Vc/C1 activity and lacrimation were prevented by local blockade of the olivary pretectal nucleus. These findings support the hypothesis that bright light activates trigeminal nerve activity through an intraocular mechanism driven by a luminance-responsive circuit and increased parasympathetic outflow to the eye. PMID:20206444

  8. A chemical bonding model for photo-induced defects in hydrogenated amorphous silicon (a-Si:H): Intrinsic and extrinsic reaction pathways

    SciTech Connect

    Lucovsky, G.; Yang, H.

    1997-07-01

    In device grade a-Si:H photo- or light-induced defect generation is an intrinsic effect for impurity concentrations of oxygen and nitrogen below about 10{sup 19} to 10{sup 20} cm{sup {minus}3}; however, at higher concentrations it increases with increasing impurity content. Charged defect configurations are identified by empirical chemistry and are studied by ab initio calculations. This paper addresses: (1) the chemical stability of charged defects; (2) the reaction pathways for defect metastability; and (3) the transition between extrinsic and intrinsic behavior.

  9. Intrinsic Activity in the Fly Brain Gates Visual Information during Behavioral Choices

    PubMed Central

    2010-01-01

    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1–1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals. PMID:21209935

  10. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    NASA Astrophysics Data System (ADS)

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.

    2016-01-01

    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  11. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    PubMed

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  12. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway).

    PubMed

    Kumar, C Ganesh; Poornachandra, Y; Chandrasekhar, Cheemalamarri

    2015-11-28

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications. PMID:26503300

  13. Extracellular signal-regulated kinase pathway play distinct role in acetochlor-mediated toxicity and intrinsic apoptosis in A549 cells.

    PubMed

    Zerin, Tamanna; Song, Ho-Yeon; Kim, Yong-Sik

    2015-02-01

    Acetochlor (ACETO), a member of the chloroacetanilide family of herbicides, is widely used globally and is very frequently detected in watersheds of agricultural lands and fresh water streams. The human health consequences of environmental exposure to ACETO are unknown. This study was designed to elucidate the effect and molecular mechanisms of ACETO on human alveolar A549 cells. Established assays of cell viability and cytotoxicity were performed to detect the potential effects of ACETO on A549 cells. ACETO generated reactive oxygen species, which may have been crucial to apoptosis-mediated cytotoxicity. ACETO-treatment showed a concentration dependent up-regulation of pro-apoptotic proteins including Bax, Bak, BID and Bad, but a differential level of expression of anti-apoptotic proteins were observed, leading to the release of cytochrome c from mitochondria to the cytoplasm as well as activation of caspase-3, and cleavage of caspase-9 and PARP. ACETO also induced activation of extracellular signal-regulated kinase (ERK). Inhibition of the expression of ERK by PD98059 partially reversed ACETO-induced cytotoxicity, apoptosis and the expression of caspase-3, -9 and PARP in A549 cells. Comparative evaluation of the results indicates that the principal mechanism underlying ACETO-mediated cytotoxicity is likely to be through ERK-mediated intrinsic pathway of apoptosis. PMID:25291404

  14. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep.

    PubMed

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Raichle, Marcus E

    2015-11-09

    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep.

  15. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep

    PubMed Central

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Raichle, Marcus E

    2015-01-01

    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep. DOI: http://dx.doi.org/10.7554/eLife.10781.001 PMID:26551562

  16. The experience matters more than you think: People value intrinsic incentives more inside than outside an activity.

    PubMed

    Woolley, Kaitlin; Fishbach, Ayelet

    2015-12-01

    We document a shift in the value assigned to intrinsic incentives: people value these incentives more inside an activity than outside the activity (i.e., during vs. before or after pursuit). For example, people care more about the level of interest of their present work task than of past or future work tasks. We document this shift across a variety of activities (exercising, visiting a museum, and lab tasks) and using various measures, including rated importance of intrinsic incentives inside and outside pursuit, actual and planned persistence on activities that offer these incentives, and regret when choosers outside pursuit forgo intrinsic incentives that pursuers later seek. This shift in valuation occurs because intrinsic incentives improve the experience during action pursuit, and therefore, this shift is unique to intrinsic incentives. Extrinsic incentives, by contrast, are valued similarly inside and outside pursuit. PMID:26371401

  17. Rapid Eye Movement Sleep Deprivation Induces Neuronal Apoptosis by Noradrenaline Acting on Alpha1 Adrenoceptor and by Triggering Mitochondrial Intrinsic Pathway

    PubMed Central

    Somarajan, Bindu I.; Khanday, Mudasir A.; Mallick, Birendra N.

    2016-01-01

    Many neurodegenerative disorders are associated with rapid eye movement sleep (REMS) loss; however, the mechanism was unknown. As REMS loss elevates noradrenaline (NA) level in the brain as well as induces neuronal apoptosis and degeneration, in this study, we have delineated the intracellular molecular pathway involved in REMS deprivation (REMSD)-associated NA-induced neuronal apoptosis. Rats were REMS deprived for 6 days by the classical flower pot method; suitable controls were conducted and the effects on apoptosis markers evaluated. Further, the role of NA was studied by one, intraperitoneal (i.p.) injection of NA-ergic alpha1 adrenoceptor antagonist prazosin (PRZ) and two, by downregulation of NA synthesis in locus coeruleus (LC) neurons by local microinjection of tyrosine hydroxylase siRNA (TH-siRNA). Immunoblot estimates showed that the expressions of proapoptotic proteins viz. Bcl2-associated death promoter protein, apoptotic protease activating factor-1 (Apaf-1), cytochrome c, caspase9, caspase3 were elevated in the REMS-deprived rat brains, while caspase8 level remained unaffected; PRZ treatment did not allow elevation of these proapoptotic factors. Further, REMSD increased cytochrome c expression, which was prevented if the NA synthesis from the LC neurons was blocked by microinjection of TH-siRNA in vivo into the LC during REMSD in freely moving normal rats. Mitochondrial damage was re-confirmed by transmission electron microscopy, which showed distinctly swollen mitochondria with disintegrated cristae, chromosomal condensation, and clumping along the nuclear membrane, and all these changes were prevented in PRZ-treated rats. Combining findings of this study along with earlier reports, we propose that upon REMSD NA level increases in the brain as the LC, NA-ergic REM-OFF neurons do not cease firing and TH is upregulated in those neurons. This elevated NA acting on alpha1 adrenoceptors damages mitochondria causing release of cytochrome c to activate

  18. Rapid Eye Movement Sleep Deprivation Induces Neuronal Apoptosis by Noradrenaline Acting on Alpha1 Adrenoceptor and by Triggering Mitochondrial Intrinsic Pathway.

    PubMed

    Somarajan, Bindu I; Khanday, Mudasir A; Mallick, Birendra N

    2016-01-01

    Many neurodegenerative disorders are associated with rapid eye movement sleep (REMS) loss; however, the mechanism was unknown. As REMS loss elevates noradrenaline (NA) level in the brain as well as induces neuronal apoptosis and degeneration, in this study, we have delineated the intracellular molecular pathway involved in REMS deprivation (REMSD)-associated NA-induced neuronal apoptosis. Rats were REMS deprived for 6 days by the classical flower pot method; suitable controls were conducted and the effects on apoptosis markers evaluated. Further, the role of NA was studied by one, intraperitoneal (i.p.) injection of NA-ergic alpha1 adrenoceptor antagonist prazosin (PRZ) and two, by downregulation of NA synthesis in locus coeruleus (LC) neurons by local microinjection of tyrosine hydroxylase siRNA (TH-siRNA). Immunoblot estimates showed that the expressions of proapoptotic proteins viz. Bcl2-associated death promoter protein, apoptotic protease activating factor-1 (Apaf-1), cytochrome c, caspase9, caspase3 were elevated in the REMS-deprived rat brains, while caspase8 level remained unaffected; PRZ treatment did not allow elevation of these proapoptotic factors. Further, REMSD increased cytochrome c expression, which was prevented if the NA synthesis from the LC neurons was blocked by microinjection of TH-siRNA in vivo into the LC during REMSD in freely moving normal rats. Mitochondrial damage was re-confirmed by transmission electron microscopy, which showed distinctly swollen mitochondria with disintegrated cristae, chromosomal condensation, and clumping along the nuclear membrane, and all these changes were prevented in PRZ-treated rats. Combining findings of this study along with earlier reports, we propose that upon REMSD NA level increases in the brain as the LC, NA-ergic REM-OFF neurons do not cease firing and TH is upregulated in those neurons. This elevated NA acting on alpha1 adrenoceptors damages mitochondria causing release of cytochrome c to activate

  19. Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents.

    PubMed

    Suresh, Jyothsna; Radojicic, Mihailo; Pesce, Lorenzo L; Bhansali, Anita; Wang, Janice; Tryba, Andrew K; Marks, Jeremy D; van Drongelen, Wim

    2016-06-01

    The goal of this work was to define the contributions of intrinsic and synaptic mechanisms toward spontaneous network-wide bursting activity, observed in dissociated rat hippocampal cell cultures. This network behavior is typically characterized by short-duration bursts, separated by order of magnitude longer interburst intervals. We hypothesize that while short-timescale synaptic processes modulate spectro-temporal intraburst properties and network-wide burst propagation, much longer timescales of intrinsic membrane properties such as persistent sodium (Nap) currents govern burst onset during interburst intervals. To test this, we used synaptic receptor antagonists picrotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP) to selectively block GABAA, AMPA, and NMDA receptors and riluzole to selectively block Nap channels. We systematically compared intracellular activity (recorded with patch clamp) and network activity (recorded with multielectrode arrays) in eight different synaptic connectivity conditions: GABAA + NMDA + AMPA, NMDA + AMPA, GABAA + AMPA, GABAA + NMDA, AMPA, NMDA, GABAA, and all receptors blocked. Furthermore, we used mixed-effects modeling to quantify the aforementioned independent and interactive synaptic receptor contributions toward spectro-temporal burst properties including intraburst spike rate, burst activity index, burst duration, power in the local field potential, network connectivity, and transmission delays. We found that blocking intrinsic Nap currents completely abolished bursting activity, demonstrating their critical role in burst onset within the network. On the other hand, blocking different combinations of synaptic receptors revealed that spectro-temporal burst properties are uniquely associated with synaptic functionality and that excitatory connectivity is necessary for the presence of network-wide bursting. In addition to confirming the critical contribution of direct

  20. Potential fluid mechanic pathways of platelet activation

    PubMed Central

    Shadden, Shawn C.; Hendabadi, Sahar

    2012-01-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport. PMID:22782543

  1. Glucocorticoid receptor (GR) {beta} has intrinsic, GR{alpha}-independent transcriptional activity

    SciTech Connect

    Kino, Tomoshige; Manoli, Irini; Kelkar, Sujata; Wang, Yonghong; Su, Yan A.; Chrousos, George P.

    2009-04-17

    The human glucocorticoid receptor (GR) gene produces C-terminal GR{beta} and GR{alpha} isoforms through alternative use of specific exons 9{beta} and {alpha}, respectively. We explored the transcriptional activity of GR{beta} on endogenous genes by developing HeLa cells stably expressing EGFP-GR{beta} or EGFP. Microarray analyses revealed that GR{beta} had intrinsic gene-specific transcriptional activity, regulating mRNA expression of a large number of genes negatively or positively. Majority of GR{beta}-responsive genes was distinct from those modulated by GR{alpha}, while GR{beta} and GR{alpha} mutually modulated each other's transcriptional activity in a subpopulation of genes. We did not observe in HCT116 cells nuclear translocation of GR{beta} and activation of this receptor by RU 486, a synthetic steroid previously reported to bind GR{beta} and to induce nuclear translocation. Our results indicate that GR{beta} has intrinsic, GR{alpha}-independent, gene-specific transcriptional activity, in addition to its previously reported dominant negative effect on GR{alpha}-induced transactivation of GRE-driven promoters.

  2. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  3. How Intrinsic Molecular Dynamics Control Intramolecular Communication in Signal Transducers and Activators of Transcription Factor STAT5

    PubMed Central

    Langenfeld, Florent; Guarracino, Yann; Arock, Michel; Trouvé, Alain; Tchertanov, Luba

    2015-01-01

    Signal Transducer and Activator of Transcription STAT5 is a key mediator of cell proliferation, differentiation and survival. While STAT5 activity is tightly regulated in normal cells, its constitutive activation directly contributes to oncogenesis and is associated with a broad range of hematological and solid tumor cancers. Therefore the development of compounds able to modulate pathogenic activation of this protein is a very challenging endeavor. A crucial step of drug design is the understanding of the protein conformational features and the definition of putative binding site(s) for such modulators. Currently, there is no structural data available for human STAT5 and our study is the first footprint towards the description of structure and dynamics of this protein. We investigated structural and dynamical features of the two STAT5 isoforms, STAT5a and STAT5b, taken into account their phosphorylation status. The study was based on the exploration of molecular dynamics simulations by different analytical methods. Despite the overall folding similarity of STAT5 proteins, the MD conformations display specific structural and dynamical features for each protein, indicating first, sequence-encoded structural properties and second, phosphorylation-induced effects which contribute to local and long-distance structural rearrangements interpreted as allosteric event. Further examination of the dynamical coupling between distant sites provides evidence for alternative profiles of the communication pathways inside and between the STAT5 domains. These results add a new insight to the understanding of the crucial role of intrinsic molecular dynamics in mediating intramolecular signaling in STAT5. Two pockets, localized in close proximity to the phosphotyrosine-binding site and adjacent to the channel for communication pathways across STAT5, may constitute valid targets to develop inhibitors able to modulate the function-related communication properties of this signaling

  4. Thrombin-activable factor X re-establishes an intrinsic amplification in tenase-deficient plasmas.

    PubMed

    Louvain-Quintard, Virginie B; Bianchini, Elsa P; Calmel-Tareau, Claire; Tagzirt, Madjid; Le Bonniec, Bernard F

    2005-12-16

    Classical hemophilia results from a defect of the intrinsic tenase complex, the main factor X (FX) activator. Binding of factor VIIa to tissue factor triggers coagulation, but little amplification of thrombin production occurs. Handling of hemophilia by injection of the deficient or missing (thus foreign) factor often causes immunological complications. Several strategies have been designed to bypass intrinsic tenase complex, but none induce true auto-amplification of thrombin production. In an attempt to re-establish a cyclic amplification of prothrombin activation in the absence of tenase, we prepared a chimera of FX having fibrinopeptide A for the activation domain (FX(FpA)). We reasoned that cascade initiation would produce traces of thrombin that would activate FX(FpA) (contrary to its normal homologue). Given that the activation domain of FX is released upon activation, thrombin cleavage would produce authentic FXa that would produce more thrombin, which in turn would activate more chimeras. FX(FpA) was indeed activable by thrombin, albeit at a relatively low rate (5 x 10(3) M(-1) s(-1)). Nevertheless, FX(FpA) allowed in vitro amplification of thrombin production, and 100 nM efficiently corrected thrombin generation in tenase-deficient plasmas. A decisive advantage of FX(FpA) could be that the artificial cascade is self-regulating: FX(FpA) had little influence on the clotting time of normal plasma, yet corrected that of tenase deficiency. Another advantage could be the half-life of FX(FpA) in blood; FX has a half-life of about 30 h (less than 3 h for FVIIa). It is also reasonable to expect little or no immunogenicity, because FX and fibrinopeptide A both circulate normally in the blood of hemophiliacs.

  5. Monobenzyltin Complex C1 Induces Apoptosis in MCF-7 Breast Cancer Cells through the Intrinsic Signaling Pathway and through the Targeting of MCF-7-Derived Breast Cancer Stem Cells via the Wnt/β-Catenin Signaling Pathway.

    PubMed

    Fani, Somayeh; Dehghan, Firouzeh; Karimian, Hamed; Mun Lo, Kong; Ebrahimi Nigjeh, Siyamak; Swee Keong, Yeap; Soori, Rahman; May Chow, Kit; Kamalidehghan, Behnam; Mohd Ali, Hapipah; Mohd Hashim, Najihah

    2016-01-01

    Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence. PMID:27529753

  6. Monobenzyltin Complex C1 Induces Apoptosis in MCF-7 Breast Cancer Cells through the Intrinsic Signaling Pathway and through the Targeting of MCF-7-Derived Breast Cancer Stem Cells via the Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Fani, Somayeh; Dehghan, Firouzeh; Karimian, Hamed; Mun Lo, Kong; Ebrahimi Nigjeh, Siyamak; Swee Keong, Yeap; Soori, Rahman; May Chow, Kit; Kamalidehghan, Behnam; Mohd Ali, Hapipah; Mohd Hashim, Najihah

    2016-01-01

    Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence. PMID:27529753

  7. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation.

    PubMed

    Harboe, M; Ulvund, G; Vien, L; Fung, M; Mollnes, T E

    2004-12-01

    Complement activation with formation of biologically potent mediators like C5a and the terminal C5b-9 complex (TCC) contributes essentially to development of inflammation and tissue damage in a number of autoimmune and inflammatory conditions. A particular role for complement in the ischaemia/reperfusion injury of the heart, skeletal muscle, central nervous system, intestine and kidney has been suggested from animal studies. Previous experiments in C3 and C4 knockout mice suggested an important role of the classical or lectin pathway in initiation of complement activation during intestinal ischaemia/reperfusion injury while later use of factor D knockout mice showed the alternative pathway to be critically involved. We hypothesized that alternative pathway amplification might play a more critical role in classical pathway-induced C5 activation than previously recognized and used pathway-selective inhibitory mAbs to further elucidate the role of the alternative pathway. Here we demonstrate that selective blockade of the alternative pathway by neutralizing factor D in human serum diluted 1 : 2 with mAb 166-32 inhibited more than 80% of C5a and TCC formation induced by solid phase IgM and solid- and fluid-phase human aggregated IgG via the classical pathway. The findings emphasize the influence of alternative pathway amplification on the effect of initial classical pathway activation and the therapeutic potential of inhibiting the alternative pathway in clinical conditions with excessive and uncontrolled complement activation. PMID:15544620

  8. Spaceflight Activates Lipotoxic Pathways in Mouse Liver

    PubMed Central

    Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  9. Spaceflight Activates Lipotoxic Pathways in Mouse Liver.

    PubMed

    Jonscher, Karen R; Alfonso-Garcia, Alba; Suhalim, Jeffrey L; Orlicky, David J; Potma, Eric O; Ferguson, Virginia L; Bouxsein, Mary L; Bateman, Ted A; Stodieck, Louis S; Levi, Moshe; Friedman, Jacob E; Gridley, Daila S; Pecaut, Michael J

    2016-01-01

    Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220

  10. A sensitive hydroosmotic toad bladder assay. Affinity and intrinsic activity of neurohypophyseal peptides.

    PubMed

    Eggena, P; Schwartz, I L; Walter, R

    1968-09-01

    A sensitive and precise method for assaying the water permeability response evoked by neurohypophyseal hormones and their synthetic analogues on the isolated urinary bladder of the toad (Bufo marinus L.) is described. The method permits detection of 8-arginine-vasotocin at concentrations as low as 10(-12)M. This sensitivity, not achieved heretofore with this tissue, results largely from minimizing interference of inhibitory substances by means of an "in vitro circulation assembly." The precision of the method derives from a direct comparison between the cumulative dose-response curve of an agonist of unknown potency acting on one hemibladder and that of a reference compound acting on the contralateral hemibladder. Crystalline deamino-oxytocin is used as the reference standard in this assay. The intrinsic activity of 2-(O-methyltyrosine)-oxytocin, as defined by the maximal response, is 12% lower than that of deamino-oxytocin. All other hormonal peptides investigated have the same intrinsic activity as deamino-oxytocin, even 5-valine-oxytocin, in spite of its extremely low affinity. A comparison of the potencies of 8-arginine-vasotocin vs. 8-arginine-vasopressin, 8-ornithine-vasotocin vs. 8-ornithine-vasopressin, 8-alanine-oxytocin vs. 8-alanine-oxypressin, and deamino-8-alanine-oxytocin vs. deamino-8-alanine-oxypressin suggests that an isoleucine residue in position 3 imparts a higher specificity for binding of the hormonal peptide molecule to the bladder receptor than a phenylalanine residue in this locus.

  11. Regional Homogeneity of Intrinsic Brain Activity in Happy and Unhappy Individuals

    PubMed Central

    Luo, Yangmei; Huang, Xiting; Yang, Zhen; Li, Baolin; Liu, Jie; Wei, Dongtao

    2014-01-01

    Background Why are some people happier than others? This question has intrigued many researchers. However, limited work has addressed this question within a neuroscientific framework. Methods The present study investigated the neural correlates of trait happiness using the resting-state functional magnetic resonance imaging (rs-fMRI) approach. Specifically, regional homogeneity (ReHo) was examined on two groups of young adults: happy and unhappy individuals (N = 25 per group). Results Decreased ReHo in unhappy relative to happy individuals was observed within prefrontal cortex, medial temporal lobe, superior temporal lobe, and retrosplenial cortex. In contrast, increased ReHo in unhappy relative to happy individuals was observed within the dorsolateral prefrontal cortex, middle cingulate gyrus, putamen, and thalamus. In addition, the ReHo within the left thalamus was negatively correlated with Chinese Happiness Inventory (CHI) score within the happy group. Limitations As an exploratory study, we examined how general trait happiness is reflected in the regional homogeneity of intrinsic brain activity in a relatively small sample. Examining other types of happiness in a larger sample using a multitude of intrinsic brain activity indices are warranted for future work. Conclusions The local synchronization of BOLD signal is altered in unhappy individuals. The regions implicated in this alteration partly overlapped with previously identified default mode network, emotional circuitry, and rewarding system, suggesting that these systems may be involved in happiness. PMID:24454814

  12. Intrinsic rotation due to MHD activity in a tokamak with a resistive wall

    NASA Astrophysics Data System (ADS)

    Haines, M. G.; Gimblett, C. G.; Hastie, R. J.

    2013-05-01

    MHD activity in a tokamak, in the form of waves and instabilities, generally has a preferred direction for propagation in a two-fluid plasma. When the radial component of magnetic field associated with this activity interacts with a resistive wall, momentum or angular momentum will be given to the wall. The equal and opposite reaction will be on the plasma, in particular, for ideal and resistive modes, at the singular or resonant surfaces for the various modes. In this case the torque exerted is electromagnetic. This is in contrast to other mechanisms for intrinsic or spontaneous rotation which may arise at the plasma boundary. The resistive wall is considered generally, and the thin and thick wall limits found, the latter being relevant to ITER parameters. Remarkably small radial perturbing fields of order 0.1 G could produce a torque comparable in effect to the apparent anomalous toroidal viscosity.

  13. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  14. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart.

  15. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Young Galaxies from SDSS

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine; Hainline, Kevin Nicholas; DiPompeo, Michael A.

    2016-04-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates, i.e. the Eddington ratio distribution, of active galactic nuclei (AGN). Specifically, it is matter of debate whether AGN follow a broad distribution in accretion rates, or if the distribution is more strongly peaked at characteristic Eddington ratios. Using a sample of galaxies from SDSS DR7, we test whether an intrinsic Eddington ratio distribution that takes the form of a broad Schechter function is in fact consistent with previous work that suggests instead that young galaxies in optical surveys have a more strongly peaked lognormal Eddington ratio distribution. Furthermore, we present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that the intrinsic Eddington ratio distribution of optically selected AGN is consistent with a power law with an exponential cutoff, as is observed in the X-rays. This work was supported in part by a NASA Jenkins Fellowship.

  16. Opioid pathways activation mediates the activity of nicorandil in experimental models of nociceptive and inflammatory pain.

    PubMed

    Dutra, Marcela M G B; Nascimento Júnior, Elias B; Godin, Adriana M; Brito, Ana Mercy S; Melo, Ivo S F; Augusto, Paulo S A; Rodrigues, Felipe F; Araújo, Débora P; de Fátima, Ângelo; Coelho, Márcio M; Machado, Renes R

    2015-12-01

    We have previously demonstrated that nicorandil inhibits the second phase of the nociceptive response induced by formaldehyde. In the present study, we evaluated the effects induced by nicorandil in other models of nociceptive and inflammatory pain in mice and also whether opioid pathways activation mediates its activity. As we have previously demonstrated, per os (p.o.) administration of nicorandil (50, 100 or 150mg/kg; -1h) inhibited the second phase of the nociceptive response induced by intraplantar (i.pl.) injection of formaldehyde. Nicorandil (50, 100 or 150mg/kg; p.o., -1h) also exhibited activity in models of inflammatory pain induced by i.pl. injection of carrageenan (300μg) and nociceptive pain induced by exposure to noxious heat (50°C). Intraperitoneal (i.p.) administration of the opioid antagonist naltrexone (1, 5 or 10mg/kg, -30min) attenuated or abolished the antinociceptive activity of nicorandil (100mg/kg, p.o.) in the three experimental pain models. In conclusion, we demonstrate that nicorandil exhibits activity in different models of nociceptive and inflammatory pain. The demonstration that the antinociceptive effect induced by nicorandil is markedly attenuated by an opioid antagonist provides solid information about an important mechanism mediating the activity of this antianginal drug. Altogether, our data suggest that the clinical pain relief induced by nicorandil in heart ischemic conditions may result from both vasodilation and intrinsic analgesic activity. PMID:26522924

  17. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation.

    PubMed

    Sun, Yujia; Nien, Chung-Yi; Chen, Kai; Liu, Hsiao-Yun; Johnston, Jeff; Zeitlinger, Julia; Rushlow, Christine

    2015-11-01

    The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner.

  18. Spontaneous Activity, Economy of Activity, and Resistance to Diet-Induced Obesity in Rats Bred for High Intrinsic Aerobic Capacity

    PubMed Central

    Novak, Colleen M.; Escande, Carlos; Burghardt, Paul R.; Zhang, Minzhi; Barbosa, Maria Teresa; Chini, Eduardo N.; Britton, Steven L.; Koch, Lauren G.; Akil, Huda; Levine, James A.

    2010-01-01

    Though obesity is common, some people remain resistant to weight gain even in an obesogenic environment. The propensity to remain lean may be partly associated with high endurance capacity along with high spontaneous physical activity and the energy expenditure of activity, called non-exercise activity thermogenesis (NEAT). Previous studies have shown that high-capacity running rats (HCR) are lean compared to low-capacity runners (LCR), which are susceptible to cardiovascular disease and metabolic syndrome. Here, we examine the effect of diet on spontaneous activity and NEAT, as well as potential mechanisms underlying these traits, in rats selectively bred for high or low intrinsic aerobic endurance capacity. Compared to LCR, HCR were resistant to the sizeable increases in body mass and fat mass induced by a high-fat diet; HCR also had lower levels of circulating leptin. HCR were consistently more active than LCR, and had lower fuel economy of activity, regardless of diet. Nonetheless, both HCR and LCR showed a similar decrease in daily activity levels after high-fat feeding, as well as decreases in hypothalamic orexin-A content. The HCR were more sensitive to the NEAT-activating effects of intra-paraventricular orexin-A compared to LCR, especially after high-fat feeding. Lastly, levels of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in the skeletal muscle of HCR were consistently higher than LCR, and the high-fat diet decreased skeletal muscle PEPCK-C in both groups of rats. Differences in muscle PEPCK were not secondary to the differing amount of activity. This suggests the possibility that intrinsic differences in physical activity levels may originate at the level of the skeletal muscle, which could alter brain responsiveness to neuropeptides and other factors that regulate spontaneous daily activity and NEAT. PMID:20350549

  19. Chicken cathelicidins as potent intrinsically disordered biocides with antimicrobial activity against infectious pathogens.

    PubMed

    Yacoub, Haitham A; Elazzazy, Ahmed M; Mahmoud, Maged M; Baeshen, Mohamed Nabih; Al-Maghrabi, Omar A; Alkarim, Saleh; Ahmed, Ekram S; Almehdar, Hussein A; Uversky, Vladimir N

    2016-12-01

    This study was performed to identify the expression patterns of the cathelicidin genes in a local chicken breed and to evaluate the antimicrobial activities of the cathelicidin peptides against pathogenic bacteria. This analysis revealed that the coding regions of CATH-1, -2, and -3 genes contain 447 bp, 465 bp, and 456 bp, respectively, and encode proteins of 148, 154, 151 amino acids, respectively. The complete amino acid sequences of the cathelicidin peptides are similar to those found in Meleagris gallopavo, Phasianus colchicus, and Coturnix coturnix, and show high sequence identity to their Columba livia and Anas platyrhynchos counterparts. In contrast, these avian peptides shared a very low sequence identity with the mammalian cathelicidins. The analysis further revealed that the cathelicidin genes are expressed in various organ and tissues. We also show that the CATH peptides 1, 2, 3 and their amide-modified structures possess potent antimicrobial activities against both Gram-positive and Gram-negative pathogens, with these bacteria being affected to different extents. The antimicrobial activities of the peptides are slightly lower than those of their amide analogs. Computational analysis revealed that pre-pro-cathelicidins are hybrid proteins that contain ordered domains and functional intrinsically disordered regions. Furthermore, high structural and sequence variability of mature cathelicidins is a strong indication of their rather disordered nature. It is likely that intrinsic disorder is needed for the multifarious functionality of these antimicrobial peptides. Our analyses indicated that cathelicidin peptides require further study to better understand their full potentials in the treatment of diseases in both humans and animals. The data obtained for synthetic avian peptides will help elucidating of their potential applications in the pharmaceutical industry.

  20. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB).

    PubMed

    Méndez-Lorenzo, Luz; Porras-Domínguez, Jaime R; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final

  1. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB)

    PubMed Central

    Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final

  2. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization

    PubMed Central

    2011-01-01

    Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032

  3. Inhibition of the intrinsic NAD+ glycohydrolase activity of CD38 by carbocyclic NAD analogues.

    PubMed Central

    Wall, K A; Klis, M; Kornet, J; Coyle, D; Amé, J C; Jacobson, M K; Slama, J T

    1998-01-01

    Carba-NAD and pseudocarba-NAD are carbocyclic analogues of NAD+ in which a 2,3-dihydroxycyclopentane methanol replaces the beta-d-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ [Slama and Simmons (1988) Biochemistry 27, 183-193]. These carbocyclic NAD+ analogues, related to each other as diastereomers, have been tested as inhibitors of the intrinsic NAD+ glycohydrolase activity of human CD38, dog spleen NAD+ glycohydrolase, mouse CD38 and Aplysia californica cADP-ribose synthetase. Pseudocarba-NAD, the carbocyclic dinucleotide in which l-2,3-dihydroxycyclopentane methanol replaces the d-ribose of the nicotinamide riboside moiety of NAD+, was found to be the more potent inhibitor. Pseudocarba-NAD was shown to inhibit the intrinsic NAD+ glycohydrolase activity of human CD38 competitively, with Ki=148 microM determined for the recombinant extracellular protein domain and Ki=180 microM determined for the native protein expressed as a cell-surface enzyme on cultured Jurkat cells. Pseudocarba-NAD was shown to be a non-competitive inhibitor of the purified dog spleen NAD+ glycohydrolase, with Kis=47 miroM and Kii=198 microM. Neither pseudocarba-NAD nor carba-NAD inhibited mouse CD38 or Aplysia californica cADP-ribose synthetase significantly at concentrations up to 1 mM. The results underscore significant species differences in the sensitivity of these enzymes to inhibition, and indicate that pseudocarba-NAD will be useful as an inhibitor of the enzymic activity of human but not mouse CD38 in studies using cultured cells. PMID:9794804

  4. PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation

    PubMed Central

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J.; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A.; Witze, Eric S.

    2012-01-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought. PMID:22493067

  5. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation.

    PubMed

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A; Witze, Eric S; Diehl, J Alan

    2012-06-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.

  6. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    SciTech Connect

    Ahmed, Maha A.E.

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  7. Polyphenol oxidase activity as a potential intrinsic index of adequate thermal pasteurization of apple cider.

    PubMed

    Chen, L; Ingham, B H; Ingham, S C

    2004-05-01

    In response to increasing concerns about microbial safety of apple cider, the U.S. Food and Drug Administration has mandated treatment of cider sufficient for a 5-log reduction of the target pathogen. Pasteurization has been suggested as the treatment most likely to achieve a 5-log reduction, with Escherichia coli O157:H7 as the target pathogen. Regulators and processors need a reliable method for verifying pasteurization, and apple cider polyphenol oxidase (PPO) activity was studied as a potential intrinsic index for thermal pasteurization. The effect of pasteurization conditions and apple cider properties on PPO activity and survival of three pathogens (E. coli O157:H7, Salmonella, and Listeria monocytogenes) was studied using a Box-Behnken response surface design. Factors considered in the design were pasteurization conditions, i.e., hold temperature (60, 68, and 76 degrees C), preheat time (10, 20, 30 s), and hold time (0, 15, 30 s), pH, and sugar content ((o)Brix) of apple cider. Response surface contour plots were constructed to illustrate the effect of these factors on PPO activity and pathogen survival. Reduction in PPO activity of at least 50% was equivalent to a 5-log reduction in E. coli O157:H7 or L. monocytogenes for cider at pH 3.7 and 12.5 (o)Brix. Further studies, however, are needed to verify the relationship between PPO activity and pathogen reduction in cider with various pH and (o)Brix values.

  8. Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces.

    PubMed

    Grozovski, Vitali; Climent, Víctor; Herrero, Enrique; Feliu, Juan M

    2010-08-21

    Pulsed voltammetry has been used to study formic acid oxidation on platinum stepped surfaces to determine the kinetics of the reaction and the role of the surface structure in the reactivity. From the current transients at different potentials, the intrinsic activity of the electrode through the active intermediate reaction path (j(theta = 0)), as well as the rate constant for the CO formation (k(ads)) have been calculated. The kinetics for formic acid oxidation through the active intermediate reaction path is strongly dependent on the surface structure of the electrode, with the highest activity found for the Pt(100) surface. The presence of steps, both on (100) and (111) terraces, does not increase the activity of these surfaces. CO formation only takes place in a narrow potential window very close to the local potential of zero total charge. The extrapolation of the results obtained with stepped surfaces with (111) terraces to zero step density indicates that CO formation should not occur on an ideal Pt(111) electrode. Additionally, the analysis of the Tafel slopes obtained for the different electrodes suggests that the oxidation of formic acid is strongly affected by the presence of adsorbed anions, hydrogen and water. PMID:20539876

  9. Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images

    PubMed Central

    Srivastava, Anuj

    2010-01-01

    We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692

  10. Trypsin activation pathway of rotavirus infectivity.

    PubMed Central

    Arias, C F; Romero, P; Alvarez, V; López, S

    1996-01-01

    The infectivity of rotaviruses is increased by and most probably is dependent on trypsin treatment of the virus. This proteolytic treatment specifically cleaves VP4, the protein that forms the spikes on the surface of the virions, to polypeptides VP5 and VP8. This cleavage has been reported to occur in rotavirus SA114fM at two conserved, closely spaced arginine residues located at VP4 amino acids 241 and 247. In this work, we have characterized the VP4 cleavage products of rotavirus SA114S generated by in vitro treatment of the virus with increasing concentrations of trypsin and with proteases AspN and alpha-chymotrypsin. The VP8 and VP5 polypeptides were analyzed by gel electrophoresis and by Western blotting (immunoblotting) with antibodies raised to synthetic peptides that mimic the terminal regions of VP4 generated by the trypsin cleavage. It was shown that in addition to arginine residues 241 and 247, VP4 is cleaved at arginine residue 231. These three sites were found to have different susceptibilities to trypsin, Arg-241 > Arg-231 > Arg-247, with the enhancement of infectivity correlating with cleavage at Arg-247 rather than at Arg-231 or Arg-241. Proteases AspN and alpha-chymotrypsin cleaved VP4 at Asp-242 and Tyr-246, respectively, with no significant enhancement of infectivity, although this enhancement could be achieved by further treatment of the virus with trypsin. The VP4 end products of trypsin treatment were a homogeneous VP8 polypeptide comprising VP4 amino acids 1 to 231 and a heterogeneous VP5, which is formed by two polypeptide species (present at a ratio of approximately 1:5) as a result of cleavage at either Arg-241 or Arg-247. A pathway for the trypsin activation of rotavirus infectivity is proposed. PMID:8709201

  11. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms.

    PubMed

    Li, Wen-Chang

    2015-07-01

    Many neural circuits show fast reconfiguration following altered sensory or modulatory inputs to generate stereotyped outputs. In the motor circuit of Xenopus tadpoles, I study how certain voltage-dependent ionic currents affect firing thresholds and contribute to circuit reconfiguration to generate two distinct motor patterns, swimming and struggling. Firing thresholds of excitatory interneurons [i.e., descending interneurons (dINs)] in the swimming central pattern generator are raised by depolarization due to the inactivation of Na(+) currents. In contrast, the thresholds of other types of neurons active in swimming or struggling are raised by hyperpolarization from the activation of fast transient K(+) currents. The firing thresholds are then compared with the excitatory synaptic drives, which are revealed by blocking action potentials intracellularly using QX314 during swimming and struggling. During swimming, transient K(+) currents lower neuronal excitability and gate out neurons with weak excitation, whereas their inactivation by strong excitation in other neurons increases excitability and enables fast synaptic potentials to drive reliable firing. During struggling, continuous sensory inputs lead to high levels of network excitation. This allows the inactivation of Na(+) currents and suppression of dIN activity while inactivating transient K(+) currents, recruiting neurons that are not active in swimming. Therefore, differential expression of these currents between neuron types can explain why synaptic strength does not predict firing reliability/intensity during swimming and struggling. These data show that intrinsic properties can override fast synaptic potentials, mediate circuit reconfiguration, and contribute to motor-pattern switching.

  12. HdeB chaperone activity is coupled to its intrinsic dynamic properties

    PubMed Central

    Ding, Jienv; Yang, Chengfeng; Niu, Xiaogang; Hu, Yunfei; Jin, Changwen

    2015-01-01

    Enteric bacteria encounter extreme acidity when passing through hosts’ stomach. Since the bacterial periplasmic space quickly equilibrates with outer environment, an efficient acid resistance mechanism is essential in preventing irreversible protein denaturation/aggregation and maintaining bacteria viability. HdeB, along with its homolog HdeA, was identified as a periplasmic acid-resistant chaperone. Both proteins exist as homodimers and share similar monomeric structures under neutral pH, while showing different dimeric packing interfaces. Previous investigations show that HdeA functions through an acid-induced dimer-to-monomer transition and partial unfolding at low pH (pH 2–3), resulting in exposure of hydrophobic surfaces that bind substrate proteins. In contrast, HdeB appears to have a much higher optimal activation pH (pH 4–5), under which condition the protein maintains a well-folded dimer and the mechanism for its chaperone activity remains elusive. Herein, we present an NMR study of HdeB to investigate its dynamic properties. Our results reveal that HdeB undergoes significant micro- to milli-second timescale conformational exchanges at neutral to near-neutral pH, under the later condition it exhibits optimal activity. The current study indicates that HdeB activation is coupled to its intrinsic dynamics instead of structural changes, and therefore its functional mechanism is apparently different from HdeA. PMID:26593705

  13. From computational modelling of the intrinsic apoptosis pathway to a systems-based analysis of chemotherapy resistance: achievements, perspectives and challenges in systems medicine.

    PubMed

    Würstle, M L; Zink, E; Prehn, J H M; Rehm, M

    2014-01-01

    Our understanding of the mitochondrial or intrinsic apoptosis pathway and its role in chemotherapy resistance has increased significantly in recent years by a combination of experimental studies and mathematical modelling. This combined approach enhanced the quantitative and kinetic understanding of apoptosis signal transduction, but also provided new insights that systems-emanating functions (i.e., functions that cannot be attributed to individual network components but that are instead established by multi-component interplay) are crucial determinants of cell fate decisions. Among these features are molecular thresholds, cooperative protein functions, feedback loops and functional redundancies that provide systems robustness, and signalling topologies that allow ultrasensitivity or switch-like responses. The successful development of kinetic systems models that recapitulate biological signal transduction observed in living cells have now led to the first translational studies, which have exploited and validated such models in a clinical context. Bottom-up strategies that use pathway models in combination with higher-level modelling at the tissue, organ and whole body-level therefore carry great potential to eventually deliver a new generation of systems-based diagnostic tools that may contribute to the development of personalised and predictive medicine approaches. Here we review major achievements in the systems biology of intrinsic apoptosis signalling, discuss challenges for further model development, perspectives for higher-level integration of apoptosis models and finally discuss requirements for the development of systems medical solutions in the coming years.

  14. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo.

    PubMed

    Girola, Natalia; Figueiredo, Carlos R; Farias, Camyla F; Azevedo, Ricardo A; Ferreira, Adilson K; Teixeira, Sarah F; Capello, Tabata M; Martins, Euder G A; Matsuo, Alisson L; Travassos, Luiz R; Lago, João H G

    2015-11-27

    Natural monoterpenes were isolated from the essential oil of Piper cernuum Vell. (Piperaceae) leaves. The crude oil and the individual monoterpenes were tested for cytotoxicity in human tumor cell lineages and B16F10-Nex2 murine melanoma cells. In the present work we demonstrate the activity of camphene against different cancer cells, with its mechanism of action being investigated in vitro and in vivo in murine melanoma. Camphene induced apoptosis by the intrinsic pathway in melanoma cells mainly by causing endoplasmic reticulum (ER) stress, with release of Ca(2+) together with HmgB1 and calreticulin, loss of mitochondrial membrane potential and up regulation of caspase-3 activity. Importantly, camphene exerted antitumor activity in vivo by inhibiting subcutaneous tumor growth of highly aggressive melanoma cells in a syngeneic model, suggesting a promising role of this compound in cancer therapy. PMID:26471302

  15. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity

    NASA Astrophysics Data System (ADS)

    Wen, Junlin; Zhou, Shungui; Chen, Junhua

    2014-06-01

    Rapid detection and enumeration of target microorganisms is considered as a powerful tool for monitoring bioremediation process that typically involves cleaning up polluted environments with functional microbes. A novel colorimetric assay is presented based on immunomagnetic capture and bacterial intrinsic peroxidase activity for rapidly detecting Shewanella oneidensis, an important model organism for environmental bioremediation because of its remarkably diverse respiratory abilities. Analyte bacteria captured on the immunomagnetic beads provided a bacterial out-membrane peroxidase-amplified colorimetric readout of the immunorecognition event by oxidizing 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the present of hydrogen peroxide. The high-efficiency of immunomagnetic capture and signal amplification of peroxidase activity offers an excellent detection performance with a wide dynamic range between 5.0 × 103 and 5.0 × 106 CFU/mL toward target cells. Furthermore, this method was demonstrated to be feasible in detecting S. oneidensis cells spiked in environmental samples. The proposed colorimetric assay shows promising environmental applications for rapid detection of target microorganisms.

  16. VprBP Has Intrinsic Kinase Activity Targeting Histone H2A and Represses Gene Transcription

    PubMed Central

    Kim, Kyunghwan; Kim, Jin-Man; Kim, Joong-Sun; Choi, Jongkyu; Lee, Yong Suk; Neamati, Nouri; Song, Jin Sook; Heo, Kyu; An, Woojin

    2013-01-01

    SUMMARY Histone modifications play important roles in the regulation of gene expression and chromatin organization. VprBP has been implicated in transcriptionally silent chromatin formation and cell cycle regulation, but the molecular basis underlying such effects remains unclear. Here we report that VprBP possesses an intrinsic protein kinase activity and is capable of phosphorylating histone H2A on threonine 120 (H2AT120p) in a nucleosomal context. VprBP is localized to a large set of tumor suppressor genes and blocks their transcription, in a manner that is dependent on its kinase activity toward H2AT120. The functional significance of VprBP-mediated H2AT120p is further underscored by the fact that RNAi knockdown and small-molecule inhibition of VprBP reactivate growth regulatory genes and impede tumor growth. Our findings establish VprBP as a major kinase responsible for H2AT120p in cancer cells and suggest that VprBP inhibition could be a new strategy for the development of anticancer therapeutics. PMID:24140421

  17. Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation.

    PubMed

    Lee, Sanghan; Nam, Gyutae; Sun, Jie; Lee, Jang-Soo; Lee, Hyun-Wook; Chen, Wei; Cho, Jaephil; Cui, Yi

    2016-07-18

    Chemically prepared λ-MnO2 has not been intensively studied as a material for metal-air batteries, fuel cells, or supercapacitors because of their relatively poor electrochemical properties compared to α- and δ-MnO2 . Herein, through the electrochemical removal of lithium from LiMn2 O4 , highly crystalline λ-MnO2 was prepared as an efficient electrocatalyst for the oxygen reduction reaction (ORR). The ORR activity of the material was further improved by introducing oxygen vacancies (OVs) that could be achieved by increasing the calcination temperature during LiMn2 O4 synthesis; a concentration of oxygen vacancies in LiMn2 O4 could be characterized by its voltage profile as the cathode in a lithiun-metal half-cell. λ-MnO2-z prepared with the highest OV exhibited the highest diffusion-limited ORR current (5.5 mA cm(-2) ) among a series of λ-MnO2-z electrocatalysts. Furthermore, the number of transferred electrons (n) involved in the ORR was >3.8, indicating a dominant quasi-4-electron pathway. Interestingly, the catalytic performances of the samples were not a function of their surface areas, and instead depended on the concentration of OVs, indicating enhancement in the intrinsic catalytic activity of λ-MnO2 by the generation of OVs. This study demonstrates that differences in the electrochemical behavior of λ-MnO2 depend on the preparation method and provides a mechanism for a unique catalytic behavior of cubic λ-MnO2 . PMID:27254822

  18. Intrinsic HER4/4ICD transcriptional activation domains are required for STAT5A activated gene expression.

    PubMed

    Han, Wen; Sfondouris, Mary E; Semmes, Eleanor C; Meyer, Alicia M; Jones, Frank E

    2016-10-30

    The epidermal growth factor receptor family member HER4 undergoes proteolytic processing at the cell surface to release the HER4 intracellular domain (4ICD) nuclear protein. Interestingly, 4ICD directly interacts with STAT5 and functions as an obligate STAT5 nuclear chaperone. Once in the nucleus 4ICD binds with STAT5 at STAT5 target genes, dramatically potentiating STAT5 transcriptional activation. These observations raise the possibility that 4ICD directly coactivates STAT5 gene expression. Using both yeast and mammalian transactivation reporter assays, we performed truncations of 4ICD fused to a GAL4 DNA binding domain and identified two independent 4ICD transactivation domains located between residues 1022 and 1090 (TAD1) and 1192 and 1225 (TAD2). The ability of the 4ICD DNA binding domain fusions to transactivate reporter gene expression required deletion of the intrinsic tyrosine kinase domain. In addition, we identified the 4ICD carboxyl terminal TVV residues, a PDZ domain binding motif (PDZ-DBM), as a potent transcriptional repressor. The transactivation activity of the HER4 carboxyl terminal domain lacking the tyrosine kinase (CTD) was significantly lower than similar EGFR or HER2 CTD. However, deletion of the HER4 CTD PDZ-DBM enhanced HER4 CTD transactivation to levels equivalent to the EGFR and HER2 CTDs. To determine if 4ICD TAD1 and TAD2 have a physiologically relevant role in STAT5 transactivation, we coexpressed 4ICD or 4ICD lacking TAD2 or both TAD1 and TAD2 with STAT5 in a luciferase reporter assay. Our results demonstrate that each 4ICD TAD contributes additively to STAT5A transactivation and the ability of STAT5A to transactivate the β-casein promoter requires the 4ICD TADs. Taken together, published data and our current results demonstrate that both 4ICD nuclear chaperone and intrinsic coactivation activities are essential for STAT5 regulated gene expression. PMID:27502417

  19. Intrinsic Optical Activity and Environmental Perturbations: Solvation Effects in Chiral Building Blocks

    NASA Astrophysics Data System (ADS)

    Lemler, Paul M.; Vaccaro, Patrick

    2016-06-01

    The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.

  20. Intrinsically disordered human C/EBP homologous protein regulates biological activity of colon cancer cells during calcium stress

    PubMed Central

    Singh, Vinay K.; Pacheco, Ivan; Uversky, Vladimir N.; Smith, Steven P.; MacLeod, R John; Jia, Zongchao

    2009-01-01

    Intrinsically disordered proteins are emerging as substantial functional constituents of mammalian proteomes. Although the abundance of these proteins has been established by bioinformatics approaches, the vast majority have not been characterized structurally and functionally. C/EBP homologous protein (CHOP) is a proto-oncogene, traditionally shown as a dominant-negative inhibitor of C/EBPs and a transcriptional activator of Activating Protein-1. We report here the in vitro characterization of CHOP, where our computational analyses and experimental evidences show for the first time that CHOP is an intrinsically disordered protein. Intrinsic fluorescence, NMR spectroscopy, and analytical size exclusion chromatography studies indicate that CHOP contains extensive disordered regions and self-associate in solution. Interestingly, the disordered N-terminal region plays a key role in the oligomerization of CHOP and is vital for its biological activity. We report the novel mechanistic role of CHOP in the inhibition of Wnt/TCF signaling and stimulation of c-Jun and sucrase-isomaltase reporter activity in intestinal colon cancer cells. These findings are discussed in the context of oligomerization of intrinsically disordered proteins as one of the mechanisms through which they exert their biological function. PMID:18534616

  1. Specific activation of the paralemniscal pathway during nociception.

    PubMed

    Frangeul, Laura; Porrero, Cesar; Garcia-Amado, Maria; Maimone, Benedetta; Maniglier, Madlyne; Clascá, Francisco; Jabaudon, Denis

    2014-05-01

    Two main neuronal pathways connect facial whiskers to the somatosensory cortex in rodents: (i) the lemniscal pathway, which originates in the brainstem principal trigeminal nucleus and is relayed in the ventroposterior thalamic nucleus and (ii) the paralemniscal pathway, originating in the spinal trigeminal nucleus and relayed in the posterior thalamic nucleus. While lemniscal neurons are readily activated by whisker contacts, the contribution of paralemniscal neurons to perception is less clear. Here, we functionally investigated these pathways by manipulating input from the whisker pad in freely moving mice. We report that while lemniscal neurons readily respond to neonatal infraorbital nerve sectioning or whisker contacts in vivo, paralemniscal neurons do not detectably respond to these environmental changes. However, the paralemniscal pathway is specifically activated upon noxious stimulation of the whisker pad. These findings reveal a nociceptive function for paralemniscal neurons in vivo that may critically inform context-specific behaviour during environmental exploration.

  2. Antiglaucomatous Effects of the Activation of Intrinsic Angiotensin-Converting Enzyme 2

    PubMed Central

    Foureaux, Giselle; Nogueira, José C.; Nogueira, Bárbara S.; Fulgêncio, Gustavo O.; Menezes, Gustavo B.; Fernandes, Simone O. A.; Cardoso, Valbert N.; Fernandes, Renata S.; Oliveira, Gabriel P.; Franca, Juçara R.; Faraco, André A. G.; Raizada, Mohan K.; Ferreira, Anderson J.

    2013-01-01

    Purpose. To evaluate the effects of the activation of endogenous angiotensin-converting enzyme 2 (ACE2) using the compound diminazene aceturate (DIZE) in an experimental model of glaucoma in Wistar rats. Methods. DIZE (1 mg/kg) was administered daily, either systemically or topically, and the IOP was measured weekly. To examine the role of the Mas receptor in the effects of DIZE, the Ang-(1-7) antagonist A-779 was co-administered. Drainage of the aqueous humor was evaluated by using scintigraphy. The analysis of ACE2 expression by immunohistochemistry and the counting of retinal ganglion cells (RGCs) were performed in histologic sections. Additionally, the nerve fiber structure was evaluated by transmission electron microscopy. Results. The systemic administration and topical administration (in the form of eye drops) of DIZE increased the ACE2 expression in the eyes and significantly decreased the IOP of glaucomatous rats without changing the blood pressure. Importantly, this IOP-lowering action of DIZE was similar to the effects of dorzolamide. The antiglaucomatous effects of DIZE were blocked by A-779. Histologic analysis revealed that the reduction in the number of RGCs and the increase in the expression of caspase-3 in the RGC layer in glaucomatous animals were prevented by DIZE. This compound also prevented alterations in the cytoplasm of axons in glaucomatous rats. In addition to these neuroprotective effects, DIZE facilitated the drainage of the aqueous humor. Conclusions. Our results evidence the pathophysiologic relevance of the ocular ACE2/Ang-(1-7)/Mas axis of the renin–angiotensin system and, importantly, indicate that the activation of intrinsic ACE2 is a potential therapeutic strategy to treat glaucoma. PMID:23702784

  3. Intestinal Epithelial Cell-Intrinsic Deletion of Setd7 Identifies Role for Developmental Pathways in Immunity to Helminth Infection

    PubMed Central

    Chenery, Alistair L.; Redpath, Stephen A.; Braam, Mitchell J.; Perona-Wright, Georgia

    2016-01-01

    The intestine is a common site for a variety of pathogenic infections. Helminth infections continue to be major causes of disease worldwide, and are a significant burden on health care systems. Lysine methyltransferases are part of a family of novel attractive targets for drug discovery. SETD7 is a member of the Suppressor of variegation 3-9-Enhancer of zeste-Trithorax (SET) domain-containing family of lysine methyltransferases, and has been shown to methylate and alter the function of a wide variety of proteins in vitro. A few of these putative methylation targets have been shown to be important in resistance against pathogens. We therefore sought to study the role of SETD7 during parasitic infections. We find that Setd7-/- mice display increased resistance to infection with the helminth Trichuris muris but not Heligmosomoides polygyrus bakeri. Resistance to T. muris relies on an appropriate type 2 immune response that in turn prompts intestinal epithelial cells (IECs) to alter differentiation and proliferation kinetics. Here we show that SETD7 does not affect immune cell responses during infection. Instead, we found that IEC-specific deletion of Setd7 renders mice resistant to T. muris by controlling IEC turnover, an important aspect of anti-helminth immune responses. We further show that SETD7 controls IEC turnover by modulating developmental signaling pathways such as Hippo/YAP and Wnt/β-Catenin. We show that the Hippo pathway specifically is relevant during T. muris infection as verteporfin (a YAP inhibitor) treated mice became susceptible to T. muris. We conclude that SETD7 plays an important role in IEC biology during infection. PMID:27598373

  4. Intestinal Epithelial Cell-Intrinsic Deletion of Setd7 Identifies Role for Developmental Pathways in Immunity to Helminth Infection.

    PubMed

    Oudhoff, Menno J; Antignano, Frann; Chenery, Alistair L; Burrows, Kyle; Redpath, Stephen A; Braam, Mitchell J; Perona-Wright, Georgia; Zaph, Colby

    2016-09-01

    The intestine is a common site for a variety of pathogenic infections. Helminth infections continue to be major causes of disease worldwide, and are a significant burden on health care systems. Lysine methyltransferases are part of a family of novel attractive targets for drug discovery. SETD7 is a member of the Suppressor of variegation 3-9-Enhancer of zeste-Trithorax (SET) domain-containing family of lysine methyltransferases, and has been shown to methylate and alter the function of a wide variety of proteins in vitro. A few of these putative methylation targets have been shown to be important in resistance against pathogens. We therefore sought to study the role of SETD7 during parasitic infections. We find that Setd7-/- mice display increased resistance to infection with the helminth Trichuris muris but not Heligmosomoides polygyrus bakeri. Resistance to T. muris relies on an appropriate type 2 immune response that in turn prompts intestinal epithelial cells (IECs) to alter differentiation and proliferation kinetics. Here we show that SETD7 does not affect immune cell responses during infection. Instead, we found that IEC-specific deletion of Setd7 renders mice resistant to T. muris by controlling IEC turnover, an important aspect of anti-helminth immune responses. We further show that SETD7 controls IEC turnover by modulating developmental signaling pathways such as Hippo/YAP and Wnt/β-Catenin. We show that the Hippo pathway specifically is relevant during T. muris infection as verteporfin (a YAP inhibitor) treated mice became susceptible to T. muris. We conclude that SETD7 plays an important role in IEC biology during infection. PMID:27598373

  5. Abnormal intrinsic brain activity patterns in leukoaraiosis with and without cognitive impairment.

    PubMed

    Li, Chuanming; Yang, Jun; Yin, Xuntao; Liu, Chen; Zhang, Lin; Zhang, Xiaochun; Gui, Li; Wang, Jian

    2015-10-01

    The amplitude of low frequency fluctuations (ALFF) from resting-state functional MRI (rs-fMRI) signals can be used to detect intrinsic spontaneous brain activity and provide valuable insights into the pathomechanism of neural disease. In this study, we recruited 56 patients who had been diagnosed as having mild to severe leukoaraiosis. According to the neuropsychological tests, they were subdivided into a leukoaraiosis with cognitive impairment group (n = 28) and a leukoaraiosis without cognitive impairment group (n = 28). 28 volunteers were included as normal controls. We found that the three groups showed significant differences in ALFF in the brain regions of the right inferior occipital gyrus (IOG_R), left middle temporal gyrus (MTG_L), left precuneus (Pcu_L), right superior frontal gyrus (SFG_R) and right superior occipital gyrus (SOG_R). Compared with normal controls, the leukoaraiosis without cognitive impairment group exhibited significantly increased ALFF in the IOG_R, Pcu_L, SFG_R and SOG_R. While compared with leukoaraiosis without cognitive impairment group, the leukoaraiosis with cognitive impairment group showed significantly decreased ALFF in IOG_R, MTG_L, Pcu_L and SOG_R. A close negative correlation was found between the ALFF values of the MTG_L and the Montreal Cognitive Assessment (MoCA) scores. Our data demonstrate that white matter integrity and cognitive impairment are associated with different amplitude fluctuations of rs-fMRI signals. Leukoaraiosis is related to ALFF increases in IOG_R, Pcu_L, SFG_Orb_R and SOG_R. Decreased ALFF in MTG_L is characteristic of cognitive impairment and may aid in its early detection.

  6. Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity.

    PubMed

    Xing, Shaojun; Li, Fengyin; Zeng, Zhouhao; Zhao, Yunjie; Yu, Shuyang; Shan, Qiang; Li, Yalan; Phillips, Farrah C; Maina, Peterson K; Qi, Hank H; Liu, Chengyu; Zhu, Jun; Pope, R Marshall; Musselman, Catherine A; Zeng, Chen; Peng, Weiqun; Xue, Hai-Hui

    2016-06-01

    The CD4(+) and CD8(+) T cell dichotomy is essential for effective cellular immunity. How individual T cell identity is established remains poorly understood. Here we show that the high-mobility group (HMG) transcription factors Tcf1 and Lef1 are essential for repressing CD4(+) lineage-associated genes including Cd4, Foxp3 and Rorc in CD8(+) T cells. Tcf1- and Lef1-deficient CD8(+) T cells exhibit histone hyperacetylation, which can be ascribed to intrinsic histone deacetylase (HDAC) activity in Tcf1 and Lef1. Mutation of five conserved amino acids in the Tcf1 HDAC domain diminishes HDAC activity and the ability to suppress CD4(+) lineage genes in CD8(+) T cells. These findings reveal that sequence-specific transcription factors can utilize intrinsic HDAC activity to guard cell identity by repressing lineage-inappropriate genes. PMID:27111144

  7. Temporal dynamics of a homeostatic pathway controlling neural network activity

    PubMed Central

    Bateup, Helen S.; Denefrio, Cassandra L.; Johnson, Caroline A.; Saulnier, Jessica L.; Sabatini, Bernardo L.

    2013-01-01

    Neurons use a variety of mechanisms to homeostatically regulate neural network activity in order to maintain firing in a bounded range. One such process involves the bi-directional modulation of excitatory synaptic drive in response to chronic changes in network activity. Down-scaling of excitatory synapses in response to high activity requires Arc-dependent endocytosis of glutamate receptors. However, the temporal dynamics and signaling pathways regulating Arc during homeostatic plasticity are not well understood. Here we determine the relative contribution of transcriptional and translational control in the regulation of Arc, the signaling pathways responsible for the activity-dependent production of Arc, and the time course of these signaling events as they relate to the homeostatic adjustment of network activity in hippocampal neurons. We find that an ERK1/2-dependent transcriptional pathway active within 1–2 h of up-regulated network activity induces Arc leading to a restoration of network spiking rates within 12 h. Under basal and low activity conditions, specialized mechanisms are in place to rapidly degrade Arc mRNA and protein such that they have half-lives of less than 1 h. In addition, we find that while mTOR signaling is regulated by network activity on a similar time scale, mTOR-dependent translational control is not a major regulator of Arc production or degradation suggesting that the signaling pathways underlying homeostatic plasticity are distinct from those mediating synapse-specific forms of synaptic depression. PMID:24065881

  8. Activation of the NOTCH pathway in head and neck cancer.

    PubMed

    Sun, Wenyue; Gaykalova, Daria A; Ochs, Michael F; Mambo, Elizabeth; Arnaoutakis, Demetri; Liu, Yan; Loyo, Myriam; Agrawal, Nishant; Howard, Jason; Li, Ryan; Ahn, Sun; Fertig, Elana; Sidransky, David; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Choudhary, Ashish; Darden, Will; Adai, Alex; Latham, Gary; Bishop, Justin; Sharma, Rajni; Westra, William H; Hennessey, Patrick; Chung, Christine H; Califano, Joseph A

    2014-02-15

    NOTCH1 mutations have been reported to occur in 10% to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation, and mutation analyses. Copy number increases were identified in NOTCH pathway genes, including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4 of the 37 tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptor mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently.

  9. Activation of the NOTCH pathway in Head and Neck Cancer

    PubMed Central

    Sun, Wenyue; Gaykalova, Daria A.; Ochs, Michael F.; Mambo, Elizabeth; Arnaoutakis, Demetri; Liu, Yan; Loyo, Myriam; Agrawal, Nishant; Howard, Jason; Li, Ryan; Ahn, Sun; Fertig, Elana; Sidransky, David; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Choudhary, Ashish; Darden, Will; Adai, Alex; Latham, Gary; Bishop, Justin; Sharma, Rajni; Westra, William H.; Hennessey, Patrick; Chung, Christine H.; Califano, Joseph A.

    2014-01-01

    NOTCH1 mutations have been reported to occur in 10 to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation and mutation analyses. Copy number increases were identified in NOTCH pathway genes including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4/37 of the tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptors mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently. PMID:24351288

  10. Using ILP to Identify Pathway Activation Patterns in Systems Biology

    PubMed Central

    Neaves, Samuel R; Millard, Louise A C; Tsoka, Sophia

    2016-01-01

    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist. PMID:27478883

  11. Models for the activation pathway of epidermal growth factor receptor protein-tyrosine kinase

    SciTech Connect

    Campion, S.R.; Niyogi, S.K. )

    1991-03-15

    Activation of the epidermal growth factor (EGF) receptor's intrinsic protein-tyrosine kinase activity, which occurs upon formation of the receptor-ligand complex, is the critical regulatory event affecting the subsequent EGF-dependent cellular responses leading to DNA synthesis and cell proliferation. The molecular mechanism by which EGF-dependent activation of receptor kinase activity takes place is not clearly understood. In this study, the growth factor-dependent activation of the EGF receptor tyrosine kinase was examined in vitro using detergent-solubilized, partially purified GEF receptors from A5431 human epidermoid carcinoma cells. Evaluation of the cooperativity observed in the EGF-dependent activation of soluble receptor tyrosine kinase would suggest a mechanism requiring the binding of the EGF peptide to both ligand binding sites on a receptor dimer to induce full receptor kinase activity. Equations describing potential cooperative kinase activation pathways have been examined. The theoretical system which best simulates the allosteric regulation observed in the experimental kinase activation data is that describing multiple essential activation. In addition, studies using mutant analogs of the EGF peptide ligand appear to confirm the requirement for an essential conformational change in the receptor-ligand complex to activate the receptor kinase activity. Several mutant growth factor analogues are able to occupy the ligand binding sites on the receptor without inducing the fully active receptor conformation.

  12. Contributions of contact activation pathways of coagulation factor XII in plasma.

    PubMed

    Chatterjee, Kaushik; Guo, Zhe; Vogler, Erwin A; Siedlecki, Christopher A

    2009-07-01

    Activation of human blood plasma coagulation by contact with hydrophilic or hydrophobic surfaces (procoagulants) is dominated by kallikrein (Kal)-mediated activation of the blood zymogen FXII (Hageman Factor). Mathematical modeling of prekallikrein (PK)-deficient platelet-poor plasma (d(PK)PPP) and PK-reconstituted d(PK)PPP (Rd(PK)PPP) coagulation shows that autoactivation of FXII (FXII-->[surface]FXII) produces no more than about 25% of the total FXIIa produced by the intrinsic pathway. Autoactivation and reciprocal-activation increase in the same proportion with procoagulant surface energy (water-wettability), whereas total amount of FXIIa produced per-unit-area procoagulant remains roughly constant for any particular procoagulant. These results suggest that procoagulant surfaces initiate the intrinsic cascade by producing a bolus of FXIIa in proportion to surface energy or surface area but play no additional role in subsequent molecular events in the cascade. Results further suggest that reciprocal-activation occurs in proportion to the amount of FXIIa produced by the initiating autoactivation step.

  13. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations

    PubMed Central

    Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng

    2016-01-01

    Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309

  14. Wnt pathway activation by ADP-ribosylation.

    PubMed

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  15. Wnt pathway activation by ADP-ribosylation

    PubMed Central

    Yang, Eungi; Tacchelly-Benites, Ofelia; Wang, Zhenghan; Randall, Michael P.; Tian, Ai; Benchabane, Hassina; Freemantle, Sarah; Pikielny, Claudio; Tolwinski, Nicholas S.; Lee, Ethan; Ahmed, Yashi

    2016-01-01

    Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)—known to target Axin for proteolysis—regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly. PMID:27138857

  16. Activated AKT pathway promotes establishment of endometriosis.

    PubMed

    Kim, Tae Hoon; Yu, Yanni; Luo, Lily; Lydon, John P; Jeong, Jae-Wook; Kim, J Julie

    2014-05-01

    The pathogenesis of endometriosis remains unclear, and relatively little is known about the mechanisms that promote establishment and survival of the disease. Previously, we demonstrated that v-akt murine thymoma viral oncogene homolog (AKT) activity was increased in endometriosis tissues and cells from ovarian endometriomas and that this increase promoted cell survival as well as decreased levels of progesterone receptor. The objective of this study was to demonstrate a role for AKT in the establishment of ectopic lesions. First, a dose-dependent inhibition of AKT in stromal cells from human ovarian endometriomas (OSIS) as well as endometrial stromal cells from disease-free patients (ESC) with the allosteric AKT inhibitor MK-2206 was demonstrated by decreased levels of phosphorylated (p)(Ser473)-AKT. Levels of the AKT target protein, p(Ser256)-forkhead box O1 were increased in OSIS cells, which decreased with MK-2206 treatment, whereas levels of p(Ser9)-glycogen synthase kinase 3β did not change in response to MK-2206. Although MK-2206 decreased viability of both OSIS and ESC in a dose-dependent manner, proliferation of OSIS cells was differentially decreased significantly compared with ESC. Next, the role of hyperactive AKT in the establishment of ectopic lesions was studied using the bigenic, PR(cre/+)Pten(f/+) heterozygous mouse. Autologous implantation of uterine tissues was performed in these mice. After 4 weeks, an average of 4 ± 0.33 lesions per Pten(f/+) mouse and 7.5 ± 0.43 lesions in the PR(cre/+)Pten(f/+) mouse were found. Histological examination of the lesions showed endometrial tissue-like morphology, which was similar in both the Pten(f/+) and PR(cre/+)Pten(f/+) mice. Treatment of mice with MK-2206 resulted in a significantly decreased number of lesions established. Immunohistochemical staining of ectopic lesions revealed decreased p(Ser473)-AKT and the proliferation marker Ki67 from MK-2206-treated mice compared with vehicle-treated mice

  17. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Done, Chris; Davis, S. W.; Jin, C.; Blaes, O.; Ward, M.

    2012-03-01

    Narrow-line Seyfert 1 (NLS1) galaxies have low-mass black holes and mass accretion rates close to (or exceeding) Eddington, so a standard blackbody accretion disc should peak in the extreme ultraviolet. However, the lack of true absorption opacity in the disc means that the emission is better approximated by a colour temperature corrected blackbody, and this colour temperature correction is large enough (˜2.4) that the bare disc emission from a zero spin black hole can extend into the soft X-ray bandpass. Part of the soft X-ray excess seen in these objects must be intrinsic emission from the disc unless the vertical structure is very different to that predicted. None the less, this is not the whole story even for the extreme NLS1 as the shape of the soft excess is much broader than predicted by a bare disc spectrum, indicating some Compton upscattering by warm, optically thick material. We associate this with the disc itself, so it must ultimately be powered by mass accretion. We build an energetically self-consistent model assuming that the emission thermalizes to a (colour temperature corrected) blackbody only at large radii. At smaller radii the gravitational energy is split between powering optically thick Comptonized disc emission (forming the soft X-ray excess) and an optically thin corona above the disc (forming the tail to higher energies). We show examples of this model fit to the extreme NLS1 RE J1034+396, and to the much lower Eddington fraction broad-line Seyfert 1 PG 1048+231. We use these to guide our fits and interpretations of three template spectra made from co-adding multiple sources to track out a sequence of active galactic nucleus (AGN) spectra as a function of L/LEdd. Both the individual objects and template spectra show the surprising result that the Compton upscattered soft X-ray excess decreases in importance with increasing L/LEdd. The strongest soft excesses are associated with low mass accretion rate AGN rather than being tied to some

  18. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity

    PubMed Central

    Liu, Jun; Sun, Tao; Shen, Qun-Tai

    2016-01-01

    Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients. PMID:26978777

  19. Ligand-induced evolution of intrinsic fluorescence and catalytic activity from cobalt ferrite nanoparticles.

    PubMed

    Pal, Monalisa; Kundu, Anirban; Rakshit, Rupali; Mandal, Kalyan

    2015-06-01

    To develop CoFe(2)O(4) as magneto-fluorescent nanoparticles (NPs) for biomedical applications, it would be advantageous to identify any intrinsic fluorescence of this important magnetic material by simply adjusting the surface chemistry of the NPs themselves. Herein, we demonstrate that intrinsic multicolor fluorescence, covering the whole visible region, can be induced by facile functionalization of CoFe(2)O(4) NPs with Na-tartrate. Moreover, the functionalized CoFe(2)O(4) NPs also show unprecedented catalytic efficiency in the degradation of both biologically and environmentally harmful dyes, pioneering the potential application of these NPs in therapeutics and wastewater treatment. Detailed investigation through various spectroscopic tools unveils the story behind the emergence of this unique optical property of CoFe(2)O(4) NPs upon functionalization with tartrate ligands. We believe our developed multifunctional CoFe(2)O(4) NPs hold great promise for advanced biomedical and technological applications. PMID:25867626

  20. Ligand-induced evolution of intrinsic fluorescence and catalytic activity from cobalt ferrite nanoparticles.

    PubMed

    Pal, Monalisa; Kundu, Anirban; Rakshit, Rupali; Mandal, Kalyan

    2015-06-01

    To develop CoFe(2)O(4) as magneto-fluorescent nanoparticles (NPs) for biomedical applications, it would be advantageous to identify any intrinsic fluorescence of this important magnetic material by simply adjusting the surface chemistry of the NPs themselves. Herein, we demonstrate that intrinsic multicolor fluorescence, covering the whole visible region, can be induced by facile functionalization of CoFe(2)O(4) NPs with Na-tartrate. Moreover, the functionalized CoFe(2)O(4) NPs also show unprecedented catalytic efficiency in the degradation of both biologically and environmentally harmful dyes, pioneering the potential application of these NPs in therapeutics and wastewater treatment. Detailed investigation through various spectroscopic tools unveils the story behind the emergence of this unique optical property of CoFe(2)O(4) NPs upon functionalization with tartrate ligands. We believe our developed multifunctional CoFe(2)O(4) NPs hold great promise for advanced biomedical and technological applications.

  1. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  2. Effects of Extrinsic and Intrinsic Proton Activity on The Mechanism of Oxygen Reduction in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Zeller, Robert August

    Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2 *-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set

  3. Altered of apoptotic markers of both extrinsic and intrinsic pathways induced by hepatitis C virus infection in peripheral blood mononuclear cells

    PubMed Central

    2012-01-01

    Background Chronic hepatitis C (CHC) has emerged as a leading cause of cirrhosis in the U.S. and across the world. To understand the role of apoptotic pathways in hepatitis C virus (HCV) infection, we studied the mRNA and protein expression patterns of apoptosis-related genes in peripheral blood mononuclear cells (PBMC) obtained from patients with HCV infection. Methods The present study included 50 subjects which plasma samples were positive for HCV, but negative for human immunodeficiency virus (HIV) or hepatitis B virus (HBV). These cases were divided into four groups according to METAVIR, a score-based analysis which helps to interpret a liver biopsy according to the degree of inflammation and fibrosis. mRNA expression of the studied genes were analyzed by reverse transcription of quantitative polymerase chain reaction (RT-qPCR) and protein levels, analyzed by ELISA, was also conducted. HCV genotyping was also determined. Results HCV infection increased mRNA expression and protein synthesis of caspase 8 in group 1 by 3 fold and 4 fold, respectively (p < 0.05). In group 4 HCV infection increased mRNA expression and protein synthesis of caspase 9 by 2 fold and 1,5 fold, respectively (p < 0.05). Also, caspase 3 mRNA expression and protein synthesis had level augumented by HCV infection in group 1 by 4 fold and 5 fold, respectively, and in group 4 by 6 fold and 7 fold, respectively (p < 0.05). Conclusions HCV induces alteration at both genomic and protein levels of apoptosis markers involved with extrinsic and intrinsic pathways. PMID:23256595

  4. Pathogen-Secreted Proteases Activate a Novel Plant Immune Pathway

    PubMed Central

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z.; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J.; Sheen, Jen; Ausubel, Frederick M.

    2015-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems. PMID:25731164

  5. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5–Nrf2 pathway

    PubMed Central

    Jimenez-Blasco, D; Santofimia-Castaño, P; Gonzalez, A; Almeida, A; Bolaños, J P

    2015-01-01

    Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-d-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca2+ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca2+ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr395, Ser433 and Thr439 that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5–Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival. PMID:25909891

  6. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    PubMed

    Robertson, Kevin A; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J; Enright, Anton J; Yamamoto, Mami; Pradeepa, Madapura M; Lennox, Kimberly A; Behlke, Mark A; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-03-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  7. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway

    PubMed Central

    Robertson, Kevin A.; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J.; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J.; Enright, Anton J.; Yamamoto, Mami; Pradeepa, Madapura M.; Lennox, Kimberly A.; Behlke, Mark A.; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J.; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-01-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  8. Alpha 1-antitrypsin Pittsburgh (Met358-->Arg) inhibits the contact pathway of intrinsic coagulation and alters the release of human neutrophil elastase during simulated extracorporeal circulation.

    PubMed

    Wachtfogel, Y T; Bischoff, R; Bauer, R; Hack, C E; Nuijens, J H; Kucich, U; Niewiarowski, S; Edmunds, L H; Colman, R W

    1994-12-01

    Cardiopulmonary bypass prolongs bleeding time, increases postoperative blood loss, and triggers activation of plasma proteolytic enzyme systems and blood cells referred to as the "whole body inflammatory response". Contact of blood with synthetic surfaces leads to qualitative and quantitative alterations in platelets, neutrophils, contact and complement systems. Contact and complement pathway proteins both induce neutrophil activation. alpha 1-antitrypsin Pittsburgh (Met358-->Arg), a mutant of alpha 1-antitrypsin, is a potent inhibitor of plasma kallikrein and thrombin. We investigated whether this recombinant mutant protein inhibited platelet activation, as well as contact and/or complement-induced neutrophil activation during simulated extracorporeal circulation. Arg358 alpha 1-antitrypsin did not prevent the 34% drop in platelet count at 5 min of recirculation, did not block the 50% decrease in ADP-induced platelet aggregation at 120 min of recirculation, nor inhibit the release of 6.06 +/- 1.07 micrograms/ml beta-thromboglobulin at 120 min of recirculation suggesting that the inhibitor had little effect on platelet activation. However, Arg358 alpha 1-antitrypsin totally blocked kallikrein-C1-inhibitor complex formation but not C1-C1-inhibitor complex formation. Most importantly, Arg358 alpha 1-antitrypsin decreased the release of 1.11 +/- 0.16 micrograms/ml human neutrophil elastase by 43%. The attenuation of neutrophil activation in the absence of an effect on complement activation via the classical pathway, supports the concept that kallikrein is a major mediator of neutrophil degranulation during cardiopulmonary bypass.

  9. Mechanisms of T Cell Activation and Pathways of Hypertension

    PubMed Central

    Abais-Battad, Justine M.; Rudemiller, Nathan P.; Mattson, David L.

    2015-01-01

    Summary Significant advancements have been made in the search for antigens and pathways responsible for activation of the adaptive immune response, furthering our understanding of the factors contributing to hypertension and potentially leading to the development of new and more effective therapies. PMID:26125645

  10. Novel tungsten carbide nanorods: an intrinsic peroxidase mimetic with high activity and stability in aqueous and organic solvents.

    PubMed

    Li, Nan; Yan, Ya; Xia, Bao-Yu; Wang, Jing-Yuan; Wang, Xin

    2014-04-15

    Tungsten carbide nanorods (WC NRs) are demonstrated for the first time to possess intrinsic peroxidase-like activity towards typical peroxidase substrates, such as 3, 3', 5, 5'-tetramethylbenzidine (TMB) and ο-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The reactions catalyzed by these nanorods follow the Michaelis-Menten kinetics. The excellent catalytic performance of WC NRs could be attributed to their intrinsic catalytic activity to efficiently accelerate the electron-transfer process and facilitate the decomposition of H2O2 to generate more numbers of reactive oxygen species (ROS). Based upon the strong peroxidase-like activity of these WC NRs, a colorimetric sensor for H2O2 is designed, which provides good response towards H2O2 concentration over a range of 2×10(-7)-8×10(-5) M with a detection limit of 60 nM. Moreover, the peroxidase-like activities of WC NRs with TMB as the substrate are investigated in both protic and aprotic organic media, showing different colorimetric reactions from that performed in aqueous solutions. In comparison with the natural horse radish peroxidase, WC NR exhibits excellent robustness of catalytic activity and considerable reusability, thus making it a promising mimic of peroxidase catalysts. PMID:24325981

  11. Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps.

    PubMed

    Grozovski, Vitali; Climent, Víctor; Herrero, Enrique; Feliu, Juan M

    2009-08-01

    Pulsed voltammetry is used to study formic acid oxidation on Pt(2n-1,1,1) surfaces and determine the effects of the size of the (100) terrace and the (111) step density on the reaction mechanism. The intrinsic activity of the electrode through the active intermediate reaction path (j(theta=) (0)), as well as the rate constant for the CO formation (k(ads)), are calculated from the current transients obtained at different potentials. For surfaces with wide terraces, j(theta=) (0) and k(ads) are almost insensitive to the step density, which suggests that step and terrace sites have a similar activity for this reaction. For narrow terraces (n<6), the intrinsic activity diminishes. The dependence of the reaction rates on the electrode potential is also elucidated. The CO formation only takes place in a narrow potential window, very close to the potential of zero total charge, while the direct oxidation takes place even when the surface is covered by anions. The different behavior for both reactions suggests that the adsorption mode of formic acid is different for each path. PMID:19569091

  12. Structural studies of human Naked2: A biologically active intrinsically unstructured protein

    SciTech Connect

    Hu Tianhui; Krezel, Andrzej M.; Li Cunxi; Coffey, Robert J. . E-mail: robert.coffey@vanderbilt.edu

    2006-12-01

    Naked1 and 2 are two mammalian orthologs of Naked Cuticle, a canonical Wnt signaling antagonist in Drosophila. Naked2, but not Naked1, interacts with transforming growth factor-{alpha} (TGF{alpha}) and escorts TGF{alpha}-containing vesicles to the basolateral membrane of polarized epithelial cells. Full-length Naked2 is poorly soluble. Since most functional domains, including the Dishevelled binding region, EF-hand, vesicle recognition, and membrane targeting motifs, reside in the N-terminal half of the protein, we expressed and purified the first 217 residues of human Naked2 and performed a functional analysis of this fragment. Its circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra showed no evidence of secondary and/or tertiary structure. The fragment did not bind calcium or zinc. These results indicate that the N-terminal half of Naked2 behaves as an intrinsically unstructured protein.

  13. Intrinsic and chemo-sensitizing activity of SMAC-mimetics on high-risk childhood acute lymphoblastic leukemia

    PubMed Central

    Schirmer, M; Trentin, L; Queudeville, M; Seyfried, F; Demir, S; Tausch, E; Stilgenbauer, S; Eckhoff, S M; Meyer, L H; Debatin, K-M

    2016-01-01

    SMAC-mimetics represent a targeted therapy approach to overcome apoptosis resistance in many tumors. Here, we investigated the efficacy of the SMAC-mimetic BV6 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In ALL cell lines, intrinsic apoptosis sensitivity was associated with rapid cIAP degradation, NF-κB activation, TNF-α secretion and induction of an autocrine TNF-α-dependent cell death loop. This pattern of responsiveness was also observed upon ex vivo analysis of 40 primograft BCP-ALL samples. Treatment with BV6 induced cell death in the majority of ALL primografts including leukemias with high-risk and poor-prognosis features. Inhibition of cell death by the TNF receptor fusion protein etanercept demonstrated that BV6 activity is dependent on TNF-α. In a preclinical NOD/SCID/huALL model of high-risk ALL, marked anti-leukemia effectivity and significantly prolonged survival were observed upon BV6 treatment. Interestingly, also in vivo, intrinsic SMAC-mimetic activity was mediated by TNF-α. Importantly, BV6 increased the effectivity of conventional induction therapy including vincristine, dexamethasone and asparaginase leading to prolonged remission induction. These data suggest SMAC-mimetics as an important addendum to efficient therapy of pediatric BCP-ALL. PMID:26775704

  14. Neural mechanism of activity spread in the cat motor cortex and its relation to the intrinsic connectivity.

    PubMed

    Capaday, Charles; van Vreeswijk, Carl; Ethier, Christian; Ferkinghoff-Borg, Jesper; Weber, Doug

    2011-05-15

    Motor cortical points are linked by intrinsic horizontal connections having a recurrent network topology. However, it is not known whether neural activity can propagate over the area covered by these intrinsic connections and whether there are spatial anisotropies of synaptic strength, as opposed to synaptic density. Moreover, the mechanisms by which activity spreads have yet to be determined. To address these issues, an 8 × 8 microelectrode array was inserted in the forelimb area of the cat motor cortex (MCx). The centre of the array had a laser etched hole ∼500 μm in diameter. A microiontophoretic pipette, with a tip diameter of 2-3 μm, containing bicuculline methiodide (BIC) was inserted in the hole and driven to a depth of 1200-1400 μm from the cortical surface. BIC was ejected for ∼2min from the tip of the micropipette with positive direct current ranging between 20 and 40 nA in different experiments. This produced spontaneous nearly periodic bursts (0.2-1.0 Hz) of multi-unit activity in a radius of about 400 μm from the tip of the micropipette. The bursts of neural activity spread at a velocity of 0.11-0.24 ms⁻¹ (mean=0.14 mm ms⁻¹, SD=0.05)with decreasing amplitude.The area activated was on average 7.22 mm² (SD=0.91 mm²), or ∼92% of the area covered by the recording array. The mode of propagation was determined to occur by progressive recruitment of cortical territory, driven by a central locus of activity of some 400 μm in radius. Thus, activity did not propagate as a wave. Transection of the connections between the thalamus and MCx did not significantly alter the propagation velocity or the size of the recruited area, demonstrating that the bursts spread along the routes of intrinsic cortical connectivity. These experiments demonstrate that neural activity initiated within a small motor cortical locus (≤ 400 μm in radius) can recruit a relatively large neighbourhood in which a variety of muscles acting at several forelimb joints are

  15. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator.

    PubMed

    Ost, Kyla S; O'Meara, Teresa R; Huda, Naureen; Esher, Shannon K; Alspaugh, J Andrew

    2015-04-01

    The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels.

  16. Wnt Pathway Activation Increases Hypoxia Tolerance during Development

    PubMed Central

    Gersten, Merril; Zhou, Dan; Azad, Priti; Haddad, Gabriel G.; Subramaniam, Shankar

    2014-01-01

    Adaptation to hypoxia, defined as a condition of inadequate oxygen supply, has enabled humans to successfully colonize high altitude regions. The mechanisms attempted by organisms to cope with short-term hypoxia include increased ATP production via anaerobic respiration and stabilization of Hypoxia Inducible Factor 1α (HIF-1α). However, less is known about the means through which populations adapt to chronic hypoxia during the process of development within a life time or over generations. Here we show that signaling via the highly conserved Wnt pathway impacts the ability of Drosophila melanogaster to complete its life cycle under hypoxia. We identify this pathway through analyses of genome sequencing and gene expression of a Drosophila melanogaster population adapted over >180 generations to tolerate a concentration of 3.5–4% O2 in air. We then show that genetic activation of the Wnt canonical pathway leads to increased rates of adult eclosion in low O2. Our results indicate that a previously unsuspected major developmental pathway, Wnt, plays a significant role in hypoxia tolerance. PMID:25093834

  17. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  18. In-vivo imaging of stimulus-evoked intrinsic optical signals correlated with retinal activation in anesthetized frog

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Zhang, Qiu-Xiang; Li, Yang-Guo

    2011-09-01

    Intrinsic optical signal imaging (IOS) promises a noninvasive method for high resolution examination of retinal function. Using freshly isolated animal retinas, we have conducted a series of experiments to test fast IOSs which have time courses comparable to electrophysiological kinetics. In this article, we demonstrate the feasibility of in vivo imaging of fast IOSs correlated with retinal activation in anesthetized frog (Rana Pipiens). A rapid (68,000 lines/s) line-scan confocal ophthalmoscope was constructed to achieve high-speed (200 frames/s) near infared (NIR) recording of fast IOSs. By rejecting out-of-focus background light, the line-scan confocal imager provided enough resolution to differentiate individual photoreceptors in vivo. With visible light stimulation, NIR confocal images disclosed transient IOSs with time courses comparable to retinal ERG kinetics. High-resolution IOS images revealed both positive (increasing) and negative (decreasing) light responses, with sub-cellular complexity, in the activated retina.

  19. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway

    PubMed Central

    Zhu, Yaqin; Tong, Xing; Li, Kexue; Bai, Hui; Li, Xiaoyu; Ben, Jingjing; Zhang, Hanwen; Yang, Qing; Chen, Qi

    2016-01-01

    Background and Purpose It has been accepted that AMPK (Adenosine monophosphate–activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. Experimental Approach Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. Key Results It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. Conclusions and Implications Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders. PMID:27681040

  20. SNIP1: a new activator of HSE signaling pathway.

    PubMed

    Li, Qiang; An, Jian; Liu, Xianghua; Zhang, Mingjun; Ling, Yichen; Wang, Chenji; Zhao, Jing; Yu, Long

    2012-03-01

    In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.

  1. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.; Hainline, Kevin N.; DiPompeo, Michael A.; Goulding, Andy D.

    2016-07-01

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.

  2. Pathways to URM Retention: IBP's Professional Development and Mentoring Activities

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2013-05-01

    As a not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. IBP also assists with formative program evaluation design and implementation to help strengthen URM recruitment and retention elements. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URMs with mentoring, networking opportunities, and professional skill development contributing to an improved retention rate of URM students. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science and Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science (ESS) Professional Development Program. The NASA OSSI recruits and facilitates student engagement in NASA education and employment opportunities. Pathways to Ocean Science connects and supports URM students with Ocean Science REU programs and serves as a resource for REU program directors. Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM students that has been extensively vetted by mentoring experts throughout the country. The mentoring manual, which is organized by roles, provides undergraduates, graduates, postdocs, faculty and project directors with valuable resources. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in ESS. The program addresses barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one

  3. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs.

    PubMed

    Ranoa, Diana Rose E; Parekh, Akash D; Pitroda, Sean P; Huang, Xiaona; Darga, Thomas; Wong, Anthony C; Huang, Lei; Andrade, Jorge; Staley, Jonathan P; Satoh, Takashi; Akira, Shizuo; Weichselbaum, Ralph R; Khodarev, Nikolai N

    2016-05-01

    Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism.

  4. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs

    PubMed Central

    Ranoa, Diana Rose E.; Parekh, Akash D.; Pitroda, Sean P.; Huang, Xiaona; Darga, Thomas; Wong, Anthony C.; Huang, Lei; Andrade, Jorge; Staley, Jonathan P.; Satoh, Takashi; Akira, Shizuo

    2016-01-01

    Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism. PMID:27034163

  5. Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells.

    PubMed

    Liu, Xue; Zhou, Yi; Gong, Hai-Qing; Liang, Pei-Ji

    2007-10-26

    In the present study, the spatiotemporal pattern of chicken retinal ganglion cells' firing activity in response to full-field white light stimulation was investigated. Cross-correlation analysis showed that ganglion cells of sustained subtype fired in precise synchrony with their adjacent neurons of the same subtype (delay lag within 2 ms, narrow correlation). On the other hand, the activities of neighboring ganglion cells of transient subtype were correlated with distributed time lags (10-30 ms, medium correlation). Pharmacological studies demonstrated that the intensity of the medium correlations could be strengthened when exogenous GABA was applied and attenuated when GABA receptors were blocked by picrotoxin. Meanwhile, the GABAergic modulation on the narrow correlations was not consistent. These results suggest that, in the chicken retina, GABAergic pathway(s) are likely involved in the formation of medium correlations between ganglion cells. Neurons might fire at a lower rate but with higher level of synchronization to improve the efficiency of information transmission, with the mechanism involving the GABAergic inhibitory input. PMID:17919471

  6. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    PubMed

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs.

  7. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity

    PubMed Central

    Kaltenbach, Miriam; Emond, Stephane; Tokuriki, Nobuhiko

    2016-01-01

    The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with “evolvability” was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and

  8. Variations in active outflow along the trabecular outflow pathway.

    PubMed

    Cha, Elliott D K; Xu, Jia; Gong, Lihua; Gong, Haiyan

    2016-05-01

    Previous tracer studies have shown segmental outflow in the trabecular meshwork (TM) and along the inner wall (IW) of Schlemm's canal (SC). Whether segmental outflow is conserved distal to SC has not yet been investigated. This study aims to investigate whether the segmented pattern of outflow is conserved in distal outflow pathways by using a newly developed global imaging method and to evaluate variations of active outflow in three distinct regions along trabecular outflow pathway. Six normal whole globe human eyes were first perfused at 15 mmHg to establish a stable baseline outflow facility. The anterior chamber was then exchanged (5 mL) and perfused with fluorescent microspheres (0.002% v/v, 200 μL) to label areas of active outflow. All eyes were perfusion fixed and dissected into anterior segments. The TM and scleral surface were en face imaged globally. Effective filtration area (EFA) and fluorescent tracer distribution and intensity were analyzed in global images for both the TM and episcleral veins (EPVs). Anterior segments were further dissected into a minimum of 16 radial wedges, from which frontal sections were cut, stained, and imaged, using confocal microscopy. EFA from all three locations along the trabecular outflow pathway were measured and compared. Additionally, TM thickness, SC height, and total number of collector channels (CC) were analyzed and compared between active and inactive areas of outflow. Statistical analysis was performed using Student's t-tests and Wilcoxon signed-rank test with a required significance of p ≤ 0.05. All three locations showed a segmental outflow pattern. The TM had a significantly higher mean EFA (86.3 ± 3.5%) compared to both the IW (34.7 ± 2.9%; p ≤ 0.01) and EPVs (41.1 ± 3.8%; p ≤ 0.01). No significant difference in mean EFA was found between IW and EPVs. Preferential active outflow was observed in the nasal and inferior quadrants. TM thickness was significantly larger in areas of active

  9. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets

    PubMed Central

    Yang, Yushi; Mao, Zhou; Huang, Wenjie; Liu, Lihua; Li, Junli; Li, Jialiang; Wu, Qingzhi

    2016-01-01

    CeO2 nanoparticles (NPs) have been well demonstrated as an antioxidant in protecting against oxidative stress-induced cellular damages and a potential therapeutic agent for various diseases thanks to their redox enzyme-mimicking activities. The Ce3+/Ce4+ ratio and oxygen vacancies on the surface have been considered as the major originations responsible for the redox enzyme-mimicking activities of CeO2 NPs. Herein, CeO2 nanostructures (nanocubes and nanorods) exposed different facets were synthesized via a facile hydrothermal method. The characterizations by X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-Vis spectroscopy show that the Ce3+/Ce4+ ratio and oxygen vacancy content on the surfaces of as-synthesized CeO2 nanostructures are nearly at the same levels. Meanwhile, the enzymatic activity measurements indicate that the redox enzyme-mimicking activities of as-synthesized CeO2 nanostructures are greatly dependent on their exposed facets. CeO2 nanocubes with exposed {100} facets exhibit a higher peroxidase but lower superoxide dismutase activity than those of the CeO2 nanorods with exposed {110} facets. Our results provide new insights into the redox enzyme-mimicking activities of CeO2 nanostructures, as well as the design and synthesis of inorganic nanomaterials-based artificial enzymes. PMID:27748403

  10. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets

    NASA Astrophysics Data System (ADS)

    Yang, Yushi; Mao, Zhou; Huang, Wenjie; Liu, Lihua; Li, Junli; Li, Jialiang; Wu, Qingzhi

    2016-10-01

    CeO2 nanoparticles (NPs) have been well demonstrated as an antioxidant in protecting against oxidative stress-induced cellular damages and a potential therapeutic agent for various diseases thanks to their redox enzyme-mimicking activities. The Ce3+/Ce4+ ratio and oxygen vacancies on the surface have been considered as the major originations responsible for the redox enzyme-mimicking activities of CeO2 NPs. Herein, CeO2 nanostructures (nanocubes and nanorods) exposed different facets were synthesized via a facile hydrothermal method. The characterizations by X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-Vis spectroscopy show that the Ce3+/Ce4+ ratio and oxygen vacancy content on the surfaces of as-synthesized CeO2 nanostructures are nearly at the same levels. Meanwhile, the enzymatic activity measurements indicate that the redox enzyme-mimicking activities of as-synthesized CeO2 nanostructures are greatly dependent on their exposed facets. CeO2 nanocubes with exposed {100} facets exhibit a higher peroxidase but lower superoxide dismutase activity than those of the CeO2 nanorods with exposed {110} facets. Our results provide new insights into the redox enzyme-mimicking activities of CeO2 nanostructures, as well as the design and synthesis of inorganic nanomaterials-based artificial enzymes.

  11. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition

    PubMed Central

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J.; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-01-01

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it. PMID:26891705

  12. Quasi-trapezoidal pulses to selectively block the activation of intrinsic laryngeal muscles during vagal nerve stimulation

    NASA Astrophysics Data System (ADS)

    Tosato, M.; Yoshida, K.; Toft, E.; Struijk, J. J.

    2007-09-01

    The stimulation of the vagus nerve has been used as an anti-epileptic treatment for over a decade, and its use for depression and chronic heart failure is currently under investigation. Co-activation of the intrinsic laryngeal muscles may limit the clinical use of vagal stimulation, especially in the case of prolonged activation. To prevent this, the use of a selective stimulation paradigm has been tested in seven acute pig experiments. Quasi-trapezoidal pulses successfully blocked the population of the largest and fastest vagal myelinated fibers being responsible for the co-activation. The first response in the vagus compound action potential was reduced by 75 ± 22% (mean ± SD) and the co-activated muscle action potential by 67 ± 25%. The vagal bradycardic effects remained unchanged during the selective block, confirming the leading role of thin nerve fibers for the vagal control of the heart. Quasi-trapezoidal pulses may be an alternative to rectangular pulses in clinical vagal stimulation when the co-activation of laryngeal muscles must be avoided.

  13. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  14. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Del Pezzo, Edoardo; García-Yeguas, Araceli; Ibáñez, Jesús M.

    2013-12-01

    The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography. We present new information derived from intrinsic quality factor inverse maps (Qi-1), scattering quality factor inverse maps (Qs-1) and total quality factor inverse maps (Qt-1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi-1 and to Qs-1, are estimated from the inversion of the energy envelopes for any source-receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create `2-D probabilistic maps' representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6-12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study

  15. Proteomic analysis reveals tanshinone IIA enhances apoptosis of advanced cervix carcinoma CaSki cells through mitochondria intrinsic and endoplasmic reticulum stress pathways.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Hung, Yu-Chiang; Huang, Chun-Hsun; Rau, Kun-Ming

    2013-12-01

    Cervix cancer is the second most common cancer among women worldwide, whereas paclitaxel, the first line chemotherapeutic drug used to treat cervical cancer, shows low chemosensitivity on the advanced cervical cancer cell line. Tanshinone IIA (Tan IIA) exhibited strong growth inhibitory effect on CaSki cells (IC50 = 5.51 μM) through promoting caspase cascades with concomitant upregulating the phosphorylation of p38 and JNK signaling. Comprehensive proteomics revealed the global protein changes and the network analysis implied that Tan IIA treatment would activate ER stress pathways that finally lead to apoptotic cell death. Moreover, ER stress inhibitor could alleviate Tan IIA caused cell growth inhibition and ameliorate C/EBP-homologous protein as well as apoptosis signal-regulating kinase 1 mediated cell death. The therapeutic interventions targeting the mitochondrial-related apoptosis and ER stress responses might be promising strategies to conquer paclitaxel resistance. PMID:24167031

  16. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats

    PubMed Central

    Briant, Linford J. B.; Stalbovskiy, Alexey O.; Nolan, Matthew F.; Champneys, Alan R.

    2014-01-01

    Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15–30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. PMID:25122704

  17. Keeping women active: an examination of the impacts of self-efficacy, intrinsic motivation, and leadership on women's persistence in physical activity.

    PubMed

    Lloyd, Kathleen M; Little, Donna E

    2010-10-01

    Physical inactivity in women is a worldwide problem that has not only been well-documented but has provoked much government concern and policy activity. However, an even more important issue is encouraging women's persistence in physical activity. The purpose of this study was to examine the links between women's experiences of participation in a government-funded physical activity festival, their intentions to continue participation, and their participation behavior six months after the festival. Results from semi-structured, in-depth interviews with 20 women revealed that enhanced self-efficacy, intrinsic motivation, and supportive leadership had motivated the women's future intentions to participate. Follow-up surveys showed their levels of interest and participation in physical activity had been maintained. These results enhance our understanding of the relationship between key outcomes of women's physical activity participation and their persistence in physical activity.

  18. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity.

    PubMed

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Laurienzo, Paola

    2015-07-10

    In this paper, a controlled gelation of alginate was performed for the first time using ZnCO3 and GDL. Uniform and transparent gels were obtained and investigated as potential wound dressings. Homogeneity, water content, swelling capability, water evaporation rate, stability in normal saline solution, mechanical properties and antibacterial activity were assessed as a function of zinc concentration. Gelation rate increased at increasing zinc content, while a decrease in water uptake and an improvement of stability were found. Release of zinc in physiological environments showed that concentration of zinc released in solution lies below the cytotoxicity level. Hydrogels showed antimicrobial activity against Escherichia coli. The hydrogel with highest zinc content was stabilized with calcium by immersion in a calcium chloride solution. The resulting hydrogel preserved homogeneity and antibacterial activity. Furthermore, it showed even an improvement of stability and mechanical properties, which makes it suitable as long-lasting wound dressing.

  19. Interchangeability of Caenorhabditis elegans DSL proteins and intrinsic signalling activity of their extracellular domains in vivo.

    PubMed

    Fitzgerald, K; Greenwald, I

    1995-12-01

    Ligands of the Delta/Serrate/lag-2 (DSL) family and their receptors, members of the lin-12/Notch family, mediate cell-cell interactions that specify cell fate in invertebrates and vertebrates. In C. elegans, two DSL genes, lag-2 and apx-1, influence different cell fate decisions during development. Here we show that APX-1 can fully substitute for LAG-2 when expressed under the control of lag-2 regulatory sequences. In addition, we demonstrate that truncated forms lacking the transmembrane and intracellular domains of both LAG-2 and APX-1 can also substitute for endogenous lag-2 activity. Moreover, we provide evidence that these truncated forms are secreted and able to activate LIN-12 and GLP-1 ectopically. Finally, we show that expression of a secreted DSL domain alone may enhance endogenous LAG-2 signalling. Our data suggest ways that activated forms of DSL ligands in other systems may be created.

  20. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    PubMed Central

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  1. Task-Dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

    ERIC Educational Resources Information Center

    Whitney, Carin; Weis, Susanne; Krings, Timo; Huber, Walter; Grossman, Murray; Kircher, Tilo

    2009-01-01

    Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on…

  2. The prophylactic role of D-saccharic acid-1,4-lactone against hyperglycemia-induced hepatic apoptosis via inhibition of both extrinsic and intrinsic pathways in diabetic rats.

    PubMed

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2013-02-01

    Sustained hyperglycemia and increased oxidative stress play major roles in the development of secondary complications in diabetes including liver injury. Dietary supplement of antioxidants is effective in preventing oxidative stress mediated tissue damage in diabetic pathophysiology. D-Saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we investigated the protective role of DSL against hepatic dysfunction in ALX induced diabetic rats. ALX exposure elevated the blood glucose, serum ALP and ALT levels, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL restored all these alterations close to normal. By investigating the mechanism of its protective activity, we observed that DSL prevented hyperglycemia induced hepatic apoptosis by inhibiting both extrinsic and intrinsic pathways. Results showed that in the liver tissue, diabetes promoted a significant increase of TNF-α/TNF-R1 and led to the activation of caspase-8 and t-Bid. In addition, ALX exposure reciprocally regulated Bcl-2 family protein expression, disturbed mitochondrial membrane potential, and subsequently released cytochrome c from mitochondria to cytosol. As a consequence, a significant increase in caspase-3 expression was observed in the liver of diabetic animals. However, treatment of diabetic rats with DSL counteracted these changes, making it a promising approach in lessening diabetes mediated tissue damage.

  3. Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts.

    PubMed

    Zikaki, Kyriaki; Aggeli, Ioanna-Katerina; Gaitanaki, Catherine; Beis, Isidoros

    2014-06-01

    Curcumin derived from the rhizome of turmeric (Curcuma longa L.), is a well known coloring culinary agent, that has therapeutic properties against diverse pathologies such as cancer, atherosclerosis and heart failure. Given the salutary potential of curcumin, deciphering its mode of action particularly in cardiac cells, is of outstanding value. Accumulating evidence implicates curcumin in the regulation of multiple signaling pathways leading to cell survival or apoptosis. Therefore, the present study aimed at elucidating the molecular mechanisms triggered by curcumin in H9c2 cells. Curcumin was found to activate p38-mitogen-activated protein kinase (p38-MAPK) as well as c-jun NH2 terminal kinases (JNKs), in a dose- and time-dependent manner. We also observed curcumin to impair cell survival by promoting apoptosis, evidenced by chromatin condensation, poly(ADP-ribose) polymerase (PARP) and caspase-3 cleavage, as well as Bax translocation and cytochrome c release into the cytosol. Curcumin-induced apoptosis was ascribed to JNKs, since hindering their activity abolished PARP fragmentation. Furthermore, we identified curcumin to exert a pro-oxidative activity, with 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining revealing up-regulation of reactive oxygen species (ROS) levels and anti-oxidants found to abrogate PARP cleavage. In conclusion, curcumin was found to stimulate the apoptotic cell death of H9c2 cells by upregulating ROS generation and triggering activation of JNKs. With reports underscoring the capacity of curcumin to perturb the cellular redox balance ensuring survival or enhancing apoptosis, determination of its mode of action appears to be critical. Future studies should assess the appropriate administration conditions of curcumin, so as to optimize its therapeutic potential against cardiovascular pathologies.

  4. Hesperetin Induces Apoptosis in Breast Carcinoma by Triggering Accumulation of ROS and Activation of ASK1/JNK Pathway.

    PubMed

    Palit, Shreyasi; Kar, Susanta; Sharma, Gunjan; Das, Pijush K

    2015-08-01

    Hesperetin, a flavanone glycoside predominantly found in citrus fruits, exhibits a wide array of biological properties. In the present study hesperetin exhibited a significant cytotoxic effect in human breast carcinoma MCF-7 cells in a concentration- and time-dependent manner without affecting normal (HMEC) as well as immortalized normal mammary epithelial cells (MCF-10A). The cytotoxic effect of hesperetin was due to the induction of apoptosis as evident from the phosphatidyl-serine externalization, DNA fragmentation, caspase-7 activation, and PARP cleavage. Apoptosis was associated with caspase-9 activation, mitochondrial membrane potential loss, release of cytochrome c, and increase in Bax:Bcl-2 ratio. Pre-treatment with caspase-9 specific inhibitor (Z-LEHD-fmk) markedly attenuated apoptosis suggesting an involvement of intrinsic mitochondrial apoptotic cascade. Further, DCFDA flow-cytometric analysis revealed triggering of ROS in a time-dependent manner. Pre-treatment with ROS scavenger N-acetylcysteine (NAC) and glutathione markedly abrogated hesperetin-mediated apoptosis whereas carbonyl cyanide m-chlorophenylhydrazone (CCCP) pretreatment along with DHR123-based flow-cytometry indicated the generation of cytosolic ROS. Profiling of MAPKs revealed activation of JNK upon hesperetin treatment which was abrogated upon NAC pre-treatment. Additionally, inhibition of JNK by SP600125 significantly reversed hesperetin-mediated apoptosis. The activation of JNK was associated with the activation of ASK1. Silencing of ASK1 resulted in significant attenuation of JNK activation as well as reversed the hesperetin-mediated apoptosis suggesting that hesperetin-mediated apoptosis of MCF-7 cells involves accumulation of ROS and activation of ASK1/JNK pathway. In addition, hesperetin also induced apoptosis in triple negative breast cancer MDA-MB-231 cells via intrinsic pathway via activation of caspase -9 and -3 and increase in Bax:Bcl-2 ratio.

  5. Heterogeneous Effects of Direct Hypoxia Pathway Activation in Kidney Cancer

    PubMed Central

    Salama, Rafik; Masson, Norma; Simpson, Peter; Sciesielski, Lina Katrin; Sun, Min; Tian, Ya-Min; Ratcliffe, Peter John; Mole, David Robert

    2015-01-01

    General activation of hypoxia-inducible factor (HIF) pathways is classically associated with adverse prognosis in cancer and has been proposed to contribute to oncogenic drive. In clear cell renal carcinoma (CCRC) HIF pathways are upregulated by inactivation of the von-Hippel-Lindau tumor suppressor. However HIF-1α and HIF-2α have contrasting effects on experimental tumor progression. To better understand this paradox we examined pan-genomic patterns of HIF DNA binding and associated gene expression in response to manipulation of HIF-1α and HIF-2α and related the findings to CCRC prognosis. Our findings reveal distinct pan-genomic organization of canonical and non-canonical HIF isoform-specific DNA binding at thousands of sites. Overall associations were observed between HIF-1α-specific binding, and genes associated with favorable prognosis and between HIF-2α-specific binding and adverse prognosis. However within each isoform-specific set, individual gene associations were heterogeneous in sign and magnitude, suggesting that activation of each HIF-α isoform contributes a highly complex mix of pro- and anti-tumorigenic effects. PMID:26262842

  6. Task-dependent Modulations of Prefrontal and Hippocampal Activity during Intrinsic Word Production

    PubMed Central

    Whitney, Carin; Weis, Susanne; Krings, Timo; Huber, Walter; Grossman, Murray; Kircher, Tilo

    2009-01-01

    Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on response restrictions but to a greater extent on associative binding processes, usually subserved by the hippocampus. To elucidate the relevance of the frontal and medial-temporal areas during verbal retrieval tasks, we applied varying degrees of response specification. During fMRI data acquisition, 18 subjects performed a free verbal association (FVA), a semantic verbal fluency (SVF) task, and a phonological verbal fluency (PVF) task. Externally guided word production served as a baseline condition to control for basic articulatory and reading processes. As expected, increased brain activity was observed in the left lateral and bilateral medial frontal cortices for SVF and PVF. The anterior cingulate gyrus was the only structure common to both fluency tasks in direct comparison to the less restricted FVA task. The hippocampus was engaged during associative and semantic retrieval. Interestingly, hippocampal activity was selectively evident during FVA in direct comparison to SVF when it was controlled for stimulus–response relations. The current data confirm the role of the left prefrontal–cingulate network in constrained word production. Hippocampal activity during spontaneous word production is a novel finding and seems to be dependent on the retrieval process (free vs. constrained) rather than the variety of stimulus–response relationships that is involved. PMID:18578599

  7. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications.

    PubMed

    Tao, Yu; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-02-11

    Bifunctionalized mesoporous silica-supported gold nanoparticles as oxidase and peroxidase mimics for antibacterial applications are demonstrated. For the first time, these mesoporous silica-supported gold nanoparticles are applied as oxidase and peroxidase mimics. Taking advantage of their prominent enzyme activities, the MSN-AuNPs show excellent antibacterial properties against both Gram-negative and Gram-positive bacteria. Furthermore, MSN-AuNPs also exhibit outstanding performance in biofilm elimination . PMID:25655182

  8. CALIBRATION OF [O IV] 26 {mu}m AS A MEASURE OF INTRINSIC ACTIVE GALACTIC NUCLEUS LUMINOSITY

    SciTech Connect

    Rigby, J. R.; Diamond-Stanic, A. M.; Aniano, G.

    2009-08-01

    We compare [O IV] 25.89 {mu}m emission line luminosities with very hard (10-200 keV) X-rays from Swift, INTEGRAL, and BeppoSAX for a complete sample of 89 Seyferts from the Revised Shapley-Ames sample. Using Seyfert 1s, we calibrate [O IV] as a measure of active galactic nucleus (AGN) intrinsic luminosity, for particular use in high-obscuration environments. With this calibration, we measure the average decrement in 14-195 keV X-ray to [O IV] luminosity ratio for Seyfert 2s compared to type 1s. We find a decrement of 3.1 {+-} 0.8 for Seyfert 2s, and a decrement of 5.0 {+-} 2.7 for known Compton-thick Seyfert 2s. These decrements imply column densities of approximately log N{sub H} = 24.6 cm{sup -2} and 24.7 cm{sup -2}, respectively. Thus, we infer that the average Seyfert 2 is more highly obscured and intrinsically more luminous than would be inferred even from the very hard X-rays. We demonstrate two applications of the hard X-ray to [O IV] ratio. For the extremely obscured NGC 1068, we measure a column density of log N{sub H} = 25.3-25.4 cm{sup -2}. Finally, by comparing [O IV] luminosities to total infrared luminosities for 12 bright ultraluminous infrared galaxies, we find that four have substantial AGN contributions.

  9. A structural pathway for activation of the kinesin motor ATPase

    PubMed Central

    Yun, Mikyung; Zhang, Xiaohua; Park, Cheon-Gil; Park, Hee-Won; Endow, Sharyn A.

    2001-01-01

    Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPase. The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules. PMID:11387196

  10. Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Lin, Tianran; Zhong, Liangshuang; Guo, Liangqia; Fu, Fengfu; Chen, Guonan

    2014-09-01

    Molybdenum disulfide (MoS2) has attracted increasing research interest recently due to its unique physical, optical and electrical properties, correlated with its 2D ultrathin atomic-layered structure. Until now, however, great efforts have focused on its applications such as lithium ion batteries, transistors, and hydrogen evolution reactions. Herein, for the first time, MoS2 nanosheets are discovered to possess an intrinsic peroxidase-like activity and can catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction. The catalytic activity follows the typical Michaelis-Menten kinetics and is dependent on temperature, pH, H2O2 concentration, and reaction time. Based on this finding, a highly sensitive and selective colorimetric method for H2O2 and glucose detection is developed and applied to detect glucose in serum samples. Moreover, a simple, inexpensive, instrument-free and portable test kit for the visual detection of glucose in normal and diabetic serum samples is constructed by utilizing agarose hydrogel as a visual detection platform.Molybdenum disulfide (MoS2) has attracted increasing research interest recently due to its unique physical, optical and electrical properties, correlated with its 2D ultrathin atomic-layered structure. Until now, however, great efforts have focused on its applications such as lithium ion batteries, transistors, and hydrogen evolution reactions. Herein, for the first time, MoS2 nanosheets are discovered to possess an intrinsic peroxidase-like activity and can catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction. The catalytic activity follows the typical Michaelis-Menten kinetics and is dependent on temperature, pH, H2O2 concentration, and reaction time. Based on this finding, a highly sensitive and selective colorimetric method for H2O2 and glucose detection is developed and applied to detect glucose in serum samples. Moreover, a simple, inexpensive

  11. Somatotopic activation in the human trigeminal pain pathway.

    PubMed

    DaSilva, Alex F M; Becerra, Lino; Makris, Nikos; Strassman, Andrew M; Gonzalez, R Gilberto; Geatrakis, Nina; Borsook, David

    2002-09-15

    Functional magnetic resonance imaging was used to image pain-associated activity in three levels of the neuraxis: the medullary dorsal horn, thalamus, and primary somatosensory cortex. In nine subjects, noxious thermal stimuli (46 degrees C) were applied to the facial skin at sites within the three divisions of the trigeminal nerve (V1, V2, and V3) and also to the ipsilateral thumb. Anatomical and functional data were acquired to capture activation across the spinothalamocortical pathway in each individual. Significant activation was observed in the ipsilateral spinal trigeminal nucleus within the medulla and lower pons in response to at least one of the three facial stimuli in all applicable data sets. Activation from the three facial stimulation sites exhibited a somatotopic organization along the longitudinal (rostrocaudal) axis of the brain stem that was consistent with the classically described "onion skin" pattern of sensory deficits observed in patients after trigeminal tractotomy. In the thalamus, activation was observed in the contralateral side involving the ventroposteromedial and dorsomedial nuclei after stimulation of the face and in the ventroposterolateral and dorsomedial nuclei after stimulation of the thumb. Activation in the primary somatosensory cortex displayed a laminar sequence that resembled the trigeminal nucleus, with V2 more rostral, V1 caudal, and V3 medial, abutting the region of cortical activation observed for the thumb. These results represent the first simultaneous imaging of pain-associated activation at three levels of the neuraxis in individual subjects. This approach will be useful for exploring central correlates of plasticity in models of experimental and clinical pain. PMID:12223572

  12. Role of IGF-1 pathway in lung fibroblast activation

    PubMed Central

    2013-01-01

    Background IGF-1 is elevated in pulmonary fibrosis and acute lung injury, where fibroblast activation is a prominent feature. We previously demonstrated that blockade of IGF pathway in murine model of lung fibrosis improved outcome and decreased fibrosis. We now expand that study to examine effects of IGF pathway on lung fibroblast behaviors that could contribute to fibrosis. Methods We first examined mice that express αSMA promoter upstream of GFP reporter treated with A12, a blocking antibody to IGF-1 receptor, after bleomycin induced lung injury. We then examined the effect of IGF-1 alone, or in combination with the pro-fibrotic cytokine TGFβ on expression of markers of myofibroblast activation in vitro, including αSMA, collagen α1, type 1, collagen α1, type III, and TGFβ expression. Results After bleomycin injury, we found decreased number of αSMA-GFP + cells in A12 treated mice, validated by αSMA immunofluorescent staining. We found that IGF-1, alone or in combination with TGF-β, did not affect αSMA RNA expression, promoter activity, or protein levels when fibroblasts were cultured on stiff substrate. IGF-1 stimulated Col1a1 and Col3a1 expression on stiff substrate. In contrast, IGF-1 treatment on soft substrate resulted in upregulation of αSMA gene and protein expression, as well as Col1a1 and Col3a1 transcripts. In conclusion, IGF-1 stimulates differentiation of fibroblasts into a myofibroblast phenotype in a soft matrix environment and has a modest effect on αSMA stress fiber organization in mouse lung fibroblasts. PMID:24103846

  13. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  14. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity

    NASA Astrophysics Data System (ADS)

    Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang

    2016-03-01

    Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis.

  15. Intervention-induced enhancement in intrinsic brain activity in healthy older adults

    PubMed Central

    Yin, Shufei; Zhu, Xinyi; Li, Rui; Niu, Yanan; Wang, Baoxi; Zheng, Zhiwei; Huang, Xin; Huo, Lijuan; Li, Juan

    2014-01-01

    This study examined the effects of a multimodal intervention on spontaneous brain activity in healthy older adults. Seventeen older adults received a six-week intervention that consisted of cognitive training, Tai Chi exercise, and group counseling, while 17 older adults in a control group attended health knowledge lectures. The intervention group demonstrated enhanced memory and social support compared to the control group. The amplitude of low frequency fluctuations (ALFF) in the middle frontal gyrus, superior frontal gyrus, and anterior cerebellum lobe was enhanced for the intervention group, while the control group showed reduced ALFF in these three regions. Moreover, changes in trail-making performance and well-being could be predicted by the intervention-induced changes in ALFF. Additionally, individual differences in the baseline ALFF were correlated with intervention-related changes in behavioral performance. These findings suggest that a multimodal intervention is effective in improving cognitive functions and well-being and can induce functional changes in the aging brain. The study extended previous training studies by suggesting resting-state ALFF as a marker of intervention-induced plasticity in older adults. PMID:25472002

  16. Placebo analgesia and reward processing: Integrating genetics, personality, and intrinsic brain activity

    PubMed Central

    Yu, Rongjun; Gollub, Randy L; Vangel, Mark; Kaptchuk, Ted; Smoller, Jordan W.; Kong, Jian

    2014-01-01

    Our expectations about an event can strongly shape our subjective evaluation and actual experience of events. This ability, applied to the modulation of pain, has the potential to affect therapeutic analgesia substantially and constitutes a foundation for non-pharmacological pain relief. A typical example of such modulation is the placebo effect. Studies indicate that placebo may be regarded as a reward, and brain activity in the reward system is involved in this modulation process. In the present study, we combined resting state functional magnetic resonance imaging (rs-fMRI) measures, genotype at a functional COMT polymorphism (Val158Met), and personality measures in a model to predict the magnitude of placebo conditioning effect indicated by subjective pain rating reduction to calibrated noxious stimuli. We found that the regional homogeneity (ReHo), an index of local neural coherence, in the ventral striatum, was significantly associated with conditioning effects on pain rating changes. We also found that the number of Met alleles at the COMT polymorphism was linearly correlated to the suppression of pain. In a fitted regression model, we found the ReHo in the ventral striatum, COMT genotype, and Openness scores accounted for 59% of the variance in the change in pain ratings. The model was further tested using a separate data set from the same study. Our findings demonstrate the potential of combining resting state connectivity, genetic information and personality to predict placebo effect. PMID:24578196

  17. Sculpting the Intrinsic Modular Organization of Spontaneous Brain Activity by Art

    PubMed Central

    Lin, Chia-Shu; Liu, Yong; Huang, Wei-Yuan; Lu, Chia-Feng; Teng, Shin; Ju, Tzong-Ching; He, Yong; Wu, Yu-Te; Jiang, Tianzi; Hsieh, Jen-Chuen

    2013-01-01

    Artistic training is a complex learning that requires the meticulous orchestration of sophisticated polysensory, motor, cognitive, and emotional elements of mental capacity to harvest an aesthetic creation. In this study, we investigated the architecture of the resting-state functional connectivity networks from professional painters, dancers and pianists. Using a graph-based network analysis, we focused on the art-related changes of modular organization and functional hubs in the resting-state functional connectivity network. We report that the brain architecture of artists consists of a hierarchical modular organization where art-unique and artistic form-specific brain states collectively mirror the mind states of virtuosos. We show that even in the resting state, this type of extraordinary and long-lasting training can macroscopically imprint a neural network system of spontaneous activity in which the related brain regions become functionally and topologically modularized in both domain-general and domain-specific manners. The attuned modularity reflects a resilient plasticity nurtured by long-term experience. PMID:23840527

  18. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity

    PubMed Central

    Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang

    2016-01-01

    Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic–inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis. PMID:26926099

  19. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation

    PubMed Central

    Henson, Richard N.A.; Tyler, Lorraine K.; Razi, Adeel; Geerligs, Linda; Ham, Timothy E.; Rowe, James B.

    2016-01-01

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a

  20. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation

    PubMed Central

    DiAngelo, Susan L.; Silveyra, Patricia; Umstead, Todd M.; Halstead, E. Scott; Davies, Michael L.; Hu, Sanmei; Floros, Joanna; McCormack, Francis X.; Christensen, Neil D.; Chroneos, Zissis C.

    2015-01-01

    The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages’ inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages. PMID:25965346

  1. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation.

    PubMed

    Yang, Linlin; Carrillo, Marykate; Wu, Yuchieh M; DiAngelo, Susan L; Silveyra, Patricia; Umstead, Todd M; Halstead, E Scott; Davies, Michael L; Hu, Sanmei; Floros, Joanna; McCormack, Francis X; Christensen, Neil D; Chroneos, Zissis C

    2015-01-01

    The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages. PMID:25965346

  2. Mechanism of a Prototypical Synthetic Membrane-Active Antimicrobial: Efficient Hole-Punching Via Interaction With Negative Intrinsic Curvature Lipids

    SciTech Connect

    Yang, L.; Gordon, V.D.; Trinkle, D.R.; Schmidt, N.W.; Davis, M.A.; DeVries, C.; Som, A.; Cronan, J.E., Jr.; Tew, G.N.; Wong, G.C.L.

    2009-05-28

    Phenylene ethynylenes comprise a prototypical class of synthetic antimicrobial compounds that mimic antimicrobial peptides produced by eukaryotes and have broad-spectrum antimicrobial activity. We show unambiguously that bacterial membrane permeation by these antimicrobials depends on the presence of negative intrinsic curvature lipids, such as phosphatidylethanolamine (PE) lipids, found in high concentrations within bacterial membranes. Plate-killing assays indicate that a PE-knockout mutant strain of Escherichia coli drastically out-survives the wild type against the membrane-active phenylene ethynylene antimicrobials, whereas the opposite is true when challenged with traditional metabolic antibiotics. That the PE deletion is a lethal mutation in normative environments suggests that resistant bacterial strains do not evolve because a lethal mutation is required to gain immunity. PE lipids allow efficient generation of negative curvature required for the circumferential barrel of an induced membrane pore; an inverted hexagonal HII phase, which consists of arrays of water channels, is induced by a small number of antimicrobial molecules. The estimated antimicrobial occupation in these water channels is nonlinear and jumps from {approx}1 to 3 per 4 nm of induced water channel length as the global antimicrobial concentration is increased. By comparing to exactly solvable 1D spin models for magnetic systems, we quantify the cooperativity of these antimicrobials.

  3. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop.

    PubMed

    Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2016-01-01

    Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic-potentially reward-related-signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain. PMID:27644419

  4. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations.

    PubMed

    Buczkowicz, Pawel; Hoeman, Christine; Rakopoulos, Patricia; Pajovic, Sanja; Letourneau, Louis; Dzamba, Misko; Morrison, Andrew; Lewis, Peter; Bouffet, Eric; Bartels, Ute; Zuccaro, Jennifer; Agnihotri, Sameer; Ryall, Scott; Barszczyk, Mark; Chornenkyy, Yevgen; Bourgey, Mathieu; Bourque, Guillaume; Montpetit, Alexandre; Cordero, Francisco; Castelo-Branco, Pedro; Mangerel, Joshua; Tabori, Uri; Ho, King Ching; Huang, Annie; Taylor, Kathryn R; Mackay, Alan; Bendel, Anne E; Nazarian, Javad; Fangusaro, Jason R; Karajannis, Matthias A; Zagzag, David; Foreman, Nicholas K; Donson, Andrew; Hegert, Julia V; Smith, Amy; Chan, Jennifer; Lafay-Cousin, Lucy; Dunn, Sandra; Hukin, Juliette; Dunham, Chris; Scheinemann, Katrin; Michaud, Jean; Zelcer, Shayna; Ramsay, David; Cain, Jason; Brennan, Cameron; Souweidane, Mark M; Jones, Chris; Allis, C David; Brudno, Michael; Becher, Oren; Hawkins, Cynthia

    2014-05-01

    Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer. PMID:24705254

  5. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop.

    PubMed

    Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2016-09-20

    Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic-potentially reward-related-signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain.

  6. Retinoic acid suppresses the canonical Wnt signaling pathway in embryonic stem cells and activates the noncanonical Wnt signaling pathway

    PubMed Central

    Osei-Sarfo, Kwame; Gudas, Lorraine J.

    2014-01-01

    Embryonic stem cells (ESCs) have both the ability to self-renew and to differentiate into various cell lineages. Retinoic acid (RA), a metabolite of Vitamin A, has a critical function in initiating lineage differentiation of ESCs through binding to the retinoic acid receptors (RARs). Additionally, the Wnt signaling pathway plays a role in pluripotency and differentiation, depending on the activation status of the canonical and noncanonical pathways. The activation of the canonical Wnt signaling pathway, which requires the nuclear accumulation of β-catenin and its interaction with Tcf1/Lef at Wnt response elements, is involved in ESC stemness maintenance. The noncanonical Wnt signaling pathway, through actions of Tcf3, can antagonize the canonical pathway. We show that RA activates the noncanonical Wnt signaling pathway, while concomitantly inhibiting the canonical pathway. RA increases the expression of ligands and receptors of the noncanonical Wnt pathway (Wnt 5a, 7a, Fzd2 and Fzd6), downstream signaling, and Tcf3 expression. RA reduces the phosphorylated β-catenin level by 4-fold, though total β-catenin levels don't change. We show that RA signaling increases the dissociation of Tcf1 and the association of Tcf3 at promoters of genes that regulate stemness (e.g. NR5A2,Lrh-1) or differentiation (eg. Cyr61, Zic5). Knockdown of Tcf3 increases Lrh-1 transcript levels in mESCs and prevents the RA-associated, ∼4-fold increase in Zic5, indicating that RA requires Tcf3 to effect changes in Zic5 levels. We demonstrate a novel role for RA in altering the activation of these two Wnt signaling pathways and show that Tcf3 mediates some actions of RA during differentiation. PMID:24648413

  7. How can yeast cells decide between three activated MAP kinase pathways? A model approach.

    PubMed

    Rensing, Ludger; Ruoff, Peter

    2009-04-21

    In yeast (Saccharomyces cerevisiae), the regulation of three MAP kinase pathways responding to pheromones (Fus3 pathway), carbon/nitrogen starvation (Kss1 pathway), and high osmolarity/osmotic stress (Hog1 pathway) is the subject of intensive research. We were interested in the question how yeast cells would respond when more than one of the MAP kinase pathways are activated simultaneously. Here, we give a brief overview over the regulatory mechanisms of the yeast MAP kinase pathways and investigate a kinetic model based on presently known molecular interactions and feedbacks within and between the three mitogen-activated protein kinases (MAPK) pathways. When two pathways are activated simultaneously with the osmotic stress response as one of them, the model predicts that the osmotic stress response (Hog1 pathway) is turned on first. The same is true when all three pathways are activated at the same time. When testing simultaneous stimulations by low nitrogen and pheromones through the Kss1 and Fus3 pathways, respectively, the low nitrogen response dominates over the pheromone response. Due to its autocatalytic activation mechanism, the pheromone response (Fus3 pathway) shows typical sigmoid response kinetics and excitability. In the presence of a small but sufficient amount of activated Fus3, a stimulation by pheromones will lead to a rapid self-amplification of the pheromone response. This 'excitability' appears to be a feature of the pheromone pathway that has specific biological significance. PMID:19322936

  8. AG4, a compound isolated from Radix Ardisiae Gigantifoliae, induces apoptosis in human nasopharyngeal cancer CNE cells through intrinsic and extrinsic apoptosis pathways.

    PubMed

    Dong, Xian-Zhe; Xie, Ting-Ting; Zhou, Xiao-Jiang; Mu, Li-Hua; Zheng, Xiao-Li; Guo, Dai-Hong; Liu, Ping; Ge, Xiao-Yue

    2015-03-01

    3β-O-{α-L-Pyran rhamnose-(1→3)-[β-D-xylopyranose-(1→2)]-β-D-glucopyranose-(1→4)-[β-D-lucopyranose-(1→2)]-α-L-pyran arabinose}-cyclamiretin A (AG4) is a saponin component obtained from the Giantleaf Ardisia Rhizome (Rhizoma Ardisiae Gigantifoliae). The present study aimed to investigate the antitumor potential of AG4 and its possible mechanisms in human nasopharyngeal carcinoma cells (CNE). We exposed tumor cells to AG4 to investigate which cell line was the most sensitive to AG4. Cell viability was assessed using the MTT reduction assay, and the effects of AG4 on apoptosis, reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), and cell cycle were detected using a flow cytometer; the glutathione, superoxide dismutase and malondialdehyde activities were measured using colorimetric methods. The relative expressions of Bax, Bad, Bid, Bcl-2, and Fas mRNA were calculated using the (Equation is included in full-text article.)comparative method by real-time PCR studies and protein was detected by western blotting. AG4 markedly inhibited the growth of CNE cells by decreasing cell proliferation, inducing apoptosis, and blocking the cell cycle in the S phase. The release of caspase-3, caspase-8, and caspase-9 was stimulated by AG4 in CNE, and the decreased proliferation induced by AG4 was blocked by the inhibitor of pan caspase (Z-VAD-FMK). Moreover, the MMP was decreased in AG4-treated cells, and AG4-induced cell apoptosis was accompanied by a rapid and lasting increase in ROS, which was abolished by N-acetyl-L-cysteine (NAC); glutathione, superoxide dismutase, and malondialdehyde were regulated by AG4. AG4 inhibited Bcl-2 mRNA and protein expression and stimulated Bax, Bad, Bid, Fas mRNA, and protein expression in CNE cultures, suggesting an effect at the transcriptional and protein level. In addition, both the FasL inhibitor (AF-016) and the Bcl-2 family inhibitor (GX15-070) could prevent the cell apoptosis induced by AG4. The

  9. Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide.

    PubMed

    Zwier, Matthew C; Pratt, Adam J; Adelman, Joshua L; Kaus, Joseph W; Zuckerman, Daniel M; Chong, Lillian T

    2016-09-01

    The characterization of protein binding processes - with all of the key conformational changes - has been a grand challenge in the field of biophysics. Here, we have used the weighted ensemble path sampling strategy to orchestrate molecular dynamics simulations, yielding atomistic views of protein-peptide binding pathways involving the MDM2 oncoprotein and an intrinsically disordered p53 peptide. A total of 182 independent, continuous binding pathways were generated, yielding a kon that is in good agreement with experiment. These pathways were generated in 15 days using 3500 cores of a supercomputer, substantially faster than would be possible with "brute force" simulations. Many of these pathways involve the anchoring of p53 residue F19 into the MDM2 binding cleft when forming the metastable encounter complex, indicating that F19 may be a kinetically important residue. Our study demonstrates that it is now practical to generate pathways and calculate rate constants for protein binding processes using atomistic simulation on typical computing resources. PMID:27532687

  10. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    PubMed

    Li, Chun; Hisamoto, Naoki; Matsumoto, Kunihiro

    2015-10-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  11. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  12. High-Resolution fMRI Maps of Cortical Activation in Nonhuman Primates: Correlation with Intrinsic Signal Optical Images

    PubMed Central

    Roe, Anna W.; Chen, Li Min

    2009-01-01

    One of the most widely used functional brain mapping tools is blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the “funneling illusion,” it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal. PMID:18172338

  13. CCR4 and CAF1 deadenylases have an intrinsic activity to remove the post-poly(A) sequence.

    PubMed

    Niinuma, Sho; Fukaya, Takashi; Tomari, Yukihide

    2016-10-01

    MicroRNAs (miRNAs) recruit the CCR4-NOT complex, which contains two deadenylases, CCR4 and CAF1, to promote shortening of the poly(A) tail. Although both CCR4 and CAF1 generally have a strong preference for poly(A) RNA substrates, it has been reported from yeast to humans that they can also remove non-A residues in vitro to various degrees. However, it remains unknown how CCR4 and CAF1 remove non-A sequences. Herein we show that Drosophila miRNAs can promote the removal of 3'-terminal non-A residues in an exonucleolytic manner, but only if an upstream poly(A) sequence exists. This non-A removing reaction is directly catalyzed by both CCR4 and CAF1 and depends on the balance between the length of the internal poly(A) sequence and that of the downstream non-A sequence. These results suggest that the CCR4-NOT complex has an intrinsic activity to remove the 3'-terminal non-A modifications downstream from the poly(A) tail. PMID:27484313

  14. A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes.

    PubMed

    Penzo, Marianna; Carnicelli, Domenica; Montanaro, Lorenzo; Brigotti, Maurizio

    2016-07-01

    We describe a cell-free translation system for evaluating the activity of ribosomes stringently purified from human cells. This system is based on in vitro reconstitution of the cellular translation machinery, in which a ribosome-free rabbit reticulocyte lysate (RRL) is reassembled with human ribosomes and in vitro-transcribed reporter mRNAs. The protocol describes the preparation of the RRL-derived fractions, purification of ribosomes devoid of detectable nonribosomal-associated factors, and assembly of the reactions to evaluate ribosomal translational efficiency and fidelity using appropriate reporter transcripts. The whole procedure can be completed in ∼2.5 d (plus 2 weeks for RRL preparation and cell expansion time). This protocol can be applied to study intrinsic functional properties (cis-acting element-mediated translation initiation or translational fidelity) of ribosome populations from different sources (including nonhuman origin). It is therefore useful for the characterization of ribosomal function in ribosomopathies and cancer, and it will be applicable in the emerging fields of ribosome diversity and specialized ribosomes.

  15. Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M = W, Mo).

    PubMed

    Jing, Tao; Dai, Ying; Wei, Wei; Ma, Xiangchao; Huang, Baibiao

    2014-09-14

    The electronic structure and related photocatalytic properties of Bi2MO6 (M = W, Mo) with various intrinsic defects are studied based on the first-principles density functional theory (DFT). Our results indicate that O vacancies form easily in both Bi2WO6 and Bi2MoO6 under Bi rich/O poor conditions. The near-infrared light transitions can be realized involving electrons from the O vacancy induced impurity states within the band gap to the conduction band. Rather than acting as photogenerated carrier recombination centers, the impurity states caused by O vacancies favor the transfer of photogenerated holes and further benefit the photocatalytic process due to the delocalized nature. The spatial separation of photogenerated carriers among different layers can be realized, which reduces the carrier recombination and improves the photocatalytic activity. In addition, Bi2WO6 with O vacancies is desirable for having better near-infrared photocatalytic performance than Bi2MoO6 due to the larger mobility of photogenerated holes.

  16. A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes.

    PubMed

    Penzo, Marianna; Carnicelli, Domenica; Montanaro, Lorenzo; Brigotti, Maurizio

    2016-07-01

    We describe a cell-free translation system for evaluating the activity of ribosomes stringently purified from human cells. This system is based on in vitro reconstitution of the cellular translation machinery, in which a ribosome-free rabbit reticulocyte lysate (RRL) is reassembled with human ribosomes and in vitro-transcribed reporter mRNAs. The protocol describes the preparation of the RRL-derived fractions, purification of ribosomes devoid of detectable nonribosomal-associated factors, and assembly of the reactions to evaluate ribosomal translational efficiency and fidelity using appropriate reporter transcripts. The whole procedure can be completed in ∼2.5 d (plus 2 weeks for RRL preparation and cell expansion time). This protocol can be applied to study intrinsic functional properties (cis-acting element-mediated translation initiation or translational fidelity) of ribosome populations from different sources (including nonhuman origin). It is therefore useful for the characterization of ribosomal function in ribosomopathies and cancer, and it will be applicable in the emerging fields of ribosome diversity and specialized ribosomes. PMID:27336708

  17. Augmented intrinsic activity of Factor VIIa by replacement of residues 305, 314, 337 and 374: evidence of two unique mutational mechanisms of activity enhancement.

    PubMed

    Persson, Egon; Bak, Helle; Østergaard, Anette; Olsen, Ole H

    2004-04-15

    Coagulation Factor VIIa (FVIIa) lacks the ability to spontaneously complete the conversion to a fully active enzyme after specific cleavage of an internal peptide bond (Arg152-Ile153) in the zymogen. Recently, several variants of FVIIa with enhanced intrinsic activity have been constructed. The in vitro characterization of these variants has shed light on molecular determinants that put restrictions on FVIIa in favour of a zymogen-like conformation and warrants continued efforts. Here we describe a new FVIIa variant with high intrinsic activity containing the mutations Leu305-->Val, Ser314-->Glu, Lys337-->Ala, and Phe374-->Tyr. The variant, called FVIIa(VEAY), processes a tripeptidyl substrate very efficiently because of an unprecedented, 5.5-fold lowering of the K(m) value. Together with a 4-fold higher substrate turnover rate this gives the variant a catalytic efficiency 22 times that of wild-type FVIIa, which is reflected in a considerably enhanced susceptibility to inhibition by antithrombin and other inhibitors. For instance, the affinity of FVIIa(VEAY) for the S1 probe and inhibitor p -aminobenzamidine is represented by an 8-fold lower K(i) value compared with that of FVIIa. Activation of Factor X in solution occurs about 10 times faster with FVIIa(VEAY) than with FVIIa, due virtually exclusively to an increased kcat value. The high activity of FVIIa(VEAY) is not accompanied by an increased burial of the N-terminus of the protease domain. A comparison of the kinetic parameters and molecular properties of FVIIa(VEAY) with those of the previously described mutant V158D/E296V/M298Q-FVIIa (FVIIa(IIa)), and the locations of the substitutions in the two variants, reveals what appear to be two profoundly different structural mechanisms dictating improvements in enzymic performance. PMID:14686879

  18. Mouse Cytotoxic T Cell-derived Granzyme B Activates the Mitochondrial Cell Death Pathway in a Bim-dependent Fashion*

    PubMed Central

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián

    2015-01-01

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735

  19. Intrinsic Motivation and Engagement as "Active Ingredients" in Garden-Based Education: Examining Models and Measures Derived from Self-Determination Theory

    ERIC Educational Resources Information Center

    Skinner, Ellen A.; Chi, Una

    2012-01-01

    Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…

  20. Early Years Education: Are Young Students Intrinsically or Extrinsically Motivated Towards School Activities? A Discussion about the Effects of Rewards on Young Children's Learning

    ERIC Educational Resources Information Center

    Theodotou, Evgenia

    2014-01-01

    Rewards can reinforce and at the same time forestall young children's willingness to learn. However, they are broadly used in the field of education, especially in early years settings, to stimulate children towards learning activities. This paper reviews the theoretical and research literature related to intrinsic and extrinsic motivational…

  1. Temporal lobe epilepsy surgery modulates the activity of auditory pathway.

    PubMed

    Báez-Martín, Margarita Minou; Morales-Chacón, Lilia María; García-Maeso, Iván; Estupiñán-Díaz, Bárbara; Lorigados-Pedre, Lourdes; García, María Eugenia; Galvizu, Reynaldo; Bender, Juan E; Cabrera-Abreu, Ivette; Pérez-Téllez, Yamila; Galán, Lídice

    2014-05-01

    The purpose of this paper is to evaluate the effects of the anterior temporal lobectomy on the functional state of the auditory pathway in a group of drug-resistant epileptic patients, linking the electrophysiological results to the resection magnitude. Twenty-seven patients with temporal lobe epilepsy and a matched control group were studied. Auditory brainstem and middle latency responses (ABR and MLR respectively) were carried out before and after 6, 12 and 24 months surgical treatment. The volume and longitude of temporo-mesial resected structures were estimated on magnetic resonance images taken 6 months after surgery. Before the intervention the patients showed a significant delay of latency in waves III, V, Pa and Nb, with an increase in duration of I-V interval in comparison with healthy subjects (Mann-Whitney U-test, p<0.05). After resection, additional significant differences in waves I and Na latency were observed. Na and Pa waveforms showed a tendency to increase in amplitude, which became statistically significant 12 months after surgery for right hemisphere lobectomized patients in the midline electrode, and in Pa waveform for all patients in the temporal electrodes ipsilateral to resection (Wilcoxon test, p<0.05). In general, latency variations of MLR correlated with resection longitude, while changes in amplitude correlated with the volume of the resection in the middle temporal pole and amygdala (Pearson' correlation test, p<0.05). As a result, we assume that anterior temporal lobectomy provokes functional modifications into the auditory pathway, probably related to an indirect modulation of its activity by the temporo-mesial removed structures.

  2. BLM promotes the activation of Fanconi Anemia signaling pathway

    PubMed Central

    Panneerselvam, Jayabal; Wang, Hong; Zhang, Jun; Che, Raymond; Yu, Herbert; Fei, Peiwen

    2016-01-01

    Mutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway. To date, it remains largely unclear as to how BLM and FA proteins work concurrently in the maintenance of genome stability. Here we report that BLM is involved in the early activation of FA group D2 protein (FANCD2). We found that FANCD2 activation is substantially delayed and attenuated in crosslinking agent-treated cells harboring deficient Blm compared to similarly treated control cells with sufficient BLM. We also identified that the domain VI of BLM plays an essential role in promoting FANCD2 activation in cells treated with DNA crosslinking agents, especially ultraviolet B. The similar biological effects performed by ΔVI-BLM and inactivated FANCD2 further confirm the relationship between BLM and FANCD2. Mutations within the domain VI of BLM detected in human cancer samples demonstrate the functional importance of this domain, suggesting human tumorigenicity resulting from mtBLM may be at least partly attributed to mitigated FANCD2 activation. Collectively, our data show a previously unknown regulatory liaison in advancing our understanding of how the cancer susceptibility gene products act in concert to maintain genome stability. PMID:27083049

  3. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis.

    PubMed

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-11-12

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis(-/-)) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis(-/-) osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis(-/-) mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development.

  4. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis

    PubMed Central

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-01-01

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development. PMID:26558437

  5. Sonic Hedgehog Promotes Cementoblastic Differentiation via Activating the BMP Pathways.

    PubMed

    Bae, Won-Jung; Auh, Q-Schick; Lim, Hyun-Chang; Kim, Gyu-Tae; Kim, Hyun-Soo; Kim, Eun-Cheol

    2016-10-01

    Although sonic hedgehog (SHH), an essential molecule in embryogenesis and organogenesis, stimulates proliferation of human periodontal ligament (PDL) stem cells, the effects of recombinant human SHH (rh-SHH) on osteoblastic differentiation are unclear. To reveal the role of SHH in periodontal regeneration, expression of SHH in mouse periodontal tissues and its effects on the osteoblastic/cementoblastic differentiation in human cementoblasts were investigated. SHH is immunolocalized to differentiating cementoblasts, PDL cells, and osteoblasts of the developing mouse periodontium. Addition of rh-SHH increased cell growth, ALP activity, and mineralization nodule formation, and upregulated mRNA expression of osteoblastic and cementoblastic markers. The osteoblastic/cementoblastic differentiation of rh-SHH was abolished by the SHH inhibitor cyclopamine (Cy) and the BMP antagonist noggin. rh-SHH increased the expression of BMP-2 and -4 mRNA, as well as levels of phosphorylated Akt, ERK, p38, and JNK, and of MAPK and NF-κB activation, which were reversed by noggin, Cy, and BMP-2 siRNA. Collectively, this study is the first to demonstrate that SHH can promote cell growth and cell osteoblastic/cementoblastic differentiation via BMP pathway. Thus, SHH plays important roles in the development of periodontal tissue, and might represent a new therapeutic target for periodontitis and periodontal regeneration. PMID:27289556

  6. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1

    PubMed Central

    Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven

    2016-01-01

    ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against

  7. Spontaneous oscillatory activity in rd1 mouse retina is transferred from ON pathway to OFF pathway via glycinergic synapse.

    PubMed

    Poria, Deepak; Dhingra, Narender K

    2015-01-15

    Retinal ganglion cells (RGCs) spike randomly in the dark and carry information about visual stimuli to the brain via specific spike patterns. However, following photoreceptor loss, both ON and OFF type of RGCs exhibit spontaneous oscillatory spike activity, which reduces the quality of information they can carry. Furthermore, it is not clear how the oscillatory activity would interact with the experimental treatment approaches designed to produce artificial vision. The oscillatory activity is considered to originate in ON-cone bipolar cells, AII amacrine cells, and/or their synaptic interactions. However, it is unknown how the oscillatory activity is generated in OFF RGCs. We tested the hypothesis that oscillatory activity is transferred from the ON pathway to the OFF pathway via the glycinergic AII amacrine cells. Using extracellular loose-patch and whole cell patch recordings, we recorded oscillatory activity in ON and OFF RGCs and studied their response to strychnine, a specific glycine receptor blocker. The cells were labeled with a fluorescent dye, and their dendritic stratification in inner plexiform layer was studied using confocal microscopy. Application of strychnine resulted in abolition of the oscillatory burst activity in OFF RGCs but not in ON RGCs, implying that oscillatory activity is generated in ON pathway and is transferred to OFF pathway, likely via the glycinergic AII amacrine cells. We found oscillatory activity in RGCs as early as postnatal day 12 in rd1 mouse, when rod degeneration has started but cones are still intact. This suggests that the oscillatory activity in rd1 mouse retina originates in rod pathway.

  8. Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications.

    PubMed

    Pan, Yu; Li, Na; Mu, Jianshuai; Zhou, Runhong; Xu, Yan; Cui, Daizong; Wang, Yan; Zhao, Min

    2015-01-01

    A novel bacterial strain containing biogenic magnetic nanoparticles (BMNPs) was isolated from the sediments of Songhua River in Harbin, China, and was identified as Burkholderia sp. YN01. Extracted BMNPs from YN01 were characterized as pure face-centered cubic Fe3O4 with an average size of 80 nm through transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The hysteresis parameters of the BMNP samples such as Bc and Bcr and ratios Mrs/Ms were deduced as 35.6 mT, 43.2 mT, and 0.47, respectively, indicating that the BMNPs exhibit a ferromagnetic behavior. This is the first report concerning on biogenic Fe3O4 NPs produced in Burkholderia genus. Significantly, the BMNPs were proved to possess intrinsic peroxidase-like activity that could catalyze the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Kinetic analysis indicates that the catalytic behavior is in accord with typical Michaelis-Menten kinetics and follows ping-pong mechanism. The catalytic constants (K cat) were 6.5 × 10(4) s(-1) and 0.78 × 10(4) s(-1) with H2O2 and TMB as substrate, respectively, which was higher than that of horseradish peroxidase (HRP). Electron spin resonance (ESR) spectroscopy experiments showed that the BMNPs could catalyze H2O2 to produce hydroxyl radicals. The origin of peroxidase-like activity is also associated with their ability to transfer electron between electrode and H2O2 according to an electrochemical study. As a novel peroxidase mimetic, the BMNPs were employed to offer a simple, sensitive, and selective colorimetric method for H2O2 and glucose determination, and the BMNPs could efficiently catalyze the degradation of phenol and Congo red dye. PMID:25030455

  9. Purification by cobalamin-Sepharose affinity chromatography and intrinsic factor-binding activity of an extramembrane proteolytic product from pig ileal mucosa.

    PubMed Central

    Yerima, A; Safi, A; Gastin, I; Michalski, J C; Saunier, M; Gueant, J L

    1996-01-01

    We have purified a cobalamin-binding protein obtained by papain digestion of pig intestine by cobalamin-AH-Sepharose affinity chromatography, with a purification factor of 17,300, a yield of 63% and a cobalamin-binding activity of 11,260 pmol/mg of protein. The protein contained 3.8% carbohydrate and was O- and N-glycosylated. Its molecular mass was 69 kDa on SDS/PAGE and its isoelectric point was 5.1. It had a binding activity for both [57Co]cobalamin and [57Co]cobalamin-intrinsic factor in native PAGE autoradiography and it inhibited the binding of intrinsic factor to the intact intestinal receptor with an IC50 of 49.31 nmol/l in a radioisotope assay. In conclusion, the purified protein shared a binding activity for both cobalamin and intrinsic factor-cobalamin complexes and could correspond to the extracellular domain of the ileal intrinsic factor receptor. PMID:8573109

  10. No evidence for TSLP pathway activity in human breast cancer.

    PubMed

    Ghirelli, Cristina; Sadacca, Benjamin; Reyal, Fabien; Zollinger, Raphaël; Michea, Paula; Sirven, Philémon; Pattarini, Lucia; Martínez-Cingolani, Carolina; Guillot-Delost, Maude; Nicolas, André; Scholer-Dahirel, Alix; Soumelis, Vassili

    2016-08-01

    Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that primes dendritic cells for Th2 induction. It has been implicated in different types of allergic diseases. Recent work suggested that TSLP could play an important role in the tumor microenvironment and influence tumor progression, in particular in breast cancer. In this study we systematically assessed the production of TSLP at the mRNA and protein levels in several human breast cancer cell lines, large-scale public transcriptomics data sets, and primary human breast tumors. We found that TSLP production was marginal, and concerned less than 10% of the tumors, with very low mRNA and protein levels. In most cases TSLP was undetectable and found to be expressed at lower levels in breast cancer as compared to normal breast tissue. Last, we could not detect any functional TSLP receptor (TSLPR) expression neither on hematopoietic cells nor on stromal cells within the primary tumor microenvironment. We conclude that TSLP-TSLPR pathway activity is not significantly detected within human breast cancer. Taken together, these observations do not support TSLP targeting in breast cancer. PMID:27622057

  11. Lymphatic system: an active pathway for immune protection.

    PubMed

    Liao, Shan; von der Weid, P Y

    2015-02-01

    Lymphatic vessels are well known to participate in the immune response by providing the structural and functional support for the delivery of antigens and antigen presenting cells to draining lymph nodes. Recent advances have improved our understanding of how the lymphatic system works and how it participates to the development of immune responses. New findings suggest that the lymphatic system may control the ultimate immune response through a number of ways which may include guiding antigen/dendritic cells (DC) entry into initial lymphatics at the periphery; promoting antigen/DC trafficking through afferent lymphatic vessels by actively facilitating lymph and cell movement; enabling antigen presentation in lymph nodes via a network of lymphatic endothelial cells and lymph node stroma cell and finally by direct lymphocytes exit from lymph nodes. The same mechanisms are likely also important to maintain peripheral tolerance. In this review we will discuss how the morphology and gene expression profile of the lymphatic endothelial cells in lymphatic vessels and lymph nodes provides a highly efficient pathway to initiate immune responses. The fundamental understanding of how lymphatic system participates in immune regulation will guide the research on lymphatic function in various diseases.

  12. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants.

    PubMed

    Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C

    1999-11-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  13. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  14. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway

    PubMed Central

    Duran, C L; Lee, D W; Jung, J-U; Ravi, S; Pogue, C B; Toussaint, L G; Bayless, K J; Sitcheran, R

    2016-01-01

    A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors. PMID:27270613

  15. Metabolic Pathways In Immune Cell Activation And Quiescence

    PubMed Central

    Pearce, Erika L.; Pearce, Edward J.

    2013-01-01

    Studies of immune system metabolism (“immunometabolism”) segregate along two paths. The first investigates the effects of immune cells on organs that regulate whole body metabolism, such as adipose tissue and liver. The second explores the role of metabolic pathways within immune cells and how this regulates immune response outcome. Distinct metabolic pathways diverge and converge at many levels and cells therefore face choices in how to achieve their metabolic goals. There is interest in fully understanding how and why immune cells commit to particular metabolic fates, and in elucidating the immunologic consequences of reaching a metabolic endpoint by one pathway versus another. This is particularly intriguing since metabolic commitment is influenced not only by substrate availability, but also by signaling pathways elicited by metabolites. Thus metabolic choices in cells enforce fate and function and this area will be the subject of this review. PMID:23601682

  16. Efficient Gap Repair Catalyzed In Vitro by an Intrinsic DNA Polymerase Activity of Human Immunodeficiency Virus Type 1 Integrase

    PubMed Central

    Acel, Andrea; Udashkin, Brian E.; Wainberg, Mark A.; Faust, Emmanuel A.

    1998-01-01

    Cleavage and DNA joining reactions, carried out by human immunodeficiency virus type 1 (HIV-1) integrase, are necessary to effect the covalent insertion of HIV-1 DNA into the host genome. For the integration of HIV-1 DNA into the cellular genome to be completed, short gaps flanking the integrated proviral DNA must be repaired. It has been widely assumed that host cell DNA repair enzymes are involved. Here we report that HIV-1 integrase multimers possess an intrinsic DNA-dependent DNA polymerase activity. The activity was characterized by its dependence on Mg2+, resistance to N-ethylmaleimide, and inhibition by 3′-azido-2′,3′-dideoxythymidine-5′-triphosphate, coumermycin A1, and pyridoxal 5′-phosphate. The enzyme efficiently utilized poly(dA)-oligo(dT) or self-annealing oligonucleotides as a template primer but displayed relatively low activity with gapped calf thymus DNA and no activity with poly(dA) or poly(rA)-oligo(dT). A monoclonal antibody binding specifically to an epitope comprised of amino acids 264 to 273 near the C terminus of HIV-1 integrase severely inhibited the DNA polymerase activity. A deletion of 50 amino acids at the C terminus of integrase drastically altered the gel filtration properties of the DNA polymerase, although the level of activity was unaffected by this mutation. The DNA polymerase efficiently extended a hairpin DNA primer up to 19 nucleotides on a T20 DNA template, although addition of the last nucleotide occurred infrequently or not at all. The ability of integrase to repair gaps in DNA was also investigated. We designed a series of gapped molecules containing a single-stranded region flanked by a duplex U5 viral arm on one side and by a duplex nonviral arm on the other side. Molecules varied structurally depending on the size of the gap (one, two, five, or seven nucleotides), their content of T’s or C’s in the single-stranded region, whether the CA dinucleotide in the viral arm had been replaced with a nonviral

  17. Cardiorenal Syndrome Type 1: Activation of Dual Apoptotic Pathways

    PubMed Central

    Pastori, Silvia; Virzì, Grazia Maria; Brocca, Alessandra; de Cal, Massimo; Cantaluppi, Vincenzo; Castellani, Chiara; Fedrigo, Marny; Thiene, Gaetano; Valente, Maria Luisa; Angelini, Annalisa; Vescovo, Giorgio; Ronco, Claudio

    2015-01-01

    Cardiorenal syndrome type 1 (CRS1) pathophysiology is complex, and immune-mediated damage, including alterations in the immune response with monocyte apoptosis and cytokine release, has been reported as a potential mechanism. In this study, we examined the putative role of renal tubular epithelial cell (RTC) apoptosis as a pathogenic mechanism in CRS1. In particular, we investigated the caspase pathways involved in induced apoptosis. We enrolled 29 patients with acute heart failure (AHF), 11 patients with CRS1, and 15 controls (CTR) without AHF or acute kidney injury (AKI). Patients who had AKI prior to the episode of AHF or who had any other potential causes of AKI were excluded. Plasma from different groups was incubated with RTCs for 24 h. Subsequently, cell apoptosis, DNA fragmentation, and caspase-3, −8, and −9 activities were investigated in RTCs incubated with AHF, CRS1, and CTR plasma. A p value <0.5 was considered statistically significant. A quantitative analysis of apoptosis showed significantly higher apoptosis rates in CRS1 patients compared to AHF patients and CTR (p < 0.01). This increase in apoptosis was strongly confirmed by caspase-3 levels (ρ = 0.73). Caspase-8 and −9 were significantly higher in CRS1 patients compared to AHF patients and CTR (p < 0.01). Furthermore, caspase-3 levels showed a significantly positive correlation with caspase-8 (ρ = 0.57) and −9 (ρ = 0.47; p < 0.001). This study demonstrated the significantly heightened presence of dual apoptotic disequilibrium in CRS1. Our findings indicated that apoptosis may have a central role in the mechanism of CRS1, and it could be a potential therapeutic target in this syndrome. PMID:26648947

  18. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    PubMed Central

    Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  19. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    PubMed Central

    Ran, Qi-shan; Yu, Yun-hu; Fu, Xiao-hong; Wen, Yuan-chao

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma. PMID:26487853

  20. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  1. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein

    PubMed Central

    Liu, Pengcheng; Peng, Hong-Juan; Zhu, Jinsong

    2015-01-01

    Juvenile hormone (JH) is a key regulator of a wide diversity of developmental and physiological events in insects. Although the intracellular JH receptor methoprene-tolerant protein (MET) functions in the nucleus as a transcriptional activator for specific JH-regulated genes, some JH responses are mediated by signaling pathways that are initiated by proteins associated with plasma membrane. It is unknown whether the JH-regulated gene expression depends on the membrane-mediated signal transduction. In Aedes aegypti mosquitoes, we found that JH activated the phospholipase C (PLC) pathway and quickly increased the levels of inositol 1,4,5-trisphosphate, diacylglycerol, and intracellular calcium, leading to activation and autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). When abdomens from newly emerged mosquitoes were cultured in vitro, the JH-activated gene expression was repressed substantially if specific inhibitors of PLC or CaMKII were added to the medium together with JH. In newly emerged female mosquitoes, RNAi-mediated depletion of PLC or CaMKII considerably reduced the expression of JH-responsive genes, including the Krüppel homolog 1 gene (AaKr-h1) and the early trypsin gene (AaET). JH-induced loading of MET to the promoters of AaKr-h1 and AaET was weakened drastically when either PLC or CaMKII was inactivated in the cultured tissues. Therefore, the results suggest that the membrane-initiated signaling pathway modifies the DNA-binding activity of MET via phosphorylation and thus facilitates the genomic responses to JH. In summary, this study reveals an interplay of genomic and nongenomic signaling mechanisms of JH. PMID:25825754

  2. Preferential activation of the hedgehog pathway by epigenetic modulations in HPV negative HNSCC identified with meta-pathway analysis.

    PubMed

    Fertig, Elana J; Markovic, Ana; Danilova, Ludmila V; Gaykalova, Daria A; Cope, Leslie; Chung, Christine H; Ochs, Michael F; Califano, Joseph A

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is largely divided into two groups based on their etiology, human papillomavirus (HPV)-positive and -negative. Global DNA methylation changes are known to drive oncogene and tumor suppressor expression in primary HNSCC of both types. However, significant heterogeneity in DNA methylation within the groups results in different transcriptional profiles and clinical outcomes. We applied a meta-pathway analysis to link gene expression changes to DNA methylation in distinguishing HNSCC subtypes. This approach isolated specific epigenetic changes controlling expression in HPV- HNSCC that distinguish it from HPV+ HNSCC. Analysis of genes identified Hedgehog pathway activation specific to HPV- HNSCC. We confirmed that GLI1, the primary Hedgehog target, showed higher expression in tumors compared to normal samples with HPV- tumors having the highest GLI1 expression, suggesting that increased expression of GLI1 is a potential driver in HPV- HNSCC. Our algorithm for integration of DNA methylation and gene expression can infer biologically significant molecular pathways that may be exploited as therapeutics targets. Our results suggest that therapeutics targeting the Hedgehog pathway may be of benefit in HPV- HNSCC. Similar integrative analysis of high-throughput coupled DNA methylation and expression datasets may yield novel insights into deregulated pathways in other cancers.

  3. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats.

    PubMed

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5'-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  4. Angiogenic activity of sesamin through the activation of multiple signal pathways

    SciTech Connect

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125{sup FAK}-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  5. SOX9 drives WNT pathway activation in prostate cancer

    PubMed Central

    Ma, Fen; Ye, Huihui; He, Housheng Hansen; Gerrin, Sean J.; Chen, Sen; Tanenbaum, Benjamin A.; Sowalsky, Adam G.; He, Lingfeng; Wang, Hongyun; Balk, Steven P.; Yuan, Xin

    2016-01-01

    The transcription factor SOX9 is critical for prostate development, and dysregulation of SOX9 is implicated in prostate cancer (PCa). However, the SOX9-dependent genes and pathways involved in both normal and neoplastic prostate epithelium are largely unknown. Here, we performed SOX9 ChIP sequencing analysis and transcriptome profiling of PCa cells and determined that SOX9 positively regulates multiple WNT pathway genes, including those encoding WNT receptors (frizzled [FZD] and lipoprotein receptor-related protein [LRP] family members) and the downstream β-catenin effector TCF4. Analyses of PCa xenografts and clinical samples both revealed an association between the expression of SOX9 and WNT pathway components in PCa. Finally, treatment of SOX9-expressing PCa cells with a WNT synthesis inhibitor (LGK974) reduced WNT pathway signaling in vitro and tumor growth in murine xenograft models. Together, our data indicate that SOX9 expression drives PCa by reactivating the WNT/β−catenin signaling that mediates ductal morphogenesis in fetal prostate and define a subgroup of patients who would benefit from WNT-targeted therapy. PMID:27043282

  6. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex.

    PubMed

    Sheehan, J P; Lan, H C

    1998-09-01

    Systemic administration of ISIS 2302, a 20-mer antisense phosphorothioate oligonucleotide targeting human intercellular adhesion molecule-1 mRNA, causes prolongation of plasma clotting times in both monkey and human studies. The anticoagulant effects of ISIS 2302 were investigated with both in vitro coagulation assays in human plasma and purified enzyme systems. At high oligonucleotide plasma concentrations (>100 microgram/mL), prolongation of the prothrombin and thrombin times was observed. In a thrombin time assay using purified components, high concentrations of ISIS 2302 inhibited thrombin clotting activity both by stimulating inhibition by heparin cofactor II and directly competing with fibrinogen for binding to anion binding exosite I. In contrast, low concentrations of ISIS 2302 (<100 microgram/mL) showed a selective, linear prolongation of the activated partial thromboplastin time (PTT). The rate limiting effect of 50 microgram/mL ISIS 2302, which prolonged the PTT to 1.5 times control, was identified by sequential modification of the clotting assay. Delaying addition of oligonucleotide until after contact activation failed to correct prolongation of the PTT. The calcium-dependent steps of the intrinsic pathway were individually assessed by adding sufficient activated coagulation factor to correct the PTT in plasma deficient in that specific factor. Addition of factor XIa, IXa, VIIIa, or Va failed to correct the PTT in the presence of ISIS 2302. In contrast, 0.2 nmol/L factor Xa corrected prolongation of the PTT in factor X-deficient plasma with or without oligonucleotide present. ISIS 2302 (50 microgram/mL) did not prolong a modified Russel viper venom time, suggesting no significant inhibition of prothrombinase. Thus, 50 microgram/mL ISIS 2302 prolonged the PTT by selectively inhibiting intrinsic tenase activity. ISIS 2302 showed partial inhibition of intrinsic tenase activity (to approximately 35% of control) at clinically relevant oligonucleotide

  7. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats

    PubMed Central

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole, a dopamine D2 receptor (D2R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D2R antagonist) and bifeprunox (a D2R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D2Rs. PMID:27043526

  8. The heparin-binding exosite is critical to allosteric activation of factor IXa in the intrinsic tenase complex: the role of arginine 165 and factor X.

    PubMed

    Misenheimer, Tina M; Buyue, Yang; Sheehan, John P

    2007-07-01

    Heparin inhibits the intrinsic tenase complex (factor IXa-factor VIIIa) via interaction with a factor IXa exosite. To define the role of this exosite, human factor IXa with alanine substituted for conserved surface residues (R126, N129, K132, R165, N178) was characterized. Chromogenic substrate hydrolysis by the mutant proteases was reduced 20-30% relative to factor IXa wild type. Coagulant activity was moderately (N129A, K132A, K126A) or dramatically (R165A) reduced relative to factor IXa wild type. Kinetic analysis demonstrated a marked reduction in apparent cofactor affinity (23-fold) for factor IXa R165, and an inability to stabilize cofactor activity. Factor IXa K126A, N129A, and K132A demonstrated modest reductions ( approximately 2-fold) in apparent cofactor affinity, and accelerated decay of intrinsic tenase activity. In the absence of factor VIIIa, factor IXa N178A and R165A demonstrated a defective Vmax(app) for factor X activation. In the presence of factor VIIIa, Vmax(app) varied in proportion to the predicted factor IXa-factor VIIIa concentration. However, factor IXa R165A had a 65% reduction in the kcat for factor X, suggesting an additional effect on catalysis. The ability of factor IXa to compete for physical assembly into the intrinsic tenase complex was enhanced by EGR-chloromethylketone bound to the factor IXa active site or addition of factor X, and reduced by selected mutations in the heparin-binding exosite (N178A, K126A, R165A). These results suggest that the factor IXa heparin-binding exosite participates in both cofactor binding and protease activation, and cofactor affinity is linked to active site conformation and factor X interaction during enzyme assembly.

  9. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    SciTech Connect

    Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.; Gaido, Kevin W.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.

  10. Pathway modeling of microarray data: a case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP).

    PubMed

    Ovacik, Meric A; Sen, Banalata; Euling, Susan Y; Gaido, Kevin W; Ierapetritou, Marianthi G; Androulakis, Ioannis P

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.

  11. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network

    PubMed Central

    Binney, Richard J.; Lambon Ralph, Matthew A.

    2015-01-01

    By developing and applying a method which combines fMRI and rTMS to explore semantic cognition, we identified both intrinsic (related to automatic changes in task/stimulus-related processing) and induced (i.e., associated with the effect of TMS) activation changes in the core, functionally-coupled network elements. Low-frequency rTMS applied to the human anterior temporal lobe (ATL) induced: (a) a local suppression at the site of stimulation; (b) remote suppression in three other ipsilateral semantic regions; and (c) a compensatory up-regulation in the contralateral ATL. Further examination of activity over time revealed that the compensatory changes appear to be a modulation of intrinsic variations that occur within the unperturbed network. As well as providing insights into the dynamic collaboration between core regions, the ability to observe intrinsic and induced changes in vivo may provide an important opportunity to understand the key mechanisms that underpin recovery of function in neurological patient groups. PMID:25448851

  12. Ammonium Activates Ouabain-Activated Signalling Pathway in Astrocytes: Therapeutic Potential of Ouabain Antagonist

    PubMed Central

    Song, Dan; Du, Ting

    2014-01-01

    The causal role of ammonium in hepatic encephalopathy was identified in 1930s. Astroglial cells are primary cellular elements of hepatic encephalopathy which conceptually, can be considered a toxic astrogliopathology. Previously we have reported that acute exposure to ammonium activated ouabain/Na,K-ATPase signalling pathway, which includes Src, EGF receptor, Raf, Ras, MEK and ERK1/2. Chronic incubation of astrocytes with ammonium increased production of endogenous ouabain-like compound. Ouabain antagonist canrenone abolished effects of ammonium on astrocytic swelling, ROS production, and upregulation of gene expression and function of TRPC1 and Cav1.2. However, ammonium induces multiple pathological modifications in astrocytes, and some of them may be not related to this signalling pathway. In this review, we focus on the effect of ammonium on ouabain/Na,K-ATPase signalling pathway and its involvement in ammonium-induced ROS production, cell swelling and aberration of Ca2+ signals in astrocytes. We also briefly discuss Na,K-ATPase, EGF receptor, endogenous ouabain and ouabain antagonist. PMID:25342941

  13. Ammonium activates ouabain-activated signalling pathway in astrocytes: therapeutic potential of ouabain antagonist.

    PubMed

    Song, Dan; Du, Ting

    2014-07-01

    The causal role of ammonium in hepatic encephalopathy was identified in 1930s. Astroglial cells are primary cellular elements of hepatic encephalopathy which conceptually, can be considered a toxic astrogliopathology. Previously we have reported that acute exposure to ammonium activated ouabain/Na,K-ATPase signalling pathway, which includes Src, EGF receptor, Raf, Ras, MEK and ERK1/2. Chronic incubation of astrocytes with ammonium increased production of endogenous ouabain-like compound. Ouabain antagonist canrenone abolished effects of ammonium on astrocytic swelling, ROS production, and upregulation of gene expression and function of TRPC1 and Cav1.2. However, ammonium induces multiple pathological modifications in astrocytes, and some of them may be not related to this signalling pathway. In this review, we focus on the effect of ammonium on ouabain/Na,K-ATPase signalling pathway and its involvement in ammonium-induced ROS production, cell swelling and aberration of Ca(2+) signals in astrocytes. We also briefly discuss Na,K-ATPase, EGF receptor, endogenous ouabain and ouabain antagonist. PMID:25342941

  14. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori.

    PubMed

    Liu, Wei; Liu, Jiabin; Lu, Yahong; Gong, Yongchang; Zhu, Min; Chen, Fei; Liang, Zi; Zhu, Liyuan; Kuang, Sulan; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2015-06-01

    The JAK/STAT, Toll, Imd, and RNAi pathways are the major signaling pathways associated with insect innate immunity. To explore the different immune signaling pathways triggered in response to pathogenic micro-organism infections in the silkworm, Bombyx mori, the expression levels of the signal transducer and activator of transcription (BmSTAT), spatzle-1 (Bmspz-1), peptidoglycan-recognition protein LB (BmPGRP-LB), peptidoglycan-recognition protein LE (BmPGRP-LE), argonaute 2 (Bmago2), and dicer-2 (Bmdcr2) genes after challenge with Escherichia coli (E. coli), Serratiamarcescens (Sm), Bacillus bombyseptieus (Bab), Beauveriabassiana (Beb), nucleopolyhedrovirus (BmNPV), cypovirus (BmCPV), bidensovirus (BmBDV), or Nosemabombycis (Nb) were determined using real-time PCR. We found that the JAK/STAT pathway could be activated by challenge with BmNPV and BmBDV, the Toll pathway could be most robustly induced by challenge with Beb, the Imd pathway was mainly activated in response to infection by E. coli and Sm, and the RNAi pathway was not activated by viral infection, but could be triggered by some bacterial infections. These findings yield insights into the immune signaling pathways activated in response to different pathogenic micro-organisms in the silkworm.

  15. Deregulated tryptophan-kynurenine pathway is linked to inflammation, oxidative stress, and immune activation pathway in cardiovascular diseases

    PubMed Central

    Wang, Qiongxin; Liu, Danxia; Song, Ping; Zou, Ming-Hui

    2016-01-01

    The kynurenine (Kyn) pathway is the major route for tryptophan (Trp) metabolism, and it contributes to several fundamental biological processes. Trp is constitutively oxidized by tryptophan 2, 3-dioxygenase in liver cells. In other cell types, it is catalyzed by an alternative inducible indoleamine-pyrrole 2, 3-dioxygenase (IDO) under certain pathophysiological conditions, which consequently increases the formation of Kyn metabolites. IDO is up-regulated in response to inflammatory conditions as a novel marker of immune activation in early atherosclerosis. Besides, IDO and the IDO-related pathway are important mediators of the immunoinflammatory responses in advanced atherosclerosis. In particular, Kyn, 3-hydroxykynurenine, and quinolinic acid are positively associated with inflammation, oxidative stress (SOX), endothelial dysfunction, and carotid artery intima-media thickness values in end-stage renal disease patients. Moreover, IDO is a potential novel contributor to vessel relaxation and metabolism in systemic infections, which is also activated in acute severe heart attacks. The Kyn pathway plays a key role in the increased prevalence of cardiovascular disease by regulating inflammation, SOX, and immune activation. PMID:25961549

  16. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    SciTech Connect

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  17. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.

    PubMed

    Li, Yali; Yang, Fangfang; Zheng, Weidong; Hu, Mingxing; Wang, Juanxiu; Ma, Sisi; Deng, Yuanle; Luo, Yi; Ye, Tinghong; Yin, Wenya

    2016-05-01

    Most conventional treatments on non-small cell lung carcinoma always accompany with awful side effects, and the incidence and mortality rates of this cancer are increasing rapidly worldwide. The objective of this study was to examine the anticancer effects of extract of Punica granatum (pomegranate) leaves extract (PLE) on the non-small cell lung carcinoma cell line A549, H1299 and mouse Lewis lung carcinoma cell line LL/2 in vitro, and explore its mechanisms of action. Our results have shown that PLE inhibited cell proliferation in non-small cell lung carcinoma cell line in a concentration- and time-dependent manner. Flow cytometry (FCM) assay showed that PLE affected H1299 cell survival by arresting cell cycle progression in G2/M phase in a dose-dependent manner and inducing apoptosis. Moreover, PLE could also decrease the reactive oxygen species (ROS) and the mitochondrial membrane potential (ΔYm), indicating that PLE may induce apoptosis via mitochondria-mediated apoptotic pathway. Furthermore, PLE blocked H1299 cell migration and invasion, and the reduction of matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed in vitro. These results suggested that PLE could be an effective and safe chemotherapeutic agent in non-small cell lung carcinoma treatment by inhibiting proliferation, inducing apoptosis, cell cycle arrest and impairing cell migration and invasion. PMID:27133061

  18. Ziyuglycoside II induces cell cycle arrest and apoptosis through activation of ROS/JNK pathway in human breast cancer cells.

    PubMed

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhu, Ling; Zhou, Fanfan

    2014-05-16

    Ziyuglycoside II, a triterpenoid saponin compound extracted from Sanguisorba officinalis L., has been reported to have a wide range of clinical applications including anti-cancer effect. In this study, the anti-proliferative effect of ziyuglycoside II in two classic human breast cancer cell lines, MCF-7 and MDA-MB-231, was extensively investigated. Our study indicated that ziyuglycoside II could effectively induce G2/M phase arrest and apoptosis in both cell lines. Cell cycle blocking was associated with the down-regulation of Cdc25C, Cdc2, cyclin A and cyclin B1 as well as the up-regulation of p21/WAF1, phospho-Cdc25C and phospho-Cdc2. Ziyuglycoside II treatment also induced reactive oxygen species (ROS) production and apoptosis by activating the extrinsic/Fas/FasL pathway as well as the intrinsic/mitochondrial pathway. More importantly, the c-Jun NH2-terminal kinase (JNK), a downstream target of ROS, was found to be a critical mediator of ziyuglycoside II-induced cell apoptosis. Further knockdown of JNK by siRNA could inhibit ziyuglycoside II-mediated apoptosis with attenuating the up-regulation of Bax and Fas/FasL as well as the down-regulation of Bcl-2. Taken together, the cell death of breast cancer cells in response to ziyuglycoside II was dependent upon cell cycle arrest and cell apoptosis via a ROS-dependent JNK activation pathway. Our findings may significantly contribute to the understanding of the anti-proliferative effect of ziyuglycoside II, in particular to breast carcinoma and provide novel insights into the potential application of such compound in breast cancer therapy. PMID:24680927

  19. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    SciTech Connect

    Simões, Maylla Ronacher; Aguado, Andrea; Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice; Zhenyukh, Olha; Briones, Ana María; Alonso, María Jesús; Vassallo, Dalton Valentim; Salaices, Mercedes

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  20. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats

    PubMed Central

    Shi, Xing-Xing; Yin, Bai-Shuang; Yang, Peng; Chen, Hao; Li, Xin; Su, Li-Xue; Fan, Hong-Gang; Wang, Hong-Bin

    2016-01-01

    Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5’-monophosphate activated protein kinase (AMPK) inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1) and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR), and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01). Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05). In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain. PMID:27049320

  1. The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Chia, Yeong-Chit Joel; Catimel, Bruno; Lio, Daisy Sio Seng; Ang, Ching-Seng; Peng, Benjamin; Wu, Hong; Zhu, Hong-Jian; Cheng, Heung-Chin

    2015-12-01

    Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN. These findings suggest that coordinated inhibition of the upstream protein kinases and activation of the protein phosphatases targeting the four sites are needed to fully activate PTEN phosphatase activity. Second, PI(4,5)P2 cannot activate the phosphopeptide phosphatase activity of PTEN, suggesting that PI(4,5)P2 can only activate the phospholipid phosphatase activity but not the phosphoprotein phosphatase activity of PTEN. Third, dephosphorylation of all four sites significantly decreases the affinity of PTEN for PI(4,5)P2. Since PI(4,5)P2 is a major phospholipid co-localizing with the phospholipid- and phosphoprotein-substrates in plasma membrane, we hypothesise that the reduced affinity facilitates PTEN to "hop" on the plasma membrane to dephosphorylate these substrates. PMID:26471078

  2. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  3. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  4. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  5. Evaluating the Activity of the Filamentous Growth MAPK Pathway in Yeast

    PubMed Central

    Cullen, Paul J.

    2015-01-01

    Mitogen-activated protein kinase (MAPK) pathways are evolutionarily conserved signaling pathways that regulate diverse processes in eukaryotes. One such pathway regulates filamentous growth, a nutrient limitation response in budding yeast and other fungal species. This protocol describes three assays used to measure the activity of the filamentous growth pathway. First, western blotting for phosphorylated (activated) MAPKs (P~MAPKs; Slt2p, Kss1p, Fus3p, and Hog1p) provides a measure of MAPK activity in yeast and other fungal species. Second, the PGU1 gene is a transcriptional target of the filamentous growth pathway. Cells that undergo filamentous growth secrete Pgu1, an endopolygalacturonase that degrades the plant-specific polysaccharide pectin. We describe an assay that measures secreted pectinase activity, which reflects an active filamentous growth pathway. Finally, in yeast, two mucin-like glycoproteins, Msb2 and Flo11, regulate filamentous growth. Secretion of the processed and shed glycodomain of Msb2 is an indicator of MAPK activity. Flo11, the major adhesion molecule that controls filamentous growth and biofilm/mat formation, is also shed from cells. Detecting shed mucins with epitope-tagged versions of the proteins (secretion profiling) provides information about the regulation of filamentous growth across fungal species. PMID:25734070

  6. Multiple signaling pathways leading to the activation of interferon regulatory factor 3.

    PubMed

    Servant, Marc J; Grandvaux, Nathalie; Hiscott, John

    2002-09-01

    Virus infection of susceptible cells activates multiple signaling pathways that orchestrate the activation of genes, such as cytokines, involved in the antiviral and innate immune response. Among the kinases induced are the mitogen-activated protein (MAP) kinases, Jun-amino terminal kinases (JNK) and p38, the IkappaB kinase (IKK) and DNA-PK. In addition, virus infection also activates an uncharacterized VAK responsible for the C-terminal phosphorylation and subsequent activation of interferon regulatory factor 3 (IRF-3). Virus-mediated activation of IRF-3 through VAK is dependent on viral entry and transcription, since replication deficient virus failed to induce IRF-3 activity. The pathways leading to VAK activation are not well characterized, but IRF-3 appears to represent a novel cellular detection pathway that recognizes viral nucleocapsid (N) structure. Recently, the range of inducers responsible for IRF-3 activation has increased. In addition to virus infection, recognition of bacterial infection mediated through lipopolysaccharide by Toll-like receptor 4 has also been reported. Furthermore, MAP kinase kinase kinase (MAP KKK)-related pathways and DNA-PK induce N-terminal phosphorylation of IRF-3. This review summarizes recent observations in the identification of novel signaling pathways leading to IRF-3 activation.

  7. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  8. Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides

    EPA Science Inventory

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eight...

  9. Potato tuber pyrophosphate-dependent phosphofructokinase: effect of thiols and polyalcohols on its intrinsic fluorescence, oligomeric structure, and activity in dilute solutions.

    PubMed

    Podestá, F E; Moorhead, G B; Plaxton, W C

    1994-08-15

    The effect of dilution of homogeneous potato tuber pyrophosphate:fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90; PFP) on the enzyme's intrinsic fluorescence, activity, and oligomeric structure has been examined. A rapid decrease in PFP's intrinsic fluorescence occurred in response to dilution. The decay follows double-exponential kinetics and was accompanied by a reduction in catalytic activity (measured in the glycolytic direction). Gel filtration-HPLC indicated a concomitant deaggregation of the native alpha 4 beta 4 heterooctamer into the inactive free alpha- and beta-subunits, followed by random aggregation of the subunits into an inactive, high M(r) conglomerate. The addition of 2 mM dithiothreitol, 2 mM 2-mercaptoethanol, or 5% (w/v) polyethylene glycol, but not any of the substrates, Mg2+, or fructose 2,6-bisphosphate, prevented this process. When purified PFP was stored for 1 week at -20 degrees C in the presence of 50% (v/v) glycerol partial degradation of its alpha-subunit occurred. This resulted in a labile enzyme that was more susceptible to subunit dissociation. The intrinsic fluorescence of the degraded PFP could be stabilized by 5% (w/v) polyethylene glycol, but not by 2 mM dithiothreitol or 2-mercaptoethanol. It is proposed that the current assay procedures for PFP, which normally involve considerable dilution in the absence of added sulfhydryl reducing agents or polyhydroxy compounds, may underestimate the actual activity of the enzyme. This has important implications for the assessment of the functions and regulation of PFP in vivo.

  10. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.

    PubMed

    Bracht, Tobias; Schnell, Susanne; Federspiel, Andrea; Razavi, Nadja; Horn, Helge; Strik, Werner; Wiest, Roland; Dierks, Thomas; Müller, Thomas J; Walther, Sebastian

    2013-02-01

    Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction.

  11. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    SciTech Connect

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare.

  12. Protein kinase A activity and Hedgehog signaling pathway.

    PubMed

    Kotani, Tomoya

    2012-01-01

    Protein kinase A (PKA) is a well-known kinase that plays fundamental roles in a variety of biological processes. In Hedgehog-responsive cells, PKA plays key roles in proliferation and fate specification by modulating the transduction of Hedgehog signaling. In the absence of Hedgehog, a basal level of PKA activity represses the transcription of Hedgehog target genes. The main substrates of PKA in this process are the Ci/Gli family of bipotential transcription factors, which activate and repress Hedgehog target gene expression. PKA phosphorylates Ci/Gli, promoting the production of the repressor forms of Ci/Gli and thus repressing Hedgehog target gene expression. In contrast, the activation of Hedgehog signaling in response to Hedgehog increases the active forms of Ci/Gli, resulting in Hedgehog target gene expression. Because both decreased and increased levels of PKA activity cause abnormal cell proliferation and alter cell fate specification, the basal level of PKA activity in Hedgehog-responsive cells should be precisely regulated. However, the mechanism by which PKA activity is regulated remains obscure and appears to vary between cell types, tissues, and organisms. To date, two mechanisms have been proposed. One is a classical mechanism in which PKA activity is regulated by a small second messenger, cAMP; the other is a novel mechanism in which PKA activity is regulated by a protein, Misty somites. PMID:22391308

  13. Antibody Constant Region Peptides Can Display Immunomodulatory Activity through Activation of the Dectin-1 Signalling Pathway

    PubMed Central

    Cenci, Elio; Monari, Claudia; Magliani, Walter; Ciociola, Tecla; Conti, Stefania; Gatti, Rita; Bistoni, Francesco; Polonelli, Luciano; Vecchiarelli, Anna

    2012-01-01

    We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc) of human IgG1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules. PMID:22952831

  14. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  15. Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration.

    PubMed

    Grijalva, James L; Huizenga, Megan; Mueller, Kaly; Rodriguez, Steven; Brazzo, Joseph; Camargo, Fernando; Sadri-Vakili, Ghazaleh; Vakili, Khashayar

    2014-07-15

    The Hippo signaling pathway has been implicated in mammalian organ size regulation and tumor suppression. Specifically, the Hippo pathway plays a critical role regulating the activity of transcriptional coactivator Yes-associated protein (YAP), which modulates a proliferative transcriptional program. Recent investigations have demonstrated that while this pathway is activated in quiescent livers, its inhibition leads to liver overgrowth and tumorigenesis. However, the role of the Hippo pathway during the natural process of liver regeneration remains unknown. Here we investigated alterations in the Hippo signaling pathway and YAP activation during liver regeneration using a 70% partial hepatectomy (PH) rat model. Our results indicate an increase in YAP activation by 1 day following PH as demonstrated by increased YAP nuclear localization and increased YAP target gene expression. Investigation of the Hippo pathway revealed a decrease in the activation of core kinases Mst1/2 by 1 day as well as Lats1/2 and its adapter protein Mob1 by 3 days following PH. Evaluation of liver-to-body weight ratios indicated that the liver reaches its near normal size by 7 days following PH, which correlated with a return to baseline YAP nuclear levels and target gene expression. Additionally, when liver size was restored, Mst1/2 kinase activation returned to levels observed in quiescent livers indicating reactivation of the Hippo signaling pathway. These findings illustrate the dynamic changes in the Hippo signaling pathway and YAP activation during liver regeneration, which stabilize when the liver-to-body weight ratio reaches homeostatic levels.

  16. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis.

    PubMed

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-10-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis.

  17. Structure–Activity Relationships for Side Chain Oxysterol Agonists of the Hedgehog Signaling Pathway

    PubMed Central

    2012-01-01

    Oxysterols (OHCs) are byproducts of cholesterol oxidation that are known to activate the Hedeghog (Hh) signaling pathway. While OHCs that incorporate hydroxyl groups throughout the scaffold are known, those that act as agonists of Hh signaling primarily contain a single hydroxyl on the alkyl side chain. We sought to further explore how side chain hydroxylation patterns affect oxysterol-mediated Hh activation, by performing a structure–activity relationship study on a series of synthetic OHCs. The most active analogue, 23(R)-OHC (35), demonstrated potent activation of Hh signaling in two Hh-dependent cell lines (EC50 values 0.54–0.65 μM). In addition, OHC 35 was approximately 3-fold selective for the Hh pathway as compared to the liver X receptor, a nuclear receptor that is also activated by endogenous OHCs. Finally, 35 induced osteogenic differentiation and osteoblast formation in cultured cells, indicating functional agonism of the Hh pathway. PMID:24900386

  18. Citrinin-generated reactive oxygen species cause cell cycle arrest leading to apoptosis via the intrinsic mitochondrial pathway in mouse skin.

    PubMed

    Kumar, Rahul; Dwivedi, Premendra D; Dhawan, Alok; Das, Mukul; Ansari, Kausar M

    2011-08-01

    The mycotoxin, citrinin (CTN), is a contaminant of various food and feed materials. Several in vivo and in vitro studies have demonstrated that CTN has broad toxicity spectra; however, dermal toxicity is not known. In the present investigation, dermal exposure to CTN was undertaken to study oxidative stress, DNA damage, cell cycle arrest, and apoptosis in mouse skin. A single topical application of CTN caused significant change in oxidative stress markers, such as lipid peroxidation, protein carbonyl content, glutathione (GSH) content, and antioxidant enzymes in a dose-dependent (25-100 μg/mouse) and time-dependent (12-72 h) manner. Single topical application of CTN (50 μg/mouse) for 12-72 h caused significant enhancement in (1) reactive oxygen species (ROS); (2) cell cycle arrest at the G0/G1 phase (30-71%) and G2/M phase (56-65%) along with the induction of apoptosis (3.6-27%); (3) expression of p53, p21/waf1; (4) Bax/Bcl₂ ratio and cytochome c release; and (5) activities of caspase 9 (22-46%) and 3 (42-54%) as well as increased poly(ADP-ribose) polymerase cleavage. It was also observed that pretreatment with bio-antioxidants viz butylated hydroxyanisole (55 μmol/100 μl), quercetin (10 μmol/100 μl), or α-tocopherol (40 μmol/100 μl) resulted in decreases of ROS generation, arrest in the G0/G1 phase of the cell cycle, and apoptosis. These data confirm the involvement of ROS in apoptosis and suggest that these bio-antioxidants may be useful in the prevention of CTN-induced dermal toxicity.

  19. Thermal Decomposition of Benzyl Radical via Multiple Active Pathways

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Robichaud, David; Ormond, Thomas; Nimlos, Mark R.; Daily, John W.; Ellison, Barney

    2014-06-01

    The thermal decomposition of benzyl radical (C6H5CH2) has been investigated using a combination infrared absorption spectroscopy in a neon matrix and 118.2 (10.487 eV) photoionization mass spectrometry. Both techniques are coupled with a heated tubular reactor to allow temperature control over the decomposition to indicate relative barrier heights of fragmentation pathways. Three possible chemical mechanisms have been considered. 1) Ring expansion to cycloheptatrienyl radical (C7H7) with subsequent breakdown to HCCH and C5H5, 2) isomerization to the substituted five-membered ring fulvenallene (C5H4=C=CH2), which is of interest to kinetic theorists and finally 3) hydrogen shift to form methyl-substituted phenyl radical, which can then form ortho-benzyne, diacetylene and other fragments. Benzyl radical is generated from two precursors, C6H5CH2CH3 and C6H5CH2Br, and both lead to the appearance of HCCH and C5H5. At slightly hotter temperatures peaks are observed at m/z 90, presumed to be C5H4=C=CH2, and 89, potentially the substituted propargyl C5H4=C=CH. Additionally, decomposition of isotopically substituted parent molecules C6H5CD2CD3 and C6D5CH2CH3 indicates C7H7 as an intermediate due to H/D ratios in fragment molecules.

  20. Viral Factors Induce Hedgehog Pathway Activation in Humans with Viral Hepatitis, Cirrhosis, and Hepatocellular Carcinoma

    PubMed Central

    Pereira, Thiago de Almeida; Witek, Rafal P.; Syn, Wing-Kin; Choi, Steve S.; Bradrick, Shelton; Karaca, Gamze F; Agboola, Kolade M.; Jung, Youngmi; Omenetti, Alessia; Moylan, Cynthia A.; Yang, Liu; Fernandez-Zapico, Martin E.; Jhaveri, Ravi; Shah, Vijay H.; Pereira, Fausto E.; Diehl, Anna Mae

    2010-01-01

    Hh pathway activation promotes many processes that occur during fibrogenic liver repair. Whether the Hh pathway modulates the outcomes of virally-mediated liver injury has never been examined. Gene-profiling studies of human hepatocellular carcinomas (HCC) demonstrate Hh pathway activation in HCCs related to chronic infection with hepatitis B virus (HBV) or hepatitis C virus (HCV). Because most HCC develop in cirrhotic livers, we hypothesized that Hh pathway activation occurs during fibrogenic repair of liver damage due to chronic viral hepatitis, and that Hh-responsive cells mediate disease progression and hepatocarciongenesis in chronic viral hepatitis. Immunohistochemistry and qRTPCR analysis were used to analyze Hh pathway activation and identify Hh-responsive cell types in liver biopsies from 45 patients with chronic HBV or HCV. Hh signaling was then manipulated in cultured liver cells to directly assess the impact of Hh activity in relevant cell types. We found increased hepatic expression of Hh ligands in all patients with chronic viral hepatitis, and demonstrated that infection with HCV stimulated cultured hepatocytes to produce Hh ligands. The major cell populations that expanded during cirrhosis and HCC (i.e., liver myofibroblasts, activated endothelial cells, and progenitors expressing markers of tumor stem/initiating cells) were Hh-responsive, and higher levels of Hh pathway activity associated with cirrhosis and HCC. Inhibiting pathway activity in Hh-responsive target cells reduced fibrogenesis, angiogenesis, and growth. Conclusions HBV/HCV infection increases hepatocyte production of Hh ligands and expands types of Hh-responsive cells that promote liver fibrosis and cancer. PMID:20697376

  1. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region.

    PubMed

    Venkatakrishnan, A J; Deupi, Xavier; Lebon, Guillaume; Heydenreich, Franziska M; Flock, Tilman; Miljus, Tamara; Balaji, Santhanam; Bouvier, Michel; Veprintsev, Dmitry B; Tate, Christopher G; Schertler, Gebhard F X; Babu, M Madan

    2016-08-25

    Class A G-protein-coupled receptors (GPCRs) are a large family of membrane proteins that mediate a wide variety of physiological functions, including vision, neurotransmission and immune responses. They are the targets of nearly one-third of all prescribed medicinal drugs such as beta blockers and antipsychotics. GPCR activation is facilitated by extracellular ligands and leads to the recruitment of intracellular G proteins. Structural rearrangements of residue contacts in the transmembrane domain serve as 'activation pathways' that connect the ligand-binding pocket to the G-protein-coupling region within the receptor. In order to investigate the similarities in activation pathways across class A GPCRs, we analysed 27 GPCRs from diverse subgroups for which structures of active, inactive or both states were available. Here we show that, despite the diversity in activation pathways between receptors, the pathways converge near the G-protein-coupling region. This convergence is mediated by a highly conserved structural rearrangement of residue contacts between transmembrane helices 3, 6 and 7 that releases G-protein-contacting residues. The convergence of activation pathways may explain how the activation steps initiated by diverse ligands enable GPCRs to bind a common repertoire of G proteins. PMID:27525504

  2. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway.

    PubMed Central

    Kiefer, F; Tibbles, L A; Anafi, M; Janssen, A; Zanke, B W; Lassam, N; Pawson, T; Woodgett, J R; Iscove, N N

    1996-01-01

    In mammalian cells, a specific stress-activated protein kinase (SAPK/JNK) pathway is activated in response to inflammatory cytokines, injury from heat, chemotherapeutic drugs and UV or ionizing radiation. The mechanisms that link these stimuli to activation of the SAPK/JNK pathway in different tissues remain to be identified. We have developed and applied a PCR-based subtraction strategy to identify novel genes that are differentially expressed at specific developmental points in hematopoiesis. We show that one such gene, hematopoietic progenitor kinase 1 (hpk1), encodes a serine/threonine kinase sharing similarity with the kinase domain of Ste20. HPK1 specifically activates the SAPK/JNK pathway after transfection into COS1 cells, but does not stimulate the p38/RK or mitogen-activated ERK signaling pathways. Activation of SAPK requires a functional HPK1 kinase domain and HPK1 signals via the SH3-containing mixed lineage kinase MLK-3 and the known SAPK activator SEK1. HPK1 therefore provides an example of a cell type-specific input into the SAPK/JNK pathway. The developmental specificity of its expression suggests a potential role in hematopoietic lineage decisions and growth regulation. Images PMID:9003777

  3. Geometric intrinsic symmetries

    SciTech Connect

    Gozdz, A. Szulerecka, A.; Pedrak, A.

    2013-08-15

    The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.

  4. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells

    SciTech Connect

    Chang, C.-H.; Yu, F.-Y.; Wang, L.-T.; Lin, Y.-S.; Liu, B.-H.

    2009-06-15

    Mycotoxin citrinin (CTN) is commonly found in foods and feeds that are contaminated/inoculated with Penicillium, Aspergillus and Monascus species. The exposure of human embryonic kidney (HEK293) and HeLa cells to CTN resulted in a dose-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), ERK1/2 and JNK. In HEK293 cultures, the administering of CTN increased both the mRNA and protein levels of egr-1, c-fos and c-jun genes; additionally, the ERK1/2 pathway contributed to the upregulation of Egr-1 and c-Fos protein expression. CTN treatment also induced the transcription activity of Egr-1 and AP-1 proteins, as evidenced by luciferase reporter assays. Bioinformatic analyses indicated two genes Gadd45{beta} and MMP3 have Egr-1 and AP-1 response elements in their promoters, respectively. Furthermore, co-exposure of HEK293 cells to CTN and MAPK pathway inhibitors demonstrated that CTN increased the levels of Gadd45{beta} mRNA through ERK1/2 signaling pathway and up-regulated the MMP3 transcripts majorly via JNK pathway. Finally, CTN-triggered caspase 3 activity was significantly reduced in the presence of MAPK inhibitors. Our results suggest that CTN positively regulates ERK1/2 and JNK pathways as well as their downstream effectors in human cells; activated MAPK pathways are also involved in CTN-induced apoptosis.

  5. Pathway modeling of microarray data: a case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP).

    PubMed

    Ovacik, Meric A; Sen, Banalata; Euling, Susan Y; Gaido, Kevin W; Ierapetritou, Marianthi G; Androulakis, Ioannis P

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data. PMID:20850466

  6. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence

    PubMed Central

    Thompson, Keyata N.; Whipple, Rebecca A.; Yoon, Jennifer R.; Lipsky, Michael; Charpentier, Monica S.; Boggs, Amanda E.; Chakrabarti, Kristi R.; Bhandary, Lekhana; Hessler, Lindsay K.; Martin, Stuart S.; Vitolo, Michele I.

    2015-01-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN−/−KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  7. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence.

    PubMed

    Thompson, Keyata N; Whipple, Rebecca A; Yoon, Jennifer R; Lipsky, Michael; Charpentier, Monica S; Boggs, Amanda E; Chakrabarti, Kristi R; Bhandary, Lekhana; Hessler, Lindsay K; Martin, Stuart S; Vitolo, Michele I

    2015-11-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN-/-KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  8. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity.

    PubMed

    Ito, Hisashi; Tanaka, Ayumi

    2014-03-01

    Organisms generate an enormous number of metabolites; however, the mechanisms by which a new metabolic pathway is acquired are unknown. To elucidate the importance of promiscuous enzyme activity for pathway evolution, the catalytic and substrate specificities of Chl biosynthetic enzymes were examined. In green plants, Chl a and Chl b are interconverted by the Chl cycle: Chl a is hydroxylated to 7-hydroxymethyl chlorophyll a followed by the conversion to Chl b, and both reactions are catalyzed by chlorophyllide a oxygenase. Chl b is reduced to 7-hydroxymethyl chlorophyll a by Chl b reductase and then converted to Chl a by 7-hydroxymethyl chlorophyll a reductase (HCAR). A phylogenetic analysis indicated that HCAR evolved from cyanobacterial 3,8-divinyl chlorophyllide reductase (DVR), which is responsible for the reduction of an 8-vinyl group in the Chl biosynthetic pathway. In addition to vinyl reductase activity, cyanobacterial DVR also has Chl b reductase and HCAR activities; consequently, three of the four reactions of the Chl cycle already existed in cyanobacteria, the progenitor of the chloroplast. During the evolution of cyanobacterial DVR to HCAR, the HCAR activity, a promiscuous reaction of cyanobacterial DVR, became the primary reaction. Moreover, the primary reaction (vinyl reductase activity) and some disadvantageous reactions were lost, but the neutral promiscuous reaction (NADH dehydrogenase) was retained in both DVR and HCAR. We also show that a portion of the Chl c biosynthetic pathway already existed in cyanobacteria. We discuss the importance of dynamic changes in promiscuous activity and of the latent pathways for metabolic evolution.

  9. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis

    PubMed Central

    Bianchini, A.A.C.; Petroni, T.F.; Fedatto, P.F.; Bianchini, R.R.; Venancio, E.J.; Itano, E.N.; Ono, M.A.

    2009-01-01

    The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50) hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p ≤ 0.05). This is the first report of dog alternative complement pathway activation by P. brasiliensis and suggests that it may play a protective role in canine paracoccidioidomycosis. PMID:24031350

  10. The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Bahn, Yong-Sun

    2009-09-01

    Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC (Protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The Ca(2+)/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

  11. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting

    PubMed Central

    Knight, Thomas; Irving, Julie Anne Elizabeth

    2014-01-01

    Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups. PMID:25009801

  12. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway.

    PubMed

    Walsh, Jessica J; Friedman, Allyson K; Sun, Haosheng; Heller, Elizabeth A; Ku, Stacy M; Juarez, Barbara; Burnham, Veronica L; Mazei-Robison, Michelle S; Ferguson, Deveroux; Golden, Sam A; Koo, Ja Wook; Chaudhury, Dipesh; Christoffel, Daniel J; Pomeranz, Lisa; Friedman, Jeffrey M; Russo, Scott J; Nestler, Eric J; Han, Ming-Hu

    2014-01-01

    Mechanisms controlling release of brain-derived neurotrophic factor (BDNF) in the mesolimbic dopamine reward pathway remain unknown. We report that phasic optogenetic activation of this pathway increases BDNF amounts in the nucleus accumbens (NAc) of socially stressed mice but not of stress-naive mice. This stress gating of BDNF signaling is mediated by corticotrophin-releasing factor (CRF) acting in the NAc. These results unravel a stress context-detecting function of the brain's mesolimbic circuit.

  13. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signalling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular the precise mapping of its sites of activity, remain unclear. To address this issue, we have generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jκ binding sites. Here we show that this transgenic line, we named NAS for Notch Activity Sensor, displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jκ deficient background indicating that it indeed requires Notch/RBP-Jκ signalling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signalling pathway. PMID:16708386

  14. Intrinsically Disordered Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-05-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.

  15. Intrinsically disordered energy landscapes.

    PubMed

    Chebaro, Yassmine; Ballard, Andrew J; Chakraborty, Debayan; Wales, David J

    2015-01-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294

  16. Inflammation-associated activation of coagulation and immune regulation by the protein C pathway.

    PubMed

    Weiler, Hartmut

    2014-05-01

    The inflammation-induced activation of the protein C pathway provides negative feedback inhibition of coagulation and exerts coagulation-independent anti-inflammatory and cytoprotective effects. The balance between these activities of aPC modulates the outcome of diverse inflammatory diseases such as encephalitis, diabetes, and sepsis; and is affected by naturally occurring aPC-resistance of coagulation factor V Leiden.

  17. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids.

    PubMed

    Guo, Jing; Zheng, Lihua; Chen, Li; Luo, Ning; Yang, Weihong; Qu, Xiaoyan; Liu, Mingmin; Cheng, Zhongping

    2015-01-01

    Uterine fibroids (UF) are the most common benign tumor of the female reproductive tract. The aim of this study was to explore the role of lipopolysaccharide (LPS)-induced activation of TLR4/NF-κB signaling pathway on stromal fibroblasts in the pathogenesis of UF. Here, TLR4/NF-κB signaling pathway was more activated in UF, and UF cells (UFC) and UF derived fibroblasts (TAF) than in smooth muscle tissues, smooth muscle cell (SMC) and myometrial fibroblasts (fib) respectively. After lipopolysaccharide (LPS) stimulation, the activity of fib was enhanced, characterized by the increased expression of fibroblast activation protein (FAP), and increased secretion of collagen I and transforming growth factor-β (TGF-β). Moreover, TLR4 inhibitor (VIPER) and siTLR4 can represses LPS-activated fibroblasts and TLR4/NF-κB signaling transduction pathways in fib and UFC cells. Co-cultured with LPS-activated fibroblast enhanced fibroblast activation and TLR4/NF-κB signaling. In conclusion, LPS treatment activated TLR4/NF-κB signaling pathway on fibroblasts, which may involve in the development of UF. Our study indicated reproductive tract infection may be associated with fibroid pathogenesis through TLR4/NF-κB signaling. Targeting NF-κB with inhibitors may hold promises of treating uterine fibroid.

  18. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids.

    PubMed

    Guo, Jing; Zheng, Lihua; Chen, Li; Luo, Ning; Yang, Weihong; Qu, Xiaoyan; Liu, Mingmin; Cheng, Zhongping

    2015-01-01

    Uterine fibroids (UF) are the most common benign tumor of the female reproductive tract. The aim of this study was to explore the role of lipopolysaccharide (LPS)-induced activation of TLR4/NF-κB signaling pathway on stromal fibroblasts in the pathogenesis of UF. Here, TLR4/NF-κB signaling pathway was more activated in UF, and UF cells (UFC) and UF derived fibroblasts (TAF) than in smooth muscle tissues, smooth muscle cell (SMC) and myometrial fibroblasts (fib) respectively. After lipopolysaccharide (LPS) stimulation, the activity of fib was enhanced, characterized by the increased expression of fibroblast activation protein (FAP), and increased secretion of collagen I and transforming growth factor-β (TGF-β). Moreover, TLR4 inhibitor (VIPER) and siTLR4 can represses LPS-activated fibroblasts and TLR4/NF-κB signaling transduction pathways in fib and UFC cells. Co-cultured with LPS-activated fibroblast enhanced fibroblast activation and TLR4/NF-κB signaling. In conclusion, LPS treatment activated TLR4/NF-κB signaling pathway on fibroblasts, which may involve in the development of UF. Our study indicated reproductive tract infection may be associated with fibroid pathogenesis through TLR4/NF-κB signaling. Targeting NF-κB with inhibitors may hold promises of treating uterine fibroid. PMID:26617709

  19. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids

    PubMed Central

    Guo, Jing; Zheng, Lihua; Chen, Li; Luo, Ning; Yang, Weihong; Qu, Xiaoyan; Liu, Mingmin; Cheng, Zhongping

    2015-01-01

    Uterine fibroids (UF) are the most common benign tumor of the female reproductive tract. The aim of this study was to explore the role of lipopolysaccharide (LPS)-induced activation of TLR4/NF-κB signaling pathway on stromal fibroblasts in the pathogenesis of UF. Here, TLR4/NF-κB signaling pathway was more activated in UF, and UF cells (UFC) and UF derived fibroblasts (TAF) than in smooth muscle tissues, smooth muscle cell (SMC) and myometrial fibroblasts (fib) respectively. After lipopolysaccharide (LPS) stimulation, the activity of fib was enhanced, characterized by the increased expression of fibroblast activation protein (FAP), and increased secretion of collagen I and transforming growth factor-β (TGF-β). Moreover, TLR4 inhibitor (VIPER) and siTLR4 can represses LPS-activated fibroblasts and TLR4/NF-κB signaling transduction pathways in fib and UFC cells. Co-cultured with LPS-activated fibroblast enhanced fibroblast activation and TLR4/NF-κB signaling. In conclusion, LPS treatment activated TLR4/NF-κB signaling pathway on fibroblasts, which may involve in the development of UF. Our study indicated reproductive tract infection may be associated with fibroid pathogenesis through TLR4/NF-κB signaling. Targeting NF-κB with inhibitors may hold promises of treating uterine fibroid. PMID:26617709

  20. Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway.

    PubMed

    Jeoung, D I; Oehlen, L J; Cross, F R

    1998-01-01

    The Saccharomyces cerevisiae cell cycle is arrested in G1 phase by the mating factor pathway. Genetic evidence has suggested that the G1 cyclins Cln1, Cln2, and Cln3 are targets of this pathway whose inhibition results in G1 arrest. Inhibition of Cln1- and Cln2-associated kinase activity by the mating factor pathway acting through Far1 has been described. Here we report that Cln3-associated kinase activity is inhibited by mating factor treatment, with dose response and timing consistent with involvement in cell cycle arrest. No regulation of Cln3-associated kinase was observed in a fus3 kss1 strain deficient in mating factor pathway mitogen-activated protein (MAP) kinases. Inhibition occurs mainly at the level of specific activity of Cln3-Cdc28 complexes. Inhibition of the C-terminally truncated Cln3-1-associated kinase is not observed; such truncations were previously identified genetically as causing resistance to mating factor-induced cell cycle arrest. Regulation of Cln3-associated kinase specific activity by mating factor treatment requires Far1. Overexpression of Far1 restores inhibition of C-terminally truncated Cln3-1-associated kinase activity. G2/M-arrested cells are unable to regulate Cln3-associated kinase, possibly because of cell cycle regulation of Far1 abundance. Inhibition of Cln3-associated kinase activity by the mating factor pathway may allow this pathway to block the earliest step in normal cell cycle initiation, since Cln3 functions as the most upstream G1-acting cyclin, activating transcription of the G1 cyclins CLN1 and CLN2 as well as of the S-phase cyclins CLB5 and CLB6. PMID:9418890

  1. ΔNp63 activates the Fanconi anemia DNA repair pathway and limits the efficacy of cisplatin treatment in squamous cell carcinoma

    PubMed Central

    Bretz, Anne Catherine; Gittler, Miriam P.; Charles, Joël P.; Gremke, Niklas; Eckhardt, Ines; Mernberger, Marco; Mandic, Robert; Thomale, Jürgen; Nist, Andrea; Wanzel, Michael; Stiewe, Thorsten

    2016-01-01

    TP63, a member of the p53 gene family gene, encodes the ΔNp63 protein and is one of the most frequently amplified genes in squamous cell carcinomas (SCC) of the head and neck (HNSCC) and lungs (LUSC). Using an epiallelic series of siRNAs with intrinsically different knockdown abilities, we show that the complete loss of ΔNp63 strongly impaired cell proliferation, whereas partial ΔNp63 depletion rendered cells hypersensitive to cisplatin accompanied by an accumulation of DNA damage. Expression profiling revealed wide-spread transcriptional regulation of DNA repair genes and in particular Fanconi anemia (FA) pathway components such as FANCD2 and RAD18 - known to be crucial for the repair of cisplatin-induced interstrand crosslinks. In SCC patients ΔNp63 levels significantly correlate with FANCD2 and RAD18 expression confirming ΔNp63 as a key activator of the FA pathway in vivo. Mechanistically, ΔNp63 bound an upstream enhancer of FANCD2 inactive in primary keratinocytes but aberrantly activated by ΔNp63 in SCC. Consistently, depletion of FANCD2 sensitized to cisplatin similar to depletion of ΔNp63. Together, our results demonstrate that ΔNp63 directly activates the FA pathway in SCC and limits the efficacy of cisplatin treatment. Targeting ΔNp63 therefore would not only inhibit SCC proliferation but also sensitize tumors to chemotherapy. PMID:26819410

  2. Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells

    SciTech Connect

    Hanzel, Cecilia Eliana; Verstraeten, Sandra Viviana

    2009-04-01

    Thallium (Tl) is a highly toxic metal though yet its mechanisms are poorly understood. Previously, we demonstrated that rat pheochromocytoma (PC12) cells exposure to thallous (Tl(I)) or thallic (Tl(III)) cations leads to mitochondrial damage and reduced cell viability. In the present work we comparatively characterized the possible pathways involved in Tl(I)- and Tl(III)- (10-100 {mu}M) mediated decrease in PC12 cells viability. We observed that these cations do not cause cell necrosis but significantly increased the number of cells with apoptotic features. Both cations lead to Bax oligomerization and caused apoptosis inducing factor (AIF), endonuclease G (Endo G), and cytochrome c release from mitochondria, but they did not activate caspase dependent DNAse (CAD). Tl(I)- and Tl(III)-dependent caspases 9 and 3 activation followed similar kinetics, with maximal effects at 18 h of incubation. In addition, Tl(I) promoted phosphatidylserine (PS) exposure. Tl(III) induced 2- and 18-fold increase in Fas content and caspase 8 activity, respectively. Together, experimental results show that Tl(I) and Tl(III) induce PC12 cells apoptosis, although differential pathways are involved. While Tl(I)-mediated cell apoptosis was mainly associated with mitochondrial damage, Tl(III) showed a mixed effect triggering both the intrinsic and extrinsic pathways of apoptosis. These findings contribute to a better understanding of the mechanisms underlying Tl-induced loss of cell viability in PC12 cells.

  3. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    PubMed

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-01-01

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo. PMID:26024507

  4. Molecular pathways activation in coronary artery bypass surgery: which role for pump avoidance?

    PubMed

    Parolari, Alessandro; Poggio, Paolo; Myasoedova, Veronika; Songia, Paola; Pilozzi, Alberto; Alamanni, Francesco; Tremoli, Elena

    2016-01-01

    In this study, we review current knowledge regarding molecular pathways activation and their possible mechanisms in the perioperative period of coronary artery bypass surgery (CABG). We also highlight the role of off-pump CABG as a possible way to better understand these biological changes.We show that, after both on-pump and off-pump CABG, there is a marked and protracted activation of several molecular pathways indicating increased inflammatory status, haemostasis activation, as well as increased oxidative stress and unfavourable endothelial milieu. These changes persist for days and even weeks after surgery. Interestingly, a relatively limited number of these pathways show a more pronounced activation in case of cardiopulmonary bypass use, and these markers are mainly associated with oxidative stress activation; on the contrary, the vast majority of the pathways has a similar course both in on and off-pump procedures. Surgical stress accounts for more protracted and marked molecular pathway perturbations overall, being the effect of cardiopulmonary, if any, limited to the very early hours after surgery. The near future of the translational research in coronary bypass surgery is to develop therapeutic strategies aimed at reducing this response, that is largely unrelated to cardiopulmonary bypass use, in order to reduce perioperative complications and to speed up patients' recovery.

  5. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    PubMed

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-05-29

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.

  6. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP)/PAC1HOP1 Receptor Activation Coordinates Multiple Neurotrophic Signaling Pathways

    PubMed Central

    May, Victor; Lutz, Eve; MacKenzie, Christopher; Schutz, Kristin C.; Dozark, Kate; Braas, Karen M.

    2010-01-01

    MAPK and Akt pathways are predominant mediators of trophic signaling for many neuronal systems. Among the vasoactive intestinal peptide/secretin/glucagon family of related peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) binding to specific PAC1 receptor isoforms can engage multiple signaling pathways and promote neuroprotection through mechanisms that are not well understood. Using a primary sympathetic neuronal system, the current studies demonstrate that PACAP activation of PAC1HOP1 receptors engages both MAPK and Akt neurotrophic pathways in an integrated program to facilitate neuronal survival after growth factor withdrawal. PACAP not only stimulated prosurvival ERK1/2 and ERK5 activation but also abrogated SAPK/JNK and p38 MAPK signaling in parallel. In contrast to the potent and rapid effects of PACAP in ERK1/2 phosphorylation, PACAP stimulated Akt phosphorylation in a late phase of PAC1HOP1 receptor signaling. From inhibitor and immunoprecipitation analyses, the PACAP/PAC1HOP1 receptor-mediated Akt responses did not represent transactivation mechanisms but appeared to depend on Gαq/phosphatidylinositol 3-kinase γ activity and vesicular internalization pathways. Phosphatidylinositol 3-kinase γ-selective inhibitors blocked PACAP-stimulated Akt phosphorylation in primary neuronal cultures and in PAC1HOP1-overexpressing cell lines; RNA interference-mediated knockdown of the receptor effectors attenuated PACAP-mediated Akt activation. Similarly, perturbation of endocytic pathways also blocked Akt phosphorylation. Between ERK and Akt pathways, PACAP-stimulated Akt signaling was the primary cascade that attenuated cultured neuron apoptosis after growth factor withdrawal. The partitioning of PACAP-mediated Akt signaling in endosomes may be a key mechanism contributing to the high spatial and temporal specificity in signal transduction necessary for survival pathways. PMID:20093365

  7. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo

    PubMed Central

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L.; Dawid, Igor B.

    2009-01-01

    Summary We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation. PMID:19793890

  8. Supercritical carbon dioxide extraction of aromatic turmerone from Curcuma longa Linn. induces apoptosis through reactive oxygen species-triggered intrinsic and extrinsic pathways in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Cheng, Shao-Bin; Wu, Li-Chen; Hsieh, Yun-Chih; Wu, Chi-Hao; Chan, Yu-Ju; Chang, Li-Hsun; Chang, Chieh-Ming J; Hsu, Shih-Lan; Teng, Chieh-Lin; Wu, Chun-Chi

    2012-09-26

    The mechanisms underlying the antiproliferative and antitumor activities of aromatic turmerone (ar-turmerone), a volatile turmeric oil isolated from Curcuma longa Linn., have been largely unknown. In this study, 86% pure ar-turmerone was extracted by supercritical carbon dioxide and liquid-solid chromatography and its potential effects and molecular mechanisms on cell proliferation studied in human hepatocellular carcinoma cell lines. Ar-turmerone exhibited significant antiproliferative activity, with 50% inhibitory concentrations of 64.8 ± 7.1, 102.5 ± 11.5, and 122.2 ± 7.6 μg/mL against HepG2, Huh-7, and Hep3B cells, respectively. Ar-turmerone-induced apoptosis, confirmed by increased annexin V binding and DNA fragmentation, was accompanied by reactive oxygen species (ROS) production, mitochondrial membrane potential dissipation, increased Bax and p53 up-regulated modulator of apoptosis (PUMA) levels, Bax mitochondrial translocation, cytochrome c release, Fas and death receptor 4 (DR4) augmentation, and caspase-3, -8, and -9 activation. Exposure to caspase inhibitors, Fas-antagonistic antibody, DR4 antagonist, and furosemide (a blocker of Bax translocation) effectively abolished ar-turmerone-triggered apoptosis. Moreover, ar-turmerone stimulated c-Jun N-terminal kinase (JNK) and extracellular signal-related kinase (ERK) phosphorylation and activation; treatment with JNK and ERK inhibitors markedly reduced PUMA, Bax, Fas, and DR4 levels and reduced apoptosis but not ROS generation. Furthermore, antioxidants attenuated ar-turmerone-mediated ROS production; mitochondrial dysfunction; JNK and ERK activation; PUMA, Bax, Fas, and DR4 expression; and apoptosis. Taken together, these results suggest that ar-turmerone-induced apoptosis in HepG2 cells is through ROS-mediated activation of ERK and JNK kinases and triggers both intrinsic and extrinsic caspase activation, leading to apoptosis. On the basis of these observations, ar-turmerone deserves further investigation

  9. Supercritical carbon dioxide extraction of aromatic turmerone from Curcuma longa Linn. induces apoptosis through reactive oxygen species-triggered intrinsic and extrinsic pathways in human hepatocellular carcinoma HepG2 cells.

    PubMed

    Cheng, Shao-Bin; Wu, Li-Chen; Hsieh, Yun-Chih; Wu, Chi-Hao; Chan, Yu-Ju; Chang, Li-Hsun; Chang, Chieh-Ming J; Hsu, Shih-Lan; Teng, Chieh-Lin; Wu, Chun-Chi

    2012-09-26

    The mechanisms underlying the antiproliferative and antitumor activities of aromatic turmerone (ar-turmerone), a volatile turmeric oil isolated from Curcuma longa Linn., have been largely unknown. In this study, 86% pure ar-turmerone was extracted by supercritical carbon dioxide and liquid-solid chromatography and its potential effects and molecular mechanisms on cell proliferation studied in human hepatocellular carcinoma cell lines. Ar-turmerone exhibited significant antiproliferative activity, with 50% inhibitory concentrations of 64.8 ± 7.1, 102.5 ± 11.5, and 122.2 ± 7.6 μg/mL against HepG2, Huh-7, and Hep3B cells, respectively. Ar-turmerone-induced apoptosis, confirmed by increased annexin V binding and DNA fragmentation, was accompanied by reactive oxygen species (ROS) production, mitochondrial membrane potential dissipation, increased Bax and p53 up-regulated modulator of apoptosis (PUMA) levels, Bax mitochondrial translocation, cytochrome c release, Fas and death receptor 4 (DR4) augmentation, and caspase-3, -8, and -9 activation. Exposure to caspase inhibitors, Fas-antagonistic antibody, DR4 antagonist, and furosemide (a blocker of Bax translocation) effectively abolished ar-turmerone-triggered apoptosis. Moreover, ar-turmerone stimulated c-Jun N-terminal kinase (JNK) and extracellular signal-related kinase (ERK) phosphorylation and activation; treatment with JNK and ERK inhibitors markedly reduced PUMA, Bax, Fas, and DR4 levels and reduced apoptosis but not ROS generation. Furthermore, antioxidants attenuated ar-turmerone-mediated ROS production; mitochondrial dysfunction; JNK and ERK activation; PUMA, Bax, Fas, and DR4 expression; and apoptosis. Taken together, these results suggest that ar-turmerone-induced apoptosis in HepG2 cells is through ROS-mediated activation of ERK and JNK kinases and triggers both intrinsic and extrinsic caspase activation, leading to apoptosis. On the basis of these observations, ar-turmerone deserves further investigation

  10. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways

    PubMed Central

    2011-01-01

    Background Origanum vulgare Linn has traditionally been used in the treatment of urolithiasis. Therefore, we investigated the crude extract of Origanum vulgare for possible antiurolithic effect, to rationalize its medicinal use. Methods The crude aqueous-methanolic extract of Origanum vulgare (Ov.Cr) was studied using the in vitro and in vivo methods. In the in vitro experiments, supersaturated solution of calcium and oxalate, kidney epithelial cell lines (MDCK) and urinary bladder of rabbits were used, whereas, in the in vivo studies, rat model of urolithiasis was used for the study of preventive and curative effect. Results In the in vitro experiments, Ov.Cr exhibited a concentration-dependent (0.25-4 mg/ml) inhibitory effect on the slope of nucleation and aggregation and also decreased the number of calcium oxalate monohydrate crystals (COM) produced in calcium oxalate metastable solutions. It also showed concentration-dependent antioxidant effect against DPPH free radical and lipid peroxidation induced in rat kidney tissue homogenate. Ov.Cr reduced the cell toxicity using MTT assay and LDH release in renal epithelial cells (MDCK) exposed to oxalate (0.5 mM) and COM (66 μg/cm2) crystals. Ov.Cr relaxed high K+ (80 mM) induced contraction in rabbit urinary bladder strips, and shifted the calcium concentration-response curves (CRCs) towards right with suppression of the maximum response similar to that of verapamil, a standard calcium channel blocker. In male Wistar rats receiving lithogenic treatment comprising of 0.75% ethylene glycol in drinking water given for 3 weeks along with ammonium chloride (NH4Cl) for the first 5 days, Ov.Cr treatment (10-30 mg/kg) prevented as well as reversed toxic changes including loss of body weight, polyurea, crystalluria, oxaluria, raised serum urea and creatinine levels and crystal deposition in kidneys compared to their respective controls. Conclusion These data indicating the antiurolithic activity in Ov.Cr, possibly mediated

  11. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  12. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    PubMed Central

    Tarayrah, Lama; Li, Yuping; Gan, Qiang; Chen, Xin

    2015-01-01

    ABSTRACT Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid) maintains germline stem cell (GSC) mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities. PMID:26490676

  13. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases

    PubMed Central

    Yamauchi, Junji; Chan, Jonah R.; Shooter, Eric M.

    2004-01-01

    Neurotrophins are recognized widely as essential factors in the developing nervous system. Previously, we demonstrated that neurotrophin 3 activation of TrkC inhibits Schwann cell myelination and enhances the migration of primary Schwann cells through the signaling pathway regulated by the Rho GTPases Rac1 and Cdc42. Here, we show that neurotrophins activate divergent signaling pathways to promote or inhibit Schwann cell migration. Endogenous brain-derived neurotrophic factor acting through p75NTR inhibits Schwann cell migration dramatically by Src kinase-dependent activation of the guanine-nucleotide exchange factor Vav2 and RhoA. Together, these results suggest that neurotrophins and their receptors differentially regulate Schwann cell migration through the signaling pathways that depend on Rho GTPases. PMID:15161978

  14. Galactose tolerance studies of individuals with reduced galactose pathway activity.

    PubMed Central

    Mellman, W J; Rawnsley, B E; Nichols, C W; Needelman, B; Mennuti, M T; Malone, J; Tedesco, T A

    1975-01-01

    The galactose tolerance of individuals with mutant genotypes affecting the activities of galactokinase (GALK) and galactose-1-phosphate uridylyltransferase (GALT) was examined. Genotypes studied were heterozygotes for the GALK and GALT forms of galactosemia, the Duarte-variant GALT, and Philadelphia-variant GALK alleles. The measurements used were urinary concentration of galactose during pregnancy in adults and in infants from the newborn period through the first 5 months of life; the rate of elimination of an intravenous infusion of galactose; and slit-lamp examination of the lens for evidence of cataracts. No unusual urinary excretions of galactose were noted in any of the age groups studied. Intravenous galactose tolerance tests were normal in all but two women, a mother and daughter heterozygous for the GALK-deficient form of galactosemia (GALKG/GALKA). Six other GALKG/GALKA subjects had normal tolerance studies. The intrafamilial consistency and interfamilial differences in the galactose tolerance of GALKG/GALKA individuals suggest heterogeneity of the genes responsible for the GALK-deficient form of galactosemia. Although subclinical cataracts were observed in several individuals, their significance relative to the mutant genotype cannot be resolved with the available data. PMID:173185

  15. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis

    PubMed Central

    Srivastava, Shikha; Somasagara, Ranganatha R.; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  16. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis.

    PubMed

    Srivastava, Shikha; Somasagara, Ranganatha R; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  17. In Vivo Imaging of Hedgehog Pathway Activation with a Nuclear Fluorescent Reporter

    PubMed Central

    Mich, John K.; Payumo, Alexander Y.; Rack, Paul G.; Chen, James K.

    2014-01-01

    The Hedgehog (Hh) pathway is essential for embryonic development and tissue regeneration, and its dysregulation can lead to birth defects and tumorigenesis. Understanding how this signaling mechanism contributes to these processes would benefit from an ability to visualize Hedgehog pathway activity in live organisms, in real time, and with single-cell resolution. We report here the generation of transgenic zebrafish lines that express nuclear-localized mCherry fluorescent protein in a Gli transcription factor-dependent manner. As demonstrated by chemical and genetic perturbations, these lines faithfully report Hedgehog pathway state in individual cells and with high detection sensitivity. They will be valuable tools for studying dynamic Gli-dependent processes in vertebrates and for identifying new chemical and genetic regulators of the Hh pathway. PMID:25068273

  18. Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli

    PubMed Central

    2014-01-01

    Background Cysteine, a sulfur-containing amino acid, plays an important role in a variety of cellular functions such as protein biosynthesis, methylation, and polyamine and glutathione syntheses. In trypanosomatids, glutathione is conjugated with spermidine to form the specific antioxidant thiol trypanothione (T[SH]2) that plays a central role in maintaining intracellular redox homeostasis and providing defence against oxidative stress. Methods We cloned and characterised genes coding for a cystathionine β-synthase (CβS) and cysteine synthase (CS), key enzymes of the transsulfuration and assimilatory pathways, respectively, from the hemoflagellate protozoan parasite Trypanosoma rangeli. Results Our results show that T. rangeli CβS (TrCβS), similar to its homologs in T. cruzi, contains the catalytic domain essential for enzymatic activity. Unlike the enzymes in bacteria, plants, and other parasites, T. rangeli CS lacks two of the four lysine residues (Lys26 and Lys184) required for activity. Enzymatic studies using T. rangeli extracts confirmed the absence of CS activity but confirmed the expression of an active CβS. Moreover, CβS biochemical assays revealed that the T. rangeli CβS enzyme also has serine sulfhydrylase activity. Conclusion These findings demonstrate that the RTS pathway is active in T. rangeli, suggesting that this may be the only pathway for cysteine biosynthesis in this parasite. In this sense, the RTS pathway appears to have an important functional role during the insect stage of the life cycle of this protozoan parasite. PMID:24761813

  19. Pheromone-Induced Morphogenesis Improves Osmoadaptation Capacity by Activating the HOG MAPK Pathway**

    PubMed Central

    Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro

    2013-01-01

    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707

  20. Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin.

    PubMed

    Wan, Jinrong; Zhang, Shuqun; Stacey, Gary

    2004-03-01

    SUMMARY Chitin, a polysaccharide composed of beta-1-->4-linked N-acetyl-d-glucosamine, has been shown or implicated as a signal in plant defence and development. However, the key components of chitin perception and downstream signalling in non-leguminous plants are largely unknown. In recent years, mitogen-activated protein kinases (MAPKs) and their cascades were shown to transduce various extracellular stimuli into internal cellular responses. To investigate the possible involvement of MAPKs in chitin signalling in plants, the model plant Arabidopsis thaliana was treated with crab-shell chitin and also with the purified chitin oligomers (degree of polymerization, d.p. = 2-8). Both mRNA levels and kinase activity of two MAPK genes, AtMPK6 and AtMPK3, were monitored after treatment. The mRNA of AtMPK3 was strongly up-regulated by both chitin and its larger oligomers (d.p. = 6-8), but the mRNA of AtMPK6 did not appear to be regulated by these treatments. However, the kinase activity of both MAPKs was induced by chitin and the larger oligomers (d.p. = 6-8), with AtMPK6 much more strongly induced. In addition, WRKY22, WRKY29, WRKY33 and WRKY53, which encode four WRKY transcription factors that recognize TTGAC(C/T) W-box elements in promoters of numerous plant defence-related genes, were up-regulated by these treatments. WRKY33 and WRKY53 expression was induced by the transgenic expression of the tobacco MAPKK NtMEK2 active mutant NtMEK2(DD), suggesting a potential role for these WRKY transcription factors in relaying the signal generated from the MAPK cascade to downstream genes. These data suggest that AtMPK6/AtMPK3 and WRKY transcription factors (such as WRKY33 and WRKY53) may be important components of a pathway involved in chitin signalling in Arabidopsis plants.

  1. Macroscopic quantum tunneling and thermal activation in a small mesa structured Bi2Sr2CaCu2Oy intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kitano, H.; Ota, K.; Hamada, K.; Takemura, R.; Ohmaki, M.; Maeda, A.; Suzuki, M.

    2009-03-01

    A nanometer-thick small mesa consiting of only two or three Bi2Sr2CaCu2Oy intrinsic Josephson junctions (IJJs) is studied through the switching current distribution measurements down to 0.4 K. Experimental results clearly show that the first switching events from the zero-voltage state for 1 K < T < 4 K are successfully described by a conventional thermal activation (TA) theory for a single Josephson junction, and that they become independent of temperature below T* ~ 0.7 K. We observe the microwave-induced peak in the switching distribution at 0.4 K, which is induced by the microwave irradiation at 55 GHz. These results strongly suggest that the system crossovers to macroscopic quantum tunneling (MQT) regime below T*, which is as high as the previously reported value for a stacked IJJs with several tens of junctions, in contrast to the recent result on a similar mesa-structured surface IJJ.

  2. Erratum to: Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-11-01

    The BMB Reports would like to correct in the reference of BMB Rep. 48(9), 531-536 titled "Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade". The ACKNOWLEDGEMENTS should be corrected as follows, "This work was supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2012R1A1A2039992, and 2012M3A9C7050184) and the Brain Busan 21 Project." and not "This work was partially supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2003-003-C00110, and 2012M3A9C7050184) and the Brain Busan 21 Project." The online version reflects this change. PMID:26612629

  3. Erratum to: Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-11-01

    The BMB Reports would like to correct in the reference of BMB Rep. 48(9), 531-536 titled "Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade". The ACKNOWLEDGEMENTS should be corrected as follows, "This work was supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2012R1A1A2039992, and 2012M3A9C7050184) and the Brain Busan 21 Project." and not "This work was partially supported by the National Research Foundation of Korea (NRF-2010-0009086, NRF-2003-003-C00110, and 2012M3A9C7050184) and the Brain Busan 21 Project." The online version reflects this change.

  4. Human cytokines activate JAK–STAT signaling pathway in porcine ocular tissue

    PubMed Central

    Fasler-Kan, Elizaveta; Barteneva, Natasha S; Ketterer, Sylvia; Wunderlich, Kerstin; Reschner, Anca; Nurzhanova, Asil; Flammer, Josef; Huwyler, Jörg; Meyer, Peter

    2013-01-01

    Background The JAK/STAT (Janus Tyrosine Kinase, Signal Transducers and Activators of Transcription) pathway is associated with cytokine or growth factor receptors and it is critical for growth control, developmental regulation and homeostasis. The use of porcine ocular cells as putative xenotransplants appears theoretically possible. The aim of this study was to investigate the response of various porcine ocular cells in vitro to human cytokines in regard to the activation of JAK-STAT signaling pathways. Methods Porcine lens epithelial cells, pigmented iris epithelial cells and pigmented ciliary body cells were used in this study. These cells were isolated from freshly enucleated porcine eyes by enzymatic digestion. Cultured cells between passages 3–8 were used in all experiments. Electromobility shift assay (EMSA), proliferation assay, immunofluorescence staining and flow cytometry were used to evaluate the JAK-STAT signaling pathway in these cells. Results JAK/STAT signaling pathways could be activated in porcine pigmented epithelial ciliary body cells, in pigmented iris epithelial cells and in lens epithelial cells in response to porcine and human interferons and cytokines. All cells showed very strong STAT1 activation upon stimulation with porcine interferon-gamma. Porcine ocular cells also respond to human cytokines; IFN-alpha induced strong activation of STAT1 in EMSA, flow cytometry and immunofluorescence experiments whereas activation of STAT3 was less strong in EMSA, but strong in flow cytometry and immunofluorescence. Human recombinant IL-6 activated STAT3 and human IL-4 activated STAT6. With the help of immunofluorescence assay and flow cytometry we observed nuclear localization of STAT proteins after activation of porcine ocular cells with cytokines and interferons. Human IFN-α had an inhibitory effect on porcine ocular cells in proliferation assays. Conclusion Our study demonstrated that some types of human cytokines and interferon activate

  5. Quantifying signaling pathway activation to monitor the quality of induced pluripotent stem cells.

    PubMed

    Makarev, Eugene; Fortney, Kristen; Litovchenko, Maria; Braunewell, Karl H; Zhavoronkov, Alex; Atala, Anthony

    2015-09-15

    Many attempts have been made to evaluate the safety and potency of human induced pluripotent stem cells (iPSCs) for clinical applications using transcriptome data, but results so far have been ambiguous or even contradictory. Here, we characterized stem cells at the pathway level, rather than at the gene level as has been the focus of previous work. We meta-analyzed publically-available gene expression data sets and evaluated signaling and metabolic pathway activation profiles for 20 human embryonic stem cell (ESC) lines, 12 human iPSC lines, five embryonic body lines, and six fibroblast cell lines. We demonstrated the close resemblance of iPSCs with ESCs at the pathway level, and provided examples of how pathway activity can be applied to identify iPSC line abnormalities or to predict in vitro differentiation potential. Our results indicate that pathway activation profiling is a promising strategy for evaluating the safety and potency of iPSC lines in translational medicine applications.

  6. Quantifying signaling pathway activation to monitor the quality of induced pluripotent stem cells

    PubMed Central

    Makarev, Eugene; Fortney, Kristen; Litovchenko, Maria; Braunewell, Karl H.; Zhavoronkov, Alex; Atala, Anthony

    2015-01-01

    Many attempts have been made to evaluate the safety and potency of human induced pluripotent stem cells (iPSCs) for clinical applications using transcriptome data, but results so far have been ambiguous or even contradictory. Here, we characterized stem cells at the pathway level, rather than at the gene level as has been the focus of previous work. We meta-analyzed publically-available gene expression data sets and evaluated signaling and metabolic pathway activation profiles for 20 human embryonic stem cell (ESC) lines, 12 human iPSC lines, five embryonic body lines, and six fibroblast cell lines. We demonstrated the close resemblance of iPSCs with ESCs at the pathway level, and provided examples of how pathway activity can be applied to identify iPSC line abnormalities or to predict in vitro differentiation potential. Our results indicate that pathway activation profiling is a promising strategy for evaluating the safety and potency of iPSC lines in translational medicine applications. PMID:26327604

  7. Quantifying signaling pathway activation to monitor the quality of induced pluripotent stem cells.

    PubMed

    Makarev, Eugene; Fortney, Kristen; Litovchenko, Maria; Braunewell, Karl H; Zhavoronkov, Alex; Atala, Anthony

    2015-09-15

    Many attempts have been made to evaluate the safety and potency of human induced pluripotent stem cells (iPSCs) for clinical applications using transcriptome data, but results so far have been ambiguous or even contradictory. Here, we characterized stem cells at the pathway level, rather than at the gene level as has been the focus of previous work. We meta-analyzed publically-available gene expression data sets and evaluated signaling and metabolic pathway activation profiles for 20 human embryonic stem cell (ESC) lines, 12 human iPSC lines, five embryonic body lines, and six fibroblast cell lines. We demonstrated the close resemblance of iPSCs with ESCs at the pathway level, and provided examples of how pathway activity can be applied to identify iPSC line abnormalities or to predict in vitro differentiation potential. Our results indicate that pathway activation profiling is a promising strategy for evaluating the safety and potency of iPSC lines in translational medicine applications. PMID:26327604

  8. The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective.

    PubMed

    Chikka, Madhusudana Rao; Anbalagan, Charumathi; Dvorak, Katherine; Dombeck, Kyle; Prahlad, Veena

    2016-08-30

    Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfunction induced by rotenone activates the p38MAPK/CREB/ATF-7-dependent innate immune response pathway in intestinal cells of C. elegans. Activation of p38MAPK in the gut is neuroprotective. Enhancing the p38MAPK-mediated immune pathway in intestinal cells alone suppresses rotenone-induced dopaminergic neuron loss, while downregulating it in the intestine exacerbates neurodegeneration. The p38MAPK/ATF-7 immune pathway modulates autophagy and requires autophagy and the PTEN-induced putative kinase PINK-1 for conferring neuroprotection. Thus, mitochondrial damage induces the clearance of mitochondria by the immune pathway, protecting the organism from the toxic effects of mitochondrial dysfunction. We propose that mitochondria are subject to constant surveillance by innate immune mechanisms.

  9. Cadmium induces the activation of cell wall integrity pathway in budding yeast.

    PubMed

    Xiong, Bing; Zhang, Lilin; Xu, Huihui; Yang, Yi; Jiang, Linghuo

    2015-10-01

    MAP kinases are important signaling molecules regulating cell survival, proliferation and differentiation, and can be activated by cadmium stress. In this study, we demonstrate that cadmium induces phosphorylation of the yeast cell wall integrity (CWI) pathway_MAP kinase Slt2, and this cadmium-induced CWI activation is mediated by the cell surface sensor Mid2 through the GEF Rom1, the central regulator Rho1 and Bck1. Nevertheless, cadmium stress does not affect the subcellular localization of Slt2 proteins. In addition, this cadmium-induced CWI activation is independent on the calcium/calcineurin signaling and the high osmolarity glycerol (HOG) signaling pathways in yeast cells. Furthermore, we tested the cadmium sensitivity of 42 paired double-gene deletion mutants between six CWI components and seven components of the HOG pathway. Our results indicate that the CWI pathway is epistatic to the HOG pathway in cadmium sensitivity. However, gene deletion mutations for the Swi4/Swi6 transcription factor complex show synergistic effects with mutations of HOG components in cadmium sensitivity.

  10. MEK-ERK Pathway Modulation Ameliorates Pulmonary Fibrosis Associated with Epidermal Growth Factor Receptor Activation

    PubMed Central

    Madala, Satish K.; Schmidt, Stephanie; Davidson, Cynthia; Ikegami, Machiko; Wert, Susan

    2012-01-01

    Pulmonary fibrosis remains a significant public health burden with no proven therapies. The mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK)/extracellular signal–regulated kinase (ERK) signaling cascade is a major pathway controlling cellular processes associated with fibrogenesis, including growth, proliferation, and survival. Activation of the MAPK/ERK pathway is detected in the lungs of human fibrosis samples; however, the effect of modulating the pathway in vivo is unknown. Overexpression of transforming growth factor (TGF)-α in the lung epithelium of transgenic mice causes a progressive pulmonary fibrosis associated with increased MEK/ERK activation localized primarily in mesenchymal cells. To determine the role of the MEK pathway in the induction of TGF-α–induced lung fibrosis, TGF-α was overexpressed for 4 weeks while mice were simultaneously treated with the specific MEK inhibitor, ARRY-142886 (ARRY). Treatment with ARRY prevented increases in lung cell proliferation and total lung collagen, attenuated production of extracellular matrix genes, and protected mice from changes in lung function. ARRY administered as a rescue treatment after fibrosis was already established inhibited fibrosis progression, as assessed by lung histology, changes in body weights, extracellular matrix gene expression, and lung mechanics. These findings demonstrate that MEK inhibition prevents progression of established fibrosis in the TGF-α model, and provides proof of concept of targeting the MEK pathway in fibrotic lung disease. PMID:22021337

  11. The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective.

    PubMed

    Chikka, Madhusudana Rao; Anbalagan, Charumathi; Dvorak, Katherine; Dombeck, Kyle; Prahlad, Veena

    2016-08-30

    Immunological mediators that originate outside the nervous system can affect neuronal health. However, their roles in neurodegeneration remain largely unknown. Here, we show that the p38MAPK-mediated immune pathway activated in intestinal cells of Caenorhabditis elegans upon mitochondrial dysfunction protects neurons in a cell-non-autonomous fashion. Specifically, mitochondrial complex I dysfunction induced by rotenone activates the p38MAPK/CREB/ATF-7-dependent innate immune response pathway in intestinal cells of C. elegans. Activation of p38MAPK in the gut is neuroprotective. Enhancing the p38MAPK-mediated immune pathway in intestinal cells alone suppresses rotenone-induced dopaminergic neuron loss, while downregulating it in the intestine exacerbates neurodegeneration. The p38MAPK/ATF-7 immune pathway modulates autophagy and requires autophagy and the PTEN-induced putative kinase PINK-1 for conferring neuroprotection. Thus, mitochondrial damage induces the clearance of mitochondria by the immune pathway, protecting the organism from the toxic effects of mitochondrial dysfunction. We propose that mitochondria are subject to constant surveillance by innate immune mechanisms. PMID:27545884

  12. Differences and the relationship in default mode network intrinsic activity and functional connectivity in mild Alzheimer's disease and amnestic mild cognitive impairment.

    PubMed

    Weiler, Marina; Teixeira, Camila Vieira Ligo; Nogueira, Mateus Henrique; de Campos, Brunno Machado; Damasceno, Benito Pereira; Cendes, Fernando; Balthazar, Marcio Luiz Figueredo

    2014-10-01

    There is evidence that the default mode network (DMN) functional connectivity is impaired in Alzheimer's disease (AD) and few studies also reported a decrease in DMN intrinsic activity, measured by the amplitude of low-frequency fluctuations (ALFFs). In this study, we analyzed the relationship between DMN intrinsic activity and functional connectivity, as well as their possible implications on cognition in patients with mild AD and amnestic mild cognitive impairment (aMCI) and healthy controls. In addition, we evaluated the differences both in connectivity and ALFF values between these groups. We recruited 29 controls, 20 aMCI, and 32 mild AD patients. To identify the DMN, functional connectivity was calculated by placing a seed in the posterior cingulate cortex (PCC). Within the DMN mask obtained, we calculated regional average ALFFs. Compared with controls, aMCI patients showed decreased ALFFs in the temporal region; compared with AD, aMCI showed higher values in the PCC but lower in the temporal area. The mild AD group had lower ALFFs in the PCC compared with controls. There was no difference between the connectivity in the aMCI group compared with the other groups, but AD patients showed decreased connectivity in the frontal, parietal, and PCC. Also, PCC ALFFs correlated to functional connectivity in nearly all subregions. Cognitive tests correlated to connectivity values but not to ALFFs. In conclusion, we found that DMN connectivity and ALFFs are correlated in these groups. Decreased PCC ALFFs disrupt the DMN functional organization, leading to cognitive problems in the AD spectrum.

  13. The Biases of Optical Line-Ratio Selection for Active Galactic Nuclei and the Intrinsic Relationship between Black Hole Accretion and Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Sun, Mouyuan; Zeimann, Gregory R.; Luck, Cuyler; Bridge, Joanna S.; Grier, Catherine J.; Hagen, Alex; Juneau, Stephanie; Montero-Dorta, Antonio; Rosario, David J.; Brandt, W. Niel; Ciardullo, Robin; Schneider, Donald P.

    2015-09-01

    We use 317,000 emission-line galaxies from the Sloan Digital Sky Survey to investigate line-ratio selection of active galactic nuclei (AGNs). In particular, we demonstrate that “star formation (SF) dilution” by H ii regions causes a significant bias against AGN selection in low-mass, blue, star-forming, disk-dominated galaxies. This bias is responsible for the observed preference of AGNs among high-mass, green, moderately star-forming, bulge-dominated hosts. We account for the bias and simulate the intrinsic population of emission-line AGNs using a physically motivated Eddington ratio distribution, intrinsic AGN narrow line region line ratios, a luminosity-dependent {L}{bol}/L[{{O}} {{III}}] bolometric correction, and the observed {M}{BH}-σ relation. These simulations indicate that, in massive ({log}({M}*/{M}⊙ )≳ 10) galaxies, AGN accretion is correlated with specific star formation rate (SFR) but is otherwise uniform with stellar mass. There is some hint of lower black hole occupation in low-mass ({log}({M}*/{M}⊙ )≲ 10) hosts, although our modeling is limited by uncertainties in measuring and interpreting the velocity dispersions of low-mass galaxies. The presence of SF dilution means that AGNs contribute little to the observed strong optical emission lines (e.g., [{{O}} {{III}}] and {{H}}α ) in low-mass and star-forming hosts. However the AGN population recovered by our modeling indicates that feedback by typical (low- to moderate-accretion) low-redshift AGNs has nearly uniform efficiency at all stellar masses, SFRs, and morphologies. Taken together, our characterization of the observational bias and resultant AGN occupation function suggest that AGNs are unlikely to be the dominant source of SF quenching in galaxies, but instead are fueled by the same gas which drives SF activity.

  14. Differences and the Relationship in Default Mode Network Intrinsic Activity and Functional Connectivity in Mild Alzheimer's Disease and Amnestic Mild Cognitive Impairment

    PubMed Central

    Weiler, Marina; Teixeira, Camila Vieira Ligo; Nogueira, Mateus Henrique; de Campos, Brunno Machado; Damasceno, Benito Pereira; Cendes, Fernando

    2014-01-01

    Abstract There is evidence that the default mode network (DMN) functional connectivity is impaired in Alzheimer's disease (AD) and few studies also reported a decrease in DMN intrinsic activity, measured by the amplitude of low-frequency fluctuations (ALFFs). In this study, we analyzed the relationship between DMN intrinsic activity and functional connectivity, as well as their possible implications on cognition in patients with mild AD and amnestic mild cognitive impairment (aMCI) and healthy controls. In addition, we evaluated the differences both in connectivity and ALFF values between these groups. We recruited 29 controls, 20 aMCI, and 32 mild AD patients. To identify the DMN, functional connectivity was calculated by placing a seed in the posterior cingulate cortex (PCC). Within the DMN mask obtained, we calculated regional average ALFFs. Compared with controls, aMCI patients showed decreased ALFFs in the temporal region; compared with AD, aMCI showed higher values in the PCC but lower in the temporal area. The mild AD group had lower ALFFs in the PCC compared with controls. There was no difference between the connectivity in the aMCI group compared with the other groups, but AD patients showed decreased connectivity in the frontal, parietal, and PCC. Also, PCC ALFFs correlated to functional connectivity in nearly all subregions. Cognitive tests correlated to connectivity values but not to ALFFs. In conclusion, we found that DMN connectivity and ALFFs are correlated in these groups. Decreased PCC ALFFs disrupt the DMN functional organization, leading to cognitive problems in the AD spectrum. PMID:25026537

  15. Distinct Pathways of ERK1/2 Activation by Hydroxy-Carboxylic Acid Receptor-1

    PubMed Central

    Li, Guo; Wang, Hui-qian; Wang, Li-hui; Chen, Ru-ping; Liu, Jun-ping

    2014-01-01

    Mechanistic investigations have shown that, upon agonist activation, hydroxy-carboxylic acid receptor-1(HCA1) couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for HCA1 signaling remain largely unknown. Using CHO-K1 cells stably expressing HCA1, and L6 cells, which endogenously express rat HCA1 receptors, we found that activation of ERK1/2 by HCA1 was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin. Furthermore, time course experiments with different kinase inhibitors demonstrated that HCA1 induced ERK1/2 activation via the extracellular Ca2+, PKC and IGF-I receptor transactivation-dependent pathways. In addition, we observed that pretreated the cells with M119K, an inhibitor of Gβγ subunit-dependent signaling, effectively attenuated the ERK1/2 activation triggered by HCA1, suggesting a critical role for βγ-subunits in HCA1-activated ERK1/2 phosphorylation. Furthermore, the present results also indicated that the arrestin2/3 were not required for ERK1/2 activation. In conclusion, our findings demonstrate that upon binding to agonist, HCA1 receptors initially activate Gi, leading to dissociation of the Gβγ subunit from activated Gi, and subsequently induce ERK1/2 activation via two distinct pathways: one PKC-dependent pathway and the other IGF-IR transactivation-dependent pathway. Our results provide the first in-depth evidence that defines the molecular mechanism of HCA1-mediated ERK1/2 activation. PMID:24671202

  16. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    PubMed

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis.

  17. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway

    PubMed Central

    Pumiglia, Kevin M.; Decker, Stuart J.

    1997-01-01

    The mitogen-activated protein kinase (MAPK) cascade plays a crucial role in the transduction of extracellular signals into responses governing growth and differentiation. The effects of a specific inhibitor of the MAPK kinase (MEK)/MAPK pathway (PD98059) on nerve growth factor (NGF)-induced growth arrest and inhibition of cell cycle-dependent kinases (CDKs) have been examined. Treatment of NIH 3T3 cells expressing TRKA with PD98059 dramatically reversed the complete inhibition of growth of these cells caused by NGF. PD98059 also blocked the ability of NGF to inhibit the activities of CDK4 and CDK2, while partially preventing NGF induction of p21Cip1/WAF1. To independently evaluate the involvement of the MEK/MAPK pathway in growth arrest, an inducible activated form of the Raf-1 protooncogene (ΔRAF-1:ER) was expressed in these cells. Activation of ΔRAF-1:ER resulted in a prolonged increase in MAPK activity and growth arrest of these cells, with concomitant induction of p21Cip1/WAF1 and inhibition of CDK2 activity. These effects of ΔRAF-1:ER activation were all reversed by treatment of cells with PD98059. These data indicate that in addition to functioning as a positive effector of growth, stimulation of the MEK/MAPK pathway can result in an inhibition of CDK activity and cell cycle arrest. PMID:9012803

  18. BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways

    PubMed Central

    de Jesus Perez, Vinicio A.; Ali, Ziad; Alastalo, Tero-Pekka; Ikeno, Fumiaki; Sawada, Hirofumi; Lai, Ying-Ju; Kleisli, Thomas; Spiekerkoetter, Edda; Qu, Xiumei; Rubinos, Laura H.; Ashley, Euan; Amieva, Manuel; Dedhar, Shoukat

    2011-01-01

    We present a novel cell-signaling paradigm in which bone morphogenetic protein 2 (BMP-2) consecutively and interdependently activates the wingless (Wnt)–β-catenin (βC) and Wnt–planar cell polarity (PCP) signaling pathways to facilitate vascular smooth muscle motility while simultaneously suppressing growth. We show that BMP-2, in a phospho-Akt–dependent manner, induces βC transcriptional activity to produce fibronectin, which then activates integrin-linked kinase 1 (ILK-1) via α4-integrins. ILK-1 then induces the Wnt–PCP pathway by binding a proline-rich motif in disheveled (Dvl) and consequently activating RhoA-Rac1–mediated motility. Transfection of a Dvl mutant that binds βC without activating RhoA-Rac1 not only prevents BMP-2–mediated vascular smooth muscle cell motility but promotes proliferation in association with persistent βC activity. Interfering with the Dvl-dependent Wnt–PCP activation in a murine stented aortic graft injury model promotes extensive neointima formation, as shown by optical coherence tomography and histopathology. We speculate that, in response to injury, factors that subvert BMP-2–mediated tandem activation of Wnt–βC and Wnt–PCP pathways contribute to obliterative vascular disease in both the systemic and pulmonary circulations. PMID:21220513

  19. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  20. Heat-shock stress activates a novel nuclear import pathway mediated by Hikeshi

    PubMed Central

    Imamoto, Naoko; Kose, Shingo

    2012-01-01

    Cellular stresses significantly affect nuclear transport systems. Nuclear transport pathways mediated by importin β-family members, which are active under normal conditions, are downregulated. During thermal stress, a nuclear import pathway mediated by a novel carrier, which we named Hikeshi, becomes active. Hikeshi is not a member of the importin β family and mediates the nuclear import of Hsp70s. Unlike importin β family-mediated nuclear transport, the Hikeshi-mediated nuclear import of Hsp70s is not coupled to the GTPase cycle of the small GTPase Ran but rather is coupled with the ATPase cycle of Hsp70s. Hikeshi-mediated nuclear import is essential for the attenuation and reversal of the thermal stress response in human cells. The mechanism and functions of this newly identified nuclear import pathway will be discussed. PMID:22895094

  1. Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase.

    PubMed

    Baños, Benito; Lázaro, José M; Villar, Laurentino; Salas, Margarita; de Vega, Miguel

    2008-10-01

    Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.

  2. Physical activity assessment in American Indian schoolchildren in the Pathways study.

    PubMed

    Going, S B; Levin, S; Harrell, J; Stewart, D; Kushi, L; Cornell, C E; Hunsberger, S; Corbin, C; Sallis, J

    1999-04-01

    The objective of the Pathways physical activity feasibility study was to develop methods for comparing type and amount of activity between intervention and control schools participating in a school-based obesity prevention program. Two methods proved feasible: 1) a specially designed 24-h physical activity recall questionnaire for assessing the frequency and type of activities and 2) use of a triaxial accelerometer for assessing amount of activity. Results from pilot studies supporting the use of these methods are described. Analyses of activity during different segments of the day showed that children were most active after school. The activities reported most frequently (e.g., basketball and mixed walking and running) were also the ones found to be most popular in the study population on the basis of formative assessment surveys. Both the physical activity recall questionnaire and the triaxial accelerometer methods will be used to assess the effects of the full-scale intervention on physical activity.

  3. Intrinsic motivation in a competitive setting.

    PubMed

    Weinberg, R S

    1979-01-01

    The purpose of the present investigation was to determine the effects of success-failure and monetary reward on intrinsic motivation of males and females competing on a motor task. Results indicated a significant main effect for feedback with subjects exhibiting more intrinsic motivation after success than after failure. The Sex x Feedback interaction showed that males displayed more intrinsic motivation than females after success whereas females exhibited more intrinsic motivation than males after failure. Results are discussed in terms of Deci's cognitive evaluation theory and sex-role appropriate behaviors for males and females. Implications for competitive physical activity are drawn.

  4. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS.

    PubMed

    Qadir, Kamran; Joo, Sang Hoon; Mun, Bongjin S; Butcher, Derek R; Renzas, J Russell; Aksoy, Funda; Liu, Zhi; Somorjai, Gabor A; Park, Jeong Young

    2012-11-14

    Recent progress in colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has generated new opportunities to unravel the surface structure of working catalysts. We report an APXPS study of Ru nanoparticles to investigate catalytically active species on Ru nanoparticles under oxidizing, reducing, and CO oxidation reaction conditions. The 2.8 and 6 nm Ru nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. Mild oxidative and reductive characteristics indicate the formation of surface oxide on the Ru nanoparticles, the thickness of which is found to be dependent on nanoparticle size. The larger 6 nm Ru nanoparticles were oxidized to a smaller extent than the smaller Ru 2.8 nm nanoparticles within the temperature range of 50-200 °C under reaction conditions, which appears to be correlated with the higher catalytic activity of the bigger nanoparticles. We found that the smaller Ru nanoparticles form bulk RuO(2) on their surfaces, causing the lower catalytic activity. As the size of the nanoparticle increases, the core-shell type RuO(2) becomes stable. Such in situ observations of Ru nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications.

  5. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation.

    PubMed Central

    Khosravi-Far, R; White, M A; Westwick, J K; Solski, P A; Chrzanowska-Wodnicka, M; Van Aelst, L; Wigler, M H; Der, C J

    1996-01-01

    Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events. PMID:8668210

  6. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity.

    PubMed

    Tan, Hongliang; Li, Qian; Zhou, Zhengchen; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Wang, Li

    2015-01-26

    Metal-organic frameworks (MOFs) with tunable structures and properties have recently been emerged as very interesting functional materials. However, the catalytic properties of MOFs as enzymatic mimics remain to be further investigated. In this work, we for the first time demonstrated the peroxidase-like activity of copper-based MOFs (HKUST-1) by employing thiamine (TH) as a peroxidase substrate. In the presence of H2O2, HKUST-1 can catalyze efficiently the conversion of non-fluorescent TH to strong fluorescent thiochrome. The catalytic activity of HKUST-1 is highly dependent on the temperature, pH and H2O2 concentrations. As a peroxidase mimic, HKUST-1 not only has the features of low cost, high stability and easy preparation, but also follows Michaelis-Menten behaviors and shows stronger affinity to TH than horseradish peroxidase (HRP). Based on the peroxidase-like activity of HKUST-1, a simple and sensitive fluorescent method for TH detection has been developed. As low as 1 μM TH can be detected with a linear range from 4 to 700 μM. The detection limit for TH is about 50 fold lower than that of HRP-based fluorescent assay. The proposed method was successfully applied to detect TH in tablets and urine samples and showed a satisfactory result. We believed that the present work could improve the understanding of catalytic behaviors of MOFs as enzymatic mimics and find out a wider application in bioanalysis.

  7. In vitro Neurons in Mammalian Cortical Layer 4 Exhibit Intrinsic Oscillatory Activity in the 10- to 50-Hz Frequency Range

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.; Grace, Anthony A.; Yarom, Yosef

    1991-02-01

    We report here the presence of fast subthreshold oscillatory potentials recorded in vitro from neurons within layer 4 of the guinea pig frontal cortex. Two types of oscillatory neurons were recorded: (i) One type exhibited subthreshold oscillations whose frequency increased with membrane depolarization and encompassed a range of 10-45 Hz. Action potentials in this type of neuron demonstrated clear after-hyperpolarizations. (ii) The second type of neuron was characterized by narrow-frequency oscillations near 35-50 Hz. These oscillations often outlasted the initiating depolarizing stimulus. No calcium component could be identified in their action potential. In both types of cell the subthreshold oscillations were tetrodotoxin-sensitive, indicating that the depolarizing phase of the oscillation was generated by a voltage-dependent sodium conductance. The initial depolarizing phase was followed by a potassium conductance responsible for the falling phase of the oscillatory wave. In both types of cell, the subthreshold oscillation could trigger spikes at the oscillatory frequency, if the membrane was sufficiently depolarized. Combining intracellular recordings with Lucifer yellow staining showed that the narrow-frequency oscillatory activity was produced by a sparsely spinous interneuron located in layer 4 of the cortex. This neuron has extensive local axonal collaterals that ramify in layers 3 and 4 such that they may contribute to the columnar synchronization of activity in the 40- to 50-Hz range. Cortical activity in this frequency range has been proposed as the basis for the "conjunctive properties" of central nervous system networks.

  8. Issues in Purchasing and Maintaining Intrinsic Standards

    SciTech Connect

    PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.

    2000-09-12

    Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.

  9. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation.

    PubMed

    Englaro, W; Bertolotto, C; Buscà, R; Brunet, A; Pagès, G; Ortonne, J P; Ballotti, R

    1998-04-17

    In B16 melanoma cells, mitogen-activated protein (MAP) kinases are activated during cAMP-induced melanogenesis (Englaro, W., Rezzonico, R., Durand-Clément, M., Lallemand, D., Ortonne, J. P., and Ballotti, R. (1995) J. Biol. Chem. 270, 24315-24320). To establish the role of the MAP kinases in melanogenesis, we studied the effects of a specific MAP kinase kinase (MEK) inhibitor PD 98059 on different melanogenic parameters. We showed that PD 98059 inhibits the activation of MAP kinase extracellular signal-regulated kinase 1 by cAMP, but does not impair the effects of cAMP either on the morphological differentiation, characterized by an increase in dendrite outgrowth, or on the up-regulation of tyrosinase that is the key enzyme in melanogenesis. On the contrary, PD 98059 promotes by itself cell dendricity and increases the tyrosinase amount and activity. Moreover, down-regulation of the MAP kinase pathway by PD 98059, or with dominant negative mutants of p21(ras) and MEK, triggers a stimulation of the tyrosinase promoter activity and enhances the effect of cAMP on this parameter. Conversely, activation of the MAP kinase pathway, using constitutive active mutants of p21(ras) and MEK, leads to an inhibition of basal and cAMP-induced tyrosinase gene transcription. These results demonstrate that the MAP kinase pathway activation is not required for cAMP-induced melanogenesis. Furthermore, the inhibition of this pathway induces B16 melanoma cell differentiation, while a sustained activation impairs the melanogenic effect of cAMP-elevating agents. PMID:9545341

  10. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  11. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  12. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila

    PubMed Central

    Misra, Jyoti R.; Lam, Geanette; Thummel, Carl S.

    2013-01-01

    Pesticide resistance poses a major challenge for the control of vector-borne human diseases and agricultural crop protection. Although a number of studies have defined how mutations in specific target proteins can lead to insecticide resistance, much less is known about the mechanisms by which constitutive overexpression of detoxifying enzymes contribute to metabolic pesticide resistance. Here we show that the Nrf2/Keap1 pathway is constitutively active in two laboratory-selected DDT-resistant strains of Drosophila, 91R and RDDTR, leading to the overexpression of multiple detoxifying genes. Disruption of the Drosophila Nrf2 ortholog, CncC, or overexpression of Keap1, is sufficient to block this transcriptional response. In addition, a CncC-responsive reporter is highly active in both DDT-resistant strains and this response is dependent on the presence of an intact CncC binding site in the promoter. Microarray analysis revealed that ~20% of the genes differentially expressed in the 91R strain are known CncC target genes. Finally, we show that CncC is partially active in these strains, consistent with the fitness cost associated with constitutive activation of the pathway. This study demonstrates that the Nrf2/Keap1 pathway contributes to the widespread overexpression of detoxification genes in insecticide-resistant strains and raises the possibility that inhibitors of this pathway could provide effective synergists for insect population control. PMID:24099738

  13. In Vitro Antimalarial Activity of Different Inhibitors of the Plasmodial Isoprenoid Synthesis Pathway.

    PubMed

    da Silva, Marcia F; Saito, Alexandre Y; Peres, Valnice J; Oliveira, Antonio C; Katzin, Alejandro M

    2015-08-01

    Previous studies have shown that fosmidomycin, risedronate, and nerolidol exert antimalarial activity in vitro. We included squalestatin, an inhibitor of the isoprenoid metabolism in Erwinia uredovora, and found that combinations of compounds which act on different targets of the plasmodial isoprenoid pathway possess important supra-additivity effects. PMID:26055383

  14. In Vitro Antimalarial Activity of Different Inhibitors of the Plasmodial Isoprenoid Synthesis Pathway

    PubMed Central

    da Silva, Marcia F.; Saito, Alexandre Y.; Peres, Valnice J.; Oliveira, Antonio C.

    2015-01-01

    Previous studies have shown that fosmidomycin, risedronate, and nerolidol exert antimalarial activity in vitro. We included squalestatin, an inhibitor of the isoprenoid metabolism in Erwinia uredovora, and found that combinations of compounds which act on different targets of the plasmodial isoprenoid pathway possess important supra-additivity effects. PMID:26055383

  15. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  16. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription

    SciTech Connect

    Wang Jian; Tan Juan; Zhang Xihui; Guo Hongyan; Zhang Qicheng; Guo Tingting; Geng Yunqi; Qiao Wentao

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may be responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription.

  17. Activation of the MAP Kinase Pathway by FGF-1 Correlates with Cell Proliferation Induction While Activation of the Src Pathway Correlates with Migration

    PubMed Central

    LaVallee, Theresa M.; Prudovsky, Igor A.; McMahon, Grainne A.; Hu, Xiaoguo; Maciag, Thomas

    1998-01-01

    FGF regulates both cell migration and proliferation by receptor-dependent induction of immediate-early gene expression and tyrosine phosphorylation of intracellular polypeptides. Because little is known about the disparate nature of intracellular signaling pathways, which are able to discriminate between cell migration and proliferation, we used a washout strategy to examine the relationship between immediate-early gene expression and tyrosine phosphorylation with respect to the potential of cells either to migrate or to initiate DNA synthesis in response to FGF-1. We demonstrate that transient exposure to FGF-1 results in a significant decrease in Fos transcript expression and a decrease in tyrosine phosphorylation of the FGFR-1, p42mapk, and p44mapk. Consistent with these biochemical effects, we demonstrate that attenuation in the level of DNA synthesis such that a 1.5-h withdrawal is sufficient to return the population to a state similar to quiescence. In contrast, the level of Myc mRNA, the activity of Src, the tyrosine phosphorylation of cortactin, and the FGF-1–induced redistribution of cortactin and F-actin were unaffected by transient FGF-1 stimulation. These biochemical responses are consistent with an implied uncompromised migratory potential of the cells in response to growth factor withdrawal. These results suggest a correlation between Fos expression and the mitogen-activated protein kinase pathway with initiation of DNA synthesis and a correlation between high levels of Myc mRNA and Src kinase activity with the regulation of cell migration. PMID:9647656

  18. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  19. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission

    PubMed Central

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  20. Three new alkaloids from Veratrum grandiflorum Loes with inhibition activities on Hedgehog pathway.

    PubMed

    Gao, Lijuan; Chen, Fengyang; Li, Xiaoyu; Xu, Shifang; Huang, Wenhai; Ye, Yiping

    2016-10-01

    Three new steroidal alkaloids 1-3, together with four known compounds 4-7, were isolated from the ethanol extract of Veratrum grandiflorum Loes. Their structures were elucidated by NMR (1D and 2D NMR) and MS spectroscopic data. The inhibition activities on Hedgehog (Hh) pathway were evaluated using a cell-based bioassay system (Shh-LIGHT 2 cells). The results showed that compounds 1-3 and 5 displayed inhibitory activities obviously with the IC50 values of 0.63-3.11μM. Among them, compound 5 showed the most prominent inhibition activity (IC50=0.63±0.02μM). Thus, these active alkaloids may be potent natural compounds as Hh pathway inhibitors for the treatment of various cancers. PMID:27567371

  1. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  2. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop

    PubMed Central

    Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2016-01-01

    Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic—potentially reward-related—signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain. DOI: http://dx.doi.org/10.7554/eLife.17441.001 PMID:27644419

  3. Altered intrinsic regional brain spontaneous activity in patients with comitant strabismus: a resting-state functional MRI study

    PubMed Central

    Huang, Xin; Li, Sheng-Hong; Zhou, Fu-Qing; Zhang, Ying; Zhong, Yu-Lin; Cai, Feng-Qin; Shao, Yi; Zeng, Xian-Jun

    2016-01-01

    Objective To investigate the underlying regional homogeneity (ReHo) of brain-activity abnormalities in patients with comitant strabismus (CS) and their relationship with behavioral performance. Methods Twenty patients with CS (ten men and ten women) and 20 (ten men and ten women) age-, sex-, and education-matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging scans. The ReHo method was used to assess local features of spontaneous brain activities. Patients with CS were distinguished from HCs by receiver operating characteristic curve. Correlation analysis was performed to explore the relationship between the observed mean ReHo values of the different brain areas and behavioral performance. Results Compared to HCs, the patients with CS showed significantly increased ReHo values in the right inferior temporal cortex/fusiform gyrus/cerebellum anterior lobe, right lingual gyrus, and bilateral cingulate gyrus. We did not find any relationship between the observed mean ReHo values of the different brain areas and behavioral performance. Conclusion CS causes dysfunction in many brain regions, which may explain the fusion compensation in CS. PMID:27350747

  4. Intrinsic Analysis Training Manual.

    ERIC Educational Resources Information Center

    Gow, Doris T.

    This manual is for the training of linking agents between Education R&D and schools and for training teachers in the process of intrinsic analysis of curriculum materials. Intrinsic analysis means analysis of the instruction or process through examination of the materials, or artifacts, including teacher and student materials, developer's…

  5. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  6. Activation and function of the mTORC1 pathway in mast cells

    PubMed Central

    Kim, Mi-Sun; Kuehn, Hye Sun; Metcalfe, Dean D.; Gilfillan, Alasdair M.

    2009-01-01

    Little is known about the signals downstream of phosphoinositide 3-kinase (PI3K) which regulate mast cell homeostasis and function following FcεRI aggregation and Kit ligation. Here, we investigated the role of the mammalian target of rapamycin complex 1 (mTORC1) pathway in these responses. In human and mouse mast cells, stimulation via FcεRI or Kit resulted in a marked PI3K-dependent activation of the mTORC1 pathway, as revealed by the wortmannin-sensitive sequential phosphorylation of tuberin, mTOR, p70S6 kinase (p70S6K), and 4E-BP1. In contrast, in human tumor mast cells, the mTORC1 pathway was constitutively activated and this was associated with markedly elevated levels of mTORC1 pathway components. Rapamycin, a specific inhibitor of mTORC1, selectively and completely blocked the FcεRI- and Kit-induced mTORC1-dependent p70S6K phosphorylation and partially blocked the 4E-BP1 phosphorylation. In parallel, although rapamycin had no effect on FcεRI-mediated degranulation or Kit-mediated cell adhesion, it inhibited cytokine production, Kit-mediated chemotaxis and cell survival. Furthermore, Rapamycin also blocked the constitutive activation of the mTORC1 pathway and inhibited cell survival of tumor mast cells. These data provide evidence that mTORC1 is a point of divergency for the PI3K-regulated downstream events of FcεRI and Kit for the selective regulation of mast cell functions. Specifically, the mTORC1 pathway may play a critical role in normal and dysregulated control of mast cell homeostasis. PMID:18354181

  7. Phosphatidic acid mediates activation of mTORC1 through the ERK signaling pathway

    PubMed Central

    Winter, Jeremiah N.; Fox, Todd E.; Kester, Mark; Jefferson, Leonard S.

    2010-01-01

    The mammalian target of rapamycin (mTOR) assembles into two distinct multiprotein complexes known as mTORC1 and mTORC2. Of the two complexes, mTORC1 acts to integrate a variety of positive and negative signals to downstream targets that regulate cell growth. The lipid second messenger, phosphatidic acid (PA), represents one positive input to mTORC1, and it is thought to act by binding directly to mTOR, thereby enhancing the protein kinase activity of mTORC1. Support for this model includes findings that PA binds directly to mTOR and addition of PA to the medium of cells in culture results in activation of mTORC1. In contrast, the results of the present study do not support a model in which PA activates mTORC1 through direct interaction with the protein kinase but, instead, show that the lipid promotes mTORC1 signaling through activation of the ERK pathway. Moreover, rather than acting directly on mTORC1, the results suggest that exogenous PA must be metabolized to lysophosphatidic acid (LPA), which subsequently activates the LPA receptor endothelial differentiation gene (EDG-2). Finally, in contrast to previous studies, the results of the present study demonstrate that leucine does not act through phospholipase D and PA to activate mTORC1 and, instead, show that the two mediators act through parallel upstream signaling pathways to activate mTORC1. Overall, the results demonstrate that leucine and PA signal through parallel pathways to activate mTORC1 and that PA mediates its effect through the ERK pathway, rather than through direct binding to mTOR. PMID:20427710

  8. The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans.

    PubMed

    Marchand, Alexandre; Atassi, Fabrice; Gaaya, Amira; Leprince, Pascal; Le Feuvre, Claude; Soubrier, Florent; Lompré, Anne-Marie; Nadaud, Sophie

    2011-04-01

    Aging is the main risk factor for cardiovascular diseases, but the associated molecular mechanisms are poorly understood. The Wnt signaling pathway was shown to be induced during aging in muscle and in the skin, but the regulation and role of Wnt signaling in the aged vessel have not yet been addressed. While screening for age-related changes in gene expression in the intima/media of human mammary arteries, we observed that the expression of frizzled 4 (Fzd4), a Wnt receptor, and of several targets of the Wnt/β-catenin/TCF signaling pathway [Wnt-inducible secreted protein 1 (WISP1), versican, osteopontin (SPP1), insulin-like growth factor binding protein 2 (IGFBP-2), and p21] were modified with age, suggesting an activation of the Wnt/β-catenin pathway. In contrast, we did not observe any regulation of forkhead transcription factor (FoxO) target genes. Beta-catenin-activating phosphorylation at position Ser675 was increased in aging mammary arteries, confirming the activation of this pathway. We confirmed in vitro that Wnt3a or Wnt1 treatment of human vascular smooth muscle cells (VSMCs) induced β-catenin phosphorylation at Ser675 and WISP1, SPP1, and IGFBP-2 expression. In vitro, Wnt treatment induced proliferation and cyclin D1 expression in VSMC from young (6 weeks old) rats but not in cells from older rats (8 months old), even though low-density lipoprotein receptor-related protein 6 and β-catenin phosphorylation, and β-catenin nuclear translocation demonstrated β-catenin activation in both cell types. Beta-catenin silencing demonstrated that Wnt induction of cyclin D1 expression is β-catenin dependent. Altogether, our data show that the Wnt/β-catenin/TCF pathway is activated in aging human mammary artery cells, but fails to induce the proliferation of aging vascular cells. PMID:21108734

  9. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  10. Calpain inhibition induces activation of the distinct signalling pathways and cell migration in human monocytes.

    PubMed

    Noma, Haruyoshi; Kato, Takayuki; Fujita, Hisakazu; Kitagawa, Maki; Yamano, Tsunekazu; Kitagawa, Seiichi

    2009-09-01

    We have recently reported that constitutively active calpain negatively regulates activation of the distinct signalling pathways and cell migration in human neutrophils. Here, we report that a similar regulatory system is also functioning in human monocytes, but not lymphocytes. Calpain was constitutively active in resting human monocytes, but not lymphocytes. Mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3K)/Akt and p21-activated kinase (PAK, an effector molecule of Rac) were rapidly (within 1 min) activated in monocytes, but not lymphocytes, upon exposure to calpain inhibitors (PD150606 and N-acetyl-Leu-Leu-Nle-CHO), but not PD145305 (the inactive analogue of PD150606). Following activation of these signalling pathways, monocytes displayed active migration within 5 min after exposure to calpain inhibitors, and active migration was sustained for more than 45 min. The micropipette method revealed that calpain inhibition-mediated monocyte migration was chemotaxis, not random migration. The studies with pharmacological inhibitors suggest that calpain inhibition-mediated monocyte migration is mediated by activation of ERK, p38, JNK, PI3K/Akt and Rac. NSC23766 (Rac inhibitor) and pertussis toxin (PTX) suppressed calpain inhibitor-induced phosphorylation of distinct signalling molecules (PAK, ERK, p38, JNK and Akt) as well as cell migration, suggesting that the PTX-sensitive G protein and Rac axis may be a possible key target of calpain inhibitors. These findings suggest that constitutively active calpain negatively regulates activation of the distinct signalling pathways and cell migration in resting monocytes, but not lymphocytes.

  11. Pathway activation profiling reveals new insights into age-related macular degeneration and provides avenues for therapeutic interventions.

    PubMed

    Makarev, Evgeny; Cantor, Charles; Zhavoronkov, Alex; Buzdin, Anton; Aliper, Alexander; Csoka, Anotonei Benjamin

    2014-12-01

    Age-related macular degeneration (AMD) is a major cause of blindness in older people and is caused by loss of the central region of the retinal pigment epithelium (RPE). Conventional methods of gene expression analysis have yielded important insights into AMD pathogenesis, but the precise molecular pathway alterations are still poorly understood. Therefore we developed a new software program, "AMD Medicine", and discovered differential pathway activation profiles in samples of human RPE/choroid from AMD patients and controls. We identified 29 pathways in RPE-choroid AMD phenotypes: 27 pathways were activated in AMD compared to controls, and 2 pathways were activated in controls compared to AMD. In AMD, we identified a graded activation of pathways related to wound response, complement cascade, and cell survival. Also, there was downregulation of two pathways responsible for apoptosis. Furthermore, significant activation of pro-mitotic pathways is consistent with dedifferentiation and cell proliferation events, which occur early in the pathogenesis of AMD. Significantly, we discovered new global pathway activation signatures of AMD involved in the cell-based inflammatory response: IL-2, STAT3, and ERK. The ultimate aim of our research is to achieve a better understanding of signaling pathways involved in AMD pathology, which will eventually lead to better treatments. PMID:25543336

  12. Fluctuations and resulting competing pathways in RNA folding: The activation of splicing

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1991-01-01

    We implement a parallel processing Monte Carlo simulation to explore RNA configuration space that takes into account fluctuations in base-pairing patterns. The choice of folding pathways is biased by the refolding events that occur as the chain is being assembled. We prove that fluctuations in the initial stages of folding might lead to either active or inactive emerging structures. As an illustration, competing pathways that are the result of fluctuation propagation are computed for the splicing YC4 intron (a segment of the mitochondrial RNA from fungi), and the emerging structures are proved to be biologically relevant.

  13. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  14. Alternative pathways of thromboplastin-dependent activation of human factor X in plasma

    SciTech Connect

    Marlar, R.A.; Griffin, J.H.

    1981-01-01

    To determine the interrelationships of the major coagulation pathways, the activation of 3H-labeled factor X in normal and various deficient human plasmas was evaluated when clotting was triggered by dilute rabbit or human thromboplastin. Various dilutions of thromboplastin and calcium were added to plasma samples containing 3H-factor X, and the time course of factor X activation was determined. At a 1/250 dilution of rabbit brain thromboplastin, the rate of factor X activation in plasmas deficient in factor VIII or factor IX was 10% of the activation rate of normal plasma or of factor XI deficient plasma. Reconstitution of the deficient plasmas with factors VIII or IX, respectively, reconstituted normal factor X activation. Similar results were obtained when various dilutions of human thromboplastin replaced the rabbit thromboplastin. From these plasma experiments, it is inferred that the dilute thromboplastin-dependent activation of factor X requires factors VII, IX, and VIII. An alternative extrinsic pathway that involves factors IX and VIII may be the physiologic extrinsic pathway and hence help to explain the consistent clinical observations of bleeding diatheses in patients deficient in factors IX or VIII.

  15. Investigating a new neuromodulation treatment for brain disorders using synchronized activation of multimodal pathways

    PubMed Central

    Markovitz, Craig D.; Smith, Benjamin T.; Gloeckner, Cory D.; Lim, Hubert H.

    2015-01-01

    Neuromodulation is an increasingly accepted treatment for neurological and psychiatric disorders but is limited by its invasiveness or its inability to target deep brain structures using noninvasive techniques. We propose a new concept called Multimodal Synchronization Therapy (mSync) for achieving targeted activation of the brain via noninvasive and precisely timed activation of auditory, visual, somatosensory, motor, cognitive, and limbic pathways. In this initial study in guinea pigs, we investigated mSync using combined activation of just the auditory and somatosensory pathways, which induced differential and timing dependent plasticity in neural firing within deep brain and cortical regions of the auditory system. Furthermore, by varying the location of somatosensory stimulation across the body, we increased or decreased spiking activity across different neurons. These encouraging results demonstrate the feasibility of systematically modulating the brain using mSync. Considering that hearing disorders such as tinnitus and hyperacusis have been linked to abnormal and hyperactive firing patterns within the auditory system, these results open up the possibility for using mSync to decrease this pathological activity by varying stimulation parameters. Incorporating multiple types of pathways beyond just auditory and somatosensory inputs and using other activation patterns may enable treatment of various brain disorders. PMID:25804410

  16. Targeting the Apoptosis Pathway in Hematologic Malignancies

    PubMed Central

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2014-01-01

    Apoptosis is a cell death program that is well-orchestrated for normal tissue homeostasis and for removal of damaged, old, or infected cells. It is regulated by intrinsic and extrinsic pathways. The intrinsic pathway responds to signals such as ultraviolet radiation or DNA damage and activates “executioner” caspases through a mitochondria-dependent pathway. The extrinsic pathway is activated by death signals induced, for example, by an infection that activates the immune system or receptor-mediated pathways. The extrinsic pathway signals also cascade down to executioner caspases that cleave target proteins and lead to cell death. Strict control of cellular apoptosis is important for the hematopoietic system as it has a high turnover rate. However, the apoptosis program is often deregulated in hematologic malignancies leading to the accumulation of malignant cells. Therefore, apoptosis pathways have been identified for development of anticancer therapeutics. We review here the proteins that have been targeted for anticancer drug development in hematologic malignancies. These include BCL-2 family proteins, death ligands and receptors, inhibitor of apoptosis family proteins, and caspases. Except for caspase activators, drugs that target each of these classes of proteins have advanced into clinical trials. PMID:24295132

  17. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    PubMed

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  18. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.

    PubMed

    Wang, Yang-Gang; Cantu, David C; Lee, Mal-Soon; Li, Jun; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-08-24

    We present results of ab initio electronic structure and molecular dynamics simulations (AIMD), as well as a microkinetic model of CO oxidation catalyzed by TiO2 supported Au nanocatalysts. A coverage-dependent microkinetic analysis, based on energetics obtained with density functional methods, shows that the dominant kinetic pathway, activated oxygen species, and catalytic active sites are all strongly depended on both temperature and oxygen partial pressure. Under oxidizing conditions and T < 400 K, the prevalent pathway involves a dynamic single atom catalytic mechanism. This reaction is catalyzed by a transient Au-CO species that migrates from the Au-cluster onto a surface oxygen adatom. It subsequently reacts with the TiO2 support via a Mars van Krevelen mechanism to form CO2 and finally the Au atom reintegrates back into the gold cluster to complete the catalytic cycle. At 300 ≤ T ≤ 600 K, oxygen-bound single Oad-Au(+)-CO sites and the perimeter Au-sites of the nanoparticle work in tandem to optimally catalyze the reaction. Above 600 K, a variety of alternate pathways associated with both single-atom and the perimeter sites of the Au nanoparticle are found to be active. Under low oxygen pressures, Oad-Au(+)-CO species can be a source of catalyst deactivation and the dominant pathway involves only Au-perimeter sites. A detailed comparison of the current model and the existing literature resolves many apparent inconsistencies in the mechanistic interpretations. PMID:27480512

  19. Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization.

    PubMed

    Xu, Ran; Andres-Mateos, Eva; Mejias, Rebeca; MacDonald, Elizabeth M; Leinwand, Leslie A; Merriman, Dana K; Fink, Rainer H A; Cohn, Ronald D

    2013-09-01

    Skeletal muscle atrophy is a very common clinical challenge in many disuse conditions. Maintenance of muscle mass is crucial to combat debilitating functional consequences evoked from these clinical conditions. In contrast, hibernation represents a physiological state in which there is natural protection against disuse atrophy despite prolonged periods of immobilization and lack of nutrient intake. Even though peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α) is a central mediator in muscle remodeling pathways, its role in the preservation of skeletal muscle mass during hibernation remains unclear. Since PGC-1α regulates muscle fiber type formation and mitochondrial biogenesis, we analyzed muscles of 13-lined ground squirrels. We find that animals in torpor exhibit a shift to slow-twitch Type I muscle fibers. This switch is accompanied by activation of the PGC-1α-mediated endurance exercise pathway. In addition, we observe increased antioxidant capacity without evidence of oxidative stress, a marked decline in apoptotic susceptibility, and enhanced mitochondrial abundance and metabolism. These results show that activation of the endurance exercise pathway can be achieved in vivo despite prolonged periods of immobilization, and therefore might be an important mechanism for skeletal muscle preservation during hibernation. This PGC-1α regulated pathway may be a potential therapeutic target promoting skeletal muscle homeostasis and oxidative balance to prevent muscle loss in a variety of inherited and acquired neuromuscular disease conditions.

  20. Intracellular pathways linking hypoxia to activation of c-fos and AP-1.

    PubMed

    Premkumar, D R; Adhikary, G; Overholt, J L; Simonson, M S; Cherniack, N S; Prabhakar, N R

    2000-01-01

    Organisms respond to hypoxia through detection of blood oxygen levels by sensors at peripheral chemoreceptors and by receptors in certain key cells of the body. The pathways over which peripheral chemoreceptor signals are transmitted to respiratory muscles are well established. However, the intracellular pathways that transmit hypoxic stimulus to gene activation are just being identified. Using anti-sense c-fos strategy, we have shown that c-fos is essential for the activation of activator protein-1 transcription factor complex (AP-1) and subsequent stimulation of downstream genes such as tyrosine hydroxylase (TH; Mishra et al. 1998). The purpose of the present study was to identify intracellular pathways that link hypoxia to activation of c-fos. The results of the present study show that hypoxia causes Ca2+ influx through L-type voltage gated Ca2+ channels and that hypoxia-induced c-fos gene expression is Ca2+/calmodulin dependent. We also demonstrate that hypoxia activates the extracellular-regulated kinase (ERK) and p38, but not JNK. Further, phosphorylation of ERK is essential for c-fos activation via SRE cis-element. Further characterization of nuclear signalling pathways provides evidence for the involvement of Src, a non receptor protein tyrosine kinase, and Ras, a small G protein, in the hypoxia-induced c-fos gene expression. These results suggest a possible role for non-receptor protein tyrosine kinases in propagating signals from G-protein coupled receptors to the activation of immediate early genes such as c-fos during hypoxia.

  1. Adipose Tissue and Energy Expenditure: Central and Peripheral Neural Activation Pathways.

    PubMed

    Blaszkiewicz, Magdalena; Townsend, Kristy L

    2016-06-01

    Increasing energy expenditure is an appealing therapeutic target for the prevention and reversal of metabolic conditions such as obesity or type 2 diabetes. However, not enough research has investigated how to exploit pre-existing neural pathways, both in the central nervous system (CNS) and peripheral nervous system (PNS), in order to meet these needs. Here, we review several research areas in this field, including centrally acting pathways known to drive the activation of sympathetic nerves that can increase lipolysis and browning in white adipose tissue (WAT) or increase thermogenesis in brown adipose tissue (BAT), as well as other central and peripheral pathways able to increase energy expenditure of these tissues. In addition, we describe new work investigating the family of transient receptor potential (TRP) channels on metabolically important sensory nerves, as well as the role of the vagus nerve in regulating energy balance.

  2. NF-Y activates genes of metabolic pathways altered in cancer cells.

    PubMed

    Benatti, Paolo; Chiaramonte, Maria Luisa; Lorenzo, Mariangela; Hartley, John A; Hochhauser, Daniel; Gnesutta, Nerina; Mantovani, Roberto; Imbriano, Carol; Dolfini, Diletta

    2016-01-12

    The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.

  3. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids.

    PubMed

    Soares-Silva, Mercedes; Diniz, Flavia F; Gomes, Gabriela N; Bahia, Diana

    2016-01-01

    Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host. PMID:26941717

  4. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  5. Mechanisms and <