Science.gov

Sample records for activating system ras

  1. An Active RFID Accountability System (RAS) for Constrained Wireless Environments

    SciTech Connect

    Barker, Alan M; Hanson, Gregory R; Sexton, Angela Kay; Jones Jr, J P; Freer, Eva B; Sjoreen, Andrea L

    2011-01-01

    A team from Oak Ridge National Laboratory (ORNL) has developed an RFID Accountability System (RAS) that allows items with active RFID tags to be tracked in environments where tags may not be able to transmit their location continuously. The system uses activators that transmit a short range signal. Active RFID tags are in a sleep state until they encounter an activator. Then they transmit a signal that is picked up by the antennas installed throughout the building. This paper presents the theory of operation, application areas, lessons learned, and key features developed over the course of seven years of development and use.

  2. Coherence and frequency in the reticular activating system (RAS).

    PubMed

    Garcia-Rill, Edgar; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Urbano, Francisco J

    2013-06-01

    This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit (1) electrical coupling mainly in GABAergic cells, and (2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) (1) show electrical coupling, and (2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.

  3. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    PubMed

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  4. Degradation of Activated K-Ras Orthologue via K-Ras-specific Lysine Residues Is Required for Cytokinesis*

    PubMed Central

    Sumita, Kazutaka; Yoshino, Hirofumi; Sasaki, Mika; Majd, Nazanin; Kahoud, Emily Rose; Takahashi, Hidenori; Takeuchi, Koh; Kuroda, Taruho; Lee, Susan; Charest, Pascale G.; Takeda, Kosuke; Asara, John M.; Firtel, Richard A.; Anastasiou, Dimitrios; Sasaki, Atsuo T.

    2014-01-01

    Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers. PMID:24338482

  5. Ras activation in response to phorbol ester proceeds independently of the EGFR via an unconventional nucleotide-exchange factor system in COS-7 cells.

    PubMed

    Rubio, Ignacio; Rennert, Knut; Wittig, Ute; Beer, Katrin; Dürst, Matthias; Stang, Stacey L; Stone, Jim; Wetzker, Reinhard

    2006-09-01

    Ras is a major mediator of PE (phorbol ester) effects in mammalian cells. Various mechanisms for PE activation of Ras have been reported [Downward, Graves, Warne, Rayter and Cantrell (1990) Nature (London) 346, 719-723; Shu, Wu, Mosteller and Broek (2002) Mol. Cell. Biol. 22, 7758-7768; Roose, Mollenauer, Gupta, Stone and Weiss (2005) Mol. Cell. Biol. 25, 4426-4441; Grosse, Roelle, Herrlich, Höhn and Gudermann (2000) J. Biol. Chem. 275, 12251-12260], including pathways that target GAPs (GTPase-activating proteins) for inactivation and those that result in activation of GEFs (guanine nucleotide-exchange factors) Sos (son of sevenless homologue) or RasGRP (RAS guanyl releasing protein). However, a biochemical link between PE and GAP inactivation is missing and GEF stimulation is hard to reconcile with the observation that dominant-negative S17N-Ras does not compromise Ras-dependent ERK (extracellular-signal-regulated kinase) activation by PE. We have addressed this controversy and carried out an in-depth biochemical study of PE-induced Ras activation in COS-7 cells. Using a cell-permeabilization approach to monitor nucleotide exchange on Ras, we demonstrate that PE-induced Ras-GTP accumulation results from GEF stimulation. Nucleotide exchange stimulation by PE is prevented by PKC (protein kinase C) inhibition but not by EGFR [EGF (epidermal growth factor) receptor] blockade, despite the fact that EGFR inhibition aborts basal and PE-induced Shc (Src homology and collagen homology) phosphorylation and Shc-Grb2 (growth-factor-receptor-bound protein 2) association. In fact, EGFR inhibition ablates basal nucleotide exchange on Ras in growth-arrested COS-7 cells. These data disclose the existence of two separate GEF systems that operate independently from each other to accomplish PE-dependent formation of Ras-GTP and to maintain resting Ras-GTP levels respectively. We document that COS-7 cells do not express RasGRP and present evidence that the PE-responsive GEF system

  6. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  7. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells

    PubMed Central

    Wang, Y; Godin-Heymann, N; Dan Wang, X; Bergamaschi, D; Llanos, S; Lu, X

    2013-01-01

    RAS mutations occur frequently in human cancer and activated RAS signalling contributes to tumour development and progression. Apart from its oncogenic effects on cell growth, active RAS has tumour-suppressive functions via its ability to induce cellular senescence and apoptosis. RAS is known to induce p53-dependent cell cycle arrest, yet its effect on p53-dependent apoptosis remains unclear. We report here that apoptosis-stimulating protein of p53 (ASPP) 1 and 2, two activators of p53, preferentially bind active RAS via their N-terminal RAS-association domains (RAD). Additionally, ASPP2 colocalises with and contributes to RAS cellular membrane localisation and potentiates RAS signalling. In cancer cells, ASPP1 and ASPP2 cooperate with oncogenic RAS to enhance the transcription and apoptotic function of p53. Thus, loss of ASPP1 and ASPP2 in human cancer cells may contribute to the full transforming property of RAS oncogene. PMID:23392125

  8. Identification of a farnesol analog as a Ras function inhibitor using both an in vivo Ras activation sensor and a phenotypic screening approach

    PubMed Central

    Srinivasan, Kamalakkannan; Subramanian, Thangaiah; Spielmann, H. Peter

    2013-01-01

    Mutations in Ras isoforms such as K-Ras, N-Ras, and H-Ras contribute to roughly 85, 15, and 1 % of human cancers, respectively. Proper membrane targeting of these Ras isoforms, a prerequisite for Ras activity, requires farnesylation or geranylgeranylation at the C-terminal CAAX box. We devised an in vivo screening strategy based on monitoring Ras activation and phenotypic physiological outputs for assaying synthetic Ras function inhibitors (RFI). Ras activity was visualized by the trans-location of RBDRaf1-GFP to activated Ras at the plasma membrane. By using this strategy, we screened one synthetic farnesyl substrate analog (AGOH) along with nine putative inhibitors and found that only m-CN-AGOH inhibited Ras activation. Phenotypic analysis of starving cells could be used to monitor polarization, motility, and the inability of these treated cells to aggregate properly during fruiting body formation. Incorporation of AGOH and m-CN-AGOH to cellular proteins was detected by western blot. These screening assays can be incorporated into a high throughput screening format using Dictyostelium discoideum and automated microscopy to determine effective RFIs. These RFI candidates can then be further tested in mammalian systems. PMID:24194124

  9. EGFR phosphorylates FAM129B to promote Ras activation

    PubMed Central

    Ji, Haitao; Lee, Jong-Ho; Wang, Yugang; Pang, Yilin; Zhang, Tao; Xia, Yan; Zhong, Lianjin; Lyu, Jianxin; Lu, Zhimin

    2016-01-01

    Ras GTPase-activating proteins (GAPs) are important regulators for Ras activation, which is instrumental in tumor development. However, the mechanism underlying this regulation remains elusive. We demonstrate here that activated EGFR phosphorylates the Y593 residue of the protein known as family with sequence similarity 129, member B (FAM129B), which is overexpressed in many types of human cancer. FAM129B phosphorylation increased the interaction between FAM129B and Ras, resulting in reduced binding of p120-RasGAP to Ras. FAM129B phosphorylation promoted Ras activation, increasing ERK1/2- and PKM2-dependent β-catenin transactivation and leading to the enhanced glycolytic gene expression and the Warburg effect; promoting tumor cell proliferation and invasion; and supporting brain tumorigenesis. Our studies unearthed a novel and important mechanism underlying EGFR-mediated Ras activation in tumor development. PMID:26721396

  10. TC21 and Ras share indistinguishable transforming and differentiating activities.

    PubMed

    Graham, S M; Oldham, S M; Martin, C B; Drugan, J K; Zohn, I E; Campbell, S; Der, C J

    1999-03-25

    Constitutively activated mutants of the Ras-related protein TC21/R-Ras2 cause tumorigenic transformation of NIH3T3 cells. However, unlike Ras, TC21 fails to bind to and activate the Raf-1 serine-threonine kinase. Thus, whereas Ras transformation is critically dependent on Raf-1 TC21 activity is promoted by activation of Raf-independent signaling pathways. In the present study, we have further compared the functions of Ras and TC21. First we determined the basis for the inability of TC21 to activate Raf-1. Whereas Ras can interact with the two distinct Ras-binding sequences in NH2-terminus of Raf-1, designated RBS1 and Raf-Cys, TC21 could only bind Raf-Cys. Thus, the inability of TC21 to bind to RBS1 may prevent it from promoting the translocation of Raf-1 to the plasma membrane. Second, we found that TC21 is an activator of the JNK and p38, but not ERK, mitogen-activated protein kinase cascades and that TC21 transforming activity was dependent on Rac function. Thus, like Ras, TC21 may activate a Rac/JNK pathway. Third, we determined if TC21 could cause the same biological consequences as Ras in three distinct cell types. Like Ras, activated TC21 caused transformation of RIE-1 rat intestinal epithelial cells and terminal differentiation of PC12 pheochromocytoma cells. Finally, activated TC21 blocked serum starvation-induced differentiation of C2 myoblasts, whereas dominant negative TC21 greatly accelerated this differentiation process. Therefore, TC21 and Ras share indistinguishable biological activities in all cell types that we have evaluated. These results support the importance of Raf-independent pathways in mediating the actions of Ras and TC21.

  11. Formation of the Ras dimer is essential for Raf-1 activation.

    PubMed

    Inouye, K; Mizutani, S; Koide, H; Kaziro, Y

    2000-02-11

    Although it is well established that Ras requires membrane localization for activation of its target molecule, Raf-1, the reason for this requirement is not fully understood. In this study, we found that modified Ras, which is purified from Sf9 cells, could activate Raf-1 in a cell-free system, when incorporated into liposome. Using a bifunctional cross-linker and a protein-fragmentation complementation assay, we detected dimer formation of Ras in the liposome and in the intact cells, respectively. These results suggest that dimerization of Ras in the lipid membrane is essential for activation of Raf-1. To support this, we found that, when fused to glutathione S-transferase (GST), unprocessed Ras expressed in Escherichia coli could bypass the requirement for liposome. A Ras-dependent Raf-1 activator, which we previously reported (Mizutani, S., Koide, H., and Kaziro, Y. (1998) Oncogene 16, 2781-2786), was still required for Raf-1 activation by GST-Ras. Furthermore, an enforced dimerization of unmodified oncogenic Ras mutant in human embryonic kidney (HEK) 293 cells, using a portion of gyrase B or estrogen receptor, also resulted in activation of Raf-1. From these results, we conclude that membrane localization allows Ras to form a dimer, which is essential, although not sufficient, for Raf-1 activation.

  12. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  13. IAA RAS Radio Telescope Monitoring System

    NASA Astrophysics Data System (ADS)

    Mikhailov, A.; Lavrov, A.

    2007-07-01

    Institute of Applied Astronomy of the Russian Academy of Sciences (IAA RAS) has three identical radio telescopes, the receiving complex of which consists of five two-channel receivers of different bands, six cryogen systems, and additional devices: four local oscillators, phase calibration generators and IF commutator. The design, hardware and data communication protocol are described. The most convenient way to join the devices of the receiving complex into the common monitoring system is to use the interface which allows to connect numerous devices to the data bus. For the purpose of data communication regulation and to exclude conflicts, a data communication protocol has been designed, which operates with complex formatted data sequences. Formation of such sequences requires considerable data processing capability. That is provided by a microcontroller chip in each slave device. The test version of the software for the central computer has been developed in IAA RAS. We are developing the Mark IV FS software extension modules, which will allow us to control the receiving complex of the radio telescope by special SNAP commands from both operator input and schedule files. We are also developing procedures of automatic measurements of SEFD, system noise temperature and other parameters, available both in VLBI and single-dish modes of operation. The system described has been installed on all IAA RAS radio telescopes at "Svetloe", "Zelenchukskaya" and "Badary" observatories. It has proved to be working quite reliably and to show the perfonmance expected.

  14. Ras activation and symmetry breaking during Dictyostelium chemotaxis.

    PubMed

    Kortholt, Arjan; Keizer-Gunnink, Ineke; Kataria, Rama; Van Haastert, Peter J M

    2013-10-01

    Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).

  15. Activation of a human c-K-ras oncogene.

    PubMed Central

    Yamamoto, F; Perucho, M

    1984-01-01

    The human lung carcinomas PR310 and PR371 contain activated c-K-ras oncogenes. The oncogene of PR371 was found to present a mutation at codon 12 of the first coding exon which substitutes cysteine for glycine in the encoded p21 protein. We report here that the transforming gene of PR310 tumor contains a mutation in the second coding exon. An A----T transversion at codon 61 results in the incorporation of histidine instead of glutamine in the c-K-ras gene product. By constructing c-K-ras/c-H-ras chimeric genes we show that this point mutation is sufficient to confer transforming potential to ras genes, and that a hybrid ras gene coding for a protein mutant at both codons 12 and 61 is also capable of transforming NIH3T3 cells. The relative transforming potency of p21 proteins encoded by ras genes mutant at codons 12, 61 or both has been analyzed. Our studies also show that the coding exons of ras genes, including the fourth, can be interchanged and the chimeric p21 ras proteins retain their oncogenic ability in normal rodent established cell lines. PMID:6096811

  16. TLN-4601, a novel anticancer agent, inhibits Ras signaling post Ras prenylation and before MEK activation.

    PubMed

    Boufaied, Nadia; Wioland, My-Anh; Falardeau, Pierre; Gourdeau, Henriette

    2010-06-01

    TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity (low micromol/l) when tested in the NCI 60 tumor cell line panel and has shown in-vivo antitumor activity in several xenograft models. Related to its farnesylated moiety, the effect of TLN-4601 on Ras mitogen-activated protein kinase signaling was assessed. Downstream Ras signaling events, Raf-1, MEK, and ERK1/2 phosphorylation in MCF7 cells were evaluated by western blot analysis. TLN-4601 prevented epidermal growth factor-induced phosphorylation of Raf-1, MEK, and ERK1/2. This effect was time-dependent and dose-dependent with complete inhibition of protein phosphorylation within 4-6 h at 10 micromol/l. The inhibition of Ras signaling was not mediated by the inhibition of protein prenylation, documented by the lack of effect TLN-4601 on the prenylation of HDJ2 (specific substrate of farnesyltransferase), RAP1A (specific substrate of geranylgeranyl transferase-1), or Ras. As TLN-4601 did not inhibit EGFR, Raf-1, MEK or ERK1/2 kinase activities, the inhibitory effect of TLN-4601 on Ras signaling is not mediated by direct kinase inhibition. Using an Elk-1 trans-activation reporter assay, we found that TLN-4601 inhibits the MEK/ERK pathway at the level of Raf-1. Interestingly, TLN-4601 induces Raf-1 proteasomal-dependent degradation. These data indicate that TLN-4601 may inhibit the Ras-mitogen-activated protein kinase-signaling pathway by depleting the Raf-1 protein.

  17. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling.

    PubMed

    Song, Shumei; Ji, Baoan; Ramachandran, Vijaya; Wang, Huamin; Hafley, Margarete; Logsdon, Craig; Bresalier, Robert S

    2012-01-01

    Pancreatic cancer (PDAC) is a lethal disease with a five-year survival of 3-5%. Mutations in K-Ras are found in nearly all cases, but K-Ras mutations alone are not sufficient for the development of PDAC. Additional factors contribute to activation of Ras signaling and lead to tumor formation. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed in PDAC. We therefore investigated the functional role of Gal-3 in pancreatic cancer progression and its relationship to Ras signaling. Expression of Gal-3 was determined by immunohistochemistry, Q-PCR and immunoblot. Functional studies were performed using pancreatic cell lines genetically engineered to express high or low levels of Gal-3. Ras activity was examined by Raf pull-down assays. Co-immunoprecipitation and immunofluorescence were used to assess protein-protein interactions. In this study, we demonstrate that Gal-3 was highly up-regulated in human tumors and in a mutant K-Ras mouse model of PDAC. Down-regulation of Gal-3 by lentivirus shRNA decreased PDAC cell proliferation and invasion in vitro and reduced tumor volume and size in an orthotopic mouse model. Gal-3 bound Ras and maintained Ras activity; down-regulation of Gal-3 decreased Ras activity as well as Ras down-stream signaling including phosphorylation of ERK and AKT and Ral A activity. Transfection of Gal-3 cDNA into PDAC cells with low-level Gal-3 augmented Ras activity and its down-stream signaling. These results suggest that Gal-3 contributes to pancreatic cancer progression, in part, by binding Ras and activating Ras signaling. Gal-3 may therefore be a potential novel target for this deadly disease. PMID:22900040

  18. Calmodulin modulates H-Ras mediated Raf-1 activation.

    PubMed

    Moretó, Jemina; Lladó, Anna; Vidal-Quadras, Maite; Calvo, Maria; Pol, Albert; Enrich, Carlos; Tebar, Francesc

    2008-06-01

    We have previously demonstrated that, in COS-1 cells, inhibition of calmodulin increases Ras-GTP levels although it decreases Raf-1 activity and consequently MAPK. The present study analyzes the role of calmodulin in the regulation of Raf-1. First we show, using FRET microscopy, that inhibition of Raf-1 was not a consequence of a decreased interaction between H-Ras and Raf-1. Besides, the analysis of the phosphorylation state of Raf-1 showed that calmodulin, through downstream PI3K, is essential to ensure the Ser338-Raf-1 phosphorylation, critical for Raf-1 activation. We also show that the expression of a dominant negative mutant of PI3K impairs the calmodulin-mediated Raf-1 activation; in addition, both calmodulin and PI3K inhibitors decrease phospho-Ser338 and Raf-1 activity from upstream active H-Ras (H-RasG12V) and this effect is dependent on endocytosis. Importantly, in H-Ras depleted COS-1 cells, calmodulin does not modulate MAPK activation. Altogether, the results suggest that calmodulin regulation of MAPK in COS-1 cells relies upon H-Ras control of Raf-1 activity and involves PI3K.

  19. The Significance of Ras Activity in Pancreatic Cancer Initiation

    PubMed Central

    Logsdon, Craig D.; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Rasmt alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Rasmt. Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Rasmt is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Rasmt activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Rasmt. Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Rasmt activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease. PMID:26929740

  20. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation.

    PubMed

    Winter, Jon J G; Anderson, Malcolm; Blades, Kevin; Brassington, Claire; Breeze, Alexander L; Chresta, Christine; Embrey, Kevin; Fairley, Gary; Faulder, Paul; Finlay, M Raymond V; Kettle, Jason G; Nowak, Thorsten; Overman, Ross; Patel, S Joe; Perkins, Paula; Spadola, Loredana; Tart, Jonathan; Tucker, Julie A; Wrigley, Gail

    2015-03-12

    Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.

  1. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells

    PubMed Central

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Ángel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A.; Víctor, Víctor M.; Esplugues, Juan V.; Rojas, José M.; Sánchez-Madrid, Francisco; Serrador, Juan M.

    2008-01-01

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  2. Transgenic activation of Ras in neurons increases synapse formation in mouse neocortex.

    PubMed

    Seeger, G; Gärtner, U; Arendt, Th

    2005-06-01

    The small G protein Ras, which is a molecular switch in neurotrophic signal transduction, is implicated in synaptic plasticity and synapse development during ontogeny and in the adult nervous system. To characterise the involvement of Ras-dependent signaling in synaptogenesis, the cortical synapse-to-neuron ratio was investigated in synRas mice overexpressing Val12-Ha-Ras in postmitotic neurons (introduced by Heumann, 2000). The number of synapses per neuron was analysed in cortical layers II/III of the somatosensory cortex at different stages of postnatal development by stereological methods. The synapse-to-neuron ratio was still identical in wild-type and synRas mice at postnatal day 4 before the onset of transgene expression. At P12, P47 and in the adult, analyses revealed a significant increase in the synapse-to-neuron ratio in synRas mice which correlated with the strength of transgene expression. The data presented here provide evidence that Ras activity might be profoundly involved in synaptogenesis by reinforcing the formation or maintenance of synapses during the development and in the adult.

  3. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  4. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes

    PubMed Central

    Anta, B; Pérez-Rodríguez, A; Castro, J; García- Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  5. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-07-28

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment.

  6. Two types of RAS mutants that dominantly interfere with activators of RAS.

    PubMed Central

    Jung, V; Wei, W; Ballester, R; Camonis, J; Mi, S; Van Aelst, L; Wigler, M; Broek, D

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25. Images PMID:8196614

  7. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts.

    PubMed

    Svegliati, Silvia; Cancello, Raffaella; Sambo, Paola; Luchetti, Michele; Paroncini, Paolo; Orlandini, Guido; Discepoli, Giancarlo; Paterno, Roberto; Santillo, Mariarosaria; Cuozzo, Concetta; Cassano, Silvana; Avvedimento, Enrico V; Gabrielli, Armando

    2005-10-28

    The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation. We found a remarkable example in vivo of amplification of this circuitry in fibroblasts derived from systemic sclerosis (scleroderma) lesions, producing vast excess of ROS and undergoing rapid senescence. High ROS, Ha-Ras, and active ERK1/2 stimulated collagen synthesis, DNA damage, and accelerated senescence. Conversely ROS or Ras inhibition interrupted the signaling cascade and restored the normal phenotype. We conclude that in primary fibroblasts stabilization of Ras protein by ROS and ERK1/2 amplifies the response of the cells to growth factors and in systemic sclerosis represents a critical factor in the onset and progression of the disease. PMID:16081426

  8. Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation

    PubMed Central

    Sung, Hyeran; Kanchi, Krishna L.; Wang, Xue; Hill, Kristen S.; Messina, Jane L.; Lee, Ji-Hyun; Kim, Youngchul; Dees, Nathan D.; Ding, Li; Teer, Jamie K.; Yang, Shengyu; Sarnaik, Amod A.; Sondak, Vernon K.; Mulé, James J.; Wilson, Richard K.; Weber, Jeffrey S.; Kim, Minjung

    2016-01-01

    Inactivation of Ras GTPase activating proteins (RasGAPs) can activate Ras, increasing the risk for tumor development. Utilizing a melanoma whole genome sequencing (WGS) data from 13 patients, we identified two novel, clustered somatic missense mutations (Y472H and L481F) in RASA1 (RAS p21 protein activator 1, also called p120RasGAP). We have shown that wild type RASA1, but not identified mutants, suppresses soft agar colony formation and tumor growth of BRAF mutated melanoma cell lines via its RasGAP activity toward R-Ras (related RAS viral (r-ras) oncogene homolog) isoform. Moreover, R-Ras increased and RASA1 suppressed Ral-A activation among Ras downstream effectors. In addition to mutations, loss of RASA1 expression was frequently observed in metastatic melanoma samples on melanoma tissue microarray (TMA) and a low level of RASA1 mRNA expression was associated with decreased overall survival in melanoma patients with BRAF mutations. Thus, these data support that RASA1 is inactivated by mutation or by suppressed expression in melanoma and that RASA1 plays a tumor suppressive role by inhibiting R-Ras, a previously less appreciated member of the Ras small GTPases. PMID:26993606

  9. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  10. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  11. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  12. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function.

    PubMed

    Alvarez-Moya, B; López-Alcalá, C; Drosten, M; Bachs, O; Agell, N

    2010-11-01

    Fine tuning of Ras activity is widely known as a mechanism to induce different cellular responses. Recently, we have shown that calmodulin (CaM) binds to K-Ras and that K-Ras phosphorylation inhibits its interaction with CaM. In this study we report that CaM inhibits K-Ras phosphorylation at Ser181 by protein kinase C (PKC) in vivo, and this is a mechanism to modulate K-Ras activity and signaling. Although CaM inhibition increased the activation of endogenous K-Ras, PKC inhibition decreased its activation status. We demonstrate that K-Ras phosphorylation decreased susceptibility to p120GAP activity. Accordingly, we also observed that non-phosphorylable K-Ras mutant exhibits a less sustained activation profile and do not efficiently activate AKT at low growth factor doses compared with wild-type K-Ras. It is interesting that the physiological responses induced by K-Ras are affected by this phosphorylation; when K-Ras cannot be phosphorylated it exhibits a remarkably decreased ability to stimulate proliferation in non-saturated serum conditions. Finally, we demonstrate that phosphorylation also regulates oncogenic K-Ras functions, as focus formation capacity, mobility and apoptosis resistance upon adriamycin treatment of cells expressing oncogenic K-Ras that cannot be phosphorylated are highly compromised. Moreover, at low serum concentration proliferation and survival is practically inhibited when cells cannot phosphorylate oncogenic K-Ras. In this condition, K-Ras phosphorylation is essential to ensure a proper activation of mitogen-activated protein kinase and PI3K/AKT pathways. In summary, our findings suggest that the interplay between CaM interaction and PKC phosphorylation is essential to regulate non-oncogenic and oncogenic K-Ras activity and functionality.

  13. Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis.

    PubMed

    Ramocki, M B; Johnson, S E; White, M A; Ashendel, C L; Konieczny, S F; Taparowsky, E J

    1997-07-01

    The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal muscle lineage by disrupting MRF function via a mechanism that is independent of the dimerization, DNA binding, and inherent transcriptional activation properties of the proteins. To investigate the intracellular signaling pathway(s) that mediates the inhibition of MRF-induced myogenesis by oncogenic Ras, we tested two transformation-defective H-Ras 12V effector domain variants for their ability to alter terminal differentiation. H-Ras 12V,35S retains the ability to activate the Raf/MEK/mitogen-activated protein (MAP) kinase cascade, whereas H-Ras 12V,40C is unable to interact directly with Raf-1 yet still influences other signaling intermediates, including Rac and Rho. Expression of each H-Ras 12V variant in C3H10T1/2 cells abrogates MyoD-induced activation of the complete myogenic program, suggesting that MAP kinase-dependent and -independent Ras signaling pathways individually block myogenesis in this model system. However, additional studies with constitutively activated Rac1 and RhoA proteins revealed no negative effects on MyoD-induced myogenesis. Similarly, treatment of Ras-inhibited myoblasts with the MEK1 inhibitor PD98059 revealed that elevated MAP kinase activity is not a significant contributor to the H-Ras 12V effect. These data suggest that an additional Ras pathway, distinct from the well-characterized MAP kinase and Rac/Rho pathways known to be important for the transforming function of activated Ras, is primarily responsible for the inhibition of myogenesis by H-Ras 12V.

  14. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  15. The cytokine-activated tyrosine kinase JAK2 activates Raf-1 in a p21ras-dependent manner.

    PubMed

    Xia, K; Mukhopadhyay, N K; Inhorn, R C; Barber, D L; Rose, P E; Lee, R S; Narsimhan, R P; D'Andrea, A D; Griffin, J D; Roberts, T M

    1996-10-15

    JAK2, a member of the Janus kinase superfamily was found to interact functionally with Raf-1, a central component of the ras/mitogen-activated protein kinase signal transduction pathway. Interferon-gamma and several other cytokines that are known to activate JAK2 kinase were also found to stimulate Raf-1 kinase activity toward MEK-1 in mammalian cells. In the baculovirus coexpression system, Raf-1 was activated by JAK2 in the presence of p21ras. Under these conditions, a ternary complex of p21ras, JAK2, and Raf-1 was observed. In contrast, in the absence of p21ras, coexpression of JAK2 and Raf-1 resulted in an overall decrease in the Raf-1 kinase activity. In addition, JAK2 phosphorylated Raf-1 at sites different from those phosphorylated by pp60v-src. In mammalian cells treated with either erythropoietin or interferon-gamma, a small fraction of Raf-1 coimmunoprecipitated with JAK2 in lysates of cells in which JAK2 was activated as judged by its state of tyrosine phosphorylation. Taken together, these data suggest that JAK2 and p21ras cooperate to activate Raf-1.

  16. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    PubMed

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  17. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain.

    PubMed Central

    Mattingly, R R; Sorisky, A; Brann, M R; Macara, I G

    1994-01-01

    Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected. Images PMID:7969134

  18. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    PubMed

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-01

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  19. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis. PMID:27501536

  20. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  1. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  2. Ras regulates SCF(β-TrCP) protein activity and specificity via its effector protein NORE1A.

    PubMed

    Schmidt, M Lee; Donninger, Howard; Clark, Geoffrey J

    2014-11-01

    Ras is the most frequently activated oncogene found in human cancer, but its mechanisms of action remain only partially understood. Ras activates multiple signaling pathways to promote transformation. However, Ras can also exhibit a potent ability to induce growth arrest and death. NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and cell cycle arrest. Expression of NORE1A is frequently lost in human tumors, and its mechanism of action remains unclear. Here we show that NORE1A forms a direct, Ras-regulated complex with β-TrCP, the substrate recognition component of the SCF(β-TrCP) ubiquitin ligase complex. This interaction allows Ras to stimulate the ubiquitin ligase activity of SCF(β-TrCP) toward its target β-catenin, resulting in degradation of β-catenin by the 26 S proteasome. However, the action of Ras/NORE1A/β-TrCP is substrate-specific because IκB, another substrate of SCF(β-TrCP), is not sensitive to NORE1A-promoted degradation. We identify a completely new signaling mechanism for Ras that allows for the specific regulation of SCF(β-TrCP) targets. We show that the NORE1A levels in a cell may dictate the effects of Ras on the Wnt/β-catenin pathway. Moreover, because NORE1A expression is frequently impaired in tumors, we provide an explanation for the observation that β-TrCP can act as a tumor suppressor or an oncogene in different cell systems.

  3. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation.

    PubMed Central

    Khosravi-Far, R; White, M A; Westwick, J K; Solski, P A; Chrzanowska-Wodnicka, M; Van Aelst, L; Wigler, M H; Der, C J

    1996-01-01

    Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events. PMID:8668210

  4. VEGF neutralizing aerosol therapy in primary pulmonary adenocarcinoma with K-ras activating-mutations.

    PubMed

    Hervé, Virginie; Rabbe, Nathalie; Guilleminault, Laurent; Paul, Flora; Schlick, Laurène; Azzopardi, Nicolas; Duruisseaux, Michael; Fouquenet, Delphine; Montharu, Jérôme; Redini, Françoise; Paintaud, Gilles; Lemarié, Etienne; Cadranel, Jacques; Wislez, Marie; Heuzé-Vourc'h, Nathalie

    2014-01-01

    K-ras mutations promote angiogenesis in lung cancer and contribute to the drug resistance of cancer cells. It is not clear whether K-ras mutated adenocarcinomas are sensitive to anti-angiogenic therapy with monoclonal antibodies (mAbs) that target vascular endothelial growth factor (VEGF). Anti-angiogenic mAbs are usually delivered systemically, but only a small proportion reaches the lung after intravenous injection. We investigated the relevance of a non-invasive pulmonary route for the delivery of anti-VEGF mAbs in the mouse K-ras(LA1) model. We found that pulmonary delivery of these mAbs significantly reduced the number of tumor lesions and inhibited malignant progression. The antitumor effect involves the VEGFR2-dependent inhibition of blood vessel growth, which impairs tumor proliferation. Pharmacokinetic analysis of aerosolized anti-VEGF showed its low rate of passage into the bloodstream, suggesting that this delivery route is associated with reduced systemic side effects. Our findings highlight the value of the aerosol route for administration of anti-angiogenic mAbs in pulmonary adenocarcinoma with K-ras activating-mutations. PMID:25484066

  5. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  6. Interaction of activated Ras with Raf-1 alone may be sufficient for transformation of rat2 cells.

    PubMed Central

    Stang, S; Bottorff, D; Stone, J C

    1997-01-01

    v-H-ras effector mutants have been assessed for transforming activity and for the ability of the encoded proteins to interact with Raf-1-, B-Raf-, byr2-, ralGDS-, and CDC25-encoded proteins in the yeast two-hybrid system. Transformation was assessed in rat2 cells as well as in a mutant cell line, rv68BUR, that affords a more sensitive transformation assay. Selected mutant Ras proteins were also examined for their ability to interact with an amino-terminal fragment of Raf-1 in vitro. Finally, possible cooperation between different v-H-ras effector mutants and between effector mutants and overexpressed Raf-1 was assessed. Ras transforming activity was shown to correlate best with the ability of the encoded protein to interact with Raf-1. No evidence for cooperation between v-H-ras effector mutants was found. Signaling through the Raf1-MEK-mitogen-activated protein kinase cascade may be the only effector pathway contributing to RAS transformation in these cells. PMID:9154803

  7. GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling

    PubMed Central

    Ayroldi, Emira; Zollo, Ornella; Bastianelli, Alessandra; Marchetti, Cristina; Agostini, Massimiliano; Di Virgilio, Rosa; Riccardi, Carlo

    2007-01-01

    Tsc22d3 coding for glucocorticoid-induced leucine zipper (GILZ) was initially identified as a dexamethasone-responsive gene involved in the control of T lymphocyte activation and apoptosis. However, the physiological role of this molecule and its function in the biological activity of glucocorticoids (GCs) has not been clarified. Here, we demonstrate that GILZ interacts directly with Ras in vitro and in vivo as shown by GILZ and Ras coimmunoprecipitation and colocalization upon PMA activation in primary mouse spleen T lymphocytes and thymus cells. The analysis of GILZ mutants showed that they bound Ras through the tuberous sclerosis complex box (TSC) and, depending on the Ras activation level, formed a trimeric complex with Ras and Raf, which we previously identified as a GILZ binder. As a consequence of these interactions, GILZ diminished the activation of Ras and Raf downstream targets including ERK1/2, AKT/PKB serine/threonine kinase, and retinoblastoma (Rb) phosphorylation and cyclin D1 expression, leading to inhibition of Ras- and Raf-dependent cell proliferation and Ras-induced NIH-3T3 transformation. GILZ silencing resulted in an increase in concanavalin A–induced T cell proliferation and, most notably, inhibition of dexamethasone antiproliferative effects. Together, these findings indicate that GILZ serves as a negative regulator of Ras- and Raf-induced proliferation and is an important mediator of the antiproliferative effect of GCs. PMID:17492054

  8. Immunomodulatory activity of Āmalaki Rasāyana: An experimental evaluation

    PubMed Central

    Rajani, Jignesh; Ashok, B.K.; Galib; Patgiri, B.J.; Prajapati, P.K.; Ravishankar, B.

    2012-01-01

    Background: Ayurvedic system of medicine holds a number of drugs that improves the immunity. Āmalaki (Emblica officinalis) is one such drug. Researches with crude extracts of Āmalaki have proven the antioxidant and immunomodulatory activities. But, works on Āmalaki Rasāyana are not found reported. Aims: Considering this, two samples of Āmalaki Rasāyana (AR7 and AR21) were studied to evaluate comparative immunomodulatory activity against the cyclophosphamide immunosuppression in rats. Materials and Methods: Test drugs were prepared by following classical guidelines. Wistar strain albino rats of either sex were used in the study. Statistical Analysis: For comparison of data from cyclophosphamide control group with remaining cyclophosphamide plus test drug administered groups one way ANOVA with Dunnett's multiple t-test (DMTT) was employed. Results and Conclusions: Āmalaki Rasāyana possesses significant immunostimulant activity and moderate cytoprotective activity. AR21 was found to have better activity profile in terms of both immunostimulant as well as cytoprotective activity. PMID:24167334

  9. Activation of intracellular kinases in Xenopus oocytes by p21ras and phospholipases: a comparative study.

    PubMed

    Carnero, A; Lacal, J C

    1995-02-01

    Signal transduction induced by generations of second messengers from membrane phospholipids is a major regulatory mechanism in the control of cell proliferation. Indeed, oncogenic p21ras alters the intracellular levels of phospholipid metabolites in both mammalian cells and Xenopus oocytes. However, it is still controversial whether this alteration it is biologically significant. We have analyzed the ras-induced signal transduction pathway in Xenopus oocytes and have correlated its mechanism of activation with that of the three most relevant phospholipases (PLs). After microinjection, ras-p21 induces a rapid PLD activation followed by a late PLA2 activation. By contrast, phosphatidylcholine-specific PLC was not activated under similar conditions. When each of these PLs was studied for its ability to activate intracellular signalling kinases, all of them were found to activate maturation-promoting factor efficiently. However, only PLD was able to activate MAP kinase and S6 kinase II, a similar pattern to that induced by p21ras proteins. Thus, the comparison of activated enzymes after microinjection of p21ras or PLs indicated that only PLD microinjection mimetized p21ras signalling. Finally, inhibition of the endogenous PLD activity by neomycin substantially reduced the biological activity of p21ras. All these results suggest that PLD activation may constitute a relevant step in ras-induced germinal vesicle breakdown in Xenopus oocytes.

  10. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA

    PubMed Central

    Schmid, Tobias; Snoek, L. Basten; Fröhli, Erika; van der Bent, M. Leontien; Kammenga, Jan; Hajnal, Alex

    2015-01-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling. PMID:25978500

  11. The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF*

    PubMed Central

    Baljuls, Angela; Beck, Matthias; Oenel, Ayla; Robubi, Armin; Kroschewski, Ruth; Hekman, Mirko; Rudel, Thomas; Rapp, Ulf R.

    2012-01-01

    The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity. PMID:22605333

  12. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras.

    PubMed

    Yun, H Y; Gonzalez-Zulueta, M; Dawson, V L; Dawson, T M

    1998-05-12

    N-methyl-D-aspartate (NMDA) glutamate receptor-mediated increases in intracellular calcium are thought to play a critical role in synaptic plasticity. The mechanisms by which changes in cytoplasmic calcium transmit the glutamate signal to the nucleus, which is ultimately important for long-lasting neuronal responses, are poorly understood. We show that NMDA receptor stimulation leads to activation of p21(ras) (Ras) through generation of nitric oxide (NO) via neuronal NO synthase. The competitive NO synthase inhibitor, L-nitroarginine methyl ester, prevents Ras activation elicited by NMDA and this effect is competitively reversed by the NO synthase substrate, L-arginine. NMDA receptor stimulation fails to activate Ras in neuronal cultures from mice lacking neuronal NO synthase. NMDA-induced Ras activation occurs through a cGMP-independent pathway as 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a potent and selective inhibitor of guanylyl cyclase, has no effect on NMDA receptor-induced activation of Ras, and the cell-permeable cGMP analog, 8Br-cGMP, does not activate Ras. Furthermore, NO directly activates immunoprecipitated Ras from neurons. NMDA also elicits tyrosine phosphorylation of extracellular signal-regulated kinases, a downstream effector pathway of Ras, through a NO/non-cGMP dependent mechanism, thus supporting the physiologic relevance of endogenous NO regulation of Ras. These results suggest that Ras is a physiologic target of endogenously produced NO and indicates a signaling pathway for NMDA receptor activation that may be important for long-lasting neuronal responses.

  13. Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster

    Cancer.gov

    Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.

  14. Post-translational modification of H-Ras is required for activation of, but not for association with, B-Raf.

    PubMed

    Okada, T; Masuda, T; Shinkai, M; Kariya, K; Kataoka, T

    1996-03-01

    B-Raf is regulated by Ras protein and acts as a mitogen-activated protein (MAP) kinase kinase kinase in PC12 cells and brain. Ras protein undergoes a series of post-translational modifications on its C-terminal CAAX motif, and the modifications are critical for its function. To elucidate the role of the post-translational modifications in interaction with, and activation of, B-Raf, we have analyzed a direct association between H-Ras and B-Raf, and constructed an in vitro system for B-Raf activation by H-Ras. By using methods based on inhibition of yeast adenylyl cyclase or RasGAP activity and by in vitro binding assays, we have shown that the segment of B-Raf corresponding to amino acid 1-326 binds directly to H-Ras with a dissociation constant (Kd) comparable to that of Raf-1 and that the binding is not significantly affected by the post-translational modifications. However, when the activity of B-Raf to stimulate MAP kinase was measured by using a cell-free system derived from rat brain cytosol, we observed that the unmodified form of H-Ras possesses an almost negligible activity to activate B-Raf in vitro compared to the fully modified form. H-RasSer-181,184 mutant, which was farnesylated but not palmitoylated, was equally active as the fully modified form. These results indicate that the post-translational modifications, especially farnesylation, are required for H-Ras to activate B-Raf even though they have no apparent effect on the binding properties of H-Ras to B-Raf.

  15. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase.

    PubMed Central

    Worthen, G S; Avdi, N; Buhl, A M; Suzuki, N; Johnson, G L

    1994-01-01

    Chemoattractants bind to seven transmembrane-spanning, G-protein-linked receptors on polymorphonuclear leukocytes (neutrophils) and induce a variety of functional responses, including activation of microtubule-associated protein (MAP) kinase. Although the pathways by which MAP kinases are activated in neutrophils are unknown, we hypothesized that activation of the Ras/Raf pathway leading to activation of MAP/ERK kinase (MEK) would be induced by the chemoattractant f-met-leu-phe. Human neutrophils exposed to 10 nM FMLP for 30 s exhibited an MAP kinase kinase activity coeluting with MEK-1. Immunoprecipitation of Raf-1 kinase after stimulation with FMLP revealed an activity that phosphorylated MEK, was detectable at 30 s, and peaked at 2-3 min. Immunoprecipitation of Ras from both intact neutrophils labeled with [32P]orthophosphate and electropermeabilized neutrophils incubated with [32P]GTP was used to determine that FMLP treatment was associated with activation of Ras. Activation of both Ras and Raf was inhibited by treatment of neutrophils with pertussis toxin, indicating predominant linkage to the Gi2 protein. Although phorbol esters activated Raf, activation induced by FMLP appeared independent of protein kinase C, further suggesting that Gi2 was linked to Ras and Raf independent of phospholipase C and protein kinase C. Dibutyryl cAMP, which inhibits many neutrophil functional responses, blocked the activation of Raf by FMLP, suggesting that interruption of the Raf/MAP kinase pathway influences neutrophil responses to chemoattractants. These data suggest that Gi2-mediated receptor regulation of the Ras/Raf/MAP kinase pathway is a primary response to chemoattractants. Images PMID:8040337

  16. CARD9 mediates Dectin-1–induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity

    PubMed Central

    Tang, Bing; Zhu, Le-Le; Liu, Yan-Hui; Zhao, Xue-Qiang; Gorjestani, Sara; Hsu, Yen-Michael S.; Yang, Long; Guan, Jian-Hong; Xu, Guo-Tong

    2014-01-01

    Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)–mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1–induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)–dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans–infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection. PMID:25267792

  17. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-11-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  18. Involvement of the protein tyrosine phosphatase SHP-1 in Ras-mediated activation of the mitogen-activated protein kinase pathway.

    PubMed Central

    Krautwald, S; Büscher, D; Kummer, V; Buder, S; Baccarini, M

    1996-01-01

    Ubiquitously expressed SH2-containing tyrosine phosphatases interact physically with tyrosine kinase receptors or their substrates and relay positive mitogenic signals via the activation of the Ras-mitogen-activated protein kinase (MAPK) pathway. Conversely, the structurally related phosphatase SHP-1 is predominantly expressed in hemopoietic cells and becomes tyrosine phosphorylated upon colony-stimulating factor 1 treatment of macrophages without associating with the colony-stimulating factor 1 receptor tyrosine kinase. Mice lacking functional SHP-1 (me/me and me(v)/me(v)) develop systemic autoimmune disease with accumulation of macrophages, suggesting that SHP-1 may be a negative regulator of hemopoietic cell growth. By using macrophages expressing dominant negative Ras and the me(v)/me(v) mouse mutant, we show that SHP-1 is activated in the course of mitogenic signal transduction in a Ras-dependent manner and that its activity is necessary for the Ras-dependent activation of the MAPK pathway but not of the Raf-1 kinase. Consistent with a role for SHP-1 as an intermediate between Ras and the MEK-MAPK pathway, Ras-independent activation of the latter kinases by bacterial lipopolysaccharide occurred normally in me(v)/me(v) cells. Our results sharply accentuate the diversity of signal transduction in mammalian cells, in which the same signaling intermediates can be rearranged to form different pathways. PMID:8887625

  19. Ras gene activation in gastric adenocarcinoma of Chinese patients in Taiwan

    SciTech Connect

    Tzeng, C.C.; Lee, W.Y.; Jin, Y.T.

    1994-09-01

    In order to assess the implication of mutational activation of members of the ras family of cellular proto-oncogenes in the development of gastric cancers in Chinese patients, a series of 55 cases of gastric adenocarcinoma in Taiwan was studied. Genomic deoxyribonucleic acid obtained from formalin-fixed paraffin-embedded archival tumor tissue was amplified by polymerase chain reaction and then analyzed by dot blot hybridation assay with allele-specific oligonucleotide probes to detect mutations at codons 12, 13, and 61 of c-Ki-ras, c-Ha-ras, and c-N-ras. Twelve (12.8%) of the 55 carcinomas examined harbored a point mutation. Of the 12 mutations, 8 (66.6%) were detected in Ha-ras codon 12. Our result is consistent with reports from mainland China and Korea, but different from those of Japan and the United States. This difference is probably attributable to different eating and drinking habits.

  20. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor loss in renal injury caused by RAS activation.

    PubMed

    Ichikawa, Daisuke; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Shibagaki, Yugo; Yasuda, Takashi; Katayama, Kimie; Hoshino, Seiko; Igarashi-Migitaka, Junko; Hirata, Kazuaki; Kimura, Kenjiro

    2014-03-15

    The aim of this study was to assess the renoprotective effect of renal human liver-type fatty acid binding protein (hL-FABP) and angiotensin II (ANG II) type 1A receptor (AT1a) loss in renal injury caused by renin-angiotensin system (RAS) activation. We established hL-FABP chromosomal transgenic mice (L-FABP(+/-)AT1a(+/+)), crossed the L-FABP(+/-)AT1a(+/+) with AT1a knockdown homo mice (L-FABP(-/-)AT1a(-/-)), and generated L-FABP(+/-)AT1a hetero mice (L-FABP(+/-)AT1a(+/-)). After the back-cross of these cubs, L-FABP(+/-)AT1a(-/-) were obtained. To activate the renal RAS, wild-type mice (L-FABP(-/-)AT1a(+/+)), L-FABP(+/-)AT1a(+/+), L-FABP(-/-)AT1a(+/-), L-FABP(+/-)AT1a(+/-), L-FABP(-/-)AT1a(-/-), and L-FABP(+/-)AT1a(-/-) were administered high-dose systemic ANG II infusion plus a high-salt diet for 28 days. In the L-FABP(-/-)AT1a(+/+), RAS activation (L-FABP(-/-)AT1a(+/+)RAS) caused hypertension and tubulointerstitial damage. In the L-FABP(+/-)AT1a(+/+)RAS, tubulointerstitial damage was significantly attenuated compared with L-FABP(-/-)AT1a(+/+)RAS. In the AT1a partial knockout (AT1a(+/-)) or complete knockout (AT1a(-/-)) mice, reduction of AT1a expression led to a significantly lower degree of renal injury compared with L-FABP(-/-)AT1a(+/+)RAS or L-FABP(+/-)AT1a(+/+)RAS mice. Renal injury in L-FABP(+/-)AT1a(+/-)RAS mice was significantly attenuated compared with L-FABP(-/-)AT1a(+/-)RAS mice. In both L-FABP(-/-)AT1a(-/-)RAS and L-FABP(+/-)AT1a(-/-)RAS mice, renal damage was rarely found. The degrees of renal hL-FABP expression and urinary hL-FABP levels increased by RAS activation and gradually decreased along with reduction of AT1a expression levels. In conclusion, in this mouse model, renal hL-FABP expression and a decrease in AT1a expression attenuated tubulointerstitial damage due to RAS activation.

  1. Variational data assimilation system "INM RAS - Black Sea"

    NASA Astrophysics Data System (ADS)

    Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir

    2013-04-01

    Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V

  2. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    PubMed

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.

  3. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  4. Reduced Expression of the Extracellular Calcium-Sensing Receptor (CaSR) Is Associated with Activation of the Renin-Angiotensin System (RAS) to Promote Vascular Remodeling in the Pathogenesis of Essential Hypertension

    PubMed Central

    Wang, La-mei; Tang, Na; Zhong, Hua; Liu, Yong-min; Li, Zhen; Feng, Qian; He, Fang

    2016-01-01

    The proliferation of vascular smooth muscle cells (VSMCs), remodeling of the vasculature, and the renin-angiotensin system (RAS) play important roles in the development of essential hypertension (EH), which is defined as high blood pressure (BP) in which secondary causes, such as renovascular disease, are absent. The calcium-sensing receptor (CaSR) is involved in the regulation of BP. However, the underlying mechanisms by which the CaSR regulates BP are poorly understood. In the present study, the role of the CaSR in EH was investigated using male spontaneously hypertensive rats (SHRs) and rat and human plasma samples. The percentages of medial wall thickness to external diameter (WT%), total vessel wall cross-sectional area to the total area (WA%) of thoracic arteries, as well as the percentage of wall area occupied by collagen to total vessel wall area (CA%) were determined. Tissue protein expression and plasma concentrations of the CaSR, cyclic adenosine monophosphate (cAMP), renin, and angiotensin II (Ang II) were additionally assessed. WT%, WA%, and CA% were found to increase with increasing BP, whereas the plasma concentration of CaSR was found to decrease. With increasing BP, the levels of smooth muscle actin and calponin decreased, whereas those of osteopontin and proliferating cell nuclear antigen increased. The CaSR level negatively correlated with the levels of cAMP and Ang II, but positively correlated with those of renin. Our data suggest that reduced expression of the CaSR is correlated with activation of the RAS, which induces increased vascular remodeling and VSMC proliferation, and thereby associated with EH in the SHR model and in the Han Chinese population. Our findings provide new insights into the pathogenesis of EH. PMID:27391973

  5. Ras history

    PubMed Central

    2010-01-01

    Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years. PMID:21686117

  6. Differential requirement of RasGRP1 for γδ T cell development and activation

    PubMed Central

    Chen, Yong; Ci, Xinxin; Gorentla, Balachandra; Sullivan, Sarah A.; Stone, James C.; Zhang, Weiguo; Pereira, Pablo; Lu, Jianxin; Zhong, Xiao-Ping

    2012-01-01

    γδ T cells (γδT) belong to a distinct T cell lineage that performs immune functions different from αβ T cells (αβT). Previous studies have established that Erk1/2 MAPKs are critical for positive selection of αβT cells. Additional evidence also suggests that elevated Erk1/2 activity promotes γδT cell generation. RasGRP1, a guanine nucleotide releasing factor for Ras, plays an important role in positive selection of αβT cells by activating the Ras-Erk1/2 pathway. In this report, we demonstrate that RasGRP1 is critical for TCR-induced Erk1/2 activation in γδT cells but exerts different roles for γδT cell generation and activation. Deficiency of RasGRP1 does not obviously affect γδT cell numbers in the thymus but leads to increased γδT cells, particularly CD4−CD8+ γδT cells, in the peripheral lymphoid organs. The virtually unhindered γδT cell development in the RasGRP1−/− thymus proved to be cell intrinsic, while the increase in CD8+ γδT cells is caused by non-cell-intrinsic mechanisms. Our data provides genetic evidence that decreased Erk1/2 activation in the absence of RasGRP1 is compatible for γδT cell generation. Although RasGRP1 is dispensable for γδT cell generation, RasGRP1-deficient γδT cells are defective in proliferation following TCR stimulation. Additionally, RasGRP1-deficient γδT cells are impaired to produce IL-17 but not IFNγ. Together, these observations have revealed that RasGRP1 plays differential roles for γδ and αβ T cell development but is critical for γδT cell proliferation and production of IL-17. PMID:22623331

  7. Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells.

    PubMed

    Yanagisawa, Makoto; Nakamura, Kazuo; Taga, Tetsuya

    2005-09-01

    Neuronal and glial cells in the central nervous system are generated from common neural precursor cells during development. To evaluate the functions of glycosphingolipids (GSLs) in neural precursor cells, neuroepithelial cells (NECs) were prepared from mouse embryos (E14.5), and the effects of an inhibitor of glucosylceramide synthesis, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), on NECs was investigated. In PDMP-treated NECs, the expression of GD3, a major ganglioside of NECs, disappeared. We found that basic fibroblast growth factor (bFGF)-induced proliferation and extracellular signal-regulated kinase (ERK) activation were repressed in PDMP-treated NECs. Leukemia inhibitory factor (LIF)-induced ERK activation was also abolished in PDMP-treated NECs, suggesting that PDMP specifically represses the Ras-MAPK pathway. bFGF-induced activation of the Ras-MAPK pathway in NECs is dependent on GSL-enriched microdomains, lipid rafts. The organization of lipid rafts and the distribution of Ras and Grb2-SOS in the microdomains were not affected. However, Ras activation was repressed in PDMP-treated NECs. In PDMP-treated NECs, some neuronal genes were up-regulated and glial genes were down-regulated. These results suggest that GSLs might be involved in the proliferation, survival, signal transduction and differentiation of NECs.

  8. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells.

    PubMed

    Fey, Dirk; Matallanas, David; Rauch, Jens; Rukhlenko, Oleksii S; Kholodenko, Boris N

    2016-10-01

    The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed. PMID:27350026

  9. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells. PMID:27602167

  10. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells.

  11. Regulation of Ras proteins by reactive nitrogen species.

    PubMed

    Davis, Michael F; Vigil, Dom; Campbell, Sharon L

    2011-08-01

    Ras GTPases have been a subject of intense investigation since the early 1980s, when single point mutations in Ras were shown to cause deregulated cell growth control. Subsequently, Ras was identified as the most prevalent oncogene found in human cancer. Ras proteins regulate a host of pathways involved in cell growth, differentiation, and apoptosis by cycling between inactive GDP-bound and active GTP-bound states. Regulation of Ras activity is controlled by cellular factors that alter guanine nucleotide cycling. Oncogenic mutations prevent protein regulatory factors from down-regulating Ras activity, thereby maintaining Ras in a chronically activated state. The central dogma in the field is that protein modulatory factors are the primary regulators of Ras activity. Since the mid-1990s, however, evidence has accumulated that small molecule reactive nitrogen species (RNS) can also influence Ras guanine nucleotide cycling. Herein, we review the basic chemistry behind RNS formation and discuss the mechanism through which various RNS enhance nucleotide exchange in Ras proteins. In addition, we present studies that demonstrate the physiological relevance of RNS-mediated Ras activation within the context of immune system function, brain function, and cancer development. We also highlight future directions and experimental methods that may enhance our ability to detect RNS-mediated activation in cell cultures and in vivo. The development of such methods may ultimately pave new directions for detecting and elucidating how Ras proteins are regulated by redox species, as well as for targeting redox-activated Ras in cancer and other disease states.

  12. Activation of ras oncogene in aflatoxin-induced rat liver carcinogenesis.

    PubMed Central

    Sinha, S; Webber, C; Marshall, C J; Knowles, M A; Proctor, A; Barrass, N C; Neal, G E

    1988-01-01

    The presence of activated transforming genes was investigated in four primary aflatoxin-induced rat liver tumors in male Fischer rats, in two cell lines generated from such tumors, in an epithelial liver-derived nontransformed cell line, and in the latter cell line after transformation by aflatoxin B1 in vitro. When DNA extracted from these sources was transfected into NIH 3T3 cells, negative results were obtained from focus assays. Cotransfection of these DNA samples with a gene for resistance to G418, followed by selection for resistance to that antibiotic, and tumorigenicity testing in nude mice demonstrated DNA-mediated transfer of the neoplastic phenotype in all cases except for DNA from the nontransformed cell line. DNA extracted from these primary nude mouse tumors used in a secondary round of transfection with NIH 3T3 cells gave positive results in focus assays, which were conserved through succeeding rounds of transfection. By use of appropriate radiolabeled probes, activated ras oncogenes were detected in all samples. N-ras activation was detected in three of the primary rat liver tumors and both hepatoma cell lines. Ki-ras activation was detected in one primary rat liver tumor, and Ha-ras activation was detected in the cell line transformed in vitro with activated aflatoxin B1. The activated Ki-ras oncogene was further characterized by use of synthetic oligonucleotide probes and was shown to contain a G----A transition at the second nucleotide in codon 12. Images PMID:3287372

  13. Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways

    PubMed Central

    Grahl, Nora; Demers, Elora G.; Lindsay, Allia K.; Harty, Colleen E.; Willger, Sven D.; Piispanen, Amy E.; Hogan, Deborah A.

    2015-01-01

    Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as biofilm formation and white-opaque switching. Previous studies have shown that hyphal growth is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibitors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects were observed in other Candida species. Consistent with there being a connection between respiratory activity and GTP-Ras1 binding, mutants lacking complex I or complex IV grew as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-binding was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased intracellular ATP concentrations and metabolomics analyses of cells grown with different respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content which suggested increased AMP kinase activity. Biochemical and genetic experiments provide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in response to decreased mitochondrial activity suggesting a revised model for Ras1 and Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem to form a master-regulatory complex necessary to integrate

  14. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation.

    PubMed

    Thapar, Roopa; Williams, Jason G; Campbell, Sharon L

    2004-11-01

    The C terminus, also known as the hypervariable region (residues 166-189), of H-, N-, and K-Ras proteins has sequence determinants necessary for full activation of downstream effectors such as Raf kinase and PI-3 kinase as well as for the correct targeting of Ras proteins to lipid rafts and non-raft membranes. There is considerable interest in understanding how residues in the extreme C terminus of the different Ras proteins and farnesylation of the CaaX box cysteine affect Ras membrane localization and allosteric activation of Raf kinase. To provide insights into the structural and dynamic changes that occur in Ras upon farnesylation, we have used NMR spectroscopy to compare the properties of truncated H-Ras (1-166), to non-processed full-length H-Ras (residues 1-185) and full-length (1-189) farnesylated H-Ras. We report that the C-terminal helix alpha-5 extends to residue N172, and the remaining 17 amino acid residues in the C terminus are conformationally averaged in solution. Removal of either 23 or 18 amino acid residues from the C terminus of full length H-Ras generates truncated H-Ras (1-166) and H-Ras (1-171) proteins, respectively, that have been structurally characterized and are biochemical active. Here we report that C-terminal truncation of H-Ras results in minor structural and dynamic perturbations that are propagated throughout the H-Ras protein including increased flexibility of the central beta-sheet and the C-terminal helix alpha-5. Ordering of residues in loop-2, which is involved in Raf CRD binding is also observed. Farnesylation of full-length H-Ras at C186 does not result in detectable conformational changes in H-Ras. Chemical shift mapping studies of farnesylated and non-farnesylated forms of H-Ras with the Raf-CRD show that the farnesyl moiety, the extreme H-Ras C terminus and residues 23-30, contribute to H-Ras:Raf-CRD interactions, thereby increasing the affinity of H-Ras for the Raf-CRD.

  15. Role of neuronal ras activity in adult hippocampal neurogenesis and cognition.

    PubMed

    Manns, Martina; Leske, Oliver; Gottfried, Sebastian; Bichler, Zoë; Lafenêtre, Pauline; Wahle, Petra; Heumann, Rolf

    2011-01-01

    Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  16. Activated Ras Induces Cytoplasmic Vacuolation and Non-Apoptotic Death in Glioblastoma Cells via Novel Effector Pathways

    PubMed Central

    Kaul, Aparna; Overmeyer, Jean H.; Maltese, William A.

    2007-01-01

    Expression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles and increased autophagic activity. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways. We find that the unusual effects of activated H-Ras depend on farnesylation and membrane association of the GTPase. Both H-Ras(G12V) and K-Ras4B(G12V) stimulate vacuolation, but activated forms of Cdc42 and RhoA do not. Amino acid substitutions in the Ras effector domain, which are known to selectively impair its interactions with Raf kinase, class-I phosphatidylinositide 3-kinase (PI3K), or Ral nucleotide exchange factors, initially pointed to Raf as a possible mediator of cell vacuolation. However, the MEK inhibitor, PD98059, did not block the induction of vacuoles, and constitutively active Raf-Caax did not mimic the effects of Ras(G12V). Introduction of normal PTEN together with H-Ras(G12V) into U251 glioblastoma cells reduced the PI3K-dependent activation of Akt, but had no effect on vacuolation. Finally, co-expression of H-Ras(G12V) with a dominant-negative form of RalA did not suppress vacuolation. Taken together, the observations indicate that Ras activates non-conventional and perhaps unique effector pathways to induce cytoplasmic vacuolation in glioblastoma cells. Identification of the relevant signaling pathways may uncover specific molecular targets that can be manipulated to activate non-apoptotic cell death in this type of cancer. PMID:17210246

  17. RAS - Screens & Assays

    Cancer.gov

    A primary goal of the RAS Initiative is to develop assays for RAS activity, localization, and signaling and adapt those assays so they can be used for finding new drug candidates. Explore the work leading to highly validated screening protocols.

  18. Imaging of Ras/Raf activity induced by low energy laser irradiation in living cell using FRET

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Tong-Sheng; Xing, Da

    2005-01-01

    Ras/Raf signaling pathway is an important signaling pathway that governs cell proliferation, differential and apoptosis. Low-energy laser irradiation (LELI) was found to modulate various processes. Generally, cell proliferation is induced by low doses LELI and apoptosis is induced by high doses LELI. Mechanism of biological effect of LELI has not been clear. Recently, activation of MEK (mitogen-activated protein kinase) and ERK (extracellular-signal-regulated kinase), which are downstream protein kinases of Ras/Raf, are observed during LELI-induced cell proliferation by immunoprecipitation and western blot analysis. RaichuRas reporter consisting of fusions of H-ras, the Ras-binding domain of Raf (RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). Therefore, intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) was transfected with the plasmid (pRaichuRas) and then treated with LELI at dose of 60J/cm2. Effect of LELI on Ras/Raf in physiological condition of living cells was observed by fluorescence resonance energy transfer (FRET) technique during lung adenocarcinoma cell apoptosis induced by high dose (60J/cm2) LELI. Experimental results showed that after high dose LELI treatment, the binding of Ras and Raf decreases obviously, Ras/Raf signaling pathway deregulates and cell apoptosis occurs.

  19. Nonradioactive methods for detecting activation of Ras-related small G proteins.

    PubMed

    Andres, Douglas A

    2004-01-01

    Ras-related small GTPases serve as critical regulators for a wide range of cellular signaling pathways and are activated by the conversion of the GDP-bound state to the GTP-bound conformation. Until recently, measurement of the GTP-bound active form of Ras-related G proteins involved immunoprecipitation of 32P-labeled protein followed by separation of the labeled GTP/GDP bound to GTPase. A new method based on the large affinity difference of the GTP- and GDP-bound form of Ras proteins for specific binding domains of effector proteins in vitro has been developed. By using glutathione S-transferase (GST) fusion proteins containing these binding domains, the GTP-bound form of the GTPase can be precipitated from cell lysates. In principle, this method can be used for all members of the Ras superfamily. Here we describe a general procedure to monitor the GTP-bound form of Ras-related GTPases. PMID:15173615

  20. Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras.

    PubMed Central

    Bowtell, D; Fu, P; Simon, M; Senior, P

    1992-01-01

    Several findings suggest that signals from tyrosine kinases are transduced, at least in part, through ras proteins. These findings include (i) blockage of the transforming activity of constitutively active tyrosine kinases by inhibiting ras function and (ii) genetic screens in Caenorhabditis elegans and in Drosophila that identified ras genes as downstream effectors of tyrosine kinases. The recently isolated Drosophila gene Son of sevenless (Sos) is postulated to act as a positive regulatory link between tyrosine kinase and ras proteins by catalyzing exchange of GDP for GTP on ras protein. Such exchange proteins have been reported in extracts of mammalian cells but have not been previously characterized at a molecular level. As Sos appears to function in this role in Drosophila, we sought to isolate a vertebrate counterpart(s). We have characterized two widely expressed murine genes with a high degree of homology to Sos. Hybridization with human DNA and RNA indicates a high degree of conservation of these genes in other vertebrates. Images PMID:1631150

  1. The small G protein H-Ras in the mesolimbic system is a molecular gateway to alcohol-seeking and excessive drinking behaviors.

    PubMed

    Ben Hamida, Sami; Neasta, Jeremie; Lasek, Amy W; Kharazia, Viktor; Zou, Mimi; Carnicella, Sebastien; Janak, Patricia H; Ron, Dorit

    2012-11-01

    Uncontrolled consumption of alcohol is a hallmark of alcohol abuse disorders; however, the central molecular mechanisms underlying excessive alcohol consumption are still unclear. Here, we report that the GTP binding protein, H-Ras in the nucleus accumbens (NAc) plays a key role in neuroadaptations that underlie excessive alcohol-drinking behaviors. Specifically, acute (15 min) systemic administration of alcohol (2.5 g/kg) leads to the activation of H-Ras in the NAc of mice, which is observed even 24 h later. Similarly, rat operant self-administration of alcohol (20%) also results in the activation of H-Ras in the NAc. Using the same procedures, we provide evidence suggesting that the exchange factor GRF1 is upstream of H-Ras activation by alcohol. Importantly, we show that infection of mice NAc with lentivirus expressing a short hairpin RNA that targets the H-Ras gene produces a significant reduction of voluntary consumption of 20% alcohol. In contrast, knockdown of H-Ras in the NAc of mice did not alter water, quinine, and saccharin intake. Furthermore, using two-bottle choice and operant self-administration procedures, we show that inhibiting H-Ras activity by intra-NAc infusion of the farnesyltransferase inhibitor, FTI-276, produced a robust decrease of rats' alcohol drinking; however, sucrose consumption was unaltered. Finally, intra-NAc infusion of FTI-276 also resulted in an attenuation of seeking for alcohol. Together, these results position H-Ras as a central molecular mediator of alcohol's actions within the mesolimbic system and put forward the potential value of the enzyme as a novel target to treat alcohol use disorders.

  2. Active Ras Triggers Death in Glioblastoma Cells Through Hyperstimulation of Macropinocytosis

    PubMed Central

    Overmeyer, Jean H.; Kaul, Aparna; Johnson, Erin E.; Maltese, William A.

    2010-01-01

    Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein, LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers, but do not sequester transferrin or the endosomal protein, EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor, z-VAD, does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed ‘methuosis’. An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiological triggers for this unusual form of cell death. PMID:18567800

  3. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis.

    PubMed

    Kim, Minjung

    2010-11-01

    Melanoma displays frequent activation of RAS/RAF/MAPK and PI3K/AKT signaling pathways as well as inactivation of CDKN2A (INK4a/ARF) and PTEN tumor suppressors via genetic and epigenetic alterations. Pathogenetic roles of these melanoma-prone mutations and their genetic interactions have been established in genetically engineered mouse models. Here, we catalog frequent genetic alterations observed in human melanomas and describe mouse models of melanoma initiation and progression, including our recent study that investigated the genetic interactions of RAS activation and PTEN loss in a CDKN2A (INK4a/ARF) null melanoma prone genetic background. We showed that loss of PTEN cooperates with HRAS activation, leading to increased development of melanoma and emergence of metastasis. Moreover, we observed that RNA i-mediated PTEN inactivation in RAS-driven melanomas enhanced migration and invasion with concomitant downregulation of E-cadherin, the major regulator of epithelial and mesenchymal transition, and enhanced AKT2 phosphorylation, which has been previously linked to invasion and metastasis of several cancer types, including breast and ovary. These data show that activated RAS cooperates with PTEN loss in melanoma genesis and progression.

  4. Interferon gamma activation of Raf-1 is Jak1-dependent and p21ras-independent.

    PubMed

    Sakatsume, M; Stancato, L F; David, M; Silvennoinen, O; Saharinen, P; Pierce, J; Larner, A C; Finbloom, D S

    1998-01-30

    Signal transduction through the interferongamma (IFNgamma) receptor involves the formation of a ligand-dependent multimolecular association of receptor chains (alpha and beta), Janus tyrosine kinases (Jak1 and Jak2), and the transcription factor (signal transducers and activators of transcription 1alpha (STAT1alpha)) in addition to activation of mitogen-activated protein kinases (MAPK). Interactions between components of the Jak/STAT cascade and the p21(ras)/Raf-1/MAPK cascade are unexplored. Treatment of HeLa cells with IFNgamma resulted in the rapid and transient activation of Raf-1 and MAPK. Parallel activation of cells resulted in essentially no enhancement of p21(ras) activation despite marked enhancement after treatment with epidermal growth factor. In HeLa (E1C3) and fibrosarcoma (U4A) cell lines, both of which are deficient in Jak1 kinase, Raf-1 activation by IFNgamma was absent. Reconstitution of Raf-1 activity was observed only with kinase active Jak1 in both cell lines. In COS cells, transient expression of wild type or kinase-inactive Jak1 coimmunoprecipitated with Raf-1, but activation of Raf-1 activity was only observed in cells expressing kinase-active Jak1. These observations suggest that a kinase-active Jak1 is required for IFNgamma activation of Raf-1 that is p21(ras)-independent.

  5. Increased expression of the Ras suppressor Rsu-1 enhances Erk-2 activation and inhibits Jun kinase activation.

    PubMed

    Masuelli, L; Cutler, M L

    1996-10-01

    Studies were undertaken to determine the effect of the Ras suppressor Rsu-1 on Ras signal transduction pathways in two different cell backgrounds. An expression vector containing the mouse rsu-1 cDNA under the control of a mouse mammary tumor virus promoter was introduced into NIH 3T3 cells and the pheochromocytoma cell line PC12. Cell lines developed in the NIH 3T3 background expressed p33rsu-1 at approximately twice the normal endogenous level. However, PC12 cell clones which expressed p33rsu-1 at an increased level in a regulatable fashion in response to dexamethasone were isolated. Analysis of proteins involved in regulation of Ras and responsive to Ras signal transduction revealed similar changes in the two cell backgrounds in the presence of elevated p33rsu-1. There was an increase in the level of SOS, the guanine nucleotide exchange factor, and an increase in the percentage of GTP-bound Ras. In addition, there was an increase in the amount of p120 Ras-specific GTPase-activating protein (GAP) and GAP-associated p190. However, a decrease in Ras GTPase-activating activity was detected in lysates of the Rsu-1 transfectants, and immunoprecipitated p120 GAP from the Rsu-1 transfectants showed less Ras GTPase-activating activity than GAP from control cells. Activation of Erk-2 kinase by growth factor and tetradecanyol phorbol acetate was greater in the Rsu-1 transfectants than in control cells. However, c-Jun amino-terminal kinase activity (Jun kinase) was not activatable by epidermal growth factor in Rsu-1 PC12 cell transfectants, in contrast to the PC12 vector control cell line. Transient expression of p33rsu-1 in Cos1 cells following cotransfection with either hemagglutinin-tagged Jun kinase or hemagglutinin-tagged Erk-2 revealed that Rsu-1 expression inhibited constitutive Jun kinase activity while enhancing Erk-2 activity. Detection of in vitro binding of Rsu-1 to Raf-1 suggested that in Rsu-1 transfectants, increased activation of the Raf-1 pathway occurred

  6. A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide.

    PubMed

    Barras, David; Chevalier, Nadja; Zoete, Vincent; Dempsey, Rosemary; Lapouge, Karine; Olayioye, Monilola A; Michielin, Olivier; Widmann, Christian

    2014-08-22

    TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.

  7. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  8. Activation of c-Jun-NH2-kinase by UV irradiation is dependent on p21ras.

    PubMed

    Adler, V; Pincus, M R; Polotskaya, A; Montano, X; Friedman, F K; Ronai, Z

    1996-09-20

    We have demonstrated previously that Jun-NH2-kinase (JNK) activation in vitro is potentiated by association with the p21(ras) protein. To determine if in vivo activation of JNK also depends on p21(ras), we have used M1311 cells that carry the cDNA for the neutralizing antibody to p21(ras), Y13-259, under a dexamethasone-inducible promoter. The ability of UV to activate JNK gradually decreased over a 4-day period of cell growth in dexamethasone. This decrease coincides with weaker transcriptional activation measured via gel shift and chloramphenicol acetyltransferase assays. Peptides corresponding to amino acids 96-110 on p21(ras), which were shown to block Ras-JNK association, inhibited UV-mediated JNK activation in mouse fibroblast 3T3-4A cells as well as in M1311 cells, further supporting the role of p21(ras) in UV-mediated JNK activation. Overall, the present studies provide in vivo confirmation of the role p21(ras) plays in JNK activation by UV irradiation.

  9. Transforming and oncogenic potential of activated c-Ha-ras in three immortalized human breast epithelial cell lines.

    PubMed

    Wang, B; Soule, H D; Miller, F R

    1997-01-01

    The ability of activated c-Ha-ras (codon 12 valine) to transform human breast epithelial cells varied for three different immortalized normal human breast epithelial cell lines established from two different women. Although activated c-Ha-ras may transform and induce a preneoplastic phenotype in MCF10A cells, activated c-Ha-ras was not sufficient to transform MCF10-2A cells. Only two of three MCF10-2A clones which expressed mutant p21 protein acquired the ability to form colonies in soft agar. When xenografted into nude beige mice, two MCF10-2A clones formed squamous carcinomas and one formed no lesions at all. The ability to form tumors did not correlate with growth in soft agar. All three activated c-Ha-ras-transfected clones of MCF-12A formed colonies in soft agar but only two produced squamous carcinomas in nude beige mice. Unlike activated c-Ha-ras-transfected MCF10A cells, none of the activated c-Ha-ras-transfected MCF10-2A or MCF-12A clones formed ducts in xenografts. Rather, initial xenograft lesions consisted of nests of cells with squamous differentiation. These observations illustrate that additional events are involved in the transformation and progression of human breast epithelial cells with activated c-Ha-ras.

  10. [Role of RAS in prehypertension].

    PubMed

    Inaba, Shinji; Iwai, Masaru; Horiuchi, Masatsugu

    2008-08-01

    Hypertension has long been recognized as a major risk factor of several cardiovascular diseases. It is well known that the renin-angiotensin system(RAS) is involved in the pathogenesis of both hypertension and hypertensive end-organ damage. Untreated hypertension is self-accelerating condition through RAS stimulation. Activation of RAS contributes to the transition from borderline hypertension to established hypertension. Recently, "the Seventh Report of Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC 7)" proposed a new classification of borderline blood pressure levels, as "prehypertension". The therapeutic focus has begun to shift from the therapy of established hypertension to the prevention of hypertension. This review addressed the relationship between hypertension, prehypertension and the role of RAS. PMID:18700549

  11. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling

    PubMed Central

    Guo, Na; Liu, Zuojia; Zhao, Wenjing; Wang, Erkang; Wang, Jin

    2016-01-01

    Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer. PMID:27223122

  12. Combined rational design and a high throughput screening platform for identifying chemical inhibitors of a Ras-activating enzyme.

    PubMed

    Evelyn, Chris R; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-05-15

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.

  13. Combined Rational Design and a High Throughput Screening Platform for Identifying Chemical Inhibitors of a Ras-activating Enzyme*

    PubMed Central

    Evelyn, Chris R.; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L.; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-01-01

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions. PMID:25825487

  14. Negative feedback regulation and desensitization of insulin- and epidermal growth factor-stimulated p21ras activation.

    PubMed

    Langlois, W J; Sasaoka, T; Saltiel, A R; Olefsky, J M

    1995-10-27

    Insulin and epidermal growth factor receptors transmit signals for cell proliferation and gene regulation through formation of active GTP-bound p21ras mediated by the guanine nucleotide exchange factor Sos. Sos is constitutively bound to the adaptor protein Grb2 and growth factor stimulation induces association of the Grb2/Sos complex with Shc and movement of Sos to the plasma membrane location of p21ras. Insulin or epidermal growth factor stimulation induces a rapid increase in p21ras levels, but after several minutes levels decline toward basal despite ongoing hormone stimulation. Here we show that deactivation of p21ras correlates closely with phosphorylation of Sos and dissociation of Sos from Grb2, and that inhibition of mitogen-activated protein (MAP) kinase kinase (also known as extracellular signal-related kinase (ERK) kinase, or MEK) blocks both events, resulting in prolonged p21ras activation. These data suggest that a negative feedback loop exists whereby activation of the Raf/MEK/MAP kinase cascade by p21ras causes Sos phosphorylation and, therefore, Sos/Grb2 dissociation, limiting the duration of p21ras activation by growth factors. A serine/threonine kinase downstream of MEK (probably MAP kinase) mediates this desensitization feedback pathway.

  15. M-Ras induces Ral and JNK activation to regulate MEK/ERK-independent gene expression in MCF-7 breast cancer cells

    PubMed Central

    Castro, Ariel F.; Campos, Tania; Babcock, Justin T.; Armijo, Marisol E.; Martinez-Conde, Alfonso; Pincheira, Roxana; Quilliam, Lawrence A.

    2011-01-01

    Constitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis. However, it is unknown what signaling events M-Ras triggers in human cells. Using constitutively active M-Ras (Q71L) containing additional mutations within its effector binding loop, we found that M-Ras induces MEK/ERK-dependent and -independent Elk1 activation as well as PI3K/Akt and JNK/cJun activation in human MCF-7 breast cancer cells. Among several human cell lines examined, M-Ras-induced MEK/ERK-independent Elk1 activation was only detected in MCF-7 cells, and correlated with Rlf /M-Ras interaction and Ral /JNK activation. Supporting a role for M-Ras signaling in breast cancer, EGF activated M-Ras and promoted its interaction with endogenous Rlf. In addition, constitutive activation of M-Ras induced estrogen-independent growth of MCF-7 cells that was dependent on PI3K/Akt, MEK/ERK and JNK activation. Thus, our studies demonstrate that M-Ras signaling activity differs between human cells, highlighting the importance of defining Ras protein signaling within each cell type, especially when designing treatments for Ras-induced cancer. These findings also demonstrate that M-Ras activity may be important for progression of EGFR-dependent tumors. PMID:22121046

  16. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter.

    PubMed

    Cordero, Julia B; Macagno, Juan P; Stefanatos, Rhoda K; Strathdee, Karen E; Cagan, Ross L; Vidal, Marcos

    2010-06-15

    The roles of inflammatory cytokines and the immune response in cancer remain paradoxical. In the case of tumor necrosis factor (TNF), there is undisputed evidence indicating both protumor and antitumor activities. Recent work in Drosophila indicated that a TNF-dependent mechanism eliminates cells deficient for the polarity tumor suppressors dlg or scrib. In this study, however, we show that in tumors deficient for scrib that also expressed the Ras oncoprotein, the TNF signal was diverted into a protumor signal that enhanced tumor growth through larval arrest and stimulated invasive migration. In this case, TNF promoted malignancy and was detrimental to host survival. TNF was expressed at high levels by tumor-associated hemocytes recruited from the circulation. The expression of TNF by hemocytes was both necessary and sufficient to trigger TNF signaling in tumor cells. Our evidence suggests that tumors can evolve into malignancy through oncogenic Ras activation and the hijacking of TNF signaling.

  17. Ras-activated Dsor1 promotes Wnt signaling in Drosophila development.

    PubMed

    Hall, Eric T; Verheyen, Esther M

    2015-12-15

    Wnt/Wingless (Wg) and Ras-MAPK signaling both play fundamental roles in growth and cell fate determination, and when dysregulated, can lead to tumorigenesis. Several conflicting modes of interaction between Ras-MAPK and Wnt signaling have been identified in specific cellular contexts, causing synergistic or antagonistic effects on target genes. We find novel evidence that the Drosophila homolog of the dual specificity kinases MEK1/2 (also known as MAP2K1/2), Downstream of Raf1 (Dsor1), is required for Wnt signaling. Knockdown of Dsor1 results in loss of Wg target gene expression, as well as reductions in stabilized Armadillo (Arm; Drosophila β-catenin). We identify a close physical interaction between Dsor1 and Arm, and find that catalytically inactive Dsor1 causes a reduction in active Arm. These results suggest that Dsor1 normally counteracts the Axin-mediated destruction of Arm. We find that Ras-Dsor1 activity is independent of upstream activation by EGFR, and instead it appears to be activated by the insulin-like growth factor receptor to promote Wg signaling. Taken together, our results suggest that there is a new crosstalk pathway between insulin and Wg signaling that is mediated by Dsor1. PMID:26542023

  18. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting

    PubMed Central

    Knight, Thomas; Irving, Julie Anne Elizabeth

    2014-01-01

    Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups. PMID:25009801

  19. Activation of c-Ki-ras gene in human pancreatic cancer.

    PubMed

    Prassolov, V S; Sakamoto, H; Nishimura, S; Terada, M; Sugimura, T

    1985-09-01

    DNA isolated from a lymph node with metastasis from pancreatic adenocarcinoma in a Japanese male patient transformed NIH3T3 cells upon transfection by the calcium-phosphate precipitation technique. Analysis of DNA from the transformant revealed the presence of an activated human c-Ki-ras gene, which is considered to be responsible for the transformation of the NIH3T3 cells.

  20. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu; Hamada, Jun-Ichi; Yanagihara, Masatomo; Koike, Takao; Hatakeyama, Masanori

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  1. Regulation of Ras Proteins by Reactive Nitrogen Species†

    PubMed Central

    Davis, Michael F.; Vigil, Dom; Campbell, Sharon L.

    2012-01-01

    Ras GTPases have been a subject of intense investigation since the early-80’s, when single point mutations in Ras were shown to cause deregulated cell growth control. Subsequently, Ras was identified as the most prevalent oncogene found in human cancer. Ras proteins regulate a host of pathways involved in cell growth, differentiation, and apoptosis by cycling between inactive GDP-bound and active GTP-bound states. Regulation of Ras activity is controlled by cellular factors that alter guanine nucleotide cycling. Oncogenic mutations prevent protein regulatory factors from down-regulating Ras activity, thereby maintaining Ras in a chronically activated state. The central dogma in the field is that protein modulatory factors are the primary regulators of Ras activity. Since the mid-90’s, however, evidence has accumulated that small molecule reactive nitrogen species (RNS) can also influence Ras guanine nucleotide cycling. Herein, we review the basic chemistry behind RNS formation and discuss the mechanism through which various RNS enhance nucleotide exchange in Ras proteins. In addition, we present studies that demonstrate the physiological relevance of RNS-mediated Ras activation within the context of immune system function, brain function, and cancer development. We also highlight future directions and experimental methods that may enhance our ability to detect RNS-mediated activation in cell cultures and in vivo. The development of such methods may ultimately pave new directions for detecting and elucidating how Ras proteins are regulated by redox species, as well as for targeting redox-activated Ras in cancer and other disease states. PMID:21616138

  2. Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras.

    PubMed

    Warmka, Janel K; Mauro, Laura J; Wattenberg, Elizabeth V

    2004-08-01

    We have capitalized on the unique properties of the skin tumor promoter palytoxin, which does not activate protein kinase C, to investigate alternative mechanisms by which major signaling molecules can be modulated during carcinogenesis. We report here that palytoxin activates extracellular signal-regulated kinase (ERK) through a novel mechanism that involves inactivation of an ERK phosphatase in keratinocytes derived from initiated mouse skin (308 cells). Use of U0126 revealed that palytoxin requires the ERK kinase MEK to stimulate ERK activity, although palytoxin did not activate MEK. We found that 308 keratinocytes highly express mitogen-activated protein kinase phosphatase-3 (MKP-3), which selectively inactivates ERK. Palytoxin induced the loss of MKP-3 in a manner that corresponded to increased ERK phosphorylation. Complementary studies showed that sustained expression of exogenous MKP-3 inhibited palytoxin-stimulated ERK activation. As is characteristic of initiated keratinocytes, 308 cells express activated H-Ras. To investigate whether expression of oncogenic Ras is key to palytoxin-stimulated ERK activation, we determined how palytoxin affected ERK and MKP-3 in MCF10A human breast epithelial cells and in H-ras MCF10A cells, which stably express activated H-Ras. Palytoxin did not affect ERK activity in MCF10A cells, which had no detectable MKP-3. Like 308 cells, H-ras MCF10A cells highly express MKP-3. Strikingly, palytoxin stimulated ERK activity and induced a corresponding loss of MKP-3 in H-ras MCF10A cells. These studies indicate that in initiated cells palytoxin unleashes ERK activity by down-regulating MKP-3, an ERK inhibitor, and further suggest that MKP-3 may be a vulnerable target in cells that express oncogenic Ras.

  3. Ha-ras(val12) induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha-ras(val12)-transformed cells.

    PubMed

    Stanhill, A; Levin, V; Hendel, A; Shachar, I; Kazanov, D; Arber, N; Kaminski, N; Engelberg, D

    2006-03-01

    Heat shock proteins (Hsps) are overexpressed in many tumors, but are downregulated in some tumors. To check for a direct effect of Ha-Ras(val12) on HSP70 transcription, we transiently expressed the oncoprotein in Rat1 fibroblasts and monitored its effect on HSP70b promoter-driven reporter gene. We show that expression of Ha-Ras(val12) induced this promoter. Promoter analysis via systematic deletions and point mutations revealed that Ha-Ras(val12) induces HSP70b transcription via heat shock elements (HSEs). Also, Ha-Ras(val12) induction of HSE-mediated transcription was dramatically reduced in HSF1-/- cells. Yet, residual effect of Ha-Ras(val12) that was still measured in HSF1-/- cells suggests that some of the Ha-Ras(val12) effect is Hsf1-independent. When HSF1-/- cells, stably expressing Ha-Ras(val12), were grown on soft agar only small colonies were formed suggesting a role for heat shock factor 1 (Hsf1) in Ha-Ras(val12)-mediated transformation. Although Ha-ras(Val12) seems to be an inducer of HSP70's expression, we found that in Ha-ras(Val12-)transformed fibroblasts expression of this gene is suppressed. This suppression is correlated with higher sensitivity of Ha-ras(val12)-transformed cells to heat shock. We suggest that Ha-ras(Val12) is involved in Hsf1 activation, thereby inducing the cellular protective response. Cells that repress this response are perhaps those that acquire the capability to further proliferate and become transformed clones.

  4. Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) Controls Activation of Extracellular Signal-Regulated Kinase (ERK) Signaling in the Striatum and Long-Term Behavioral Responses to Cocaine

    PubMed Central

    Fasano, Stefania; D’Antoni, Angela; Orban, Paul C.; Valjent, Emmanuel; Putignano, Elena; Vara, Hugo; Pizzorusso, Tommaso; Giustetto, Maurizio; Yoon, Bongjune; Soloway, Paul; Maldonado, Rafael; Caboche, Jocelyne; Brambilla, Riccardo

    2010-01-01

    Background Ras-extracellular signal-regulated kinase (Ras-ERK) signaling is central to the molecular machinery underlying cognitive functions. In the striatum, ERK1/2 kinases are co-activated by glutamate and dopamine D1/5 receptors, but the mechanisms providing such signaling integration are still unknown. The Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal specific activator of Ras-ERK signaling, is a likely candidate for coupling these neurotransmitter signals to ERK kinases in the striatonigral medium spiny neurons (MSN) and for modulating behavioral responses to drug abuse such as cocaine. Methods We used genetically modified mouse mutants for Ras-GRF1 as a source of primary MSN cultures and organotypic slices, to perform both immunoblot and immunofluorescence studies in response to glutamate and dopamine receptor agonists. Mice were also subjected to behavioral and immunohistochemical investigations upon treatment with cocaine. Results Phosphorylation of ERK1/2 in response to glutamate, dopamine D1 agonist, or both stimuli simultaneously is impaired in Ras-GRF1– deficient striatal cells and organotypic slices of the striatonigral MSN compartment. Consistently, behavioral responses to cocaine are also affected in mice deficient for Ras-GRF1 or overexpressing it. Both locomotor sensitization and conditioned place preference are significantly attenuated in Ras-GRF1– deficient mice, whereas a robust facilitation is observed in overexpressing transgenic animals. Finally, we found corresponding changes in ERK1/2 activation and in accumulation of FosB/ΔFosB, a well-characterized marker for long-term responses to cocaine, in MSN from these animals. Conclusions These results strongly implicate Ras-GRF1 in the integration of the two main neurotransmitter inputs to the striatum and in the maladaptive modulation of striatal networks in response to cocaine. PMID:19446794

  5. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    PubMed

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C

    2015-07-21

    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  6. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells.

    PubMed

    Shin, Ilchung; Kim, Seonhoe; Song, Hyun; Kim, Hyeong-Reh Choi; Moon, Aree

    2005-04-15

    Human tumors frequently exhibit constitutively activated Ras signaling, which contributes to the malignant phenotype. Mounting evidence suggests unique roles of the Ras family members, H-Ras, N-Ras and K-Ras, in normal and pathological conditions. In an effort to dissect distinct Ras isoform-specific functions in malignant phenotypic changes, we previously established H-Ras- and N-Ras-activated MCF10A human breast epithelial cell lines. Using these, we showed that p38 kinase is a key signaling molecule differentially regulated between H-Ras and N-Ras, leading to H-Ras-specific induction of invasive and migrative phenotypes. The present study is to further investigate H-Ras- and N-Ras-mediated signaling pathways and to unveil how these pathways are integrated for regulation of invasive/migrative phenotypic conversion of human breast epithelial cells. Here we report that the Rac-MAPK kinase (MKK)3/6-p38 pathway is a unique signaling pathway activated by H-Ras, leading to the invasive/migrative phenotype. In contrast, Raf-MEK-ERK and phosphatidylinositol 3-kinase-Akt pathways, which are fundamental to proliferation and differentiation, are activated by both H-Ras and N-Ras. A significant role for p38 in cell invasion is further supported by the observation that p38 activation by MKK6 transfection is sufficient to induce invasive and migrative phenotypes in MCF10A cells. Activation of the MKK6-p38 pathway results in a marked induction of matrix metalloproteinase (MMP)-2, whereas it had little effect on MMP-9, suggesting MMP-2 up-regulation by MKK6-p38 pathway as a key step for H-Ras-induced invasion and migration. We also provide evidence for cross-talk among the Rac, Raf, and phosphatidylinositol 3-kinase pathways critical for regulation of MMP-2 and MMP-9 expression and invasive phenotype. Taken together, the present study elucidated the role of the Rac-MKK3/6-p38 pathway leading to H-Ras-specific induction of malignant progression in breast epithelial cells

  7. Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras.

    PubMed

    Gire, V; Marshall, C J; Wynford-Thomas, D

    1999-08-26

    Given the high frequency of ras oncogene activation in several common human cancers, its signal pathways are an important target for novel therapy. For practical reasons, however, these have been studied mainly in the context of transformation of established fibroblast cell lines, whereas ras acts at an earlier stage in human tumorigenesis and predominantly on epithelial cells. Here we have developed a more directly relevant model - human primary thyroid epithelial cells - which are a major target of naturally-occurring Ras mutation, and in which expression of mutant Ras in culture induces clonal expansion without morphological transformation, closely reproducing the phenotype of the corresponding tumour in vivo. Transient or stable expression of mutant H-ras (by scrapeloading or retroviral infection) at levels which stimulated proliferation induced sustained activation and translocation of MAP kinase (MAPK) in these cells. Inhibition of the MAPK pathway at the level of MAPKK, by expression of a dominant-negative mutant or by the pharmacological inhibitor PD98059, efficiently blocked the proliferative response. Conversely, selective activation of MAPK by a constitutively-active MAPKK1 mutant failed to mimic the action of Ras and, although this was achievable with activated Raf, micro-injection of anti-ras antibodies showed that this still required endogenous wild-type Ras function. In contrast to recent results obtained with a rodent thyroid cell line (WRT), therefore, activation of the MAPK pathway is necessary, but not sufficient, for the proliferogenic action of mutant Ras on primary human thyroid cells. These data emphasize the unreliability of extrapolation from cell lines and establish the feasibility of using a more representative human epithelial model for Ras signalling studies.

  8. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes

    PubMed Central

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-01-01

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems. PMID:26036864

  9. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes.

    PubMed

    Nakase, Ikuhiko; Kobayashi, Nahoko Bailey; Takatani-Nakase, Tomoka; Yoshida, Tetsuhiko

    2015-06-03

    Exosomes are approximately 100-nm vesicles that consist of a lipid bilayer of cellular membranes secreted in large quantities from various types of normal and disease-related cells. Endocytosis has been reported as a major pathway for the cellular uptake of exosomes; however, the detailed mechanisms of their cellular uptake are still unknown. Here, we demonstrate the active induction of macropinocytosis (accompanied by actin reorganisation, ruffling of plasma membrane, and engulfment of large volumes of extracellular fluid) by stimulation of cancer-related receptors and show that the epidermal growth factor (EGF) receptor significantly enhances the cellular uptake of exosomes. We also demonstrate that oncogenic K-Ras-expressing MIA PaCa-2 cells exhibit intensive macropinocytosis that actively transports extracellular exosomes into the cells compared with wild-type K-Ras-expressing BxPC-3 cells. Furthermore, encapsulation of the ribosome-inactivating protein saporin with EGF in exosomes using our simple electroporation method produces superior cytotoxicity via the enhanced cellular uptake of exosomes. Our findings contribute to the biological, pharmaceutical, and medical research fields in terms of understanding the macropinocytosis-mediated cellular uptake of exosomes with applications for exosomal delivery systems.

  10. Activated Ras Signals Developmental Progression of Recombinase-activating Gene (RAG)-deficient Pro-B Lymphocytes

    PubMed Central

    Shaw, Albert C.; Swat, Wojciech; Ferrini, Roger; Davidson, Laurie; Alt, Frederick W.

    1999-01-01

    To elucidate the intracellular pathways that mediate early B cell development, we directed expression of activated Ras to the B cell lineage in the context of the recombination-activating gene 1 (RAG1)-deficient background (referred to as Ras–RAG). Similar to the effects of an immunoglobulin (Ig) μ heavy chain (HC) transgene, activated Ras caused progression of RAG1–deficient progenitor (pro)-B cells to cells that shared many characteristics with precursor (pre)-B cells, including downregulation of surface CD43 expression plus expression of λ5, RAG2, and germline κ locus transcripts. However, these Ras–RAG pre-B cells also upregulated surface markers characteristic of more mature B cell stages and populated peripheral lymphoid tissues, with an overall phenotype reminiscent of B lineage cells generated in a RAG- deficient background as a result of expression of an Ig μ HC together with a Bcl-2 transgene. Taken together, these findings suggest that activated Ras signaling in pro-B cells induces developmental progression by activating both differentiation and survival signals. PMID:9874569

  11. The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions.

    PubMed

    Schurmans, Stéphane; Polizzi, Séléna; Scoumanne, Ariane; Sayyed, Sufyan; Molina-Ortiz, Patricia

    2015-01-01

    RASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned. The in vitro and in vivo functions of RASA3 remained somewhat elusive for a long time. However, recently, using genetically-modified mice and cells derived from these mice, the function of RASA3 during megakaryopoiesis, megakaryocyte adhesion and migration as well as integrin signaling has been reported. The goal of this review is thus to summarize and comment recent and less recent data in the literature on RASA3, in particular on the in vivo function of this specific GAP1 subfamily member.

  12. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes.

    PubMed

    Carel, K; Kummer, J L; Schubert, C; Leitner, W; Heidenreich, K A; Draznin, B

    1996-11-29

    To characterize tissue-specific differences in insulin signaling, we compared the mechanisms of mitogen-activated protein (MAP) kinase activation by insulin in the mitogenically active 3T3-L1 fibroblasts with the metabolically active 3T3-L1 adipocytes. In both cell lines, insulin significantly increased p21(ras).GTP loading (1.5-2-fold) and MAP kinase activity (5-8-fold). Inhibition of Ras farnesylation with lovastatin blocked activation of p21(ras) and Raf-1 kinase in both 3T3-L1 fibroblasts and 3T3-L1 adipocytes. In 3T3-L1 fibroblasts, this was accompanied by an inhibition of the stimulatory effect of insulin on MAP kinase. In contrast, in 3T3-L1 adipocytes, despite an inhibition of activation of p21(ras) and Raf-1 by lovastatin, insulin continued to stimulate MAP kinase activity. Fractionation of the cell lysates on the FPLC Mono-Q column revealed that lovastatin inhibited insulin stimulation of ERK2 (and, to a lesser extent, ERK1) in 3T3-L1 fibroblasts and had no effect on the insulin-stimulated ERK2 in 3T3-L1 adipocytes. These results demonstrate an important distinction between the mechanism of insulin signaling in the metabolically and mitogenically active cells. Insulin activates MAP kinase by the Ras-dependent pathway in the 3T3-L1 fibroblasts and by the Ras-independent pathway in the 3T3-L1 adipocytes.

  13. MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia.

    PubMed

    Manara, Elena; Baron, Emma; Tregnago, Claudia; Aveic, Sanja; Bisio, Valeria; Bresolin, Silvia; Masetti, Riccardo; Locatelli, Franco; Basso, Giuseppe; Pigazzi, Martina

    2014-07-10

    A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.

  14. Emerging trends in salmonid RAS - Part II. System enhancements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dozens of land-based, closed containment systems are coming on line to produce salmon. New projects are bringing new principles into the salmon industry. Depuration systems maximize the removal of earthy and musty flavors in harvested fish. An emerging trend has been to apply technologies that incre...

  15. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    SciTech Connect

    Wang, Ai-Guo Song, Ya-Nan; Chen, Jun; Li, Hui-Ling; Dong, Jian-Yi; Cui, Hai-Peng; Yao, Liang; Li, Xue-Feng; Gao, Wen-Ting; Qiu, Ze-Wen; Wang, Fu-Jin; Wang, Jing-Yu

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12V oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week

  16. Final Report: Retrofit Aeration System (RAS) for Francis Turbine

    SciTech Connect

    Alan Sullivan; DOE Project Officer Keith Bennett

    2006-08-01

    Osage Plant and Bagnell Dam impounds the Osage River forming the Lake of the Ozarks in Missouri. Since it is nearly 100 feet deep, the lake stratifies during the summer months causing low DO water to be discharged into the Osage river below the dam. To supplement DO, the turbines are vented during the low DO season. AmerenUE is continually researching new methods of DO enhancement. New turbines, manufactured by American Hydro Corporation, were installed in Units 3 & 5 during the spring of 2002. Additional vent capacity and new nosecones were included in the new turbine design. The retrofit aeration system is an attempt to further enhance the DO in the tailrace by installation of additional venting capability on Unit 6 (not upgraded with new turbine) and refining design on special nosecones which will be mounted on both Unit 3 (upgraded turbine) and Unit 6. Baseline DO testing for Units 3 & 6 was conducted mid August, 2002. This data wascompared to further tests planned for the summer of 2003 and 2004 after installation of the retrofit aeration system.

  17. RAS/MAPK activation drives resistance to Smo inhibition, metastasis and tumor evolution in Shh pathway-dependent tumors

    PubMed Central

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J.; Zhou, Pengcheng; Dabral, Sukriti K.; Pak, Ekaterina; Li, Wei; Atwood, Scott X.; Whitson, Ramon J.; Chang, Anne Lynn S.; Li, Jiang; Oro, Anthony E.; Chan, Jennifer A.; Kelleher, Joseph F.; Segal, Rosalind A.

    2015-01-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS/MAPK pathway circumvents Shh pathway-dependency, drives tumor growth and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together these findings reveal a critical role of RAS/MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  18. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network

    PubMed Central

    Cheng, Yougan; Othmer, Hans

    2016-01-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty

  19. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network.

    PubMed

    Cheng, Yougan; Othmer, Hans

    2016-05-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that [Formula: see text] cycling modulated by Ric8, a nonreceptor guanine exchange factor for [Formula: see text] in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both [Formula: see text] and Gβγ are essential for direction sensing, in that membrane-localized [Formula: see text], the activated GTP-bearing form of [Formula: see text], leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient 'memory' to eliminate the 'back-of-the wave' problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since

  20. Human type II Fcgamma receptors inhibit B cell activation by interacting with the p21(ras)-dependent pathway.

    PubMed

    Sármay, G; Koncz, G; Gergely, J

    1996-11-29

    Co-ligation of antigen receptors and type II Fcgamma receptors (FcgammaRIIb) on B cells interrupts signal transduction and ultimately inhibits antibody production. We have identified p52 Shc in the FcgammaRIIb1-specific immunoprecipitates isolated from the membrane fraction of BL41 Burkitt lymphoma cells following B cell receptor-FcgammaRIIb1 co-ligation. The insolubilized synthetic peptide representing the phosphorylated form of the tyrosine-based inhibitory motif of FcgammaRIIb also binds Shc from the lysates of activated but not from resting BL41 cells. This suggests that the binding does not depend on the interaction of FcgammaRIIb1-phosphotyrosine with the SH2 domain of Shc. Tyr phosphorylation of FcgammaRIIb1-associated Shc is low, indicating an impaired function. Shc is implicated in regulating p21(ras) activation; thus, we have compared p21(ras) activities in BL41 cells treated in different ways. p21(ras) activity is reduced when B cell receptor and FcgammaRIIb1 are co-ligated. p21(ras) couples protein-tyrosine kinase-dependent events to the Ser/Thr kinase-mediated signaling pathway leading to the activation of mitogen-activated protein kinases (MAPK). Our results show that B cell receptor-FcgammaRIIb1 co-cross-linking partially inhibits mitogen-activated protein kinase activity. We conclude that FcgammaRIIb1-dependent inhibition of human B cell activation may be based on interrupting signal transduction between protein-tyrosine kinases and the p21(ras)/mitogen-activated protein kinase-dependent activation pathway.

  1. Differential Regulation of N-Myc and c-Myc Synthesis, Degradation, and Transcriptional Activity by the Ras/Mitogen-activated Protein Kinase Pathway*

    PubMed Central

    Kapeli, Katannya; Hurlin, Peter J.

    2011-01-01

    Myc transcription factors are important regulators of proliferation and can promote oncogenesis when deregulated. Deregulated Myc expression in cancers can result from MYC gene amplification and translocation but also from alterations in mitogenic signaling pathways that affect Myc levels through both transcriptional and post-transcription mechanisms. For example, mutations in Ras family GTPase proteins that cause their constitutive activation can increase cellular levels of c-Myc by interfering with its rapid proteasomal degradation. Although enhanced protein stability is generally thought to be applicable to other Myc family members, here we show that c-Myc and its paralog N-Myc respond to oncogenic H-Ras (H-RasG12V) in very different ways. H-RasG12V promotes accumulation of both c-Myc and N-Myc, but although c-Myc accumulation is achieved by enhanced protein stability, N-Myc accumulation is associated with an accelerated rate of translation that overcomes a surprising H-RasG12V-mediated destabilization of N-Myc. We show that H-RasG12V-mediated degradation of N-Myc functions independently of key phosphorylation sites in the highly conserved Myc homology box I region that controls c-Myc protein stability by oncogenic Ras. Finally, we found that N-Myc and c-Myc transcriptional activity is associated with their proteasomal degradation but that N-Myc may be uniquely dependent on Ras-stimulated proteolysis for target gene expression. Taken together, these studies provide mechanistic insight into how oncogenic Ras augments N-Myc levels in cells and suggest that enhanced N-Myc translation and degradation-coupled transactivation may contribute to oncogenesis. PMID:21908617

  2. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  3. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  4. Genetic analysis of the Kirsten-ras-revertant 1 gene: Potentiation of its tumor suppressor activity by specific point mutations

    SciTech Connect

    Kitayama, Hitoshi Univ. of Tsukuba, Ibaraki ); Matsuzaki, Tomoko; Ikawa, Yoji; Noda, Makoto )

    1990-06-01

    Kirsten-ras-revertant 1 (Krev-1) cDNA encodes a ras-related protein and exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when introduced into a v-K-ras-transformed mouse NIH 3T3 cell line, DT. Toward understanding the mechanism of action of Krev-1 protein, the authors constructed a series of point mutants of Krev-1 cDNA and tested their biological activities in DT cells and HT1080 human fibrosarcoma cells harboring the activated N-ras gene. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp{sup 17} and Asn{sup 116}), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys{sup 181}), and at the unique Thr{sup 61} all decreased the transformation suppressor activity. On the other hand, substitutions such as Gly{sup 12} to Val{sup 12} and Gln{sup 63} to Glu{sup 63} were found to significantly increase the transformation suppressor/tumor suppressor activity of Krev-1. These findings are consistent with the idea that Krev-1 protein is regulated like many other G proteins by the guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.

  5. K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary.

    PubMed Central

    Enomoto, T.; Weghorst, C. M.; Inoue, M.; Tanizawa, O.; Rice, J. M.

    1991-01-01

    To explore the role of mutational activation of members of the ras family of cellular protooncogenes in the development of human ovarian neoplasms, a series of 37 ovarian tumors from Japanese patients was studied. These included 30 common epithelial tumors (1 mucinous tumor of borderline malignancy, 7 mucinous adenocarcinomas, and 22 nonmucinous carcinomas: 10 serous, 3 clear cell, 8 endometrioid, and 1 undifferentiated), 5 tumors of germ cell origin, and 2 sex cord/stromal cell tumors. Polymerase chain reaction was performed from selected areas of deparaffinized sections of formalin-fixed paraffin-embedded tissue, and the presence of activating point mutations in codons 12, 13, and 61 of the H-, N-, and K-ras genes was probed by dot-blot hybridization analysis with mutation specific oligonucleotides. Mutations in K-ras were also looked for by direct genomic sequencing. The overall frequency of ras gene mutations was 10/37 (27%). Mutations were detected only in K-ras, and were found in most of the mucinous tumors, including the one such tumor of borderline malignancy (6/8; 75%). In one mucinous adenocarcinoma, two mutations were detected in paraffin-embedded material that had not previously been found in high molecular weight DNA isolated from frozen tissue from the same case. K-ras mutations occurred significantly more frequently in mucinous tumors (6/8, 75%) than in serous carcinomas (2/10, 20%; P = 0.031) or in all nonmucinous types of epithelial ovarian tumors combined (3/22, 14%; P = 0.0031). Images Figure 1 Figure 2 PMID:1656759

  6. CONTRIBUTION OF INSPIRATORY FLOW TO ACTIVATION OF EGFR, RAS, MAPK, ATF-2 AND C-JUN DURING LUNG STRETCH

    EPA Science Inventory

    Contribution of Inspiratory Flow to Activation of EGFR, Ras, MAPK, ATF-2 and c-Jun during Lung Stretch

    R. Silbajoris 1, Z. Li 2, J. M. Samet 1 and Y. C. Huang 1. 1 NHEERL, ORD, US EPA, RTP, NC and 2 CEMALB, UNC-CH, Chapel Hill, NC .

    Mechanical ventilation with larg...

  7. Inhibition of RAS in diabetic nephropathy

    PubMed Central

    Yacoub, Rabi; Campbell, Kirk N

    2015-01-01

    Diabetic kidney disease (DKD) is a progressive proteinuric renal disorder in patients with type 1 or type 2 diabetes mellitus. It is a common cause of end-stage kidney disease worldwide, particularly in developed countries. Therapeutic targeting of the renin–angiotensin system (RAS) is the most validated clinical strategy for slowing disease progression. DKD is paradoxically a low systematic renin state with an increased intrarenal RAS activity implicated in its pathogenesis. Angiotensin II (AngII), the main peptide of RAS, is not only a vasoactive peptide but functions as a growth factor, activating interstitial fibroblasts and mesangial and tubular cells, while promoting the synthesis of extracellular matrix proteins. AngII also promotes podocyte injury through increased calcium influx and the generation of reactive oxygen species. Blockade of the RAS using either angiotensin converting enzyme inhibitors, or angiotensin receptor blockers can attenuate progressive glomerulosclerosis in animal models, and slows disease progression in humans with DKD. In this review, we summarize the role of intrarenal RAS activation in the pathogenesis and progression of DKD and the rationale for RAS inhibition in this population. PMID:25926752

  8. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation.

    PubMed

    Murphy, Lynea A; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  9. Oncogenic K-Ras promotes proliferation in quiescent intestinal stem cells.

    PubMed

    Gierut, Jessica J; Lyons, Jesse; Shah, Manasvi S; Genetti, Casie; Breault, David T; Haigis, Kevin M

    2015-07-01

    K-Ras is a monomeric GTPase that controls cellular and tissue homeostasis. Prior studies demonstrated that mutationally activated K-Ras (K-Ras(G12D)) signals through MEK to promote expansion and hyperproliferation of the highly mitotically active transit-amplifying cells (TACs) in the intestinal crypt. Its effect on normally quiescent stem cells was unknown, however. Here, we have used an H2B-Egfp transgenic system to demonstrate that K-Ras(G12D) accelerates the proliferative kinetics of quiescent intestinal stem cells. As in the TAC compartment, the effect of mutant K-Ras on the quiescent stem cell is dependent upon activation of MEK. Mutant K-Ras is also able to increase self-renewal potential of intestinal stem cells following damage. These results demonstrate that mutant K-Ras can influence intestinal homeostasis on multiple levels.

  10. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  11. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and NF-κB

    PubMed Central

    Min, Junxia; Zaslavsky, Alexander; Fedele, Giuseppe; McLaughlin, Sara K.; Reczek, Elizabeth E.; De Raedt, Thomas; Guney, Isil; Strochlic, David E.; Laura, E.; Beroukhim, Rameen; Bronson, Roderick T.; Ryeom, Sandra; Hahn, William C.; Loda, Massimo; Cichowski, Karen

    2010-01-01

    Metastasis is responsible for the majority of prostate cancer-related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene-tumor suppressor cascade that promotes prostate cancer initiation and metastasis by coordinately activating Ras and NF-κB. Specifically, we show that loss of the RasGAP gene DAB2IP induces metastatic prostate cancer in a murine model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-κB through distinct domains to promote tumor initiation and metastasis, respectively. DAB2IP is suppressed in human prostate cancer where expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein EZH2 activates Ras, NF-κB, and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis. PMID:20154697

  12. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity.

    PubMed

    Weber-Boyvat, Marion; Kentala, Henriikka; Lilja, Johanna; Vihervaara, Terhi; Hanninen, Raisa; Zhou, You; Peränen, Johan; Nyman, Tuula A; Ivaska, Johanna; Olkkonen, Vesa M

    2015-02-15

    ORP3 is an R-Ras interacting oxysterol-binding protein homolog that regulates cell adhesion and is overexpressed in several cancers. We investigated here a novel function of ORP3 dependent on its targeting to both the endoplasmic reticulum (ER) and the plasma membrane (PM). Using biochemical and cell imaging techniques we demonstrate the mechanistic requirements for the subcellular targeting and function of ORP3 in control of R-Ras activity. We show that hyperphosphorylated ORP3 (ORP3-P) selectively interacts with the ER membrane protein VAPA, and ORP3-VAPA complexes are targeted to PM sites via the ORP3 pleckstrin homology (PH) domain. A novel FFAT (two phenylalanines in an acidic tract)-like motif was identified in ORP3; only disruption of both the FFAT-like and canonical FFAT motif abolished the phorbol-12-myristate-13-acetate (PMA) stimulated interaction of ORP3-P with VAPA. Co-expression of ORP3 and VAPA induced R-Ras activation, dependent on the interactions of ORP3 with VAPA and the PM. Consistently, downstream AktS473 phosphorylation and β1-integrin activity were enhanced by ORP3-VAPA. To conclude, phosphorylation of ORP3 controls its association with VAPA. Furthermore, we present evidence that ORP3-VAPA complexes stimulate R-Ras signaling.

  13. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation.

    PubMed

    Daub, M; Jöckel, J; Quack, T; Weber, C K; Schmitz, F; Rapp, U R; Wittinghofer, A; Block, C

    1998-11-01

    Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.

  14. Assessment of the chemosensitizing activity of TAT-RasGAP317-326 in childhood cancers.

    PubMed

    Chevalier, Nadja; Gross, Nicole; Widmann, Christian

    2015-01-01

    Although current anti-cancer protocols are reasonably effective, treatment-associated long-term side effects, induced by lack of specificity of the anti-cancer procedures, remain a challenging problem in pediatric oncology. TAT-RasGAP317-326 is a RasGAP-derived cell-permeable peptide that acts as a sensitizer to various anti-cancer treatments in adult tumor cells. In the present study, we assessed the effect of TAT-RasGAP317-326 in several childhood cancer cell lines. The RasGAP-derived peptide-induced cell death was analyzed in several neuroblastoma, Ewing sarcoma and leukemia cell lines (as well as in normal lymphocytes). Cell death was evaluated using flow cytometry methods in the absence or in the presence of the peptide in combination with various genotoxins used in the clinics (4-hydroperoxycyclophosphamide, etoposide, vincristine and doxorubicin). All tested pediatric tumors, in response to at least one genotoxin, were sensitized by TAT-RasGAP317-326. The RasGAP-derived peptide did not increase cell death of normal lymphocytes, alone or in combination with the majority of the tested chemotherapies. Consequently, TAT-RasGAP317-326 may benefit children with tumors by increasing the efficacy of anti-cancer therapies notably by allowing reductions in anti-cancer drug dosage and the associated drug-induced side effects.

  15. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    PubMed

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  16. Sodium butyrate suppresses the transforming activity of an activated N-ras oncogene in human colon carcinoma cells

    SciTech Connect

    Stoddart, J.H.; Niles, R.M. ); Lane, M.A. )

    1989-09-01

    The transforming activity of DNA from a newly established undifferentiated human colon carcinoma cell line (MIP-101) was tested in the NIH-3T3 transfection assay. Southern blot analysis of the transfectant DNA revealed the presence of a human N-ras oncogene. Here the authors report that there is a significant reduction in the transforming efficiency of the DNA from butyrate-treated MIP-101 cells. A nonspecific reduction in total DNA uptake as an explanation for these findings was eliminated by showing that there was similar uptake and expression of the thymidine kinase gene from the DNA of butyrate-treated and control MIP cells. An NIH-3T3 transformant carrying the human N-ras gene was evaluated for phenotypic reversion and DNA transforming ability after treatment with sodium butyrate. Although butyrate suppressed several transformed properties similar to MIP-101 cells, DNA from control and treated cultures had an identical level of transforming activity. The results suggest that the environment of the MIP cells may contain additional elements not present in the NIH-3T3 transformants which are required to observe the effect of butyrate on reduction of transforming activity.

  17. Transforming activity of the c-Ha-ras oncogene having two point mutations in codons 12 and 61.

    PubMed

    Sekiya, T; Prassolov, V S; Fushimi, M; Nishimura, S

    1985-09-01

    A recombinant plasmid carrying the human c-Ha-ras gene with two point mutations in codons 12 and 61 was constructed and its transforming activity on mouse NIH 3T3 cells was compared with those of genes with a single mutation in either codon 12 or 61. Quantitative analyses revealed that the gene with two mutations had essentially the same transforming activity as the genes with single mutations. These results indicate that a single mutation of the c-Ha-ras gene in either codon 12 or 61 is sufficient to activate the gene and that neither of the two mutation sites involved in activation of the gene needs to be intact for transforming activity.

  18. Choline phosphate potentiates sphingosine-1-phosphate-induced Raf-1 kinase activation dependent of Ras--phosphatidylinositol-3-kinase pathway.

    PubMed

    Lee, Michael; Han, Sang Seop

    2002-04-01

    In NIH3T3 cells, sphingosine-1-phosphate (S1P) caused a significant increase of Raf-1 kinase activity as early as 2 min. Interestingly, choline phosphate (ChoP) produced synergistic increase of S1P-stimulated Raf-1 kinase activation in the presence of ATP while showing additive effect in the absence of ATP. However, Raf-1 kinase activation induced by S1P decreased in the presence of ATP when applied alone. The overexpression of N-terminal fragment of Raf-1 (RfI) to inhibit Raf--Ras interaction caused the inhibition of S1P-induced Raf-1 kinase activation. Also, wortmannin, phosphatidylinositol-3-kinase (PI3K) inhibitor, exhibited inhibitory effects on S1P-induced activation of Raf-1 kinase. In addition, we demonstrated that the chemical antioxidant, N-acetylcysteine attenuated Raf-1 activation induced by S1P, suggesting that H(2)O(2) may be required for the signalling pathway leading to Raf-1 activation. This H(2)O(2)-induced Raf-1 kinase activation was also blocked by inhibition of Ras--PI3K signalling pathway using alpha-hydroxyfarnesylphosphonic acid and wortmannin. Taken together, these results indicate that S1P-induced Raf-1 kinase activation is mediated by H(2)O(2) stimulation of Ras--PI3K pathway, and is enhanced by ChoP in the presence of ATP.

  19. K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance in pancreatic ductal adenocarcinomas.

    PubMed

    Wei, Feng; Liu, Yan; Bellail, Anita C; Olson, Jeffrey J; Sun, Shi-Yong; Lu, Guoyue; Ding, Lijuan; Yuan, Changji; Wang, Guangyi; Hao, Chunhai

    2012-09-01

    Mammalian target of rapamycin complex 1 (mTORC1) is frequently activated in human cancers; however, clinical trials of rapalog (the mTORC1 inhibitors) have shown that pancreatic ductal adenocarcinomas (PDACs) resist to the treatment. Rapalog treatment activated the extracellular signal-regulated kinase (ERK) pathway in K-Ras mt PDAC cells. K-Ras knockdown abolished the insulin-like growth factor-1 (IGF-1)-induced ERK pathway in the K-Ras mt PDAC cells and enhanced the therapeutic efficacy of everolimus in treating K-Ras mt PDAC cells-derived mouse xenografts. The results indicate that targeting of K-Ras mutation may lead to the development of therapies that overcome rapalog resistance in PDAC.

  20. Photochemical Modulation of Ras-Mediated Signal Transduction using Caged Farnesyltransferase Inhibitors: Activation via One- and Two-Photon Excitation

    PubMed Central

    Abate-Pella, Daniel; Zeliadt, Nicholette A.; Ochocki, Joshua D.; Warmka, Janel K.; Dore, Timothy M.; Blank, David A.; Wattenberg, Elizabeth V.; Distefano, Mark D.

    2012-01-01

    The creation of caged molecules involves the attachment of protecting groups to biologically active compounds such as ligands, substrates, and drugs that can be removed under specific conditions. Photoremovable caging groups are the most common due to their ability to be removed with high spatial and temporal resolution. Here, the synthesis and photochemistry of a caged inhibitor of protein farnesyltransferase, Bhc-FTI, is described. The inhibitor was caged by alkylation of a critical thiol functional group with a Bhc moiety; while Bhc is well established as a protecting group for carboxylates and phosphates, it has not been extensively used to cage sulfhydryls. The resulting caged molecule, Bhc-FTI, can be photolyzed with UV light to release the inhibitor (FTI) that prevents Ras farnesylation, Ras membrane localization and downstream signaling. Finally, it is shown that Bhc-FTI can be uncaged by two-photon excitation to produce FTI at levels sufficient to inhibit Ras localization and alter cell morphology. Given the widespread involvement of Ras proteins in signal transduction pathways, this caged inhibitor should be useful in a plethora of studies. PMID:22492666

  1. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  2. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  3. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells.

    PubMed

    Koh, Min-Soo; Moon, Aree

    2011-03-01

    There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.

  4. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes.

    PubMed

    Lerner, E C; Qian, Y; Blaskovich, M A; Fossum, R D; Vogt, A; Sun, J; Cox, A D; Der, C J; Hamilton, A D; Sebti, S M

    1995-11-10

    Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade.

  5. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase

    PubMed Central

    Tang, Songqing; Chen, Taoyong; Yu, Zhou; Zhu, Xuhui; Yang, Mingjin; Xie, Bin; Li, Nan; Cao, Xuetao; Wang, Jianli

    2014-01-01

    Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response. PMID:25118589

  6. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    SciTech Connect

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  7. Activation of Ras, Raf-1 and protein kinase C in differentiating human neuroblastoma cells after treatment with phorbolester and NGF.

    PubMed

    Söderholm, H; Olsson, A; Lavenius, E; Rönnstrand, L; Nånberg, E

    2001-02-01

    The human neuroblastoma cell line SH-SY5Y/TrkA differentiates in vitro and acquires a sympathetic phenotype in response to phorbolester (activator of protein kinase C, PKC) in the presence of serum or growth factors, or nerve growth factor (NGF). We have now investigated to what extent phorbolester and NGF cause activation of Ras and Raf-1 and the involvement of PKC in this response in differentiating SH-SY5Y/TrkA cells. NGF stimulated increased accumulation of Ras-GTP and a threefold activation of Raf-1. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) had no effect on the amount of Ras-GTP but led to a smaller activation of Raf-1. NGF caused a limited increase in phosphorylation of Raf-1 compared with TPA, and NGF-induced Raf activity was independent of PKC. Analysis of phosphorylation of the endogenous PKC substrate myristoylated alanine-rich C-kinase substrate (MARCKS), and of subcellular distribution of PKC-alpha, -delta, and -epsilon revealed that NGF only caused a very small activation of PKC in SH-SY5Y/TrkA cells. The results identify Raf-1 as a target for both TPA- and NGF-induced signals in differentiating SH-SY5Y/TrkA cells and demonstrate that signalling to Raf-1 was mediated via distinct mechanisms.

  8. Enhancement of inositol phospholipid metabolism and activation of protein kinase C in ras-transformed rat fibroblasts

    SciTech Connect

    Huang, M.; Chida, K.; Kamata, N.; Nose, K.; Kato, M.; Homma, Y.; Takenawa, T.; Kuroki, T.

    1988-12-05

    The inositol phospholipid metabolism is one of the main pathways of signal transduction in cells. We measured the activities of its key enzymes in v-Ha-ras-transformed 208F rat fibroblasts. In the ras-transformed clones, incorporation of (TSP)Pi into intermediates of the inositol phospholipid metabolism was stimulated. The activities of phosphatidylinositol and phosphatidylinositol-4-phosphate kinases in the transformed clones were about 35-50% more than in untransformed cells, indicating increased inositol phospholipid metabolism. However, the activity of diacylglycerol kinase in their membrane fraction was 25-35% less than that of untransformed cells, although the total diacylglycerol kinase activity did not change. The imbalance of these kinases could constitute one of the main reasons leading to the increased level of inositol phosphates and the accumulation of diacylglycerol to 2-2.2 times that in control 208F cells. Phosphatidylinositol-4,5-bisphosphate-phospholipase C activity did not change on the transformation when assayed under various conditions. The increased level of diacylglycerol caused intracellular translocation, activation, and down-regulation of protein kinase C changes which may be one of the essential events in transformation by the v-Ha-ras gene.

  9. Reciprocal actions of NCAM and tPA via a Ras-dependent MAPK activation in rat hippocampal neurons.

    PubMed

    Son, Hyeon; Seuk Kim, Jin; Mogg Kim, Jung; Lee, Sang-Hun; Lee, Yong-Sung

    2002-10-25

    In an attempt to identify the functions of neural cell adhesion molecule (NCAM) and tissue plasminogen activator (tPA) in hippocampal synaptic plasticity, we investigated the relationship between the two molecules by focusing on mitogen-activated protein kinase (MAPK), an essential enzyme in this process. NCAM clustering in cultured hippocampal neurons transiently induced MAPK within 10min. Moreover, soluble NCAM also induced a Ras-dependent MAPK activation. Conversely, MAPK activation led to an increase in the expressions of all three isoforms of NCAM. Treatment of neurons with tPA and plasminogen induced a Ras-dependent MAPK activation and tPA-plasmin degradation of NCAM was mediated in a MAPK-dependent manner. Soluble NCAM transiently inhibited tPA mRNA expression levels in a MAPK-dependent manner, while stimulation of MAPK alone induced tPA reduction in cells. These results collectively indicate that NCAM and tPA reciprocally act as important regulators in the modulation of synaptic plasticity via a Ras-MAPK-involved signaling pathway. In turn, MAPK activation may cause tPA degradation or a decrease in expression to promote synaptic plasticity.

  10. Ras enhances Myc protein stability.

    PubMed

    Sears, R; Leone, G; DeGregori, J; Nevins, J R

    1999-02-01

    Various experiments have demonstrated a collaborative action of Myc and Ras, both in normal cell growth control as well as during oncogenesis. We now show that Ras enhances the accumulation of Myc activity by stabilizing the Myc protein. Whereas Myc has a very short half-life when produced in the absence of mitogenic signals, due to degradation by the 26S proteasome, the half-life of Myc increases markedly in growth-stimulated cells. This stabilization is dependent on the Ras/Raf/MAPK pathway and is not augmented by proteasome inhibition, suggesting that Ras inhibits the proteasome-dependent degradation of Myc. We propose that one aspect of Myc-Ras collaboration is an ability of Ras to enhance the accumulation of transcriptionally active Myc protein.

  11. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    SciTech Connect

    Abe, Yasuhito . E-mail: yasuhito@m.ehime-u.ac.jp; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Kito, Katsumi; Ogasawara, Masahito; Shigemoto, Kazuhiro

    2006-05-26

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK.

  12. Basic Calcium Phosphate Crystals Activate c-fos Expression Through a Ras/ERK Dependent Signaling Mechanism

    PubMed Central

    Major, Michael L.; Cheung, Herman S.; Misra, Ravi P.

    2007-01-01

    Diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur frequently in osteoarthritic joints. Both crystals induce mitogenesis, metalloproteinase synthesis and secretion by fibroblasts and chondrocytes, promoting degradation of articular tissue. We investigated the mechanism by which BCP activates the c-fos proto-oncogene, which has been shown to activate various matrix metalloproteinases (MMPs). We demonstrate that BCP crystals induce c-fos expression primarily through a Ras/ERK dependent signaling mechanism targeting two highly conserved regulatory binding sites, the serum response element (SRE) and the cAMP response element (CRE). These results establish a calcium crystal induced, calcium/Calmodulin independent, signaling pathway in which BCP crystals activate Ras/MAPK, which can directly target an SRF-containing transcription factor complex, to induce fibroblasts to secrete metalloproteinases. PMID:17307136

  13. RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes.

    PubMed

    Wurtzel, Jeremy G T; Lee, Seunghyung; Singhal, Sharad S; Awasthi, Sanjay; Ginsberg, Mark H; Goldfinger, Lawrence E

    2015-11-27

    R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration.

  14. Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway.

    PubMed

    Strong, James E; Wong, Gary; Jones, Shane E; Grolla, Allen; Theriault, Steven; Kobinger, Gary P; Feldmann, Heinz

    2008-11-18

    Human infections with Ebola virus (EBOV) result in a deadly viral disease known as Ebola hemorrhagic fever. Up to 90% of infected patients die, and there is no available treatment or vaccine. The sporadic human outbreaks are believed to result when EBOV "jumps" from an infected animal to a person and is subsequently transmitted between persons by direct contact with infected blood or body fluids. This study was undertaken to investigate the mechanism by which EBOV can persistently infect and then escape from model cell and animal reservoir systems. We report a model system in which infection of mouse and bat cell lines with EBOV leads to persistence, which can be broken with low levels of lipopolysaccharide or phorbol-12-myristate-13-acetate (PMA). This reactivation depends on the Ras/MAPK pathway through inhibition of RNA-dependent protein kinase and eukaryotic initiation factor 2alpha phosphorylation and occurs at the level of protein synthesis. EBOV also can be evoked from mice 7 days after infection by PMA treatment, indicating that a similar mechanism occurs in vivo. Our findings suggest that EBOV may persist in nature through subclinical infection of a reservoir species, such as bats, and that appropriate physiological stimulation may result in increased replication and transmission to new hosts. Identification of a presumptive mechanism responsible for EBOV emergence from its reservoir underscores the "hit-and-run" nature of the initiation of human and/or nonhuman primate EBOV outbreaks and may provide insight into possible countermeasures to interfere with transmission. PMID:18981410

  15. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras.

    PubMed Central

    Jaiswal, R K; Moodie, S A; Wolfman, A; Landreth, G E

    1994-01-01

    Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway. Images PMID:7935411

  16. Rck1 up-regulates pseudohyphal growth by activating the Ras2 and MAP kinase pathways independently in Saccharomyces cerevisiae.

    PubMed

    Chang, Miwha; Kang, Chang-Min; Park, Yong-Sung; Yun, Cheol-Won

    2014-02-21

    Previously, we reported that Rck1 regulates Hog1 and Slt2 activities and affects MAP kinase activity in Saccharomyces cerevisiae. Recently, we found that Rck1 up-regulates phospho-Kss1 and phospho-Fus3. Kss1 has been known as a component in the pseudohyphal growth pathway, and we attempted to identify the function of Rck1 in pseudohyphal growth. Rck1 up-regulated Ras2 at the protein level, not the transcriptional level. Additionally, FLO11 transcription was up-regulated by RCK1 over-expression. RCK1 expression was up-regulated during growth on SLAD+1% butanol medium. On nitrogen starvation agar plates, RCK1 over-expression induced pseudohyphal growth of colonies, and cells over-expressing RCK1 showed a filamentous morphology when grown in SLAD medium. Furthermore, 1-butanol greatly induced filamentous growth when RCK1 was over-expressed. Moreover, invasive growth was activated in haploid cells when RCK1 was over-expressed. The growth defect of cells observed on 1-butanol medium was recovered when RCK1 was over-expressed. Interestingly, Ras2 and phospho-Kss1 were up-regulated by Rck1 independently. Together, these results suggest that Rck1 promotes pseudohyphal growth by activating Ras2 and Kss1 via independent pathways in S. cerevisiae. PMID:24491552

  17. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells.

    PubMed

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

  18. Endogenous K-ras signaling in erythroid differentiation.

    PubMed

    Zhang, Jing; Lodish, Harvey F

    2007-08-15

    K-ras is one of the most frequently mutated genes in virtually all types of human cancers. Using mouse fetal liver erythroid progenitors as a model system, we studied the role of endogenous K-ras signaling in erythroid differentiation. When oncogenic K-ras is expressed from its endogenous promoter, it hyperactivates cytokine-dependent signaling pathways and results in a partial block in erythroid differentiation. In erythroid progenitors deficient in K-ras, cytokine-dependent Akt activation is greatly reduced, leading to delays in erythroid differentiation. Thus, both loss- and gain-of-Kras functions affect erythroid differentiation through modulation of cytokine signaling. These results support the notion that in human cancer patients oncogenic Ras signaling might be controlled by antagonizing essential cytokines.

  19. Ras activation mediates WISP-1-induced increases in cell motility and matrix metalloproteinase expression in human osteosarcoma.

    PubMed

    Wu, Chien-Lin; Tsai, Hsiao-Chi; Chen, Zhen-Wei; Wu, Chi-Ming; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-12-01

    WISP-1 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, Nov) family of matrix cellular proteins. Osteosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effect of WISP-1 on migration activity in human osteosarcoma cells is mostly unknown. In this study, we first found that the expression of WISP-1 in osteosarcoma patients was significantly higher than that in normal bone and corrected with tumor stage. Exogenous treatment of osteosarcoma cells with WISP-1 promoted cell motility and matrix metalloproteinase (MMP)-2 and MMP-9 expression. In addition, the Ras and Raf-1 inhibitor or siRNA abolished WISP-1-induced cell migration and MMP expression. On the other hand, activation of the Ras, Raf-1, MEK, ERK, and NF-κB signaling pathway after WISP-1 treatment was demonstrated, and WISP-1-induced expression of MMPs and migration activity were inhibited by the specific inhibitor, and mutant of MEK, ERK, and NF-κB cascades. Taken together, our results indicated that WISP-1 enhances the migration of osteosarcoma cells by increasing MMP-2 and MMP-9 expression through the integrin receptor, Ras, Raf-1, MEK, ERK, and NF-κB signal transduction pathway.

  20. Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration

    PubMed Central

    Yamauchi, Junji; Miyamoto, Yuki; Tanoue, Akito; Shooter, Eric M.; Chan, Jonah R.

    2005-01-01

    Endogenous neurotrophins positively and negatively regulate migration of premyelinating Schwann cells before the initiation of myelination. Neurotrophin-3 (NT3) acting through the TrkC receptor tyrosine kinase stimulates Schwann cell migration via the Rho GTPases Rac1 and Cdc42. We previously demonstrated that TrkC directly phosphorylates and activates Dbs, the guanine-nucleotide exchange factor (GEF) for Cdc42, to partially mediate Schwann cell migration. Here, we identify T lymphoma invasion and metastasis (Tiam) 1 as the Rac1-specific guanine-nucleotide exchange factor involved in NT3-induced Schwann cell migration. Furthermore, the interaction between the small GTPase Ras and Tiam1 plays an essential role in the activation of Rac1. Taken together, these results suggest that NT3 activation of TrkC stimulates Schwann cell migration through two parallel signaling units, Ras/Tiam1/Rac1 and Dbs/Cdc42, and that Schwann cell migration is uniquely regulated in the case of Ras and Rac1, by two different types of small GTPases. PMID:16203995

  1. The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes.

    PubMed Central

    Sadoshima, J; Izumo, S

    1996-01-01

    p21 ras plays as important role in cell proliferation, transformation and differentiation. Recently, the requirement of p21 ras has been suggested for cellular responses induced by stimulation of heterotrimeric G protein-coupled receptors. However, it remains to be determined how agonists for G protein-coupled receptors activate p21 ras in metazoans. We show here that stimulation of the G q protein-coupled angiotensin II (Ang II) receptor causes activation of p21 ras in cardiac myocytes. The p21 ras activation by Ang II is mediated by an increase in the guanine nucleotide exchange activity, but not by an inhibition of the GTPase-activating protein. Ang II causes rapid tyrosine phosphorylation of Shc and its association with Grb2 and mSos-1, a guanine nucleotide exchange factor of p21 ras. This leads to translocation of mSos-1 to the membrane fraction. Shc associates with the SH3 domain of Fyn whose tyrosine kinase activity is activated by Ang II with a similar time course as that of tyrosine phosphorylation of Shc. Ang II-induced increase in the guanine nucleotide exchange activity was inhibited by a peptide ligand specific to the SH3 domain of the Src family tyrosine kinases. These results suggest that an agonist for a pertussis toxin-insensitive G protein-coupled receptor may initiate the cross-talk with non-receptor-type tyrosine kinases, thereby activating p21 ras using a similar mechanism as receptor tyrosine kinase-induced p21 ras activation. Images PMID:8631299

  2. Chronic Renin-Angiotensin System (RAS) Blockade May Not Induce Hypotension During Anaesthesia for Bariatric Surgery.

    PubMed

    Salvetti, Guido; Di Salvo, Claudio; Ceccarini, Giovanni; Abramo, Antonio; Fierabracci, Paola; Magno, Silvia; Piaggi, Paolo; Vitti, Paolo; Santini, Ferruccio

    2016-06-01

    The use of angiotensin-converting enzyme inhibitors (ACE-I) and angiotensin II receptor blockers (ARB) for the treatment of hypertensive obese patients is steadily increasing. Some studies have reported that the use of these drugs was associated with an increased risk of hypotensive episodes, during general anaesthesia. The number of bariatric procedures is also increasing worldwide, but there is a lack of studies investigating the hypotensive effect of renin-angiotensin system (RAS) blockers in severely obese patients during general anaesthesia for bariatric surgery. The aim of this pilot study was to evaluate hemodynamic changes induced by general anaesthesia in obese patients chronically treated with ACE-I or ARB compared to a control group not treated with antihypertensive therapy. Fourteen obese subjects (mean body mass index (BMI) 47.5 kg/m(2)) treated with ACE-I or ARB and twelve obese (mean BMI 45.7 kg/m2) controls not treated with antihypertensive therapy underwent general anaesthesia to perform laparoscopic bariatric surgery. Systolic blood pressure, diastolic blood pressure, and heart rate were monitored continuously and registered at different time points: T0 before induction, then at 2, 5, 7, 10, 15, 20, 30, 60, 90, 120, and 150 min after induction, and the last time point taken following recovery from anaesthesia. A progressive reduction of both systolic and diastolic blood pressure values was observed without significant differences between the two groups. A similar trend of heart rate values was observed. In conclusion, our pilot study suggests that RAS blockers may be continued during the perioperative period in patients undergoing bariatric surgery, without increasing the risk of hypotensive episodes.

  3. Synthesis, biological, and biophysical studies of DAG-indololactones designed as selective activators of RasGRP.

    PubMed

    Garcia, Lia C; Donadío, Lucia Gandolfi; Mann, Ella; Kolusheva, Sofiya; Kedei, Noemi; Lewin, Nancy E; Hill, Colin S; Kelsey, Jessica S; Yang, Jing; Esch, Timothy E; Santos, Marina; Peach, Megan L; Kelley, James A; Blumberg, Peter M; Jelinek, Raz; Marquez, Victor E; Comin, Maria J

    2014-06-15

    The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2-5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined.

  4. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells

    PubMed Central

    Senoo, Hiroshi; Cai, Huaqing; Wang, Yu; Sesaki, Hiromi; Iijima, Miho

    2016-01-01

    Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization. PMID:27009206

  5. Activation of the c-H-ras proto-oncogene by retrovirus insertion and chromosomal rearrangement in a Moloney leukemia virus-induced T-cell leukemia.

    PubMed Central

    Ihle, J N; Smith-White, B; Sisson, B; Parker, D; Blair, D G; Schultz, A; Kozak, C; Lunsford, R D; Askew, D; Weinstein, Y

    1989-01-01

    A rearrangement of the c-H-ras locus was detected in a T-cell line (DA-2) established from a Moloney leukemia virus-induced tumor. This rearrangement was associated with the high-level expression of H-ras RNA and the H-ras gene product, p21. DNA from DA-2 cells transformed fibroblasts in DNA transfection experiments, and the transformed fibroblasts contained the rearranged H-ras locus. The rearrangement involved one allele and was present in tissue from the primary tumor from which the cell line was isolated. Cloning and sequencing of the rearranged allele and comparison with the normal allele demonstrated that the rearrangement was complex and probably resulted from the integration of a retrovirus in the H-ras locus between a 5' noncoding exon and the first coding exon and a subsequent homologous recombination between this provirus and another newly acquired provirus also located on chromosome 7. These events resulted in the translocation of the coding exons of the H-ras locus away from the 5' noncoding exon region to a new genomic site on chromosome 7. Sequencing of the coding regions of the gene failed to detect mutations in the 12th, 13th, 59th, or 61st codons. The possible reasons for the complexity of the rearrangement and the significance of the activation of the H-ras locus to T-cell transformation are discussed. Images PMID:2542606

  6. Modulation of maturation and ribosomal protein S6 phosphorylation in Xenopus oocytes by microinjection of oncogenic ras protein and protein kinase C.

    PubMed Central

    Kamata, T; Kung, H F

    1990-01-01

    Using Xenopus oocytes as a model system, we investigated the possible involvement of ras proteins in the pathway leading to phosphorylation of ribosomal protein S6. Our results indicate that microinjection of oncogenic T24 H-ras protein (which contains valine at position 12) markedly stimulated S6 phosphorylation on serine residues in oocytes, whereas normal ras protein (which contains glycine at position 12) was without effect. The S6 phosphorylation activity in the cell extract from T24 ras protein-injected oocytes was increased significantly. In addition, injection of protein kinase C potentiated the induction of maturation and S6 phosphorylation by the oncogenic ras protein. A similar potentiation was detected when T24 ras protein-injected oocytes were incubated with active phorbol ester. These findings suggest that ras proteins activate the pathway linked to S6 phosphorylation and that protein kinase C has a synergistic effect on the ras-mediated pathway. Images PMID:2406569

  7. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells.

    PubMed

    Reimann, T; Hempel, U; Krautwald, S; Axmann, A; Scheibe, R; Seidel, D; Wenzel, K W

    1997-02-10

    The transdifferentiation of hepatic stellate cells into myofibroblast-like cells and the proliferation of the transdifferentiated cells are controlled by TGF-beta1. Little is known about the intracellular signal transducers of TGF-beta1. In this paper we show that in cultured hepatic stellate cells TGF-beta1 induces activation of Ras, Raf-1, MEK and MAPK p42 and p44. The activation of MAPK depends on the activation of MEK. Our data exclude that the observed effects are mediated by a bFGF or PDGF autocrine loop. PMID:9038360

  8. Therapeutic Strategies for Targeting Ras Proteins

    PubMed Central

    Gysin, Stephan; Salt, Megan; Young, Amy; McCormick, Frank

    2011-01-01

    Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3’-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology. PMID:21779505

  9. Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

    PubMed Central

    Koo, JaeHyung; Wang, Sen; Kang, NaNa; Hur, Sun Jin; Bahk, Young Yil

    2016-01-01

    Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. [BMB Reports 2016; 49(7): 370-375] PMID:26818088

  10. Differential expression of matrix metalloproteinases in activated c-ras-Ha-transfected immortalized human keratinocytes.

    PubMed Central

    Meade-Tollin, L. C.; Boukamp, P.; Fusenig, N. E.; Bowen, C. P.; Tsang, T. C.; Bowden, G. T.

    1998-01-01

    Elevated expression of matrix metalloproteinases (MMPs), a family of secreted proteinases that degrade matrix components of basement membranes and connective tissues, is strongly correlated with malignant expression in various human epithelial cancers and epithelial cancer cell lines. We have tested whether elevated levels of MMP expression are also associated with malignant progression in human cutaneous squamous cell carcinoma. Constitutive levels of expression of steady-state mRNA and of secreted protein encoded by three MMP genes (matrilysin, gelatinases A and B) were compared in a unique in vitro model of human skin carcinogenesis. This model is composed of the parental immortalized non-tumorigenic human keratinocyte line (HaCaT), and three activated c-Harvey-ras-oncogene transfected variants (A-4, I-7 and II-4). Although clone A-4 is non-tumorigenic, clones I-7 and II-4 exhibit benign and malignant tumorigenic phenotypes, respectively, after subcutaneous injection into athymic nude mice. Northern blot, Western blot, and zymogram analyses revealed three MMP-specific patterns of expression. Constitutive matrilysin mRNA expression was markedly increased in the I-7 cells compared with HaCaT, A-4 or II-4 cells. Secreted promatrilysin was distinctly increased in the tumorigenic I-7 and II-4 cells compared with the non-tumorigenic HaCaT and A-4 cells. Gelatinase A mRNA and secreted gelatinase A protein levels were increased in each transfectant compared with HaCaT. Both active and inactive forms of gelatinase A were detected. Gelatinase B transcripts were not detected, but an EDTA-inhibitable gelatinase activity comigrating with gelatinase B was moderately enhanced in both tumorigenic variants compared with the non-tumorigenic cells. Because promatrilysin and 92-kDa gelatinase secretion were increased in both benign and malignant tumorigenic cells, and not related to invasiveness in this model, it is concluded that enhanced constitutive expression of these two MMPs

  11. Simian virus 40 large T antigen contains two independent activities that cooperate with a ras oncogene to transform rat embryo fibroblasts.

    PubMed Central

    Cavender, J F; Conn, A; Epler, M; Lacko, H; Tevethia, M J

    1995-01-01

    The simian virus 40 large T antigen immortalizes growing primary cells in culture. In addition, this viral oncoprotein cooperates with an activated ras protein to produce dense foci on monolayers of rat embryo fibroblasts (REF). The relationship between independent immortalization and cooperative transformation with ras has not been defined. Previously, two regions of T antigen were shown to contain immortalization activities. An N-terminal fragment consisting of amino acids 1 to 147 immortalizes rodent cells (L. Sompayrac and K. J. Danna, Virology 181:412-415, 1991). Loss-of-function analysis indicated that immortalization depended on integrity of the T-antigen segments containing amino acids 351 to 450 and 533 to 626 (T. D. Kierstead and M. J. Tevethia, J. Virol. 67:1817-1829, 1993). The experiments described here were directed toward determining whether these same T-antigen regions were sufficient for cooperation with ras. Initially, constructs that produce T antigens containing amino acids 176 to 708 (T176-708) or 1 to 147 were tested in a ras cooperation assay. Both polypeptides cooperated with ras to produce dense foci on monolayers of primary REF. These results showed that T antigen contains two separate ras cooperation activities. In order to determine the N-terminal limit of the ras cooperation activity contained within the T176-708 polypeptide, a series of constructs designed to produce fusion proteins containing T-antigen segments beginning at residues 251, 301, 337, 351, 371, 401, 451, 501, 551, 601, and 651 was generated. Each of these constructs was tested for the capacity to cooperate with ras to produce dense foci on REF monolayers. The results indicated that a polypeptide containing T-antigen amino acids 251 to 708 (T251-708) was sufficient to cooperate with ras, whereas the more extensively truncated products were not. The abilities of the N-terminally truncated T antigens to bind p53 were examined in p53-deficient cells infected with a

  12. Isolation of genes specifically expressed in flat revertant cells derived from activated ras-transformed NIH 3T3 cells by treatment with azatyrosine.

    PubMed Central

    Krzyzosiak, W J; Shindo-Okada, N; Teshima, H; Nakajima, K; Nishimura, S

    1992-01-01

    We previously reported that mouse NIH 3T3 cells transformed by transfection of activated human c-Ha-ras become apparently normal upon treatment with the antibiotic azatyrosine. The revertant cells maintain their normal phenotype during prolonged culture in the absence of azatyrosine, although activated p21ras is still expressed. The normal phenotype induced by azatyrosine could be due to activation of expression of some cellular gene(s) in the cells that results in suppression of ras function. To identify the genes with increased expression in the revertant cells, we adopted differential screening of recombinants from a phage cDNA library made from mRNA of the revertant cells, hybridized with 32P-labeled cDNAs made from mRNAs of the ras-transformed NIH 3T3 cells and the revertant cells. Two clones thus isolated were found to be almost identical to the ras recision gene (rrg), which was identified as a tumor-suppressor gene by Contente et al. [Contente, S., Kenyon, K., Rimoldi, D. & Friedman, R. M. (1990) Science 249, 796-798]. Other genes identified were the collagen type III and rhoB genes. Approximately half the clones were found to contain a sequence corresponding to that of the murine retrovirus-like intracisternal A particle. We speculate that azatyrosine activates several cellular genes in the ras-transformed cells and that some of these genes, including rrg, act cooperatively to counteract ras function, resulting in reversion of the ras-transformed cells to the normal phenotype. Images PMID:1594588

  13. cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), GTPase-activating protein of Ras

    SciTech Connect

    Li, Shaowei; Nakamura, Shun; Hattori, Seisuke

    1996-08-01

    We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gapl{sup m}, from rat brain. Gap1{sup m} is considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gapl{sup m}. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human-mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22-q23. 11 refs., 2 figs.

  14. Influence of aging and caloric restriction on activation of Ras/MAPK, calcineurin, and CaMK-IV activities in rat T cells.

    PubMed

    Pahlavani, M A; Vargas, D M

    2000-02-01

    The signaling cascade mediated by Ras (p21ras) and MAPK (mitogen-activated protein kinase) and calcium/calmodulin regulating enzymes, calcineurin (CaN) and CaMK-IV, are considered to be essential for T-cell growth and function. In the present study, the effect of aging and caloric restriction (CR) on the induction of Ras and MAPK activation by concanavalin A (ConA) was studied. Splenic T cells were isolated from young (4-6 months) and old (22-24 months) rats that had free access to food (control group), and from caloric restricted old (22-24 months) rats that beginning at 6 weeks of age were fed 60%(40% caloric restriction) of the diet consumed by the control rats. We found that the induction of Ras activity in T cells isolated from control old rats was lower (P<0.001) than that in control young rats. However, the levels of Ras activity in T cells isolated from CR old rats were similar to the levels in the age-matched control rats. The induction of MAPK activity in T cells isolated from control old rats and CR old rats was significantly less than in T cells isolated from control young rats, and caloric restriction significantly (P<0.05) reduced the age-related decline in MAPK activation. We also measured the induction of CaN and CaMK-IV activities by ConA in T cells from control young and old and CR old rats. The induction of both CaN and CaMK-IV activity decreased with age. Caloric restriction significantly (P<0.05) reduced the age-related decline in CaN activity, but had no significant effect on CaMK-IV activity. The changes in Ras/MAPK activation and in CaN and CaMK-IV activity with age or with CR were not associated with alterations in their corresponding protein levels. Thus, caloric restriction has a differential effect on the activation of the upstream signaling molecules that are altered with age.

  15. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras.

    PubMed

    Fam, N P; Fan, W T; Wang, Z; Zhang, L J; Chen, H; Moran, M F

    1997-03-01

    Conversion of Ras proteins into an activated GTP-bound state able to bind effector proteins is catalyzed by specific guanine nucleotide exchange factors in response to a large number of extracellular stimuli. Here we report the isolation of mouse cDNAs encoding Ras-GRF2, a multidomain 135-kDa protein containing a COOH-terminal Cdc25-related domain that stimulates release of GDP from Ras but not other GTPases in vitro. Ras-GRF2 bound specifically to immobilized Ras lacking bound nucleotides, suggesting stabilization of the nucleotide-free form of Ras as a mechanism of catalyzing nucleotide exchange. The NH2-terminal region of Ras-GRF2 is predicted to contain features common to various signaling proteins including two pleckstrin homology domains and a Dbl homology region. Ras-GRF2 also contains an IQ motif which was required for its apparent constitutive association with calmodulin in epithelial cells ectopically expressing Ras-GRF2. Transient expression of Ras-GRF2 in kidney epithelial cells stimulated GTP binding by Ras and potentiated calcium ionophore-induced activation of mitogen-activated protein kinase (ERK1) dependent upon the IQ motif. Calcium influx caused Ras-GRF2 subcellular localization to change from cytosolic to peripheral, suggesting a possible mechanism for controlling Ras-GRF2 interactions with Ras at the plasma membrane. Epithelial cells overexpressing Ras-GRF2 are morphologically transformed and grow in a disorganized manner with minimal intercellular contacts. Northern analysis indicated a 9-kb GRF2 transcript in brain and lung, where p135 Ras-GRF2 is known to be expressed, and RNAs of 12 kb and 2.2 kb were detected in several tissues. Thus, Ras-GRF2 proteins with different domain structures may be widely expressed and couple diverse extracellular signals to Ras activation.

  16. The Telemedical Rescue Assistance System "TemRas"--development, first results, and impact.

    PubMed

    Büscher, Christian; Elsner, Jesko; Schneiders, Marie-Thérèse; Thelen, Sebastian; Brodziak, Tadeusz; Seidenberg, Peter; Schilberg, Daniel; Tobias, Michael; Jeschke, Sabina

    2014-04-01

    German emergency medical services (EMS) face the challenge of ensuring high-quality emergency care against a background of continuously increasing numbers of emergency missions, resource shortages concomitant with greatly increased arrival times, particularly in rural areas. Because German EMS physicians are at maximum capacity, an immediate response is not always possible, and thus delays in commencing advanced life support measures sometimes occur. In such scenarios, paramedics start the initial treatment until the EMS physician arrives. The delayed availability of a physician can defer the decision process of the paramedics and thus postpone the start of the patient's essential treatment, which is particularly dangerous during the care of cardiovascular emergencies. Therefore, the project Telemedical Rescue Assistance System (TemRas) has developed an innovative concept to improve quality of emergency care. The objective is to introduce so-called tele-EMS physicians providing remote medical support for the emergency team on site by transmitting audio and video data as well as vital signs and 12-lead-ECG from the emergency site to a teleconsultation center. In this article, the development process as well as the first results of the evaluation phase and the impact for further use of telemedicine in EMS are presented. PMID:24445230

  17. A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum.

    PubMed Central

    Frost, J A; Geppert, T D; Cobb, M H; Feramisco, J R

    1994-01-01

    The role of ERK-1 and ERK-2 in wild-type (wt) Ha-Ras, phorbol 12-myristate 13-acetate (PMA), and serum-induced AP-1 activity was studied. Microinjection of ERK-specific substrate peptides inhibited the induction of AP-1 activity by all three stimuli, whereas a control peptide had no effect. By using eukaryotic expression constructs encoding wt ERK-1 and kinase-deficient mutants of ERKs 1 and 2, it was found that ERK-1 and ERK-2 activities are required for AP-1 activation stimulated by either wt Ha-Ras, PMA, or serum. Overexpression of ERK-1 augmented wt Ha-Ras stimulation of AP-1, while having no effect upon PMA or serum stimulation. Overexpression of either kinase-deficient ERK-1 or kinase-deficient ERK-2 partially inhibited AP-1 activation by wt Ha-Ras but had no effect on PMA or serum-induced activation. Coexpression of both interfering mutants abolished AP-1 induction by wt Ha-Ras, PMA, or serum. We conclude that ERKs are necessary components in the pathway leading to the activation of AP-1 stimulated by these agents. Images PMID:8170999

  18. A New View of Ras Isoforms in Cancers.

    PubMed

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  19. Physiologic activities of the contact activation system.

    PubMed

    Schmaier, Alvin H

    2014-05-01

    The plasma contact activation (CAS) and kallikrein/kinin (KKS) systems consist of 4 proteins: factor XII, prekallikrein, high molecular weight kininogen, and the bradykinin B2 receptor. Murine genetic deletion of factor XII (F12(-/-)), prekallikrein (Klkb1(-/-)), high molecular weight kininogen (Kgn1(-/-)) and the bradykinin B2 receptor (Bdkrb2(-/-)) yield animals protected from thrombosis. With possible exception of F12(-/-) and Kgn1(-/-) mice, the mechanism(s) for thrombosis protection is not reduced contact activation. Bdkrb2(-/-) mice are best characterized and they are protected from thrombosis through over expression of components of the renin angiotensin system (RAS) leading to elevated prostacyclin with vascular and platelet inhibition. Alternatively, prolylcarboxypeptidase, a PK activator and degrader of angiotensin II, when deficient in the mouse leads to a prothrombotic state. Its mechanism for increased thrombosis also is mediated in part by components of the RAS. These observations suggest that thrombosis in mice of the CAS and KKS are mediated in part through the RAS and independent of reduced contact activation. PMID:24759141

  20. Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

    NASA Technical Reports Server (NTRS)

    Duan, Yaqian; Moldovan, Leni; Miller, Rehae C.; Beli, Eleni; Salazar, Tatiana; Hazra, Sugata; Al-Sabah, Jude; Chalam, KV; Raghunandan, Sneha; Vyas, Ruchi; Parsons-Wingerter, Patricia; Oudit, Gavin Y.; Grant, Maria B.

    2016-01-01

    Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential

  1. RAS Laboratory Groups

    Cancer.gov

    The RAS Initiative uses multiple technologies to attack RAS-driven cancers. The resources of the Frederick National Lab allocated to the RAS Hub are organized into seven laboratory groups, each contributing to the collaborative effort.

  2. The RAS Initiative

    Cancer.gov

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  3. Oncogenic Ras pushes (and pulls) cell cycle progression through ERK activation.

    PubMed

    Campbell, Paul M

    2014-01-01

    The Ras-Raf-MEK-ERK signaling cascade is capable of channeling a wide variety of extracellular signals into control of cell proliferation, differentiation, senescence, and death. Because aberrant regulation at all steps of this signaling axis is observed in cancer, it remains an area of great interest in the field of tumor biology. Here we present evidence of the intricate and delicate levels of control of this pathway as it pertains to cell cycle regulation and illustrate how this control is not simply a rheostat.

  4. RAS Mutations and Oncogenesis: Not all RAS Mutations are Created Equally

    PubMed Central

    Miller, Mark Steven; Miller, Lance D.

    2012-01-01

    Mutation in RAS proteins is one of the most common genetic alterations observed in human and experimentally induced rodent cancers. In vivo, oncogenic mutations have been shown to occur at exons 12, 13, and 61, resulting in any 1 of 19 possible point mutations in a given tumor for a specific RAS isoform. While some studies have suggested a possible role of different mutant alleles in determining tumor severity and phenotype, no general consensus has emerged on the oncogenicity of different mutant alleles in tumor formation and progression. Part of this may be due to a lack of a single, signature pathway that shows significant alterations between different mutations. Rather, it is likely that subtle differences in the activation, or lack thereof, of downstream effectors by different RAS mutant alleles may determine the eventual outcome in terms of tumor phenotype. This paper reviews our current understanding of the potential role of different RAS mutations on tumorigenesis, highlights studies in model cell culture and in vivo systems, and discusses the potential of expression array and computational network modeling to dissect out differences in activated RAS genes in conferring a transforming phenotype. PMID:22303394

  5. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.

    PubMed Central

    Khwaja, A; Rodriguez-Viciana, P; Wennström, S; Warne, P H; Downward, J

    1997-01-01

    Upon detachment from the extracellular matrix, epithelial cells enter into programmed cell death, a phenomenon known as anoikis, ensuring that they are unable to survive in an inappropriate location. Activated ras oncogenes protect cells from this form of apoptosis. The nature of the survival signals activated by integrin engagement and usurped by oncogenic Ras are unknown: here we show that in both cases phosphoinositide 3-OH kinase (PI 3-kinase), but not Raf, mediates this protection, acting through protein kinase B/Akt (PKB/Akt). Constitutively activated PI 3-kinase or PKB/Akt block anoikis, while inhibition of PI 3-kinase abrogates protection by Ras, but not PKB/Akt. Inhibition of either PI 3-kinase or PKB/Akt induces apoptosis in adherent epithelial cells. Attachment of cells to matrix leads to rapid elevation of the levels of PI 3-kinase lipid products and PKB/Akt activity, both of which remain high in Ras-transformed cells even in suspension. PI 3-kinase acting through PKB/Akt is therefore implicated as a key mediator of the aberrant survival of Ras-transformed epithelial cells in the absence of attachment, and mediates matrix-induced survival of normal epithelial cells. PMID:9184223

  6. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs).

    PubMed

    Kidger, Andrew M; Keyse, Stephen M

    2016-02-01

    Dual-specificity MAP kinase (MAPK) phosphatases (MKPs or DUSPs) are well-established negative regulators of MAPK signalling in mammalian cells and tissues. By virtue of their differential subcellular localisation and ability to specifically recognise, dephosphorylate and inactivate different MAPK isoforms, they are key spatiotemporal regulators of pathway activity. Furthermore, as they are transcriptionally regulated as downstream targets of MAPK signalling they can either act as classical negative feedback regulators or mediate cross talk between distinct MAPK pathways. Because MAPKs and particularly Ras/ERK signalling are implicated in cancer initiation and development, the observation that MKPs are abnormally regulated in human tumours has been interpreted as evidence that these enzymes can either suppress or promote carcinogenesis. However, definitive evidence of such roles has been lacking. Here we review recent work based on the use of mouse models, biochemical studies and clinical data that demonstrate key roles for MKPs in modulating the oncogenic potential of Ras/ERK signalling and also indicate that these enzymes may play a role in the response of tumours to certain anticancer drugs. Overall, this work reinforces the importance of negative regulatory mechanisms in modulating the activity of oncogenic MAPK signalling and indicates that MKPs may provide novel targets for therapeutic intervention in cancer. PMID:26791049

  7. AKT and N-Ras co-activation in the mouse liver promotes rapid carcinogenesis via mTORC1, FOXM1/SKP2, and c-Myc pathways

    PubMed Central

    Ho, Coral; Wang, Chunmei; Mattu, Sandra; Destefanis, Giulia; Ladu, Sara; Delogu, Salvatore; Armbruster, Julia; Fan, Lingling; Lee, Susie A.; Jiang, Lijie; Dombrowski, Frank; Evert, Matthias; Chen, Xin; Calvisi, Diego F.

    2011-01-01

    Activation of v-akt murine thymoma viral oncogene homolog (AKT) and Ras pathways is often implicated in carcinogenesis. However, the oncogenic cooperation between these two cascades in relationship to hepatocellular carcinoma (HCC) development remains undetermined. To investigate this issue, we generated a mouse model characterized by combined overexpression of activated forms of AKT and neuroblastoma Ras viral oncogene homolog (N-Ras) protooncogenes in the liver via hydrodynamic gene transfer. The molecular mechanisms underlying crosstalk between AKT and N-Ras were assessed in the mouse model and further evaluated in human and murine HCC cell lines. We found that co-expression of AKT and N-Ras resulted in a dramatic acceleration of liver tumor development when compared with mice overexpressing AKT alone, whereas N-Ras alone did not lead to tumor formation. At the cellular level, concomitant upregulation of AKT and N-Ras resulted in increased proliferation and microvascularization when compared with AKT injected mice. Mechanistic studies suggested that accelerated hepatocarcinogenesis driven by AKT and N-Ras resulted from a strong activation of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, elevated expression of FOXM1/SKP2 and c-Myc also contributed to rapid tumor growth in AKT/Ras mice, yet via mTORC1-independent mechanisms. The biological effects of co-activation of AKT and N-Ras were then recapitulated in vitro using HCC cell lines, which supports the functional significance of mTORC1, FOXM1/SKP2 and c-Myc signaling cascades in mediating AKT and N-Ras induced liver tumor development. Conclusion Our data demonstrate the in vivo crosstalk between the AKT and Ras pathways in promoting liver tumor development, and the pivotal role of mTORC1-dependent and independent pathways in mediating AKT and Ras induced hepatocarcinogenesis. PMID:21993994

  8. Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway.

    PubMed Central

    Geppert, T. D.; Whitehurst, C. E.; Thompson, P.; Beutler, B.

    1994-01-01

    BACKGROUND: Lipopolysaccharide (LPS) is known to activate macrophages, causing the release of toxic cytokines that may provoke inflammation and shock. One of the most important and best studied of these cytokines is tumor necrosis factor (TNF). Details of the signaling pathway leading to TNF biosynthesis remain unclear. The pathway is branched in the sense that TNF gene transcription and TNF mRNA translation are both strongly stimulated by LPS. Recent evidence has indicated that MAP kinase homologs become phosphorylated in LPS-stimulated cells, suggesting their possible involvement in signal transduction. We sought to test this hypothesis. MATERIALS AND METHODS: Measurements of LPS-induced MEK and ERK2 activity were undertaken in LPS-sensitive and LPS-insensitive cells. Transfection studies, in which dominant inhibitors of ras and raf-1 were used to block signaling to the level of MAP kinase, were carried out in order to judge whether the TNF gene transcription and TNF mRNA translation are modulated through this pathway. RESULTS: In RAW 264.7 mouse macrophages, both ERK2 and MEK1 activity are induced by LPS treatment. In the same cell line, dominant negative inhibitors of ras and raf-1 block LPS-induced activation of the TNF promoter, as well as derepression of the translational blockade normally imposed by the TNF 3'-untranslated region. A constitutively active form of raf-1 (raf-BXB) was found to augment, but not replace, the LPS signal. In LPS-insensitive cells (RAW 264.7 x NIH 3T3 fusion hybrid cells and primary macrophages derived from C3H/HeJ mice), ERK2 activity was found to be refractory to induction by LPS. CONCLUSIONS: The ras/raf-1/MEK/MAPK pathway is chiefly responsible for transduction of the LPS signal to the level of the TNF gene and mRNA. raf and raf-1 lie upstream from (or actually represent) the physical branchpoints of the transcriptional and translation activation signals generated by LPS. The lesions that prevent LPS signaling in macrophages

  9. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence

    PubMed Central

    Thompson, Keyata N.; Whipple, Rebecca A.; Yoon, Jennifer R.; Lipsky, Michael; Charpentier, Monica S.; Boggs, Amanda E.; Chakrabarti, Kristi R.; Bhandary, Lekhana; Hessler, Lindsay K.; Martin, Stuart S.; Vitolo, Michele I.

    2015-01-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN−/−KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  10. The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence.

    PubMed

    Thompson, Keyata N; Whipple, Rebecca A; Yoon, Jennifer R; Lipsky, Michael; Charpentier, Monica S; Boggs, Amanda E; Chakrabarti, Kristi R; Bhandary, Lekhana; Hessler, Lindsay K; Martin, Stuart S; Vitolo, Michele I

    2015-11-01

    A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway. To directly test how the PI3K and Ras/MAPK pathways contribute to tumorigenesis, we deleted PTEN and activated KRas within non-tumorigenic MCF-10A breast cells. Neither individual mutation was sufficient to promote tumorigenesis, but the combination promoted robust tumor growth in mice. However, in vivo bioluminescence reveals that each mutation has the ability to promote a persistent phenotype. Inherent in the concept of tumor cell dormancy, a stage in which residual disease is present but remains asymptomatic, viable cells with each individual mutation can persist in vivo during a period of latency. The persistent cells were excised from the mice and showed increased levels of the cell cycle arrest proteins p21 and p27 compared to the aggressively growing PTEN-/-KRAS(G12V) cells. Additionally, when these persistent cells were placed into growth-promoting conditions, they were able to re-enter the cell cycle and proliferate. These results highlight the potential for either PTEN loss or KRAS activation to promote cell survival in vivo, and the unique ability of the combined mutations to yield rapid tumor growth. This could have important implications in determining recurrence risk and disease progression in tumor subtypes where these mutations are common. PMID:26497685

  11. Nobiletin induces inhibitions of Ras activity and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling to suppress cell proliferation in C6 rat glioma cells.

    PubMed

    Aoki, Koichi; Yokosuka, Akihito; Mimaki, Yoshihiro; Fukunaga, Kohji; Yamakuni, Tohru

    2013-01-01

    Ras, a small G-protein, physiologically directs cell proliferation and cell cycle via regulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade. Dysregulation of Ras/MEK/ERK signaling has been reported to cause tumorigenesis and gliomas. Nobiletin, a citrus flavonoid, has been shown to have anti-tumor cells action. However, it remains elusive whether nobiletin could affect Ras activity. In this study, we provide the first evidence that nobiletin suppresses the proliferation by inhibiting Ras activity in C6 glioma cells, a rat glioma cell line. First, Ras pull-down assay showed that nobiletin inhibits Ras activity in a concentration-dependent manner in C6 cells. Second, farnesyltransferase inhibitor I, a Ras inhibitor, and U0126, a MEK inhibitor, induced an inhibition of the cell proliferation in C6 cells, while the cell proliferation was inhibited by nobiletin as well. Third, western blotting revealed that nobiletin showed inhibitory effects on MEK and ERK phopsphorylation levels in a concentration-dependent manner. Finally, such an inhibitory effect on the level of ERK phosphorylation by nobiletin was appreciably prevented by Gö6976, a selective inhibitor of conventional protein kinase Cs (PKCs) showing Ca(2+)-sensitivity, while GF109203X, a general inhibitor for PKCs, and BAPTA, a cell-permeable Ca(2+) chelator, to a lesser extent, suppressed a reduction of the phosphorylation. These findings suggest that the proliferation of C6 cells is Ras- and MEK/ERK signaling-dependent, and that nobiletin suppresses the cell proliferation by inhibiting Ras activity and MEK/ERK signaling cascade probably via a Ca(2+)-sensitive PKC-dependent mechanism. Thus, the natural compound has potential to be a therapeutic agent for glioma.

  12. Inhibitors of Ras-SOS Interactions.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.

  13. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    SciTech Connect

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.

  14. A role for RalGDS and a novel Ras effector in the Ras-mediated inhibition of skeletal myogenesis.

    PubMed

    Ramocki, M B; White, M A; Konieczny, S F; Taparowsky, E J

    1998-07-10

    Oncogenic Ras inhibits the differentiation of skeletal muscle cells through the activation of multiple downstream signaling pathways, including a Raf-dependent, mitogen-activated or extracellular signal-regulated kinase kinase/mitogen-activated protein kinase (MEK/MAPK)-independent pathway. Here we report that a non-Raf binding Ras effector-loop variant (H-Ras G12V,E37G), which retains interaction with the Ral guanine nucleotide dissociation stimulator (RalGDS), inhibits the conversion of MyoD-expressing C3H10T1/2 mouse fibroblasts to skeletal muscle. We show that H-Ras G12V,E37G, RalGDS, and the membrane-localized RalGDS CAAX protein inhibit the activity of alpha-actin-Luc, a muscle-specific reporter gene containing a necessary E-box and serum response factor (SRF) binding site, while a RalGDS protein defective for Ras interaction has no effect on alpha-actin-Luc transcription. H-Ras G12V,E37G does not activate endogenous MAPK, but does increase SRF-dependent transcription. Interestingly, RalGDS, RalGDS CAAX, and RalA G23V inhibit H-Ras G12V, E37G-induced expression of an SRF-regulated reporter gene, demonstrating that signaling through RalGDS does not duplicate the action of H-Ras G12V,E37G in this system. As additional evidence for this, we show that H-Ras G12V,E37G inhibits the expression of troponin I-Luc, an SRF-independent muscle-specific reporter gene, whereas RalGDS and RalGDS CAAX do not. Although our studies show that signaling through RalGDS can interfere with the expression of reporter genes dependent on SRF activity (including alpha-actin-Luc), our studies also provide strong evidence that an additional signaling molecule(s) activated by H-Ras G12V,E37G is required to achieve the complete inhibition of the myogenic differentiation program.

  15. Binding of calcium ions to Ras promotes Ras guanine nucleotide exchange under emulated physiological conditions.

    PubMed

    Liao, Jun-Ming; Mo, Zhong-Ying; Wu, Ling-Jia; Chen, Jie; Liang, Yi

    2008-11-01

    Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.

  16. Activated Ki-Ras suppresses 12-O-tetradecanoylphorbol-13-acetate-induced activation of the c-Jun NH2-terminal kinase pathway in human colon cancer cells.

    PubMed

    Okumura, K; Shirasawa, S; Nishioka, M; Sasazuki, T

    1999-05-15

    Although the frequency of activated Ki-ras genes is high in human colorectal tumors, much less is known of activated Ki-ras-mediated signaling pathways. Using gene targeting, we examined HCT116 cells that contain the Gly-13-->Asp mutation of Ki-ras and activated Ki-ras-disrupted clones derived from HCT116. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced immediate early genes, such as c-Jun, c-Fos, and Egr-1 in activated Ki-ras-disrupted clones, whereas c-Jun induction was rare in HCT116. TPA induced both phosphorylation of stress-activated protein kinase kinase 1 (SEK1) and c-Jun NH2-terminal kinase (JNK) in the activated Ki-ras-disrupted clones but not in HCT116. On the other hand, TPA-induced mitogen-activated protein kinase kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase (ERK) activation was equally induced between HCT116 and the Ki-ras-disrupted clones. Furthermore, TPA-induced SEK1-JNK activation was observed in a DLD-1-derived activated Ki-ras-disrupted clone but not in DLD-1. The TPA-induced SEK1-JNK activation in these disrupted clones was completely inhibited by the protein kinase C (PKC) inhibitor, GF109203X (1 microM), but not by another PKC inhibitor, H7 (50 microM), whereas TPA-induced MEK1/2-ERK activation was partially and completely inhibited by GF109203X (1 microM) and H7 (50 microM), respectively. A phosphoinositol 3-kinase inhibitor, LY294002, did not inhibit the TPA-induced SEK1-JNK activation. Taken together, these results suggest that activated Ki-Ras-mediated signals are involved in the SEK1-JNK pathway through a PKC isotype that is distinct from that involved in MEK1/2-ERK activation in human colon cancer cells and independent of phosphoinositol 3-kinase activation, and the imbalance between ERK and JNK activity caused by activated Ki-Ras may play critical roles in human colorectal tumorigenesis.

  17. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  18. Special data base of Informational - Computational System 'INM RAS - Black Sea' for solving inverse and data assimilation problems

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly

    2014-05-01

    Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological

  19. Ras-related TC21 is activated by mutation in a breast cancer cell line, but infrequently in breast carcinomas in vivo.

    PubMed Central

    Barker, K. T.; Crompton, M. R.

    1998-01-01

    Activating ras mutations are found in many types of human tumour. Mutations in Harvey (H-), Kirsten (K-) and neuronal (N-) ras are, however, rarely found in breast carcinomas. TC21 is a ras family member that shares close homology to H-, K- and N-ras, and activating mutations have been found in ovarian carcinoma and leiomyosarcoma cell lines. We have examined panels of cDNAs from breast, ovarian and cervical cell lines, and primary and metastatic breast tumours for mutations in TC21 using a single-strand conformational polymorphism (SSCP)-based assay. One breast cancer cell line, CAL51, exhibited an altered SSCP pattern, compared with normal tissue, which was due to an A-T base change in codon 72, causing a predicted Gln-Leu activating mutation. Of nine primary and 15 metastatic breast tumour cDNAs analysed, none exhibited an altered pattern by SSCP. The apparently wild-type pattern by SSCP analysis was confirmed by sequence analysis of some of the cDNAs assayed. Thus, we conclude that mutations in TC21 are uncommon in breast carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:9703274

  20. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  1. Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1.

    PubMed

    Oi, N; Yuan, J; Malakhova, M; Luo, K; Li, Y; Ryu, J; Zhang, L; Bode, A M; Xu, Z; Li, Y; Lou, Z; Dong, Z

    2015-05-14

    Resveratrol (trans-3,5,4'-truhydroxystilbene) possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to the suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53, and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1.

  2. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase.

    PubMed

    Della Rocca, G J; van Biesen, T; Daaka, Y; Luttrell, D K; Luttrell, L M; Lefkowitz, R J

    1997-08-01

    Many receptors that couple to heterotrimeric guanine-nucleotide binding proteins (G proteins) have been shown to mediate rapid activation of the mitogen-activated protein kinases Erk1 and Erk2. In different cell types, the signaling pathways employed appear to be a function of the available repertoire of receptors, G proteins, and effectors. In HEK-293 cells, stimulation of either alpha1B- or alpha2A-adrenergic receptors (ARs) leads to rapid 5-10-fold increases in Erk1/2 phosphorylation. Phosphorylation of Erk1/2 in response to stimulation of the alpha2A-AR is effectively attenuated by pretreatment with pertussis toxin or by coexpression of a Gbetagamma subunit complex sequestrant peptide (betaARK1ct) and dominant-negative mutants of Ras (N17-Ras), mSOS1 (SOS-Pro), and Raf (DeltaN-Raf). Erk1/2 phosphorylation in response to alpha1B-AR stimulation is also attenuated by coexpression of N17-Ras, SOS-Pro, or DeltaN-Raf, but not by coexpression of betaARK1ct or by pretreatment with pertussis toxin. The alpha1B- and alpha2A-AR signals are both blocked by phospholipase C inhibition, intracellular Ca2+ chelation, and inhibitors of protein-tyrosine kinases. Overexpression of a dominant-negative mutant of c-Src or of the negative regulator of c-Src function, Csk, results in attenuation of the alpha1B-AR- and alpha2A-AR-mediated Erk1/2 signals. Chemical inhibitors of calmodulin, but not of PKC, and overexpression of a dominant-negative mutant of the protein-tyrosine kinase Pyk2 also attenuate mitogen-activated protein kinase phosphorylation after both alpha1B- and alpha2A-AR stimulation. Erk1/2 activation, then, proceeds via a common Ras-, calcium-, and tyrosine kinase-dependent pathway for both Gi- and Gq/11-coupled receptors. These results indicate that in HEK-293 cells, the Gbetagamma subunit-mediated alpha2A-AR- and the Galphaq/11-mediated alpha1B-AR-coupled Erk1/2 activation pathways converge at the level of phospholipase C. These data suggest that calcium

  3. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1

    PubMed Central

    Iwig, Jeffrey S; Vercoulen, Yvonne; Das, Rahul; Barros, Tiago; Limnander, Andre; Che, Yan; Pelton, Jeffrey G; Wemmer, David E; Roose, Jeroen P; Kuriyan, John

    2013-01-01

    RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI: http://dx.doi.org/10.7554/eLife.00813.001 PMID:23908768

  4. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed

    Cox, Adrienne D; Der, Channing J; Philips, Mark R

    2015-04-15

    RAS proteins require membrane association for their biologic activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTI) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anticancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes, and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated posttranslational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. Clin Cancer Res; 21(8); 1819-27. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878363

  5. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed

    Cox, Adrienne D; Der, Channing J; Philips, Mark R

    2015-04-15

    RAS proteins require membrane association for their biologic activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTI) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anticancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes, and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated posttranslational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. Clin Cancer Res; 21(8); 1819-27. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers."

  6. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.

    PubMed

    Villalonga, P; López-Alcalá, C; Bosch, M; Chiloeches, A; Rocamora, N; Gil, J; Marais, R; Marshall, C J; Bachs, O; Agell, N

    2001-11-01

    Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.

  7. Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models.

    PubMed

    Chew, T W; Liu, X J; Liu, L; Spitsbergen, J M; Gong, Z; Low, B C

    2014-05-22

    RAS and Rho small GTPases are key molecular switches that control cell dynamics, cell growth and tissue development through their distinct signaling pathways. Although much has been learnt about their individual functions in both cell and animal models, the physiological and pathophysiological consequences of their signaling crosstalk in multi-cellular context in vivo remain largely unknown, especially in liver development and liver tumorigenesis. Furthermore, the roles of RhoA in RAS-mediated transformation and their crosstalk in vitro remain highly controversial. When challenged with carcinogens, zebrafish developed liver cancer that resembles the human liver cancer both molecularly and histopathologically. Capitalizing on the growing importance and relevance of zebrafish (Danio rerio) as an alternate cancer model, we have generated liver-specific, Tet-on-inducible transgenic lines expressing oncogenic Kras(G12V), RhoA, constitutively active RhoA(G14V) or dominant-negative RhoA(T19N). Double-transgenic lines expressing Kras(G12V) with one of the three RhoA genes were also generated. Based on quantitative bioimaging and molecular markers for genetic and signaling aberrations, we showed that the induced expression of oncogenic Kras during early development led to liver enlargement and hepatocyte proliferation, associated with elevated Erk phosphorylation, activation of Akt2 and modulation of its two downstream targets, p21Cip and S6 kinase. Such an increase in liver size and Akt2 expression was augmented by dominant-negative RhoA(T19N), but was abrogated by the constitutive-active RhoA(G14V). Consequently, induced expression of the oncogenic Kras in adult transgenic fish led to the development of hepatocellular carcinomas. Survival studies further revealed that the co-expression of dominant-negative RhoA(T19N) with oncogenic Kras increased the mortality rate compared with the other single or double-transgenic lines. This study provides evidence of the previously

  8. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro.

    PubMed

    Dent, P; Reardon, D B; Morrison, D K; Sturgill, T W

    1995-08-01

    The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a

  9. RAS Initiative - Community Outreach

    Cancer.gov

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.

  10. RAS Initiative - Events

    Cancer.gov

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  11. Adenovirus-mediated gene transfer of dominant negative ras(asn17) in 3T3L1 adipocytes does not alter insulin-stimulated P13-kinase activity or glucose transport.

    PubMed

    Gnudi, L; Frevert, E U; Houseknecht, K L; Erhardt, P; Kahn, B B

    1997-01-01

    Recent studies suggest that the ras-map kinase and PI3-kinase cascades converge. We sought to determine whether PI3-kinase is downstream of ras in insulin signaling in a classic insulin target cell. We generated a recombinant adenovirus encoding dominant negative ras by cloning the human H-ras cDNA with a ser to asn substitution at amino acid 17 (ras(asn17)) into the pACCMVpLpA vector and cotransfecting 293 cells with the pJM17 plasmid containing the adenoviral genome. Efficiency of gene transfer was assessed by infecting fully differentiated 3T3L1 adipocytes with a recombinant adenovirus expressing beta-galactosidase (beta-gal); greater than 70% of cells were infected. Infection of adipocytes with ras(asn17) resulted in 10-fold greater expression than endogenous ras. This high efficiency gene transfer allowed biochemical assays. Insulin stimulation of ras-GTP formation was inhibited in ras(asn17)-expressing cells. Map kinase gel mobility shift revealed that insulin (1 UM) or epidermal growth factor (100 ng/ml) resulted in the appearance of a hyperphosphorylated species of p42 map kinase in uninfected cells and those expressing beta-gal but not in cells expressing ras(asn17). In contrast, insulin increased IRS-1-associated PI3-kinase activity approximately 10-fold in control cells and high level overexpression of ras(asn17) did not impair this effect. Similarly, insulin and epidermal growth factor activation of total (no immunoprecipitation) PI3-kinase activity in both cytosol and total cellular membranes and insulin stimulation of glucose transport were not affected by expression of dominant negative ras. Thus, adenovirus-mediated gene transfer is effective for studying insulin signaling in fully differentiated insulin target cells. Inhibition of ras activation abolishes insulin-stimulated phosphorylation of map kinase but does not affect insulin stimulation of PI3-kinase activity. In normal cell physiology, PI3-kinase does not appear to be downstream of ras in

  12. Ras Regulates Rb via NORE1A.

    PubMed

    Barnoud, Thibaut; Donninger, Howard; Clark, Geoffrey J

    2016-02-01

    Mutations in the Ras oncogene are one of the most frequent events in human cancer. Although Ras regulates numerous growth-promoting pathways to drive transformation, it can paradoxically promote an irreversible cell cycle arrest known as oncogene-induced senescence. Although senescence has clearly been implicated as a major defense mechanism against tumorigenesis, the mechanisms by which Ras can promote such a senescent phenotype remain poorly defined. We have shown recently that the Ras death effector NORE1A plays a critical role in promoting Ras-induced senescence and connects Ras to the regulation of the p53 tumor suppressor. We now show that NORE1A also connects Ras to the regulation of a second major prosenescent tumor suppressor, the retinoblastoma (Rb) protein. We show that Ras induces the formation of a complex between NORE1A and the phosphatase PP1A, promoting the activation of the Rb tumor suppressor by dephosphorylation. Furthermore, suppression of Rb reduces NORE1A senescence activity. These results, together with our previous findings, suggest that NORE1A acts as a critical tumor suppressor node, linking Ras to both the p53 and the Rb pathways to drive senescence.

  13. RasGRP1 and RasGRP3 Are Required for Efficient Generation of Early Thymic Progenitors.

    PubMed

    Golec, Dominic P; Henao Caviedes, Laura M; Baldwin, Troy A

    2016-09-01

    T cell development is dependent on the migration of progenitor cells from the bone marrow to the thymus. Upon reaching the thymus, progenitors undergo a complex developmental program that requires inputs from various highly conserved signaling pathways including the Notch and Wnt pathways. To date, Ras signaling has not been implicated in the very earliest stages of T cell differentiation, but members of a family of Ras activators called RasGRPs have been shown to be involved at multiple stages of T cell development. We examined early T cell development in mice lacking RasGRP1, RasGRP3, and RasGRPs 1 and 3. We report that RasGRP1- and RasGRP3-deficient thymi show significantly reduced numbers of early thymic progenitors (ETPs) relative to wild type thymi. Furthermore, RasGRP1/3 double-deficient thymi show significant reductions in ETP numbers compared with either RasGRP1 or RasGRP3 single-deficient thymi, suggesting that both RasGRP1 and RasGRP3 regulate the generation of ETPs. In addition, competitive bone marrow chimera experiments reveal that RasGRP1/3 double-deficient progenitors intrinsically generate ETPs less efficiently than wild type progenitors. Finally, RasGRP1/3-deficient progenitors show impaired migration toward the CCR9 ligand, CCL25, suggesting that RasGRP1 and RasGRP3 may regulate progenitor entry into the thymus through a CCR9-dependent mechanism. These data demonstrate that, in addition to Notch and Wnt, the highly conserved Ras pathway is critical for the earliest stages of T cell development and further highlight the importance of Ras signaling during thymocyte maturation. PMID:27465532

  14. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  15. CD11c gene expression in hairy cell leukemia is dependent upon activation of the proto-oncogenes ras and junD.

    PubMed

    Nicolaou, Fotini; Teodoridis, Jens M; Park, Heiyoung; Georgakis, Alexander; Farokhzad, Omid C; Böttinger, Erwin P; Da Silva, Nicolas; Rousselot, Philippe; Chomienne, Christine; Ferenczi, Katalin; Arnaout, M Amin; Shelley, C Simon

    2003-05-15

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disease, the cause of which is unknown. Diagnostic of HCL is abnormal expression of the gene that encodes the beta2 integrin CD11c. In order to determine the cause of CD11c gene expression in HCL the CD11c gene promoter was characterized. Transfection of the CD11c promoter linked to a luciferase reporter gene indicated that it is sufficient to direct expression in hairy cells. Mutation analysis demonstrated that of predominant importance to the activity of the CD11c promoter is its interaction with the activator protein-1 (AP-1) family of transcription factors. Comparison of nuclear extracts prepared from hairy cells with those prepared from other cell types indicated that hairy cells exhibit abnormal constitutive expression of an AP-1 complex containing JunD. Functional inhibition of AP-1 expressed by hairy cells reduced CD11c promoter activity by 80%. Inhibition of Ras, which represents an upstream activator of AP-1, also significantly inhibited the CD11c promoter. Furthermore, in the hairy cell line EH, inhibition of Ras signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinases 1 and 2 (MEK1/2) reduced not only CD11c promoter activity but also reduced both CD11c surface expression and proliferation. Expression in nonhairy cells of a dominant-positive Ras mutant activated the CD11c promoter to levels equivalent to those in hairy cells. Together, these data indicate that the abnormal expression of the CD11c gene characteristic of HCL is dependent upon activation of the proto-oncogenes ras and junD.

  16. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed Central

    Cox, Adrienne D.; Der, Channing J.; Philips, Mark R.

    2015-01-01

    RAS proteins require membrane association for their biological activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTIs) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anti-cancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated post-translational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. PMID:25878363

  17. Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.

    PubMed

    Rudack, Till; Xia, Fei; Schlitter, Jürgen; Kötting, Carsten; Gerwert, Klaus

    2012-09-18

    Members of the Ras superfamily regulate many cellular processes. They are down-regulated by a GTPase reaction in which GTP is cleaved into GDP and P(i) by nucleophilic attack of a water molecule. Ras proteins accelerate GTP hydrolysis by a factor of 10(5) compared to GTP in water. GTPase-activating proteins (GAPs) accelerate hydrolysis by another factor of 10(5) compared to Ras alone. Oncogenic mutations in Ras and GAPs slow GTP hydrolysis and are a factor in many cancers. Here, we elucidate in detail how this remarkable catalysis is brought about. We refined the protein-bound GTP structure and protein-induced charge shifts within GTP beyond the current resolution of X-ray structural models by combining quantum mechanics and molecular mechanics simulations with time-resolved Fourier-transform infrared spectroscopy. The simulations were validated by comparing experimental and theoretical IR difference spectra. The reactant structure of GTP is destabilized by Ras via a conformational change from a staggered to an eclipsed position of the nonbridging oxygen atoms of the γ- relative to the β-phosphates and the further rotation of the nonbridging oxygen atoms of α- relative to the β- and γ-phosphates by GAP. Further, the γ-phosphate becomes more positive although two of its oxygen atoms remain negative. This facilitates the nucleophilic attack by the water oxygen at the phosphate and proton transfer to the oxygen. Detailed changes in geometry and charge distribution in the ligand below the resolution of X-ray structure analysis are important for catalysis. Such high resolution appears crucial for the understanding of enzyme catalysis.

  18. cis-Active Ras G2-like sequence implicated in the heterotropic activation of the deoxyadenosine kinase of Lactobacillus acidophilus R-26.

    PubMed

    Guo, S; Ma, N; Ives, D H

    1997-03-14

    Deoxyadenosine kinase (dAK) forms a heterodimer with either deoxyguanosine kinase (dGK) or deoxycytidine kinase (dCK), and is heterotropically activated 3-5 times by dGuo or dCyd. Expressed alone, dAK is inactive and exhibits no response to dGuo or dCyd; activity and heterotropic response are fully restored upon reassociation with dGK or dCK. However, turnover of independently expressed dGK or dCK is nearly maximal, being further activated only 50-100% upon reassociation with dAK. In neither case is the heterotropic activation due to ligand-induced heterodimer formation. A proline/alanine substitution within a dAK segment homologous to loop G2 of Ras proteins yielded a heterodimer with dAK permanently cis-activated 2-fold, with a corresponding reduction in heterotropic activation by dGuo. A chimeric dAK, with 25% of its C terminus substituted by the homologous sequence from dGK, was inactive alone, and its characteristics were unchanged in the reconstituted heterodimer. Superimposing the Pro/Ala substitution on this chimera also reduced heterotropic activation by half. Cross-linking the dimer by 1,5-difluoro-2,4-dinitrobenzene was inhibited by ATP, dATP, dGTP, and dAdo, suggesting the proximity of the active site(s) to the interface. These data suggest that dAK depends on dGK or dCK in a manner resembling the reliance of Ras upon GTPase activating protein.

  19. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells.

    PubMed

    Takahashi, T; Ueno, H; Shibuya, M

    1999-04-01

    KDR/FIk-1 tyrosine kinase, one of the two VEGF receptors induces mitogenesis and differentiation of vascular endothelial cells. We have previously reported that a major target molecule of KDR/Flk-1 kinase is PLC-gamma, and that VEGF induces activation of MAP kinase, mainly mediated by protein kinase C (PKC) in the NIH3T3 cells overexpressing KDR/FIk-1 (Takahashi and Shibuya, 1997). However, the signal transduction initiated from VEGF in endothelial cells remains to be elucidated. In primary sinusoidal endothelial cells which showed strictly VEGF-dependent growth, we found that VEGF stimulated the activation of Raf-1-MEK-MAP kinase cascade. To our surprise, an important regulator, Ras was not efficiently activated to a significant level in response to VEGF. Consistent with this, dominant-negative Ras did not block the VEGF-induced phosphorylation of MAP kinase. On the other hand, PKC-specific inhibitors severely reduced VEGF-dependent phosphorylation of MEK, activation of MAP kinase and subsequent DNA synthesis. A potent PI3 kinase inhibitor, Wortmannin, could not inhibit either of them. These results suggest that in primary endothelial cells, VEGF-induced activation of Raf-MEK-MAP kinase and DNA synthesis are mainly mediated by PKC-dependent pathway, much more than by Ras-dependent or PI3 kinase-dependent pathway.

  20. Hepatitis C Virus Co-Opts Ras-GTPase-Activating Protein-Binding Protein 1 for Its Genome Replication ▿

    PubMed Central

    Yi, Zhigang; Pan, Tingting; Wu, Xianfang; Song, Wuhui; Wang, Shanshan; Xu, Yan; Rice, Charles M.; MacDonald, Margaret R.; Yuan, Zhenghong

    2011-01-01

    We recently reported that Ras-GTPase-activating protein-binding protein 1 (G3BP1) interacts with hepatitis C virus (HCV) nonstructural protein (NS)5B and the 5′ end of the HCV minus-strand RNA. In the current study we confirmed these observations using immunoprecipitation and RNA pulldown assays, suggesting that G3BP1 might be an HCV replication complex (RC) component. In replicon cells, transfected G3BP1 interacts with multiple HCV nonstructural proteins. Using immunostaining and confocal microscopy, we demonstrate that G3BP1 is colocalized with HCV RCs in replicon cells. Small interfering RNA (siRNA)-mediated knockdown of G3BP1 moderately reduces established HCV RNA replication in HCV replicon cells and dramatically reduces HCV replication-dependent colony formation and cell-culture-produced HCV (HCVcc) infection. In contrast, knockdown of G3BP2 has no effect on HCVcc infection. Transient replication experiments show that G3BP1 is involved in HCV genome amplification. Thus, G3BP1 is associated with HCV RCs and may be co-opted as a functional RC component for viral replication. These findings may facilitate understanding of the molecular mechanisms of HCV genome replication. PMID:21561913

  1. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells.

    PubMed

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf-mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition.

  2. Raf activation by Ras and promotion of cellular metastasis require phosphorylation of prohibitin in the raft domain of the plasma membrane.

    PubMed

    Chiu, C-F; Ho, M-Y; Peng, J-M; Hung, S-W; Lee, W-H; Liang, C-M; Liang, S-M

    2013-02-01

    Prohibitin (PHB) is indispensable for Ras-induced Raf-1 activation, cell migration and growth; however, the exact role of PHB in the molecular pathogenesis of cancer metastasis remains largely unexamined. Here, we found a positive correlation between plasma membrane-associated PHB and the clinical stages of cancer. The level of PHB phosphorylated at threonine 258 (T258) and tyrosine 259 (Y259) in human cancer-cell membranes correlated with the invasiveness of cancer cells. Overexpression of phosphorylated PHB (phospho-PHB) in the lipid-raft domain of the cell membrane enhanced cell migration/invasion through PI3K/Akt and Raf-1/ERK activation. It also enhanced epithelial-mesenchymal transition, matrix metalloproteinase-2 activity and invasiveness of cancer cells in vitro. Immunoprecipitation analysis demonstrated that phospho-PHB associated with Raf-1, Akt and Ras in the membrane and was essential for the activation of Raf-1 signaling by Ras. Mice implanted with cancer cells stably overexpressing PHB in the plasma membrane showed enlarged cervical tumors, enhanced metastasis and shorter survival time compared with mice implanted with cancer cells without PHB overexpression. Dephosphorylation of PHB at T258 by site-directed mutagenesis diminished the in vitro and in vivo effects of PHB. These results suggest that increase in phospho-PHB T258 in the raft domain of the plasma membrane has a role in the Ras-driven activation of PI3K/Akt and Raf-1/ERK-signaling cascades and results in the promotion of cancer metastasis.

  3. Measuring Ras-family GTP levels in vivo--running hot and cold.

    PubMed

    Castro, Ariel F; Rebhun, John F; Quilliam, Lawrence A

    2005-10-01

    The detection of Ras-family GTPase activity is important in the determination of cell signaling events elicited by numerous ligands and cellular processes. This has been made much easier in recent years by the use of glutathione S-transferase (GST)-fused Ras binding domains. These domains from downstream effectors such as Raf and RalGDS preferentially bind the GTP-bound Ras proteins enabling their extraction and subsequent quantification by immunoblotting. Despite this advance, effectors that efficiently discriminate between GTP- and GDP-bound states are not available for many Ras-family members. While this hampers the ability to detect activity in tissue specimens, it is still possible to metabolically label cells with (32)Pi to load the GTP/GDP pool with labeled nucleotides, immunoprecipitate the Ras protein and detect the bound label following thin layer chromatographic separation and exposure to film or a phosphorimager. Using a transfection system and antibodies that recognize epitope tags one can test the ability of a protein to work as a GEF or GAP for a certain GTPase. Alternatively, if an immunoprecipitating antibody is available to the target GTPase, then analysis of endogenous GTP/GDP ratio is possible. Here we describe the detection of M-Ras and Rap1 activity by GST-RBD pull-down as well as that of Rheb and epitope-tagged R-Ras by classical metabolic labeling and immunoprecipitation.

  4. Effect of acerola cherry extract on cell proliferation and activation of ras signal pathway at the promotion stage of lung tumorigenesis in mice.

    PubMed

    Nagamine, Isao; Akiyama, Tsutomu; Kainuma, Motoomi; Kumagai, Hitomi; Satoh, Haruna; Yamada, Kazuhiko; Yano, Tomohiro; Sakurai, Hidetoshi

    2002-02-01

    The present study was undertaken to estimate the effect of acerola cherry extract (ACE) pretreatment on cell proliferation and the activation of Ras signal pathway at a promotion stage of lung tumorigenesis in mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Pretreatment with ACE (dose, 70mg/kg body weight and 700 mg/kg body weight) inhibited increases in the levels of proliferating nuclear cell antigen and ornithine decarboxylase at the promotion stage. This treatment of ACE also suppressed the activation of Ras signal pathway at the same stage. These results suggest that ACE regulates abnormal cell growth at the promotion stage of lung tumorigenesis in mice treated with NNK as a result of suppression of the initiation stage.

  5. Optimizing depuration of salmon in RAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire "earthy" or "musty" off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  6. Suppression of Erk activation and in vivo growth in esophageal cancer cells by the dominant negative Ras mutant, N116Y.

    PubMed

    Senmaru, N; Shichinohe, T; Takeuchi, M; Miyamoto, M; Sazawa, A; Ogiso, Y; Takahashi, T; Okushiba, S; Takimoto, M; Kato, H; Kuzumaki, N

    1998-10-29

    Our previous studies demonstrated that introduction of a dominant negative H-ras mutant, N116Y, inhibits the growth of various types of cancer cells in vitro. In this study, we tested the efficacy of N116Y in blocking the growth of esophageal cancer cells using an adenoviral vector. Infection with N116Y adenovirus, (AdCMV-N116Y), in which N116Y expression is driven by the cytomegalovirus promoter, significantly reduced the in vitro growth of all esophageal cancer cell lines studied. Esophageal cancer cells that contained wild-type K-ras and H-ras (TE8, SGF3, SGF7) were more sensitive to AdCMV-N116Y than HEC46 cells that expressed mutant K-ras protein. Most importantly, direct injection of AdCMV-N116Y into TE8- or SGF3-induced tumors in nude mice suppressed their growth significantly. To examine the suppressive mechanism of N116Y, cell cycle profile and the activation of extracellular signal-regulated kinase 2 (Erk2) were examined by flow cytometry and Western blot analysis, respectively. In TE8 cells, progression into S phase was clearly blocked after infection with AdCMV-N116Y. Infection with AdCMV-N116Y did not strongly suppress the activation of Erk2 after EGF stimulation in serum-starved HEC46 cells, whereas it completely suppressed activation in TE8, SGF3 and SGF7 cells. Our observations suggest that N116Y reduces growth of human esophageal cancer cells and suppresses the activation of Erk2; they also indicate that N116Y is a potential candidate gene for human esophageal cancer gene therapy.

  7. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia

    PubMed Central

    Luo, Xiaochuang; Yang, Juhua; Li, Yumin; Li, Tianfu; Wang, Ruirui; Fei, Jia

    2016-01-01

    BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML. PMID:26967392

  8. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  9. The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers.

    PubMed

    Shrestha, Gajendra; MacNeil, Shelley M; McQuerry, Jasmine A; Jenkins, David F; Sharma, Sunil; Bild, Andrea H

    2016-10-01

    The rise in genomic knowledge over the past decade has revealed the molecular etiology of many diseases, and has identified intricate signaling network activity in human cancers. Genomics provides the opportunity to determine genome structure and capture the activity of thousands of molecular events concurrently, which is important for deciphering highly complex genetic diseases such as cancer. In this review, we focus on genomic efforts directed towards one of cancer's most frequently mutated networks, the RAS pathway. Genomic tools such as gene expression signatures and assessment of mutations across the RAS network enable the capture of RAS signaling complexity. Due to this high level of interaction and cross-talk within the network, efforts to target RAS signaling in the clinic have generally failed, and we currently lack the ability to directly inhibit the RAS protein with high efficacy. We propose that the use of gene expression data can identify effective treatments that broadly inhibit the RAS network as this approach measures pathway activity independent of mutation status or any single mechanism of activation. Here, we review the genomic studies that map the complexity of the RAS network in cancer, and that show how genomic measurements of RAS pathway activation can identify effective RAS inhibition strategies. We also address the challenges and future directions for treating RAS-driven tumors. In summary, genomic assessment of RAS signaling provides a level of complexity necessary to accurately map the network that matches the intricacy of RAS pathway interactions in cancer.

  10. The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers.

    PubMed

    Shrestha, Gajendra; MacNeil, Shelley M; McQuerry, Jasmine A; Jenkins, David F; Sharma, Sunil; Bild, Andrea H

    2016-10-01

    The rise in genomic knowledge over the past decade has revealed the molecular etiology of many diseases, and has identified intricate signaling network activity in human cancers. Genomics provides the opportunity to determine genome structure and capture the activity of thousands of molecular events concurrently, which is important for deciphering highly complex genetic diseases such as cancer. In this review, we focus on genomic efforts directed towards one of cancer's most frequently mutated networks, the RAS pathway. Genomic tools such as gene expression signatures and assessment of mutations across the RAS network enable the capture of RAS signaling complexity. Due to this high level of interaction and cross-talk within the network, efforts to target RAS signaling in the clinic have generally failed, and we currently lack the ability to directly inhibit the RAS protein with high efficacy. We propose that the use of gene expression data can identify effective treatments that broadly inhibit the RAS network as this approach measures pathway activity independent of mutation status or any single mechanism of activation. Here, we review the genomic studies that map the complexity of the RAS network in cancer, and that show how genomic measurements of RAS pathway activation can identify effective RAS inhibition strategies. We also address the challenges and future directions for treating RAS-driven tumors. In summary, genomic assessment of RAS signaling provides a level of complexity necessary to accurately map the network that matches the intricacy of RAS pathway interactions in cancer. PMID:27338857

  11. Identification of a provirally activated c-Ha-ras oncogene in an avian nephroblastoma via a novel procedure: cDNA cloning of a chimaeric viral-host transcript.

    PubMed Central

    Westaway, D; Papkoff, J; Moscovici, C; Varmus, H E

    1986-01-01

    Retrovirus without oncogenes often exert their neoplastic potential as insertional mutagens of cellular proto-oncogenes. This may be associated with the production of chimaeric viral-host transcripts; in these cases; activated cellular genes can be identified by obtaining cDNA clones of bipartite RNAs. This approach was used in the analysis of chicken nephroblastomas induced by myeloblastosis-associated virus (MAV). One tumor contained a novel mRNA species initiated within a MAV LTR. cDNA cloning revealed that this mRNA encodes a protein of 189 amino acids, identical to that of normal human Ha-ras-1 at 185 positions, including positions implicated in oncogenic activation of ras proto-oncogenes; there are no differences between the coding sequences of presumably normal Ha-ras cDNA clones from chicken lymphoma RNA and the tumor-derived cDNAs. The chimaeric mRNA in the nephroblastoma is at least 25-fold more abundant than c-Ha-ras mRNA in normal kidney tissue, and a 21-kd ras-related protein is present in relatively large amounts in the tumor. We conclude that a quantitative change in c-Ha-ras gene expression results from an upstream insertion mutation and presumably contributes to tumorigenesis in this single case. Little or no increase in c-Ha-ras RNA or protein was observed in other nephroblastomas. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 10. PMID:3011401

  12. A Mouse Strain Defective in Both T Cells and NK Cells Has Enhanced Sensitivity to Tumor Induction by Plasmid DNA Expressing Both Activated H-Ras and c-Myc

    PubMed Central

    Sheng-Fowler, Li; Tu, Wei; Fu, Haiqing; Murata, Haruhiko; Lanning, Lynda; Foseh, Gideon; Macauley, Juliete; Blair, Donald; Hughes, Stephen H.; Coffin, John M.; Lewis, Andrew M.; Peden, Keith

    2014-01-01

    As part of safety studies to evaluate the risk of residual cellular DNA in vaccines manufactured in tumorigenic cells, we have been developing in vivo assays to detect and quantify the oncogenic activity of DNA. We generated a plasmid expressing both an activated human H-ras gene and murine c-myc gene and showed that 1 µg of this plasmid, pMSV-T24-H-ras/MSV-c-myc, was capable of inducing tumors in newborn NIH Swiss mice. However, to be able to detect the oncogenicity of dominant activated oncogenes in cellular DNA, a more sensitive system was needed. In this paper, we demonstrate that the newborn CD3 epsilon transgenic mouse, which is defective in both T-cell and NK-cell functions, can detect the oncogenic activity of 25 ng of the circular form of pMSV-T24-H-ras/MSV-c-myc. When this plasmid was inoculated as linear DNA, amounts of DNA as low as 800 pg were capable of inducing tumors. Animals were found that had multiple tumors, and these tumors were independent and likely clonal. These results demonstrate that the newborn CD3 epsilon mouse is highly sensitive for the detection of oncogenic activity of DNA. To determine whether it can detect the oncogenic activity of cellular DNA derived from four human tumor-cell lines (HeLa, A549, HT-1080, and CEM), DNA (100 µg) was inoculated into newborn CD3 epsilon mice both in the presence of 1 µg of linear pMSV-T24-H-ras/MSV-c-myc as positive control and in its absence. While tumors were induced in 100% of mice with the positive-control plasmid, no tumors were induced in mice receiving any of the tumor DNAs alone. These results demonstrate that detection of oncogenes in cellular DNA derived from four human tumor-derived cell lines in this mouse system was not possible; the results also show the importance of including a positive-control plasmid to detect inhibitory effects of the cellular DNA. PMID:25302710

  13. Effect of Holocene sea level change on aeolian activity in the coastal plain of Ras El Hekma area, NW coast of Egypt

    NASA Astrophysics Data System (ADS)

    Farghaly, Enas; Torab, Magdy

    2015-04-01

    Ras El Hekma area located in north western coast of Egypt, west of Alexandria city for about 220 km, in this area, environmental changes during the Holocene can be interpreted based on morphological and sedimentological similarities between Holocene geomorphic features such as cemented beaches and fossilized dunes with recent coastal features. Sand dunes and nebkhas are the most common aeolian landforms and they occur in semi-arid climatic conditions. The active separated coastal dunes and nebkhas dunes of Ras El-Hekma area are located between the swash zone and the coastal limestone ridges as well as in the coastal sabkhas. The effect of waves during storms reaches far beyond the actual beach and can cause great changes to sandy beaches at an exceptional speed. Sand accumulated by swash drifts with the wind on open beaches and bays. The aeolian sand, which originates from fluvial-marine sediments washed by sea waves. the available sediment depends on fluvial transport to the littoral zone and on biological activity in the carbonate environments as well as on longshore and cross-shore currents. This paper treats the coastal dunes in Ras El Hekma area in their entirety and defines the effects of sea level change on coastal sand dunes and sabkhas dunes, it depends upon field geomorphic surveying, sampling and mapping as well as satellite image interpretation using ENVI software and GIS techniques.

  14. CD16-mediated p21ras activation is associated with Shc and p36 tyrosine phosphorylation and their binding with Grb2 in human natural killer cells

    PubMed Central

    1996-01-01

    The Src homology (SH) 2/SH3 domain-containing protein Grb2 and the oncoprotein Shc have been implicated in a highly conserved mechanism that regulates p21ras activation. We investigated the involvement of these adaptor proteins in the signaling pathway induced by CD16 or interleukin (IL) 2R triggering in human natural killer (NK) cells. Both p46 and p52 forms of Shc were rapidly and transiently tyrosine phosphorylated upon CD16 or IL-2 stimulation with different kinetics. Shc immunoprecipitates from lysates of CD16- or IL-2-stimulated NK cells contained Grb2 and an unidentified 145-kD tyrosine phosphoprotein. Grb2 immunoprecipitates from anti-CD16-stimulated NK cells contained not only Shc, but also a 36-kD tyrosine phosphoprotein (p36). The interaction between Grb2 and Shc or p36 occurred via the Grb2SH2 domain as indicated by in vitro binding assays using a bacteriologically synthesized glutathione S-transferase-Grb2SH2 fusion protein. We also present evidence that p21ras is activated by CD16 and IL-2R cross-linking. Accumulation of guanosine triphosphate-bound Ras was detected within 1 minute and occurred with kinetics similar to inductive protein tyrosine phosphorylation and Grb2 association of Shc and p36 adaptor proteins. PMID:8551221

  15. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells.

    PubMed

    Gendron, L; Laflamme, L; Rivard, N; Asselin, C; Payet, M D; Gallo-Payet, N

    1999-09-01

    In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.

  16. Activation of p21ras/MAPK signal transduction molecules decreases with age in mitogen-stimulated T cells from rats.

    PubMed

    Pahlavani, M A; Harris, M D; Richardson, A

    1998-04-10

    Signal transduction is ubiquitously involved in the initiation of physiological signals that lead to growth and proliferation of cells. The signaling cascade mediated by the mitogen-activated protein kinase (MAPK) is considered essential for T cell growth and function. Therefore, it was of interest to determine the influence of age on the induction of MAPK in mitogen-activated T cells. T cells from young (4-6 months) and old (24-26 months) rats responded to concanavalin A (Con A) stimulation by increasing MAPK, c-jun amino terminal kinase (JNK), and p21ras activities. The time course of induction of MAPK/JNK and p21ras activities was similar in T cells isolated from young and old rats. The induction of JNK activity did not change significantly with age; however, the induction of MAPK and p21ras activities was significantly less (50 to 65%) in T cells from old rats than in T cells from young rats. Although the relative protein levels of p42 and p44 MAPK did not change with age, the proportion of the phosphorylated p44 MAPK decreased with age. In addition, it was found that the in vitro kinase activities of the T cell receptor-associated protein tyrosine kinase Lck (p56Lck) and ZAP-70 but not Fyn (p59Fyn) were lower in T cells from old rats than in T cells from young rats. The decline in activities of these signaling molecules with age was not associated with changes in their corresponding protein levels. Thus, our results demonstrate that aging alters the activation of the signal transduction cascade that leads to T cell activation.

  17. Effects of spectral composition, photoperiod and light intensity on the gonadal development of Atlantic salmon Salmo salar in recirculating aquaculture systems (RAS)

    NASA Astrophysics Data System (ADS)

    Qiu, Denggao; Xu, Shihong; Song, Changbin; Chi, Liang; Li, Xian; Sun, Guoxiang; Liu, Baoliang; Liu, Ying

    2015-01-01

    Artificial lighting regimes have been successfully used to inhibit sexual maturity of Atlantic salmon in confinement. However, when these operations are applied in commercial recirculating aquaculture systems (RAS) using standard lighting technology, sexual maturation is not suppressed. In this study, an L9 (33) orthogonal design was used to determine the effects of three factors (spectral composition, photoperiod, and light intensity) on the gonadal development of Atlantic salmon in RAS. We demonstrated that the photoperiod at the tested levels had a much greater effect on the gonadosomatic index and female Fulton condition factor than spectral composition and light intensity. The photoperiod had a significant effect on the secretion of sex steroids and melatonin ( P<0.05), and a short photoperiod delayed sex steroid and melatonin level increases. The three test factors had no significant effects on the survival rate, specific growth rate, relative weight gain, and male Fulton condition factor ( P>0.05). The optimum lighting levels in female and male Atlantic salmon were LD 8:16, 455 nm (or 625 nm), 8.60 W/m2; and LD 8:16, 8.60 W/m2, 455 nm respectively. These conditions not only delayed gonadal development, but also had no negative effects on Atlantic salmon growth in RAS. These results demonstrate that a combination of spectral composition, photoperiod and light intensity is effective at delaying the gonadal development of both male and female salmon in RAS.

  18. Antisense treatment directed against mutated Ki-ras in human colorectal adenocarcinoma

    PubMed Central

    Andreyev, H; Ross, P; Cunningham, D; Clarke, P

    2001-01-01

    BACKGROUND—Kirsten ras (Ki-ras) mutations are common in gastrointestinal cancer and one codon 12 mutation, glycine to valine, is particularly aggressive in colorectal cancer.
AIMS—To investigate if this valine point mutation could be targeted with antisense oligonucleotides and to determine the efficacy of any antisense/mRNA interaction.
METHODS—Twenty nine antisense oligonucleotides were screened against target and control Ki-ras RNA in a cell free system and against target and control cell lines in culture.
RESULTS—The activity and specificity of the oligonucleotides varied. Results for the individual oligonucleotides were consistent in a cell free model and in cell culture using two different uptake promoters. Only one oligonucleotide was specific in its cleavage of target Ki-ras mRNA in the cell free system and appeared specific in cell culture, although changes in Ki-ras mRNA and protein expression following a single treatment could not be detected. Experiments in the cell free system showed that the point mutation is relatively inaccessible to oligonucleotides. Other sites on the Ki-ras RNA molecule, away from the point mutation, can be targeted more effectively.
CONCLUSIONS—Successful targeting of the clinically relevant Ki-ras point mutation with antisense oligonucleotides is difficult because of RNA structure at the mutated site and is inefficient compared with other sites on the Ki-ras mRNA.


Keywords: Ki-ras mutation; antisense treatment; colorectal carcinoma PMID:11156646

  19. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling.

    PubMed

    Athuluri-Divakar, Sai Krishna; Vasquez-Del Carpio, Rodrigo; Dutta, Kaushik; Baker, Stacey J; Cosenza, Stephen C; Basu, Indranil; Gupta, Yogesh K; Reddy, M V Ramana; Ueno, Lynn; Hart, Jonathan R; Vogt, Peter K; Mulholland, David; Guha, Chandan; Aggarwal, Aneel K; Reddy, E Premkumar

    2016-04-21

    Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing a common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling. PMID:27104980

  20. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold

    PubMed Central

    Posada, Itziar M. D.; Serulla, Marc; Zhou, Yong; Oetken-Lindholm, Christina

    2016-01-01

    Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2’s interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2’s ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events. PMID:27437940

  1. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.

  2. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins. PMID:27396271

  3. Gas6-mediated survival in NIH3T3 cells activates stress signalling cascade and is independent of Ras.

    PubMed

    Goruppi, S; Ruaro, E; Varnum, B; Schneider, C

    1999-07-22

    Gas6 is a growth factor membrane of the vitamin K-dependent family of proteins which is preferentially expressed in quiescent cells. Gas6 was identified as the ligand for Axl tyrosine kinase receptor family. Consistent with this, Gas6 was previously reported to induce cell cycle re-entry of serum-starved NIH3T3 cells and to prevent cell death after complete growth factor withdrawal, the survival effect being uncoupled from Gas6-induced mitogenesis. We have previously demonstrated that both Gas6 mitogenic and survival effects are mediated by Src and the phosphatidylinositol3-OH kinase (PI3K). Here we report that Ras is required for Gas6 mitogenesis but is dispensable for its survival effect. Gas6-induced survival requires the activity of the small GTPases of the Rho family, Rac and Rho, together with the downstream kinase Pak. Overexpression of the respective dominant negative constructs abrogates Gas6-mediated survival functions. Addition of Gas6 to serum starved cells results in the activation of AKT/PKB and in the phosphorylation of the Bcl-2 family member, Bad. By ectopic expression of a catalytically inactive form of AKT/PKB, we demonstrate that AKT/PKB is necessary for Gas6-mediated survival functions. We further show evidence that Gas6 stimulation of serum starved NIH3T3 cells results in a transient ERK, JNK/SAPK and p38 MAPK activation. Blocking ERK activation did not influence Gas6-induced survival, suggesting that such pathway is not involved in Gas6 protection from cell death. On the contrary we found that the late constitutive increase of p38 MAPK activity associated with cell death was downregulated in Gas6-treated NIH3T3 cells thus suggesting that Gas6 might promote survival by interfering with this pathway. Taken together the evidence here provided identity elements involved in Gas6 signalling more specifically elucidating the pathway responsible for Gas6-induced cell survival under conditions that do not allow cell proliferation.

  4. Functional determinants of ras interference 1 mutants required for their inhbitory activity on endocytosis

    SciTech Connect

    Galvis, Adriana; Giambini, Hugo; Villasana, Zoilmar; Barbieri, M. Alejandro

    2009-03-10

    In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay. In addition, Rin1: D537A and Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.

  5. Anti-tumour activity in RAS-driven tumours by blocking AKT and MEK

    PubMed Central

    Tolcher, Anthony W.; Khan, Khurum; Ong, Michael; Banerji, Udai; Papadimitrakopoulou, Vassiliki; Gandara, David R.; Patnaik, Amita; Baird, Richard D.; Olmos, David; Garrett, Christopher R.; Skolnik, Jeffrey M.; Rubin, Eric H.; Smith, Paul D.; Huang, Pearl; Learoyd, Maria; Shannon, Keith A.; Morosky, Anne; Tetteh, Ernestina; Jou, Ying-Ming; Papadopoulos, Kyriakos P.; Moreno, Victor; Kaiser, Brianne; Yap, Timothy A.; Yan, Li; de Bono, Johann S.

    2014-01-01

    Purpose KRAS is the most commonly mutated oncogene in human tumours. KRAS-mutant cells may exhibit resistance to the allosteric MEK1/2 inhibitor selumetinib (AZD6244; ARRY-142886) and allosteric AKT inhibitors (such as MK-2206), the combination of which may overcome resistance to both monotherapies. Experimental Design We conducted a dose/schedule-finding study evaluating MK-2206 and selumetinib in patients with advanced treatment-refractory solid tumours. Recommended dosing schedules were defined as MK-2206 135 mg weekly and selumetinib 100 mg once-daily. Results Grade 3 rash was the most common dose-limiting toxicity (DLT); other DLTs included grade 4 lipase increase, grade 3 stomatitis, diarrhoea, and fatigue, and grade 3 and grade 2 retinal pigment epithelium detachment. There were no meaningful pharmacokinetic drug-drug interactions. Clinical anti-tumour activity included RECIST 1.0-confirmed partial responses in non-small cell lung cancer and low-grade ovarian carcinoma. Conclusion Responses in KRAS-mutant cancers were generally durable. Clinical co-targeting of MEK and AKT signalling may be an important therapeutic strategy in KRAS-driven human malignancies (Trial NCT number NCT01021748). PMID:25516890

  6. Biochemical similarity of Schizosaccharomyces pombe ras1 protein with RAS2 protein of Saccharomyces cervisiae.

    PubMed

    Onozawa, T; Danjoh, I; Fujiyama, A

    1995-07-01

    Schizosaccharomyces pombe contains single ras oncogene homologue, ras1, that functions in the signal transduction pathway conducting the cell's mating processes. To understand the biochemical basis of yeast ras proteins, we have purified the ras1 protein and compared the major biochemical constants with those of RAS2 protein from Saccharomyces cerevisiae and mammalian ras proteins. The purified ras1 protein showed a remarkably high Kd value for GDP binding (178 nM) and for binding with ATP. In contrast, the Kd value for GTP binding and the rate of GTPase activity were 64 nM and 77 x 10(-6) s-1 at 37 degrees C, respectively; both were higher than normal p21ras protein, but at the same level as the RAS2 protein. We directly measured rate of GTP binding and GDP binding which were 3.9 x 10(-3) s-1 and 1.8 x 10(-3) s-1 at 30 degrees C, respectively. On the other hand, exchange rates between bound and free nucleotides remained almost constant throughout the tested combination of GTP and GDP, and were several-fold lower than the binding rate. These results suggest that the release of the guanine nucleotide is the rate-limiting step in the ras-GTP/GDP cycle. As a whole, the biochemical properties of the ras1 protein are close to those of the RAS2 protein, although these two proteins function differently in the signal transduction pathway in the cells. PMID:7483844

  7. Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization.

    PubMed

    Mitin, Natalia Y; Ramocki, Melissa B; Zullo, Alfred J; Der, Channing J; Konieczny, Stephen F; Taparowsky, Elizabeth J

    2004-05-21

    The Ras small GTPase functions as a signaling node and is activated by extracellular stimuli. Upon activation, Ras interacts with a spectrum of functionally diverse downstream effectors and stimulates multiple cytoplasmic signaling cascades that regulate cellular proliferation, differentiation, and apoptosis. In addition to the association of Ras with the plasma membrane, recent studies have established an association of Ras with Golgi membranes. Whereas the effectors of signal transduction by activated, plasma membrane-localized Ras are well characterized, very little is known about the effectors used by Golgi-localized Ras. In this study, we report the identification of a novel Ras-interacting protein, Rain, that may serve as an effector for endomembrane-associated Ras. Rain does not share significant sequence similarity with any known mammalian proteins, but contains a Ras-associating domain that is found in RalGDS, AF-6, and other characterized Ras effectors. Rain interacts with Ras in a GTP-dependent manner in vitro and in vivo, requires an intact Ras core effector-binding domain for this interaction, and thus fits the definition of a Ras effector. Unlike other Ras effectors, however, Rain is localized to perinuclear, juxta-Golgi vesicles in intact cells and is recruited to the Golgi by activated Ras. Finally, we found that Rain cooperates with activated Raf and causes synergistic transformation of NIH3T3 cells. Taken together, these observations support a role for Rain as a novel protein that can serve as an effector of endomembrane-localized Ras.

  8. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  9. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  10. Quantification of oxidative post-translational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags (ICAT) and mass spectrometry

    PubMed Central

    Sethuraman, Mahadevan; Clavreul, Nicolas; Huang, Hua; McComb, Mark E; Costello, Catherine E; Cohen, Richard A

    2007-01-01

    p21ras GTPase is the protein product of the most commonly mutated human oncogene and has been identified as a target for reactive oxygen and nitrogen species (ROS/RNS). Post-translational modification of reactive thiols, by reversible S-glutathiolation and S-nitrosation, and potentially also by irreversible oxidation, may have significant effects on p21ras activity. Here we used an isotope-coded affinity tag (ICAT) and mass spectrometry to quantitate the reversible and irreversible oxidative post-translational thiol modifications of p21ras caused by peroxynitrite (ONOO−) or glutathione disulfide (GSSG). The activity of p21ras was significantly increased following exposure to GSSG, but not to ONOO−. The results of LC-MS/MS analysis of tryptic peptides of p21ras treated with ONOO− showed that ICAT labeling of Cys118 was decreased by 47%, whereas Cys80 was not significantly affected and was thereby shown to be less reactive. The extent of S-glutathiolation of Cys118 by GSSG was 53%, and that of the terminal cysteines was 85%, as estimated by the decrease in ICAT labeling. The changes in ICAT labeling caused by GSSG were reversible by chemical reduction, but those caused by peroxynitrite were irreversible. The quantitative changes in thiol modification caused by GSSG associated with increased activity demonstrate the potential importance of redox modulation of p21ras. PMID:17320764

  11. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  12. The Differential Palmitoylation States of N-Ras and H-Ras Determine Their Distinct Golgi Sub-compartment Localizations

    PubMed Central

    Lynch, Stephen J.; Snitkin, Harriet; Gumper, Iwona; Philips, Mark R.; Sabatini, David; Pellicer, Angel

    2014-01-01

    Despite a high degree of structural homology and shared exchange factors, effectors and GTPase activating proteins, a large body of evidence suggests functional heterogeneity among Ras isoforms. One aspect of Ras biology that may explain this heterogeneity is the differential subcellular localizations driven by the C-terminal hypervariable regions of Ras proteins. Spatial heterogeneity has been documented at the level of organelles: palmitoylated Ras isoforms (H-Ras and N-Ras) localize on the Golgi apparatus whereas K-Ras4B does not. We tested the hypothesis that spatial heterogeneity also exists at the sub-organelle level by studying the localization of differentially palmitoylated Ras isoforms within the Golgi apparatus. Using confocal, live cell fluorescent imaging and immunogold electron microscopy we found that, whereas the doubly palmitoylated H-Ras is distributed throughout the Golgi stacks, the singly palmitoylated N-Ras is polarized with a relative paucity of expression on the trans Golgi. Using palmitoylation mutants we show that the different sub-Golgi distributions of the Ras proteins are a consequence of their differential degree of palmitoylation. Thus, the acylation state of Ras proteins controls not only their distribution between the Golgi apparatus and the plasma membrane but also their distribution within the Golgi stacks. PMID:25158650

  13. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways.

    PubMed

    Zhang, Jing; Liu, Yangang; Beard, Caroline; Tuveson, David A; Jaenisch, Rudolf; Jacks, Tyler E; Lodish, Harvey F

    2007-06-15

    When overexpressed in primary erythroid progenitors, oncogenic Ras leads to the constitutive activation of its downstream signaling pathways, severe block of terminal erythroid differentiation, and cytokine-independent growth of primary erythroid progenitors. However, whether high-level expression of oncogenic Ras is required for these phenotypes is unknown. To address this issue, we expressed oncogenic K-ras (K-ras(G12D)) from its endogenous promoter using a tetracycline-inducible system. We show that endogenous K-ras(G12D) leads to a partial block of terminal erythroid differentiation in vivo. In contrast to results obtained when oncogenic Ras was overexpressed from retroviral vectors, endogenous levels of K-ras(G12D) fail to constitutively activate but rather hyperactivate cytokine-dependent signaling pathways, including Stat5, Akt, and p44/42 MAPK, in primary erythroid progenitors. This explains previous observations that hematopoietic progenitors expressing endogenous K-ras(G12D) display hypersensitivity to cytokine stimulation in various colony assays. Our results support efforts to modulate Ras signaling for treating hematopoietic malignancies.

  14. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.

    PubMed

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y; Wiedemeyer, W Ruprecht

    2015-01-20

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  15. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation.

    PubMed

    García-Carpizo, Verónica; Sarmentero, Jacinto; Han, Bomie; Graña, Osvaldo; Ruiz-Llorente, Sergio; Pisano, David G; Serrano, Manuel; Brooks, Harold B; Campbell, Robert M; Barrero, Maria J

    2016-01-01

    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression. PMID:27604143

  16. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS

    PubMed Central

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R.; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2015-01-01

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  17. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation

    PubMed Central

    García-Carpizo, Verónica; Sarmentero, Jacinto; Han, Bomie; Graña, Osvaldo; Ruiz-Llorente, Sergio; Pisano, David G.; Serrano, Manuel; Brooks, Harold B.; Campbell, Robert M.; Barrero, Maria J.

    2016-01-01

    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression. PMID:27604143

  18. Activation of RAF-1 through Ras and protein kinase Calpha mediates 1alpha,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells.

    PubMed

    Buitrago, Claudia Graciela; Pardo, Veronica González; de Boland, Ana R; Boland, Ricardo

    2003-01-24

    We have previously shown that stimulation of proliferation of avian embryonic muscle cells (myoblasts) by 1alpha,25(OH)(2)-vitamin D(3) (1alpha,25(OH)(2)D(3)) is mediated by activation of the mitogen-activated protein kinase (MAPK; ERK1/2). To understand how 1alpha,25(OH)(2)D(3) up-regulates the MAPK cascade, we have investigated whether the hormone acts upstream through stimulation of Raf-1 and the signaling mechanism by which this effect might take place. Treatment of chick myoblasts with 1alpha,25(OH)(2)D(3) (1 nm) caused a fast increase of Raf-1 serine phosphorylation (1- and 3-fold over basal at 1 and 2 min, respectively), indicating activation of Raf-1 by the hormone. These effects were abolished by preincubation of cells with a specific Ras inhibitor peptide that involves Ras in 1alpha,25(OH)(2)D(3) stimulation of Raf-1. 1alpha,25(OH)(2)D(3) rapidly induced tyrosine de-phosphorylation of Ras-GTPase-activating protein, suggesting that inhibition of Ras-GTP hydrolysis is part of the mechanism by which 1alpha,25(OH)(2)D(3) activates Ras in myoblasts. The protein kinase C (PKC) inhibitors calphostin C, bisindolylmaleimide I, and Ro 318220 blocked 1alpha,25(OH)(2)D(3)-induced Raf-1 serine phosphorylation, revealing that hormone stimulation of Raf-1 also involves PKC. In addition, transfection of muscle cells with an antisense oligodeoxynucleotide against PKCalpha mRNA suppressed serine phosphorylation by 1alpha,25(OH)(2)D(3). The increase in MAPK activity and tyrosine phosphorylation caused by 1alpha,25(OH)(2)D(3) could be abolished by Ras inhibitor peptide, compound PD 98059, which prevents the activation of MEK by Raf-1, or incubation of cell lysates before 1alpha,25(OH)(2)D(3) exposure with an anti-Raf-1 antibody. In conclusion, these results demonstrate for the first time in a 1alpha,25(OH)(2)D(3) target cell that activation of Raf-1 via Ras and PKCalpha-dependent serine phosphorylation plays a central role in hormone stimulation of the MAPK-signaling pathway

  19. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    PubMed

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  20. Activation of the Ras/Mitogen-Activated Protein Kinase Pathway by Kinase-Defective Epidermal Growth Factor Receptors Results in Cell Survival but Not Proliferation

    PubMed Central

    Walker, Francesca; Kato, Akiko; Gonez, L. Jorge; Hibbs, Margaret L.; Pouliot, Normand; Levitzki, Alexander; Burgess, Antony W.

    1998-01-01

    Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc–GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity

  1. Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras.

    PubMed

    Young, Nathan P; Jacks, Tyler

    2010-06-01

    The ability of oncogenes to engage tumor suppressor pathways represents a key regulatory mechanism that can limit the outgrowth of incipient tumor cells. For example, in a number of settings oncogenic Ras strongly activates the Ink4a/Arf locus, resulting in cell cycle arrest or senescence. The capacity of different cell types to execute tumor suppressor programs following expression of endogenous K-ras(G12D) in vivo has not been examined. Using compound mutant mice containing the Arf(GFP) reporter and the spontaneously activating K-ras(LA2) allele, we have uncovered dramatic tissue specificity of K-ras(G12D)-dependent p19(Arf) up-regulation. Lung tumors, which can arise in the presence of functional p19(Arf), rarely display p19(Arf) induction. In contrast, sarcomas always show robust activation, which correlates with genetic evidence, suggesting that loss of the p19(Arf)-p53 pathway is a requisite event for sarcomagenesis. Using constitutive and inducible RNAi systems in vivo, we highlight cell type-specific chromatin regulation of Ink4a/Arf as a critical determinant of cellular responses to oncogenic K-ras. Polycomb-group complexes repress the locus in lung tumors, whereas the SWI/SNF family member Snf5 acts as an important mediator of p19(Arf) induction in sarcomas. This variation in tumor suppressor induction might explain the inherent differences between tissues in their sensitivity to Ras-mediated transformation. PMID:20479239

  2. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy

    PubMed Central

    Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind; Zhang, Shihong; Dhandapany, Perundurai S.; Liang, Lifan; García-Carrancá, Alejandro; Bobe, Regis; Fischmeister, Rodolphe; Adnot, Serge; Lebeche, Djamel; Hajjar, Roger J.; Lipskaia, Larissa; Chemaly, Elie R.

    2015-01-01

    The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy. PMID:26260012

  3. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy.

    PubMed

    Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind; Zhang, Shihong; Dhandapany, Perundurai S; Liang, Lifan; García-Carrancá, Alejandro; Bobe, Regis; Fischmeister, Rodolphe; Adnot, Serge; Lebeche, Djamel; Hajjar, Roger J; Lipskaia, Larissa; Chemaly, Elie R

    2015-11-01

    The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy.

  4. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts.

    PubMed

    Irani, K; Xia, Y; Zweier, J L; Sollott, S J; Der, C J; Fearon, E R; Sundaresan, M; Finkel, T; Goldschmidt-Clermont, P J

    1997-03-14

    NIH 3T3 fibroblasts stably transformed with a constitutively active isoform of p21(Ras), H-RasV12 (v-H-Ras or EJ-Ras), produced large amounts of the reactive oxygen species superoxide (.O2-). .O2- production was suppressed by the expression of dominant negative isoforms of Ras or Rac1, as well as by treatment with a farnesyltransferase inhibitor or with diphenylene iodonium, a flavoprotein inhibitor. The mitogenic activity of cells expressing H-RasV12 was inhibited by treatment with the chemical antioxidant N-acetyl-L-cysteine. Mitogen-activated protein kinase (MAPK) activity was decreased and c-Jun N-terminal kinase (JNK) was not activated in H-RasV12-transformed cells. Thus, H-RasV12-induced transformation can lead to the production of .O2- through one or more pathways involving a flavoprotein and Rac1. The implication of a reactive oxygen species, probably .O2-, as a mediator of Ras-induced cell cycle progression independent of MAPK and JNK suggests a possible mechanism for the effects of antioxidants against Ras-induced cellular transformation.

  5. Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation.

    PubMed

    Guo, Jinjin; Chu, Michelle; Abbeyquaye, Tetteh; Chen, Chang-Yan

    2005-08-26

    Although nicotine has been suggested to promote lung carcinogenesis, the mechanism of its action in this process remains unknown. The present investigation demonstrates that the treatment of rat lung epithelial cells with nicotine for various periods differentially mobilizes multiple intracellular pathways. Protein kinase C and phosphoinositide 3-OH-kinase are transiently activated after the treatment. Also, Ras and its downstream effector ERK1/2 are activated after long term exposure to nicotine. The activation of Ras by nicotine treatment is responsible for the subsequent perturbation of the methotrexate (MTX)-mediated G1 cell cycle restriction as well as an increase in production of reactive oxygen species. When p53 expression is suppressed by introducing E6, persistent exposure to nicotine enables dihydrofolate reductase gene amplification in the presence of methotrexate (MTX) and the formation of the MTX-resistant colonies. Altering the activity of phosphoinositide 3-OH-kinase has no effect on dihydrofolate reductase amplification. However, the suppression of protein kinase C dramatically affects the colony formation in soft agar. Thus, our data suggest that persistent exposure to nicotine perturbs the G1 checkpoint and causes DNA damage through the increase of the production of reactive oxygen species. However, a third element rendered by loss of p53 is required for the initiation of the process of gene amplification. Under p53-deficient conditions, the establishment of a full oncogenic transformation, in response to long term nicotine exposure, is achieved through the cooperation of multiple signaling pathways. PMID:15983034

  6. Aberrant microRNA expression likely controls RAS oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic.

    PubMed

    Ngalame, Ntube N O; Tokar, Erik J; Person, Rachel J; Xu, Yuanyuan; Waalkes, Michael P

    2014-04-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants.

  7. [Analysis of the changes of microbial community structure on bio-carrier of recirculating aquaculture systems (RAS)].

    PubMed

    Zhang, Hai-Geng; Ma, Shao-Sai; Li, Qiu-Fen; Fu, Xue-Jun; Zhang, Yan; Qu, Ke-Ming

    2011-01-01

    In order to study the variation of microbial community structure and the mechanism of denitrification on bio-carrier in recirculating aquaculture systems (RAS) during the periods of bio-film formation and operation the systems, traditional microbiological methods were applied to count the quantity of heterotrophic bacteria, ammonia oxidize bacteria and nitrite oxidize bacteria. The amplified products of variable V3 region of bacterial 16S rDNA were separated by using denaturing gradient gel electrophoresis (DGGE). And bacterial community DNA fingerprint was obtained. The sequences retrieved from the DGGE bands were used for homology analysis and construction of phylogenetic tree. It presented a trend that the quantity of the three types of bacteria increased gradually to a top and then fallen slowly to a stable level. The composition of microbial community of bio-carrier was very abundant in all periods, and the Shannon index was 1.53, 1.44, 1.57, 1.08, 1.27 and 1.30, respectively. During different periods, there was a certain shift in the microbial community structure, while the C(s) value (similar index) in two adjacent periods was high, indicating the variation and succession of the microbial community was slow and regular. Several bacteria had an effect on removal of pollutants for farming water and the effluent water quality could meet the requirements of high-density culture. Among them, Proteobacteria and Flavobacteria were main communities. The Nitrosomonas and some other facultative anaerobic bacteria (Flavobacteriaceae bacterium) were identified, which indicated that there may be coexisted pathways of nitrification and denitrification in bio-filter.

  8. Serum-dependent transcriptional networks identify distinct functional roles for H-Ras and N-Ras during initial stages of the cell cycle

    PubMed Central

    2009-01-01

    Background Using oligonucleotide microarrays, we compared transcriptional profiles corresponding to the initial cell cycle stages of mouse fibroblasts lacking the small GTPases H-Ras and/or N-Ras with those of matching, wild-type controls. Results Serum-starved wild-type and knockout ras fibroblasts had very similar transcriptional profiles, indicating that H-Ras and N-Ras do not significantly control transcriptional responses to serum deprivation stress. In contrast, genomic disruption of H-ras or N-ras, individually or in combination, determined specific differential gene expression profiles in response to post-starvation stimulation with serum for 1 hour (G0/G1 transition) or 8 hours (mid-G1 progression). The absence of N-Ras caused significantly higher changes than the absence of H-Ras in the wave of transcriptional activation linked to G0/G1 transition. In contrast, the absence of H-Ras affected the profile of the transcriptional wave detected during G1 progression more strongly than did the absence of N-Ras. H-Ras was predominantly functionally associated with growth and proliferation, whereas N-Ras had a closer link to the regulation of development, the cell cycle, immunomodulation and apoptosis. Mechanistic analysis indicated that extracellular signal-regulated kinase (ERK)-dependent activation of signal transducer and activator of transcription 1 (Stat1) mediates the regulatory effect of N-Ras on defense and immunity, whereas the pro-apoptotic effects of N-Ras are mediated through ERK and p38 mitogen-activated protein kinase signaling. Conclusions Our observations confirm the notion of an absolute requirement for different peaks of Ras activity during the initial stages of the cell cycle and document the functional specificity of H-Ras and N-Ras during those processes. PMID:19895680

  9. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking.

    PubMed

    Zhou, Mo; Wiener, Heidi; Su, Wenjuan; Zhou, Yong; Liot, Caroline; Ahearn, Ian; Hancock, John F; Philips, Mark R

    2016-08-15

    Ras guanosine triphosphatases (GTPases) regulate signaling pathways only when associated with cellular membranes through their C-terminal prenylated regions. Ras proteins move between membrane compartments in part via diffusion-limited, fluid phase transfer through the cytosol, suggesting that chaperones sequester the polyisoprene lipid from the aqueous environment. In this study, we analyze the nature of the pool of endogenous Ras proteins found in the cytosol. The majority of the pool consists of farnesylated, but not palmitoylated, N-Ras that is associated with a high molecular weight (HMW) complex. Affinity purification and mass spectrographic identification revealed that among the proteins found in the HMW fraction is VPS35, a latent cytosolic component of the retromer coat. VPS35 bound to N-Ras in a farnesyl-dependent, but neither palmitoyl- nor guanosine triphosphate (GTP)-dependent, fashion. Silencing VPS35 increased N-Ras's association with cytoplasmic vesicles, diminished GTP loading of Ras, and inhibited mitogen-activated protein kinase signaling and growth of N-Ras-dependent melanoma cells. PMID:27502489

  10. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice

    PubMed Central

    Cheung, Henry; Tourrette, Yves; Maas, Peter; Schalken, Jack A; van der Pluijm, Gabri

    2016-01-01

    Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy. PMID:27427904

  11. MECP2 Is a Frequently Amplified Oncogene with a Novel Epigenetic Mechanism that Mimics the Role of Activated RAS in Malignancy

    PubMed Central

    Neupane, Manish; Clark, Allison P.; Landini, Serena; Birkbak, Nicolai J.; Eklund, Aron C.; Lim, Elgene; Culhane, Aedin C.; Barry, William T.; Schumacher, Steven E.; Beroukhim, Rameen; Szallasi, Zoltan; Vidal, Marc; Hill, David E.; Silver, Daniel P.

    2015-01-01

    An unbiased genome-scale screen for unmutated genes that drive cancer growth when overexpressed identified MECP2 as a novel oncogene. MECP2 resides in a region of the X-chromosome that is significantly amplified across 18% of cancers, and many cancer cell lines have amplified, overexpressed MECP2 and are dependent on MECP2 expression for growth. MECP2 copy number gain and RAS family member alterations are mutually exclusive in several cancer types. The MECP2 splicing isoforms activate the major growth factor pathways targeted by activated RAS, the MAPK and PI3K pathways. MECP2 rescued the growth of a KRASG12C-addicted cell line after KRAS down-regulation, and activated KRAS rescues the growth of an MECP2-addicted cell line after MECP2 downregulation. MECP2 binding to the epigenetic modification 5-hydroxymethylcytosine is required for efficient transformation. These observations suggest that MECP2 is a commonly amplified oncogene with an unusual epigenetic mode of action. PMID:26546296

  12. Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin.

    PubMed

    Agell, Neus; Bachs, Oriol; Rocamora, Nati; Villalonga, Priam

    2002-08-01

    Ras activation induces a variety of cellular responses that depend on the specific activated effector, the intensity and amplitude of its activation, and the cellular type. Transient activation followed by a sustained but low signal of the Ras/Raf/MEK/ERK pathway is a common feature of cell proliferation in many systems. On the contrary, sustained, high activation is linked with either senescence or apoptosis in fibroblasts and to differentiation in neurones and PC12 cells. The temporal regulation of the pathway is relevant and not only depends on the specific receptor activated but also on the presence of diverse modulators of the pathway. We review here evidence showing that calcium (Ca(2+)) and calmodulin (CaM) are able to regulate the Ras/Raf/MEK/ERK pathway. CaM-binding proteins (CaMBPs) as Ras-GRF and CaM-dependent protein kinase IV (CaMKIV) positively modulate ERK1/2 activation induced by either NGF or membrane depolarisation in neurones. In fibroblasts, CaM binding to EGF receptor and K-Ras(B) may be involved in the downregulation of the pathway after its activation, allowing a proliferative signalling.

  13. Ras moves to stay in place.

    PubMed

    Schmick, Malte; Kraemer, Astrid; Bastiaens, Philippe I H

    2015-04-01

    Ras is a major intracellular signaling hub. This elevated position comes at a precarious cost: a single point mutation can cause aberrant signaling. The capacity of Ras for signaling is inextricably linked to its enrichment at the plasma membrane (PM). This PM localization is dynamically maintained by three essential elements: alteration of membrane affinities via lipidation and membrane-interaction motifs; trapping on specific membranes coupled with unidirectional vesicular transport to the PM; and regulation of diffusion via interaction with a solubilization factor. This system constitutes a cycle that primarily corrects for the entropic equilibration of Ras to all membranes that dilutes its signaling capacity. We illuminate how this reaction-diffusion system maintains an out-of-equilibrium localization of Ras GTPases and thereby confers signaling functionality to the PM.

  14. Tumor suppressor role of phospholipase Cε in Ras-triggered cancers

    PubMed Central

    Martins, Marta; McCarthy, Afshan; Baxendale, Rhona; Guichard, Sabrina; Magno, Lorenza; Kessaris, Nicoletta; El-Bahrawy, Mona; Yu, Philipp; Katan, Matilda

    2014-01-01

    Phospholipase Cε (PLCε) has been characterized as a direct effector of Ras in vitro and in cellular systems; however, the role of PLCε in tumorigenesis and its link to Ras in this context remain unclear. To assess the role of PLCε in Ras-driven cancers, we generated two new mouse strains: one carrying a targeted deletion of Plce (Plce−/−) and the other carrying mutant alleles of Plce unable to bind to Ras (PlceRAm/RAm). The Plce−/− and, to a lesser degree, PlceRAm/RAm transgenic mice exhibited increased susceptibility to tumor formation in the two-stage skin carcinogenesis protocol, revealing a tumor suppressor function for this PLC. This result also suggests that in this context Ras binding in part regulates functions of PLCε. Although significant differences were not seen in the LSL-KrasG12D nonsmall cell lung carcinoma model, down-regulation of PLCε was found in animal tumors and in cellular systems following expression of the oncogenic Ras. An inhibitory impact of PLCε on cell growth requires intact lipase activity and is likely mediated by protein kinase C enzymes. Further cellular studies suggest involvement of histone deacetylase in the mechanism of PLCε down-regulation. Taken together, our results show a previously unidentified tumor suppressor role for this PLC in animal models and, together with observations of marked down-regulation in colorectal, lung, and skin tumors, suggest its use as a biological marker in cancer. PMID:24591640

  15. An orthosteric inhibitor of the RAS-SOS interaction.

    PubMed

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling.

  16. The RAS Problem

    Cancer.gov

    More than 30% of all human cancers, including a high percentage of lung and colon cancers and 95% of pancreatic cancers are driven by mutations and possibly amplification (increased copies) of RAS genes.

  17. Chemical biology tools for regulating RAS signaling complexity in space and time.

    PubMed

    van Hattum, Hilde; Waldmann, Herbert

    2014-09-18

    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  18. Resistance of R-Ras knockout mice to skin tumour induction

    PubMed Central

    May, Ulrike; Prince, Stuart; Vähätupa, Maria; Laitinen, Anni M.; Nieminen, Katriina; Uusitalo-Järvinen, Hannele; Järvinen, Tero A. H.

    2015-01-01

    The R-ras gene encodes a small GTPase that is a member of the Ras family. Despite close sequence similarities, R-Ras is functionally distinct from the prototypic Ras proteins; no transformative activity and no activating mutations of R-Ras in human malignancies have been reported for it. R-Ras activity appears inhibitory towards tumour proliferation and invasion, and to promote cellular quiescence. Contrary to this, using mice with a deletion of the R-ras gene, we found that R-Ras facilitates DMBA/TPA-induced skin tumour induction. The tumours appeared in wild-type (WT) mice on average 6 weeks earlier than in R-Ras knockout (R-Ras KO) mice. WT mice developed almost 6 times more tumours than R-Ras KO mice. Despite strong R-Ras protein expression in the dermal blood vessels, no R-Ras could be detected in the epidermis from where the tumours arose. The DMBA/TPA skin tumourigenesis-model is highly dependent upon inflammation, and we found a greatly attenuated skin inflammatory response to DMBA/TPA-treatment in the R-Ras KO mice in the context of leukocyte infiltration and proinflammatory cytokine expression. Thus, these data suggest that despite its characterised role in promoting cellular quiescence, R-Ras is pro-tumourigenic in the DMBA/TPA tumour model and important for the inflammatory response to DMBA/TPA treatment. PMID:26133397

  19. The activity of Mblk-1, a mushroom body-selective transcription factor from the honeybee, is modulated by the ras/MAPK pathway.

    PubMed

    Park, Jung-Min; Kunieda, Takekazu; Kubo, Takeo

    2003-05-16

    We previously identified a gene, termed Mblk-1, that encodes a putative transcription factor with two DNA-binding motifs expressed preferentially in the mushroom body of the honeybee brain, and its preferred binding sequence, termed Mblk-1-binding element (MBE) (Takeuchi, H., Kage, E., Sawata, M., Kamikouchi, A., Ohashi, K., Ohara, M., Fujiyuki, T., Kunieda, T., Sekimizu, K., Natori, S., and Kubo, T. (2001) Insect Mol Biol 10, 487-494; Park, J.-M., Kunieda. T., Takeuchi, H., and Kubo, T. (2002) Biochem. Biophys. Res. Commun. 291, 23-28). In the present study, the effect of Mblk-1 on transcription of genes containing MBE in Drosophila Schneider's Line 2 cells was examined using a luciferase assay. Mblk-1 expression transactivated promoters containing MBEs approximately 2-7-fold. Deletion experiments revealed that RHF2, the second DNA-binding domain of Mblk-1, was necessary for the transcriptional activity. Furthermore, mitogen-activated protein kinase (MAPK) phosphorylated Mblk-1 at Ser-444 in vitro, and the Mblk-1-induced transactivation was stimulated by phosphorylation of Ser-444 by the Ras/MAPK pathway in the luciferase assay. These results suggest that Mblk-1 is a transcription factor that might function in the mushroom body neuronal circuits downstream of the Ras/MAPK pathway in the honeybee brain.

  20. Visualizing and Quantitating the Spatiotemporal Regulation of Ras/ERK Signaling by Dual-Specificity Mitogen-Activated Protein Phosphatases (MKPs).

    PubMed

    Caunt, Christopher J; Kidger, Andrew M; Keyse, Stephen M

    2016-01-01

    The spatiotemporal regulation of the Ras/ERK pathway is critical in determining the physiological and pathophysiological outcome of signaling. Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (DUSPs or MKPs) are key regulators of pathway activity and may also localize ERK to distinct subcellular locations. Here we present methods largely based on the use of high content microscopy to both visualize and quantitate the subcellular distribution of activated (p-ERK) and total ERK in populations of mouse embryonic fibroblasts derived from mice lacking DUSP5, a nuclear ERK-specific MKP. Such methods in combination with rescue experiments using adenoviral vectors encoding wild-type and mutant forms of DUSP5 have allowed us to visualize specific defects in ERK regulation in these cells thus confirming the role of this phosphatase as both a nuclear regulator of ERK activity and localization. PMID:27514808

  1. K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts

    PubMed Central

    De Sanctis, Gaia; Spinelli, Michela; Vanoni, Marco

    2016-01-01

    Background Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species. Methodology and Principal Findings We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells–but not their parental NIH3T3—are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene—encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine—and decreased methionine uptake. Conclusions and Significance Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely–though not exclusively–due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for

  2. cAMP suppresses p21ras and Raf-1 responses but not the Erk-1 response to granulocyte-colony-stimulating factor: possible Raf-1-independent activation of Erk-1.

    PubMed Central

    Csar, X F; Ward, A C; Hoffmann, B W; Guy, G G; Hamilton, J A

    1997-01-01

    The cAMP analogue 8-bromo-cAMP (8BrcAMP) inhibits granulocyte-colony-stimulating factor (G-CSF)-stimulated DNA synthesis in myeloid NFS-60 cells. We examined the effect of 8BrcAMP addition on the G-CSF-stimulated extracellular signal-related protein kinase 1 (Erk-1), p21ras and Raf-1 activation. The Erk-1 activity was not down-regulated by the increase in intracellular cAMP levels, whereas p21ras and Raf-1 activities were, suggesting that Erk-1 activity might not be dependent on upstream p21ras and/or Raf-1 activity in this system. To explore this possibility further, we sought to determine whether there were downstream substrates of Raf-1 that were distinguishable from those of Erk-1 by using two-dimensional SDS/PAGE analysis of the protein phosphorylation patterns of NFS-60 cell cytosolic extracts treated with exogenous Raf-1 or Erk-1 in the presence of [gamma-32P]ATP. The two phosphorylation patterns were found to have many differences. To gain further insights into the possible relevance of these phosphorylation patterns and as an approach to exploring in more detail the inhibitory effect of 8BrcAMP, two-dimensional SDS/PAGE analysis was performed on the cytosolic extracts of 32P-labelled NFS-60 cells treated with G-CSF, in the absence or presence of 8BrcAMP. It was found that the phosphorylated proteins whose appearance was specific to the action of exogenous Raf-1 were sensitive to the action of 8BrcAMP in vivo, whereas those whose appearance was specific to the action of exogenous Erk-1 alone, or common to the actions of Raf-1 and Erk-1, were 8BrcAMP-insensitive. The results are consistent with a Raf-1-independent pathway for Erk-1 activation in G-CSF treated myeloid cells, and a number of potential downstream substrates of these kinases have been identified for further characterization. PMID:9078246

  3. cAMP suppresses p21ras and Raf-1 responses but not the Erk-1 response to granulocyte-colony-stimulating factor: possible Raf-1-independent activation of Erk-1.

    PubMed

    Csar, X F; Ward, A C; Hoffmann, B W; Guy, G G; Hamilton, J A

    1997-02-15

    The cAMP analogue 8-bromo-cAMP (8BrcAMP) inhibits granulocyte-colony-stimulating factor (G-CSF)-stimulated DNA synthesis in myeloid NFS-60 cells. We examined the effect of 8BrcAMP addition on the G-CSF-stimulated extracellular signal-related protein kinase 1 (Erk-1), p21ras and Raf-1 activation. The Erk-1 activity was not down-regulated by the increase in intracellular cAMP levels, whereas p21ras and Raf-1 activities were, suggesting that Erk-1 activity might not be dependent on upstream p21ras and/or Raf-1 activity in this system. To explore this possibility further, we sought to determine whether there were downstream substrates of Raf-1 that were distinguishable from those of Erk-1 by using two-dimensional SDS/PAGE analysis of the protein phosphorylation patterns of NFS-60 cell cytosolic extracts treated with exogenous Raf-1 or Erk-1 in the presence of [gamma-32P]ATP. The two phosphorylation patterns were found to have many differences. To gain further insights into the possible relevance of these phosphorylation patterns and as an approach to exploring in more detail the inhibitory effect of 8BrcAMP, two-dimensional SDS/PAGE analysis was performed on the cytosolic extracts of 32P-labelled NFS-60 cells treated with G-CSF, in the absence or presence of 8BrcAMP. It was found that the phosphorylated proteins whose appearance was specific to the action of exogenous Raf-1 were sensitive to the action of 8BrcAMP in vivo, whereas those whose appearance was specific to the action of exogenous Erk-1 alone, or common to the actions of Raf-1 and Erk-1, were 8BrcAMP-insensitive. The results are consistent with a Raf-1-independent pathway for Erk-1 activation in G-CSF treated myeloid cells, and a number of potential downstream substrates of these kinases have been identified for further characterization.

  4. SY 09-3 ROLE OF INTRARENAL RAS IN THE PATHOGENESIS OF SALT-DEPENDENT HYPERTENSION.

    PubMed

    Nishiyama, Akira

    2016-09-01

    The renin-angiotensin system (RAS) plays a critical role in the regulation of blood pressure and body fluid homeostasis. In addition to its physiological roles, angiotensin II (AngII) induces inflammation, cell growth, mitogenesis, apoptosis, migration, and differentiation, regulates the gene expression of bioactive substances, and activates multiple intracellular signaling pathways, all of which contribute to renal tissue injuries. In the kidney, all of the RAS components are present and intrarenal AngII is formed by independent multiple mechanisms. In particular, a series of our studies have revealed that intrarenal angiotensinogen plays a predominant role in the regulation of AngII production in the kidney. Consequently, AngII is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. For example, circulating plasma AngII levels are reduced in CKD patients with salt-dependent hypertension; however, intrarenal RAS is activated by inappropriately augmentation of angiotensinogen in the kidney. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this symposium, I will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development of salt-dependent hypertension in patients with CKD. We will also discuss the possible biomarker of the intrarenal RAS. PMID:27642896

  5. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    PubMed

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-01-01

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans. PMID:26469632

  6. Mitochondrial dysfunction and organic aciduria in five patients carrying mutations in the Ras-MAPK pathway

    PubMed Central

    Kleefstra, Tjitske; Wortmann, Saskia B; Rodenburg, Richard J T; Bongers, Ernie M H F; Hadzsiev, Kinga; Noordam, Cees; van den Heuvel, Lambert P; Nillesen, Willy M; Hollody, Katalin; Gillessen-Kaesbach, Gabrielle; Lammens, Martin; Smeitink, Jan A M; van der Burgt, Ineke; Morava, Eva

    2011-01-01

    Various syndromes of the Ras-mitogen-activated protein kinase (MAPK) pathway, including the Noonan, Cardio-Facio-Cutaneous, LEOPARD and Costello syndromes, share the common features of craniofacial dysmorphisms, heart defect and short stature. In a subgroup of patients, severe muscle hypotonia, central nervous system involvement and failure to thrive occur as well. In this study we report on five children diagnosed initially with classic metabolic and clinical symptoms of an oxidative phosphorylation disorder. Later in the course of the disease, the children presented with characteristic features of Ras-MAPK pathway-related syndromes, leading to the reevaluation of the initial diagnosis. In the five patients, in addition to the oxidative phosphorylation disorder, disease-causing mutations were detected in the Ras-MAPK pathway. Three of the patients also carried a second, mitochondrial genetic alteration, which was asymptomatically present in their healthy relatives. Did we miss the correct diagnosis in the first place or is mitochondrial dysfunction directly related to Ras-MAPK pathway defects? The Ras-MAPK pathway is known to have various targets, including proteins in the mitochondrial membrane influencing mitochondrial morphology and dynamics. Prospective screening of 18 patients with various Ras-MAPK pathway defects detected biochemical signs of disturbed oxidative phosphorylation in three additional children. We concluded that only a specific, metabolically vulnerable sub-population of patients with Ras-MAPK pathway mutations presents with mitochondrial dysfunction and a more severe, early-onset disease. We postulate that patients with Ras-MAPK mutations have an increased susceptibility, but a second metabolic hit is needed to cause the clinical manifestation of mitochondrial dysfunction. PMID:21063443

  7. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    SciTech Connect

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-04-15

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.

  8. Lipopolysaccharide enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells

    PubMed Central

    Luo, Shue-Fen; Wang, Chuan-Chwan; Chiu, Chi-Tso; Chien, Chin-Sung; Hsiao, Li-Der; Lin, Chien-Huang; Yang, Chuen-Mao

    2000-01-01

    Bacterial lipopolysaccharide (LPS) was found to induce inflammatory responses and to enhance bronchial hyperreactivity to several contractile agonists. However, the implication of LPS in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study, we investigated the effect of LPS on mitogen-activated protein kinase (MAPK) activation associated with potentiation of bradykinin (BK)-induced inositol phosphates (IPs) accumulation and Ca2+ mobilization in canine cultured tracheal smooth muscle cells (TSMCs).LPS stimulated phosphorylation of p42/p44 MAPK in a time- and concentration-dependent manner using a Western blot analysis against a specific phosphorylated form of MAPK antibody. Maximal stimulation of the p42 and p44 MAPK isoforms occurred after 7 min-incubation and the maximal effect was achieved with 100 μg ml−1 LPS.Pretreatment of TSMCs with LPS potentiated BK-induced IPs accumulation and Ca2+ mobilization. However, there was no effect on the IPs response induced by endothelin-1, 5-hydroxytryptamine, and carbachol. In addition, pretreatment with PDGF-BB enhanced BK-induced IPs response.These enhancements by LPS and PDGF-BB might be due to an increase in BK B2 receptor density (Bmax) in TSMCs, characterized by competitive inhibition of [3H]-BK binding using B1 and B2 receptor-selective reagents.The enhancing effects of LPS and PDGF-BB were attenuated by PD98059, an inhibitor of MAPK kinase (MEK), suggesting that the effect of LPS may share a common signalling pathway with PDGF-BB in TSMCs.Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by LPS and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases.These results suggest that the augmentation of BK-induced responses produced by LPS might be, at least in part, mediated through activation of Ras/Raf/MEK/MAPK pathway in TSMCs. PMID:10952668

  9. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  10. Ras-activated RSK1 phosphorylates EBP50 to regulate its nuclear localization and promote cell proliferation.

    PubMed

    Lim, Hooi Cheng; Jou, Tzuu-Shuh

    2016-03-01

    Differential subcellular localization of EBP50 leads to its controversial role in cancer biology either as a tumor suppressor when it resides at the membrane periphery, or a tumor facilitator at the nucleus. However, the mechanism behind nuclear localization of EBP50 remains unclear. A RNA interference screening identified the downstream effector of the Ras-ERK cascade, RSK1, as the molecule unique for nuclear transport of EBP50. RSK1 binds to EBP50 and phosphorylates it at a conserved threonine residue at position 156 (T156) under the regulation of growth factor. Mutagenesis experiments confirmed the significance of T156 residue in nuclear localization of EBP50, cellular proliferation, and oncogenic transformation. Our study sheds light on a possible therapeutic strategy targeting at this aberrant nuclear expression of EBP50 without affecting the normal physiological function of EBP50 at other subcellular localization.

  11. GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells.

    PubMed Central

    Koide, H; Satoh, T; Nakafuku, M; Kaziro, Y

    1993-01-01

    Ras is involved in signal transduction of various factors for growth, differentiation, and oncogenesis. Recent studies have revealed several proteins that function upstream and downstream of the Ras signaling pathway. However, its immediate downstream target molecular has not yet been identified. In an effort to identify the Ras-associated downstream proteins, we added recombinant Ha-Ras in a GTP-bound form to cell-free lysates and used several antibodies against Ras to immunoprecipitate Ras complexes. We found that a serine/threonine kinase, Raf-1, was coimmunoprecipitated with Ha-Ras by two anti-Ras antibodies (LA069 and Y13-238), whereas a neutralizing antibody against Ras (Y13-259) could not precipitate Raf-1. The coimmunoprecipitation was observed with a complex of Ras and guanosine 5'-[gamma- thio]triphosphate but not with a complex of Ras and guanosine 5'-[beta-thio]diphosphate. The GTP-dependent association of Ha-Ras with Raf-1 was observed with lysates of various types of cultured cells, including NIH 3T3, pheochromocytoma (PC) 12, Ba/F3, and Jurkat T cells, and also with crude extracts from rat brain. Furthermore, Raf-1 was precipitated with a transforming Ha-Ras mutant ([Val12]Ras) and wild-type Ha-Ras but not with an effector-region mutant ([Leu35,ARg37]Ras) that lacks transforming activity. These results indicate that Ras.GTP physically associates with Raf either directly or through other component(s) and strongly suggest that Raf functions in close downstream proximity to Ras in mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8378348

  12. Gamma Band Activity in the Reticular Activating System

    PubMed Central

    Urbano, Francisco J.; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Garcia-Rill, Edgar

    2012-01-01

    This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep–wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep–wake oscillation that is orchestrated by brainstem–thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep–wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of

  13. Classic Ras Proteins Promote Proliferation and Survival Via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells

    PubMed Central

    Brossier, Nicole M.; Prechtl, Amanda M.; Longo, Jody Fromm; Barnes, Stephen; Wilson, Landon S.; Byer, Stephanie J.; Brosius, Stephanie N.; Carroll, Steven L.

    2015-01-01

    Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras and K-Ras are coexpressed with their activators, (guanine nucleotide exchange factors), in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades. PMID:25946318

  14. Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells.

    PubMed

    Brossier, Nicole M; Prechtl, Amanda M; Longo, Jody Fromm; Barnes, Stephen; Wilson, Landon S; Byer, Stephanie J; Brosius, Stephanie N; Carroll, Steven L

    2015-06-01

    Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.

  15. RAS - Screens & Assays - Drug Discovery

    Cancer.gov

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  16. Proposal of RAS-diuretic vs. RAS-calcium antagonist strategies in high-risk hypertension: insight from the 24-hour ambulatory blood pressure profile and central pressure.

    PubMed

    Kario, Kazuomi

    2010-01-01

    I here propose an individualized renin angiotensin system (RAS) inhibitor-based combination therapy with calcium-channel blockers (CCBs) or with diuretics, based on the 24-hr ambulatory blood pressure (BP) profiles and central pressure in relation to the target organ damage in high-risk hypertensive patients. For high-risk patients with increased circulating volume, such as that caused by chronic kidney disease (CKD) or congestive heart failure (CHF), who are likely to exhibit a non-dipper/riser pattern of nocturnal BP fall, diuretics are recommended in combination with a RAS inhibitor to reduce nocturnal BP preferentially. For high-risk patients with arterial diseases such as cardiovascular disease and increased arterial stiffness, who are likely to exhibit exaggerated BP variability, such as morning BP surge and day-to-day BP variability, a CCB is recommended for use in combination with a RAS inhibitor to reduce BP variability and central BP. In particular, bedtime dosing of a RAS inhibitor targeting sleep-early morning activation of RAS may be particularly effective for cardiorenal protection. PMID:20728424

  17. Activation of systemic, but not local, renin-angiotensin system is associated with upregulation of TNF-α during prolonged fasting in northern elephant seal pups.

    PubMed

    Suzuki, Miwa; Vázquez-Medina, José Pablo; Viscarra, Jose A; Soñanez-Organis, José G; Crocker, Daniel E; Ortiz, Rudy M

    2013-09-01

    Northern elephant seal pups naturally endure a 2-3 month post-weaning fast that is associated with activation of systemic renin-angiotensin system (RAS), a decrease in plasma adiponectin (Acrp30), and insulin resistance (IR)-like conditions. Angiotensin II (Ang II) and tumor necrosis factor-alpha (TNF-α) are potential causal factors of IR, while Acrp30 may improve insulin signaling. However, the effects of fasting-induced activation of RAS on IR-like conditions in seals are not well described. To assess the effects of prolonged food deprivation on systemic and local RAS, and their potential contribution to TNF-α as they relate to an IR condition, the mRNA expressions of adipose and muscle RAS components and immuno-relevant molecules were measured along with plasma RAS components. Mean plasma renin activity and Ang II concentrations increased by 89 and 1658%, respectively, while plasma angiotensinogen (AGT) decreased by 49% over the fast, indicative of systemic RAS activation. Prolonged fasting was associated with decreases in adipose and muscle AGT mRNA expressions of 69 and 68%, respectively, corresponding with decreases in tissue protein content, suggesting suppression of local AGT production. Muscle TNF-α mRNA and protein increased by 239 and 314%, whereas those of adipose Acrp30 decreased by 32 and 98%, respectively. Collectively, this study suggests that prolonged fasting activates a systemic RAS, which contributes to an increase in muscle TNF-α and suppression of adipose Acrp30. This targeted and tissue-specific regulation of TNF-α and Acrp30 is likely coordinated to synergistically contribute to the development of an IR-like condition, independent of local RAS activity. These data enhance our understanding of the adaptive mechanisms evolved by elephant seals to tolerate potentially detrimental conditions. PMID:23685967

  18. Activation of systemic, but not local, renin-angiotensin system is associated with upregulation of TNF-α during prolonged fasting in northern elephant seal pups.

    PubMed

    Suzuki, Miwa; Vázquez-Medina, José Pablo; Viscarra, Jose A; Soñanez-Organis, José G; Crocker, Daniel E; Ortiz, Rudy M

    2013-09-01

    Northern elephant seal pups naturally endure a 2-3 month post-weaning fast that is associated with activation of systemic renin-angiotensin system (RAS), a decrease in plasma adiponectin (Acrp30), and insulin resistance (IR)-like conditions. Angiotensin II (Ang II) and tumor necrosis factor-alpha (TNF-α) are potential causal factors of IR, while Acrp30 may improve insulin signaling. However, the effects of fasting-induced activation of RAS on IR-like conditions in seals are not well described. To assess the effects of prolonged food deprivation on systemic and local RAS, and their potential contribution to TNF-α as they relate to an IR condition, the mRNA expressions of adipose and muscle RAS components and immuno-relevant molecules were measured along with plasma RAS components. Mean plasma renin activity and Ang II concentrations increased by 89 and 1658%, respectively, while plasma angiotensinogen (AGT) decreased by 49% over the fast, indicative of systemic RAS activation. Prolonged fasting was associated with decreases in adipose and muscle AGT mRNA expressions of 69 and 68%, respectively, corresponding with decreases in tissue protein content, suggesting suppression of local AGT production. Muscle TNF-α mRNA and protein increased by 239 and 314%, whereas those of adipose Acrp30 decreased by 32 and 98%, respectively. Collectively, this study suggests that prolonged fasting activates a systemic RAS, which contributes to an increase in muscle TNF-α and suppression of adipose Acrp30. This targeted and tissue-specific regulation of TNF-α and Acrp30 is likely coordinated to synergistically contribute to the development of an IR-like condition, independent of local RAS activity. These data enhance our understanding of the adaptive mechanisms evolved by elephant seals to tolerate potentially detrimental conditions.

  19. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity.

    PubMed

    Cussac, D; Vidal, M; Leprince, C; Liu, W Q; Cornille, F; Tiraboschi, G; Roques, B P; Garbay, C

    1999-01-01

    With the aim of interrupting the growth factor-stimulated Ras signaling pathway at the level of the Grb2-Sos interaction, a peptidimer, made of two identical proline-rich sequences from Sos linked by a lysine spacer, was designed using structural data from Grb2 and a proline-rich peptide complexed with its SH3 domains. The peptidimer affinity for Grb2 is 40 nM whereas that of the monomer is 16 microM, supporting the dual recognition of both Grb2 SH3 domains by the dimer. At 50 nM, the peptidimer blocks selectively Grb2-Sos complexation in ER 22 (CCL 39 fibroblasts overexpressing epidermal growth factor receptor) cellular extracts. The peptidimer specifically recognizes Grb2 and does not interact with PI3K or Nck, two SH3 domain-containing adaptors. The peptidimer was modified to enter cells by coupling to a fragment of Antennapedia homeodomain. At 10 microM, the conjugate inhibits the Grb2-Sos interaction (100%) and MAP kinase (ERK1 and ERK2) phosphorylation (60%) without modifying cellular growth of ER 22 cells. At the same concentration, the conjugate also inhibits both MAP kinase activation induced by nerve growth factor or epidermal growth factor in PC12 cells, and differentiation triggered by nerve growth factor. Finally, when tested for its antiproliferative activity, the conjugate was an efficient inhibitor of the colony formation of transformed NIH3T3/HER2 cells grown in soft agar, with an IC50 of around 1 microM. Thus, the designed peptidimers appear to be interesting leads to investigate signaling and intracellular processes and for designing selective inhibitors of tumorigenic Ras-dependent processes.

  20. Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains.

    PubMed

    Michael, J V; Wurtzel, J G T; Goldfinger, L E

    2016-05-30

    In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition

  1. Delineation of the Roles Played by RasG and RasC in cAMP-dependent Signal Transduction during the Early Development of Dictyostelium discoideum

    PubMed Central

    Bolourani, Parvin; Spiegelman, George B.

    2006-01-01

    On starvation, the cellular slime mold Dictyostelium discoideum initiates a program of development leading to formation of multicellular structures. The initial cell aggregation requires chemotaxis to cyclic AMP (cAMP) and relay of the cAMP signal by the activation of adenylyl cyclase (ACA), and it has been shown previously that the Ras protein RasC is involved in both processes. Insertional inactivation of the rasG gene resulted in delayed aggregation and a partial inhibition of early gene expression, suggesting that RasG also has a role in early development. Both chemotaxis and ACA activation were reduced in the rasG− cells, but the effect on chemotaxis was more pronounced. When the responses of rasG− cells to cAMP were compared with the responses of rasC− and rasC−rasG− strains, generated in otherwise isogenic backgrounds, these studies revealed that signal transduction through RasG is more important in chemotaxis and early gene expression, but that signal transduction through RasC is more important in ACA activation. Because the loss of either of the two Ras proteins alone did not result in a total loss of signal output down either of the branches of the cAMP signal-response pathway, there appears to be some overlap of function. PMID:16885420

  2. Cellular and subcellular localization of Ras guanyl nucleotide-releasing protein in the rat hippocampus.

    PubMed

    Pierret, P; Vallée, A; Mechawar, N; Dower, N A; Stone, J C; Richardson, P M; Dunn, R J

    2001-01-01

    Ras guanyl nucleotide-releasing protein (RasGRP) is a recently discovered Ras guanyl nucleotide exchange factor that is expressed in selected regions of the rodent CNS, with high levels of expression in the hippocampus. Biochemical studies suggest that RasGRP can activate the Ras signal pathway in response to changes in diacylglycerol and possibly calcium. To investigate potential sites for RasGRP signaling, we have determined the cellular and subcellular localization of RasGRP protein in adult rat hippocampus, and have also examined the appearance of RasGRP mRNA and protein during hippocampal development. RasGRP immunoreactivity is predominately localized to those neurons participating in the direct cortico-hippocampo-cortical loop. In both hippocampal and entorhinal neurons, RasGRP protein appeared to be localized to both dendrites and somata, but not to axons. Electron microscopy of hippocampal pyramidal cells confirmed RasGRP immunoreactivity in neuronal cell bodies and dendrites, where it appeared to be associated with microtubules. The localization of RasGRP to dendrites suggests a role for this pathway in the regulation of dendritic function. Examination of developing hippocampal structures indicated that RasGRP mRNA and protein appear synchronously during the first 2 weeks of postnatal development as these neurons become fully mature. This result indicates that the RasGRP signal transduction pathway is not required during early hippocampal development, but is a feature of mature neurons during the later stages of development.

  3. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.

    PubMed

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G; Hancock, John F

    2014-03-01

    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.

  4. Dimerize RACK1 upon transformation with oncogenic ras

    SciTech Connect

    Chu, L.-Y.; Chen, Y.-H.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-05-06

    From our previous studies, we learned that syndecan-2/p120-GAP complex provided docking site for Src to prosecute tyrosine kinase activity upon transformation with oncogenic ras. And, RACK1 protein was reactive with syndecan-2 to keep Src inactivated, but not when Ras was overexpressed. In the present study, we characterized the reaction between RACK1 protein and Ras. RACK1 was isolated from BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus and RACK1 was revealed to react with GTP-K{sub B}-Ras(Q{sub 61}K), not GDP-K{sub B}-Ras(Q{sub 61}K). This selective interaction between RACK1 and GTP-K{sub B}-Ras(Q{sub 61}K) was further confirmed with RACK1 of human placenta and mouse RACK1-encoded fusion protein. We found that RACK1 was dimerized upon reaction with GTP-K{sub B}-Ras(Q{sub 61}K), as well as with 14-3-3{beta} and geranylgeranyl pyrophosphate, as revealed by phosphorylation with Src tyrosine kinase. We reported the complex of RACK1/GTP-K{sub B}-Ras(Q{sub 61}K) reacted selectively with p120-GAP. This interaction was sufficient to dissemble RACK1 into monomers, a preferred form to compete for the binding of syndecan-2. These data indicate that the reaction of GTP-K{sub B}-Ras(Q{sub 61}K) with RACK1 in dimers may operate a mechanism to deplete RACK1 from reaction with syndecan-2 upon transformation by oncogenic ras and the RACK1/GTP-Ras complex may provide a route to react with p120-GAP and recycle monomeric RACK1 to syndecan-2.

  5. Complex effects of Ras proto-oncogenes in tumorigenesis.

    PubMed

    Diaz, Roberto; Lopez-Barcons, Lluis; Ahn, Daniel; Garcia-Espana, Antonio; Yoon, Andrew; Matthews, Jeremy; Mangues, Ramon; Perez-Soler, Roman; Pellicer, Angel

    2004-04-01

    Ras proteins have been found mutated in about one-third of human tumors. In vitro, Ras has been shown to regulate distinct and contradictory effects, such as cellular proliferation and apoptosis. Nonetheless, the effects that the wild-type protein elicits in tumorigenesis are poorly understood. Depending on the type of tissue, Ras proto-oncogenes appear to either promote or inhibit the tumor phenotype. In this report, we treated wild-type and N-ras knockout mice with 3-methylcholanthrene (MCA) to induce fibrosarcomas and found that MCA is more carcinogenic in wild-type mice than in knockout mice. After injecting different doses of a tumorigenic cell line, the wild-type mice exhibited a shorter latency of tumor development than the knockouts, indicating that there are N-ras-dependent differences in the stromal cells. Likewise, we have analyzed B-cell lymphomas induced by either N-methylnitrosourea or by the N-ras oncogene in mice that over-express the N-ras proto-oncogene and found that the over-expression of wild-type N-ras is able to increase the incidence of these lymphomas. Considered together, our results indicate that Ras proto-oncogenes can enhance or inhibit the malignant phenotype in vivo in different systems.

  6. Resveratrol induces apoptosis by directly targeting Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1)

    PubMed Central

    Oi, Naomi; Yuan, Jian; Malakhova, Margarita; Luo, Kuntian; Li, Yunhui; Ryu, Joohyun; Zhang, Lei; Bode, Ann M.; Xu, Zengguang; Li, Yan; Lou, Zhenkun; Dong, Zigang

    2014-01-01

    Resveratrol possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase activating protein SH3 domain binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol (RSVL)-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53 and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1. PMID:24998844

  7. PAI-1 Expression Is Required for HDACi-Induced Proliferative Arrest in ras-Transformed Renal Epithelial Cells

    PubMed Central

    Higgins, Stephen P.; Higgins, Craig E.; Higgins, Paul J.

    2011-01-01

    Malignant transformation of mammalian cells with ras family oncogenes results in dramatic changes in cellular architecture and growth traits. The generation of flat revertants of v-K-ras-transformed renal cells by exposure to the histone deacetylase inhibitor sodium butyrate (NaB) was previously found to be dependent on transcriptional activation of the PAI-1 (SERPINE1) gene (encoding the type-1 inhibitor of urokinase and tissue-type plasminogen activators). NaB-initiated PAI-1 expression preceded induced cell spreading and entry into G1 arrest. To assess the relevance of PAI-1 induction to growth arrest in this cell system more critically, two complementary approaches were used. The addition of a stable, long half-life, recombinant PAI-1 mutant to PAI-1-deficient v-K-ras-/c-Ha-ras-transformants or to PAI-1 functionally null, NaB-resistant, 4HH cells (engineered by antisense knockdown of PAI-1 mRNA transcripts) resulted in marked cytostasis in the absence of NaB. The transfection of ras-transformed cells with the Rc/CMVPAI expression construct, moreover, significantly elevated constitutive PAI-1 synthesis (10- to 20-fold) with a concomitant reduction in proliferative rate. These data suggest that high-level PAI-1 expression suppresses growth of chronic ras-oncogene transformed cells and is likely a major cytostatic effector of NaB exposure. PMID:21912547

  8. beta-hexosaminidase-induced activation of p44/42 mitogen-activated protein kinase is dependent on p21Ras and protein kinase C and mediates bovine airway smooth-muscle proliferation.

    PubMed

    Lew, D B; Dempsey, B K; Zhao, Y; Muthalif, M; Fatima, S; Malik, K U

    1999-07-01

    Late-phase and sustained activation of p44/42(MAPK) has been reported to be a critical factor in cell mitogenesis. We therefore hypothesized that p44/42(MAPK) is involved in mannosyl-rich glycoprotein-induced mitogenesis in bovine airway smooth-muscle cells (ASMC). Treatment of adherent ASMC with beta-hexosaminidase A (Hex A, 50 nM), an endogenous mannosyl-rich glycoprotein, resulted in a late-onset (30-min) activation of p44/42(MAPK) that lasted for 4 h. Activation of p44/42(MAPK) induced by Hex A was inhibited by an 18-mer phosphorothioate-derivatized antisense oligonucleotide (1-5 microM) directed to human p44(MAPK); the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059 (5 microM); the p42(MAPK) inhibitor Tyrphostin AG-126 (0.2 microM); the farnesyl transferase inhibitors SCH-56582 (10 microM) and FPT III (10 miroM), which inhibit p21Ras activation; and Calphostin C (0.2 microM), an inhibitor of protein kinase C. These agents also inhibited Hex A-induced cell proliferation in bovine ASMC. These data suggest that Hex A activates p44/42(MAPK) in a p21Ras- and PKC-dependent manner and that this activation mediates Hex A- induced mitogenesis in bovine ASMC.

  9. Contrasting signaling pathways of alpha1A- and alpha1B-adrenergic receptor subtype activation of phosphatidylinositol 3-kinase and Ras in transfected NIH3T3 cells.

    PubMed

    Hu, Z W; Shi, X Y; Lin, R Z; Hoffman, B B

    1999-01-01

    Activation of protein kinases is an important intermediate step in signaling pathways of many G protein-coupled receptors including alpha1-adrenergic receptors. The present study was designed to investigate the capacity of the three cloned subtypes of human alpha1-receptors, namely, alpha1A, alpha1B and alpha1D to activate phosphatidylinositol 3-kinase (PI 3-kinase) and p21ras in transfected NIH3T3 cells. Norepinephrine activated PI 3-kinase in cells expressing human alpha1A and alpha1B via pertussis toxin-insensitive G proteins; alpha1D-receptors did not detectably activate this kinase. Transient transfection of NIH 3T3 cells with the alpha-subunit of the G protein transducin (alpha(t)) a scavenger of betagamma-subunits released from activated G proteins, inhibited alpha1B-receptor but not alpha1A-receptor-stimulated PI 3-kinase activity. Stimulation of both alpha1A- and alpha1B-receptors activated p21ras and stimulated guanine nucleotide exchange on Ras protein. Overexpression of a dominant negative mutant of p21ras attenuated alpha1B-receptor but not alpha1A-receptor activation of PI 3-kinase. Overexpression of a dominant negative mutant of PI 3-kinase attenuated alpha1A- but not alpha1B-receptor-stimulated mitogen-activated protein kinase activity. These results demonstrate the capacity for heterologous signaling of the alpha1-adrenergic receptor subtypes in promoting cellular responses in NIH3T3 cells.

  10. Ras chaperones: new targets for cancer and immunotherapy.

    PubMed

    Kloog, Yoel; Elad-Sfadia, Galit; Haklai, Roni; Mor, Adam

    2013-01-01

    The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib®) interferes with Ras membrane interactions that are crucial for Ras-dependent signaling and cellular transformation. FTS had been successfully evaluated in clinical trials of cancer patients. Interestingly, its effect is mediated by targeting Ras chaperones that serve as key coordinators for Ras proper folding and delivery, thus offering a novel target for cancer therapy. The development of new FTS analogs has revealed that the specific modifications to the FTS carboxyl group by esterification and amidation yielded compounds with improved growth inhibitory activity. When FTS was combined with additional therapeutic agents its activity toward Ras was significantly augmented. FTS should be tested not only in cancer but also for genetic diseases associated with abnormal Ras signaling, as well as for various inflammatory and autoimmune disturbances, where Ras plays a major role. We conclude that FTS has a great potential both as a safe anticancer drug and as a promising immune modulator agent. PMID:25033809

  11. H-Ras regulation of TRAIL death receptor mediated apoptosis

    PubMed Central

    Chen, Jun-Jie; Bozza, William P.; Di, Xu; Zhang, Yaqin; Hallett, William; Zhang, Baolin

    2014-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists. PMID:25026275

  12. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination

    PubMed Central

    Parry, Jean M.; Sundaram, Meera V.

    2014-01-01

    Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize. PMID:25371363

  13. Design, synthesis and biological evaluation of sugar-derived Ras inhibitors.

    PubMed

    Peri, Francesco; Airoldi, Cristina; Colombo, Sonia; Martegani, Enzo; van Neuren, Anske Stephanie; Stein, Matthias; Marinzi, Chiara; Nicotra, Francesco

    2005-10-01

    The design and synthesis of novel Ras inhibitors with a bicyclic scaffold derived from the natural sugar D-arabinose are presented. Molecular modelling showed that these ligands can bind Ras by accommodating the aromatic moieties and the phenylhydroxylamino group in a cavity near the Switch II region of the protein. All the synthetic compounds were active in inhibiting nucleotide exchange on p21 human Ras in vitro, and two of them selectively inhibited Ras-dependent cell growth in vivo.

  14. Novel triterpenoids isolated from raisins exert potent antiproliferative activities by targeting mitochondrial and Ras/Raf/ERK signaling in human breast cancer cells.

    PubMed

    Liu, Juan; Wang, Yihai; Liu, Rui Hai; He, Xiangjiu

    2016-07-13

    Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking and brewing. Bioactivity-guided fractionation of raisins was used to determine the chemical identity of bioactive constituents. Seven triterpenoids, including three novel triterpenoids, were isolated and identified. The novel triterpenoids were elucidated to be 3β,13β-dihydroxy-12,13-dihydrooleanolic acid (1), 3β,12β,13β-trihydroxy-12,13-dihydrooleanolic acid (2, TOA), and 3β,13β-dihydroxy-12,13-dihydroursolic acid (7), respectively. TOA showed the highest antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 3.60 ± 0.55 μM. Compounds 1, 3 and 7 also exhibited potent antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 7.10 ± 0.65, 10.22 ± 0.90 and 8.91 ± 1.12 μM. Compounds 1 and 2 also exhibited potent antioxidant activities. Moreover, the detailed cytotoxic mechanisms of TOA were investigated by targeting the mitochondrial and protein tyrosine kinase signaling (Ras/Raf/ERK). The results strongly demonstrated that the novel triterpenoids isolated from raisins could be promising candidates for therapy of breast cancer. PMID:27359376

  15. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  16. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    SciTech Connect

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; Massiera, Florence; Teboul, Michele; Ailhaud, Gerard; Kim, Jung; Moustaid-Moussa, Naima; Voy, Brynn H

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  17. H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype.

    PubMed

    Moon, A; Kim, M S; Kim, T G; Kim, S H; Kim, H E; Chen, Y Q; Kim, H R

    2000-01-15

    Elevated p21ras expression is associated with tumor aggressiveness in breast cancer including the extent of invasion into fat tissues, infiltration into lymphatic vessels and tumor recurrence. In the present study, we have examined the roles of H-ras and N-ras, members of the human ras gene family, in the pathogenesis of breast cancer. We show that H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells (MCF10A) as determined by the Matrigel invasion assay, whereas both H-ras and N-ras induce anchorage-independent growth, as shown by soft agar assay. We examined the effects of H-ras and N-ras activation on the expression of MMP-2 and MMP-9, which can degrade type IV collagen, the major structural collagen of the basement membrane. We show that MMP-2 is efficiently induced by H-ras, whereas MMP-9 induction is more prominent in N-ras-activated MCF10A cells. We also show that H-ras-mediated invasiveness is significantly inhibited when the expression of MMP-2 is down-regulated, using an oligodeoxyribonucleotide complementary to the MMP-2 mRNA, or when MMP-2 activity is blocked by its inhibitor TIMP-2 (tissue inhibitors of matrix metalloproteinase-2). Our results show that the H-ras-induced invasive phenotype is associated more closely with the expression of MMP-2 in human breast epithelial cells, rather than the induction of MMP-9 expression, as shown previously for rat embryonic fibroblasts.

  18. Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction*

    PubMed Central

    Inder, Kerry L.; Lau, Chiyan; Loo, Dorothy; Chaudhary, Natasha; Goodall, Andrew; Martin, Sally; Jones, Alun; van der Hoeven, Dharini; Parton, Robert G.; Hill, Michelle M.; Hancock, John F.

    2009-01-01

    The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3. PMID:19661056

  19. Methionine adenosyltransferase 2B-GIT1 complex serves as a scaffold to regulate Ras/Raf/MEK1/2 activity in human liver and colon cancer cells.

    PubMed

    Peng, Hui; Li, Tony W H; Yang, Heping; Moyer, Mary P; Mato, Jose M; Lu, Shelly C

    2015-04-01

    Methionine adenosyltransferase 2B (MAT2B) encodes for variant proteins V1 and V2 that interact with GIT1 to increase ERK activity and growth in human liver and colon cancer cells. MAT2B or GIT1 overexpression activates MEK. This study explores the mechanism for MEK activation. We examined protein-protein interactions by co-immunoprecipitation and verified by confocal microscopy and pull-down assay using recombinant or in vitro translated proteins. Results were confirmed in an orthotopic liver cancer model. We found that MAT2B and GIT1-mediated MEK1/2 activation was not mediated by PAK1 or Src in HepG2 or RKO cells. Instead, MAT2B and GIT1 interact with B-Raf and c-Raf and enhance recruitment of Raf proteins to MEK1/2. MAT2B-GIT1 activates c-Raf, which is the key mediator for MEK/12 activation, because this still occurred in RKO cells that express constitutively active B-Raf mutant. The mechanism lies with the ability of MAT2B-GIT1 to activate Ras and promote B-Raf/c-Raf heterodimerization. Interestingly, MAT2B but not GIT1 can directly interact with Ras, which increases protein stability. Finally, increased Ras-Raf-MEK signaling occurred in phenotypically more aggressive liver cancers overexpressing MAT2B variants and GIT1. In conclusion, interaction between MAT2B and GIT1 serves as a scaffold and facilitates signaling in multiple steps of the Ras/Raf/MEK/ERK pathway, further emphasizing the importance of MAT2B/GIT1 interaction in cancer growth.

  20. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis.

    PubMed

    Mo, Lan; Zheng, Xiaoyong; Huang, Hong-Ying; Shapiro, Ellen; Lepor, Herbert; Cordon-Cardo, Carlos; Sun, Tung-Tien; Wu, Xue-Ru

    2007-02-01

    Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%-90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity--a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system. PMID:17256055

  1. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  2. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed

    Downward, Julian

    2015-04-15

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacologic approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be "undruggable." This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS-mutant but not wild-type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS-mutant cancers. Possible reasons for these disappointing results are discussed here, along with a reevaluation of the approaches taken. On the basis of experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS-mutant cancers. Clin Cancer Res; 21(8); 1802-9. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878361

  3. Hormonal status modifies renin-angiotensin system-regulating aminopeptidases and vasopressin-degrading activity in the hypothalamus-pituitary-adrenal axis of male mice.

    PubMed

    García, María Jesús; Martínez-Martos, José Manuel; Mayas, María Dolores; Carrera, María Pilar; Ramírez-Expósito, María Jesús

    2003-06-20

    Local renin-angiotensin systems (RAS) have been postulated in brain, pituitary and adrenal glands. These local RAS have been implicated, respectively, in the central regulation of the cardiovascular system and body water balance, the secretion of pituitary hormones and the secretion of aldosterone by adrenal glands. By other hand, it is known that the hypothalamus-pituitary-adrenal (HPA) axis is involved in blood pressure regulation, and is affected by sex hormones. The aim of the present work is to analyze the influence of testosterone on RAS-regulating aminopeptidase A, B and M activities and vasopressin-degrading activity in the HPA axis, measuring these activities in their soluble and membrane-bound forms in the hypothalamus, pituitary and adrenal glands of orchidectomized males and orchidectomized males treated subcutaneously with several doses of testosterone. The present data suggest that in male mice, testosterone influences the RAS- and vasopressin-degrading activities at all levels of the HPA axis.

  4. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  5. Oncogenicity of human N-ras oncogene and proto-oncogene introduced into retroviral vectors

    SciTech Connect

    Souyri, M.; Vigon, I.; Charon, M.; Tambourin, P. )

    1989-09-01

    The N-ras gene is the only member of the ras family which has never been naturally transduced into a retrovirus. In order to study the in vitro and in vivo oncogenicity of N-ras and to compare its pathogenicity to that of H-ras, the authors have inserted an activated or a normal form of human N-ras cDNA into a slightly modified Harvey murine sarcoma virus-derived vector in which the H-ras p21 coding region had been deleted. The resulting constructions were transfected into NIH 3T3 cells. The activated N-ras-containing construct (HSN) induced 10{sup 4} foci per {mu}g of DNA and was found to be as transforming as H-ras was. After infection of the transfected cells by either the ecotropic Moloney murine leukemia virus or the amphotropic 4070A helper viruses, rescued transforming viruses were injected into newborn mice. Both pseudotypes of HSN virus containing activated N-ras induced the typical Harvey disease with similar latency. However, they found that the virus which contained normal N-ras p21 (HSn) was also pathogenic and induced splenomegaly, lymphadenopathies, and sarcoma in mice after a latency of 3 to 7 weeks. In addition, Moloney murine leukemia virus pseudotypes of N-ras caused neurological disorders in 30% of the infected animals. These results differed markedly from those of previous experiments in which the authors had inserted the activated form of N-ras in the pSV(X) vector: the resulting SVN-ras virus was transforming on NIH 3T3 cells but was poorly oncogenic in vivo. Altogether, these data demonstrated unequivocally that N-ras is potentially as oncogenic as H-ras and that such oncogenic effect could depend on the vector environment.

  6. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  7. Activation of the intrarenal renin-angiotensin-system in murine polycystic kidney disease

    PubMed Central

    Saigusa, Takamitsu; Dang, Yujing; Bunni, Marlene A; Amria, May Y; Steele, Stacy L; Fitzgibbon, Wayne R; Bell, P Darwin

    2015-01-01

    The mechanism for early hypertension in polycystic kidney disease (PKD) has not been elucidated. One potential pathway that may contribute to the elevation in blood pressure in PKD is the activation of the intrarenal renin-angiotensin-system (RAS). For example, it has been shown that kidney cyst and cystic fluid contains renin, angiotensin II (AngII), and angiotensinogen (Agt). Numerous studies suggest that ciliary dysfunction plays an important role in PKD pathogenesis. However, it is unknown whether the primary cilium affects the intrarenal RAS in PKD. The purpose of this study was to determine whether loss of cilia or polycystin 1 (PC1) increases intrarenal RAS in mouse model of PKD. Adult Ift88 and Pkd1 conditional floxed allele mice with or without cre were administered tamoxifen to induce global knockout of the gene. Three months after tamoxifen injection, kidney tissues were examined by histology, immunofluorescence, western blot, and mRNA to assess intrarenal RAS components. SV40 immortalized collecting duct cell lines from hypomorphic Ift88 mouse were used to assess intrarenal RAS components in collecting duct cells. Mice without cilia and PC1 demonstrated increased kidney cyst formation, systolic blood pressure, prorenin, and kidney and urinary angiotensinogen levels. Interestingly immunofluorescence study of the kidney revealed that the prorenin receptor was localized to the basolateral membrane of principal cells in cilia (−) but not in cilia (+) kidneys. Collecting duct cAMP responses to AngII administration was greater in cilia (−) vs. cilia (+) cells indicating enhanced intrarenal RAS activity in the absence of cilia. These data suggest that in the absence of cilia or PC1, there is an upregulation of intrarenal RAS components and activity, which may contribute to elevated blood pressure in PKD. PMID:25999403

  8. RAS is required for epidermal growth factor-stimulated arachidonic acid release in rat-1 fibroblasts.

    PubMed

    Warner, L C; Hack, N; Egan, S E; Goldberg, H J; Weinberg, R A; Skorecki, K L

    1993-12-01

    Previous studies have provided suggestive evidence for an interaction between ras activation and signalling pathways involved in agonist-stimulated arachidonic acid release in a variety of cell systems. In order to clarify this interaction, we have measured epidermal growth factor (EGF)-stimulated arachidonic acid release in rat-1 fibroblasts transfected with the N-17 dominant negative mutation of ras. Cells transfected with the N-17 ras mutant, display a markedly attenuated arachidonic acid-release response to EGF, compared to sham-transfected and non-transfected cells. In contrast, the response to phorbol myristate acetate (PMA) was not attenuated in the N-17-mutant expressing cells. No differences were detected between sham-transfected and N-17 mutant expressing cells in levels of immunodetectable EGF receptor, cytosolic phospholipase A2 or mitogen-activated protein (MAP) kinase. Attenuation of EGF-stimulated arachidonic acid release in the N-17 mutant expressing cells, was accompanied by a marked diminution in EGF-stimulated tyrosine phosphorylation of MAP kinase. We conclude that the signalling pathway involved in epidermal growth factor-stimulated arachidonic acid release is similar to the signalling pathway for mitogenic responses to epidermal growth factor and requires ras activation, likely followed by a downstream cascade of kinases eventuating in MAP kinase activation.

  9. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  10. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization.

    PubMed

    Cadwallader, K A; Paterson, H; Macdonald, S G; Hancock, J F

    1994-07-01

    Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.

  11. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling.

    PubMed

    Pazman, C; Mayes, C A; Fanto, M; Haynes, S R; Mlodzik, M

    2000-04-01

    The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.

  12. Interferon-β Signaling Contributes to Ras Transformation

    PubMed Central

    Tsai, Yu-Chen; Pestka, Sidney; Wang, Lu-Hai; Runnels, Loren W.; Wan, Shan; Lyu, Yi Lisa; Liu, Leroy F.

    2011-01-01

    Increasing evidence has pointed to activated type I interferon signaling in tumors. However, the molecular basis for such activation and its role in tumorigenesis remain unclear. In the current studies, we report that activation of type I interferon (IFN) signaling in tumor cells is primarily due to elevated secretion of the type I interferon, IFN-β. Studies in oncogene-transformed cells suggest that oncogenes such as Ras and Src can activate IFN-β signaling. Significantly, elevated IFN-β signaling in Ras-transformed mammary epithelial MCF-10A cells was shown to contribute to Ras transformation as evidenced by morphological changes, anchorage-independent growth, and migratory properties. Our results demonstrate for the first time that the type I IFN, IFN-β, contributes to Ras transformation and support the notion that oncogene-induced cytokines play important roles in oncogene transformation. PMID:21897875

  13. ras oncogene-dependent activation of the P4 promoter of minute virus of mice through a proximal P4 element interacting with the Ets family of transcription factors.

    PubMed Central

    Fuks, F; Deleu, L; Dinsart, C; Rommelaere, J; Faisst, S

    1996-01-01

    The P4 promoter of parvovirus minute virus of mice (MVMp) directs transcription of the genes coding for nonstructural proteins. The activity of promoter P4 is regulated by several cis-acting DNA elements. Among these, a promoter-proximal GC box was shown to be essential for P4 activity (J.K. Ahn, B.J. Gavin, G. Kumar, and D.C. Ward, J. Virol. 63:5425-5439, 1989). In this study, a motif homologous to an Ets transcription factor-binding site (EBS), located immediately upstream from the GC box, was found to be required for the full activity of promoter P4 in the ras-transformed rat fibroblast cell line FREJ4. In normal parental FR3T3 cells, the transcriptional function of P4 EBS was insignificant but could be restored by transient cell transfection with the c-Ha-ras oncogene. P4 EBS may thus contribute to the stimulation of promoter P4 in ras-transformed cells. Electrophoretic mobility shift assays using crude extracts from FREJ4 cells revealed the binding of a member(s) of the Ets family of transcription factors to the P4 EBS, as well as the interaction of two members of the Sp1 family, Sp1 and Sp3, with the adjacent GC box. When produced in Drosophila melanogaster SL2 cells, Ets-1 and Sp1 proteins acted synergistically to transactivate promoter P4 through their respective cognate sites. PMID:8627649

  14. Performance of McRAS-AC in the GEOS-5 AGCM: Part 1, Aerosol-Activated Cloud Microphysics, Precipitation, Radiative Effects, and Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2012-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.

  15. K-Ras Promotes Tumorigenicity through Suppression of Non-canonical Wnt Signaling.

    PubMed

    Wang, Man-Tzu; Holderfield, Matthew; Galeas, Jacqueline; Delrosario, Reyno; To, Minh D; Balmain, Allan; McCormick, Frank

    2015-11-19

    K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.

  16. RasGRP1 Transgenic Mice Develop Cutaneous Squamous Cell Carcinomas in Response to Skin Wounding

    PubMed Central

    Diez, Federico R.; Garrido, Ann A.; Sharma, Amrish; Luke, Courtney T.; Stone, James C.; Dower, Nancy A.; Cline, J. Mark; Lorenzo, Patricia S.

    2009-01-01

    Models of epidermal carcinogenesis have demonstrated that Ras is a critical molecule involved in tumor initiation and progression. Previously, we have shown that RasGRP1 increases the susceptibility of mice to skin tumorigenesis when overexpressed in the epidermis by a transgenic approach, related to its ability to activate Ras. Moreover, RasGRP1 transgenic mice develop spontaneous papillomas and cutaneous squamous cell carcinomas, some of which appear to originate in sites of injury, suggesting that RasGRP1 may be responding to signals generated during the wound-healing process. In this study, we examined the response of the RasGRP1 transgenic animals to full-thickness incision wounding of the skin, and demonstrated that they respond by developing tumors along the wounded site. The tumors did not present mutations in the H-ras gene, but Rasgrp1 transgene dosage correlated with tumor susceptibility and size. Analysis of serum cytokines showed increased levels of granulocyte colony-stimulating factor in transgenic animals after wounding. Furthermore, in vitro experiments with primary keratinocytes showed that granulocyte colony-stimulating factor stimulated Ras activation, although RasGRP1 was dispensable for this effect. Since granulocyte colony-stimulating factor has been recently associated with proliferation of skin cancer cells, our results may help in the elucidation of pathways that activate Ras in the epidermis during tumorigenesis in the absence of oncogenic ras mutations. PMID:19497993

  17. 1H, 15N and 13C backbone assignments of GDP-bound human H-Ras mutant G12V.

    PubMed

    Amin, Nader; Chiarparin, Elisabetta; Coyle, Joe; Nietlispach, Daniel; Williams, Glyn

    2016-04-01

    Harvey Ras (H-Ras) is a membrane-associated GTPase with critical functions in cell proliferation and differentiation. The G12V mutant of H-Ras is one of the most commonly encountered oncoproteins in human cancer. This mutation disrupts the GTPase activity of H-Ras, leading to constitutive activation and aberrant downstream signalling. Here we report the backbone resonance assignments of human H-Ras mutant G12V lacking the C-terminal membrane attachment domain.

  18. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells.

    PubMed

    Sangle, Ganesh V; Zhao, Ruozhi; Mizuno, Tooru M; Shen, Garry X

    2010-09-01

    Atherothrombotic cardiovascular diseases are the predominant causes of mortality of diabetic patients. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor for fibrinolysis, and it is also implicated in inflammation and tissue remodeling. Increased levels of PAI-1 and glycated low-density lipoprotein (glyLDL) were detected in patients with diabetes. Previous studies in our laboratory demonstrated that heat shock factor-1 (HSF1) is involved in glyLDL-induced PAI-1 overproduction in vascular endothelial cells (EC). The present study investigated transmembrane signaling mechanisms involved in glyLDL-induced HSF1 and PAI-1 up-regulation in cultured human vascular EC and streptozotocin-induced diabetic mice. Receptor for advanced glycation end products (RAGE) antibody prevented glyLDL-induced increase in the abundance of PAI-1 in EC. GlyLDL significantly increased the translocation of V-Ha-Ras Harvey rat sarcoma viral oncogene homologue (H-Ras) from cytoplasm to membrane compared with LDL. Farnesyltransferase inhibitor-277 or small interference RNA against H-Ras inhibited glyLDL-induced increases in HSF1 and PAI-1 in EC. Treatment with diphenyleneiodonium, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor, blocked glyLDL-induced translocation of H-Ras, elevated abundances of HSF1 and PAI-1 in EC, and increased release of hydrogen peroxide from EC. Small interference RNA for p22(phox) prevented glyLDL-induced expression of NOX2, HSF1, and PAI-1 in EC. GlyLDL significantly increased V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) phosphorylation. Treatment with Raf-1 inhibitor blocked glyLDL-induced increase of PAI-1 mRNA in EC. The levels of RAGE, H-Ras, NOX4, HSF1, and PAI-1 were increased in hearts of streptozotocin-diabetic mice and positively correlated with plasma glucose. The results suggest that RAGE, NOX, and H-Ras/Raf-1 are implicated in the up-regulation of HSF1 or PAI-1 in vascular EC under diabetes

  19. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed Central

    Downward, Julian

    2015-01-01

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacological approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be “undruggable.” This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS mutant but not wild type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS mutant cancers. Possible reasons for these disappointing results are discussed here, along with a re-evaluation of the approaches taken. Based on experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS mutant cancers. PMID:25878361

  20. The hypervariable region of K-Ras4B is responsible for its specific interactions with Calmodulin

    PubMed Central

    Abraham, Sherwin J.; Nolet, Ryan P.; Calvert, Richard J.; Anderson, Lucy M.; Gaponenko, Vadim

    2009-01-01

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival and motility. The p21 Ras proteins such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry we demonstrate that the hypervariable region of K-Ras contributes in a major way to the interaction with calmodulin while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca2+-loaded calmodulin with micromolar affinity, while the GTP-γ-S loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin. PMID:19583261

  1. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.

    PubMed

    Abraham, Sherwin J; Nolet, Ryan P; Calvert, Richard J; Anderson, Lucy M; Gaponenko, Vadim

    2009-08-18

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival, and motility. The p21 Ras proteins, such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry, we demonstrate that the hypervariable region of K-Ras4B contributes in a major way to the interaction with calmodulin, while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca(2+)-loaded calmodulin with micromolar affinity, while the GTP-gamma-S-loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin.

  2. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  3. A Ras subfamily GTPase shows cell cycle-dependent nuclear localization

    PubMed Central

    Sutherland, Brent W.; Spiegelman, George B.; Weeks, Gerald

    2001-01-01

    Previously characterized Ras subfamily proteins have been found to be predominantly associated with the plasma membrane where they function in signal transduction pathways to convey extracellular signals to intracellular targets. Here, we provide evidence that the Dictyostelium Ras subfamily protein RasB has a novel subcellular localization and function. The protein is predominantly localized in the nucleus during most of the cell cycle. Furthermore, during mitosis and cytokinesis RasB assumes a diffuse cellular localization despite the fact that the nuclear membrane stays intact. The linkage between the position of RasB in the cell and division suggests that it may have a role in nuclear division. Consistent with this idea, rasB– cells exhibit severe growth defects and cells overexpressing an activated version of RasB are multinucleate. PMID:11606416

  4. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells.

    PubMed

    Saito, Suguru; Kawamura, Toshihiko; Higuchi, Masaya; Kobayashi, Takahiro; Yoshita-Takahashi, Manami; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Kanda, Yasuhiro; Kawamura, Hiroki; Jiang, Shuying; Naito, Makoto; Yoshizaki, Takumi; Takahashi, Masahiko; Fujii, Masahiro

    2015-05-01

    Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.

  5. Chaperone-mediated specificity in Ras and Rap signaling.

    PubMed

    Azoulay-Alfaguter, Inbar; Strazza, Marianne; Mor, Adam

    2015-01-01

    Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.

  6. Characterization of a novel oncogenic K-ras mutation in colon cancer

    SciTech Connect

    Akagi, Kiwamu . E-mail: akagi@cancer-c.pref.saitama.jp; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-19

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity.

  7. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.

  8. The farnesyltransferase inhibitor, LB42708, inhibits growth and induces apoptosis irreversibly in H-ras and K-ras-transformed rat intestinal epithelial cells

    SciTech Connect

    Kim, Han-Soo; Kim, Ju Won; Gang, Jingu; Wen, Jing; Koh, Sang Seok; Koh, Jong Sung; Chung, Hyun-Ho; Song, Si Young . E-mail: gisong@yumc.yonsei.ac.kr

    2006-09-15

    LB42708 (LB7) and LB42908 (LB9) are pyrrole-based orally active farnesyltransferase inhibitors (FTIs) that have similar structures. The in vitro potencies of these compounds against FTase and GGTase I are remarkably similar, and yet they display different activity in apoptosis induction and morphological reversion of ras-transformed rat intestinal epithelial (RIE) cells. Both FTIs induced cell death despite K-ras prenylation, implying the participation of Ras-independent mechanism(s). Growth inhibition by these two FTIs was accompanied by G1 and G2/M cell cycle arrests in H-ras and K-ras-transformed RIE cells, respectively. We identified three key markers, p21{sup CIP1/WAF1}, RhoB and EGFR, that can explain the differences in the molecular mechanism of action between two FTIs. Only LB7 induced the upregulation of p21{sup CIP1/WAF1} and RhoB above the basal level that led to the cell cycle arrest and to distinct morphological alterations of ras-transformed RIE cells. Both FTIs successfully inhibited the ERK and activated JNK in RIE/K-ras cells. While the addition of conditioned medium from RIE/K-ras reversed the growth inhibition of ras-transformed RIE cells by LB9, it failed to overcome the growth inhibitory effect of LB7 in both H-ras- and K-ras-transformed RIE cells. We found that LB7, but not LB9, decreased the expression of EGFRs that confers the cellular unresponsiveness to EGFR ligands. These results suggest that LB7 causes the induction of p21{sup CIP1/WAF1} and RhoB and downregulation of EGFR that may serve as critical steps in the mechanism by which FTIs trigger irreversible inhibitions on the cell growth and apoptosis in ras-transformed cells.

  9. Plk2 Raps up Ras to subdue synapses

    PubMed Central

    Lee, Kea Joo; Hoe, Hyang-Sook

    2011-01-01

    We recently identified the activity-inducible protein kinase Plk2 as a novel overseer of the balance between Ras and Rap small GTPases. Plk2 achieves a profound level of regulatory control by interacting with and phosphorylating at least four Ras and Rap guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Combined, these actions result in synergistic suppression of Ras and hyperstimulation of Rap signaling. Perturbation of Plk2 function abolished homeostatic adaptation of synapses to enhanced activity and impaired behavioral adaptation in various learning tasks, indicating that this regulation was critical for maintaining appropriate Ras/Rap levels. These studies provide insights into the highly cooperative nature of Ras and Rap regulation in neurons. However, different GEF and GAP substrates of Plk2 also controlled specific aspects of dendritic spine morphology, illustrating the ability of individual GAPs/GEFs to assemble microdomains of Ras and Rap signaling that respond to different stimuli and couple to distinct output pathways. PMID:21776418

  10. Society News: PhD theses could win prizes; Last chance for IYA2009 grants; New Fellows; RAS Fellows win prizes; Need a job? Need staff? RAS Library Saturdays

    NASA Astrophysics Data System (ADS)

    2009-08-01

    Fellows who are PhD student supervisors should be on the lookout for exceptionally good work from research students submitting their theses this year, for nomination for the RAS Michael Penston Astronomy Prize and the RAS Keith Runcorn Prize. The RAS is offering one last chance to apply for grants towards International Year of Astronomy activities, but you'll have to apply soon. The Society sends congratulations to Fellows of the RAS who have recently received prestigious awards for their work.

  11. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition

    PubMed Central

    Garcia-Rendueles, Maria E.R.; Ricarte-Filho, Julio C.; Untch, Brian R.; Landa, Iňigo; Knauf, Jeffrey A.; Voza, Francesca; Smith, Vicki E.; Ganly, Ian; Taylor, Barry S.; Persaud, Yogindra; Oler, Gisele; Fang, Yuqiang; Jhanwar, Suresh C.; Viale, Agnes; Heguy, Adriana; Huberman, Kety H.; Giancotti, Filippo; Ghossein, Ronald; Fagin, James A.

    2015-01-01

    Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation are insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacological disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling, and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. PMID:26359368

  12. The RASopathies: Developmental syndromes of Ras/MAPK pathway dysregulation

    PubMed Central

    Tidyman, William E.; Rauen, Katherine A.

    2009-01-01

    The Ras/mitogen activated protein kinase (MAPK) pathway is essential in the regulation of the cell cycle, differentiation, growth and cell senescence, all of which are critical to normal development. It is therefore not surprising that its dysregulation has profound effects on development. A class of developmental disorders, the “RASopathies”, is caused by germline mutations in genes that encode protein components of the Ras/MAPK pathway. The vast majority of these mutations result in increased signal transduction down the Ras/MAPK pathway, but usually to a lesser extent than somatic mutations associated with oncogenesis. Each syndrome exhibits unique phenotypic features, however, since they all cause dysregulation of the Ras/MAPK pathway, there are numerous overlapping phenotypic features between the syndromes, including characteristic facial features, cardiac defects, cutaneous abnormalities, neurocognitive delay and a predisposition to malignancies. Here we review the clinical and underlying molecular basis for each of these syndromes. PMID:19467855

  13. Activation of the Renin-Angiotensin System Promotes Colitis Development

    PubMed Central

    Shi, Yongyan; Liu, Tianjing; He, Lei; Dougherty, Urszula; Chen, Li; Adhikari, Sarbani; Alpert, Lindsay; Zhou, Guolin; Liu, Weicheng; Wang, Jiaolong; Deb, Dilip K.; Hart, John; Liu, Shu Q.; Kwon, John; Pekow, Joel; Rubin, David T.; Zhao, Qun; Bissonnette, Marc; Li, Yan Chun

    2016-01-01

    The renin-angiotensin system (RAS) plays pathogenic roles in renal and cardiovascular disorders, but whether it is involved in colitis is unclear. Here we show that RenTgMK mice that overexpress active renin from the liver developed more severe colitis than wild-type controls. More than 50% RenTgMK mice died whereas all wild-type mice recovered. RenTgMK mice exhibited more robust mucosal TH17 and TH1/TH17 responses and more profound colonic epithelial cell apoptosis compared to wild-type controls. Treatment with aliskiren (a renin inhibitor), but not hydralazine (a smooth muscle relaxant), ameliorated colitis in RenTgMK mice, although both drugs normalized blood pressure. Chronic infusion of angiotensin II into wild-type mice mimicked the severe colitic phenotype of RenTgMK mice, and treatment with losartan [an angiotensin type 1 receptor blocker (ARB)] ameliorated colitis in wild-type mice, confirming a colitogenic role for the endogenous RAS. In human biopsies, pro-inflammatory cytokines were suppressed in patients with inflammatory bowel disease who were on ARB therapy compared to patients not receiving ARB therapy. These observations demonstrate that activation of the RAS promotes colitis in a blood pressure independent manner. Angiotensin II appears to drive colonic mucosal inflammation by promoting intestinal epithelial cell apoptosis and mucosal TH17 responses in colitis development. PMID:27271344

  14. Ras Modifies Proliferation and Invasiveness of Cells Expressing Human Papillomavirus Oncoproteins▿

    PubMed Central

    Yoshida, Satoshi; Kajitani, Naoko; Satsuka, Ayano; Nakamura, Hiroyasu; Sakai, Hiroyuki

    2008-01-01

    Infection by human papillomavirus (HPV) is a major risk factor for human cervical carcinoma. However, the HPV infection alone is not sufficient for cancer formation. Cervical carcinogenesis is considered a multistep process accompanied by genetic alterations of the cell. Ras is activated in approximately 20% of human cancers, and it is related to the metastatic conversion of tumor cells. We investigated how Ras activation was involved in the malignant conversion of HPV-infected lesions. The active form of H-ras was introduced into human primary keratinocytes expressing the HPV type 18 (HPV18) oncoproteins E6 and/or E7. We analyzed the keratinocytes’ growth potentials and found that the activation of the Ras pathway induced senescence-like growth arrest. Senescence could be eliminated by high-risk E7 expression, suggesting that the pRb pathway was important for Ras-induced senescence. Then we analyzed the effect of Ras activation on epidermis development by using an organotypic “raft” culture and found that the E7 and H-ras coexpressions conferred invasive potential on the epidermis. This invasiveness resulted from the upregulation of MT1-MMP and MMP9 by H-ras and E7, respectively, in which the activation of the MEK/extracellular signal-regulated kinase pathway was involved. These results indicated that the activation of Ras or the related signal pathways promoted the malignant conversion of HPV-infected cells. PMID:18579583

  15. Ras is not required for the interleukin 3-induced proliferation of a mouse pro-B cell line, BaF3.

    PubMed

    Terada, K; Kaziro, Y; Satoh, T

    1995-11-17

    It has been demonstrated that Ras is involved in interleukin 3 (IL-3)-stimulated signal transduction in various hematopoietic cultured cells (Satoh, T., Nakafuku, M., Miyajima, A., and Kaziro, Y. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3314-3318; Duronio, V., Welham, M. J., Abraham, S., Dryden, P., and Schrader, J. W. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1587-1591). However, it has not been fully understood which of IL-3-promoted cellular responses, i.e. proliferation, survival, and differentiation, requires Ras function. We employed a system of inducible expression of the dominant-negative (S17N) or dominant-active (G12V) mutant of Ras in BaF3 mouse pro-B cell line to analyze the role of Ras in IL-3-stimulated signal transduction. Induction of the dominant-negative Ras(S17N) effectively inhibited the IL-3-induced activation of c-Raf-1 and mitogen-activated protein kinase (MAPK). Furthermore, the activation of fos gene promoter following IL-3 stimulation was almost completely abolished when Ras(S17N) was induced. Under these conditions, Ras(S17N) exhibited no inhibitory effect on IL-3-dependent proliferation assessed by the increase of cell numbers and a mitochondrial enzyme activity. The results indicate that Ras-dependent pathways, including the Raf/MAPK/Fos pathway, are dispensable for IL-3-induced growth stimulation. When BaF3 cells were treated with a tyrosine kinase inhibitor, herbimycin A, IL-3-dependent proliferation of the cells was impaired, suggesting that tyrosine kinase-mediated pathways are critical for growth promotion. On the other hand, apoptotic cell death caused by deprivation of IL-3 was prevented by the induction of the activated mutant Ras(G12V), although the rate of cell number increase was markedly reduced. Thus, it is likely that Ras-independent pathways play important roles to facilitate the proliferation although they may not be essential for IL-3-stimulated antiapoptotic signal transduction.

  16. Activated Ki-Ras complements erythropoietin signaling in CTLL-2 cells, inducing tyrosine phosphorylation of a 160-kDa protein.

    PubMed Central

    Yamamura, Y; Noda, M; Ikawa, Y

    1994-01-01

    We have previously shown that expression of erythropoietin (EPO) receptor (EPOR) alone failed to confer EPO responsiveness on the interleukin 2-dependent T-cell line CTLL-2, whereas the introduction of the EPOR into interleukin 3-dependent pro-B-cell lines, such as BAF-B03, allowed the cells to proliferate in response to EPO. Here, we report that additional expression of v-Ki-Ras conferred EPO-dependent growth on CTLL-2 cells expressing the EPOR, with additional formation of a high-affinity EPOR. To investigate possible mechanisms of EPOR downstream signaling induced by v-Ki-Ras expression in these CTLL-2-derived cells, we carried out anti-phosphotyrosine immunoblot analysis of the EPOR complex immunoprecipitated with anti-EPOR antibody from lysates of cells with and without cytokine stimulation, revealing two 160-kDa and 130-kDa phosphotyrosyl proteins. An anti-JAK2 antibody did not react with these proteins, suggesting that they may represent cellular components involved in an EPO-EPOR signaling pathway induced by v-Ki-Ras. Similar phosphotyrosyl proteins were present among Friend erythroleukemia cell lines, in which the Friend virus gp55/EPOR complex on the cell surface constitutively sends signals for cell growth. Images PMID:7522324

  17. High-efficiency solid-phase capture using glass beads bonded to microcentrifuge tubes: immunoprecipitation of proteins from cell extracts and assessment of ras activation.

    PubMed

    Chen, Jeffrey C; von Lintig, Friederike C; Jones, Stephen B; Huvar, Ivana; Boss, Gerry R

    2002-03-15

    We have bonded glass microbeads (425-600 microm diameter) to the inner walls of polypropylene microcentrifuge tubes. In addition to increasing the surface area of the tubes manyfold, the beads provide surface Si groups which can be reacted with a silane compound such as aminopropyltriethoxysilane, yielding a free amino group. The amino group is reacted with another cross-linking reagent, for example, the homobifunctional compound dimethyl suberimidate, which can form a covalent bond with amine groups of proteins. After binding protein A or G to the dimethyl suberimidate, the beads were used to immunoprecipitate proteins from cell extracts; we show that the protein A/G-coated glass beads yield similar amounts of immunoprecipitated proteins as a standard method using protein A- or G-agarose beads, but with fewer contaminating proteins. In addition, we show that when immunoprecipitating Ras from cell extracts and measuring the amounts of Ras-bound GTP and GDP, the new method yielded higher guanine nucleotide levels than protein G-agarose beads, suggesting that it caused less denaturation of Ras. Because the glass beads are bonded to the walls of the tubes, the immunoprecipitates can be washed rapidly and efficiently, and we show that 20-30 tubes can be washed in 1/10 the time required to wash immunoprecipitates on protein A- or G-agarose beads.

  18. Chronic ethanol intake modifies renin-angiotensin system-regulating aminopeptidase activities in mouse cerebellum.

    PubMed

    Mayas, M D; Ramírez-Expósito, M J; García, M J; Carrera, M P; Cobo, M; Camacho, B; Martínez Martos, J M

    2005-04-01

    In developing cerebellum, where critical periods of vulnerability have been established for several basic substances, it has been extensively studied the wide array of abnormalities induced by exposure to ethanol (EtOH). However, little is known about the effects of EtOH consumption on cerebellar functions in adult individuals. Several studies show participation in cognitive activities to be concentrated in the lateral cerebellum (hemispheres), whereas basic motor functions such as balance and coordination are represented in the medial parts of the cerebellum (vermis and paravermis). In addition to the circulating renin angiotensin system (RAS), a local system has been postulated in brain. The effector peptides of the RAS are formed via the activity of several aminopeptidases (AP). The present work analyses the effect of chronic EtOH intake on the RAS-regulating AP activities in the soluble and membrane-bound fractions of two cerebellar locations: the hemispheres and the vermis. We hypothesize that cerebellar RAS is involved in basic motor functions rather than in cognitive activities.

  19. Activated conformations of the ras-gene-encoded p21 protein. 1. An energy-refined structure for the normal p21 protein complexed with GDP.

    PubMed

    Dykes, D C; Brandt-Rauf, P; Luster, S M; Chung, D; Friedman, F K; Pincus, M R

    1992-06-01

    A complete three-dimensional structure for the ras-gene-encoded p21 protein with Gly 12 and Gln 61, bound to GDP, has been constructed in four stages using the available alpha-carbon coordinates as deposited in the Brookhaven National Laboratories Protein Data Bank. No all-atom structure has been made available despite the fact that the first crystallographic structure for the p21 protein was reported almost four years ago. In the p21 protein, if amino acid substitutions are made at any one of a number of different positions in the amino acid sequence, the protein becomes permanently activated and causes malignant transformation of normal cells or, in some cell lines, differentiation and maturation. For example, all amino acids except Gly and Pro at position 12 result in an oncogenic protein; all amino acids except Gln, Glu and Pro at position 61 likewise cause malignant transformation of cells. We have constructed our all-atom structure of the non-oncogenic protein from the x-ray structure in order to determine how oncogenic amino acid substitutions affect the three-dimensional structure of this protein. In Stage 1 we generated a poly-alanine backbone (except at Gly and Pro residues) through the alpha-carbon structure, requiring the individual Ala, Pro or Gly residues to conform to standard amino acid geometry and to form trans-planar peptide bonds. Since no alpha-carbon coordinates for residues 60-65 have been determined, these residues were modeled by generating them in the extended conformation and then subjecting them to molecular dynamics using the computer application DISCOVER and energy minimization using DISCOVER and the ECEPP (Empirical Conformational Energies for Peptides Program). In Stage 2, the positions of residues that are homologous to corresponding residues of bacterial elongation factor Tu (EF-Tu) to which p21 bears an overall 40% sequence homology, were determined from their corresponding positions in a high-resolution structure of EF-Tu. Non

  20. Ifenprodil attenuates the acquisition and expression of methamphetamine-induced behavioral sensitization and activation of Ras-ERK1/2 cascade in the caudate putamen.

    PubMed

    Li, Lu; Qiao, Chuchu; Chen, Gang; Qian, Hongyan; Hou, Ying; Li, Tao; Liu, Xinshe

    2016-10-29

    Chronic discontinuous use of many psychomotor stimulants leads to behavioral sensitization and, owing to it shares common mechanisms with relapse, most researchers use its animal model to explore the neurobiological mechanisms of addiction. Recent studies have proved that N-methyl-d-aspartate receptors (NMDARs) are implicated in psychomotor stimulant-induced behavioral sensitization. However, the function of GluN2B-containing NMDARs and their potential downstream cascade(s) in the acquisition and expression of behavioral sensitization to methamphetamine (METH) have not been explored. In this study, 2.5, 5, and 10mg/kg ifenprodil, the specific inhibitor of GluN2B, was used to explore the function of these receptors in distinct phases of behavioral sensitization to METH in mice. Then, using western blot, Ras, pERK1/2/ERK1/2, and ΔFosB levels in the prefrontal cortex (PFc), nucleus accumbens (NAc), and caudate putamen (CPu) were detected. Behavioral results showed that low-dose ifenprodil attenuated the acquisition and expression of behavioral sensitization to METH significantly. Western blot analysis revealed that pre-injection of low-dose ifenprodil in the acquisition markedly attenuated METH-induced ascent of Ras, pERK1/2/ERK1/2, and ΔFosB protein levels in the CPu. However, pre-treatment in the expression only affected the alterations of Ras and pERK1/2/ERK1/2 levels in the CPu. Moreover, chronic METH administration increased pERK1/2/ERK1/2 level in the NAc. In conclusion, GluN2B-containing NMDARs contribute to both the acquisition and expression of behavioral sensitization to METH in mice. Furthermore, the acquisition phase might be mediated by the Ras-ERK1/2-ΔFosB cascade in the CPu while the expression phase may be regulated by the Ras-ERK1/2 cascade in the CPu. PMID:27544406

  1. Presence of Ras guanyl nucleotide-releasing protein in striosomes of the mature and developing rat.

    PubMed

    Pierret, P; Mechawar, N; Vallée, A; Patel, J; Priestley, J V; Dunn, R J; Dower, N A; Stone, J C; Richardson, P M

    2002-01-01

    Ras signal transduction pathways have been implicated as key regulators in neuroplasticity and synaptic transmission in the brain. These pathways can be modulated by Ras guanyl nucleotide exchange factors, (GEF) which activate Ras proteins by catalysing the exchange of GDP for GTP. Ras guanyl nucleotide-releasing protein (RasGRP), a recently discovered Ras GEF, that links diacylglycerol and probably calcium to Ras signaling pathways, is expressed in brain as well as in T-cells. Here, we have used a highly selective monoclonal antibody against RasGRP to localize this protein within the striatum and related forebrain structures of developing and adult rats. RasGRP immunolabeling was found to be widespread in the mature and developing rat forebrain. Most notably, it presented a prominent patchy distribution throughout the striatum at birth and at all postnatal ages examined. These patches were found to correspond with the striosomal compartment of the striatum, as identified by micro-opioid receptor labeling in the adult. RasGRP-immunoreactivity was also observed in the matrix-like compartment surrounding these patches/striosomes but appeared later in development and was always weaker than in the patches. In both striatal compartments, RasGRP was exclusively expressed by medium-sized spiny neurons and showed no preference for neurons that project either directly or indirectly to the substantia nigra. At the ultrastructural level, immunogold labeling of RasGRP was confined to the cell bodies and dendritic shafts of these output neurons. We conclude that the prominent expression of RasGRP in striosomes may be of significance for diacylglycerol signaling in the striatum, and could be of importance for the processing of limbic-related activity within the basal ganglia.

  2. Up-regulation of IGF-1R by mutant RAS in leukemia and potentiation of RAS signaling inhibitors by small molecule inhibition of IGF-1R

    PubMed Central

    Weisberg, Ellen; Nonami, Atsushi; Chen, Zhao; Nelson, Erik; Chen, Yongfei; Liu, Feiyang; Cho, Haeyeon; Zhang, Jianming; Sattler, Martin; Mitsiades, Constantine; Wong, Kwok-Kin; Liu, Qingsong; Gray, Nathanael; Griffin, James D.

    2014-01-01

    Purpose Activating mutations in the RAS oncogene occur frequently in human leukemias. Direct targeting of RAS has proven to be challenging, although targeting of downstream RAS mediators, such as MEK, is currently being tested clinically. Given the complexity of RAS signaling, it is likely that combinations of targeted agents will be more effective than single agents. Experimental Design A chemical screen using RAS-dependent leukemia cells was developed to identify compounds with unanticipated activity in the presence of a MEK inhibitor, and led to identification of inhibitors of IGF-1R. Results were validated using cell-based proliferation assays and apoptosis, cell cycle, and gene knockdown assays, immunoprecipitation and immunoblotting, and a non-invasive in vivo bioluminescence model of acute myeloid leukemia (AML). Results Mechanistically, IGF-1R protein expression/activity was substantially increased in mutant RAS-expressing cells, and suppression of RAS led to decreases in IGF-1R. Synergy between MEK and IGF-1R inhibitors correlated with induction of apoptosis, inhibition of cell cycle progression, and decreased phospho-S6 and phospho-4E-BP1. In vivo, NSG mice tail vein-injected with OCI-AML3-luc+ cells showed significantly lower tumor burden following one week of daily oral administration of 50 mg/kg NVP-AEW541 (IGF-1R inhibitor) combined with 25 mg/kg AZD6244 (MEK inhibitor), as compared to mice treated with either agent alone. Drug combination effects observed in cell-based assays were generalized to additional mutant RAS-positive neoplasms. Conclusions The finding that downstream inhibitors of RAS signaling and IGF-1R inhibitors have synergistic activity warrants further clinical investigation of IGF-1R and RAS signaling inhibition as a potential treatment strategy for RAS-driven malignancies. PMID:25186968

  3. A novel role for flotillin-1 in H-Ras-regulated breast cancer aggressiveness.

    PubMed

    Koh, Minsoo; Yong, Hae-Young; Kim, Eun-Sook; Son, Hwajin; Jeon, You Rim; Hwang, Jin-Sun; Kim, Myeong-Ok; Cha, Yujin; Choi, Wahn Soo; Noh, Dong-Young; Lee, Kyung-Min; Kim, Ki-Bum; Lee, Jae-Seon; Kim, Hyung Joon; Kim, Haemin; Kim, Hong-Hee; Kim, Eun Joo; Park, So Yeon; Kim, Hoe Suk; Moon, Woo Kyung; Choi Kim, Hyeong-Reh; Moon, Aree

    2016-03-01

    Elevated expression and aberrant activation of Ras have been implicated in breast cancer aggressiveness. H-Ras, but not N-Ras, induces breast cell invasion. A crucial link between lipid rafts and H-Ras function has been suggested. This study sought to identify the lipid raft protein(s) responsible for H-Ras-induced tumorigenicity and invasiveness of breast cancer. We conducted a comparative proteomic analysis of lipid raft proteins from invasive MCF10A human breast epithelial cells engineered to express active H-Ras and non-invasive cells expressing active N-Ras. Here, we identified a lipid raft protein flotillin-1 as an important regulator of H-Ras activation and breast cell invasion. Flotillin-1 was required for epidermal growth factor-induced activation of H-Ras, but not that of N-Ras, in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Flotillin-1 knockdown inhibited the invasiveness of MDA-MB-231 and Hs578T TNBC cells in vitro and in vivo. In xenograft mouse tumor models of these TNBC cell lines, we showed that flotillin-1 played a critical role in tumor growth. Using human breast cancer samples, we provided clinical evidence for the metastatic potential of flotillin-1. Membrane staining of flotillin-1 was positively correlated with metastatic spread (p = 0.013) and inversely correlated with patient disease-free survival rates (p = 0.005). Expression of flotillin-1 was associated with H-Ras in breast cancer, especially in TNBC (p < 0.001). Our findings provide insight into the molecular basis of Ras isoform-specific interplay with flotillin-1, leading to tumorigenicity and aggressiveness of breast cancer.

  4. PEA-15 potentiates H-Ras mediated epithelial cell transformation through Phospholipase D

    PubMed Central

    Sulzmaier, Florian J.; Valmiki, Mohana K. Gudur; Nelson, Deirdre A.; Caliva, Maisel J.; Geerts, Dirk; Matter, Michelle L.; White, Eileen P.; Ramos, Joe W.

    2011-01-01

    The small GTPase H-Ras is a proto-oncogene that activates a variety of different pathways including the extracellular-signal-regulated kinase mitogen-activated protein kinase (ERK/MAPK) pathway. H-Ras is mutated in many human malignancies and these mutations cause the protein to be constitutively active. PEA-15 blocks ERK-dependent gene transcription and inhibits proliferation by sequestering ERK in the cytoplasm. We therefore investigated whether PEA-15 influences H-Ras mediated transformation. We found that PEA-15 does not block H-Ras activated proliferation when H-Ras is constitutively active. We show instead that in H-Ras transformed mouse kidney epithelial cells, co-expression of PEA-15 resulted in enhanced soft agar colony growth and increased tumor growth in vivo. Overexpression of both H-Ras and PEA-15 resulted in accelerated G1/S cell cycle transition and increased activation of the ERK signaling pathway. PEA-15 mediated these effects through activation of its binding partner phospholipase D1 (PLD1). Inhibition of PLD1 or interference with PEA-15/PLD1 binding blocked PEA-15’s ability to increase ERK activation. Our findings reveal a novel mechanism by which PEA-15 positively regulates Ras/ERK signaling and increases the proliferation of H-Ras transformed epithelial cells through enhanced PLD1 expression and activation. Thus, our work provides a surprising mechanism by which PEA-15 augments H-Ras driven transformation. These data reveal that PEA-15 not only suppresses ERK signaling and tumorigenesis but can alternatively enhance tumorigenesis in the context of active Ras. PMID:22105357

  5. Effect of Boschniakia rossica on expression of GST-P, p53 and p21(ras)proteins in early stage of chemical hepatocarcinogenesis and its anti-inflammatory activities in rats.

    PubMed

    Yin, Zong-Zhu; Jin, Hai-Ling; Yin, Xue-Zhe; Li, Tian-Zhu; Quan, Ji-Shu; Jin, Zeng-Nan

    2000-12-01

    AIM:To investigate the effect of Boschniakia rossica (BR) extract on expression of GST-P, p53 and p21(ras) proteins in early stage of chemical hepatocarcinogenesis in rats and its anti-inflammatory activities.METHODS:The expression of tumor marker-placental form glutathione S-transferase (GST-P), p53 and p21(ras) proteins were investigated by immunohisto-chemical techniques and ABC method. Anti-inflammatory activities of BR were studied by xylene and croton oil-induced mouse ear edema, carrageenin, histamine and hot scald-induced rat pow edema, adjuvant-induced rat arthritis and cotton pellet induced mouse granuloma formation methods.RESULTS:The 500mg/kg of BR-H2O extract frac-tionated from BR-Methanol extract had inhibitory effect on the formation of DEN-induced GST-P-positive foci in rat liver (GST-P staining was 78% positive in DEN+AAF group vs 20% positive in DEN+AAF+BR group, P<0.05) and the expression of mutant p53 and p21(ras) protein was lower than that of hepatic preneoplastic lesions (33% and 22% positive respectively in DEN+AAF group vs negative in DEN+AAF+BR group). Both CH(2)Cl(2) and H(2)O extracts from BR had anti-inflamatory effect in xylene and crotonoil induced mouse ear edema (inhibitory rates were 26%-29% and 35%-59%, respectively). BR H(2)O extract exhibited inhibitory effect in carrageenin, histamine and hot scald-induced hind paw edema and adjuvant-induced arthritis in rats and cotton pellet-induced granuloma formation in mice.CONCLUSION:BR extract exhibited inhibitory effect on formation of preneoplastic hepatic foci in early stage of rat chemical hepato-carcinogenesis.Both CH(2)Cl(2) and H(2)O extracts from BR exerted anti-inflammatory effect in rats and mice.

  6. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. PMID:26765565

  7. Neoplastic transformation of a human prostate epithelial cell line by the v-Ki-ras oncogene.

    PubMed

    Parda, D S; Thraves, P J; Kuettel, M R; Lee, M S; Arnstein, P; Kaighn, M E; Rhim, J S; Dritschilo, A

    1993-01-01

    Investigations of mechanisms of human prostate carcinogenesis are limited by the unavailability of a suitable in vitro model system. We have demonstrated that an immortal, but nontumorigenic, human epithelial cell line (267B1) established from fetal prostate tissue can be malignantly transformed by a biological carcinogen, and can serve as a useful model for investigations of the progression steps of carcinogenesis. Activated Ki-ras was introduced into 267B1 cells by infection with the Kirsten murine sarcoma virus. Morphological alterations and anchorage-independent growth were observed; when cells were injected into nude mice, poorly differentiated adenocarcinomas developed. These findings represent the first evidence of malignant transformation of human prostate epithelial cells in culture, and support a role for Ki-ras activation in a multistep process for prostate neoplastic transformation.

  8. The inhibition of the GTPase activating protein-Ha-ras interaction by acidic lipids is due to physical association of the C-terminal domain of the GTPase activating protein with micellar structures.

    PubMed Central

    Serth, J; Lautwein, A; Frech, M; Wittinghofer, A; Pingoud, A

    1991-01-01

    The effects of fatty acids and phospholipids on the interaction of the full-length GTPase activating protein (GAP) as well as its isolated C-terminal domain and the Ha-ras proto-oncogene product p21 were studied by various methods, viz. GTPase activity measurements, fluorescence titrations and gel permeation chromatography. It is shown that all fatty acids and acidic phospholipids tested, provided the critical micellar concentration and the critical micellar temperature are reached, inhibit the GAP stimulated p21 GTPase activity. This is interpreted to mean that it is not the molecular structure of acidic lipid molecules per se but rather their physical state of aggregation which is responsible for the inhibitory effect of lipids on the GTPase activity. The relative inhibitory potency of various lipids was measured under defined conditions with mixed Triton X-100 micelles to follow the order: unsaturated fatty acids greater than saturated acids approximately phosphatidic acids greater than or equal to phosphatidylinositol phosphates much greater than phosphatidylinositol and phosphatidylserine. GTPase experiments with varying concentrations of p21 and constant concentrations of GAP and lipids indicate that the binding of GAP by the lipid micelles is responsible for the inhibition, a finding which was confirmed by fluorescence titrations and gel filtrations which show that the C-terminal domain of GAP is bound by lipid micelles. PMID:2026138

  9. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    PubMed Central

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  10. Requirement of the NF-κB Subunit p65/RelA for K-Ras-Induced Lung Tumorigenesis

    PubMed Central

    Basseres, Daniela S.; Ebbs, Aaron; Levantini, Elena; Baldwin, Albert S.

    2010-01-01

    K-Ras-induced lung cancer is a very common disease, for which there are currently no effective therapies. Because therapy directly targeting the activity of oncogenic Ras has been unsuccessful, a different approach for novel therapy design is to identify critical Ras downstream oncogenic targets. Given that oncogenic Ras proteins activate the transcription factor NF-κB, and the importance of NF-κB in oncogenesis, we hypothesized that NF-κB would be an important K-Ras target in lung cancer. To address this hypothesis, we generated an NF-κB-EGFP reporter mouse model of K-Ras-induced lung cancer and determined that K-Ras activates NF-κB in lung tumors in situ. Furthermore, a mouse model was generated where activation of oncogenic K-Ras in lung cells was coupled with inactivation of the NF-κB subunit p65/RelA. In this model, deletion of p65/RelA reduces the number of K-Ras-induced lung tumors both in the presence and absence of the tumor suppressor p53. Lung tumors with loss of p65/RelA have higher numbers of apoptotic cells, reduced spread and lower grade. Using lung cell lines expressing oncogenic K-Ras, we show that NF-κB is activated in these cells in a K-Ras-dependent manner and that NF-κB activation by K-Ras requires IKKβ kinase activity. Taken together, these results demonstrate the importance of the NF-κB subunit p65/RelA in K-Ras induced lung transformation and identify IKKβ as a potential therapeutic target for K-Ras-induced lung cancer. PMID:20406971

  11. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

    PubMed Central

    Evelyn, Chris R.; Duan, Xin; Biesiada, Jacek; Seibel, William L.; Meller, Jaroslaw; Zheng, Yi

    2014-01-01

    Summary Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine-nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, is found to bind to SOS1, competitively suppresses SOS1-Ras interaction, and dose-dependently inhibits SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity. PMID:25455859

  12. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1.

    PubMed

    Evelyn, Chris R; Duan, Xin; Biesiada, Jacek; Seibel, William L; Meller, Jaroslaw; Zheng, Yi

    2014-12-18

    Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity.

  13. p21ras initiates Rac-1 but not phosphatidyl inositol 3 kinase/PKB, mediated signaling pathways in T lymphocytes.

    PubMed

    Genot, E; Reif, K; Beach, S; Kramer, I; Cantrell, D

    1998-10-01

    p21ras is activated by the T cell antigen receptor (TCR) and then co-ordinates important signaling pathways for T lymphocyte activation. Effector pathways for this guanine nucleotide binding protein in T cells are mediated by the serine/threonine kinase Raf-1 and the Ras-related GTPase Rac-1. In fibroblasts, an important effector for the Ras oncogene is Phosphatidylinositol 3-kinase (PtdIns 3-kinase). Activation of this lipid kinase is able to induce critical Rac-1 signaling pathways and can couple p21ras to cell survival mechanisms via the serine/threonine kinase Akt/PKB. The role of PtdIns 3-kinase in Ras signaling in T cells has not been explored. In the present study, we examined the ability of PtdIns 3-kinase to initiate the Rac-1 signaling pathways important for T cell activation. We also examined the possibility that Akt/PKB is regulated by Ras signaling pathways in T lymphocytes. The results show that Ras can initiate a Rac-1 mediated pathway that regulates the transcriptional function of AP-1 complexes. PtdIns 3-kinase signals cannot mimic p21ras and induce the Rac mediated responses of AP-1 transcriptional activation. Moreover, neither TCR or Ras activation of AP-1 is dependent on PtdIns 3-kinase. PKB is activated in response to triggering of the T cell antigen receptor; PtdIns 3-kinase activity is both required and sufficient for this TCR response. In contrast, p21ras signals are unable to induce Akt/PKB activity in T cell nor is Ras function required for Akt/PKB activation in response to the TCR. The present data thus highlight that PtdIns 3-kinase and Akt/PKB are not universal Ras effector molecules. Ras can initiate Rac-1 regulated signaling pathways in the context of T cell antigen receptor function independently of PtdIns 3-kinase activity.

  14. A primary cardiac leiomyosarcoma with mutation at H-ras codon 12.

    PubMed

    Parissis, J; Arvanitis, D; Sourvinos, G; Spandidos, D

    1997-01-01

    The presence of activating ras mutations in a cardiac leiomyosarcoma which occurred in the right atrium of the heart of a female patient was examined. The tumor had the appearance of leiomyosarcoma in rutine histopathological examination and the definite diagnosis was confirmed by a positive immunohistochemical reaction to smooth muscle actin. Molecular analysis by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) technique showed a point mutation of H-ras gene at codon 12. To the best of our knowledge, this is the first report describing ras gene mutation in a cardiac leiomyosarcoma implying a role for the ras oncogenes in the development of this tumor.

  15. RasGRF1 regulates proliferation and metastatic behavior of human alveolar rhabdomyosarcomas.

    PubMed

    Tarnowski, Maciej; Schneider, Gabriela; Amann, Gabriele; Clark, Geoffrey; Houghton, Peter; Barr, Frederic G; Kenner, Lukas; Ratajczak, Mariusz Z; Kucia, Magda

    2012-09-01

    The involvement of the Ras superfamily of GTPases in the pathogenesis of rhabdomysarcoma (RMS) is not well understood. While mutant H-Ras leads to embryonal RMS (ERMS) formation in experimental animals and in Costello syndrome patients, no data exists on the potential role of Ras GTPases in the pathogenesis of alveolar RMS (ARMS). To address this issue better, we focused on the role of the GTP exchange factor RasGRF1 in this process. We observed that, in comparison to normal skeletal muscle cells, RasGRF1 mRNA is upregulated in the majority of human ARMS cell lines and subsequently confirmed its high expression in patient samples. By employing confocal microscopy analysis, we observed RasGRF1 accumulation in cell filopodia, which suggests its involvement in ARMS cell migration. Furthermore, we observed that RasGRF1 becomes phosphorylated in ARMS after stimulation by several pro-metastatic factors, such as SDF-1 and HGF/SF, as well as after exposure to growth-promoting Igf-2 and insulin. More importantly, activation of RasGRF1 expression correlated with activation of p42/44 MAPK and AKT. When the expression of RasGRF1 was down-regulated in ARMS cells by an shRNA strategy, these RasGRF1-kd RMS cells did not respond to stimulation by SDF-1, HGF/SF, Igf-2 or insulin by phosphorylation of p42/44 MAPK and AKT and lost their chemotactic responsiveness; however, their adhesion was not affected. We also observed that RasGRF1-kd ARMS cells proliferated at a very low rate in vitro, and, more importantly, after inoculation into immunodeficient SCID/beige inbred mice they formed significantly smaller tumors. We conclude that RasGRF1 plays an important role in ARMS pathogenesis and is a new potential therapeutic target to inhibit ARMS growth.

  16. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.

    PubMed

    Bhagatji, Pinkesh; Leventis, Rania; Rich, Rebecca; Lin, Chen-ju; Silvius, John R

    2010-11-17

    Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions.

  17. Revisiting G3BP1 as a RasGAP Binding Protein: Sensitization of Tumor Cells to Chemotherapy by the RasGAP 317–326 Sequence Does Not Involve G3BP1

    PubMed Central

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317–326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317–326 sequence of RasGAP (TAT-RasGAP317–326), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP317–326 did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP317–326 was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP. PMID:22205990

  18. Revisiting G3BP1 as a RasGAP binding protein: sensitization of tumor cells to chemotherapy by the RasGAP 317-326 sequence does not involve G3BP1.

    PubMed

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.

  19. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.

    PubMed

    Winter, Peter S; Sarosiek, Kristopher A; Lin, Kevin H; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C

    2014-12-23

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

  20. Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis.

    PubMed

    Vitale-Cross, Lynn; Amornphimoltham, Panomwat; Fisher, Galen; Molinolo, Alfredo A; Gutkind, J Silvio

    2004-12-15

    Ras genes are the most frequently mutated oncogenes in human cancer. However, the contribution of ras to tumor initiation still is unclear because ras expression in primary cells can cause cell cycle arrest and even cell death by apoptosis. Furthermore, when expressed in the epidermis of mice, mutant ras promotes the formation of benign papillomas, only few of which will progress into carcinomas. However, in these cases, ras-transgene expression often is restricted to suprabasal or follicular epithelial cells that may lack self-renewal capacity. Thus, it still is conceivable that expression of active ras in other epithelial compartments may exert a distinct ability to promote malignant progression. To address this possibility, transgenic mice carrying the tetracycline-inducible system (tet-on receptor) targeted to the basal layer of stratified epithelium, which includes the epithelial stem cells, were engineered and crossed with mice expressing the K-ras(G12D) oncogene under the control of tet-regulated responsive elements. On doxycycline administration, proliferative lesions ranging from hyperplasias, papillomas, and dysplasias to metastatic carcinomas developed in squamous epithelia of the skin, oral mucosa, salivary glands, tongue, esophagus, forestomach, and uterine cervix within just 10 to 20 days. The most noticeable lesions were invasive squamous carcinomas of the skin and oral mucosa. These findings suggest that the expression of oncogenes in an epithelial compartment that includes the stem cells may be sufficient to promote squamous carcinogenesis. They also provide a molecularly defined conditional animal model system in which the mechanisms responsible for cancer initiation, maintenance, and metastatic spread can be readily investigated.

  1. Chimeric proteins define variable and essential regions of Ha-ras-encoded protein

    SciTech Connect

    Lowe, D.G.; Ricketts, M.; Levinson, A.D.; Goeddel, D.V.

    1988-02-01

    The biological role of amino acid differences between the human 21-kDa Ha-ras protein (p21) and the human 23-kDa R-ras protein (p23) was investigated by engineering mutant Ha-ras p21 molecules containing divergent amino acid sequences from R-ras p23. Variant amino acids from R-ras p23 regions 1-30, 52-57, 67-78, 1-30 and 67-78 together, and 112-124 were substituted for the corresponding Ha-ras p21 amino acid regions 1-4, 26-31, 41-52, 1-4 and 41-52 together, and 86-98, respectively. Rat fibroblasts transfected with genes encoding these position-12 valine-substituted chimeric Ha-ras proteins displayed the same properties of morphological transformation and anchorage-independent growth as Ha-ras T24 oncogene-transformed fibroblasts. However, substitution of variant amino acids from the 80 C-terminal residues (amino acids 138-218) of R-ras p23 for the corresponding p21 amino acids (residues 112-189) inactivated the transforming activity of position-12 valine-substituted p21. The converse substitution of Ha-ras p21 C-terminal residues into R-ras p23 did not result in transformation by position-38 valine-substituted p232. These data are discussed in terms of the structure of ras proteins and the nature of interactions determining the specificity of effector function.

  2. Characterization of the intracellular signalling pathways that underlie growth-factor-stimulated glucose transport in Xenopus oocytes: evidence for ras- and rho-dependent pathways of phosphatidylinositol 3-kinase activation.

    PubMed Central

    Thomson, F J; Jess, T J; Moyes, C; Plevin, R; Gould, G W

    1997-01-01

    The stimulation of glucose transport is one of the early cellular responses to growth factors and is essential for cell proliferation, yet the molecular processes that underlie this response are poorly defined. The aim of this study was to characterize the role of the low-molecular-mass G-proteins, Ras and Rho, and their downstream targets, Raf protein kinase and phosphatidylinositol 3-kinase, in the regulation of glucose transport in Xenopus oocytes by two distinct growth-factor receptors: the insulin-like growth factor I (IGF-I) tyrosine kinase receptor and the heterotrimeric G-protein-coupled lysophosphatidic acid (LPA) receptor. Microinjection of a neutralizing anti-Ras antibody partially blocked IGF-I-stimulated deoxyglucose uptake but was without effect on LPA-stimulated deoxyglucose uptake. In contrast, microinjection of the C3 coenzyme of botulinum toxin, which selectively ADP-ribosylates and inactivates Rho, inhibited LPA-stimulated, but not IGF-I-stimulated, deoxyglucose uptake. Similarly, LPA- but not IGF-I-stimulated deoxyglucose uptake was attenuated in oocytes expressing a dominant negative rho construct. Cells expressing a dominant negative mutant of Raf protein kinase exhibited markedly reduced sensitivity to both LPA and IGF-I, consistent with a role for endogenous Raf in glucose uptake by both growth factors. Furthermore, expression of a constitutively activated form of raf-1 resulted in a growth-factor-independent increase in deoxyglucose uptake. Measurements of phosphatidylinositol 3-kinase activity in microinjected cells support the hypothesis that the IGF-I receptor stimulates glucose transport by a Ras-dependent activation of phosphatidylinositol 3-kinase, whereas the G-protein-coupled LPA receptor controls this response by a pathway that involves Rho-dependent activation of a distinct phosphatidylinositol 3-kinase. Thus we provide evidence for clear differences in the signalling pathways that control glucose transport by G

  3. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects.

    PubMed

    Marcus, Kendra; Mattos, Carla

    2015-04-15

    The crystal structure of RAS was first solved 25 years ago. In spite of tremendous and sustained efforts, there are still no drugs in the clinic that directly target this major driver of human cancers. Recent success in the discovery of compounds that bind RAS and inhibit signaling has fueled renewed enthusiasm, and in-depth understanding of the structure and function of RAS has opened new avenues for direct targeting. To succeed, we must focus on the molecular details of the RAS structure and understand at a high-resolution level how the oncogenic mutants impair function. Structural networks of intramolecular communication between the RAS active site and membrane-interacting regions on the G-domain are disrupted in oncogenic mutants. Although conserved across the isoforms, these networks are near hot spots of protein-ligand interactions with amino acid composition that varies among RAS proteins. These differences could have an effect on stabilization of conformational states of interest in attenuating signaling through RAS. The development of strategies to target these novel sites will add a fresh direction in the quest to conquer RAS-driven cancers. Clin Cancer Res; 21(8); 1810-8. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878362

  4. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    PubMed

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation. PMID:26343583

  5. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers.

    PubMed

    Peng, Sheng-Bin; Henry, James R; Kaufman, Michael D; Lu, Wei-Ping; Smith, Bryan D; Vogeti, Subha; Rutkoski, Thomas J; Wise, Scott; Chun, Lawrence; Zhang, Youyan; Van Horn, Robert D; Yin, Tinggui; Zhang, Xiaoyi; Yadav, Vipin; Chen, Shih-Hsun; Gong, Xueqian; Ma, Xiwen; Webster, Yue; Buchanan, Sean; Mochalkin, Igor; Huber, Lysiane; Kays, Lisa; Donoho, Gregory P; Walgren, Jennie; McCann, Denis; Patel, Phenil; Conti, Ilaria; Plowman, Gregory D; Starling, James J; Flynn, Daniel L

    2015-09-14

    LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.

  6. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eμ-MYC driven B-cell lymphoma

    PubMed Central

    Walton, Mike I.; Eve, Paul D.; Hayes, Angela; Henley, Alan T.; Valenti, Melanie R.; De Haven Brandon, Alexis K.; Box, Gary; Boxall, Kathy J.; Tall, Matthew; Swales, Karen; Matthews, Thomas P.; McHardy, Tatiana; Lainchbury, Michael; Osborne, James; Hunter, Jill E.; Perkins, Neil D.; Aherne, G. Wynne; Reader, John C.; Raynaud, Florence I.; Eccles, Suzanne A.; Collins, Ian; Garrett, Michelle D.

    2016-01-01

    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition. PMID:26295308

  7. The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma.

    PubMed

    Walton, Mike I; Eve, Paul D; Hayes, Angela; Henley, Alan T; Valenti, Melanie R; De Haven Brandon, Alexis K; Box, Gary; Boxall, Kathy J; Tall, Matthew; Swales, Karen; Matthews, Thomas P; McHardy, Tatiana; Lainchbury, Michael; Osborne, James; Hunter, Jill E; Perkins, Neil D; Aherne, G Wynne; Reader, John C; Raynaud, Florence I; Eccles, Suzanne A; Collins, Ian; Garrett, Michelle D

    2016-01-19

    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition. PMID:26295308

  8. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions

    NASA Astrophysics Data System (ADS)

    Ostrem, Jonathan M.; Peters, Ulf; Sos, Martin L.; Wells, James A.; Shokat, Kevan M.

    2013-11-01

    Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner.

  9. Comparison of the Antialbuminuric Effects of Benidipine and Hydrochlorothiazide in Renin-Angiotensin System (RAS) Inhibitor-Treated Hypertensive Patients with Albuminuria: the COSMO-CKD (COmbination Strategy on Renal Function of Benidipine or Diuretics TreatMent with RAS inhibitOrs in a Chronic Kidney Disease Hypertensive Population) Study

    PubMed Central

    Ando, Katsuyuki; Nitta, Kosaku; Rakugi, Hiromi; Nishizawa, Yoshiki; Yokoyama, Hitoshi; Nakanishi, Takeshi; Kashihara, Naoki; Tomita, Kimio; Nangaku, Masaomi; Takahashi, Katsutoshi; Isshiki, Masashi; Shimosawa, Tatsuo; Fujita, Toshiro

    2014-01-01

    Objective: This study evaluated the non-inferiority of renoprotection afforded by benidipine versus hydrochlorothiazide in hypertensive patients with chronic kidney disease (CKD). Methods: In this prospective, multicenter, open-labeled, randomized trial, the antialbuminuric effects of benidipine and hydrochlorothiazide were examined in renin-angiotensin system (RAS) inhibitor-treated patients with blood pressure (BP) readings of ≥ 130/80 mmHg and ≤ 180/110 mmHg, a urinary albumin to creatinine ratio (UACR) of ≥ 300 mg/g, and an estimated glomerular filtration rate (eGFR) of ≥ 30 ml/min/1.73m2. Patients received benidipine (n = 176, final dose: 4.8 mg/day) or hydrochlorothiazide (n = 170, 8.2 mg/day) for 12 months. Results: Benidipine and hydrochlorothiazide exerted similar BP- and eGFR-decreasing actions. The UACR values for benidipine and hydrochlorothiazide were 930.8 (95% confidence interval: 826.1, 1048.7) and 883.1 (781.7, 997.7) mg/g at baseline, respectively. These values were reduced to 790.0 (668.1, 934.2) and 448.5 (372.9, 539.4) mg/g at last observation carried forward (LOCF) visits. The non-inferiority of benidipine versus hydrochlorothiazide was not demonstrated (benidipine/hydrochlorothiazide ratio of LOCF value adjusted for baseline: 1.67 (1.40, 1.99)). Conclusions: The present study failed to demonstrate the non-inferiority of the antialbuminuric effect of benidipine relative to that of hydrochlorothiazide in RAS inhibitor-treated hypertensive patients with macroalbuminuria. PMID:25013370

  10. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  11. Oncogenic Ras influences the expression of multiple lncRNAs.

    PubMed

    Kotake, Yojiro; Naemura, Madoka; Kitagawa, Kyoko; Niida, Hiroyuki; Tsunoda, Toshiyuki; Shirasawa, Senji; Kitagawa, Masatoshi

    2016-08-01

    Recent ultrahigh-density tiling array and large-scale transcriptome analysis have revealed that large numbers of long non-coding RNAs (lncRNAs) are transcribed in mammals. Several lncRNAs have been implicated in transcriptional regulation, organization of nuclear structure, and post-transcriptional processing. However, the regulation of expression of lncRNAs is less well understood. Here, we show that the exogenous and endogenous expression of an oncogenic form of small GTPase Ras (called oncogenic Ras) decrease the expression of lncRNA ANRIL (antisense non-coding RNA in the INK4 locus), which is involved in the regulation of cellular senescence. We also show that forced expression of oncogenic Ras increases the expression of lncRNA PANDA (p21 associated ncRNA DNA damage activated), which is involved in the regulation of apoptosis. Microarray analysis demonstrated that expression of multiple lncRNAs fluctuated by forced expression of oncogenic Ras. These findings indicate that oncogenic Ras regulates the expression of a large number of lncRNAs including functional lncRNAs, such as ANRIL and PANDA.

  12. Isolation and characterization of temperature-sensitive mutations in the RAS2 and CYR1 genes of Saccharomyces cerevisiae

    SciTech Connect

    Mitsuzawa, Hiroshi; Uno, Isao; Ishikawa, Tatsuo ); Oshima, Takehiro )

    1989-12-01

    The yeast Saccharomyces cerevisiae contains two ras homologues, RAS1 and RAS2, whose products have been shown to modulate the activity of adenylate cyclase encoded by the CYR1 gene. To isolate temperature-sensitive mutations in the RAS2 gene, the authors constructed a plasmid carrying a RAS2 gene whose expression is under the control of the galactose-inducible GAL1 promoter. A ras1 strain transformed with this plasmid was subjected to ethyl methanesfulfonate mutagenesis and nystatin enrichment. Screening of approximately 13,000 mutagenized colonies for galactose-dependent growth at a high temperature (37{degree}) yielded six temperature-sensitive ras2(ras2{sup ts}) mutations and one temperature-sensitive cry1 (cyr1{sup ts}) mutation than can be suppressed by overexpression or increased dosage of RAS2. Some ras2{sup ts} mutations were shown to be suppressed by an extra copy of CYR1. Therefore increased dosage of either RAS2 or CYR1 can suppress the temperature sensitivity caused by a mutation in the other.

  13. Expression of a dominant-negative Ras mutant does not affect stimulation of glucose uptake and glycogen synthesis by insulin.

    PubMed

    Dorrestijn, J; Ouwens, D M; Van den Berghe, N; Bos, J L; Maassen, J A

    1996-05-01

    It has previously been shown that insulin-induced stimulation of glucose uptake and glycogen synthesis requires activation of phosphatidylinositol-3-kinase (PI3kinase). Insulin also induces formation of RasGTP in cells and various studies have yielded inconsistent data with respect to the contribution of signalling pathways activated by RasGTP, to insulin-stimulated glucose uptake and glycogen synthesis. We have examined the requirement of RasGTP-mediated signalling for these insulin responses by expression of a dominant negative mutant of Ras (RasN17) in cells by vaccinia virus mediated gene transfer. This Ras-mutant abrogates the signalling pathways mediated by endogenous RasGTP. Subsequently, the ability of insulin to stimulate 2-deoxyglucose uptake and glycogen was examined. We observed that expression of RasN17 in 3T3L1 adipocytes did not affect the stimulation of hexose uptake by insulin. Similarly, expression of RasN17 in A14 cells, an NIH 3T3-derived cell line with high expression of insulin receptors, did not affect insulin-induced stimulation of glycogen synthesis. In both cell lines, insulin-induced phosphorylation of Mapkinase (Erk1,2) was abrogated after expression of RasN17, demonstrating the functional interference by RasN17 with signalling mediated by endogenous RasGTP. Wortmannin, an inhibitor of PI3kinase, abolished dose-dependently the insulin-induced stimulation of hexose uptake and glycogen synthesis without an effect on RasGTP levels in both cell types. We conclude that stimulation of glucose transport and glycogen synthesis by insulin occurs independently of RasGTP-mediated signalling.

  14. B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding.

    PubMed

    Fischer, Andreas; Hekman, Mirko; Kuhlmann, Jürgen; Rubio, Ignacio; Wiese, Stefan; Rapp, Ulf R

    2007-09-01

    Recruitment of RAF kinases to the plasma membrane was initially proposed to be mediated by Ras proteins via interaction with the RAF Ras binding domain (RBD). Data reporting that RAF kinases possess high affinities for particular membrane lipids support a new model in which Ras-RAF interactions may be spatially restricted to the plane of the membrane. Although the coupling features of Ras binding to the isolated RAF RBD were investigated in great detail, little is known about the interactions of the processed Ras with the functional and full-length RAF kinases. Here we present a quantitative analysis of the binding properties of farnesylated and nonfarnesylated H-Ras to both full-length B- and C-RAF in the presence and absence of lipid environment. Although isolated RBD fragments associate with high affinity to both farnesylated and nonfarnesylated H-Ras, the full-length RAF kinases revealed fundamental differences with respect to Ras binding. In contrast to C-RAF that requires farnesylated H-Ras, cytosolic B-RAF associates effectively and with significantly higher affinity with both farnesylated and nonfarnesylated H-Ras. To investigate the potential farnesyl binding site(s) we prepared several N-terminal fragments of C-RAF and found that in the presence of cysteine-rich domain only the farnesylated form of H-Ras binds with high association rates. The extreme N terminus of B-RAF turned out to be responsible for the facilitation of lipid independent Ras binding to B-RAF, since truncation of this region resulted in a protein that changed its kinase properties and resembles C-RAF. In vivo studies using PC12 and COS7 cells support in vitro results. Co-localization measurements using labeled Ras and RAF documented essential differences between B- and C-RAF with respect to association with Ras. Taken together, these data suggest that the activation of B-RAF, in contrast to C-RAF, may take place both at the plasma membrane and in the cytosolic environment.

  15. H-Ras Increases Urokinase Expression and Cell Invasion in Genetically Modified Human Astrocytes Through Ras/Raf/MEK Signaling Pathway

    PubMed Central

    ZHAO, YUNGE; XIAO, AIZHEN; DIPIERRO, CHARLES G.; ABDEL-FATTAH, RANA; AMOS, SAMSON; REDPATH, GERARD T.; CARPENTER, JOAN E.; PIEPER, RUSSELL O.; HUSSAINI, ISA M.

    2008-01-01

    Previous study reported that the activation of Ras pathway cooperated with E6/E7-mediated inactivation of p53/pRb to transform immortalized normal human astrocytes (NHA/hTERT) into intracranial tumors strongly resembling human astrocytomas. The mechanism of how H-Ras contributes to astrocytoma formation is unclear. Using genetically modified NHA cells (E6/E7/hTERT and E6/E7/hTERT/Ras cells) as models, we investigated the mechanism of Ras-induced tumorigenesis. The overexpression of constitutively active H-RasV12 in E6/E7/hTERT cells robustly increased the levels of urokinase plasminogen activator (uPA) mRNA, protein, activity and invasive capacity of the E6/E7/hTERT/Ras cells. However, the expressions of MMP-9 and MMP-2 did not significantly change in the E6/E7/hTERT and E6/E7/hTERT/Ras cells. Furthermore, E6/E7/hTERT/Ras cells also displayed higher level of uPA activity and were more invasive than E6/E7/hTERT cells in 3D culture, and formed an intracranial tumor mass in a NOD-SCID mouse model. uPA specific inhibitor (B428) and uPA neutralizing antibody decreased uPA activity and invasion in E6/E7/hTERT/Ras cells. uPA-deficient U-1242 glioblastoma cells were less invasive in vitro and exhibited reduced tumor growth and infiltration into normal brain in xenograft mouse model. Inhibitors of Ras (FTA), Raf (Bay 54−9085) and MEK (UO126), but not of phosphatidylinositol 3-kinase (PI3K) (LY294002) and of protein kinase C (BIM) pathways, inhibited uPA activity and cell invasion. Our results suggest that H-Ras increased uPA expression and activity via the Ras/Raf/MEK signaling pathway leading to enhanced cell invasion and this may contribute to increased invasive growth properties of astrocytomas. PMID:18383343

  16. Ras in Cancer and Developmental Diseases

    PubMed Central

    Fernández-Medarde, Alberto; Santos, Eugenio

    2011-01-01

    Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies. PMID:21779504

  17. Ras regulation of DNA-methylation and cancer

    SciTech Connect

    Patra, Samir Kumar

    2008-04-01

    Genome wide hypomethylation and regional hypermethylation of cancer cells and tissues remain a paradox, though it has received a convincing confirmation that epigenetic switching systems, including DNA-methylation represent a fundamental regulatory mechanism that has an impact on genome maintenance and gene transcription. Methylated cytosine residues of vertebrate DNA are transmitted by clonal inheritance through the strong preference of DNA methyltransferase, DNMT1, for hemimethylated-DNA. Maintenance of methylation patterns is necessary for normal development of mice, and aberrant methylation patterns are associated with many human tumours. DNMT1 interacts with many proteins during cell cycle progression, including PCNA, p53, EZH2 and HP1. Ras family of GTPases promotes cell proliferation by its oncogenic nature, which transmits signals by multiple pathways in both lipid raft dependent and independent fashion. DNA-methylation-mediated repression of DNA-repair protein O6-methylguanine DNA methyltransferase (MGMT) gene and increased rate of K-Ras mutation at codon for amino acids 12 and 13 have been correlated with a secondary role for Ras-effector homologues (RASSFs) in tumourigenesis. Lines of evidence suggest that DNA-methylation associated repression of tumour suppressors and apoptotic genes and ceaseless proliferation of tumour cells are regulated in part by Ras-signaling. Control of Ras GTPase signaling might reduce the aberrant methylation and accordingly may reduce the risk of cancer development.

  18. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase.

    PubMed

    Jaumot, Montserrat; Yan, Jun; Clyde-Smith, Jodi; Sluimer, Judith; Hancock, John F

    2002-01-01

    Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane micro-localization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.

  19. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase.

    PubMed

    Eguchi, S; Matsumoto, T; Motley, E D; Utsunomiya, H; Inagami, T

    1996-06-14

    In cultured rat vascular smooth muscle cells, angiotensin II (Ang II) induced a rapid increase in mitogen-activated protein kinase (MAPK) activity through the Ang II type 1 receptor, which was insensitive to pertussis toxin but was abolished by the phospholipase C inhibitor, U73122. The Ang II-induced MAPK activation was not affected by the protein kinase C inhibitor, GF109203X, and was only partially impaired by pretreatment with a phorbol ester, whereas both treatments completely prevented MAPK activation by the phorbol ester. Intracellular Ca2+ chelation by TMB-8, but not extracellular Ca2+ chelation or inhibition of Ca2+ influx, abolished Ang II-induced MAPK activation. The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187. Ang II caused a rapid increase in the binding of GTP to p21(ras), and this was inhibited by genistein, TMB-8, and calmidazolium but not by pertussis toxin or GF109203X. These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals.

  20. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival

    PubMed Central

    Singh, Anurag; Greninger, Patricia; Rhodes, Daniel; Koopman, Louise; Violette, Sheila; Bardeesy, Nabeel; Settleman, Jeff

    2009-01-01

    SUMMARY K-Ras mutations occur frequently in epithelial cancers. Using shRNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-Ras mutations, two classes were identified—lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in “K-Ras-addicted” cancers represent candidate therapeutic targets. SIGNIFICANCE K-Ras is the most frequently mutated oncogene in solid tumors and when aberrantly activated, is a potent tumor initiator. However, the identification of the critical effectors of K-Ras-mediated tumorigenesis and the development of clinically effective therapeutic strategies in this setting remain challenging. We have found that cancer cell lines harboring K-Ras mutations can be broadly classified into K-Ras-dependent and K-Ras-independent groups. By establishing a gene expression signature that can distinguish these two groups, we identified genes that are specifically up-regulated in K-Ras-dependent cells and are required for their viability. Therefore, the K-Ras dependency signature has revealed several potential therapeutic targets in a subset of otherwise pharmacologically intractable human cancers. PMID:19477428

  1. Notch-1 expression levels in 3T3-L1 cells influence ras signaling and transformation by oncogenic ras.

    PubMed

    Ruiz-Hidalgo, M J; Garcés, C; Laborda, J

    1999-04-01

    Notch proteins participate in interactions between several cell types involved on the specification of numerous cell fates during development. We previously showed that enforced downregulation of Notch-1 expression prevented adipogenesis of 3T3-L1 cells. Since adipogenesis of 3T3-L1 cells can be induced by oncogenic ras, we studied whether this was also the case in 3T3-L1 cells with decreased levels of Notch-1 expression. We found that oncogenic ras induces transformation and not differentiation of 3T3-L1 cells with diminished levels of Notch-1. This result suggests that Notch-1 is implicated in the interpretation of signals leading to activation of p21 Ras.

  2. Reticular activating system of a central pattern generator: premovement electrical potentials.

    PubMed

    Tapia, Jesus A; Trejo, Argelia; Linares, Pablo; Alva, J Manuel; Kristeva, Rumyana; Manjarrez, Elias

    2013-10-01

    For the first time, here we characterize a bulbar reticular activating system (RAS) of neurons in decerebrate, deafferented and decerebellated cats producing a premovement electrical potential that we named obex slow potential (OSP). The OSP occurs about 0.8 ± 0.4 sec prior to the onset of a fictive-scratching-episode. Here, we describe two classes of bulbar neurons, off-on, which are silent but exhibit a 80 ± 56 Hz firing discharge at the beginning of (and during) the OSP, and on-off interneurons, with a 27 ± 14 Hz firing activity that stops at the beginning of (and during) the OSP. We suggest that these OSP-associated neurons belong to a descending RAS, which contributes to the activation of the spinal central pattern generators.

  3. Reticular activating system of a central pattern generator: premovement electrical potentials

    PubMed Central

    Tapia, Jesus A; Trejo, Argelia; Linares, Pablo; Alva, J Manuel; Kristeva, Rumyana; Manjarrez, Elias

    2013-01-01

    For the first time, here we characterize a bulbar reticular activating system (RAS) of neurons in decerebrate, deafferented and decerebellated cats producing a premovement electrical potential that we named obex slow potential (OSP). The OSP occurs about 0.8 ± 0.4 sec prior to the onset of a fictive-scratching-episode. Here, we describe two classes of bulbar neurons, off-on, which are silent but exhibit a 80 ± 56 Hz firing discharge at the beginning of (and during) the OSP, and on-off interneurons, with a 27 ± 14 Hz firing activity that stops at the beginning of (and during) the OSP. We suggest that these OSP-associated neurons belong to a descending RAS, which contributes to the activation of the spinal central pattern generators. PMID:24303193

  4. Brain renin-angiotensin system and dopaminergic cell vulnerability

    PubMed Central

    Labandeira-García, Jose L.; Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Valenzuela, Rita; Borrajo, Ana; Rodríguez-Perez, Ana I.

    2014-01-01

    Although the renin-angiotensin system (RAS) was classically considered as a circulating system that regulates blood pressure, many tissues are now known to have a local RAS. Angiotensin, via type 1 receptors, is a major activator of the NADPH-oxidase complex, which mediates several key events in oxidative stress (OS) and inflammatory processes involved in the pathogenesis of major aging-related diseases. Several studies have demonstrated the presence of RAS components in the basal ganglia, and particularly in the nigrostriatal system. In the nigrostriatal system, RAS hyperactivation, via NADPH-oxidase complex activation, exacerbates OS and the microglial inflammatory response and contributes to progression of dopaminergic degeneration, which is inhibited by angiotensin receptor blockers and angiotensin converting enzyme (ACE) inhibitors. Several factors may induce an increase in RAS activity in the dopaminergic system. A decrease in dopaminergic activity induces compensatory upregulation of local RAS function in both dopaminergic neurons and glia. In addition to its role as an essential neurotransmitter, dopamine may also modulate microglial inflammatory responses and neuronal OS via RAS. Important counterregulatory interactions between angiotensin and dopamine have also been observed in several peripheral tissues. Neurotoxins and proinflammatory factors may also act on astrocytes to induce an increase in RAS activity, either independently of or before the loss of dopamine. Consistent with a major role of RAS in dopaminergic vulnerability, increased RAS activity has been observed in the nigra of animal models of aging, menopause and chronic cerebral hypoperfusion, which also showed higher dopaminergic vulnerability. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic vulnerability and progression of Parkinson’s disease. PMID:25071471

  5. Ras transformation results in cleavage of reticulon protein Nogo-B that is associated with impairment of IFN response

    PubMed Central

    Ahn, Dae-Gyun; Sharif, Tanveer; Chisholm, Kenneth; Pinto, Devanand M; Gujar, Shashi A; Lee, Patrick WK

    2015-01-01

    Dysregulation of Ras signaling is the major cause of various cancers. Aberrant Ras signaling, however, provides a favorable environment for many viruses, making them suitable candidates as cancer-killing therapeutic agents. Susceptibility of cancer cells to such viruses is mainly due to impaired type I interferon (IFN) response, often as a result of activated Ras/ERK signaling in these cells. In this study, we searched for cellular factors modulated by Ras signaling and their potential involvement in promoting viral oncolysis. We found that upon Ras transformation of NIH-3T3 cells, the N-terminus of Nogo-B (reticulon 4) was proteolytically cleaved. Interestingly, Nogo knockdown (KD) in non-transformed and Ras-transformed cells both enhanced virus-induced IFN response, suggesting that both cleaved and uncleaved Nogo can suppress IFN response. However, pharmacological blockade of Nogo cleavage in Ras-transformed cells significantly enhanced virus-induced IFN response, suggesting that cleaved Nogo contributes to enhanced IFN suppression in these cells. We further showed that IFN suppression associated with Ras-induced Nogo-B cleavage was distinct from but synergistic with that associated with an activated Ras/ERK pathway. Our study therefore reveals an important and novel role of Nogo-B and its cleavage in the suppression of anti-viral immune responses by oncogenic Ras transformation. PMID:25946643

  6. Literature review of the potential effects of hydrogen peroxide on nitrogen oxidation efficiency of the biofilters of recirculating aquaculture systems (RAS) for freshwater finfish

    USGS Publications Warehouse

    Fredricks, Kim T.

    2015-01-01

    After the initial screening, the remaining 1,405 papers underwent a second screening. Titles and abstracts (when available) were again read to verify that the topic of the paper was related to RAS. During the second screening, a second person verified that the papers proposed for elimination were not related to RAS. A combined reference list of the 512 remaining papers was created and submitted to the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) librarian in order to obtain the actual papers; electronic copies of those citations were obtained and reviewed. The UMESC librarian also received weekly updates from Scopus (a bibliographic database containing abstracts and citations for academic journal articles) using the search terms. Any resulting papers from those updates were screened using the inclusion criteria and relevant papers were requested. From those, 86 were cited in the literature review. An additional 11 papers from other search methods (e.g., mining references lists) also were obtained.

  7. Literature review of the potential effects of formalin on nitrogen oxidation efficiency of the biofilters of recirculating aquaculture systems (RAS) for freshwater finfish

    USGS Publications Warehouse

    Fredricks, Kim T.

    2015-01-01

    After the initial screening, the remaining 1,287 papers underwent a second screening. Titles and abstracts (when available) were again read to verify that the topic of the paper was related to RAS. During the second screening, a second person verified that the papers proposed for elimination were not related to RAS. A combined reference list of the 443 remaining papers was created and submitted to the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) librarian to obtain the actual papers; electronic copies of those citations were obtained and reviewed. The UMESC librarian also would receive weekly updates from Scopus (a bibliographic database containing abstracts and citations for academic journal articles) using the search terms. Any resulting papers from those updates also were screened using the inclusion criteria, and any relevant papers were requested. From those, 82 were cited in the literature review. An additional 10 references were obtained from weekly updates or reference mining other sources and were incorporated into the final literature review.

  8. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  9. Hyperglycemia Promotes K-Ras-Induced Lung Tumorigenesis through BASCs Amplification

    PubMed Central

    Micucci, Carla; Orciari, Silvia; Catalano, Alfonso

    2014-01-01

    Oncogenic K-Ras represents the most common molecular change in human lung adenocarcinomas, the major histologic subtype of non–small cell lung cancer (NSCLC). The presence of K-Ras mutation is associated with a poor prognosis, but no effective treatment strategies are available for K-Ras -mutant NSCLC. Epidemiological studies report higher lung cancer mortality rates in patients with type 2 diabetes. Here, we use a mouse model of K-Ras-mediated lung cancer on a background of chronic hyperglycemia to determine whether elevated circulating glycemic levels could influence oncogenic K-Ras-mediated tumor development. Inducible oncogenic K-Ras mouse model was treated with subtoxic doses of streptozotocin (STZ) to induce chronic hyperglycemia. We observed increased tumor mass and higher grade of malignancy in STZ treated diabetic mice analyzed at 4, 12 and 24 weeks, suggesting that oncogenic K-Ras increased lung tumorigenesis in hyperglycemic condition. This promoting effect is achieved by expansion of tumor-initiating lung bronchio-alveolar stem cells (BASCs) in bronchio-alveolar duct junction, indicating a role of hyperglycemia in the activity of K-Ras-transformed putative lung stem cells. Notably, after oncogene K-Ras activation, BASCs show upregulation of the glucose transporter (Glut1/Slc2a1), considered as an important player of the active control of tumor cell metabolism by oncogenic K-Ras. Our novel findings suggest that anti-hyperglycemic drugs, such as metformin, may act as therapeutic agent to restrict lung neoplasia promotion and progression. PMID:25144301

  10. Fas-induced programmed cell death is mediated by a Ras-regulated O2- synthesis.

    PubMed Central

    Gulbins, E; Brenner, B; Schlottmann, K; Welsch, J; Heinle, H; Koppenhoefer, U; Linderkamp, O; Coggeshall, K M; Lang, F

    1996-01-01

    Fas induces apoptosis in lymphocytes via a poorly defined intracellular signalling cascade. Previously, we have demonstrated the involvement and significance of a signalling cascade from the Fas receptor via sphingomyelinases and ceramide to Ras in Fas-induced apoptosis. Here we demonstrate rapid and transient synthesis of reactive oxygen intermediates (ROI) via activation of Ras after Fas. Genetic inhibition of Ras by transfection of transdominant inhibitory N17Ras blocked Fas-mediated ROI synthesis and programmed cell death. Likewise, the antioxidants N-acetyl-cysteine and N-t-butyl-phenylnitrone abolished Fas-induced cell death, pointing to an important role for Ras-triggered ROI synthesis in Fas-mediated programmed cell death. Images Figure 1 Figure 3 PMID:8943716

  11. Rb and N-ras Function Together To Control Differentiation in the Mouse

    PubMed Central

    Takahashi, Chiaki; Bronson, Roderick T.; Socolovsky, Merav; Contreras, Bernardo; Lee, Kwang Youl; Jacks, Tyler; Noda, Makoto; Kucherlapati, Raju; Ewen, Mark E.

    2003-01-01

    The product of the retinoblastoma tumor suppressor gene (Rb) can control cell proliferation and promote dif-ferentiation. Murine embryos nullizygous for Rb die midgestation with defects in cell cycle regulation, control of apoptosis, and terminal differentiation of several tissues, including skeletal muscle, nervous system, and lens. Previous cell culture-based experiments have suggested that the retinoblastoma protein (pRb) and Ras operate in a common pathway to control cellular differentiation. Here we have tested the hypothesis that the proto-oncogene N-ras participates in Rb-dependent regulation of differentiation by generating and characterizing murine embryos deficient in both N-ras and Rb. We show that deletion of N-ras rescues a unique subset of the developmental defects associated with nullizygosity of Rb, resulting in a significant extension of life span. Rb−/−; N-ras−/− skeletal muscle has normal fiber density, myotube length and thickness, in contrast to Rb-deficient embryos. Additionally, Rb−/−; N-ras−/− muscle shows a restoration in the expression of the late muscle-specific gene MCK, and this correlates with a significant potentiation of MyoD transcriptional activity in Rb−/−; N-ras−/−, compared to Rb−/− myoblasts in culture. The improved differentiation of skeletal muscle in Rb−/−; N-ras−/− embryos occurs despite evidence of deregulated proliferation and apoptosis, as seen in Rb-deficient animals. Our findings suggest that the control of differentiation and proliferation by Rb are genetically separable. PMID:12861012

  12. Regulation of an H-ras-related transcript by parathyroid hormone in rat osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Scott, D. K.; Weaver, W. R.; Clohisy, J. C.; Brakenhoff, K. D.; Kahn, A. J.; Partridge, N. C.

    1992-01-01

    The rat osteosarcoma cell line UMR 106-01 is a commonly used model system for the study of osteoblast function. However, it also expresses a phenotype characteristic of transformed cells. To test whether the latter could be accounted for by aberrant oncogene expression, we probed Northern blots of UMR and other osteoblastic cells with a panel of oncogene probes. These blots, when probed with a cDNA specific for v-H-ras, revealed a 7.0-kilobase (kb) H-ras-related transcript (designated HRRT) in UMR 106-01 cells that was not expressed in other osteoblastic cells. Osteoblast-enriched calvarial cells expressed the typical 1.1-kb H-ras mRNA, which was absent in UMR cells. Additionally, Western blots of lysates of UMR cells documented the presence of three proteins immunologically related to H-rasp21. To determine whether HRRT represented a recombinant retrovirus product, Northern blots were probed with a cDNA specific for the highly conserved gag-pol region of Moloney murine leukemia virus. These blots showed parallel cross-reactivity with an apparently identical transcript of 7.0 kb. The 7.0-kb transcripts detected by both v-H-ras and gag-pol probes declined to the same extent after treatment with concentrations of PTH known to inhibit proliferation of these cells. PTH regulated the abundance of HRRT in a time- and dose-dependent manner, with greatest repression of the transcript after 8 h of treatment with 10(-8) M PTH. The decrease in HRRT could not be completely accounted for by changes in transcriptional activity, as determined by nuclear run-on assays.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer.

    PubMed

    Vasan, Neil; Boyer, Julie L; Herbst, Roy S

    2014-08-01

    Of the numerous oncogenes implicated in human cancer, the most common and perhaps the most elusive to target pharmacologically is RAS. Since the discovery of RAS in the 1960s, numerous studies have elucidated the mechanism of activity, regulation, and intracellular trafficking of the RAS gene products, and of its regulatory pathways. These pathways yielded druggable targets, such as farnesyltransferase, during the 1980s to 1990s. Unfortunately, early clinical trials investigating farnesyltransferase inhibitors yielded disappointing results, and subsequent interest by pharmaceutical companies in targeting RAS waned. However, recent advances including the identification of novel regulatory enzymes (e.g., Rce1, Icmt, Pdeδ), siRNA-based synthetic lethality screens, and fragment-based small-molecule screens, have resulted in a "Ras renaissance," signified by new Ras and Ras pathway-targeted therapies that have led to new clinical trials of patients with Ras-driven cancers. This review gives an overview of KRas signaling pathways with an emphasis on novel targets and targeted therapies, using non-small cell lung cancer as a case example.

  14. Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors

    PubMed Central

    Menachem, A; Bodner, O; Pastor, J; Raz, A; Kloog, Y

    2015-01-01

    Anaplastic Thyroid carcinoma is an extremely aggressive solid tumor that resists most treatments and is almost always fatal. Galectin-3 (Gal-3) is an important marker for thyroid carcinomas and a scaffold of the K-Ras protein. S-trans, transfarnesylthiosalicylic acid (FTS; Salirasib) is a Ras inhibitor that inhibits the active forms of Ras proteins. Modified citrus pectin (MCP) is a water-soluble citrus-fruit-derived polysaccharide fiber that specifically inhibits Gal-3. The aim of this study was to develop a novel drug combination designed to treat aggressive anaplastic thyroid carcinoma. Combined treatment with FTS and MCP inhibited anaplastic thyroid cells proliferation in vitro by inducing cell cycle arrest and increasing apoptosis rate. Immunoblot analysis revealed a significant decrease in Pan-Ras, K-Ras, Ras-GTP, p-ERK, p53, and Gal-3 expression levels and significant increase in p21 expression levels. In nude mice, treatment with FTS and MCP inhibited tumor growth. Levels of Gal-3, K-Ras-GTP, and p-ERK were significantly decreased. To conclude, our results suggest K-Ras and Gal-3 as potential targets in anaplastic thyroid tumors and herald a novel treatment for highly aggressive anaplastic thyroid carcinoma. PMID:27551476

  15. Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors.

    PubMed

    Menachem, A; Bodner, O; Pastor, J; Raz, A; Kloog, Y

    2015-01-01

    Anaplastic Thyroid carcinoma is an extremely aggressive solid tumor that resists most treatments and is almost always fatal. Galectin-3 (Gal-3) is an important marker for thyroid carcinomas and a scaffold of the K-Ras protein. S-trans, transfarnesylthiosalicylic acid (FTS; Salirasib) is a Ras inhibitor that inhibits the active forms of Ras proteins. Modified citrus pectin (MCP) is a water-soluble citrus-fruit-derived polysaccharide fiber that specifically inhibits Gal-3. The aim of this study was to develop a novel drug combination designed to treat aggressive anaplastic thyroid carcinoma. Combined treatment with FTS and MCP inhibited anaplastic thyroid cells proliferation in vitro by inducing cell cycle arrest and increasing apoptosis rate. Immunoblot analysis revealed a significant decrease in Pan-Ras, K-Ras, Ras-GTP, p-ERK, p53, and Gal-3 expression levels and significant increase in p21 expression levels. In nude mice, treatment with FTS and MCP inhibited tumor growth. Levels of Gal-3, K-Ras-GTP, and p-ERK were significantly decreased. To conclude, our results suggest K-Ras and Gal-3 as potential targets in anaplastic thyroid tumors and herald a novel treatment for highly aggressive anaplastic thyroid carcinoma. PMID:27551476

  16. Altered expression of Bcl-2, c-Myc, H-Ras, K-Ras, and N-Ras does not influence the course of mycosis fungoides

    PubMed Central

    Maj, Joanna; Jankowska-Konsur, Alina; Plomer-Niezgoda, Ewa; Sadakierska-Chudy, Anna

    2013-01-01

    Introduction Data about genetic alterations in mycosis fungoides (MF) are limited and their significance not fully elucidated. The aim of the study was to explore the expression of various oncogenes in MF and to assess their influence on the disease course. Material and methods Skin biopsies from 27 MF patients (14 with early MF and 13 with advanced disease) and 8 healthy volunteers were analyzed by real-time polymerase chain reaction (PCR) to detect Bcl-2, c-Myc, H-Ras, K-Ras and N-Ras expression. All PCR reactions were performed using an Applied Biosystems 7900HT Fast Real-Time PCR System and interpreted using Sequence Detection Systems software which utilizes the comparative delta Ct method. The level of mRNA was normalized to GAPDH expression. All data were analyzed statistically. Results All evaluated oncogenes were found to be expressed in the skin from healthy controls and MF patients. Bcl-2 (–4.2 ±2.2 vs. –2.2 ±1.1; p = 0.01), H-Ras (–3.0 ±3.3 vs. 0.6 ±2.6; p = 0.01) and N-Ras (–3.6 ±2.0 vs. –1.1 ±2.4; p = 0.03) were expressed at significantly lower levels in MF. No relationships between oncogene expression and disease stage, presence of distant metastases and survival were observed (p > 0.05 for all comparisons). Conclusions The pathogenic role and prognostic significance of analyzed oncogenes in MF seem to be limited and further studies are needed to establish better prognostic factors for patients suffering from MF. PMID:24273576

  17. Ras does not contribute to the facilitation of hippocampal synaptic plasticity enabled by environmental enrichment.

    PubMed

    Novkovic, T; Heumann, R; Manahan-Vaughan, D

    2015-11-19

    Environmental enrichment (EE), which mimics the wealth of sensory, motor and cognitive stimuli that arise through intense interactions with the ambient environment, results in enhanced hippocampal long-term potentiation (LTP) and spatial learning. A key molecular factor in the mediation of these changes is the brain-derived neurotrophic factor (BDNF). One of the downstream cascades that is activated by BDNF is the cascade linked to the small GTPase, Ras, that triggers mitogen-activated protein kinase (MAPK) activity and is part of the cAMP response element-binding protein (CREB) pathway that can lead to synaptic restructuring to support LTP. Here, we explored whether persistent activation of Ras in neurons further enhances LTP following EE of rodents. Immediately following weaning, transgenic mice that expressed constitutively activated neuronal Ras, or their wildtype (Wt) littermates, underwent 3weeks of constant EE. In the absence of EE, theta burst stimulation (TBS) evoked LTP in the CA1 region of transgenic mice that was not significantly different from LTP in Wts. After 3weeks of EE, hippocampal LTP was improved in Wt mice. Enriched transgenic mice showed an equivalent level of LTP to enriched Wts, but it was not significantly different from non-enriched synRas controls. Western blot analysis performed after a pull-down assay showed that non-enriched transgenic mice expressed higher Ras activity compared to non-enriched Wts. Following EE, Ras activity was reduced in transgenics to levels detected in Wts. These results show that constitutive activation of Ras does not mimic the effects of EE on LTP. In addition, EE results in an equivalent enhancement of LTP transgenics and Wts, coupled with a decrease in Ras activity to Wt levels. This suggests that permanent activation of Ras in neurons of synRas animals following EE results in an altered feedback regulation of endogenous Ras activity that is not a key factor in LTP enhancements. The maintenance of Ras within

  18. Ras does not contribute to the facilitation of hippocampal synaptic plasticity enabled by environmental enrichment.

    PubMed

    Novkovic, T; Heumann, R; Manahan-Vaughan, D

    2015-11-19

    Environmental enrichment (EE), which mimics the wealth of sensory, motor and cognitive stimuli that arise through intense interactions with the ambient environment, results in enhanced hippocampal long-term potentiation (LTP) and spatial learning. A key molecular factor in the mediation of these changes is the brain-derived neurotrophic factor (BDNF). One of the downstream cascades that is activated by BDNF is the cascade linked to the small GTPase, Ras, that triggers mitogen-activated protein kinase (MAPK) activity and is part of the cAMP response element-binding protein (CREB) pathway that can lead to synaptic restructuring to support LTP. Here, we explored whether persistent activation of Ras in neurons further enhances LTP following EE of rodents. Immediately following weaning, transgenic mice that expressed constitutively activated neuronal Ras, or their wildtype (Wt) littermates, underwent 3weeks of constant EE. In the absence of EE, theta burst stimulation (TBS) evoked LTP in the CA1 region of transgenic mice that was not significantly different from LTP in Wts. After 3weeks of EE, hippocampal LTP was improved in Wt mice. Enriched transgenic mice showed an equivalent level of LTP to enriched Wts, but it was not significantly different from non-enriched synRas controls. Western blot analysis performed after a pull-down assay showed that non-enriched transgenic mice expressed higher Ras activity compared to non-enriched Wts. Following EE, Ras activity was reduced in transgenics to levels detected in Wts. These results show that constitutive activation of Ras does not mimic the effects of EE on LTP. In addition, EE results in an equivalent enhancement of LTP transgenics and Wts, coupled with a decrease in Ras activity to Wt levels. This suggests that permanent activation of Ras in neurons of synRas animals following EE results in an altered feedback regulation of endogenous Ras activity that is not a key factor in LTP enhancements. The maintenance of Ras within

  19. c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.

    PubMed

    Vaqué, José P; Fernández-García, Belén; García-Sanz, Pablo; Ferrandiz, Nuria; Bretones, Gabriel; Calvo, Fernando; Crespo, Piero; Marín, María C; León, Javier

    2008-02-01

    Although mutant Ras proteins were originally described as transforming oncoproteins, they induce growth arrest, senescence, and/or differentiation in many cell types. c-Myc is an oncogenic transcription factor that cooperates with Ras in cellular transformation and oncogenesis. However, the Myc-Ras relationship in cellular differentiation is largely unknown. Here, we have analyzed the effects of c-Myc on PC12-derived cells (UR61 cell line), harboring an inducible N-Ras oncogene. In these cells, Ras activation induces neuronal-like differentiation by a process involving c-Jun activation. We found that c-Myc inhibited Ras-mediated differentiation by a mechanism that involves the blockade of c-Jun induction in response to Ras signal. Accordingly, ectopically expressed c-Jun could bypass c-Myc impediment of Ras-induced differentiation and activator protein 1 activation. Interestingly, it did not rescue the proliferative arrest elicited by Ras and did not enhance the differentiation-associated apoptosis. The blockade of Ras-mediated induction of c-Jun takes place at the level of c-Jun proximal promoter. Mutational analysis revealed that c-Myc regions involved in DNA binding and transactivation are required to block differentiation and c-Jun induction. c-Myc does not seem to require Miz-1 to inhibit differentiation and block c-Jun induction. Furthermore, Max is not required for c-Myc activity, as UR61 cells lack a functional Max gene. c-Myc-inhibitory effect on the Ras/c-Jun connection is not restricted to UR61 cells as it can occur in other cell types as K562 or HEK293. In conclusion, we describe a novel interplay between c-Myc and c-Jun that controls the ability of Ras to trigger the differentiation program of pheochromocytoma cells.

  20. Insights into K-Ras 4B regulation by post-translational lysine acetylation.

    PubMed

    Knyphausen, Philipp; Lang, Franziska; Baldus, Linda; Extra, Antje; Lammers, Michael

    2016-10-01

    Ras is a molecular switch cycling between an active, GTP-bound and an inactive, GDP-bound state. Mutations in Ras, mostly affecting the off-switch, are found in many human tumours. Recently, it has been shown that K-Ras 4B is targeted by lysine acetylation at K104. Based on results obtained for an acetylation mimetic Ras mutant (K104Q), it was hypothesised that K104-acetylation might interfere with its oncogenicity by impairing SOS-catalysed guanine-nucleotide exchange. We prepared site-specifically K104-acetylated K-Ras 4B and the corresponding oncogenic mutant protein G12V using the genetic-code expansion concept. We found that SOS-catalysed nucleotide exchange, also of allosterically activated SOS, was neither affected by acetylation of K104 in wildtype K-Ras 4B nor in the G12V mutant, suggesting that glutamine is a poor mimetic for acetylation at this site. In vitro, the lysine-acetyltransferases CBP and p300 were able to acetylate both, wildtype and G12V K-Ras 4B. In addition to K104 we identified further acetylation sites in K-Ras 4B, including K147, within the important G5/SAK-motif. However, the intrinsic and the SOS-catalysed nucleotide exchange was not affected by K147-acetylation of K-Ras 4B. Finally, we show that Sirt2 and HDAC6 do neither deacetylate K-Ras 4B if acetylated at K104 nor if acetylated at K147 in vitro.

  1. Across the universe of K-RAS mutations in non-small-cell-lung cancer.

    PubMed

    Piva, Sheila; Ganzinelli, Monica; Garassino, Marina Chiara; Caiola, Elisa; Farina, Gabriella; Broggini, Massimo; Marabese, Mirko

    2014-01-01

    RAS family proteins are important signaling molecules that regulate cell growth, survival and differentiation by coupling receptor activation to downstream effector pathways. Three distinct genes encode for the three different proteins H-, K-, and N- RAS. These proteins share high sequence homology, particularly at the N-Terminal domain. Among them, K-RAS is one of the most frequently mutated in human cancer. The majority of the mutations present in K-RAS are at codon 12 (from 80 to 100%) followed by codon 13 and 61. In all cases, aminoacid change leads to a constitutively activated protein. K-RAS mutations have a role in tumor development as well as in tumor progression and resistance. Despite the various studies which have been published, the prognostic and predictive role of K-RAS mutations is still under debate. Keeping in mind that the glycine present at position 12 can be substituted by valine, aspartic acid or cysteine, it could be well understood that each different substitution plays a different role in K-RAS-dependent processes. The present article focuses on the molecular and biological characteristics of K-RAS protein, its role in NSCLC tumor development and progression. We also present an overview of the preclinical models both in vitro and in vivo available to determine the role of K-RAS in tumor progression and response to treatment and on the recent results obtained in this field. Finally, we have considered the impact of KRAS mutations in clinical practice, analyzing the different recent trials that have taken into consideration K-RAS.

  2. A new member of the ras gene superfamily identified in a rat liver cell line.

    PubMed Central

    Bucci, C; Frunzio, R; Chiariotti, L; Brown, A L; Rechler, M M; Bruni, C B

    1988-01-01

    A new member of the ras genes superfamily was isolated from a cDNA library derived from a rat liver cell line (BRL-3A). The predicted 201 amino acids ras-like protein shows 30-35% homology with other members of the ras and ras-related gene products so far described. Conserved features include the GTP-binding and hydrolysis domains and the carboxyl terminal cysteine residues. A protein of the expected size (Mr 23,000) was synthesized in an in vitro transcription-translation system. The BRL-ras gene is present in single copy in the rat genome and is ubiquitously expressed at high levels in all tissues and cell lines examined. Images PMID:3057452

  3. The PDZ Protein Canoe/AF-6 Links Ras-MAPK, Notch and Wingless/Wnt Signaling Pathways by Directly Interacting with Ras, Notch and Dishevelled

    PubMed Central

    Carmena, Ana; Speicher, Stephan; Baylies, Mary

    2006-01-01

    Over the past few years, it has become increasingly apparent that signal transduction pathways are not merely linear cascades; they are organized into complex signaling networks that require high levels of regulation to generate precise and unique cell responses. However, the underlying regulatory mechanisms by which signaling pathways cross-communicate remain poorly understood. Here we show that the Ras-binding protein Canoe (Cno)/AF-6, a PDZ protein normally associated with cellular junctions, is a key modulator of Wingless (Wg)/Wnt, Ras-Mitogen Activated Protein Kinase (MAPK) and Notch (N) signaling pathways cross-communication. Our data show a repressive effect of Cno/AF-6 on these three signaling pathways through physical interactions with Ras, N and the cytoplasmic protein Dishevelled (Dsh), a key Wg effector. We propose a model in which Cno, through those interactions, actively coordinates, at the membrane level, Ras-MAPK, N and Wg signaling pathways during progenitor specification. PMID:17183697

  4. RAS and BRAF in metastatic colorectal cancer management

    PubMed Central

    Gong, Jun; Cho, May

    2016-01-01

    The treatment of metastatic colorectal cancer (mCRC) has been further refined with the development of monoclonal antibodies, cetuximab and panitumumab, towards the epidermal growth factor receptor (EGFR). Anti-EGFR therapy has afforded improved survival in those with wild-type RAS mCRC but provides no benefit and even harm in those with RAS-mutant tumors. BRAF mutations have also been shown to predict lack of clinically meaningful benefit to anti-EGFR therapy in mCRC. Mechanisms of resistance to EGFR blockade in wild-type RAS or BRAF metastatic colorectal tumors appear to converge on the mitogen-activated protein kinase (MAPK) signaling pathway. Clinical trials involving combined BRAF, EGFR, and/or MAPK kinase (MEK) inhibition have shown promising activity in BRAF-mutant mCRC. Here, we review pivotal clinical trials that have redefined our treatment approach in mCRC with respect to anti-EGFR therapy based on RAS and BRAF mutation status. Future studies will likely focus on improving efficacy of anti-EGFR-based therapy in mCRC through sustained MAPK pathway inhibition. PMID:27747083

  5. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  6. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.

  7. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs.

  8. The Thyroid Hormone Receptor Is a Suppressor of ras-Mediated Transcription, Proliferation, and Transformation

    PubMed Central

    García-Silva, Susana; Aranda, Ana

    2004-01-01

    The thyroid hormone triiodothyronine (T3) has a profound effect on growth, differentiation, and metabolism in higher organisms. Here we demonstrate that T3 inhibits ras-induced proliferation in neuroblastoma cells and blocks induction of cyclin D1 expression by the oncogene. The hormone, at physiological concentrations, strongly antagonizes the transcriptional response mediated by the Ras/mitogen-activated protein kinase/ribosomal-S6 subunit kinase (Rsk) signaling pathway in cells expressing thyroid hormone receptors (TRs). T3 blocks the response to the oncogenic forms of the three ras isoforms (H-, K-, and N-ras) and both TRα and TRβ can mediate this action. The main target for induction of cyclin D1 transcription by oncogenic ras in neuroblastoma cells is a cyclic AMP response element (CRE) located in proximal promoter sequences, and T3 represses the transcriptional activity of b-Zip transcription factors such as CREB (CRE-binding protein) or ATF-2 (activation transcription factor 2) that are direct targets of Rsk2 and bind to this sequence. The hormone also blocks fibroblast transformation by oncogenic ras when TR is expressed. Furthermore, TRs act as suppressors of tumor formation by the oncogene in vivo in nude mice. The TRβ isoform has stronger antitransforming properties than the α isoform and can inhibit tumorigenesis even in hypothyroid mice. These results show the existence of a previously unrecognized transcriptional cross talk between the TRs and the ras oncogene which influences relevant processes such as cell proliferation, transformation, or tumorigenesis. PMID:15314161

  9. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  10. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    PubMed

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  11. Minireview: physiological and pathological actions of RAS in the ovary.

    PubMed

    Fan, Heng-Yu; Richards, Joanne S

    2010-02-01

    The small G proteins of the RAS superfamily act as molecular switches in the transduction of cellular signals critical for a wide range of normal developmental events as well as pathological processes. However, the functions of Ras genes in ovarian cells have only started to be unveiled. RAS, most likely KRAS that is highly expressed in granulosa cells of growing follicles, appears crucial for mediating the gonadotropin-induced events associated with the unique physiological process of ovulation. By contrast, conditional expression of a constitutively active Kras(G12D) mutant in granulosa cells results in ovulation defects due to the complete disru