Science.gov

Sample records for activation analysis neutron

  1. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  2. Neutron Activation Analysis: Techniques and Applications

    SciTech Connect

    MacLellan, Ryan

    2011-04-27

    The role of neutron activation analysis in low-energy low-background experimentsis discussed in terms of comparible methods. Radiochemical neutron activation analysis is introduce. The procedure of instrumental neutron activation analysis is detailed especially with respect to the measurement of trace amounts of natural radioactivity. The determination of reactor neutron spectrum parameters required for neutron activation analysis is also presented.

  3. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  4. NONDESTRUCTIVE MULTIELEMENT INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS

    EPA Science Inventory

    A nondestructive instrumental neutron activation analysis procedure permitted accurate and sensitive measurement of most elements with atomic numbers between 11 and 92. The sensitivity of the procedure was dependent on each element's intrinsic characteristics and the sample matri...

  5. Neutron activation analysis in the life sciences

    NASA Astrophysics Data System (ADS)

    Frontasyeva, M. V.

    2011-03-01

    Development of methods for instrumental neutron activation analysis (INAA) and their applications in the life sciences are reviewed. Emphasis is placed on epithermal activation with reactor neutrons (ENAA), and the advantages of this technique in analysis of environmental objects are shown. The results of applied INAA studies in the field of the life sciences carried out at the world's leading nuclear centers are reported. Experience in employing a radioanalytical complex at the IBR-2 reactor (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna) for such studies is summarized.

  6. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  7. Neutron activation analysis of Etruscan pottery

    SciTech Connect

    Whitehead, J.; Silverman, A.; Ouellet, C.G.; Clark, D.D.; Hossain, T.Z

    1992-07-01

    Neutron activation analysis (NAA) has been widely used in archaeology for compositional analysis of pottery samples taken from sites of archaeological importance. Elemental profiles can determine the place of manufacture. At Cornell, samples from an Etruscan site near Siena, Italy, are being studied. The goal of this study is to compile a trace element concentration profile for a large number of samples. These profiles will be matched with an existing data bank in an attempt to understand the place of origin for these samples. The 500 kW TRIGA reactor at the Ward Laboratory is used to collect NAA data for these samples. Experiments were done to set a procedure for the neutron activation analysis with respect to sample preparation, selection of irradiation container, definition of activation and counting parameters and data reduction. Currently, we are able to analyze some 27 elements in samples of mass 500 mg with a single irradiation of 4 hours and two sequences of counting. Our sensitivity for many of the trace elements is better than 1 ppm by weight under the conditions chosen. In this talk, details of our procedure, including quality assurance as measured by NIST standard reference materials, will be discussed. In addition, preliminary results from data treatment using cluster analysis will be presented. (author)

  8. Neutron activation analysis in archaeological chemistry

    SciTech Connect

    Harbottle, G.

    1987-01-01

    Neutron activation analysis has proven to be a convenient way of performing the chemical analysis of archaeologically-excavated artifacts and materials. It is fast and does not require tedious laboratory operations. It is multielement, sensitive, and can be made nondestructive. Neutron activation analysis in its instrumental form, i.e., involving no chemical separation, is ideally suited to automation and conveniently takes the first step in data flow patterns that are appropriate for many taxonomic and statistical operations. The future will doubtless see improvements in the practice of NAA in general, but in connection with archaeological science the greatest change will be the filling, interchange and widespread use of data banks based on compilations of analytical data. Since provenience-oriented data banks deal with materials (obsidian, ceramics, metals, semiprecious stones, building materials and sculptural media) that participated in trade networks, the analytical data is certain to be of interest to a rather broad group of archaeologists. It is to meet the needs of the whole archaeological community that archaeological chemistry must now turn.

  9. Physical basis for prompt-neutron activation analysis

    SciTech Connect

    Chrien, R.E.

    1982-01-01

    The technique called prompt ..gamma..-ray neutron activation analysis has been applied to rapid materials analysis. The radiation following the neutron radiation capture is prompt in the sense that the nuclear decay time is on the order of 10/sup -15/ second, and thus the technique is not strictly activation, but should be called radiation neutron capture spectroscopy or neutron capture ..gamma..-ray spectroscopy. This paper reviews the following: sources and detectors, theory of radiative capture, nonstatistical capture, giant dipole resonance, fast neutron capture, and thermal neutron capture ..gamma..-ray spectra. 14 figures.

  10. Neutron activation analysis of some building materials

    NASA Astrophysics Data System (ADS)

    Salagean, M. N.; Pantelica, A. I.; Georgescu, I. I.; Muntean, M. I.

    1999-01-01

    Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U. Yb, W and Zn in seven Romanian building materials were determined by the Instrumental Neutron Activation Analysis (INAA) method using the VVR-S Reactor of NIPNE- Bucharest. Raw matarials used in cement obtaining ≈ 75% of limestone and ≈ 25% of clay, cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick have been analyzed. The brick was compacted from furnace slay, fly coal ash, phosphogypsum, lime and cement. The U, Th and K concentrations determined in the brick are in agreement with the natural radioactivity measurements of226Ra,232Th and40K. These specific activities were found about twice and 1.5 higher than the accepted levels in the case of226Ra and232Th, as well as40K, respectively. By consequence, the investigated brick is considered a radioactive waste. The rather high content of Co, Cr, K, Th, and Zh in the brick is especially due to the slag and fly ash, the main componets. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as fluxes in matallurgy.

  11. Mineral exploration and soil analysis using in situ neutron activation

    USGS Publications Warehouse

    Senftle, F.E.; Hoyte, A.F.

    1966-01-01

    A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.

  12. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  13. Modeling of Neutron Spectra Based on Activation Analysis

    NASA Astrophysics Data System (ADS)

    Jovancevic, N.; Fridman, M.; Daraban, L.; Hambsch, F.-J.; Oberstedt, S.; Hult, M.; Lutter, G.; Marissens, G.; Stroh, H.

    Safe and economical use of nuclear energy and particularly the development of GEN-IV reactors impose a better understanding of prompt neutron emission in fission, as well as of the fission process as such. Therefore, accurate measurements of the prompt fission neutron spectra (PFNS) are very important. In this work, we are testing the possibility to determine the PFNS by an activation method called DONA (DOsimetry and Spectroscopy using Neuron Activation) recently developed at IRMM (Wieslander et al., 2010, Lövestam et al., 2009). This type of modeling of the neutron spectra, based on the activation analysis, can provide new information about an old problem which still exists today, i.e. the discrepancy between measured integral and differential data (Capote et al., 2012). The problem is that the calculated average cross section for a certain neutron reaction, by using the differential experimental PFNS, in many cases cannot reproduce satisfactorily the integral measured cross section values. The modeling of the neutron spectra by the DONA technique was tested with the standard neutron spectrum of the spontaneous fission of 252Cf. We analyzed the sensitivity of the unfolding procedure to the initial neutron energy spectrum, the influence of the neutron scattering, the possibility of using different activation reactions and we also made an estimation of the lowest measurable neutron fluence rate.

  14. Neutron activation analysis of wheat samples.

    PubMed

    Galinha, C; Anawar, H M; Freitas, M C; Pacheco, A M G; Almeida-Silva, M; Coutinho, J; Maçãs, B; Almeida, A S

    2011-11-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordão/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jord

  15. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  16. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    SciTech Connect

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 ..mu..amp proton beam is 4.0 x 10/sup 11/ n/cm/sup 2/-s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error.

  17. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  18. Neutron activation analysis at the Californium User Facility for Neutron Science

    SciTech Connect

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide {sup 252}Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world`s largest inventory of compact {sup 252}Cf neutron sources. Neutron source intensities of {le} 10{sup 11} neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10{sup 8} cm{sup {minus}2} s{sup {minus}1} at the sample. Total flux of {ge}10{sup 9} cm{sup {minus}2} s{sup {minus}1} is feasible for large-volume irradiation rabbits within the {sup 252}Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis.

  19. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  20. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population. PMID:26509624

  1. Neutron activation analysis; A sensitive test for trace elements

    SciTech Connect

    Hossain, T.Z. . Ward Lab.)

    1992-01-01

    This paper discusses neutron activation analysis (NAA), an extremely sensitive technique for determining the elemental constituents of an unknown specimen. Currently, there are some twenty-five moderate-power TRIGA reactors scattered across the United States (fourteen of them at universities), and one of their principal uses is for NAA. NAA is procedurally simple. A small amount of the material to be tested (typically between one and one hundred milligrams) is irradiated for a period that varies from a few minutes to several hours in a neutron flux of around 10{sup 12} neutrons per square centimeter per second. A tiny fraction of the nuclei present (about 10{sup {minus}8}) is transmuted by nuclear reactions into radioactive forms. Subsequently, the nuclei decay, and the energy and intensity of the gamma rays that they emit can be measured in a gamma-ray spectrometer.

  2. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    SciTech Connect

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements.

  3. Diagnostic Application of Absolute Neutron Activation Analysis in Hematology

    SciTech Connect

    Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.

    2004-10-03

    The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.

  4. Prompt Gamma-Ray Neutron Activation Analysis (PGNAA) for Elemental Analysis

    SciTech Connect

    Robin P. Gardner

    2006-04-11

    This research project was to improve the prompt gamma-ray neutron activation analysis (PGNAA) measurement approach for bulk analysis, oil well logging, and small sample thermal enutron bean applications.

  5. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  6. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  7. Teaching chemistry with neutron activation analysis at Dalhousie University

    SciTech Connect

    Holzbecher, J.; Chatt, A. )

    1991-11-01

    The Dalhousie University SLOWPOKE-2 Reactor (DUSR) has been operating since July 1976 and has proven to be an invaluable tool in many teaching programs. These reactors are inherently safe and are designed to serve teaching and research needs of the universities, research centers, hospitals, etc. Since the DUSR has been, from its inception, associated with the Trace Analysis Research Centre, which is the Analytical Chemistry Division of the Department of Chemistry, the main thrust of its use continues to be in the field of nuclear analytical chemistry. Both teaching and research programs involve trace element analysis by neutron activation.

  8. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  9. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  10. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    SciTech Connect

    Guinn, V.P.

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  11. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    SciTech Connect

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  12. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    SciTech Connect

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-06-28

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  13. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    NASA Astrophysics Data System (ADS)

    Baljinnyam, N.; Jugder, B.; Norov, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.

    2011-06-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves) (0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the "Reference plant» data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  14. Neutron activation analysis of sea-, lake-, and evaporated salt

    NASA Astrophysics Data System (ADS)

    Steinhauser, G.; Sterba, J. H.; Poljanc, K.; Bichler, M.; Buchtela, K.

    2006-01-01

    Salt is essential for human nutrition. Recently, it has become popular in Europe to rather use exotic sea salt or lake salt instead of purified evaporated salt, because of an alleged higher content of trace elements. In this study the content of trace elements and their bioavailability of 19 samples of different types of salt and 1 sample of brine purification sludge were investigated using instrumental neutron activation analysis. In general, sea-, lake-, and evaporated salt are quite pure. Trace elements determined in salt were Al, Br, Co, Cr, Cs, Fe, Rb, Sc, Sr, and Zn; some of them only in individual cases. It was found that, in general, the content of trace elements in sea- or lake salt was higher than in purified salt. Nevertheless, the use of sea- or lake salt does not contribute significantly to the human needs of essential trace elements, because their concentration in salt is too low or their compounds are not bioavailable.

  15. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. PMID:25305524

  16. Empirical comparison of neutron activation sample analysis methods

    NASA Astrophysics Data System (ADS)

    Gillenwalters, Elizabeth

    The U.S. Geological Survey (USGS) operates a research reactor used mainly for neutron activation of samples, which are then shipped to industrial customers. Accurate nuclide identification and activity determination are crucial to remain in compliance with Code of Federal Regulations guidelines. This facility utilized a Canberra high purity germanium detector (HPGe) coupled with Canberra Genie(TM) 2000 (G2K) software for gamma spectroscopy. This study analyzed the current method of nuclide identification and activity determination of neutron activated materials utilized by the USGS reactor staff and made recommendations to improve the method. Additionally, analysis of attenuators, effect of detector dead time on nuclide identification, and validity of activity determination assumptions were investigated. The current method of activity determination utilized the G2K software to obtain ratio of activity per nuclide identified. This determination was performed without the use of geometrically appropriate efficiency calibration curves. The ratio of activity per nuclide was used in conjunction with an overall exposure rate in mR/h obtained via a Fluke Biomedical hand-held ion chamber. The overall exposure rate was divided into individual nuclide amounts based on the G2K nuclide ratios. A gamma energy of 1 MeV and a gamma yield of 100% was assumed for all samples. Utilizing the gamma assumption and nuclide ratios, a calculation was performed to determine total sample activity in muCi (microCuries). An alternative method was proposed, which would eliminate the use of exposure rate and rely solely on the G2K software capabilities. The G2K software was energy and efficiency calibrated with efficiency curves developed for multiple geometries. The USGS reactor staff were trained to load appropriate calibration data into the G2K software prior to sample analysis. Comparison of the current method and proposed method demonstrated that the activity value calculated with the 1 Me

  17. Characterization of indoor cooking aerosol using neutron activation analysis

    SciTech Connect

    Wu, D.; Landsberger, S.; Larson, S. )

    1993-01-01

    Suspended particles in air are potentially harmful to human health, depending on their sizes and chemical composition. Residential indoor particles mainly come from (a) outdoor sources that are transported indoors, (b) indoor dust that is resuspended, and (c) indoor combustion sources, which include cigarette smoking, cooking, and heating. Jedrychowski stated that chronic phlegm in elderly women was strongly related to the cooking exposure. Kamens et al. indicated that cooking could generate small particles (<0.1 [mu]m), and cooking one meal could contribute [approximately]5 to 18% of total daytime particle volume exposure. Although cooking is a basic human activity, there are not many data available on the properties of particles generated by this activity. Some cooking methods, such as stir-frying and frying, which are the most favored for Chinese and other Far East people, generate a large quantity of aerosols. This research included the following efforts: 1. investigating particle number concentrations, distributions, and their variations with four different cooking methods and ventilation conditions; 2. measuring the chemical composition of cooking aerosol samples by instrumental neutron activation analysis.

  18. The role of neutron activation analysis in nutritional biomonitoring programs

    SciTech Connect

    Iyengar, V.

    1988-01-01

    Nutritional biomonitoring is a multidisciplinary task and an integral part of a more general bioenvironmental surveillance. In its comprehensive form, it is a combination of biological, environmental, and nutrient monitoring activities. Nutrient monitoring evaluates the input of essential nutrients required to maintain vital bodily functions; this includes vigilance over extreme fluctuations of nutrient intake in relation to the recommended dietary allowances and estimated safe and adequate daily dietary intakes and adherence to the goals of provisional tolerance limits. Environmental monitoring assesses the external human exposure via ambient pathways, namely, air, water, soil, food, etc. Biological monitoring quantifies a toxic agent and its metabolites in representative biologic specimens of an exposed organ to identify health effects. In practice, coordinating all three components of a nutritional biomonitoring program is complex, expensive, and tedious. Experience gained from the US National Health and Nutrition Examination Surveys demonstrates the problems involved. By far the most critical challenge faced here is the question of analytical quality control, particularly when trace element determinations are involved. Yet, measures to ensure reliability of analytical data are mandatory, and there are no short-cuts to this requirement. The purpose of this presentation is to elucidate the potential of neutron activation analysis (NAA) in nutritional biomonitoring activities.

  19. neutron activation analysis using thermochromatography. III. analysis of samples of biological origin

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of biological materials is discussed. A group separation of a number of highly volatile elements from sodium and bromine radionuclides has been achieved. The limit of detection of the elements by INAA and neutron activation analysis was estimated using GTC. The advantages of the procedure and the analytical parameters are discussed.

  20. Neutron Activation Analysis PRognosis and Optimization Code System.

    2004-08-20

    Version 00 NAAPRO predicts the results and main characteristics (detection limits, determination limits, measurement limits and relative precision of the analysis) of neutron activation analysis (instrumental and radiochemical). Gamma-ray dose rates for different points of time after sample irradiation and input count rate of the spectrometry system are also predicted. The code uses standard Windows user interface and extensive graphical tools for the visualization of the spectrometer characteristics (efficiency, response and background) and simulated spectrum.more » Optimization part is not included in the current version of the code. This release is designated NAAPRO, Version 01.beta. The MCNP code was used for generating detector responses. PREPRO-2000 and FCONV programs were used at the preparation of the program nuclear databases. A special program was developed for viewing, editing and updating of the program databases (not included into the present program package). The MCNP, PREPRO-2000 and FCONV software packages are not included in the NAAPRO package.« less

  1. Active neutron multiplicity analysis and Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Krick, M. S.; Ensslin, N.; Langner, D. G.; Miller, M. C.; Siebelist, R.; Stewart, J. E.; Ceo, R. N.; May, P. K.; Collins, L. L., Jr.

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined.

  2. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  3. Neutron activation analysis: A primary method of measurement

    NASA Astrophysics Data System (ADS)

    Greenberg, Robert R.; Bode, Peter; De Nadai Fernandes, Elisabete A.

    2011-03-01

    Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.

  4. Neutron Activation Analysis for the Demonstration of Amphibolite Rock-Weathering Activity of a Yeast

    PubMed Central

    Rades-Rohkohl, E.; Hirsch, P.; Fränzle, O.

    1979-01-01

    Neutron activation analysis was employed in a survey of weathering abilities of rock surface microorganisms. A yeast isolated from an amphibolite of a megalithic grave was found actively to concentrate, in media and in or on cells, iron and other elements when grown in the presence of ground rock. This was demonstrated by comparing a spectrum of neutron-activated amphibolite powder (particle size, 50 to 100 μm) with the spectra of neutron-activated, lyophilized yeast cells which had grown with or without amphibolite powder added to different media. The most active yeast (IFAM 1171) did not only solubilize Fe from the rock powder, but significant amounts of Co, Eu, Yb, Ca, Ba, Sc, Lu, Cr, Th, and U were also mobilized. The latter two elements occurred as natural radioactive isotopes in this amphibolite. When the yeast cells were grown with neutron-activated amphibolite, the cells contained the same elements. Furthermore, the growth medium contained Fe, Co, and Eu which had been solubilized from the amphibolite. This indicates the presence, in this yeast strain, of active rockweathering abilities as well as of uptake mechanisms for solubilized rock components. PMID:16345472

  5. neutron activation analysis using thermochromatography. II. thermochromatographic separation of elements in the analysis of geological samples

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of difficulty soluble samples with a strongly activating substrate is discussed. The effect of sample coarseness and ore type on the rate of extraction of gold and accompanying elements was studied. The limits of detection of 22 elements were compared using neutron activation analysis with GTC and INAA. The analytical parameters of the procedure were estimated.

  6. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained. PMID:18959988

  7. Neutron activation analysis of an Egyptian monazite ore sample

    NASA Astrophysics Data System (ADS)

    Eissa, E. A.; Rofail, N. B.; Ashmawy, L. S.; Hassan, A. M.

    1999-01-01

    The absolute sensitivity of a gamma-ray line following thermal or epithermal neutron activation is expressed as a product of four terms, namely, the intrinsic, irradiation, decay and measurement factors. The total absolute sensitivity is the sum of the absolute sensitivities due to thermal and epithermal activation. A. FORTRAN computer program was prepared on the TANDY 3000 NL PCA to calculate the total absolute sensitivity of the intensive gamma-ray lines from the thermal and epithermal neutron activation of all the naturally occurring nuclides. Another program was prepared for the determination of the total absolute sensitivity for gammarays emitted by radioactive daughters such as233Pa from233Th and239Np from239U. Long time irradiation periods (about 48 hours) for specimens of the monazite ore sample were carried out at the (ET-RR-1) reactor core periphery. The monazite ore sample was separated from the associating minerals in the sand of Abou-Khashaba of Rashied (Rosetta) area on the Mediterranean (North of Egypt). The separated monazite ore sample was provided by the Nuclear Material Authority of Egypt. The cadmium difference method was applied to thin gold foils for absolute thermal and epithermal neutron flux determination. The gamma-ray spectra were measured using a spectrometer with a HPGe coaxial detector. The evaluated absolute sensitivity tables were helpful in identifying the radioisotopes contributing to the gamma- ray spectra and in evaluating the elemental concentration of the monazite constitutents. Most of the rare earth elements were observed and their concentrations are reported. La, Ce, Nd, Sd and Th were found as major elements, U, Tb, Hf and Eu as minor elements.

  8. Neutron Activation Analysis and Product Isotope Inventory Code System.

    1990-10-31

    Version 00 NAC was designed to predict the neutron-induced gamma-ray radioactivity for a wide variety of composite materials. The NAC output includes the input data, a list of all reactions for each constituent element, and the end-of-irradiation disintegration rates for each reaction. NAC also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gamma-ray source strength, and the absorbed dose rate at 1 meter from an unshielded point source. The inducedmore » activity is calculated as a function of irradiation and decay times; the effect of cyclic irradiation can also be calculated.« less

  9. A laser-induced repetitive fast neutron source applied for gold activation analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.

  10. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  11. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3). PMID:23277984

  12. Clinical applications of in vivo neutron-activation analysis

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  13. In-vivo neutron activation analysis: principles and clinical applications

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  14. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    SciTech Connect

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm, as well as trace levels of copper and tungsten.

  15. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  16. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  17. Impurities analysis of polycrystalline silicon substrates: Neutronic Activation Analysis (NAA) and Secondary Ion Mass Spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Lenouar, K.; Gritly, Y.; Abbad, B.; Azzaz, M.; Taïbi, K.

    2010-01-01

    In this study we have determined the concentration of some impurities such as carbon, iron, copper, titanium, nickel of the flat product (polycrystalline silicon). These impurities generate a yield decrease in the photovoltaic components. The material (polycrystalline silicon) used in this work is manufactured by the Unit of Silicon Technology Development (UDTS Algiers, Algeria). The 80 kg ingot has been cutted into 16 briquettes in order to have plates (flat product) of 100 mm×100 mm dimensions. Each briquette is divided into three parts top (T), middle (M) and bottom (B). For this purpose, the following instrumental analysis techniques have been employed: neutronic analysis (neutronic activation analysis) and secondary ion mass spectrometry (SIMS). Masses of 80 mg are sampled and form of discs 18 mm in diameter, then exposed to a flux of neutron of 2.1012neutron cm-2 s-1 during 15 min. The energetic profile of incidental flux is constituted of fast neutrons (ΦR = 3.1012n.cm-2 s-1; E = 2 Mev), thermal neutrons (ΦTH = 1013n.cm-2 s-1; E = 0.025 ev) and epithermal neutrons (Φepi = 7.1011 n cm-2 s-1; E>4.9 ev), irradiation time 15 mn, after 20 mn of decrement, acquisitions of 300 s are carried out. The results are expressed by disintegration per second which does not exceed the 9000 Bq, 500 Bq and 2600 Bq, respectively for copper, titanium and nickel. It is observed that the impurities concentrations in the medium are higher. The impurities in the bottom of the ingots originate from the crucible. The impurities in the top originate from impurities dissolved in the liquid silicon, which have segregated to the top layer of the ingot and after solidification diffuse. Silicon corresponds to a mixture of three isotopes 28Si, 29Si and 30Si. These elements clearly appear on the mass spectrum (SIMS). The presence of iron and the one of nickel has been noticed.

  18. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method. PMID:11077961

  19. Utilization of recycled neutron source to teach prompt gamma analysis activation-PGNA

    NASA Astrophysics Data System (ADS)

    Delgado-Correal, Camilo; Munera, Hector

    2008-03-01

    Neutron activation analysis based on prompt gamma ray emission has significantly developed during the past twenty years. The technique is particularly suited for the identification of low atomic number elements, as nitrogen that is a main component of drugs and explosives. Identification of these substances is important in the context of humanitarian demining, and in the control of illicit traffic of drugs and explosives. As a good example of recycling of radioactive sources, a ^241Am-Be neutron source emitting 10^7neutron/s, that was not longer in use for other purposes at Ingeominas, was used to build a neutron irradiator that can be used to teach prompt gamma ray analysis, and other nuclear techniques. We irradiated individual samples, each about 4 gram, of three different elements: nitrogen in urea, silicon in milled rock, and cadmium in cadmium oxide. The prompt gamma rays emitted in the nuclear reactions ^112Cd (neutron,gamma) ^113Cd, ^28Si (neutron,gamma) ^29Si and ^14N (neutron,gamma) ^15N were identified using a well-type NaI (Tl) detector, connected to a multi-channel analyzer.

  20. Determination of boron in materials by cold neutron prompt gamma-ray activation analysis.

    PubMed

    Paul, Rick L

    2005-01-01

    An instrument for cold neutron prompt gamma-ray activation analysis (PGAA), located at the NIST Center for Neutron Research (NCNR), has proven useful for the measurement of boron in a variety of materials. Neutrons, moderated by passage through liquid hydrogen at 20 K, pass through a (58)Ni coated guide to the PGAA station in the cold neutron guide hall of the NCNR. The thermal equivalent neutron fluence rate at the sample position is 9 x 10(8) cm(-2) s(-1). Prompt gamma rays are measured by a cadmium- and lead-shielded high-purity germanium detector. The instrument has been used to measure boron mass fractions in minerals, in NIST SRM 2175 (Refractory Alloy MP-35-N) for certification of boron, and most recently in semiconductor-grade silicon. The limit of detection for boron in many materials is <10 ng g(-1). PMID:15614360

  1. Analysis of solid-rocket effluents for aluminum, silicon, and other trace elements by neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Furr, A. K.

    1974-01-01

    The sensitivity and reliability of neutron activation analysis in detecting trace elements in solid rocket effluents are discussed. Special attention was given to Al and Si contaminants. The construction and performance of a thermal column irradiation unit was reported.

  2. Determination of aluminium, silicon and magnesium in geological matrices by delayed neutron activation analysis based on k0 instrumental neutron activation analysis.

    PubMed

    Baidoo, I K; Dampare, S B; Opata, N S; Nyarko, B J B; Akaho, E H K; Quagraine, R E

    2013-12-01

    In this work, concentrations of silicon, aluminium and magnesium in geological matrices were determined by Neutron Activation Analysis based on k0-IAEA software. The optimum activation and delay times were found to be 5 min and 15-20 min respectively for the determination of Si via (29)Si (n,p) (29)Al reaction. The adopted irradiation scheme did not work for the determination of magnesium. Each sample was irradiated under a thermal neutron flux density of 5.0 × 10(11) ncm(-2)s(-1). Cadmium covered activation indicated that a permanent epithermal irradiation site for research reactors would be very useful for routine determination of silicon in environmental samples. PMID:23999324

  3. Neutron Activation Analysis of Soil Samples from Different Parts of Edirne in Turkey*

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Dogan, C.; Camtakan, Z.

    2016-05-01

    The concentrations of constituent elements were determined in soil samples collected from different parts of the Maritza Basin, Edirne, Turkey. Neutron activation analysis, an extremely accurate technique, and the comparator method (using a standard) were applied for the first time in this region. After preparing the soil samples for neutron activation analysis, they were activated with thermal neutrons in a nuclear reactor, TRIGA-MARK II, at Istanbul Technical University. The activated samples were analyzed using a high-efficiency high-purity germanium detector, and gamma spectrometry was employed to determine the elemental concentration in the samples. Eight elements (chromium, manganese, cobalt, zinc, arsenic, molybdenum, cadmium, and barium) were qualitatively and quantitatively identified in 36 samples. The concentrations of some elements in the soil samples were high compared with values reported in the literature.

  4. Determination of elements in National Bureau of Standards' geological Standard Reference Materials by neutron activation analysis

    SciTech Connect

    Graham, C.C.; Glascock, M.D.; Carni, J.J.; Vogt, J.R.; Spalding, T.G.

    1982-08-01

    Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGNAA) have been used to determine elemental concentrations in two recently issued National Bureau of Standards (NBS) Standard Reference Materials (SRM's). The results obtained are in good agreement with the certified and information values reported by NBS for those elements in each material for which comparisons are available. Average concentrations of 35 elements in SRM 278 obsidian rock and 32 elements in SRM 688 basalt rock are reported for comparison with results that may be obtained by other laboratories.

  5. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  6. An evaluation of Compton suppression neutron activation analysis for determination of trace elements in some geological samples.

    PubMed

    Landsberger, S; Kapsimalis, R

    2009-12-01

    Compton suppressed neutron activation analysis has been used for a variety of applications, but never has a detailed discussion of its use in far more complex matrices, such as geological samples, been fully addressed. This investigation seeks to serve as a qualitative evaluation of Compton suppression neutron activation analysis (CSNAA) and to illustrate the benefits of using Compton suppression with thermal and epithermal neutrons for the analysis of several geological specimens. PMID:19577479

  7. Analysis of improved neutron activation technique using thick foils for application on medical LINAC environment

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-01-01

    An improved neutron activation technique is analyzed that can be used for the characterization of the neutron field in low neutron flux environments, such as medical Linacs. Due to the much lower neutron fluence rates, thick materials instead of thin have been used. The study is focused on the calculations of basic components of the neutron activation analysis that are required for accurate results, such as the efficiency of the gamma detector used for γ-spectrometry as well as crucial correction factors that are required when dealing with thick samples in different geometries and forms. A Monte Carlo detector model, implemented by Geant4 MC Code was adjusted in accordance to results from various measurements performed. Moreover, regarding to estimate the self-shielding correction factors a new approach using both Monte Carlo and analytical approach was presented. This improvement gives more accurate results, which are important for both activation and shielding studies that take place in many facilities. A quite good agreement between the neutron fluxes is achieved; according to the data obtained a mean value of (2.13±0.34)×105 ncm-2 s-1 is representative for the isocenter of the specific Linac that corresponds to fluence of (5.53±0.94)×106 ncm-2 Gy-1. Comparable fluencies reported in the literature for similar Linacs operating with photon beams at 15 MeV.

  8. Analysis of low levels of rare earths by radiochemical neutron activation analysis

    USGS Publications Warehouse

    Wandless, G.A.; Morgan, J.W.

    1985-01-01

    A procedure for the radiochemical neutron-activation analysis for the rare earth elements (REE) involves the separation of the REE as a group by rapid ion-exchange methods and determination of yields by reactivation or by energy dispersive X-ray fluorescence (EDXRF) spectrometry. The U. S. Geological Survey (USGS) standard rocks, BCR-1 and AGV-1, were analyzed to determine the precision and accuracy of the method. We found that the precision was ??5-10% on the basis of replicate analysis and that, in general the accuracy was within ??5% of accepted values for most REE. Data for USGS standard rocks BIR-1 (Icelandic basalt) and DNC-1 (North Carolina diabase) are also presented. ?? 1985 Akade??miai Kiado??.

  9. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  10. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  11. Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials

    SciTech Connect

    Firestone, Richard B; English, G.A.; Firestone, R.B.; Perry, D.L.; Reijonen, J.P.; Leung, Ka-Ngo; Garabedian, G.F.; Molnar, G.L.; Revay, Zs.

    2008-02-13

    Without quality historical records that provide the composition of legacy materials, the elemental and/or chemical characterization of such materials requires a manual analytical strategy that may expose the analyst to unknown toxicological hazards. In addition, much of the existing legacy inventory also incorporates radioactivity, and, although radiological composition may be determined by various nuclear-analytical methods, most importantly, gamma-spectroscopy, current methods of chemical characterization still require direct sample manipulation, thereby presenting special problems with broad implications for both the analyst and the environment. Alternately, prompt gamma activation analysis (PGAA) provides a'single-shot' in-situ, non-destructive method that provides a complete assay of all major entrained elemental constituents.1-3. Additionally, neutron activation analysis (NAA) using short-lived activation products complements PGAA and is especially useful when NAA activation surpasses the PGAA in elemental sensitivity.

  12. Dosimetric characterization of the irradiation cavity for accelerator-based in vivo neutron activation analysis.

    PubMed

    Byun, S H; Pejović-Milić, A; McMaster, S; Matysiak, W; Aslam; Liu, Z; Watters, L M; Prestwich, W V; McNeill, F E; Chettle, D R

    2007-03-21

    A neutron irradiation cavity for in vivo activation analysis has been characterized to estimate its dosimetric specifications. The cavity is defined to confine irradiation to the hand and modifies the neutron spectrum produced by a low energy accelerator neutron source to optimize activation per dose. Neutron and gamma-ray dose rates were measured with the microdosimetric technique using a tissue-equivalent proportional counter at the hand irradiation site and inside the hand access hole. For the outside of the cavity, a spherical neutron dose equivalent meter and a Farmer dosemeter were employed instead due to the low intensity of the radiation field. The maximum dose equivalent rate at the outside of the cavity was 2.94 microSv/100 microA min, which is lower by a factor of 1/2260 than the dose rate at the hand irradiation position. The local dose contributions from a hand, an arm and the rest of a body to the effective dose rate were estimated to be 1.73, 0.782 and 2.94 microSv/100 microA min, respectively. For the standard irradiation protocol of the in vivo hand activation, 300 microA min, an effective dose of 16.3 microSv would be delivered. PMID:17455391

  13. In vivo neutron activation analysis of sodium and chlorine in tumor tissue after fast neutron therapy.

    PubMed

    Auberger, T; Koester, L; Knopf, K; Weissfloch, L

    1996-01-01

    In 12 patients with recurrences and metastases of different primaries (head and neck cancer, breast cancer, malignant melanoma, and osteosarcoma) who were treated with reactor fission neutrons the photon emission of irradiated tissue was measured after each radiotherapy fraction. Spectral analyses of the decay rates resulted in data for the exchange of sodium (Na) and chlorine (Cl) between the irradiated tissue and the body. About 60% of Na and Cl exchanged rapidly with a turnover half-life of 13 +/- 2 min. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval/min/kg of soft tissue. At the beginning of radiotherapy the turnover of the electrolytes in tissues with large tumor volumes was about twice that in tissues with small tumor volumes. Depending on the dose, neutron therapy led in all cases to variation in the metabolism. A maximum of Cl exchange and a minimum of Na exchange occurred after 10 Gy of neutrons (group of six previously untreated patients) or after 85 Gy (photon equivalent dose) of combined photon-neutron therapy. A significant increase in non-exchangeable fraction of Na from about 40 to 80% was observed in three tumors after a neutron dose of 10 Gy administered in five fractions correlated with a rapid reduction of tissue within 4 weeks after end of therapy. These results demonstrate for the first time the local response of the electrolyte metabolism to radiotherapy. PMID:8949749

  14. A New Automated Sample Transfer System for Instrumental Neutron Activation Analysis

    PubMed Central

    Ismail, S. S.

    2010-01-01

    A fully automated and fast pneumatic transport system for short-time activation analysis was recently developed. It is suitable for small nuclear research reactors or laboratories that are using neutron generators and other neutron sources. It is equipped with a programmable logic controller, software package, and 12 devices to facilitate optimal analytical procedures. 550 ms were only necessary to transfer the irradiated capsule (diameter: 15 mm, length: 50 mm, weight: 4 gram) to the counting chamber at a distance of 20 meters using pressurized air (4 bars) as a transport gas. PMID:20369063

  15. Neutron-activation analysis by standard addition and solvent extraction Determination of traces of antimony.

    PubMed

    Alian, A; Shabana, R; Sanad, W; Allam, B; Khalifa, K

    1968-02-01

    The application of neutron activation analysis by standard addition and solvent extraction to the determination of traces of antimony in aluminium and rocks is reported. Three simple extraction procedures, using isopropyl ether, hexone, and tributyl phosphate, are described for the selective separation of radioantimony from interfering radionuclides. Antimony concentration is measured by counting the activities of the (122)Sb and (124)Sb photopeaks at 0.564 and 0.603 MeV. PMID:18960289

  16. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  17. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Wael M.; Ali, Khaled; El-Samman, Hussein M.; Frontasyeva, Marina V.; Gundorina, Svetlana F.; Duliu, Octavian G.

    2015-07-01

    Instrumental neutron activation analysis was used to study geochemical peculiarities of the Siwa Oasis in the Western Egyptian Desert. A total of 34 elements were determined in soil and sediment samples (Na, Mg, Al, Cl, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Sb, I, Cs, Ba, La, Ce, Nd, Eu, Tb, Dy, Tm, Yb, Hf, Ta, Th, and U). For data interpretation Cluster analysis was applied. Comparison with the available literature data was carried out.

  18. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.

    2001-07-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a "signature" of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min—compared to a few seconds for the detection of explosives—but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly.

  19. Importance of neutron energy distribution in borehole activation analysis in relatively dry, low-porosity rocks

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Philbin, P.W.; Boynton, G.R.; Wager, R.E.

    1977-01-01

    To evaluate the importance of variations in the neutron energy distribution in borehole activation analysis, capture gamma-ray measurements were made in relatively dry, low-porosity gabbro of the Duluth Complex. Although sections of over a meter of solid rock were encountered in the borehole, there was significant fracturing with interstitial water leading to a substantial variation of water with depth in the borehole. The linear-correlation coefficients calculated for the peak intensities of several elements compared to the chemical core analyses were generally poor throughout the depth investigated. The data suggest and arguments are given which indicate that the variation of the thermal-to-intermediate-to-fast neutron flux density as a function of borehole depth is a serious source of error and is a major cause of the changes observed in the capture gamma-ray peak intensities. These variations in neutron energy may also cause a shift in the observed capture gamma-ray energy.

  20. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  1. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  2. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  3. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  4. Trace elements by instrumental neutron activation analysis for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was plus or minus 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.

  5. Second Research Coordination Meeting on Reference Database for Neutron Activation Analysis -- Summary Report

    SciTech Connect

    Firestone, Richard B.; Kellett, Mark A.

    2008-03-19

    The second meeting of the Co-ordinated Research Project on"Reference Database for Neutron Activation Analysis" was held at the IAEA, Vienna from 7-9 May, 2007. A summary of the presentations made by participants is given, along with reports on specifically assigned tasks and subsequent discussions. In order to meet the overall objectives of this CRP, the outputs have been reiterated and new task assignments made.

  6. Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin

    SciTech Connect

    Duliu, O. G.; Cristache, C. I.; Oaie, G.; Ricman, C.; Culicov, O. A.; Frontasyeva, M. V.

    2010-01-21

    Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

  7. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    USGS Publications Warehouse

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis (INAA) and other analytical methods as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurrence of various elements in the coal matrix itself. ?? 1977 Akade??miai Kiado??.

  8. Analysis of the size, shape, and spatial distribution of microinclusions by neutron-activation autoradiography

    SciTech Connect

    Flitsiyan, E.S.; Romanovskii, A.V.; Gurvich, L.G.; Kist, A.A.

    1987-02-01

    The local concentration and spatial distribution of some elements in minerals, rocks, and ores can be determined by means of neutron-activation autoradiography. The local element concentration is measured in this method by placing an activated section of the rock to be analyzed, together with an irradiated standard, against a photographic emulsion which acts as a radiation detector. The photographic density of the exposed emulsion varies as a function of the tested element content in the part of the sample next to the detector. In order to assess the value of neutron-activation autoradiography in the analysis of element distribution, we considered the main factors affecting the production of selective autoradiographs, viz., resolution, detection limit, and optimal irradiation conditions, holding time, and exposure.

  9. Neutron activation analysis of airborne thorium liberated during welding operations

    SciTech Connect

    Glasgow, D.C.; Robinson, L.; Janjovic, J.T.

    1996-02-01

    Typically, reactive metals such as aluminum are welded using a thoriated tungsten welding electrode which is attached to a source of argon gas such that the local atmosphere around the weld is inert. The metal is heated by the arc formed between the electrode and the grounded component to be welded. During this process, some of the electrode is vaporized in the arc and is potentially liberated to the surrounding air. This situation may result in a hazardous airborne thorium level. Because the electrode is consumed during welding, the electrode tip must be repeatedly dressed by grinding the tip to a fine point so that the optimal welding conditions are maintained. These grinding activities may also release thorium to the air. Data generated in the 1950s suggested that these electrodes posed no significant health hazard and seemed to justify their exemption from licensing requirements for source material. Since that time, other studies have been performed and present conflicting results as to the level of risk. Values both above and below the health protection limit in use in the United States, have been reported in the literature recently. This study is being undertaken to provide additional data which may be useful in evaluating both the chemical toxicity risk and radiological dose assessment criteria associated with thoriated tungsten welding operations.

  10. The affect of industrial activities on zinc in alluvial Egyptian soil determined using neutron activation analysis.

    PubMed

    Abdel-Sabour, M F; Abdel-Basset, N

    2002-07-01

    Thirty-two surface (0-20 cm) soil samples were collected from different locations in Egypt representing non-polluted, moderately and highly polluted soils. The aim of this study was to evaluate total Zn content in alluvial soils of Nile Delta in Egypt by using the delayed neutron activation analysis technique (DNAA), in the irradiation facilities of the first Egyptian research reactor (ET-RR-1). The gamma-ray spectra were recorded with a hyper pure germanium detection system. The well resolved gamma-ray peak at 1116.0 keV was efficiently used for 65Zn content determination. Zn content in non-polluted soil samples ranged between 74.1 and 103.8 ppm with an average of 98.5 +/- 5.1 ppm. Zn content in moderately polluted soils ranged between 136.0 and 232.5 ppm with an average of 180.1 +/- 32.6 ppm. The highest Zn levels ranging from 240.0 and 733.0 ppm with an average of 410.3 +/- 54.4 ppm, were observed in soil samples collected from, either highly polluted agricultural soils exposed to prolonged irrigation with industrial wastewater or surface soil samples from industrial sites. PMID:12211982

  11. A History of In Vivo Neutron Activation Analysis in Measurement of Aluminum in Human Subjects.

    PubMed

    Mohseni, Hedieh K; Chettle, David R

    2016-02-01

    Aluminum, as an abundant metal, has gained widespread use in human life, entering the body predominantly as an additive to various foods and drinking water. Other major sources of exposure to aluminum include medical, cosmetic, and occupational routes. As a common environmental toxin, with well-known roles in several medical conditions such as dialysis encephalopathy, aluminum is considered a potential candidate in the causality of Alzheimer's disease. Aluminum mostly accumulates in the bone, which makes bone an indicator of the body burden of aluminum and an ideal organ as a proxy for the brain. Most of the techniques developed for measuring aluminum include bone biopsy, which requires invasive measures, causing inconvenience for the patients. There has been a considerable effort in developing non-invasive approaches, which allow for monitoring aluminum levels for medical and occupational purposes in larger populations. In vivo neutron activation analysis, a method based on nuclear activation of isotopes of elements in the body and their subsequent detection, has proven to be an invaluable tool for this purpose. There are definite challenges in developing in vivo non-invasive techniques capable of detecting low levels of aluminum in healthy individuals and aluminum-exposed populations. The following review examines the method of in vivo neutron activation analysis in the context of aluminum measurement in humans focusing on different neutron sources, interference from other activation products, and the improvements made in minimum detectable limits and patient dose over the past few decades. PMID:26890739

  12. COHN analysis: Body composition measurements based on the associated particle imaging and prompt-gamma neutron activation analysis techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The measurement of the body's carbon (C), oxygen (O), hydrogen (H), and nitrogen (N) content can be used to calculate the relative amounts of fat, protein, and water. A system based on prompt-gamma neutron activation analysis (PGNAA), coupled with the associated particle imaging (API) technique, is...

  13. Determination of gold in two Egyptian gold ores using instrumental neutron activation analysis

    NASA Astrophysics Data System (ADS)

    El-Taher, A.; Kratz, K.-L.; Nossair, A.; Azzam, A. H.

    2003-12-01

    The applicability of thermal neutron activation analysis for the determination of gold and other elements in two Egyptian gold ores has been studied. Ten samples collected from El Sukari and Atud in the Eastern Desert-Egypt have been analyzed. The samples were properly prepared together with their standards and simultaneously irradiated in a neutron flux of the order 7×10 11 n/cm 2 s using the TRIGA research reactor at Mainz. Short-term (1 and 5 m) irradiation in the pneumatic system was also used for detection of the elements with shorter half-lives. After activation, the samples were subjected to γ-ray spectrometry using a high-purity germanium detection system and computerized multichannel analyzer. The results show that the concentration of gold is 42.4% in El-Sukari, and 25.7% in Atud. In addition, we determine the concentrations of 31 elements beside gold.

  14. A neutron activation analysis procedure for the determination of uranium, thorium and potassium in geologic samples

    USGS Publications Warehouse

    Aruscavage, P. J.; Millard, H.T., Jr.

    1972-01-01

    A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.

  15. Epithermal Neutron Activation Analysis at the IBR-2 reactor of the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (Dubna)

    NASA Astrophysics Data System (ADS)

    Frontasyeva, M. V.

    2008-10-01

    Experience of the Neutron Activation Analysis (NAA) Department in employing epithermal activation in life sciences and materials science is summarized. The potential of a combination of epithermal activation and the suppression of Compton scattering and contributions from cascade-photon-emitting elements for raising NAA-based analytical studies up to a new level are discussed.

  16. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    SciTech Connect

    Dahing, Lahasen Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  17. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    SciTech Connect

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-12-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes.

  18. Transitions, cross sections and neutron binding energy in 186Re by Prompt Gamma Activation Analysis

    NASA Astrophysics Data System (ADS)

    Lerch, A. G.; Hurst, A. M.; Firestone, R. B.; Revay, Zs.; Szentmiklosi, L.; McHale, S. R.; McClory, J. W.; Detwiler, B.; Carroll, J. J.

    2014-03-01

    The nuclide 186Re possesses an isomer with 200,000 year half-life while its ground state has a half-life of 3.718 days. It is also odd-odd and well-deformed nucleus, so should exhibit a variety of other interesting nuclear-structure phenomena. However, the available nuclear data is rather sparse; for example, the energy of the isomer is only known to within + 7 keV and, with the exception of the J?=1- ground state, every proposed level is tentative in the ENSDF. Previously, Prompt Gamma Activation Analysis (PGAA) was utilized to study natRe with 186,188Re being produced via thermal neutron capture. Recently, an enriched 185Re target was irradiated by thermal neutrons at the Budapest Research Reactor to build on those results. Prompt (primary and secondary) and delayed gamma-ray transitions were measured with a large-volume, Compton-suppressed HPGe detector. Absolute cross sections for each gamma transition were deduced and corrected for self attenuation within the sample. Fifty-two primary gamma-ray transitions were newly identified and used to determine a revised value of the neutron binding energy. DICEBOX was used to simulate the decay scheme and the total radiative thermal neutron capture cross section was found to be 97+/-3 b Supported by DTRA (Detwiler) through HDTRA1-08-1-0014.

  19. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect

    Lepel, E.A.; Laul, J.C.

    1984-03-01

    Instrumental and radiochemical neutron activation analysis (INAA and RNAA) were employed to measure about 37 major, minor, and trace elements in two standard reference materials: oyster tissue (SRM 1566) supplied by the National Bureau of Standards (NBS) and animal bone (H-5) supplied by the International Atomic Energy Agency (IAEA). Wherever the comparison exists, our data show excellent agreement with accepted values for each SRM. These SRM's are useful as reference standards for the analysis of biological materials. Additionally, the chondritic normalized rare earth element pattern of animal bone behaves as a smooth function of the ionic radii, as previously observed for biological materials.

  20. Evaluation of homogeneity of a certified reference material by instrumental neutron activation analysis

    SciTech Connect

    Kratochvil, B.; Duke, M.J.M.; Ng, D.

    1986-01-01

    The homogeneity of the marine reference material TORT-1, a spray-dried and acetone-extracted hepatopancreatic material from the lobster, was tested for 26 elements by instrumental neutron activation analysis (INAA). Through a one-way analysis of variance based on six analyses on each of six bottles of TORT-1, it was concluded that the between-bottle heterogeneity is no greater than the within-bottle heterogeneity. The analytical results for those elements for which values were provided by NRC agree with the NRC values within 95% confidence limits. 8 references, 6 tables.

  1. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis

    USGS Publications Warehouse

    Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.

    2006-01-01

    Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  3. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  4. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF).

    PubMed

    El-Taher, A

    2012-01-01

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10(11)n/cm(2)s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. PMID:21992845

  5. Identification of oxygen-19 during in vivo neutron activation analysis of water phantoms.

    PubMed

    Tahir, Syed N A; Chettle, David R

    2015-12-01

    Hand bone equivalent phantoms (250 ml) carrying selenium in various amounts were irradiated and counted for in vivo neutron activation analysis (IVNAA) by employing a 4π NaI(TI) based detection system. During the analysis of counting data, a feature at a higher energy than the gamma ray peak from (77m)Se (0.162 MeV) was observed at 0.197 MeV. Further investigations were made by preparing water phantoms containing only de-ionized water in 250 ml and 1034 ml quantities. Neutrons were produced by the (7)Li(p,n)(7)Be reaction using the high beam current Tandetron accelerator. Phantoms were irradiated at a fixed proton energy of 2.3 MeV and proton currents of 400 μA and 550 μA for 30 s and 22 s respectively. The counting data saved using the 4π NaI(TI) detection system for 10 s intervals in anticoincidence, coincidence and singles modes of detection were analyzed. Areas under gamma peaks at energies 0.197 MeV and 1.357 MeV were computed and half-lives from the number of counts for the two peaks were established. It was concluded that during neutron activation of water phantoms, oxygen-18 is activated, producing short-lived radioactive (19)O having T1/2  =  26.9 s. Induced activity from (19)O may contribute spectral interference in the gamma ray spectrum. This effect may need to be taken into account by researchers while carrying out IVNAA of biological subjects. PMID:26502270

  6. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects. PMID:24784607

  7. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    SciTech Connect

    Hahn, K. D. Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.; Leeper, R. J.

    2014-04-15

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  8. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Cooper, G. W.; Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Leeper, R. J.; Nelson, A. J.; Smelser, R. M.; Torres, J. A.

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r2 decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm2 and is ˜ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  9. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    SciTech Connect

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    1994-01-01

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main stream cigarette smoke, obtained by destructive neutron activation analysis.

  10. Neutron activation analysis by standard addition and solvent extraction: Determination of impurities in aluminium.

    PubMed

    Alian, A; Haggag, A

    1967-09-01

    A separation scheme based on selective extraction in conjunction with the standard addition technique has been developed for the determination of impurities in aluminium by neutron activation. Preliminary investigations have been carried out on the extractability of Sc, Co, Hf, Fe, Sn, Cd, Zn, Ag, Cr, Ce, Cs and Rb by TDA and TBP from acidic media. The best conditions are predicted for the separation of these elements into fractions suitable for analysis by gamma-ray spectrometry. Recovery values of approximately 90% were obtained for all the elements. PMID:18960206

  11. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  12. Nondestructive determination of arsenic in urine by epithermal neutron activation analysis and Compton suppression.

    PubMed

    Landsberger, S; Swift, G; Neuhoff, J

    1990-01-01

    Epithermal neutron activation analysis, in conjunction with Compton suppression, has been employed to determine arsenic levels in artificially doped urine samples. Typical detection limits were of the order of 10 ng/g. Replicate determinations gave precision values between 2 and 12%, whereas accuracy measurements were between +/- 1 and +/- 20%. Biological and geological reference materials from the National Institute of Standards and Technology (NIST) were also analyzed for arsenic content. Typically, the precision achieved again was between 2 and 12%, whereas the accuracy measurements were in excellent agreement with the certified values. PMID:1704729

  13. An evaluation of thermal and epithermal neutron activation analysis compton suppression methods for biological reference materials.

    PubMed

    Landsberger, S; Wu, D

    1999-01-01

    For neutron activation analysis (NAA), the usual matrix problems of sodium, chlorine, and bromine are well known to give rise to high backgrounds that inhibit the determination of several trace elements for short-lived or medium-lived NAA. For long counting times in long-lived NAA, very low backgrounds are required to achieve good sensitivities. We have investigated the use of thermal and epithermal NAA in conjunction with Compton suppression to determine several elements such as arsenic, antimony, cadmium, and mercury, at the level of a few nanograms. The values of these techniques are discussed in contrast to the standard radiochemical methods. PMID:10676521

  14. The determination of uranium in food samples by Compton suppression epithermal neutron activation analysis.

    PubMed

    Kapsimalis, R; Landsberger, S; Ahmed, Y A

    2009-12-01

    Eight foods common to the Nigerian diet were analyzed for trace amounts of uranium using epithermal neutron activation analysis. Food sample sizes of roughly one-half gram, irradiated for 10 min, with a 15 min decay time and counting time for 10 min yielded detection limits between 0.02 and 0.04 Bq/kg. Dried milk, chicken pasta, spaghetti and biscuits had less than detectable amounts of uranium, while sorghum, wheat and brown beans contained 0.73, 0.23 and 0.16 Bq/kg, respectively. PMID:19541492

  15. Advanced liquid and solid extraction procedures for ultratrace determination of rhenium by radiochemical neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Mizera, J.; Kučera, J.; Řanda, Z.; Lučaníková, M.

    2006-01-01

    Radiochemical neutron activation analysis (RNAA) procedures for determination of Re at the ultratrace level based on use of liquid-liquid extraction (LLE) and extraction chromatography (EXC) have been developed. Two different LLE procedures were used depending on the way of sample decomposition using either 2-butanone or tetraphenylarsonium chloride in CHCl3. EXC employed new solid extractant materials prepared by incorporation of the liquid trioctyl-methyl-ammonium chloride into an inert polyacrylonitrile matrix. The RNAA procedures presented have been compared and applied for Re determination in several biological and environmental reference materials.

  16. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). PMID:21129990

  17. The Prompt Gamma Neutron Activation Analysis Facility at ICN-Pitesti

    SciTech Connect

    Barbos, D.; Paunoiu, C.; Mladin, M.; Cosma, C.

    2008-08-14

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performance of INAA method. A facility has been developed at Institute for Nuclear Research-Pitesti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA-facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system.Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: {phi}{sub scd} = 1.10{sup 6} n/cm{sup 2}/s with a cadmium ratio of:80.The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90 deg. with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.

  18. Neutron-activation analysis of several US Geological Survey and National Bureau of Standards reference materials

    SciTech Connect

    Daly, A.T.

    1981-01-01

    In this work, several US Geological Survey (U.S.G.S.) and National Bureau of Standards (N.B.S.) reference samples have been analyzed in an effort to improve the quality of elemental concentration data available on these materials, so they can be used in a program of verification of factor analysis source resolution procedures. The analyses of these samples were performed by instrumental neutron activation analysis (INAA). The samples analyzed were: U.S.G.S. Green River Shale, N.B.S. 45b Homogeneous River Sediment, U.S.G.S. Analyzed Peridotite N.B.S. 1579 Powdered Lead-based Paint, U.S.G.S. Hawaian Basalt U.S.G.S. Marine Mud, U.S.G.S. Analyzed Cody Shale U.S.G.S. Glass Mountain Rhyolite, N.B.S. Argillaceous Limestone No. 1, and a sample of Spex ultrapure graphite. Neutron activation analysis was employed because of the high sensitivity that can be attained in determining elemental concentrations. Although INAA is a relatively simple method and the reproducibility of the data is good, the method shows some inaccuracies. The basic theory and technique are reviewed in an attempt to show where problems can arise and how they can be dealt with.

  19. Determination of multielements in a typical Japanese diet certified reference material by instrumental neutron activation analysis.

    PubMed

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    2003-08-01

    Multielements in a typical Japanese diet certified reference material prepared at the National Institute for Environmental Studies (NIES) of Japan, in collaboration with the National Institute of Radiological Sciences (NIRS) of Japan were determined by instrumental neutron activation analysis (INAA). Five samples (ca. 510-1000 mg) and comparative standards were irradiated for a short time (10 s) at a thermal neutron flux of 1.5 x 10(12) n cm(-2) s(-1) (pneumatic transfer) and for a long time (6 h) at a thermal neutron flux of 3.7 x 10(12) n cm(-2) s(-1) (central thimble) in the Rikkyo University Research Reactor (TRIGA Mark-II, 100 kW). The irradiated samples were measured by conventional gama-ray spectrometry using a coaxial Ge detector, and by anti-coincidence and coincidence gamma-ray spectrometry with a coaxial Ge detector and a well-type NaI(Tl) detector. The concentrations of 38 elements were determined by these methods. PMID:12945682

  20. Elemental analysis of Anethum gravedlens, Sismbrium Irio Linn and Veronia Anthelmintica seeds by instrumental neutron activation analysis.

    PubMed

    Fatima, I; Waheed, S; Zaidi, J H

    2013-01-01

    Instrumental neutron activation analysis has been used to characterize As, Ba, Br, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hg, K, Mn, Na, Rb, Sb, Se and Zn, and Sc in seeds of Anethum graveolens (Dill), Sisymbrium irio Linn. (Wild Mustard) and Vernonia anthelmintica (Iron Weed). Dill seed was found to contain high K while Wild Mustard has high Fe, Mn and Na levels. Iron Weed has highest Cl, Co, Cr and Zn content with least concentration of Fe. PMID:23103327

  1. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  2. The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA)

    NASA Astrophysics Data System (ADS)

    Pinault, Jean-Louis; Solis, Jose

    2009-04-01

    The uncertainty of the elemental analysis is one of the major factors governing the utility of on-line Prompt Gamma Neutron Activation Analysis (PGNAA) in the blending and sorting of bulk materials. In this paper, a general method applicable to Gamma spectra processing is presented and applied to PGNAA in mineral industry. Based on the Fourier transform of spectra and their de-correlation in the Fourier space (the improvement of the conditioning of the correlation matrix), processing of overlapping of characteristic peaks minimizes the propagation of random errors, which optimizes the accuracy and decreases the detection limits of elemental analyses. In comparison with classical methods based on the linear combinations of relevant regions of spectra the improvement may be considerable, especially when several elements are interfering. The method is applied to four case stories covering both borehole logging and on-line analysis on conveyor belt of raw materials.

  3. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  4. Neutron activation analysis for the determination of trace elements in biological materials.

    PubMed

    Versieck, J

    1994-01-01

    Neutron activation analysis, in both its radiochemical and instrumental forms, is a precious technique for the determination of trace elements in biological materials. Probably its most important advantage is its relative freedom from errors resulting from contamination of the samples. Invaluable characteristics are also its excellent sensitivity, outstanding selectivity, and remarkable multielement capability. It is, however, necessary to warn against uncritical expectations. This is best illustrated by the seriously inconsistent results obtained in several laboratories. Because of the necessity to have access to a nuclear research reactor, the stringent safety rules to be observed, the rather high costs of the analyses, the relatively low sample throughput, and the sometimes long delay between the taking of a sample and the obtaining the final result, the use of neutron activation analysis remained restricted to a few--essentially research--laboratories. It found its main application in solving arduous problems and in paving the way for other analytical techniques better suited to routine applications. PMID:7710855

  5. In vivo neutron activation analysis: body composition studies in health and disease

    SciTech Connect

    Ellis, K.J.; Cohn, S.H.

    1984-01-01

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables.

  6. Activation analysis of indium, KCl, and melamine by using a laser-induced neutron source

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Lee, Kitae; Cha, Hyungki

    2014-04-01

    A laser-induced repetitively operated fast neutron source with a neutron yield of 4 × 105 n/pulse and a pulse repetition rate of 5 Hz, which was developed using a deuterated polystyrene film target and a 24-TW femtosecond laser, was applied for laser activation analyses of indium, KCl, and melamine samples. The nuclear reactions of the measured gamma spectra for the activated samples were identified as (n, γ), (n, n'), and (n, 2n) reactions. These indicate possible usage of the neutron source for practical activation analyses of various materials.

  7. Experimental determination of detection limits for performing neutron activation analysis for gold in the field

    SciTech Connect

    Jarzemba, M.S.; Weldy, J.; Pearcy, E.; Prikryl, J.; Pickett, D.

    1999-11-01

    Measurements are presented of gold concentration in rock/soil samples by delayed neutron activation analysis using a device and method that are potentially field portable. The device consists of a polyethylene moderator and {sup 252}Cf as the source of neutrons for activating the samples and a high-purity germanium detector to measure the 412-keV gamma-ray emissions from activated gold. This information is used to extract the gold concentration in the sample. Two types of samples were investigated: (1) pure SiO{sub 2} doped with a known amount of gold chloride and (2) US Geological Survey standards. The former types were used to evaluate optimum device performance and to calibrate the device and method. The latter types were used to show typical system performance for the intended application (field exploration for gold deposits). It was found that the device was capable of determining gold concentrations to {approximately}10 ppb with a turnaround time (the sum of irradiation, decay, and counting times) of {approximately}10 days. For samples where the gold concentration was much higher (i.e., gold ore), turnaround times are {approximately}2 days and could be shortened further by sacrificing accuracy (e.g., lessening irradiation, decay, and counting times) or by augmenting source strength.

  8. Rare-earth elements in Egyptian granite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2007-04-01

    The mobilization of rare-earth elements (REEs) in the environment requires monitoring of these elements in environmental matrices, in which they are mainly present at trace levels. The similarity in REEs chemical behavior makes the separate determination of each element by chemical methods difficult; instrumental neutron activation analysis (INAA), based on nuclear properties of the elements to be determined, is a method of choice in trace analysis of REEs and related elements. Therefore, INAA was applied as a sensitive nondestructive analytical tool for the determination of REEs to find out what information could be obtained about the REEs of some Egyptian granite collected from four locations in Aswan area in south Egypt as follows wadi El-Allaqi, El-Shelal, Gabel Ibrahim Pasha and from Sehyel Island and to estimate the accuracy, reproducibility and detection limit of NAA method in case of the given samples. The samples were properly prepared together with standards and simultaneously irradiated in a neutron flux of 7 x 10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The following elements have been determined: La, Ce, Nd, Sm, Eu, Yb and Lu. The gamma spectra was collected by HPGe detector and the analysis was done by means of computerized multichannel analyzer. The X-ray fluorescence (XRF) was also used. PMID:17208446

  9. In-vivo assessment of total body protein in rats by prompt-γ neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Stamatelatos, Ion E.; Boozer, Carol N.; Ma, Ruimei; Yasumura, Seiichi

    1997-02-01

    A prompt-(gamma) neutron activation analysis facility for in vivo determination of total body protein (TBP) in rats has been designed. TBP is determined in vivo by assessment of total body nitrogen. The facility is based on a 252Cf radionuclide neutron source within a heavy water moderator assembly and two NaI(Tl) scintillation detectors. The in vivo precision of the technique, as estimated by three repeated measurements of 15 rats is 6 percent, for a radiation dose equivalent of 60 mSv. The radiation dose per measurement is sufficiently low to enable serial measurements on the same animal. MCNP-4A Monte Carlo transport code was utilized to calculate thermal neutron flux correction factors to account for differences in size and shape of the rats and calibration phantoms. Good agrement was observed in comparing body nitrogen assessment by prompt-(gamma) neutron activation and chemical carcass analysis.

  10. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    SciTech Connect

    Evans, Louise G; Goddard, Braden; Charlton, William S; Peerani, Paolo

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential

  11. Determination of hydrogen in metals, semiconductors, and other materials by cold neutron prompt gamma-ray activation analysis

    SciTech Connect

    Paul, R.L.; Lindstrom, R.M.

    1998-12-31

    Cold neutron prompt gamma-ray activation analysis has proven useful for nondestructive measurement of trace hydrogen. The sample is irradiated in a beam of neutrons; the presence of hydrogen is confirmed by the emission of a 2223 keV gamma-ray. Detection limits for hydrogen are 3 mg/kg in quartz and 8 mg/kg in titanium. The authors have used the technique to measure hydrogen in titanium alloys, germanium, quartz, fullerenes and their derivatives, and other materials.

  12. Determination of trace elements in metallic materials by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Grassi, B.; La Vecchia, G. M.; Manera, S.; Salvini, A.; Zenoni, A.

    2006-05-01

    The aim of the present paper is to verify the applicability of neutron activation analysis to a metallurgic problem as a possible alternative technique to the standard investigation methodologies. A first series of measurements was performed in order to check the feasibility of irradiation and counting over metallic samples. Some of the feared problems concerned an excessive activation of the matrix and the consequent difficulties in the spectrum interpretation, as well as the removal of the radioactive waste created by the irradiation. Afterwards, a second series of measurements was performed to collect results aimed at the solution of a specific metallurgic case. The tests were performed at the TRIGA MARK II reactor facility of the LENA (Laboratorio Energia Nucleare Applicata) Institute of the Pavia University.

  13. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    SciTech Connect

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  14. Radiological and instrumental neutron activation analysis determined characteristics of size-fractionated fly ash.

    PubMed

    Peppas, T K; Karfopoulos, K L; Karangelos, D J; Rouni, P K; Anagnostakis, M J; Simopoulos, S E

    2010-09-15

    The concentration of trace elements and radionuclides in fly ash particles of different size can exhibit significant variation, due to the various processes taking place during combustion inside a coal-fired power plant. An investigation of this effect has been performed by analyzing samples of fly ash originating in two different coal-fired power plants, after separation into size fractions by sieving. The samples were analyzed by gamma-ray spectrometry, including low-energy techniques, radon exhalation measurement and instrumental neutron activation analysis for the determination of Al, As, Ga, K, La, Na, Mn, Mg, Sr, Sc, and V. Variations are observed in the results of various samples analyzed, while the activity balances calculated from the results of individual size fractions are consistent with those of the raw ash samples. Correlations among the radionuclides examined are also observed, while individual nuclide behavior varies between the two types of fly ash examined. PMID:20605322

  15. Stabilization of prompt gamma-ray neutron activation analysis (PGNAA) spectra from NaI detectors

    NASA Astrophysics Data System (ADS)

    Metwally, W. A.; Gardner, R. P.

    2004-06-01

    NaI detectors are still used frequently in industrial Prompt Gamma-Ray Neutron Activation Analysis applications such as in bulk material analysis. They have the advantages of being efficient for high-energy gamma rays, being relatively rugged, and being able to be used without cooling. When using NaI detectors, and consequently photomultiplier tubes, the quality of the data can drastically deteriorate through gain and zero shifts that result in spectral smearing due to temperature and/or counting rate changes. A new offline approach is presented to stabilize the NaI spectral drift. The approach is not sensitive to the cause of the drift and takes into account the NaI and ADC non-linearities. Peak resolution is improved substantially when this approach is used in the presence of spectral drift.

  16. Distribution of trace elements in the human body determined by neutron activation analysis

    SciTech Connect

    Yukawa, M.; Suzuki-Yasumoto, M.; Amano, K.; Terai, M.

    1980-01-01

    Neutron activation analysis and instrumental semiconductor gamma-ray spectrometry were used for analysis of 20 trace elements in 10 autopsied human organs and tissues (liver, kidney, cerebrum, cerebellum, heart, muscle, pancreas, spleen, lung, and aorta) from 63 Japanese persons, whose ages ranged from 15 days to 85 yr. Distributions of aluminum, bromine, magnesium, manganese, rubidium, selenium, and vanadium in human body were almost uniform. High concentrations of cadmium were found in kidney and liver samples. There was a high mercury concentration in the liver, kidney, and brain samples. Concentrations of other elements (arsenic, gold, cobalt, chromium, copper, iron, indium, antimony, selenium, titanium, and zinc) in each organ or tissue are also presented in this paper.

  17. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  18. Elemental characterization of Hazm El-Jalamid phosphorite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A; Khater, Ashraf E M

    2016-08-01

    Instrumental neutron activation analyses (INAA) have been used to achieve accurate knowledge about the elemental analysis of phosphate ore deposits collected from Hazm El-Jalamid Northeast of Saudi Arabia. The samples were prepared for irradiation by thermal neutrons using a thermal neutron flux of 7×10(12)ncm(-2)s(-1) at ACT Lab Canada. The concentrations of 19 elements were determined. These included 12 major, minor and trace elements (Au, As, Ba, Br, Cr, Mo, Sb, Sc, Sr, Th, U and Zn) and 7 rare earth elements (REEs) (La, Ce, Nd, Sm, Eu, Yb and Lu). Major elements (Si, Al, Fe, Ca, Mg, Na, K, Cr, Ti, Mn, P, Sr and Ba) were determined using an inductively coupled plasma-mass spectrometer (ICP-MS). The comparison of the concentration of U and the REEs in the Hazm El-Jalamid phosphate samples with those of the Umm Wu'al phosphate from Saudi Arabia and El-Sibayia and El Hamrawein phosphate from Egypt shows that the contents of U and REEs are clearly higher in the Umm Wu'al, El-Sibayia and El Hamrawein phosphates than in the Hazm El-Jalamid phosphate samples. The results of major, trace elements, uranium and rare earth elements (REE) from El Jalamid phosphate have been compared with the global values of these elements. The concentrations for most of the elements studied are lower than the concentrations reported in the literature. The acquired data will serve as a reference for the follow-up studies to assess the agronomic effectiveness of the Hazm El-Jalamid phosphate rocks. PMID:27235886

  19. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    PubMed Central

    Capannesi, Geraldo; Lopez, Francesco

    2013-01-01

    Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard. PMID:23878525

  20. Thick activation detectors for neutron spectrometry using different unfolding methods: sensitivity analysis and dose calculation.

    PubMed

    Medkour Ishak-Boushaki, Ghania; Boukeffoussa, Khelifa; Idiri, Zahir; Allab, Malika

    2012-03-01

    This paper discusses the use of threshold detectors of extended sizes for low intensity neutron fields' characterization. The detectors were tested by the measurement of the neutron spectrum of an (241)Am-Be source. Integral quantities characterizing the neutron field, required for radiological protection, have been derived by unfolding the measured data. A good agreement is achieved between the obtained results and those deduced using Bonner spheres. In addition, a sensitivity analysis of the results to the deconvolution procedure is given. PMID:22119561

  1. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Kamari, Halimah Mohamed; Kong, Yap Chee; Hamzah, Mohd Suhaimi; Elias, Md Suhaimi

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. PMID:26405840

  2. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    SciTech Connect

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination.

  3. Neutron activation analysis of thermal power plant ash and surrounding area soils.

    PubMed

    Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A

    2015-08-01

    Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil. PMID:26220782

  4. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    SciTech Connect

    Abubakar, Sani; Isa, Nasiru Fage; Usman, Ahmed Rufa’i; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-24

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  5. Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine.

    PubMed

    Rao, R R; Chatt, A

    1991-07-01

    A simple preconcentration neutron activation analysis (PNAA) method has been developed for the determination of low levels of iodine in biological and nutritional materials. The method involves dissolution of the samples by microwave digestion in the presence of acids in closed Teflon bombs and preconcentration of total iodine, after reduction to iodide with hydrazine sulfate, by coprecipitation with bismuth sulfide. The effects of different factors such as acidity, time for complete precipitation, and concentrations of bismuth, sulfide, and diverse ions on the quantitative recovery of iodide have been studied. The absolute detection limit of the PNAA method is 5 ng of iodine. Precision of measurement, expressed in terms of relative standard deviation, is about 5% at 100 ppb and 10% at 20 ppb levels of iodine. The PNAA method has been applied to several biological reference materials and total diet samples. PMID:1897721

  6. Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis

    USGS Publications Warehouse

    Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.

    1982-01-01

    The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.

  7. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  8. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Abubakar, Sani; Usman, Ahmed Rufa'i.; Isa, Nasiru Fage; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-01

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  9. Neutron Activation Analysis of Single Grains Recovered by the Hayabusa Spacecraft

    NASA Technical Reports Server (NTRS)

    Ebihara, M.; Sekimoto, S.; Hamajima, Y.; Yamamoto, M.; Kumagai, K.; Oura, Y.; Shirai, N.; Ireland. T. R.; Kitajima, F.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; Okazaki, R.; Tsuchiyama, A.; Uesugi, M.; Yurimoto, H.; Zolensky, M. E.; Abe, M.; Fujimura, A.; Mukai, T.; Yada, T.

    2011-01-01

    The Hayabusa spacecraft was launched on May 9, 2003 and reached an asteroid Itokawa (25143 Itokawa) in September 2005. After accomplishing several scientific observations, the spacecraft tried to collect the surface material of Itokawa by touching down to the asteroid in November. The spacecraft was then navigated for the earth. In encountering several difficulties, Hayabusa finally returned to the earth on June 12, 2010 and the entry capsule was successfully recovered. Initially, a g-scale of solid material was aimed to be captured into the entry capsule. Although the sample collection was not perfectly performed, it was hoped that some extraterrestrial material was stored into the capsule. After careful and extensive examination, more than 1500 particles were recognized visibly by microscopes, most of which were eventually judged to be extraterrestrial, highly probably originated from Itokawa [1]. Several years before the launching of the Hayabusa spacecraft, the initial analysis team was officially formed under the selection panel at ISAS. As a member of this team, we have been preparing for the initial inspection of the returned material from many scientific viewpoints [2]. Once the recovered material had been confirmed to be much less than 1 g, a scheme for the initial analysis was updated accordingly [3]. In this study, we aim to analyze tiny single grains by instrumental neutron activation analysis (INAA). As the initial analysis is to be started in mid-January, 2011, some progress for the initial analysis using INAA is described here. Analytical procedure

  10. Using instrumental neutron activation analysis for geochemical analyses of terrestrial impact structures: current analytical procedures at the university of vienna geochemistry activation analysis laboratory.

    PubMed

    Mader, Dieter; Koeberl, Christian

    2009-12-01

    The Instrumental Neutron Activation Analysis Gamma Spectroscopy Laboratory at the Department of Lithospheric Research, University of Vienna, has been upgraded in the year 2006. This paper describes the sample preparation, new instrumentation and data evaluation for hundreds of rock samples of two terrestrial impact structures. The measurement and data evaluation are done by using Genie 2000 and a custom-made batch software for the used analysis sequences. PMID:19481467

  11. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGESBeta

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  12. European Neutron Activation System.

    2013-01-11

    Version 03 EASY-2010 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit, which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high-energymore » neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2007 inventory code, the EAF-2003, EAF-2005, EAF-2007 and EAF-2010 libraries, and the EASY User Interface for the Window version. The activation package EASY-2010 is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2010 library contains 66,256 reactions, almost five times more than in EAF-2003 (12,617). Deuteron-induced and proton-induced cross section libraries are also included, and can be used with EASY to enable calculations of the activation due to deuterons and proton [2].« less

  13. Provenance study of ancient Chinese Yaozhou porcelain by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Li, G. X.; Y Gao, Z.; Li, R. W.; Zhao, W. J.; Xie, J. Z.; Feng, S. L.; Zhuo, Z. X.; Y Fan, D.; Zhang, Y.; Cai, Z. F.; Liu, H.

    2003-09-01

    This paper reports our study of the provenance of ancient Chinese Yaozhou porcelain. The content of 29 elements in the Yaozhou porcelain samples was measured by neutron activation analysis (NAA). The NAA data were further analysed using fuzzy cluster analysis to obtain the trend fuzzy cluster diagrams. These samples with different glaze colour, ranging over more than 700 years, were fired in different kilns. Our analysis indicates the relatively concentrated distribution of the sources of the raw material for the Yaozhou porcelain body samples. They can be classified into two independent periods, i.e. the Tang (AD 618-907) and the Five Dynasties (AD 907-960) period, and the Song (AD 960-1279) and Jin (AD 1115-1234) period. Our analysis also indicates that the sources of the raw material for the ancient Yaozhou porcelain glaze samples are quite scattered and those for the black glaze in the Tang Dynasty are very concentrated. The sources of the raw material for the celadon glaze and the white glaze in the Tang Dynasty are widely distributed and those for the celadon glaze in the Song Dynasty are close to those of the bluish white glaze in the Jin Dynasty, and they are very concentrated. The sources of the raw material for the porcelain glazes cover those of the porcelain bodies.

  14. Neutron activation analysis and numerical taxonomy of thin orange ceramics from the manufacturing site of Rio Carnero, Puebla, Mexico

    SciTech Connect

    Rattray, E. . Inst. de Investigaciones Antropologicas); Harbottle, G. )

    1991-04-01

    Examples of different types of Thin Orange ceramics found at the recently-discovered manufacturing sites in the state of Puebla have been analyzed by neutron activation. A full multivariate numerical analysis indicates that this material is chemically identical with the well-known Thin Orange of Teotihuacan.'' 33 refs., 2 figs., 2 tabs.

  15. INCORPORATION OF 5-IODO-2'-DEOXYURIDINE AND 5-BROMO-2'DEOXYURIDINE INTO RODENT DNA AS DETERMINED BY NEUTRON ACTIVATION ANALYSIS

    EPA Science Inventory

    Using 5-iodo-2'-deoxyuridine (IdU) and 5-bromo-2'-deoxyuridine (BrdU) an DNA precursors, neutron activation analysis (NAA) of iodine and Br was developed as a quantitative method for determining DNA synthesis. ndogenous tissue concentrations of bromine (Br) and iodine ranged from...

  16. NEUTRON ACTIVATION ANALYSIS FOR SIMULTANEOUS DETERMINATION OF TRACE ELEMENTS IN AMBIENT AIR COLLECTED ON GLASS-FIBER FILTERS

    EPA Science Inventory

    Arsenic with 25 other elements are simultaneously determined in ambient air samples collected on glass-fiber filter composites at 250 United States sites. The instrumental neutron activation analysis (NAA) technique combined with the power of a dedicated mini-computer resulted in...

  17. Analysis of active neutron multiplicity data for Y-12 skull oxide samples

    SciTech Connect

    Krick, M.S.; Ensslin, N.; Ceo, R.N.; May, P.K.

    1996-09-01

    Previous work on active neutron multiplicity measurements and analyses is summarized. New active multiplicity measurements are described for samples of Y-12 skull oxide using an Active Well Coincidence Counter and MSR4 multiplicity electronics. Neutron multiplication values for the samples were determined from triples/doubles ratios. Neutron multiplication values were also obtained from Monte Carlo calculations using the MCNP code and the results compared with the experimental values. A calibration curve of AmLi source-sample coupling vs neutron multiplication was determined and used for active multiplicity assay of the skull oxides. The results are compared with those obtained from assay with the conventional calibration-curve technique, where the doubles rate is calibrated vs the {sup 235}U mass. The coupling-multiplication relationship determined for the skull oxides is compared with that determined earlier for pure high-enrichment uranium metal and pure uranium oxide. Conclusions are drawn about the application of active multiplicity techniques to uranium assay. Additional active multiplicity measurements and calculations are recommended.

  18. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method.

    PubMed

    Abugassa, I; Sarmani, S B; Samat, S B

    1999-06-01

    This paper focuses on the evaluation of the k0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E1+ alpha epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the gamma-ray cascade and the HPGe detector efficiency were determined and corrected for. PMID:10355102

  19. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc

    USGS Publications Warehouse

    Czamanske, G.K.; Roedder, E.; Burns, F.C.

    1963-01-01

    Microgram quantities of copper, manganese, and zinc, corresponding to concentrations greater than 100 parts per million, were found in milligram quantities of primary inclusion fluid extracted from samples of quartz and fluorite from two types of ore deposits. The results indicate that neutron activation is a useful analytical method for studying the content of heavy metal in fluid inclusions.

  20. Measurement and analysis of activation induced in titanium with fusion peak neutrons

    NASA Astrophysics Data System (ADS)

    Klix, A.; Domula, A.; Forrest, R.; Zuber, K.

    2011-10-01

    The intense neutron flux densities in fusion reactor blankets produce activation in the blanket materials relevant to operational safety, decommissioning, etc. The aim of the present work is to check the European Activation System EASY-2007 for its capability to predict important gamma activities induced in titanium in a fusion neutron field. Many advanced low-activation materials for fusion applications contain titanium, most notably in the breeder material Li 2TiO 3. In the present work, a small sample of Ti was irradiated with the intense DT neutron generator of Technical University of Dresden. The gamma-radioactivity following irradiation was measured and nuclide activities were derived. For each of the measured gamma activities, the corresponding value was calculated with EASY, and calculation-to-experiment ratios ( C/ E) were determined. EASY predicted the induced gamma activities, isotopes of scandium, well with some overestimation for 47Sc. The results of this measurement together with available EXFOR and validated state-of-the-art activation libraries are discussed.

  1. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. PMID:22406218

  2. Fast neutron activation analysis of oxide inclusions in magnesium alloy ingots

    NASA Astrophysics Data System (ADS)

    Fuerst, C. D.; James, W. D.

    1999-06-01

    Magnesium will have an increasingly important role to play in the automotive industry's materials strategy. In addition to its obvious use as a lightweight alternative, magnesium offers advantages in areas such as component integration and NVH (noise, vibration and harshness). Although the metallic composition of magnesium alloys has been carefully defined, there is no uniform industry standard for non-metallic inclusions, such as oxides, which are believed to adversely impact the material's strength. A definitive test has been needed, preferably one that provides a highly sensitive, calibrated, nondestructive evaluation of the metal's bulk oxide content. In response to this need, fast neutron activation analysis (FNAA) has emerged as an important tool for providing highly accurate quantitative information on the oxygen content in magnesium alloys. Oxygen levels from less than 50 to several thousand ppm have been observed in these alloys, with the highest levels concentrated at the top center of the ingot. Several operational procedures have been developed to optimize the analysis, including: a new automated, blank-free procedure which pneumatically transports machined magnesium cylinders between the irradiation and counting facilities; the use of an oxygen standard prepared from polyethylene and titanium dioxide, machined to match the sample dimensions; and implementation of new background subtraction software.

  3. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    PubMed

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials. PMID:21133431

  4. Accurate measurement of bromine contents in plastic samples by instrumental neutron activation analysis.

    PubMed

    Kim, I J; Lee, K S; Hwang, E; Min, H S; Yim, Y H

    2013-03-26

    Accurate measurements of bromine contents in plastic samples were made by the direct comparator instrumental neutron activation analysis (INAA). Individual factors affecting the measurements were comprehensively evaluated and compensated, including the volatility loss of bromine from standard comparators, the background bromine level in the filter papers used for preparation of the standard comparators, nuclear interference, γ-ray spectral interference and the variance among replicates of the samples. Uncertainty contributions from those factors were thoroughly evaluated and included in the uncertainty budgeting of the INAA measurement. (81)Br was chosen as the target isotope, and the INAA measurements for bromine were experimentally confirmed to exhibit good linearity within a bromine content range of 10-170 μg. The established method has been applied to the analysis of eight plastic samples: four commercially available certified reference materials (CRMs) of polyethylene and polystyrene and four acrylonitrile butadiene styrene (ABS) samples prepared as the candidate reference materials (KRISS CRM 113-01-012, -013, -014 and -015). The bromine contents of the samples were calculated at three different γ-ray energies and compared, showing good agreement. The results of the four CRMs also showed good consistency with their certified values within the stated uncertainties. Finally, the bromine contents of the ABS samples were determined with expanded uncertainties (at a 95% level of confidence) between 2.5% and 5% in a bromine content range of 25-900 mg kg(-1). PMID:23498117

  5. Determination of laser-evaporated uranium dioxide by neutron activation analysis

    SciTech Connect

    Allred, R.

    1987-05-01

    Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 3700/sup 0/K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 3120/sup 0/K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs.

  6. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  7. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  8. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  9. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Matysiak, W.; Bhatia, C.; Prestwich, W. V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  10. Determination of trace elements by instrumental neutron activation analysis in Anatolian bentonitic clays

    NASA Astrophysics Data System (ADS)

    Güngör, N.; Tulun, T.; Alemdar, A.

    1998-08-01

    Instrumental Neutron Activation Analysis (INAA) was carried out for the determination of trace elements in non-swelling type bentonitic clays. Samples were irradiated in Triga Mark II type of reactor at the Nuclear Institute of Technical University of Istanbul. Irradiation was performed in two steps for "short and long lived" isotopes. The γ spectra of short lived isotopes were interpreted with respect to Al, Ca, Mg, Na, K, Ti, Mn, V qualitatively and that of long lived isotopes with respect to Sc, Cr, Br, Sb, Cs, La, Ce, Sm, Yb, Hf quantitatively. The relative richness of the trace elements (Al, Ti, Ca, Mg, Na, K) observed in the Sampo 90 program was obtained using Atomic Absorption technique by normalizing its value to that of sodium. The silicon content of samples was determined by gravimetry. The results indicated that Sample I contained relatively higher amount of REE, Sb, Ca and Na than Sample II. The amount of Sc, Cr and Br were about similar in both samples. Concentrations of La, Ce, Sm and Yb are higher than REE abundances found in all natural waters. These results suggest that Ca-bentonite samples are representative of primary deposition environment. In addition, the Sc content of both the samples indicates that Ca-bentonite deposits originated from continental crust. The relatively high amount of REE might bring about porosity problems in the use of Ca-bentonite in cement and concrete production.

  11. Neutron activation analysis of stoney spherules from a marine sediment sample

    NASA Technical Reports Server (NTRS)

    Millar, H. T., Jr.; Englert, P.

    1984-01-01

    The identification of extraterrestrial material in samples collected at the surface of the Earth is discussed. Criteria were established for black magnetic spherules which involve the presence of: Fe, Ni, and Co in iron meteoritic ratios, wustite, and Fe-Ni metal while reliable criteria for stoney spherules are not well established. Neutron activation analysis was performed on eight stony spherules separated from the same marine sediment used by Millard and Finkelman. The 22 elements were determined by Compton suppression and triple coincidence gamma counting. It is found that Fe, Mg, Al, Ni, Cr, Co, Ir, and Sc are the best discriminators between chondritic and terrestrial compositions. Three of the spherules have compositions very close to chondrites and of these, two contain 0.5 and 0.25 ppm Ir. The other five spherules contain much less than chondritic concentrations of Ni but this element may be segregated and lost during ablation of the parent meteorite. One of these five low Ni spherules contains 2.9 ppm Ir while the other four contain less than 0.05 ppm Ir.

  12. Studies of generalized elemental imbalances in neurological disease patients using INAA (instrumental neutron activation analysis)

    SciTech Connect

    Ehmann, W.D.; Vance, D.E.; Khare, S.S.; Kasarskis, E.J.; Markesbery, W.R.

    1988-01-01

    Evidence has been presented in the literature to implicate trace elements in the etiology of several age-related neurological diseases. Most of these studies are based on brain analyses. Using instrumental neutron activation analysis (INAA), we have observed trace element imbalances in brains of patients with Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Picks's disease. The most prevalent elemental imbalances found in the brain were for bromine, mercury, and the alkali metals. In this study the authors report INAA studies of trace elements in nonneural tissues from Alzheimer's disease and ALS patients. Samples from household relatives were collected for use as controls wherever possible. Hair samples were washed according to the International Atomic Energy Agency recommended procedure. Fingernail samples were scraped with a quartz knife prior to washing by the same procedure. For ALS patients, blood samples were also collected. These data indicate that elemental imbalances in Alzheimer's disease and ALS are not restricted to the brain. Many elements perturbed in the brain are also altered in the several nonneural tissues examined to date. The imbalances in different tissues, however, are not always in the same direction. The changes observed may represent causes, effects, or simply epiphenomena. Longitudinal studies of nonneural tissues and blood, as well as tissue microprobe analyses at the cellular and subcellular level, will be required in order to better assess the role of trace elements in the etiology of these diseases.

  13. Breast Milk Concentration of Rubidium in Lactating Mothers by Instrumental Neutron Activation Analysis Method

    PubMed Central

    Khatami, Seyedeh-Fatemeh; Parvaresh, Pouya; Parvaresh, Parviz; Madani Kouchak, Sara Sadat; Khorsandi, Jamshid

    2014-01-01

    Objective: Relatively little is known about the trace elements content of human milk from different countries. This has not been fully investigated especially among Iranian women. This study aimed to assess the concentration of Rubidium (Rb) as a poisonous trace element in transitional breast milk of lactating mothers living in Mashhad. Methods: Forty nursing mothers in early lactation 3 days to 15 days postpartum, free from any medical disorder and/or medication were randomly selected. We have applied Instrumental Neutron Activation Analysis (INAA) to assess the long-lived isotope trace element Rb in transitional milk of these economically moderate 18–39 year old Iranian women. Findings: The average concentration level of Rb was 32.176 ppm dry weight (min 8.660, max 107.210 ppm). No significant correlation was observed between Rb concentration and maternal weight and age (P=0.06, P=0.05 respectively) and newborns’ weight, age and sex (P=0.07, P=0.2, P=0.2 respectively). Conclusion: Although the Rubidium concentration found in this study is among the highest reported in the literature, it could not be compared to other studies because of differences in analytical performance, state of lactation, and unavailable reference ranges, so this finding needs further investigations. PMID:26019773

  14. Chemical characterization of ancient pottery from the greater Accra region of Ghana using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Tandoh, J. B.; Bredwa-Mensah, Y.; Dampare, S. B.; Akaho, E. H. K.; Nyarko, B. J. B.

    2009-06-01

    Archaeology in Ghana has a long and respectable tradition. Despite this encouraging situation, significant gaps still exist in our understanding of the history of some early societies in Ghana. Accumulated evidence revealed that the Ga (Ayawaso), Dangme-Shai and the Wullf had trade and other cultural contacts with their Akan and Guan neighbours as well as the various European factors that traded and established footholds in the Accra coast. In an attempt to reconstruct the early history of the Ga, Dangme-Shai and Wullf, the archaeological material remains recovered from these communities during excavation have been studied. In all, 15 trace elements were determined in 40 pottery shards using instrumental neutron activation analysis. The elemental concentrations were processed using multivariate statistical methods, such as cluster, factor and discriminant analyses. The results revealed patterns of trade between these communities and also classified the 40 samples into two major groups based on variations in elemental compositions. The groupings suggested a clear separation between the shards from Shai and Ayawaso. The shards from Wullf scattered amongst the two groups, consistent with the archaeological findings that the Wullf community never produced their own pots.

  15. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    SciTech Connect

    Greenberg, R.R.

    1988-01-01

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the {sup 75}Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations.

  16. Determination of uranium at trace levels by radiochemical neutron-activation analysis employing radioisotopic yield evaluation.

    PubMed

    Byrne, A R; Benedik, L

    1988-03-01

    Nanogram and picogram quantities of uranium were determined in biological materials by radiochemical neutron-activation analysis. Two different approaches using either (239)U or (239)Np were employed for cross-checking, and the question of negative errors due to incomplete acid dissolution of any possible inorganic (siliceous) fraction was studied. In the first and main approach, radiochemical separation of the short-lived (239)U (23.5 min) nuclide was based on TBP extraction following rapid conventional wet-ashing. Addition of large amounts of uranium carrier (ca. 50 mg) allowed the chemical yield to be evaluated from the gamma spectrum of the isolated fraction by means of the 186 keV peak of (235)U. In the second approach, the longer-lived (239)Np (56.5 hr) daughter was separated by anion-exchange; this nuclide allowed use of lengthier dissolution procedures employing total decomposition with hydrofluoric acid. Nanogram quantities of (237)Np were irradiated simultaneously with the sample and an aliquot of the resulting solution containing (237)Np and (238)Np (51 hr) was added prior to sample destruction, these isotopes serving as carrier and yield tracer, respectively. Results are presented for a series of reference materials. The methodologies and results from the two approaches are discussed and evaluated. PMID:18964488

  17. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  18. Neutron multiplicity analysis tool

    SciTech Connect

    Stewart, Scott L

    2010-01-01

    I describe the capabilities of the EXCOM (EXcel based COincidence and Multiplicity) calculation tool which is used to analyze experimental data or simulated neutron multiplicity data. The input to the program is the count-rate data (including the multiplicity distribution) for a measurement, the isotopic composition of the sample and relevant dates. The program carries out deadtime correction and background subtraction and then performs a number of analyses. These are: passive calibration curve, known alpha and multiplicity analysis. The latter is done with both the point model and with the weighted point model. In the current application EXCOM carries out the rapid analysis of Monte Carlo calculated quantities and allows the user to determine the magnitude of sample perturbations that lead to systematic errors. Neutron multiplicity counting is an assay method used in the analysis of plutonium for safeguards applications. It is widely used in nuclear material accountancy by international (IAEA) and national inspectors. The method uses the measurement of the correlations in a pulse train to extract information on the spontaneous fission rate in the presence of neutrons from ({alpha},n) reactions and induced fission. The measurement is relatively simple to perform and gives results very quickly ({le} 1 hour). By contrast, destructive analysis techniques are extremely costly and time consuming (several days). By improving the achievable accuracy of neutron multiplicity counting, a nondestructive analysis technique, it could be possible to reduce the use of destructive analysis measurements required in safeguards applications. The accuracy of a neutron multiplicity measurement can be affected by a number of variables such as density, isotopic composition, chemical composition and moisture in the material. In order to determine the magnitude of these effects on the measured plutonium mass a calculational tool, EXCOM, has been produced using VBA within Excel. This

  19. A benchmarked MCNP model of the in vivo detection of gadolinium by prompt gamma neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gräfe, J. L.; McNeill, F. E.; Byun, S. H.; Chettle, D. R.; Noseworthy, M. D.

    2010-08-01

    Gadolinium (Gd)-based contrast agents are a valuable diagnostic aid for magnetic resonance imaging (MRI). The amount of free Gd deposited in tissues following contrast enhanced MRI is of toxicological concern. The McMaster University in vivo prompt gamma neutron activation analysis facility has been adapted for the detection of Gd in the kidney, liver, and the leg muscle. A simple model of the HPGe detector used for detection of the prompt γ-rays following Gd neutron capture has been created using Monte Carlo simulation. A separate simulation describing the neutron collimation and shielding apparatus has been modified to determine the neutron capture rate in the Gd phantoms. The MCNP simulation results have been confirmed by experimental measurement. The deviations between MCNP and the experiment were between 1% and 18%, with an average deviation of 3.8 ± 6.7%. The validated MCNP model is to be used to improve the Gd in vivo measurement sensitivity by determining the best neutron moderator/reflector arrangement.

  20. Use of fast-neutron activation analysis for the determination of the silicon content in coal, flyash, and soil

    SciTech Connect

    Chan, K. K.

    1982-01-01

    The values of the silicon content and the associated precisions obtained for the samples analyzed in this study are listed. It was the purpose of this study to employ fast neutron activation analysis for the determination of silicon content in coal, flyash, and soil. The silicon content of coal, flyash, and soil samples have been obtained with accuracies and precisions in good agreement with the accuracies and precisions reported by other researchers performing similar analyses. Terramethylsilane was found to be a suitable standard for this study. Finally, careful sample packaging and handling techniques were found to be crucial for obtaining accurate and precise results. It can be concluded that fast neutron activation analysis using the system at the University of Illinois can be used successfully to determine silicon content.

  1. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed. PMID:10376325

  2. Determination of platinum and palladium in geological materials by neutron-activation analysis after fire-assay preconcentration

    USGS Publications Warehouse

    Rowe, J.J.; Simon, F.O.

    1971-01-01

    Fire-asay preconcentration followed by neutron-activation analysis permits the determination of as little as 0.5 ppM of platinum and 0.5 ppM of palladium on a 20-g sample. Platinum and palladium are separated with carriers and beta-counted. Results for the platinum and palladium content of seven U.S.G.S. standard rocks are presented. ?? 1971.

  3. Development of a database for prompt gamma-ray neutron activation analysis: Summary report of the third research coordination meeting

    SciTech Connect

    Lindstrom, Richard M.; Firestone, Richard B.; Pavi, ???

    2003-04-01

    The main discussions and conclusions from the Third Co-ordination Meeting on the Development of a Database for Prompt Gamma-ray Neutron Activation Analysis are summarized in this report. All results were reviewed in detail, and the final version of the TECDOC and the corresponding software were agreed upon and approved for preparation. Actions were formulated with the aim of completing the final version of the TECDOC and associated software by May 2003.

  4. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    PubMed

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. PMID:25644079

  5. Application of on-line laboratory computer analysis to fast neutron activation oxygen determinations

    SciTech Connect

    James, W.D.; Akanni, M.S.

    1983-04-01

    The development of an on-line laboratory computer analysis system designed for routine high volume oxygen determinations is discussed. The system is based on the detection of /sup 16/N photopeaks from the /sup 16/O(n,p) /sup 16/N reaction occurring during fast neutron irradiation. A system interface has been designed and constructed which is capable of controlling the Kaman 710 neutron generator, the sample transfer system, switching the BF/sub 3/ beam monitor detector or NaI(T1) detector outputs as required to a multichannel scaling MCA, and proper sequencing of the procedure. In addition, specific software has been developed for the control of the system during acquisition as well as evaluation of the MCS spectra generated.

  6. Automation of the quantitative determination of elemental content in samples using neutron activation analysis on the IBR-2 reactor at the frank laboratory for neutron physics, joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. Yu.; Pavlov, S. S.

    2013-01-01

    Software for the automated quantitative determination of element concentrations in samples is described. This software is used in neutron activation analysis (NAA) at the IBR-2 reactor of the Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research (FLNP JINR).

  7. Determination of tin in human blood serum by radiochemical neutron activation analysis.

    PubMed

    Versieck, J; Vanballenberghe, L

    1991-06-01

    A method was developed for the determination of tin in human serum by radiochemical neutron activation analysis, using the long-lived radioisotope Sn(T1/2 = 115.09 days). This radioisotope decays to a daughter isotope 113mIn, the most suitable nuclide for counting (T1/2 = 1.658 h, gamma-ray of 391.7 keV). Experience showed that, with the exception of the serum samples with the lowest tin levels, in the experimental conditions of the present study tin could mostly also be determined by using its radioisotope 117mSn(T1/2 = 13.61 days, gamma-ray of 158.5 keV). Samples were collected and prepared by using the procedure elaborated by the authors, which proved its effectiveness in preventing significant sample contamination on several occasions. Because samples had to be irradiated at 10(14) n.cm-2.s-1, dry ashing was necessary. After irradiation, tin was separated by solvent extraction of tin(IV) iodide from a sulfuric acid-ammonium iodide solution with toluene. The dry ashing and solvent extraction steps were exhaustively tested by means of radioactive tracer experiments whereas the accuracy and precision of the analytical method were thoroughly checked by analyzing biological reference materials (Bowen's kale powder, the NBS' bovine liver, the NBS' nonfat milk powder, and the "second-generation" biological reference material--freeze-dried human serum--for trace element determinations, developed by the authors).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1883071

  8. Assessment of cortical and trabecular bone distribution in the beagle skeleton by neutron activation analysis

    SciTech Connect

    Parks, N.J.; Jee, W.S.; Dell, R.B.; Miller, G.E.

    1986-07-01

    The distribution of bone calcium between morphologically identifiable cortical and trabecular bone obtained by dissection and quantitated by neutron activation analysis (NAA) is described. The skeleton of a female beagle dog was dissected into approximately 400 pieces and assayed for /sup 49/Ca produced in the University of California, Irvine TRIGA reactor. For each of the skeletal sections, we give the initial weight of the alcohol-fixed tissue, which includes cortical bone, trabecular bone, marrow, and cartilage, and a final tissue weight after the marrow and trabecular bone have been dissected away; total section and cortical section calcium weights are reported. The level of detail is represented, for example, by the vertebrae, which were divided into three parts (body, spine, and transverse processes) and by the long bones, which were divided into 10-12 parts such that characterization of the epiphysis, metaphysis, and diaphysis was accomplished. The median percentage cortical calcium values for cervical, thoracic, and lumbar vertebrae were 82%, 56%, and 66%, respectively; however, variation within these groups and among individual vertebral sections was about a factor of 2. For long bones, the median percentage cortical calcium varied from 90-100% in the midshaft to below 50% in the proximal and distal sections. The final calculated cortical tissue-to-calcium mass ratio (TCR) varied from about 4.5 for midshafts of the long bones to about 9 for thoracic vertebral bodies and indicated that the mineral fraction of cortical bone is not constant throughout the skeleton. The ratio of cortical to trabecular calcium in the skeleton was 79.6:20.4.

  9. [Neutron activation analysis of human hair--multivariate analysis of factors influencing on trace element contents in hair-- (author's transl)].

    PubMed

    Imahori, A; Fukushima, I

    1980-06-01

    As a part of IAEA research project, "Activation analysis of hair as an indicator of contamination of man by environmental trace element pollutants", a survey was carried out to elucidate the levels of various trace element concentrations in hair of local population in the Tokyo Metropolitan areas, by applying instrumental neutron activation analysis. A total of 202 scalp hair samples were collected from the inhabitants classified by sex and five age classes. Irradiation was made in the Rikkyo University 100 kW TRIGA MARK-II reactor. Using several combinations of irradiation time, cooling time and counting time, forty elements were determined. The relationship between several trace element contents in hair and such factors as sex, age class, hair treatment, smoking habit and dental treatment, was analyzed by using the method of multiple regression. It was shown that (1) Hair treatment had a predominant effect on the contents of bromine, magnesium and calcium in hair, (2) Aging and smoking contributed increasing mercury content in hair, and hair treatment acted reversely. PMID:7208973

  10. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  11. Development of the activation analysis calculational methodology for the Spallation Neutron Source (SNS)

    SciTech Connect

    Odano, N.; Johnson, J.O.; Charton, L.A.; Barnes, J.M.

    1998-03-01

    For the design of the proposed Spallation Neutron Source (SNS), activation analyses are required to determine the radioactive waste streams, on-line material processing requirements remote handling/maintenance requirements, potential site contamination and background radiation levels. For the conceptual design of the SNS, the activation analyses were carried out using the high-energy transport code HETC96 coupled with MCNP to generate the required nuclide production rates for the ORIHET95 isotope generation code. ORIHET95 utilizes a matrix-exponential method to study the buildup and decay of activities for any system for which the nuclide production rates are known. In this paper, details of the developed methodology adopted for the activation analyses in the conceptual design of the SNS are presented along with some typical results of the analyses.

  12. Development of a transportable neutron activation analysis system to quantify manganese in bone in vivo: feasibility and methodology

    PubMed Central

    Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H

    2014-01-01

    This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium–deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium–tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23μSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject. PMID:24165395

  13. Possible differentiation of natal areas of North American waterfowl by neutron activation analysis

    USGS Publications Warehouse

    Devine, T.; Peterle, T.J.

    1968-01-01

    The possibility of using neutron activation analyses to differentiate sources of North American waterfowl was investigated by irradiating rectrices and wing bones of birds collected in several localities, and comparing the characteristic gamma-ray spectra. Canada goose rectrices from Oregon specimens could be distinguished from those taken in Wisconsin and Colorado based on higher levels of Mn. Mallard, black duck, and blue-winged teal wing bones from Wisconsin, Colorado, and New Brunswick could not be clearly identified as to locality from levels of Ca, Al, Na, Mn, and Cl.

  14. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  15. Neutron Unfolding Code System for Calculating Neutron Flux Spectra from Activation Data of Dosimeter Foils.

    1982-04-30

    Version 00 As a part of the measurement and analysis plan for the Dosimetry Experiment at the "JOYO" experimental fast reactor, neutron flux spectral analysis is performed using the NEUPAC (Neutron Unfolding Code Package) code system. NEUPAC calculates the neutron flux spectra and other integral quantities from the activation data of the dosimeter foils.

  16. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    USGS Publications Warehouse

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. ?? 1977.

  17. Self-Shielding Correlation of Foil Activation Neutron Spectra Analysis by SAND-II.

    2008-11-21

    Version 00 SELFS-3 corrects for the influence of the self-shielding effect in neutron spectrum determinations by means of the multifoil activation method. It is used in combination with the SAND-II program for unfolding the responses of an irradiated set of activation detectors in 620 groups. The program SELFS can calculate a corrected 620 group cross section data set for specified reactions used in the SAND-II library, and for specified foil thicknesses. This procedure requires nomore » additional assumption on the shape of the neutron spectrum and on other experimental conditions, but only some foil characteristics (reaction type, material composition, foil thickness). Application of this procedure is possible when multigroup unfolding programs are used with suitably small energy intervals. This code system was developed in the 1970’s at Reactor Centrum Nederland, Petten, The Netherlands, and was contributed to RSICC through the NEA Data Bank. No changes were made to the package when it was released by RSICC in 2008. Modifications will be required to run SELFS-3 on current computer systems.« less

  18. Neutron activation analysis of nuclides from stellar and man-induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Oliver, L. L.

    Neutron activation and gamma counting were used to determine the relative abundances of six stable tellurium isotopes in the acid-etched residues of the Allende meteorite. The results were correlated with the isotopic compositions of xenon and the elemental abundances of helium and neon in similarly prepared residues. Nucleosynthesis appears to be the only viable explanation or the anomalous isotopic and elemental compositions observed in these residues. Results suggest that the solar system condensed from an isotopically and chemically zoned nebula that was produced by the explosion of a supernova, concentric with the present Sun. A combination of neutron activation and mass spectrometry was used to determine the concentrations of fissiogenic iodine 129 and stable iodine 127 in rain, milk and the thyroids of man, cow and deer from Missouri. Rain and deer thyroids show the highest average values of the iodine 129/iodine 127 ratio. Milk and the thyroids of cattle and humans show successively lower values of the iodine 129/iodine 127 ratio due to dietary additives of mineral iodine and to biological averaging.

  19. Self-Shielding Correlation of Foil Activation Neutron Spectra Analysis by SAND-II.

    SciTech Connect

    KONDO, IKUO

    2008-11-21

    Version 00 SELFS-3 corrects for the influence of the self-shielding effect in neutron spectrum determinations by means of the multifoil activation method. It is used in combination with the SAND-II program for unfolding the responses of an irradiated set of activation detectors in 620 groups. The program SELFS can calculate a corrected 620 group cross section data set for specified reactions used in the SAND-II library, and for specified foil thicknesses. This procedure requires no additional assumption on the shape of the neutron spectrum and on other experimental conditions, but only some foil characteristics (reaction type, material composition, foil thickness). Application of this procedure is possible when multigroup unfolding programs are used with suitably small energy intervals. This code system was developed in the 1970’s at Reactor Centrum Nederland, Petten, The Netherlands, and was contributed to RSICC through the NEA Data Bank. No changes were made to the package when it was released by RSICC in 2008. Modifications will be required to run SELFS-3 on current computer systems.

  20. Determination of chromium and trace elements in El-Rubshi chromite from Eastern Desert, Egypt by neutron activation analysis.

    PubMed

    El-Taher, A

    2010-09-01

    Neutron activation analysis (NAA) is one of the most powerful analytical techniques for multielement determination of rocks. In the present work NAA and HPGe detector gamma-spectroscopy was used to determine chromium and 15 minor and trace elements qualitatively and quantitatively from chromite rock samples collected from El-Robshi area in the Eastern Desert, Egypt. The samples were properly prepared together with their standards and simultaneously irradiated by thermal neutrons at the TRIGA Mainz research reactor. Short time irradiation (1-5min) was used to determine Mg, Ti and Mn. Long time irradiation (6h) was used to determine Na, Ga, As, La, Sc, Cr, Fe, Co, Zn, Zr, Ce, Ce, Yb, Lu, Hf and Ta. In El-Robshi chromite comprises 18 sites, more than 100 lenses of massive chromite, more than 2700 tons averaging 44% Cr(2)O(3) and the average of (51)Cr 40.2%. PMID:20444611

  1. Precise determination of Cr and Co in certified reference material of silicon nitride by neutron activation analysis using internal standardization.

    PubMed

    Miura, Tsutomu; Matsue, Hideaki; Kuroiwa, Takayoshi; Chiba, Koichi

    2009-07-01

    Neutron activation analysis with an internal standard correction was applied to the determination of Cr and Co in a ceramics certified reference material (NMIJ CRM 8004-a silicon nitride powder). Cesium was used as an internal standard to compensate for any inhomogeneity of the neutron flux through an irradiation capsule and to improve the repeatability of gamma-ray measurements. It was found that the linearity of the calibration curves of Cr and Co was improved by using an internal standard. The analytical results of Cr and Co in NMIJ CRM 8004-a were in good agreement with those obtained by ICP-OES, ICP-sector field mass spectrometry (ICP-SFMS), and isotope dilution/ICP-SFMS for Cr. The relative expanded uncertainties (k = 2) were 1.9% for Cr and 1.5% for Co. The uncertainties were comparable to those of atomic spectrometric methods. PMID:19609027

  2. Trace-element analysis of 1000 environmental samples per year using instrumental neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1974-01-01

    The technology and methods developed at the Plum Brook Reactor to analyze 1000 samples per year and report data on as many as 56 elements are described. The manpower for the complete analysis of 20 to 24 samples per week required only 3 to 3.5 hours per sample. The solutions to problems encountered in sample preparation, irradiation, and counting are discussed. The automation of data reduction is described. Typical data on various sample matrices are presented.

  3. Neutron activation analysis on the surface of the Moon and other terrestrial planets

    NASA Astrophysics Data System (ADS)

    Golovin, Dmitry; Litvak, Maxim; Kozyrev, S. Alexander; Tretiyakov, Vladislav; Sanin, Anton; Vostrukhin, Andrey; Mitrofanov, Igor; Malakhov, Alexey

    Determine of elements composition of the planet subsurface in situ is important scientific task for understanding of origin and formation processes of terrestrial planets, moons and asteroids. Also this study will be very perspective in terms of utilization of mineral resources for future lunar base. Creation of such outpost will open doors for robotic and human exploration in the distant parts of Solar System. ADRON instrument onboard landing platforms Russian near-pole lunar missions (Glob and Resource) will be first example of using Neutron Activation method in space. It will measure nuclear composition of the lunar regolith in the landing sites up to 1 m depth. This instrument is able to use for different planets and conditions. For Venus surface, taking into account short lifetime of spacecraft one or two hours of operation will be enough to perform such measurements. Another good opportunity is using similar instrument on Lunar or Martian rovers for searching of important minerals.

  4. Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    D'Agostino, G.; Bergamaschi, L.; Giordani, L.; Mana, G.; Massa, E.; Oddone, M.

    2012-12-01

    Impurity measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or underestimated uncertainties. A review of the existing data confirmed the high purity of silicon with respect to a large number of elements. In order to obtain direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro natural silicon crystal WASO 04. The investigation concerned 29 elements. The mass fraction of Au was quantified to be (1.03 ± 0.18) × 10-12. For the remaining 28 elements, the mass fractions were below the detection limits, which ranged between 1 × 10-12 and 1 × 10-5.

  5. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  6. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Yussup, Nolida; Salim, Nazaratul Ashifa Bt. Abdullah; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh@Shaari, Syirrazie Bin Che; Azman, Azraf B.; Ismail, Nadiah Binti

    2015-04-01

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on `Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)'. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  7. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    SciTech Connect

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh Shaari, Syirrazie Bin Che; Azman, Azraf B.; Salim, Nazaratul Ashifa Bt. Abdullah; Ismail, Nadiah Binti

    2015-04-29

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  8. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Arafa, Wafaa M.; Badawy, Wael M.; Fahmi, Naglaa M.; Ali, Khaled; Gad, Mohamed S.; Duliu, Octavian G.; Frontasyeva, Marina V.; Steinnes, Eiliv

    2015-07-01

    The distributions of 36 major and trace elements in 40 surface soil and sediment samples collected from the Egyptian section of the river Nile were determined by epithermal neutron activation analysis and compared with corresponding data for the Upper Continental Crust and North American Shale Composite. Their relative distributions indicate the presence of detrital material of igneous origin, most probably resulting from weathering on Ethiopian highlands and transported by the Blue Nile, the Nile main tributary. The distributions of the nickel, zinc, and arsenic contents suggest that the lower part of the Nile and its surroundings including the Nile Delta is not seriously polluted with metals from local human activity. The geographical distributions of Na, Cl, and I as well as results of principal component analysis suggest atmospheric supply of these elements from the ocean. In general the present data may contribute to a better understanding of the geochemistry of the Nile sediments.

  9. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  10. The level of selenium and some other trace elements in different Libyan arable soils using instrumental neutron activation analysis.

    PubMed

    El-Ghawi, U M; Al-Fakhri, S M; Al-Sadeq, A A; Bejey, M M; Doubali, K K

    2007-10-01

    Elemental analysis of soils from two different arable regions in Libya was carried out to measure the level of many trace elements. Instrumental neutron activation analysis was used for the determination of 10 elements, viz., (Ba, Ce, Co, Cr, Cs, Fe, Sc, Se, Th, and Zn), using their long-lived radionuclides. The accuracy of the measurements has been evaluated by analyzing two IAEA soil reference materials: IAEA Soil-7 and IAEA leak sediment SL-1; precision has been estimated by triplicate analysis of the sample and that of the reference material. Irradiations were carried out at the Tajura Research Center reactor, at 5-MW power level. It is clear that in the Libyan soil selenium concentration is somewhat lower than in other countries. The results show that trace metal concentrations in Libyan clay surface soil are higher than the sandy soil. PMID:17914223

  11. The JET Neutron Activation System

    NASA Astrophysics Data System (ADS)

    Roquemore, A. L.; Bertalot, L.; Esposito, B.; Jarvis, O. N.; Loughlin, M. J.; Sadler, G.; van Belle, P.

    1997-11-01

    The JET activation system provides the absolute value of the neutron yields as well as a check on the linearity of other neutron detector systems. The total neutron yield is standardized to one irradiation end reentrant in the top of the vessel, while the results from the other seven irradiation ends are normalized to this standard end and provide redundancy as well as information on the plasma position. A pneumatic transfer system is used to transfer up to five capsules containing elemental foils for a single discharge on JET. Eleven different elemental foils have been utilized to determine the yields from both DD and DT plasmas. By placing several different foils with different activation energy thresholds in a single capsule for one DT discharge, neutron spectral information has been obtained by use of the SAND-II unfolding code. A description of the activation system hardware and calibration of the activation detector system will be presented along with the results from the DT neutron calibration campaign.

  12. Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.

    2016-05-01

    Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.

  13. Mercury determination in hair of Malaysian fishermen by neutron activation analysis.

    PubMed

    Sarmani, S B; Kiprawi, A Z; Ismail, R B

    1994-01-01

    Fish has been known as a source of nonoccupational mercury exposure to fish-consuming population groups. In this study, hair samples collected from fishermen and their families residing in an industrialized area in Penang and a nonindustrialized area in Terengganu were analyzed for mercury by neutron activation. The range, arithmetic mean, geometric mean, and median of the mercury concentrations for the groups in Penang and in Terengganu were 0.45-16.68, 3.61, 3.49, and 2.96 and 6.79-18.31, 12.08, 11.69, and 12.05 mg/kg, respectively. Somewhat lower values than from the Penang group were found in a group from Selangor consisting mainly of office workers. The group in Penang took about 40-100 g of fish/d, whereas the group in Terengganu consumed twice as much. This shows that hair mercury levels depend on a fish consumption pattern, and not on the location of the population. The levels of mercury found in this study were similar to those reported by other workers for fish-consuming population groups worldwide. PMID:7710858

  14. Analyses of 24 Unmelted Antarctic Meteorites by Instrumental Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Lindstrom, D. J.; Klock, W.

    1992-07-01

    Ultra-high sensitivity instrumental Neutron Activation Analysis (INAA) techniques developed for the analysis of individual stratospheric dust particles (Lindstrom, 1990) have been applied to 24 "unmelted" Antarctic micrometeorites (AMM) in the size range 50-100 micrometers. These weigh about 0.05-1.7 micrograms, or about 10-100x more than the Interplanetary Dust Particles (IDPs) previously analyzed. Samples were collected at Cap Prudhomme (Maurette et al., 1991). Four of the samples broke during handling and were analyzed separately. In all cases, the splits were very similar in composition, showing that sampling is not a serious problem. Two samples (B-5-24 and 91-19-11) had clearly terrestrial signatures, including low Ir contents (<0.07 and <0.014 ppm, respectively). One sample (B3-3-31) had the unmistakable compositional characteristics of a CAI: high CaO, REE, Hf, Th, and Sc, and low Fe, Cr, Co, and Ni. This is a fine-grained particle with a very flat (Group I) REE pattern at about 23x chondrites. A two sigma upper limit for Eu corresponds to 20x CI, so there is no positive Eu anomaly, suggesting that it is a Type B inclusion (e.g., Grossman, 1980). The remainder of the samples have approximately chondritic compositions, but with occasional outliers and some systematic differences that may provide valuable information on the processes that these particles have undergone, including atmospheric entry heating and weathering in the Antarctic ice. For example, seven of the 22 micrometeorite particles contain apparent U abundances of more than one ppm (>100 x CI). These seven include smaller particles and three of the four (porous?) particles that broke during handling, suggesting that the U contents are surface correlated. Most likely these small amounts of U (about 10^9 atoms) are leached from small amounts of terrestrial volcanic ash in the melted ice (in the relatively stable form of uranyl ion, UO(sub)2^2+) and adsorbed on the surfaces of the particles. These U

  15. Performance characteristics of a prompt gamma-ray activation analysis (PGAA) system equipped with a new compact D-D neutron generator

    NASA Astrophysics Data System (ADS)

    Park, Yong Joon; Song, Byung Chul; Im, Hee-Jung; Kim, Jong-Yun

    2009-07-01

    A new prompt gamma-ray activation analysis (PGAA) system equipped with a compact deuterium-deuterium (D-D) neutron generator has been developed for fast detection of explosives and chemical warfare agents. The PGAA system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF)-driven ion source. The ionic current of the compact neutron generator was determined as a function of the acceleration voltage at various RF powers. Monoenergetic neutrons (2.45 MeV) with a neutron yield of >1×107 n/s were obtained at a deuterium pressure of 8.0 mTorr, an acceleration voltage of 80 kV, and an RF power of 1.1 kW. The performance of the PGAA system was examined by studying the dependence of a prompt gamma-ray count rate on crucial operating parameters.

  16. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.

  17. Neutron coincidence imaging for active and passive neutron assays

    SciTech Connect

    Estep, R. J.; Brunson, G. S.; Melton, S. G.

    2001-01-01

    Neutron multiplicity assay algorithms for {sup 240}Pu assume a point source of fission neutrons that are detected in a single detector channel. The {sup 240}Pu in real waste, however, is more likely to be distributed throughout the container in some random way. For different reasons, this leads to significant errors when using either multiplicity or simpler coincidence analyses. Reduction of these errors can be achieved using tomographic imaging. In this talk we report on our results from using neutron singles and coincidence data between tagged detector pairs to provide enhanced tomographic imaging capabilities to a crate nondestructive assay system. Only simulated passive coincidence data is examined here, although the higher signal rates from active coincidence counting hold more promise for waste management. The active coincidence approach has significantly better sensitivity than the passive and is not significantly perturbed by (alpha,n) contributions. Our study was based primarily on simulated neutron pulse trains derived from the Los Alamos SIM3D software, which were subjected to analysis using the Los Alamos CTEN-FIT and TGS-FIT software. We found significantly improved imaging capability using the coincidence and singles rate data than could be obtained using the singles rate alone.

  18. Neutron-Resonance Capture Analysis of Materials

    SciTech Connect

    Postma, H.; Bode, P.; Blaauw, M.; Corvi, F.

    1999-11-14

    Epithermal neutron activation analysis is a well-established approach to improve the sensitivity for certain elements by suppressing the activation of interfering elements. If epithermal neutrons of a given energy could be selected, the signal-to-noise ratio might be further improved by taking advantage of resonance capture. This reaction occurs mainly by intermediate and heavy nuclei. Moreover, most of these reactions take place with epithermal or fast neutrons. Intense epithermal neutrons are available as ''white'' beams at accelerator-driven neutron sources. Neutron resonance capture offers interesting analytical opportunities. Low-Z elements have little capture of epithermal neutrons and are thus virtually absent in the time-of-flight spectrum. Relatively large objects can be placed in the neutron beam and analyzed nondestructively. The induced radioactivity is relatively low. If an element has several stable isotopes, each of these isotopes can be recognized by its specific resonances. This would allow for multitracer studies with several isotopically labeled compounds. Different from mass spectrometry, the sample remains intact and can be used for further studies after analysis. Applications may be in the field of archaeology, metallurgy, and certification of reference materials.

  19. Determination of bromine, chlorine and iodine in environmental aqueous samples by epithermal neutron activation analysis and Compton suppression

    USGS Publications Warehouse

    Landsberger, S.; O'Kelly, D. J.; Braisted, J.; Panno, S.

    2006-01-01

    Halides, particularly Br- and Cl-, have been used as indicators of potential sources of Na+ and Cl- in surface water and groundwater with limited success. Contamination of groundwater and surface water by Na+ and Cl- is a common occurrence in growing urban areas and adversely affects municipal and private water supplies in Illinois and other states, as well as vegetation in environmentally sensitive areas. Neutron activation analysis (NAA) can be effectively used to determine these halogens, but often the elevated concentrations of sodium and chlorine in water samples can give rise to very high detection limits for bromine and iodine due to elevated backgrounds from the activation process. We present a detailed analytical scheme to determine Cl, Br and I in aqueous samples with widely varying Na and Cl concentrations using epithermal NAA in conjunction with Compton suppression. ?? 2006 Akade??miai Kiado??.

  20. Experimental parameters optimization of instrumental neutron activation analysis in order to determine selected elements in some industrial soils in Turkey

    NASA Astrophysics Data System (ADS)

    Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema

    2014-08-01

    The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.

  1. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  2. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  3. Whole-body in-vivo neutron activation analysis in assessing treatment of renal osteodystrophy with 1-alpha-hydroxycholecalciferol.

    PubMed

    Naik, R B; Gosling, P; Price, C P; Robinson, B H; Dabek, J T; Heath, D A; James, H M; Kanis, J A; Smith, R

    1976-07-10

    Four selected adults with different patterns of osteodystrophy receiving regular dialysis were treated with 1-alpha-hydroxycholecalciferol (1-alpha-OHD3) 0-5-2 mug/day for 10 to 12 months. In two patients, one with osteitis fibrosa and the other with osteomalacia, significant biochemical, radiological, and histological improvements occurred, and total body calcium measured by in-vivo neutron activation analysis increased. In two patients, in whom there were no increases of whole-body calcium, neither biochemical improvement nor healing of bone lesions occurred during the study; in one of these patients the effect of 1-alpha-OHD3 on bone resorption may have contributed to loss of body calcium and deterioration of bone disease. 1-alpha-OHD3 may therefore be a valuable adjunct in the treatment of only some patients with renal osteodystrophy. Whole-body in-vivo neutron activation seems to provide a sensitive and non-invasive index of early response to treatment. PMID:1276820

  4. Rare earth elements content in geological samples from eastern desert, Egypt, determined by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2010-09-01

    Twenty representative geological samples (tonalite, granodiorite, adamellite, syenogranite, rapakivi syenogranite, alkali feldspar granite and monzogranite) were collected from G. Kattar area in Eastern Desert, Egypt, for analysis by instrumental neutron activation as a sensitive nondestructive analytical tool for the determination of 14 rare earth elements (REEs) and to find out the following: (1) what information could be obtained about the REEs and distribution patterns of REEs in geological samples under investigation, (2) to estimate the accuracy, reproducibility and detection limit of the INAA method in case of the given samples. The samples were properly prepared together with standard reference material and simultaneously irradiated in a neutron flux of 7x10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The gamma spectra were collected by an HPGe detector and the analysis was done by means of a computerized multichannel analyzer. The choice of the nuclear reaction, irradiation and decay times, and of the proper gamma radiation in counting are presented and discussed. The results are found to be in good agreement with certified values. PMID:20236830

  5. Development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans

    NASA Astrophysics Data System (ADS)

    Arnold, Michelle Lynn

    2001-11-01

    Manganese is required by the human body, but as with many heavy elements, in large amounts it can be toxic, producing a neurological disorder similar to that of Parkinson's Disease. The primary industrial uses of the element are for the manufacturing of steel and alkali batteries. Environmental exposure may occur via drinking water or exhaust emissions from vehicles using gasoline with the manganese containing compound MMT as an antiknock agent (MMT has been approved for use in both Canada and the United States). Preclinical symptoms of toxicity have recently been detected in individuals occupationally exposed to airborne manganese at levels below the present threshold limit value set by the EPA. Evidence also suggests that early detection of manganese toxicity is crucial since once the symptoms have developed past a certain point, the syndrome will continue to progress even if manganese exposure ceases. The development of a system for in vivo neutron activation analysis (IVNAA) measurement of manganese levels was investigated, with the goal being to have a means of monitoring both over exposed and manganese deficient populations. The McMaster KN-accelerator was used to provide low-energy neutrons, activation within an irradiation site occurred via the 55Mn(n,gamma) 56Mn capture reaction, and the 847 keV gamma-rays emitted when 56Mn decayed were measured using one or more Nal(TI) detectors. The present data regarding manganese metabolism and storage within the body are limited, and it is unclear what the optimal measurement site would be to provide a suitable biomarker of past exposure. Therefore the feasibility of IVNAA measurements in three sites was examined---the liver, brain and hand bones. Calibration curves were derived, minimum detectable limits determined and resulting doses calculated for each site (experimentally in the case of the liver and hand bones, and through computer simulations for the brain). Detailed analytical calculations of the 7Li(p,n) 7Be

  6. Design of a phantom equivalent to measure bone-fluorine in a human's hand via delayed neutron activation analysis.

    PubMed

    Mostafaei, F; McNeill, F E; Chettle, D R; Prestwich, W V; Inskip, M

    2013-05-01

    Fluorine is an element that can be either beneficial or harmful, depending on the total amount accumulated in the teeth or bones. In our laboratory, we have developed a non-invasive technique for the in vivo measurement of fluoride in bone using neutron activation analysis and performed the first pilot human study. Fluoride in humans is quantified by comparing the γ-ray signal from a person to the γ-ray signal obtained from appropriate anthropomorphic calibration phantoms. An identified problem with existing fluoride phantoms is contamination with aluminum. Aluminum creates an interfering γ-ray signal which, although it can be subtracted out, increases the uncertainty in the measurement and worsens the detection limit. This paper outlines a series of studies undertaken to develop a better calibration phantom for fluorine measurement, which does not have aluminum contamination. PMID:23587669

  7. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Burr, Tom; Favalli, Andrea; Nicholson, Andrew

    2016-03-01

    The declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar - Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to model the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. We find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters.

  8. Nondestructive testing: Neutron radiography and neutron activation. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning the technology of neutron radiography and neutron activation for nondestructive testing of materials. The development and evaluation of neutron activation analysis and neutron diffraction examination of liquids and solids are presented. Citations also discuss nondestructive assay, verification, evaluation, and multielement analysis of biomedical, environmental, industrial, and geological materials. Nondestructive identification of chemical agents, explosives, weapons, and drugs in sealed containers are explored. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Determination of twenty-nine elements in eight argonne premium coal samples by instrumental neutron activation analysis

    USGS Publications Warehouse

    Palmer, C.A.

    1990-01-01

    Twenty-nine elements have been determined in triplicate splits of the eight Argonne National Laboratory Premium Coal Samples by instrumental neutron activtaion analysis. Data for control samples NBS 1633 (fly ash) and NBS 1632b are also reported. The factors that could lead to errors in analysis for these samples, such as spectral overlaps, low sensitivity, and interfering nuclear reactions, are discussed.

  10. Elemental analysis of natural quartz from Um Higlig, Red Sea Aea, Egypt by instrumental neutron activation analysis.

    PubMed

    El-Taher, A; Alharbi, Abdulaziz

    2013-12-01

    A scheme for INAA of 25 elements: As, Ba, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mg, Mn, Na, Nd, Rb, Sc, Sm, Th, U, Yb, Zn and Zr in quartz collected from the eastern desert along the Egyptian Red Sea coast is proposed. The samples were prepared together with standard reference material and irradiated in a neutron flux of 7×10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The gamma spectra were collected by a HPGe detector and the analysis was done by a computerized multichannel analyzer.The accuracy of the procedure is evaluated by the analysis of two geo-standard reference materials (Dolerite WSE and Microgabro PMS). The choice of the nuclear reaction, irradiation and decay times and of the proper gamma radiation in counting are presented and discussed. The data presented here are our contribution to understanding the elemental composition of the quartz rock. Because there are no existing databases for the elemental analysis of quartz, our results are a start to establishing a database for the Egyptian quartz. It is hoped that the data presented here will be useful to those dealing with geochemistry, quartz chemistry and related fields. PMID:23954747

  11. Part A. Neutron activation analysis of selenium and vanadium in biological matrices. Part B. Isomeric transition activation in aqueous solutions of alkyl bromides

    SciTech Connect

    Ebrahim, A.

    1988-01-01

    Several procedures were evaluated for determination of selenium in biological fluids and vanadium in biological tissues by neutron activation analysis (NAA) employing {sup 77m}Se and {sup 52}V isotopes, respectively. Procedures for determination of total selenium, trimethylselenonium (TMSe) ion and selenite (SeO{sub 3}{sup 2{minus}}) ion in urine and serum and for total selenoamino acids in urine were developed by utilizing anion exchange chromatography and molecular NAA. A pre-column derivatization of selenoamino acids with o-phthalaldehyde was necessary for their determination. Also an analytical approach was developed for determination of trace vanadium in liver samples from normal and diabetic rats as well as human and cow. Reactions of bromine-80 activated by radiative neutron capture and bromine-82 activated by isomeric transition were investigated in aqueous solutions of bromomethane and 1-bromobutane. Bromine-80 organic yields decreased with decreasing solute concentrations. The tendency for aggregation of the solute molecules diminished as the solute concentration approached zero where the probable state of the solute approached a monomolecular dispersion. Unlike reactions of {sup 80}Br born by {sup 79}Br(n,{gamma}){sup 80}Br reaction, the total organic product yields resulting from the {sup 82m}Br(I.T.){sup 82}Br process showed no solute concentration dependence.

  12. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOEpatents

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  13. Compartmentalization of trace elements in guinea pig tissues by INAA (instrumental neutron activation analysis) and AAS (atomic absorption spectroscopy)

    SciTech Connect

    Chatt, A.; Holzbecher, J.; Katz, S.A.

    1988-01-01

    Human scalp hair analysis has received considerable attention from a variety of disciplines over the last 20 yr or so. Trace element levels of hair have been used in environmental, epidemiological, forensic, nutritional, predictive, and preventive medicine studies. There still exist confusion, skepticism, and controversy, however, among the experts as well as lay persons in the interpretation of hair trace element data. Much of the criticism stems from the lack of quantitative and reliable data on the ability of hair to accurately reflect dose-response relationships. To better define the significance or hair trace element levels (under the auspices of the International Atomic Energy Agency), the authors have undertaken a controlled set of animal experiments in which trace element levels in hair and other tissues have been measured after a mild state of systemic intoxication by chronic, low-does exposure to cadmium and selenium. Instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) methods have been developed for the determination of several elements with a high degree of precision and accuracy.

  14. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation. PMID:27044293

  15. Analysis of ultratrace lithium and boron by neutron activation and mass-spectrometric measurement of 3He and 4He.

    PubMed

    Clarke, W B; Koekebakker, M; Barr, R D; Downing, R G; Fleming, R F

    1987-01-01

    A new technique for analysis of lithium and boron at ultratrace concentrations (less than 10(-8)g g-1) is described. The method consists of mass-spectrometric assay of 3He from decay of tritium produced by thermal-neutron reaction on 6Li, and 4He produced by thermal-neutron reaction on 10B. Two neutron-irradiation facilities were used: the McMaster reactor, which is 235U-enriched and light-water moderated; and a graphite-moderated thermal column attached to the 235U-enriched, heavy-water-moderated core at the National Bureau of Standards (NBS) reactor. In the McMaster irradiations, fast neutrons (greater than 0.2 MeV) induce the reactions 14N(n, 3H)12C, 12C(n, alpha)9Be, 16O(n, alpha)13C, and 14N(n, alpha)11B. These reactions become serious sources of error in samples such as human blood which have very low concentrations of lithium and boron, and high concentrations of nitrogen, carbon and oxygen. In the NBS thermal column, fast-neutron reactions are virtually absent, and only corrections for thermal-neutron capture by deuterium, and thermal-neutron (n, alpha) reactions on oxygen, sulfur, chlorine, potassium, and calcium need to be taken into account. Results are presented for various actual samples including human blood and its components, and some standard biological reference materials, to provide a realistic base for other workers to judge the reliability of the method. PMID:2822629

  16. Deep investigation on inorganic fraction of atmospheric PM in Mediterranean area by neutron and photon activation analysis

    PubMed Central

    2013-01-01

    Background Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health. The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study. This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. Results Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. Conclusions The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view. PMID:24196275

  17. Forensic comparison of shotshell-pellet specimens by instrumental neutron activation analysis

    SciTech Connect

    Jourdan, T.H.

    1986-01-01

    The very rapid INAA method, developed by Guinn and Purcell, works well for the determination of Sb, Ag, and Cu in shotshell pellets. Arsenic is also of interest to this study because it is added during the production of shotshell pellets to increase sphericity during pellet formation in the shot tower. Unfortunately, the one arsenic (n,..gamma..), product, 26.32 h /sup 76/As, is not susceptible to analysis via the rapid method. In the present study, a method involving a one-hour irradiation in the UCl TRIGA Mark 1 nuclear reactor was found to be effective in the determination of arsenic content in lead samples. This method also facilitates a second determination of antimony and copper levels via /sup 122/Sb and /sup 64/Cu activities. Several methods for the resolution of the 559-keV /sup 76/As/564-keV /sup 122/Sb photopeak doublet were evaluated. Also, two new gamma attenuation models, for disc and spherical lead samples, were developed. These models respond to the recognition that the gamma rays employed to assay the concentrations of the various elements are themselves attenuated within the sample - a lead matrix. After demonstrating that ammunition from different manufacturers, as well as inter-lot variances within a single manufacturer's ammunition, can readily be differentiated, this study also led to a statistically rigorous assignment of the probability of common origin of shotshell-pellet, or bullet-lead specimens, of analytically indistinguishable or nearly indistinguishable compositions. Additionally, the dissertation contains an Appendix detailing the development of the shotgun and its ammunition for those who are not very familiar with forensic ballistics.

  18. The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis.

    PubMed

    Landsberger, S; Wu, D

    1995-12-01

    The method of instrumental neutron activation analysis (NAA) has been improved for air filter samples in the determination of low level heavy metals in indoor air. By using the techniques of epithermal neutron irradiation in conjunction with Compton suppression, the detection limits of cadmium, arsenic and antimony measurements have been dramatically reduced to 2 ng for Cd, 0.2 ng for As, and 0.03 ng for Sb. The determination of these heavy metals in particulate material generated from cigarette smoking in indoor environments has been conducted. Other elements, Br, Cl, Na, K, Zn were also found at elevated levels. PMID:8560226

  19. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    NASA Astrophysics Data System (ADS)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  20. Summary Report: First Research Coordination Meeting on ReferenceDatabase for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B.; Trkov, Andrej

    2005-10-31

    Potential problems associated with nuclear data for neutronactivation analysis were identified, the scope of the work to beundertaken was defined together with its priorities, and tasks wereassigned to participants. Data testing and measurements refer to gammaspectrum peak evaluations, detector efficiency calibration, neutronspectrum characteristics and reference materials analysis.

  1. Summary Report: First Research Coordination Meeting on ReferenceDatabase for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B.; Trkov, Andrej

    2005-10-01

    Potential problems associated with nuclear data for neutronactivation analysis were identified, the scope of the work to beundertaken was defined together with its priorities, and tasks wereassigned to participants. Data testing and measurements refer to gammaspectrumpeak evaluations, detector efficiency calibration, neutronspectrum characteristics and reference materials analysis.

  2. Total body calcium by neutron activation analysis in normals and osteoporotic populations: a discriminator of significant bone mass loss

    SciTech Connect

    Ott, S.M.; Murano, R.; Lewellen, T.K.; Nelp, W.B.; Chesnut, C.M.

    1983-10-01

    Measurements of total body calcium by neutron activation (TBC) in 94 normal individuals and 86 osteoporotic patients are reported. The ability of TBC to discriminate normal from osteoporotic females was evaluated with decision analysis. Bone mineral content (BMC) by single-photon absorptiometry was also measured. TBC was higher in males (range 826 to 1363 gm vs 537 to 1054 in females) and correlated with height in all normals. In females over age 55 there was a negative correlation with age. Thus, for normals an algorithm was derived to allow comparison between measured TBC and that predicted by sex, age, and height (TBCp). In the 28 normal females over age 55, the TBC was 764 +/- 115 gm vs. 616 +/- 90 in the osteoporotics. In 63 of the osteoporotic females an estimated height, from tibial length, was used to predict TBC. In normals the TBC/TBCp ratio was 1.00 +/- 0.12, whereas in osteoporotic females it was 0.80 +/- 0.12. A receiver operating characteristic curve showed better discrimination of osteoporosis with TBC/TBCp than with wrist BMC. By using Bayes' theorem, with a 25% prevalence of osteoporosis (estimate for postmenopausal women), the posttest probability of disease was 90% when the TBC/TBCp ratio was less than 0.84. The authors conclude that a low TBC/TBCp ratio is very helpful in determining osteoporosis.

  3. Preconcentration and Speciation of Trace Elements and Trace-Element Analogues of Radionuclides by Neutron Activation Analysis

    SciTech Connect

    Chatt, A.

    1999-11-14

    We have developed a number of preconcentration neutron activation analysis (PNAA) methods in our laboratory for the determination of trace elements in a variety of complex sample matrices. We developed a number of cocrystallization and coprecipitation methods for the determination of trace elements in water samples. We developed several methods for the determination of I in foods and diets. We have developed a number of PNAA methods in our laboratory We determined As and Sb in geological materials and natural waters by coprecipitation with Se and Au in silicate rocks and ores by coprecipitation with Te followed by NAA. We developed an indirect NAA method for the determination of B in leachates of borosilicate glass. We have been interested in studying the speciation of Am, Tc, and Np in simulated vitrified groundwater leachates of high-level wastes under oxid and anoxic conditions using a number of techniques. We then used PNAA methods to study speciation of trace-element analogues of radionuclides. We have been able to apply biochemical techniques and NAA for the separation, preconcentration, and characterization of metalloprotein and protein-bound trace-element species in subcellular fractions of bovine kidneys. Lately, we have concentrated our efforts to develop chemical and biochemical methods in conjunction with NAA, NMR, and MS for the separation and identification of extractable organohalogens (EOX) in tissues of beluga whales, cod, and northern pink shrimp

  4. Determination of airborne cadmium in environmental tobacco smoke by instrumental neutron activation analysis with a compton suppression system.

    PubMed

    Landsberger, S; Larson, S; Wu, D

    1993-06-01

    Concentrations of cadmium, a toxic trace element, were measured in the indoor air of several public places where environmental tobacco smoke was present. Particulate-phase cadmium concentrations were determined by analyzing air filter samples using epithermal instrumental neutron activation analysis in conjunction with a Compton suppression gamma-ray detection system, in which the detection limit for cadmium was reduced to a few nanograms per filter. A cascade impactor and a personal filter sampler were used to collect the indoor suspended particulate matter for size-fractionated mass as well as total mass, respectively. Results show that where environmental tobacco smoke is present, cadmium concentrations are significantly higher than background and that about 80% of the cadmium found in indoor airborne particulate matter is associated with particles with aerodynamic diameters less than 1.8 microns. In one instance, airborne cadmium concentrations in a music club were found to be 38 ng/m, which is at least 30 times higher than background. PMID:8328669

  5. Total-body calcium estimated by delayed gamma neutron activation analysis and dual-energy X-ray absorptiometry.

    PubMed

    Aloia, J F; Ma, R; Vaswani, A; Feuerman, M

    1999-01-01

    Total body calcium (TBCa) in 270 black and white women age 21-79 years was measured concurrently by delayed gamma neutron activation analysis (DGNA) and dual-energy X-ray absorptiometry (DXA). The mean value for TBCa calculated from DXA was 933 g compared with 730 g for DGNA. By regression, TBCa(DXA(g)) = 1.35 x TBCa(DGNA(g)) -54 (r = 0. 90, r(2) = 81.4%, SEE = 66.9 g). This remarkable difference of 203 g suggests that one or both these methods is not accurate. Adjustment of the regression of DXA versus DGNA for body mass index or trunk thickness explained 8.5-10% of the variability between methods. The unadjusted slope for the DXA values regressed against the DGNA values was 1.35, indicating significant discordance between the methods. There is greater agreement between the two DGNA facilities (Brookhaven National Laboratory and Baylor College of Medicine) and between the various DXA instruments. Either DGNA underestimates TBCa or DXA overestimates total-body bone mineral content. Resolution of these disparate results may possibly be achieved by concurrent measurement of whole human cadavers of different sizes with chemical determination of the calcium content of the ash. In the interim, cross-calibration equations between DGNA and standardized values for DXA for total-body bone mineral content may be used, which will permit reporting of consistent values for TBCa from the two technologies. PMID:10663353

  6. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  7. Neutron activation studies and the effect of exercise on osteoporosis

    SciTech Connect

    Harrison, J.E.

    1984-01-01

    A technique is described to measure calcium content by in vivo neutron activation analysis of the trunk and upper thighs. In postmenopausal women, estrogen and calcium or fluoride reversed osteoporosis.

  8. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  9. Improvements in an in vivo neutron activation analysis (NAA) method for the measurement of fluorine in human bone.

    PubMed

    Mostafaei, F; McNeill, F E; Chettle, D R; Prestwich, W V

    2013-10-01

    We previously published a method for the in vivo measurement of bone fluoride using neutron activation analysis (NAA) and demonstrated the utility of the technique in a pilot study of environmentally exposed people. The method involved activation of the hand in an irradiation cavity at the McMaster University Accelerator Laboratory and acquisition of the resultant γ-ray signals in a '4π' NaI(Tl) detector array of nine detectors. In this paper we describe a series of improvements to the method. This was investigated via measurement of hand simulating phantoms doped with varying levels of fluorine and fixed amounts of sodium, chlorine and calcium. Four improvements to the technique were tested since our first publication. The previously published detection limit for phantom measurements using this system was 0.66 mg F/g Ca. The accelerator irradiation and detection facilities were relocated to a new section of the laboratory and one more detector was added to the detection system. This was found to reduce the detection limit (possibly because of better detection shielding and additional detector) to 0.59 mg F/g Ca, a factor of 1.12. A new set of phantoms was developed and in this work we show that they improved the minimum detectable limit for fluoride in phantoms irradiated using neutrons produced by 2.15 MeV protons on lithium by a factor of 1.55. We compared the detection limits previously obtained using a summed signal from the nine detectors with the detection limit obtained by acquiring the spectra in anticoincidence mode for reduction of the disturbing signal from chlorine in bone. This was found to improve the ratio of the detection of fluorine to chlorine (an interfering signal) by a factor of 2.8 and the resultant minimum detection limit was found to be reduced by a factor of 1.2. We studied the effects of changing the timing of γ-ray acquisition. Our previously published data used a series of three 10 s acquisitions followed by a 300 s count

  10. Determination of thorium and other select trace elements in human tissues by neutron activation analysis

    SciTech Connect

    Glover, S.E.; Grimm, C.A.; Filby, R.H.

    1997-12-01

    Iyengar pointed out the significance of multidisciplinary approaches to biological trace element research and the problems that may be associated with much of the early trace element data (until the early 1970s). Problems identified included the analysis of spurious samples (e.g., hair) based on their availability with no consideration of the biological basis for the investigations and the uncontrolled collection of biological samples by investigators unable to assess the biological integrity of the sample and inadequate quality assurance/quality control. A significant inadequacy is that many trace element analysis studies have been performed on biopsies or samples that may not be representative of the whole organ, or that distribution data have been derived from pooled analyses of organs from many individuals.

  11. Performance test results of noninvasive characterization of Resource Conservation and Recovery Act surrogate waste by prompt gamma neutron activation analysis

    SciTech Connect

    Gehrke, R.J.; Streier, G.G.

    1997-03-01

    During FY-96, a performance test was carried out with funding from the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) to determine the noninvasive elemental assay capabilities of commercial companies for Resource Conservation and Recovery Act (RCRA) metals present in 8-gal drums containing surrogate waste. Commercial companies were required to be experienced in the use of prompt gamma neutron activation analysis (PGNAA) techniques and to have a prototype assay system with which to conduct the test assays. Potential participants were identified through responses to a call for proposals advertised in the Commerce Business Daily and through personal contacts. Six companies were originally identified. Two of these six were willing and able to participate in the performance test, as described in the test plan, with some subsidizing from the DOE MWFA. The tests were conducted with surrogate sludge waste because (1) a large volume of this type of waste awaits final disposition and (2) sludge tends to be somewhat homogeneous. The surrogate concentrations of the above RCRA metals ranged from {approximately} 300 ppm to {approximately} 20,000 ppm. The lower limit was chosen as an estimate of the expected sensitivity of detection required by noninvasive, pretreatment elemental assay systems to be of value for operational and compliance purposes and to still be achievable with state-of-the-art methods of analysis. The upper limit of {approximately} 20,000 ppm was chosen because it is the opinion of the author that assay above this concentration level is within current state-of-the-art methods for most RCRA constituents. This report is organized into three parts: Part 1, Test Plan to Evaluate the Technical Status of Noninvasive Elemental Assay Techniques for Hazardous Waste; Part 2, Participants` Results; and Part 3, Evaluation of and Comments on Participants` Results.

  12. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  13. DS86 neutron dose: Monte Carlo analysis for depth profile of 152Eu activity in a large stone sample.

    PubMed

    Endo, S; Iwatani, K; Oka, T; Hoshi, M; Shizuma, K; Imanaka, T; Takada, J; Fujita, S; Hasai, H

    1999-06-01

    The depth profile of 152Eu activity induced in a large granite stone pillar by Hiroshima atomic bomb neutrons was calculated by a Monte Carlo N-Particle Transport Code (MCNP). The pillar was on the Motoyasu Bridge, located at a distance of 132 m (WSW) from the hypocenter. It was a square column with a horizontal sectional size of 82.5 cm x 82.5 cm and height of 179 cm. Twenty-one cells from the north to south surface at the central height of the column were specified for the calculation and 152Eu activities for each cell were calculated. The incident neutron spectrum was assumed to be the angular fluence data of the Dosimetry System 1986 (DS86). The angular dependence of the spectrum was taken into account by dividing the whole solid angle into twenty-six directions. The calculated depth profile of specific activity did not agree with the measured profile. A discrepancy was found in the absolute values at each depth with a mean multiplication factor of 0.58 and also in the shape of the relative profile. The results indicated that a reassessment of the neutron energy spectrum in DS86 is required for correct dose estimation. PMID:10494148

  14. Chemical correlation of some late Cenozoic tuffs of Northern and Central California by neutron activation analysis of glass and comparison with X-ray fluorescence analysis

    USGS Publications Warehouse

    Sarna-Wojcicki, Andrei M.; Bowman, Harry W.; Russell, Paul C.

    1979-01-01

    Glasses separated from several dacitic and rhyolitic late Cenozoic tuffs of northern and central California were analyzed by neutron activation for more than 43 elemental abundances. Eighteen elements--scandiurn, manganese, iron, zinc, rubidium, cesium, barium, lanthanum, cerium, samarium, europium, terbiurn, dysprosiurn, ytterbiurn, hafniurn, tantalurn, thorium and uranium--were selected as most suitable for purposes of chemical correlation on the basis of their natural variability in silicic tuffs and the precision obtainable in analysis. Stratigraphic relations between tuffs and replicate chemical analyses on individual tuffs make it possib1e to calibrate a quantitative parameter, the similarity coefficient, which indicates the degree of correlation for the tuffs studied. The highest similarity coefficient (0.99) was obtained for analyses of two tuffs (potassium-argon dated at about' 6.0 m.y.) exposed in the Merced(?) and Petaluma Formations of Sonoma County, which represent different paleoenvironments, shallow-water marine and fresh water or brackish marine, respectively. Corre1ation of these formations on the basis of criteria other than tephrochronoloqy would be difficult. Results of neutron activation analysis in general confirm earlier correlations made on the basis of analysis by X-ray fluorescence but also make it possible to resolve small compositional differences between chemically simi1ar tuffs in stratigraphic proximity. The Lawlor Tuff (potassium-argon dated at about 4.0 m.y.) is identified at two new localities: in a core sample obtained from a bore hole east of Suisun Bay, and from the Kettleman Hills of western San Joaquin Valley. This identification permits correlation of the uppermost part of the marine Etchegoin Formation in the San Joaquin Valley with the continental Livermore Gravels of Clark, the Tassajara Formation, and the upper part of the Sonoma Volcanics in the cel1tral Coast Ranges of California. A younger tuff near the top of the

  15. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  16. Manually controlled neutron-activation system

    NASA Astrophysics Data System (ADS)

    Johns, R. A.; Carothers, G. A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates.

  17. Analysis of essential elements in Pito—a cereal food drink and its brands by the single-comparator method of neutron activation analysis

    PubMed Central

    Adazabra, Aaron N; Ntiforo, Apori; Bamford, Samuel A

    2014-01-01

    Instrumental neutron activation analysis using the single-comparator method has been used for the multielement determination of essential elements in two main types of Pito brewed locally in Ghana. The precision and accuracy of the analytical method was validated and found to be within 10%. In all, eight different brands of Pito depending on the type of cereal crop used in brewing were analyzed for 13 different elements (Al, As, Ba, Cl, Co, Cu, Fe, K, Mg, Mn, Na, Si, and Zn). It was observed that all brands were particularly enriched in nutrient elements Cl, Mg, and K. The rest were generally found in varying concentrations. As these elements are bioavailable in natural form, perhaps in combination with organic constituents, they are likely to be easily digested and assimilated by the human body. Arsenic, a toxic element, was found in insignificant amounts suggesting that it was within safe limits. PMID:24936292

  18. Analysis of essential elements in Pito-a cereal food drink and its brands by the single-comparator method of neutron activation analysis.

    PubMed

    Adazabra, Aaron N; Ntiforo, Apori; Bamford, Samuel A

    2014-05-01

    Instrumental neutron activation analysis using the single-comparator method has been used for the multielement determination of essential elements in two main types of Pito brewed locally in Ghana. The precision and accuracy of the analytical method was validated and found to be within 10%. In all, eight different brands of Pito depending on the type of cereal crop used in brewing were analyzed for 13 different elements (Al, As, Ba, Cl, Co, Cu, Fe, K, Mg, Mn, Na, Si, and Zn). It was observed that all brands were particularly enriched in nutrient elements Cl, Mg, and K. The rest were generally found in varying concentrations. As these elements are bioavailable in natural form, perhaps in combination with organic constituents, they are likely to be easily digested and assimilated by the human body. Arsenic, a toxic element, was found in insignificant amounts suggesting that it was within safe limits. PMID:24936292

  19. A Pilot Study Measuring Aluminum in Bone in Alzheimer's Disease and control Subjects Using in vivo Neutron Activation Analysis.

    PubMed

    Mohseni, Hedieh K; Cowan, David; Chettle, David R; Milić, Ana Pejović; Priest, Nicholas; Matysiak, Witold; Atanackovic, Jovica; Byun, Soo Hyun; Prestwich, William V

    2016-06-18

    Aluminum, being the most abundant metal in the earth's crust, is widely distributed in the environment, and is routinely taken up by the human body through ingestion and inhalation. Aluminum is not considered an essential element and it can be toxic in high concentrations. Most of the body burden of aluminum is stored in the bones. Aluminum has been postulated to be involved in the causality of Alzheimer's disease. A system for non-invasive measurement of bone aluminum using the in vivo neutron activation analysis technique has been developed and previously reported in the literature by our group. The results are reported as ratio of Al to Ca in order to eliminate the variations in beam parameters and geometry as well as the physical variations among the subjects such as size of the hand and bone structure. This pilot study included 30 subjects, 15 diagnosed with Alzheimer's disease in mild and moderate stages and 15 control subjects, all of whom were 60 years of age or older. The mean value of aluminum for the control group was 2.7±8.2μg Al/g Ca (inverse-variance weighted mean 3.5±0.9μg Al/g Ca) and for the Alzheimer's disease subjects was 12.5±13.1μg Al/g Ca (inverse-variance weighted mean 7.6±0.6μg Al/g Ca). The difference between the mean of the Alzheimer's disease group and the mean of the control group was 9.8±15.9μg Al/g Ca, with a p-value of 0.02. An age-dependent linear increase in bone aluminum concentration was observed for all subjects. The difference in serum aluminum levels between the two groups did not reach significance. PMID:27340850

  20. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  1. ACTIV87: Fast Neutron Activation Cross Section File

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  2. Fusion neutronics experiments and analysis

    SciTech Connect

    Not Available

    1992-01-01

    UCLA has led the neutronics R D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  3. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    PubMed

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  4. Determination of thorium and uranium at the nanogram per gram level in semiconductor potting plastics by neutron activation analysis

    SciTech Connect

    Dyer, F.F.; Emery, J.F.; Bate, L.C.

    1985-01-01

    A method was developed to determine thorium and uranium in semiconductor potting plastics. The method is based on neutron activation and subsequent radiochemical separation to isolate and permit measurement of the induced /sup 233/Pa and /sup 239/Np. These plastics typically contain macro amounts of silicon, bromine and antimony and nanogram per gram amounts of thorium and uranium. The radiochemical method provides the necessary sensitivity and makes it possible to easily attain adequate decontamination of the tiny amounts of /sup 233/Pa and /sup 239/Np from the high levels of radioactive bromine and antimony. 8 refs.

  5. Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki

    2011-04-01

    The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.

  6. Benchmarking and parallel scalability of MANCINTAP, a Parallel High-Performance Tool For Neutron Activation Analysis in Complex 4D Scenarios

    NASA Astrophysics Data System (ADS)

    Firpo, G.; Frambati, S.; Frignani, M.; Gerra, G.

    2014-06-01

    MANCINTAP is a parallel computational tool developed by Ansaldo Nucleare to perform 4D neutron transport, activation and time-resolved dose-rate calculations in very complex geometries for CPU-intensive fission and fusion applications. MANCINTAP creates an automated link between the 3D radiation transport code MCNP5—which is used to evaluate both the neutron fluxes for activation calculations and the resulting secondary gamma dose rates—and the zero-dimensional activation code Anita2000 by handling crucial processes such as data exchange, determination of material mixtures and generation of cumulative probability distributions. A brief description of the computational tool is given here, with particular emphasis on the key technical choices underlying the project. Benchmarking of MANCINTAP has been performed in three steps: (i) against a very simplified model, where an analytical solution is available for comparison; (ii) against the well-established deterministic transport and activation code ATTILA and (iii) against experimental data obtained at the Frascati Neutron Generator (FNG) facility. An analysis of MANCINTAP scalability performances is proposed to demonstrate the robustness of its parallel structure, tailored for HPC applications, which makes it—to the best of our knowledge—a novel tool.

  7. Development of a technique using MCNPX code for determination of nitrogen content of explosive materials using prompt gamma neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Bakhshi, F.; Jalali, M.; Mohammadi, A.

    2011-12-01

    Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by 14N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A 252Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C3H6N6). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.

  8. Epithermal neutron activation, radiometric, correlation and principal component analysis applied to the distribution of major and trace elements in some igneous and metamorphic rocks from Romania.

    PubMed

    Cristache, C I; Duliu, O G; Culicov, O A; Frontasyeva, M V; Ricman, C; Toma, M

    2009-05-01

    Six major (Na, Al, K, Ca, Ti, Fe) and 28 trace (Sc, Cr, V, Mn, Co, Zn, Cu, As, Br, Sr, Rb, Zr, Mo, Sn, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Hf, Ta, W, Th and U) elements were determined by epithermal neutron activation analysis (ENAA) in nine Meridional Carpathian and Macin Mountains samples of igneous and metamorphic rocks. Correlation and principal factor analysis were used to interpret data while natural radionuclides radiometry shows a good correlation with ENAA results. PMID:19231213

  9. Neutron-activation analysis using thermochromatography. I. Investigation of factors affecting processes of sample chlorination and thermochromatographic separation of chlorides of the elements

    SciTech Connect

    Sattarov, G.; Davydov, A.B.; Khatamov, S.; Kist, A.A.

    1985-07-01

    With the goal of evaluating the feasibility of gas thermochromatography in radioactive analysis, the authors consider the basic factors affecting the processes of sample chlorination, volatilization and thermochromatographic separation of chlorides for a number of elements, the determination of which is carried out by the neutron activation analysis method. They study the behavior of chlorides of /sup 124/Sb, /sup 76/As, /sup 198/Au, /sup 203/Hg as a function of the starting temperature, the chlorination period, the reagent gas delivery rate, the sorbent grain size, the magnitude of the temperature gradient, and other factors.

  10. The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.

    2015-11-01

    The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.

  11. In vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Yasumura, Seiichi; Dilmanian, F.A.

    1997-11-01

    Seven important body elements, C, N, Ca, P, K, Na, and Cl, can be measured with great precision and accuracy in the in vivo neutron activation facilities at Brookhaven National Laboratory. The facilities include the delayed-gamma neutron activation, the prompt-gamma neutron activation, and the inelastic neutron scattering systems. In conjunction with measurements of total body water by the tritiated-water dilution method several body compartments can be defined from the contents of these elements, also with high precision. In particular, body fat mass is derived from total body carbon together with total body calcium and nitrogen; body protein mass is derived from total body nitrogen; extracellular fluid volume is derived from total body sodium and chlorine; lean body mass and body cell mass are derived from total body potassium; and, skeletal mass is derived from total body calcium. Thus, we suggest that neutron activation analysis may be valuable for calibrating some of the instruments routinely used in clinical studies of body composition. The instruments that would benefit from absolute calibration against neutron activation analysis are bioelectric impedance analysis, infrared interactance, transmission ultrasound, and dual energy x-ray/photon absorptiometry.

  12. The synchronous active neutron detection assay system

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  13. The development and application of k0-standardization method of neutron activation analysis at Es-Salam research reactor

    NASA Astrophysics Data System (ADS)

    Alghem, L.; Ramdhane, M.; Khaled, S.; Akhal, T.

    2006-01-01

    In recent years the k0-NAA method has been applied and developed at the 15 MW Es-Salam research reactor, which includes: (1) the detection efficiency calibration of γ-spectrometer used in k0-NAA, (2) the determination of reactor neutron spectrum parameters such as α and f factors in the irradiation channel, and (3) the validation of the developed k0-NAA procedure by analysing SRM, namely AIEA-Soil7 and CRM, namely IGGE-GSV4. The analysis results obtained by k0-NAA with 27 elements of Soil-7 standard and 14 elements of GSV-4 standard were compared with certified values. The analysis results showed that the deviations between experimental and certified values were mostly less than 10%. The k0-NAA procedure established at Es-Salam research reactor has been regarded as a reliable standardization method of NAA and as available for practical applications.

  14. Neutron and deuteron activation calculations for IFMIF

    NASA Astrophysics Data System (ADS)

    Forrest, R. A.; Loughlin, M. J.

    2007-08-01

    The materials for future fusion devices such as DEMO require testing to high neutron fluence. Such testing is planned to be carried out in IFMIF, an accelerator based facility where the neutrons will have maximum energy of about 55 MeV, but with a broad peak near 14 MeV. In order that activation calculations for IFMIF can be carried out, the nuclear data must contain cross sections covering a similar energy range. A description of the EASY-2005 system is given and it is noted that a new library has been added to EASY to cover another significant source of activation from deuteron-induced reactions. Calculations of the neutron activation of materials in many regions of IFMIF have been carried out. These calculations are reported, and the contribution of neutrons above 20 MeV to the activation is discussed. Preliminary calculations using the deuteron library have been made and the activation from deuterons is discussed.

  15. Thermal Neutron Imaging in an Active Interrogation Environment

    SciTech Connect

    Vanier, Peter E.; Forman, Leon; Norman, Daren R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutron-emitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  16. The feasibility of in vivo quantification of bone-fluorine in humans by delayed neutron activation analysis: a pilot study.

    PubMed

    Chamberlain, M; Gräfe, J L; Byun, S H; Chettle, D R; Egden, L M; Orchard, G M; Webber, C E; McNeill, F E

    2012-02-01

    Fluorine (F) plays an important role in dental health and bone formation. Many studies have shown that excess fluoride (F(-)) can result in dental or skeletal fluorosis, while other studies have indicated that a proper dosage of fluoride may have a protective effect on bone fracture incidence. Fluorine is stored almost completely in the skeleton making bone an ideal site for measurement to assess long-term exposure. This paper outlines a feasibility study of a technique to measure bone-fluorine non-invasively in the human hand using in vivo neutron activation analysis (IVNAA) via the (19)F(n,γ)(20)F reaction. Irradiations were performed using the Tandetron accelerator at McMaster University. Eight NaI(Tl) detectors arranged in a 4π geometry were employed for delayed counting of the emitted 1.63 MeV gamma ray. The short 11 s half-life of (20)F presents a difficult and unique practical challenge in terms of patient irradiation and subsequent detection. We have employed two simultaneous timing methods to determine the fluorine sensitivity by eliminating the interference of the 1.64 MeV gamma ray from the (37)Cl(n,γ)(38)Cl reaction. The timing method consisted of three counting periods: an initial 30 s (sum of three 10 s periods) count period for F, followed by a 120 s decay period, and a subsequent 300 s count period to obtain information pertaining to Ca and Cl. The phantom minimum detectable limit (M(DL)) determined by this method was 0.96 mg F/g Ca. The M(DL) was improved by dividing the initial timing period into three equal segments (10 s each) and combining the results using inverse variance weighting. This resulted in a phantom M(DL) of 0.66 mg F/g Ca. These detection limits are comparable to ex vivo results for various bones in the adult skeleton reported in the literature. Dosimetry was performed for these irradiation conditions. The equivalent dose for each phantom measurement was determined to be 30 mSv. The effective dose was however low, 35 µ

  17. Comparison of Reference Values in Whole Blood of DMDmdx/J and C57BL/6J Mice Using Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Metairon, S.; Zamboni, C. B.; Suzuki, M. F.; Júnior, C. R. B.; Sant'Anna, O. A.

    2011-08-01

    The Br, Ca, Cl, K, Na and S concentrations in whole blood of DMDmdx/J and C57BL/6J mice were determined using Neutron Activation Analysis technique. Reference values obtained from twenty one whole blood samples of these strains were analyzed in the IEA-R1 nuclear reactor at IPEN (São Paulo, Brasil). These data contribute for applications in veterinary medicine related to biochemistry analyses using whole blood as well as to evaluate the performance of treatments in muscular dystrophy.

  18. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  19. Thermal neutron imaging in an active interrogation environment

    SciTech Connect

    Vanier,P.E.; Forman, L., and Norman, D.R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  20. Determination of fission neutron transmission through waste matrix material using neutron signal correlation from active assay of {sup 239}Pu

    SciTech Connect

    Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K.

    1996-09-01

    The accuracy of TRU (transuranic) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. The authors have used a new instrument, the Combined Thermal/Epithermal Neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. They report new methods of data acquisition and analysis to extract correlation in the neutron signals resulting form fission during active interrogation. They use the correlation information in conjunction with the total number of neutrons to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows them to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. This transmission information is also directly applied in a neutron multiplicity analysis in the passive assay of {sup 240}Pu.

  1. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  2. Feasibility study of prompt gamma neutron activation analysis (PGNAA) of explosives simulants and bulk material using DD/DT neutron generator

    NASA Astrophysics Data System (ADS)

    Bishnoi, S.; Sarkar, P. S.; Patel, T.; Adhikari, P. S.; Sinha, Amar

    2013-04-01

    Elemental characterization of low Z elements (C,H,Cl,Fe) inside bulk materials were performed using PGNAA technique. Samples having elemental composition similar to explosives were used for such experimentations using moderated DD neutrons as well as DT(14MeV) neutrons. We could observe characteristic prompt capture gamma rays of hydrogen (2.224MeV), nitrogen (10.83 MeV), chlorine (6.11 MeV) and Fe (6.02MeV and 7.63MeV) also (n,n'γ) prompt gamma signal (4.43MeV) of carbon. BGO detector has been used for gamma spectrum acquisition. These experimentations has been carried out for initial feasibility studies of detecting prompt gamma lines as a part of PGNAA technique based explosive detection system development. A detail description of experimental set up and procedure has been discussed in paper.

  3. The synchronous active neutron detection assay system

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-09-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. They are using a Schlumberger neutron generator for the direct measurement of the fissile material content in spent fuel, in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics for the detection of very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. They have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The results to data are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference.

  4. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  5. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  6. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    NASA Astrophysics Data System (ADS)

    Akyuz, Sevim; Akyuz, Tanil; Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba; Basaran, Sait; Cakan, Banu

    2012-05-01

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry.

  7. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Clackdoyle, R.; Shortkroff, S.; Yanch, J.

    2008-05-01

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo 10B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the 10B capture reactions. The 10B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the 10B prompt gamma signals were tallied from 16 angular positions. Results demonstrate that for this

  8. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study.

    PubMed

    Zhu, X; Clackdoyle, R; Shortkroff, S; Yanch, J

    2008-05-21

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo (10)B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the (10)B capture reactions. The (10)B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the (10)B prompt gamma signals were tallied from 16 angular positions. Results demonstrate that for

  9. Calibration of the delayed-gamma neutron activation facility

    SciTech Connect

    Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D.

    1996-02-01

    The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99{percent} of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1{percent}. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. {copyright} {ital 1996 American Association of Physicists in Medicine.}

  10. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  11. Neutron Resonance Spectroscopy for the Analysis of Materials and Objects

    SciTech Connect

    Borella, A.; Lampoudis, C.; Schillebeeckx, P.; Kopecky, S.; Postma, H.; Moxon, M.

    2009-12-02

    The presence of resonances in neutron induced reaction cross sections is the basis of the Neutron Resonance Capture (NRCA) and Transmission (NRTA) Analysis techniques. Since resonances can be observed at neutron energies which are specific for each nuclide, they can be used as fingerprints to identify and quantify elements in materials and objects. Both NRCA and NRTA are fully non-destructive methods which determine the bulk elemental composition, do not require any sample preparation and result in a negligible residual activation. In this text we review the technique and present an analysis procedures including one based on a more methodological approach which relies on a full Resonance Shape Analysis (RSA) and accounts directly for the neutron self-shielding, multiple scattering, Doppler broadening and instrumental resolution.

  12. Neutron activation analysis for Dy, Hf, Rb, Sc and Se in some Ghanaian cereals and vegetables using short-lived nuclides and Compton suppression spectrometry.

    PubMed

    Nyarko, B J B; Akaho, E H K; Fletcher, J J; Chatt, A

    2008-08-01

    A pseudo-cyclic instrumental neutron activation analysis (PCINAA) method has been developed to determine selected elements in various types of cereal and vegetable from Ghana using relatively short-lived nuclides (t1/2<80 s) and the Compton suppression counting. The samples were irradiated for 10 s at the Dalhousie University SLOWPOKE-2 research reactor facility (DUSR) and allowed to decay for 20 s, and counted for 40 s. The process is repeated every 50 s for 4 cycles to quantify Dy, Hf, Rb, Sc and Se through 165mDy, 179Hf, 86mRb, 46mSc, and 77mSe. The detection limits were generally of the order of 1.0 ng g(-1) except for Rb which is about 1 microg g(-1). Both precision and accuracy of the method were found to be good. PMID:18424050

  13. The study of in vivo quantification of aluminum (Al) in human bone with a compact DD generator-based neutron activation analysis (NAA) system.

    PubMed

    Byrne, Patrick; Mostafaei, Farshad; Liu, Yingzi; Blake, Scott P; Koltick, David; Nie, Linda H

    2016-05-01

    The feasibility and methodology of using a compact DD generator-based neutron activation analysis system to measure aluminum in hand bone has been investigated. Monte Carlo simulations were used to simulate the moderator, reflector, and shielding assembly and to estimate the radiation dose. A high purity germanium (HPGe) detector was used to detect the Al gamma ray signals. The minimum detectable limit (MDL) was found to be 11.13 μg g(-1) dry bone (ppm). An additional HPGe detector would improve the MDL by a factor of 1.4, to 7.9 ppm. The equivalent dose delivered to the irradiated hand was calculated by Monte Carlo to be 11.9 mSv. In vivo bone aluminum measurement with the DD generator was found to be feasible among general population with an acceptable dose to the subject. PMID:27093035

  14. Neutron Yield Measurements via Aluminum Activation

    SciTech Connect

    1999-12-08

    Neutron activation of aluminum may occur by several neutron capture reactions. Four such reactions are described here: {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na, {sup 27}Al(n, 2n){sup 26}Al and {sup 27}Al(n,p){sup 27}Mg. The radioactive nuclei {sup 28}Al, {sup 24}Na, and {sup 27}Mg, which are produced via the {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg neutron reactions, beta decay to excited states of {sup 28}Si, {sup 24}Mg and {sup 27}Al respectively. These excited states then emit gamma rays as the nuclei de-excite to their respective ground states.

  15. Fusion neutronics-streaming, shielding, heating, activation

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.; Richter, D.; Seidel, K.; Unholzer, S.

    2001-07-01

    The International Thermonuclear Experimental Reactor (ITER) represents an important step towards a fusion power plant. Controlled fusion will be realized in a d-t-plasma magnetically confined by a Tokamak configuration. The first wall of the plasma chamber, blanket and vacuum vessel of ITER form a compact assembly for converting the kinetic energy of fusion neutrons into heat while simultaneously shielding the superconducting coils efficiently against neutron and accompanying photon radiation. This shielding system can be investigated with neutrons generated by low-energy accelerators. We report on experiments concerning shielding and streaming properties of a mock-up where energy spectra of both neutrons and protons were measured. They are compared with predictions of Monte Carlo calculations (code MCNP-4A) using various data libraries. The agreement justified the use of measured spectra as basis to calculate design parameters such as neutron and photon heating, radiation damage, gas production, and activation. Some of these parameters were also directly measured. The results validate the ITER design.

  16. Mineral content of vertebral trabecular bone: accuracy of dual energy quantitative computed tomography evaluated against neutron activation analysis and flame atomic absorption spectrometry.

    PubMed

    Louis, O; Van den Winkel, P; Covens, P; Schoutens, A; Osteaux, M

    1994-01-01

    The goal of this study was to evaluate the accuracy of preprocessing dual energy quantitative computed tomography (QCT) for assessment of trabecular bone mineral content (BMC) in lumbar vertebrae. The BMC of 49 lumbar vertebrae taken from 16 cadavers was measured using dual energy QCT with advanced software and hardware capabilities, including an automated definition of the trabecular region of interest (ROI). The midvertebral part of each vertebral body was embedded in a polyester resin and, subsequently, an experimental ROI was cut out using a scanjet image transmission procedure and a computer-assisted milling machine in order to mimic the ROI defined on QCT. After low temperature ashing, the experimental ROIs reduced to a bone powder were submitted to either nondestructive neutron activation analysis (n = 49) or to flame atomic absorption spectrometry (n = 45). BMC obtained with neutron activation analysis was closely related (r = 0.896) to that derived from atomic absorption spectrometry, taken as the gold standard, with, however, a slight overestimation. BMC values measured by QCT were highly correlated with those assessed using the two reference methods, all correlation coefficients being > 0.841. The standard errors of the estimate ranged 47.4-58.9 mg calcium hydroxyapatite in the regressions of BMC obtained with reference methods against BMC assessed by single energy QCT, 47.1-51.9 in the regressions involving dual energy QCT. We conclude that the trabecular BMC of lumbar vertebrae can be accurately measured by QCT and that the superiority in accuracy of dual energy is moderate, which is possible a characteristic of the preprocessing method. PMID:8024849

  17. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry

    PubMed Central

    Paul, Rick L.; Davis, W. Clay; Yu, Lee; Murphy, Karen E.; Guthrie, William F.; Leber, Dennis D.; Bryan, Colleen E.; Vetter, Thomas W.; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J.; Jarrett, Jeffery M.; Caldwell, Kathleen L.; Jones, Robert L.; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C. D.; Verostek, M.F.; Geraghty, C. M.; Steuerwald, Amy J.; Parsons, Patrick J.

    2015-01-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm−2s−1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma – mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) μg/kg and (213.1 ± 0.73) μg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) μg/kg, (52.7 ± 1.1) μg/kg, and (78.8 ± 4.9) μg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 μg/kg was assigned for this material. PMID:26300575

  18. Benchmarking the repeatability of a pneumatic cyclic neutron activation analysis facility using 16O(n,p)16N for nuclear forensics.

    PubMed

    Pierson, Bruce D; Griffin, Henry C; Flaska, Marek; Katalenich, Jeff A; Kitchen, Brian B; Pozzi, Sara A

    2015-02-01

    A target was prepared for cyclic neutron activation analysis by heat sealing lithium-carbonate in polyethylene. The target was cyclically irradiated 50 times using a Thermo-Scientific accelerator based deuterium-tritium fusion neutron generator. During counting periods, gamma-rays emitted by (16)N were detected using three high-purity germanium detectors acquiring data in list-mode. Total counts acquired in each spectrum were compared between the three detectors to examine variability in geometric positioning of the target and variability of the generator intensity throughout the experiment. These two effects were determined to be the primary sources of variation in the measured counts. Variation in target positioning and generator intensity were found to increase the standard deviation by 34% and 33%, respectively. Transit times to the detector were found to be slower and more variable than transit to the generator but were well below the half second threshold needed to measure short-lived radionuclides with half-lives on the order of seconds. The standard deviation in irradiation time was found to be less than 1 milliseconds. The impact on statistical variability in the measured counts was negligible relative to the two primary sources of variation. Spectra acquired from each cycle were summed together. The sum of the peak areas from the 6.1 MeV gamma-ray and its corresponding single and double escape peaks were used to measure the half-life of (16)N. The result of 7.108(15)seconds derived from data suggests that the currently published value of 7.13(2)seconds has minimal systematic bias induced by background. PMID:25479431

  19. Compact DD generator-based neutron activation analysis (NAA) system to determine fluorine in human bone in vivo: a feasibility study.

    PubMed

    Mostafaei, Farshad; Blake, Scott P; Liu, Yingzi; Sowers, Daniel A; Nie, Linda H

    2015-10-01

    The subject of whether fluorine (F) is detrimental to human health has been controversial for many years. Much of the discussion focuses on the known benefits and detriments to dental care and problems that F causes in bone structure at high doses. It is therefore advantageous to have the means to monitor F concentrations in the human body as a method to directly assess exposure. F accumulates in the skeleton making bone a useful biomarker to assess long term cumulative exposure to F. This study presents work in the development of a non-invasive method for the monitoring of F in human bone. The work was based on the technique of in vivo neutron activation analysis (IVNAA). A compact deuterium-deuterium (DD) generator was used to produce neutrons. A moderator/reflector/shielding assembly was designed and built for human hand irradiation. The gamma rays emitted through the (19)F(n,γ)(20)F reaction were measured using a HPGe detector. This study was undertaken to (i) find the feasibility of using DD system to determine F in human bone, (ii) estimate the F minimum detection limit (MDL), and (iii) optimize the system using the Monte Carlo N-Particle eXtended (MCNPX) code in order to improve the MDL of the system. The F MDL was found to be 0.54 g experimentally with a neutron flux of 7   ×   10(8) n s(-1) and an optimized irradiation, decay, and measurement time scheme. The numbers of F counts from the experiment were found to be close to the (MCNPX) simulation results with the same irradiation and detection parameters. The equivalent dose to the irradiated hand and the effective dose to the whole body were found to be 0.9 mSv and 0.33 μSv, respectively. Based on these results, it is feasible to develop a compact DD generator based IVNAA system to measure bone F in a population with moderate to high F exposure. PMID:26289795

  20. MANCINTAP: Time and space dependent neutron activation tool algorithm improvement and analysis of a PWR nozzle gallery

    SciTech Connect

    Frambati, S.; Firpo, G.; Frignani, M.

    2012-07-01

    MANCINTAP [1], a fully automated tool for determining the activation patterns in complex 4D scenarios and evaluating the distribution of the ensuing radiation fields, has been improved. The constraint of forcing the user to define a single global mesh in order to approximate the whole problem, a limitation which prevented an accurate description of detail-rich geometries, has been overcome. The algorithm was improved and many limitations were relaxed. MANCINTAP is now capable of handling many different geometry elements in a given area at once, even if they have very different geometries and characteristic dimensions, thus allowing a vastly more complete and detailed analysis. Different meshes can be superimposed to the 3D geometry, allowing for an appropriate, dedicated treatment of all the relevant features of the problem, and the results are automatically combined in order to provide a global perspective. These new capabilities were accurately tested by applying the tool to the study of time-dependent radiation levels during shutdown in the upper reactor cavity and nozzle gallery regions of a 2-loop PWR reactor. (authors)

  1. A new method based on low background instrumental neutron activation analysis for major, trace and ultra-trace element determination in atmospheric mineral dust from polar ice cores.

    PubMed

    Baccolo, Giovanni; Clemenza, Massimiliano; Delmonte, Barbara; Maffezzoli, Niccolò; Nastasi, Massimiliano; Previtali, Ezio; Prata, Michele; Salvini, Andrea; Maggi, Valter

    2016-05-30

    Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10(-13)-10(-6) g, improving previous results of 1-3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%. PMID:27154827

  2. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials.

    PubMed

    Price, Robert A

    2005-01-01

    The behaviour of packaged and unpackaged ESAPMOS4 RadFET radiation detectors (NMRC Cork, Ireland) was investigated when used in the mixed photon and neutron environment of a medical linear accelerator operating above the nucleon separation energy and in a 14 MeV neutron field provided by a D-T generator. Within the uncertainty of the experimental set-up (4% at 95% confidence level) the unpackaged device was found to have essentially zero activation dose-burden whereas the packaged device exhibits a considerable degree of post irradiation absorbed dose due to deactivation radiation. PMID:16381751

  3. Activation analysis

    SciTech Connect

    Alfassi, Z.B. . Dept. of Nuclear Engineering)

    1990-01-01

    This volume contains 16 chapters on the application of activation analysis in the fields of life sciences, biological materials, coal and its effluents, environmental samples, archaeology, material science, and forensics. Each chapter is processed separately for the data base.

  4. Neutron Flux Spectra Determination by Multiple Foil Activation - Iterative Method.

    1994-07-08

    Version 00 Neutron energy spectra are determined by an analysis of experimental activation detector data. As with the original CCC-112/SAND-II program, which was developed at Air Force Weapons Laboratory, this code system consists of four modules, CSTAPE, SLACTS, SLATPE, and SANDII. The first three modules pre-process the dosimetry cross sections and the trial function spectrum library. The last module, SANDII, actually performs the iterative spectrum characterization.

  5. Cs-137 geochronology, epithermal neutron activation analysis, and principal component analysis of heavy metals pollution of the Black Sea anoxic continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Duliu, O. G.; Cristache, C.; Oaie, G.; Culicov, O. A.; Frontasyeva, M. V.

    2009-04-01

    Anthropogenic Cs-137 Gamma-ray Spectroscopy assay (GrSA) performed at the National Institute of Research and Development for Physics and Nuclear Engineering - Bucharest (Romania) in correlation with Epithermal Neutrons Activation Analysis (ENAA) performed at the Joint Institute of Nuclear Researches - Dubna (Russia) were used to investigate a 50 cm core containing unconsolidated sediments collected at a depth of 600 m off Romanian town of Constantza, located in the anoxic zone of the Black Sea Continental Shelf. A digital radiography showed the presence of about 265 distinct laminae, 1 to 3 mm thick, a fact attesting a stationary sedimentary process, completely free of bioturbation. After being radiographed, the core was sliced into 45 segments whose thickness gradually increased from 0.5 to 5 cm, such that the minimum thickness corresponded to the upper part of the core. From each segment two aliquots of about 0.5 g and 50 g were extracted for subsequent ENAA and Cs-137 GrSA. The Cs-137 vertical profile evidenced two maxima, one of them was very sharp and localized at a depth of 1 cm and the other very broad, almost undistinguished at about 8 cm depth, the first one being attributed to 1986 Chernobyl accident. Based on these date, we have estimated a sedimentation ratio of about 0.5 mm/year, value taken as reference for further assessment of recent pollution history. By means of ENAA we have determined the vertical content of five presumed pollutants, e.i. Zn, As, Br, Sn and Sb and of Sc, as natural, nonpolluting element. In the first case, all five elements presented a more or less similar vertical profile consisting of an almost exponential decrease for the first 10 cm below sediment surface followed by a plateau until the core base, i.e. 50 cm below surface, dependency better described by the equation: c(z) = c0 [1+k exp (-z/Z)] (1) where: where c(z) represents the concentration vertical profile; z represents depth (in absolute value); c0 represents the plateau

  6. Active Neutron Shielding R&D for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter; Dmtpc Collaboration

    2011-04-01

    Neutrons are a dangerous background to direct dark matter detection searches because they can mimic exactly the signal signature. For this reason, it is desirable to measure the neutron flux directly at underground sites where dark matter experiments are active. We have developed a liquid scintillator-based neutron detector for this purpose, which is currently underground and taking data at the Waste Isolation Pilot Plant (WIPP) in NM. Before being commissioned underground, the response of this detector to neutrons with kinetic energies from 50 MeV to 800 MeV was determined in a beam test at the Los Alamos Neutron Science Center (LANSCE) in NM. The goal of this R&D is to (i) demonstrate the feasibility of a large scale active and passive neutron shield for dark matter searches and (ii) to measure the neutron energy spectrum underground at WIPP above 50 MeV neutron kinetic energies.

  7. Assessing Neutron Generator Output Using Delayed Activation of Silicon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deuterium-tritium (D-T) neutron generators are used for elemental composition analysis and medical applications. Often composition is determined by examining elemental ratios in which the knowledge of the neutron flux is unnecessary. However, the absolute value of the neutron flux is required when t...

  8. Instrumental neutron activation analysis of different products from the sugarcane industry in Pakistan--part 1: essential elements for nutritional adequacy.

    PubMed

    Waheed, Shahida; Ahmad, Shujaat

    2008-01-01

    Jaggery, brown sugar, white sugar, and molasses collected from the local sugarcane industry of Pakistan have been analyzed for essential elements in order to estimate their nutritional adequacy. Instrumental neutron activation analysis was used to determine Ca, CI, Co, Cr, Fe, K, Mg, Mn, Na, and Zn through sequential, short, medium, and long irradiation times. Maximum concentrations for most of these elements were determined in molasses, with lower concentrations determined in jaggery and brown sugar; white sugar contained trace amounts of all essential elements. Contributions to the weekly Recommended Dietary Allowance (RDA) values for the elements were estimated only for jaggery, brown sugar, and white sugar because molasses in Pakistan is not consumed as a dietary item. Jaggery contributes the highest percentages of Cr, Mg, Mn, and Zn, whereas the highest percentages of Cl, Fe, K, and Na can be acquired from brown sugar. The contribution of white sugar to the weekly RDAs for these elements is negligible, indicating that white sugar is a poor source of the essential elements. However, the introduction of molasses to the diet can contribute to an adequate intake of these elements. PMID:18476354

  9. Bone mineral measurements: a comparison of delayed gamma neutron activation, dual-energy X-ray absorptiometry and direct chemical analysis.

    PubMed

    Economos, C D; Nelson, M E; Fiatarone Singh, M A; Kehayias, J J; Dallal, G E; Heymsfield, S B; Wang, J; Yasumura, S; Ma, R; Pierson, R N

    1999-01-01

    A system in vitro consisting of a femur from a cadaver and soft-tissue equivalent material was used to test the agreement between several techniques for measuring bone mineral. Calcium values measured by delayed gamma neutron activation (DGNA) and bone mineral content (BMC) by Lunar, Hologic and Norland dual-energy X-ray absorptiometers (DXA) were compared with calcium and ash content determined by direct chemical analysis. To assess the effect of soft-tissue thickness on measurements of bone mineral, we had three phantom configurations ranging from 15.0 to 26.0 cm in thickness, achieved by using soft-tissue equivalent overlays. Chemical analysis of the femur gave calcium and ash content values of 61.83 g +/- 0.51 g and 154.120 +/- 0.004 g, respectively. Calcium measured by DGNA did not differ from the ashed amount of calcium at any of the phantom configurations. The BMC measured by DXA was significantly higher, by 3-5%, than the amount determined by chemical analysis for the Lunar densitometer and significantly lower, by 3-6%, for the Norland densitometer (p<0.001-0.024), but only 1% lower (not significant) for the Hologic densitometer. DXA instruments showed a decreasing trend in BMC as the thickness increased from 20.5 to 26.0 cm (p<0.05). However, within the entire thickness range (15.0-26.0 cm), the overall influence of thickness on BMC by DXA was very small. These findings offer insight into the differences in these currently available methods for bone mineral measurement and challenge the comparability of different methods. PMID:10525711

  10. Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lewis, Jason M.

    Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection. Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries. Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range. Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this

  11. Neutron radiative capture methods for surface elemental analysis

    USGS Publications Warehouse

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  12. Neutronics analysis of the Laboratory Microfusion Facility

    SciTech Connect

    Tobin, M.T.; Singh, M.S.; Meier, W.R.

    1988-09-19

    The radiological safety hazards of the experimental area (EA) for the proposed Inertial Confinement Fusion (ICF) Laboratory Microfusion Facility (LMF) have been examined. The EA includes those structures required to establish the proper pre-shot environment, point the beams, contain the pellet yield, and measure many different facets of the experiments. The radiation dose rates from neutron activation of representative target chamber materials, the laser beam tubes and the argon gas they contain, the air surrounding the chamber, and the concrete walls of the experimental area are given. Combining these results with the allowable dose rates for workers, we show how radiological considerations affect access to the inside of the target chamber and to the diagnostic platform area located outside the chamber. Waste disposal and tritium containment issues are summarized. Other neutronics issues, such as radiation damage to the final optics and neutron heating of materials placed close to the target, are also addressed. 16 refs., 2 figs., 1 tab.

  13. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis.

    PubMed

    Wang, Zimian; Pierson, Richard N

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo. PMID:20858915

  14. Total body carbon and oxygen masses: evaluation of dual-energy x-ray absorptiometry estimation by in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Wang, ZiMian; Pierson, Richard N., Jr.

    2010-10-01

    Oxygen and carbon are the first and second abundant elements, respectively, in the human body by mass. Although many physiological and pathological processes are accompanied with alteration of total body oxygen (TBO) and carbon (TBC) masses, in vivo measurements of the two elements are limited. Up to now, almost all available information of TBC and TBO is based on in vivo neutron activation (IVNA) analysis which is very expensive and involves moderate radiation exposure. The aim of the present study was to develop and evaluate an alternative strategy for TBC and TBO estimation. Mechanistic models were derived for predicting TBC and TBO masses from dual-energy x-ray absorptiometry (DXA) and total body water (TBW). Twenty-eight adult subjects were studied. IVNA-measured TBC and TBO masses were used as the criterion. TBC masses predicted by DXA-alone and by DXA-TBW models were 20.8 ± 7.1 kg and 20.6 ± 6.8 kg, respectively, close to the IVNA-measured value (19.5 ± 6.3 kg). There were strong correlations (both with r > 0.95, P < 0.001) between the predicted and measured TBC masses. TBO masses predicted by DXA-alone and by DXA-TBW models were 46.0 ± 9.8 kg and 46.5 ± 9.9 kg, respectively, close to the IVNA-measured value (48.0 ± 10.4 kg). Correlations (both with r > 0.97, P < 0.001) were strong between the predicted and measured TBO masses. Bland-Altman analysis validated the applicability of DXA-based models to predict TBC and TBO masses. As both DXA and TBW dilutions are widely available, low-risk, low-cost techniques, the present study provides a safe and practical method for estimating elemental composition in vivo.

  15. Investigating concentration distributions of arsenic, gold and antimony in grain-size fractions of gold ore using instrumental neutron activation analysis.

    PubMed

    Nyarku, M; Nyarko, B J B; Serfor-Armah, Y; Osae, S

    2010-02-01

    Instrumental neutron activation analysis (INAA) has been used to quantify concentrations of arsenic (As), gold (Au) and antimony (Sb) in grain-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd., was fractionated into 14 grain-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36mum and grains >2000mum were not considered for analysis. Result of the sieving was analysed with easysieve(R) software. The<36mum subfraction was found to be the optimum, hosting bulk of all three elements. Arsenic was found to be highly concentrated in<36-100mum size fractions and erratically distributed in from 150mum fraction and above. For gold, with the exception of the subfraction <36mum which had exceptionally high concentration, the element was found to be approximately equally distributed in all the size fractions but slightly "played out" in 150-400mum size fractions. Antimony occurrence in the sample was relatively high in <36mum size fraction followed by 600, 800, 400 and 36mum size fractions in that order. Gold content in the sample was comparatively far greater than arsenic and antimony; this is indicative of level of gold mineralization in the concession where the sample ore was taken. The concentration of gold in the composite sample was in the range 564-8420ppm as compared to 14.33-186.92ppm for arsenic and 1.09-9.48ppm for antimony. Elemental concentrations were correlated with each other and with grain-size fractions and the relationships between these descriptive parameters were established. PMID:19896855

  16. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  17. "Hot background" of the mobile inelastic neutron scattering system for soil carbon analysis.

    PubMed

    Kavetskiy, Aleksandr; Yakubova, Galina; Prior, Stephen A; Torbert, H Allen

    2016-01-01

    The problem of gamma spectrum peak identification arises when conducting soil carbon analysis using the inelastic neutron scattering (INS) system. Some spectral peaks could be associated with radioisotopes appearing due to neutron activation of both the measurement system and soil samples. The investigation of "hot background" gamma spectra from the construction materials, whole measurement system, and soil samples over time showed that activation of (28)Al isotope can contribute noticeable additions to the soil neutron stimulated gamma spectra. PMID:26595773

  18. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  19. Neutron Activation of NIF Final Optics Assemblies

    SciTech Connect

    Sitaraman, S; Dauffy, L; Khater, H; Brereton, S

    2009-09-29

    Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within 10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

  20. Application of the associated particle technique for the whole-body measurement of protein, fat and water by 14 MeV neutron activation analysis--a feasibility study.

    PubMed

    Mitra, S; Wolff, J E; Garrett, R; Peters, C W

    1995-06-01

    A small and compact sealed tube neutron generator with an integral alpha particle detector has been used for applying the associated particle technique for prompt-gamma 14 MeV neutron activation analysis of total body carbon (TBC), total body nitrogen (TBN) and total body oxygen (TBO). Ground sheep meat samples in the weight range 20-40 kg and of varying composition have been scanned using two 12.5 cm diameter x 10 cm Nal(Tl) crystals for gamma-ray detection. The content of protein, fat and water was calculated from their fractional content of C, N and O using a four-compartment model of body composition, which included minerals. The precision for measuring TBC, TBN and TBO has been obtained from the mean count rates of ten repeat irradiations of the same sample. The accuracy has been confirmed by comparison against chemical analysis. The reproducibilities for measuring TBN have been found to be comparable to those obtained when the same samples were analysed using prompt-gamma thermal-neutron activation analysis in an existing body composition facility. Based on the results obtained, we conclude that an instrument comprising the neutron generator and four 15 cm x 15 cm x 45 cm NaI(Tl) gamma ray detectors can be assembled to determine, in vivo, protein, fat and water in an approximately 41 kg sample with precisions of 4.4%, 5.0% and 2.1% (CV) respectively within a 15 min scan. The radiation dose equivalent delivered due to neutrons would be approximately 0.03 mSv. PMID:7659729

  1. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  2. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  3. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  4. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  5. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  6. Applications of activation analysis to geochemical, meteoritic and lunar studies.

    NASA Technical Reports Server (NTRS)

    Showalter, D. L.; Schmitt, R. A.

    1972-01-01

    The application of activation analysis techniques to the analysis of cosmological materials, i.e., terrestrial, tektitic, meteoritic, and lunar matter, is reviewed. Elemental determinations can be made by instrumental fast-neutron and thermal-neutron activation analysis, photonuclear and charged-particle activation analysis, and by radiochemical neutron activation analysis. Partition-coefficient methods, autoradiography studies, gamma-gamma coincidence counting, and age determination by neutron activation are discussed. Attention is given to K-Ar and I-Xe dating of meteorites.

  7. Thermal neutron analysis (TNA) explosive detection based on electronic neutron generators

    NASA Astrophysics Data System (ADS)

    Lee, W. C.; Mahood, D. B.; Ryge, P.; Shea, P.; Gozani, T.

    1995-05-01

    Thermal neutron analysis explosive detection systems have been developed and demonstrated for inspection of checked airline baggage and for detection of buried land mines. Thermal neutrons from a moderated neutron source impinge on the inspected object, and the resulting capture gamma ray signatures provide detection information. Isotopic neutron sources, e.g. 252Cf, are compact, economical and reliable, but they are subject to the licensing requirements, safety concerns and public perception problems associated with radioactive material. These are mitigated by use of an electronic neutron generator — an ion accelerator with a target producing neutrons by a nuclear reaction such as D(d, n) 3He or 9Be(d, n) 10B. With suitable moderator designs based on neutron transport codes, operational explosive detection systems can be built and would provide effective alternatives to radioactive neutron sources. Calculations as well as laboratory and field experience with three generator types will be presented.

  8. Evaluation of Am-Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-09-01

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with (α, n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured and theoretical spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. The singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis, being dominated by scattering which is highly dependent on item placement.

  9. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  10. Neutron activation diagnostics at the National Ignition Facility (invited).

    PubMed

    Bleuel, D L; Yeamans, C B; Bernstein, L A; Bionta, R M; Caggiano, J A; Casey, D T; Cooper, G W; Drury, O B; Frenje, J A; Hagmann, C A; Hatarik, R; Knauer, J P; Johnson, M Gatu; Knittel, K M; Leeper, R J; McNaney, J M; Moran, M; Ruiz, C L; Schneider, D H G

    2012-10-01

    Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.45 MeV deuterium-deuterium fusion neutrons through the (115)In(n,n')(115 m) In reaction. Outside the chamber, zirconium and copper are used to measure 14 MeV deuterium-tritium fusion neutrons via (90)Zr(n,2n), (63)Cu(n,2n), and (65)Cu(n,2n) reactions. An array of 16 zirconium samples are located on port covers around the chamber to measure relative yield anisotropies, providing a global map of fuel areal density variation. Neutron yields are routinely measured with activation to an accuracy of 7% and are in excellent agreement both with each other and with neutron time-of-flight and magnetic recoil spectrometer measurements. Relative areal density anisotropies can be measured to a precision of less than 3%. These measurements reveal apparent bulk fuel velocities as high as 200 km/s in addition to large areal density variations between the pole and equator of the compressed fuel. PMID:23126840

  11. A novel method for active fissile mass estimation with a pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Dubi, C.; Ridnik, T.; Israelashvili, I.; Pedersen, B.

    2013-07-01

    Neutron interrogation facilities for mass evaluation of Special Nuclear Materials (SNM) samples are divided into two main categories: passive interrogation, where all neutron detections are due to spontaneous events, and active interrogation, where fissions are induced on the tested material by an external neutron source. While active methods are, in general, faster and more effective, their analysis is much harder to carry out. In the paper, we will introduce a new formalism for analyzing the detection signal generated by a pulsed source active interrogation facility. The analysis is aimed to distinct between fission neutrons from the main neutron source in the system, and the surrounding "neutron noise". In particular, we derive analytic expressions for the first three central moments of the number of detections in a given time interval, in terms of the different neutron sources. While the method depends on exactly the same physical assumptions as known models, the simplicity of the suggested formalism allows us to take into account the variance of the external neutron source—an effect that was so far neglected.

  12. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  13. Hot background” of the mobile inelastic neutron scattering system for soil carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The problem of gamma spectrum peaks identification arises when conducting soil carbon (and other elements) analysis using the mobile inelastic neutron scattering (MINS) system. Some gamma spectrum peaks could be associated with radioisotopes appearing due to neutron activation of both the MINS syste...

  14. Mineralogy and instrumental neutron activation analysis of seven National Bureau of Standards and three Instituto de Pesquisas Tecnologicas clay reference samples

    USGS Publications Warehouse

    Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.

    1987-01-01

    The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46

  15. In vivo quantification of bone-fluorine by delayed neutron activation analysis: a pilot study of hand-bone-fluorine levels in a Canadian population.

    PubMed

    Chamberlain, Mike; Gräfe, James L; Aslam; Byun, Soo-Hyun; Chettle, David R; Egden, Lesley M; Webber, Colin E; McNeill, Fiona E

    2012-03-01

    Humans can be exposed to fluorine (F) through their diet, occupation, environment and oral dental care products. Fluorine, at proper dosages, is believed to have positive effects by reducing the incidence of dental caries, but fluorine toxicity can occur when people are exposed to excessive quantities of fluorine. In this paper we present the results of a small pilot in vivo study on 33 participants living in Southwestern Ontario, Canada. The mean age of participants was 45 ± 18 years with a range of 20-87 years. The observed calcium normalized hand-bone-fluorine concentrations in this small pilot study ranged from 1.1 to 8.8 mg F/g Ca. Every person measured in this study had levels of fluorine in bone above the detection limit of the system. The average fluorine concentration in bone was found to be 3.5 ± 0.4 mg F/g Ca. No difference was observed in average concentration for men and women. In addition, a significant correlation (r(2) = 0.55, p < 0.001) was observed between hand-bone-fluorine content and age. The amount of fluorine was found to increase at a rate of 0.084 ± 0.014 mg F/g Ca per year. There was no significant difference observed in this small group of subjects between the accumulation rates in men and women. To the best of our knowledge, this is the first time data from in vivo measurement of fluorine content in humans by neutron activation analysis have been presented. The data determined by this technique were found to be consistent with results from ex vivo studies from other countries. We suggest that the data demonstrate that this low risk non-invasive diagnostic technique will permit the routine assessment of bone-fluorine content with potential application in the study of clinical bone-related diseases. This small study demonstrated that people in Southern Ontario are exposed to fluoride in measureable quantities, and that fluoride can be seen to accumulate in bone with age. However, all volunteers were found to have levels below those

  16. Active Neutron Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-05-01

    Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.

  17. Image reconstruction from Pulsed Fast Neutron Analysis

    NASA Astrophysics Data System (ADS)

    Bendahan, Joseph; Feinstein, Leon; Keeley, Doug; Loveman, Rob

    1999-06-01

    Pulsed Fast Neutron Analysis (PFNA) has been demonstrated to detect drugs and explosives in trucks and large cargo containers. PFNA uses a collimated beam of nanosecond-pulsed fast neutrons that interact with the cargo contents to produce gamma rays characteristic to their elemental composition. By timing the arrival of the emitted radiation to an array of gamma-ray detectors a three-dimensional elemental density map or image of the cargo is created. The process to determine the elemental densities is complex and requires a number of steps. The first step consists of extracting from the characteristic gamma-ray spectra the counts associated with the elements of interest. Other steps are needed to correct for physical quantities such as gamma-ray production cross sections and angular distributions. The image processing includes also phenomenological corrections that take into account the neutron attenuation through the cargo, and the attenuation of the gamma rays from the point they were generated to the gamma-ray detectors. Additional processing is required to map the elemental densities from the data acquisition system of coordinates to a rectilinear system. This paper describes the image processing used to compute the elemental densities from the counts observed in the gamma-ray detectors.

  18. Image reconstruction from Pulsed Fast Neutron Analysis

    SciTech Connect

    Bendahan, Joseph; Feinstein, Leon; Keeley, Doug; Loveman, Rob

    1999-06-10

    Pulsed Fast Neutron Analysis (PFNA) has been demonstrated to detect drugs and explosives in trucks and large cargo containers. PFNA uses a collimated beam of nanosecond-pulsed fast neutrons that interact with the cargo contents to produce gamma rays characteristic to their elemental composition. By timing the arrival of the emitted radiation to an array of gamma-ray detectors a three-dimensional elemental density map or image of the cargo is created. The process to determine the elemental densities is complex and requires a number of steps. The first step consists of extracting from the characteristic gamma-ray spectra the counts associated with the elements of interest. Other steps are needed to correct for physical quantities such as gamma-ray production cross sections and angular distributions. The image processing includes also phenomenological corrections that take into account the neutron attenuation through the cargo, and the attenuation of the gamma rays from the point they were generated to the gamma-ray detectors. Additional processing is required to map the elemental densities from the data acquisition system of coordinates to a rectilinear system. This paper describes the image processing used to compute the elemental densities from the counts observed in the gamma-ray detectors.

  19. The synchronous active neutron detection system for spent fuel assay

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  20. A new active thermal neutron detector.

    PubMed

    Bedogni, R; Bortot, D; Pola, A; Introini, M V; Gentile, A; Esposito, A; Gómez-Ros, J M; Palomba, M; Grossi, A

    2014-10-01

    This communication presents the main results about the design and in-house fabrication of a new solid-state neutron detector, which produces a DC output signal proportional to the thermal neutron fluence rate. The detector has been developed within the framework of the 3-y project NESCOFI@BTF of INFN (CSN V). Due to its sensitivity, photon rejection, low cost and minimum size, this device is suited to be used in moderator-based spectrometers. PMID:24345462

  1. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  2. ACORNS: Analysis of Correlations Used in Neutron Spectrometry

    1988-05-01

    The program ACORNS performs the complete analysis of the input covariance and/or relative covariance and/or correlation matrices, first of all used in the activation neutron spectrometry. These matrices have to be positive definite. To check the fulfillment of this requirement, the program calculates the eigenvalues and eigenvectors of those. If all the eigenvalues are positive, the program optionally performs the factor analysis. The user's input can be either made manually, or the cross section librariesmore » generated by the code X333.« less

  3. Design considerations for neutron activation and neutron source strength monitors for ITER

    SciTech Connect

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.; Walker, C.

    1997-12-31

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

  4. Analysis of lateritic material from Cerro Impacto by instrumental neutron activation employing a low-energy photon semiconductor and a high-energy Ge(Li) detector

    SciTech Connect

    LaBrecque, J.J.; Beusen, J.M.; Van Grieken, R.E.

    1986-01-01

    Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration process of different elements based upon the hardness of the different minerals. The analysis was performed by excitation of the sample with a high, slow neutron flux followed by gamma-ray spectroscopy with both a conventional Ge(Li) high-energy detector and a low-energy photon detector (LEPD). The accuracy of this method was studied with the use of two standard reference materials, SY-2 and SY-3, which are similar to the real samples. The values determined were also compared with a secondary target x-ray fluorescence method for all the elements that were suitable to both methods. Actually, the x-ray fluorescence method was found to be more complementary than competitive. 10 refs., 2 figs., 4 tabs.

  5. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  6. Analysis of Gaulish coins by proton induced X-ray emission, synchrotron radiation X-ray fluorescence and neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Brissaud, I.; Chevallier, P.; Dardenne, C.; Deschamps, N.; Frontier, J. P.; Gruel, K.; Taccoen, A.; Tarrats, A.; Wang, J. X.

    1990-04-01

    Recent diggings in Brittany provide us with new Gaulish coins for a further study about their value and dating. The elemental analysis gives a good idea of the great variety in the monetary alloys used in Gallia in the second part of the first century B.C. Each coin was analyzed by surface and volume techniques. For some samples the discrepancy between the two types of analysis is large for Ag-rich alloys: a surface enrichment in silver is observed.

  7. Application of Wavelet Unfolding Technique in Neutron Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Hartman, Jessica; Barzilov, Alexander

    Nonproliferation of nuclear materials is important in nuclear power industry and fuel cycle facilities. It requires technologies capable of measuring and assessing the radiation signatures of fission events. Neutrons produced in spontaneous or induced fission reactions are mainly fast. The neutron energy information allows characterization of nuclear materials and neutron sources. It can also be applied in remote sensing and source search tasks. The plastic scintillator EJ-299-33A was studied as a fast neutron detector. The detector response to a polyenergetic flux was unfolded usingthe multiple linear regression method. It yields the intensities of neutron flux of particular energy, hence, enabling the spectroscopic analysis. The wavelet technique was evaluated for the unfolding of neutron spectrum using the scintillator's response functions between 1 MeV and 14 MeV computed with the MCNPX code. This paperpresents the computational results of the wavelet-based spectrum unfolding applied to a scintillator detector with neutron / photon pulse shape discrimination properties.

  8. Measurements of DT and DD neutron yields by neutron activation on TFTR

    SciTech Connect

    Barnes, C.W.; Larson, A.R.; LeMunyan, G.; Loughlin, M.J.

    1995-03-01

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10{sup 12} to over 10{sup 18}, and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants, and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the {+-}9% (one-sigma) accuracy of the measurements; also agreeing are yields from silicon foils using the ACTL library cross-section, while the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the {sup 115}In(n.n{prime}) {sup 115m}In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments.

  9. Measurements of DT and DD neutron yields by neutron activation on TFTR

    SciTech Connect

    Barnes, C.W.; Larson, A.R.; LeMunyan, G.; Loughlin, M.J.

    1994-05-05

    A variety of elemental foils have been activated by neutron fluence from TFTR under conditions with the DT neutron yield per shot ranging from 10{sup 12} to over 10{sup 18}, and with the DT/(DD+DT) neutron ratio varying from 0.5% (from triton burnup) to unity. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants. and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the {plus_minus}9% (one-sigma,) accuracy of the measurements: also agreeing are yields from silicon foils using the ACTL library cross-section. While the ENDF/B-V library has too low a cross-section. Preliminary results from a variety of other threshold reactions are presented. Use of the {sup 115}In(n,n) {sup 115m}In reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments.

  10. Calibration of the Brookhaven National Laboratory delayed gamma neutron activation facility to measure total body calcium.

    PubMed

    Ma, R; Stamatelatos, I E; Yasumura, S

    2000-05-01

    Differences in body size and shape can cause large variances in the in vivo results of neutron activation analysis. To introduce corrections for body size for the delayed gamma neutron activation facility at Brookhaven National Laboratory, "reference man"-sized and "reference woman"-sized phantoms were constructed. Simulation results using the Monte Carlo Neutron and Photon Transport code also provided correction factors for people of different sizes. For individuals with a body mass index (BMI = weight (kg)/height (m)2) between 20 and 30, no correction was required. At BMIs greater than 30, the effects of neutron attenuation were significant and a correction factor of CF = -0.0192 x BMI + 1.5635 can be applied. PMID:10865727

  11. Addressing Different Active Neutron Interrogation Signatures from Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-10-01

    In a continuing effort to examine portable methods for implementing active neutron interrogation for detecting shielded fissionable material research is underway to investigate the utility of analyzing multiple time-correlated signatures. Time correlation refers here to the existence of unique characteristics of the fission interrogation signature related to the start and end of an irradiation, as well as signatures present in between individual pulses of an irradiating source. Traditional measurement approaches in this area have typically worked to detect die-away neutrons after the end of each pulse, neutrons in between pulses related to the decay of neutron emitting fission products, or neutrons or gamma rays related to the decay of neutron emitting fission products after the end of an irradiation exposure. In this paper we discus the potential weaknesses of assessing only one signature versus multiple signatures and make the assertion that multiple complimentary and orthogonal measurements should be used to bolster the performance of active interrogation systems, helping to minimize susceptibility to the weaknesses of individual signatures on their own. Recognizing that the problem of detection is a problem of low count rates, we are exploring methods to integrate commonly used signatures with rarely used signatures to improve detection capabilities for these measurements. In this paper we will discuss initial activity in this area with this approach together with observations of some of the strengths and weaknesses of using these different signatures.

  12. General Approach To Materials Classification Using Neutron Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Solovyev, Vladimir G.; Koltick, David S.

    2006-03-01

    The `neutron in, gamma out' method of elemental analysis has been known and used in many applications as an elemental analysis tool. This method is non-intrusive, non-destructive, fast and precise. This set of advantages makes neutron analysis attractive for even wider variety of uses beyond simple elemental analysis. The question that is addressed within this study is under what conditions neutron analysis can be used to differentiate materials of interest from a group or class of materials in the face of knowing that what is truly of interest is the molecular content of any sample under interrogation. Purpose of the study was to develop a neutron-based scanner for rapid differentiation of classes of materials sealed in small bottles. Developed scanner employs D-T neutron generator as a neutron source and HPGe gamma detectors. Materials can be placed into classes by many different properties. However, neutron analysis method can be used only few of them, such as elemental content, stoichiometric ratios and density of the scanned material. Set of parameters obtainable through neutron analysis serves as a basis for a hyperspace, where each point corresponds to a certain scanned material. Sub-volumes of the hyperspace correspond to different classes of materials. One of the most important properties of the materials are stoichiometric ratios of the elements comprising the materials. Constructing an algorithm for converting the observed gamma ray counts into quantities of the elements in the scanned sample is a crucial part of the analysis. Gamma rays produced in both fast inelastic scatterings and neutron captures are considered. Presence of certain elements in materials, such as hydrogen and chlorine can significantly change neutron dynamics within the sample, and, in turn, characteristic gamma lines development. These effects have been studied and corresponding algorithms have been developed to account for them.

  13. Analysis of Cadmium Based Neutron Detector Configurations

    NASA Astrophysics Data System (ADS)

    James, Brian; Rees, Lawrence; Czirr, J. Bart

    2012-10-01

    Due to national security concerns pertaining to the smuggling of special nuclear materials and a small supply of He-3 for use in neutron detectors, there is currently a need for a new kind of neutron detector. Using Monte Carlo techniques I have studied the neutron capture efficiency of an array of cadmium wedge detectors in the presence of a californium source. By using varying numbers of wedges and comparing their capture ratios we will be better able to design future detectors.

  14. Conference on Instrumental Activation Analysis: IAA 89

    NASA Astrophysics Data System (ADS)

    Vobecky, M.; Obrusnik, I.

    1989-05-01

    The proceedings contain 40 abstracts of papers all of which have been incorporated in INIS. The papers were centred on the applications of radioanalytical methods, especially on neutron activation analysis, x ray fluorescence analysis, PIXE analysis and tracer techniques in biology, medicine and metallurgy, measuring instruments including microcomputers, and data processing methods.

  15. Gamma-ray and neutron radiography as part of a pulsed fast neutron analysis inspection system

    NASA Astrophysics Data System (ADS)

    Rynes, J.; Bendahan, J.; Gozani, T.; Loveman, R.; Stevenson, J.; Bell, C.

    1999-02-01

    A gamma-ray and neutron radiography system has been developed to provide useful supplemental information for a Pulsed Fast Neutron Analysis (PFNA) cargo inspection system. PFNA uses a collimated beam of pulsed neutrons to interrogate cargoes using (n, γx) reactions. The PFNA source produces both gamma rays as well as neutrons. The transmission of both species through the cargo is measured with an array of plastic scintillators. Since the neutron and gamma-ray signals are easily separated by arrival time a separate image can be made for both species. The radiography measurement is taken simultaneously with the PFNA measurement turning PFNA into an emission and transmission imaging system, thus enhancing the PFNA radiography system.

  16. MoNA and Two-Neutron Decay Analysis

    NASA Astrophysics Data System (ADS)

    Grovom, Amanda; Aulie, Alegra; Rogers, Warren F.

    2010-11-01

    The Modular Neutron Array (MoNA) is a large, high-efficiency position-sensitive neutron detector array housed at the National Superconducting Cyclotron Laboratory at Michigan State University, consisting of 144 2-meter long scintillator bars with a PMT positioned at each end, designed to detect the energy and trajectory of fast neutrons emitted in the breakup of exotic neutron-rich nuclei. Because a single neutron can scatter multiple times within MoNA, (including a large presence of dark-scattering from Carbon), the experimental challenge to distinguish between single and multiple neutron decay events is significant. We've developed special data-sorting routines that selectively filter on a combination of factors such as neutron velocity and scattering angle, hit-pattern distribution, neutron-fragment opening angle, and decay energy in order to reduce the Carbon scattering background and enhance correlations between pairs of neutrons. We've applied this analysis to the 2-neutron decays of ^24O and ^13Li from data sets from previous MoNA experiments. Results will be presented.

  17. Preliminary Analysis of the Multisphere Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.

    2003-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  18. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  19. Activation analysis using Cornell TRIGA

    SciTech Connect

    Hossain, Tim Z.

    1994-07-01

    A major use of the Cornell TRIGA is for activation analysis. Over the years many varieties of samples have been analyzed from a number of fields of interest ranging from geology, archaeology and textiles. More recently the analysis has been extended to high technology materials for applications in optical and semiconductor devices. Trace analysis in high purity materials like Si wafers has been the focus in many instances, while in others analysis of major/minor components were the goals. These analysis has been done using the delayed mode. Results from recent measurements in semiconductors and other materials will be presented. In addition the near future capability of using prompt gamma activation analysis using the Cornell cold neutron beam will be discussed. (author)

  20. Cement analysis using d + D neutrons

    NASA Astrophysics Data System (ADS)

    Womble, Phillip C.; Paschal, Jon; Moore, Ryan

    2005-12-01

    In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator.

  1. Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.; Trombka, J.

    2011-01-01

    We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.

  2. Fast-neutron multiplicity analysis based on liquid scintillation.

    PubMed

    Li, Sufen; Qiu, Suizheng; Zhang, Quanhu; Huo, Yonggang; Lin, Hongtao

    2016-04-01

    In this study, according to the establishment of the classical neutron multiplicity measurement equation, a fast-neutron multiplicity analysis and measurement equation is established, considering the influence of neutron scattering cross-talk, by means of theoretical analysis and computer simulation. Moreover, the fission rate F, multiplication M, and (α, n) reaction rate α in the established equation were solved. A new measurement method of scattering cross-talk was established and the established equation was validated using Geant4 simulation. The fast-neutron multiplicity counting equation has only a smaller deviation from the fast-neutron multiplicity counting system based on liquid scintillation detector, and it has a wider application prospect. PMID:26766037

  3. Total body calcium analysis. [neutron irradiation

    NASA Technical Reports Server (NTRS)

    Lewellen, T. K.; Nelp, W. B.

    1974-01-01

    A technique to quantitate total body calcium in humans is developed. Total body neutron irradiation is utilized to produce argon 37. The radio argon, which diffuses into the blood stream and is excreted through the lungs, is recovered from the exhaled breath and counted inside a proportional detector. Emphasis is placed on: (1) measurement of the rate of excretion of radio argon following total body neutron irradiation; (2) the development of the radio argon collection, purification, and counting systems; and (3) development of a patient irradiation facility using a 14 MeV neutron generator. Results and applications are discussed in detail.

  4. Mu2e Neutron/Gamma Background Analysis

    NASA Astrophysics Data System (ADS)

    Rosendahl, Morgan; Ahmed, Mohamed; Alexander, Damien; Daniel, Aji; Hungerford, Ed; Sikora, Mark; Alcap Collaboration

    2015-10-01

    In Mu2e, a muon-to-electron conversion experiment that will search for neutrinoless lepton conversion with a single event sensitivity of 10-16, a large flux of neutrons with energies less than 10 MeV are emitted after muon capture in the stopping target. These neutrons, and gamma radiation resulting from their absorption, comprise a major component of experimental backgrounds. However, they are not currently sufficiently understood to reliably mitigate single-event-upsets in the readout electronics and time-to-failure of the detector components. At the Paul Scherrer Institute, PSI, a program was undertaken to measure neutron and charged particle emission after muon capture in targets of interest. Two BC501A neutron counters, a Ge, and a LaBr3 detector were used to measure the rates and spectra of emitted neutrons, X-rays, and gammas. The ongoing analysis of this data will provide characterization of the neutron and gamma spectra at low energies. Because the lifetime of a captured muon is nearly a microsecond, the neutron energy spectrum must be determined by unfolding methods. This presentation will discuss the experiment, neutron detector calibrations, and the progress of the analysis.

  5. Elemental Characterization Using Pulsed Fast/Thermal Neutron Analysis

    SciTech Connect

    P. C. Womble; G. Vourvopoulos; M. Belbot; S. Hui; J. Paschal

    2000-11-12

    Several Pulsed Fast/Thermal Neutron Analysis (PFTNA) systems are currently under development at Western Kentucky University. One system is a multiparameter coal analyzer, and another is an explosive detection system called PELAN (Pulsed ELemental Analysis with Neutrons). Finally, two systems for the inspection of cargo for contraband are under consideration: Portable Drug Probe (PDP), and a Neutron ELemental Inspection System (NELIS). All of these systems utilize the elemental content within the interrogated object to reach some decision or calculate some quantity that is then reported to the user.

  6. Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data.

    PubMed

    Sekimoto, Shun; Ebihara, Mitsuru

    2013-07-01

    Trace amounts of three halogens (chlorine, bromine, and iodine) were determined using radiochemical neutron activation analysis (RNAA) for nine sedimentary rocks and three rhyolite samples. To obtain high-quality analytical data, the radiochemical procedure of RNAA was improved by lowering the background in gamma-ray spectrometry and completing the chemical procedure more rapidly than in conventional procedures. A comparison of the RNAA data of Br and I with corresponding inductively coupled plasma mass spectrometry (ICPMS) literature data revealed that the values obtained by ICPMS coupled with pyrohydrolysis preconcentration were systematically lower than the RNAA data for some reference samples, suggesting that the quantitative collection of Br and I cannot always be achieved by the pyrohydrolysis for some solid samples. The RNAA data of three halogens can classify sedimentary rock reference samples into two groups (the samples from inland water and those from seawater), implying the geochemical significance of halogen data. PMID:23710630

  7. [Identification of hashish samples with inductively coupled high-frequency plasma emission spectrometry and neutron activation analysis and data handling with neuronal networks. 1. Methods for the quantitative determination of characteristic trace elements].

    PubMed

    Lahl, H; Henke, G

    1997-11-01

    Neutron activation analysis (NAA) and inductively coupled plasma emission spectrometry (ICP-AES) were used to quantify the relative contents of Fe, Sc, Ce, Pa, Cr, Co, respectively the absolute contents of Cr, Zn, Mn, Fe, Mg, Al, Cu, Ti, Ca, Sr in hashish samples, seized in different countries. The samples were processed after dry ashing by means of instrumental NAA and after wet mineralization by means of ICP-AES. For determination of the sampling and measurement errors, one of the samples was analyzed repeatedly with both methods. Classifying hashish samples with regard to concentration of certain elements could be done by artificial neural networks with a modified backpropagation algorithm. By this way, identity and non identity of one unknown sample with one of many different samples as data pool can be ascertained, on principle. PMID:9446107

  8. Speciation of As(III) and As(V) in water and sediment using reverse-phase ion-pair high-performance liquid chromatography-neutron activation analysis (HPLC-NAA).

    PubMed

    Tulasi, Delali; Adotey, Dennis; Affum, Andrews; Carboo, Derick; Serfor-Armah, Yaw

    2013-10-01

    Total As content and the As species distribution in water and sediments from the Kwabrafo stream, a major water body draining the Obuasi gold mining community in southwestern Ghana, have been investigated. Total As content was determined by instrumental neutron activation analysis (INAA). Ion-pair reverse phase high-performance liquid chromatography-neutron activation analysis (HPLC-NAA) was used for speciation of As species. Solid phase extraction with phosphate buffer was used to extract soluble As species from lyophilized sediment. The mass balance after phosphate extraction of soluble As species in sediment varied from 89 to 96 %. Compositionally appropriate reference material International Atomic Energy Agency (IAEA)-Lake Sediment (SL)-1 was used to check the validity of INAA method for total As determination. The measured values are in good agreement with the IAEA recommended value and also within the 95 % confidence interval. The accuracy of the measurement in terms of relative deviation from the IAEA recommended value was ±0.83 %. "In-house" prepared As(III) and As(V) standards were used to validate the HPLC-INAA method used for the As species determination. Total As concentration in the water samples ranged from 1.15 to 9.20 mg/L. As(III) species in water varied from 0.13 to 0.7 mg/L, while As(V) species varied from 0.79 to 3.85 mg/L. Total As content in sediment ranged from 2,134 to 3,596 mg/kg dry mass. The levels of As(III) and As(V) species in the sediment ranges from 138 to 506 mg/kg dry mass and 156 to 385 mg/kg dry mass, respectively. PMID:23494192

  9. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    SciTech Connect

    Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  10. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    NASA Astrophysics Data System (ADS)

    Morris, Meg; Annand, John; Hornidge, David; Strandberg, Bruno

    2015-12-01

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  11. Neutron spectrum measurements in DT discharges using activation techniques

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Bertalot, L.; Loughlin, M.; Roquemore, A. L.

    1999-01-01

    The JET activation system has eight irradiation ends where samples may be irradiated in the neutron flux from the plasma. There is one end, re-entrant into the top of the vessel, for which there is little intervening material between it and the plasma; the other ends, including two beneath the divertor coils, have increasingly larger amounts of intervening structure. The local neutron spectrum at each irradiation end was measured by simultaneously activating several elemental foils (Al, Au, Co, Fe, In, Mg, Nb, Ni, Ti, Zr). There were 15 activation reactions in the energy range of 0.5-16 MeV which were used as input to the SNL-SAND-II code to determine the neutron energy spectrum. The results are compared with neutron transport calculations both from the MCNP and FURNACE codes: the average standard deviation between measured to SNL-SAND-II calculated activity ratios was as low as 5%. The results demonstrate the reliability of the neutronics calculations and have implications for the design of diagnostics and blankets for the next generation of large tokamaks such as ITER. The 377.9 keV line of the 54Fe(n,2n)53Fe reaction (threshold ˜13.9 MeV, not a dosimetric standard) has also been measured in different plasma conditions. The ratio of the saturated activity from this reaction to that from the 56Fe(n,p)56Mn reaction (threshold ˜4.5 MeV) provides information on the broadening of the 14 MeV fusion peak.

  12. Prototyping an active neutron veto for SuperCDMS

    SciTech Connect

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  13. Prototyping an Active Neutron Veto for SuperCDMS

    SciTech Connect

    Calkins, Robert; Loer, Ben

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  14. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Seabury, E. H.

    2009-03-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  15. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  16. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  17. Neutron activation system using water flow for ITER

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Ebisawa, K.; Kasai, S.; Walker, C.

    2003-03-01

    A neutron activation system with flowing water using the 16O(n,p)16N reaction has been designed for the International Thermonuclear Experimental Reaction (ITER) neutron yield monitor with temporal resolution, based on the experimental results carried out at the fusion neutronics source (FNS) facility of the Japan Atomic Energy Research Institute. On ITER, irradiation ends will be installed in the filler shielding module between the blanket modules at the equatorial ports. The gamma-ray counting stations will be installed on the upstairs of the pit outside the biological shield. BGO (Bi4Ge3O12) scintillation detectors will be employed to measure 6.13 MeV gamma rays emitted from 16N. The distance between the irradiation end and the counting station is ˜20 m. The performance of the neutron activation system has been evaluated by using the neutron Monte Carlo code MCNP-4b with the JENDL 3.2 library. The reaction rate of 16O(n,p)16N was calculated not only at the irradiation end but also along the transfer line, which showed that the temporal resolution would be less than the ITER requirement of 100 ms including turbulent diffusion effects for the flow velocity of 10 m/s. With a flow velocity of 10 m/s, this system can measure the fusion power from 50 kW to 1 GW of the ITER operation by using two gamma-ray detectors; one detector faces the water pipe directly, and another has a collimator for higher-neutron yield. Also the calculation shows that the reaction rate is relatively insensitive to the change of the plasma position.

  18. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  19. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  20. Study of proton and neutron activation of metal samples in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1984-01-01

    The analysis of the gamma-ray spectra taken from samples flown in Spacelab 1; the search for and review of neutron and proton activation cross-sections needed to analyze the results of the Long Duration Exposure Facility (LDEF) activation measurements; additional calculations of neutron induced activation for the LDEF samples; the data analysis plan for the LDEF and Spacelab 2 samples; the measurement of relevant cross-sections with activation of samples of V, Co, In, and Ta at the Indiana University Cyclotron Facility; and the preparation of an extended gamma-ray calibration source through the development of a proper technique to accurately deposit equal quantities of radioactive material onto a large number of point on the source are discussed.

  1. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  2. Synthesis, characterization, and neutron activation of holmium metallofullerenes

    SciTech Connect

    Cagle, D.W.; Thrash, T.P.; Wilson, L.J.; Alford, M.; Chibante, L.P.F.; Ehrhardt, G.J.

    1996-08-28

    Isolation of the first macroscopic quantities of endohedral holmium metallofullerenes (principally Ho@C{sub 82}, Ho{sub 2}@C{sub 82}, and Ho{sub 3}@C{sub 82} by LD-TOF mass spectrometry) has been accomplished by carbon-arc and preparative HPLC methodologies. The detailed procedure for production and isolation of the metallofullerenes includes a new technique whereby holmium-impregnated electrodes are prepared simply by soaking porous graphite rods in an ethanolic solution of Ho(NO{sub 3}){sub 3}.xH{sub 2}O. Monoisotopic {sup 165}Ho offers a unique combination of advantages for neutron-activation studies of metallofullerenes, and purified samples containing {sup 165}Ho@C{sub 82}, {sup 165}Ho{sub 2}@C{sub 82}, and {sup 165}Ho{sub 3}@C{sub 82} have been activated by high-flux neutron irradiation ({Phi} = 4 x 10{sup 13}n cm{sup -2} s{sup -1}) to generate {sup 166}Ho metallofullerenes, which undergo {beta}{sup -} decay to produce stable {sup 166}Er. Chemical workup of the irradiated samples, followed by re-irradiation, has been used to demonstrate that observed decomposition of holmium metallofullerenes is due mainly to `fast` neutron damage rather than to holmium atom nuclear recoil (E{sub max} = 200 eV). This implies that metallofullerene damage can be minimized by using neutron fluxes with the highest possible thermal component. 60 refs., 4 figs.

  3. Sensitivity Analysis and Neutron Fluence Adjustment for VVER-1000 Rpv

    NASA Astrophysics Data System (ADS)

    Belousov, S.; Ilieva, Kr.; Kirilova, D.

    2003-06-01

    Adjustment of the neutron fluence at the VVER-1000 RPV inner wall has been carried out. For the purpose of this adjustment the neutron flux response sensitivity to the main parameters of calculation uncertainty has been calculated. The obtained sensitivities, the parameters uncertainty and activity measurement data of iron, copper and niobium detectors positioned behind the RPV of Kozloduy NPP Unit 5 have been used in this adjustment.

  4. Characterization of nuclear material by Neutron Resonance Transmission Analysis

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Alaerts, G.; Becker, B.; Heyse, J.; Kopecky, S.; Moens, A.; Mondelaers, W.; Schillebeeckx, P.; Wynants, R.; Harada, H.; Kitatani, F.; Koizumi, M.; Tsuchiya, H.

    2016-11-01

    The use of Neutron Resonance Transmission Analysis for the characterization of nuclear materials is discussed. The method, which relies on resonance structures in neutron-induced reaction cross sections, can be applied as a non-destructive method to characterise complex nuclear materials such as melted fuel resulting from a severe nuclear accident. Results of a demonstration experiment at the GELINA facility reveal that accurate data can be obtained at a compact facility even in the case of strong overlapping resonances.

  5. Neutron generator yield measurements using a phoswich detector with the digital pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip; Heinze, Julian

    2012-03-01

    The phoswich detector designed as a combination of two scintillators with dissimilar pulse shape characteristics that are optically coupled to each other and to a common photomultiplier is used for the simultaneous detection of fast and thermal neutrons. The digital signal processing of detector signals is used. The pulse shape analysis distinguishes the scintillation signals produced by photons, fast neutrons, and thermal neutrons. The phoswich was tested using the photon and neutron sources. We discuss neutron yield measurements for a pulse DT neutron generator. The spatial distribution of fast neutron flux and thermal neutron flux was evaluated for the generator in presence of neutron moderating materials.

  6. Pulsed fast-thermal neutron analysis of trace heavy metals in cement

    SciTech Connect

    Womble, P.C.; Vourvopoulos, G.; Schultz, F.J.

    1998-09-01

    The application of pulsed fast/thermal neutron analysis (PFTNA) to the analysis of trace metals in cement is an extension of research already being conducted at Western Kentucky University. PFTNA elemental characterization of coal, explosives, and drugs, for example, provided techniques for the analysis of elements such as Ca, Pb, S, C, and O. Neutron activation analysis of Cd using thermal neutrons produced by nuclear reactors is a well-proven technique. The purpose of this study was to determine PFTNA`s minimum detection limit (MDL) for Pb, Cd, and Hg contained in a cemented matrix. This waste form constitutes a significant portion of the mixed low-level waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL).

  7. Standardizing Activation Analysis: New Software for Photon Activation Analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Green, J.; Segebade, C.

    2011-06-01

    Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.

  8. Study of proton and neutron activation of metal samples in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1984-01-01

    Progress in the following activities has been made: the analysis of the gamma ray spectra taken from samples flown in Spacelab 2; the search for and review of neutron and proton activation cross sections needed to analyze the results of the Long Duration Exposure Facility (LDEF) activation measurements; the consideration given to data analysis of the LDEF and Spacelab 2 samples; the plan to measure relevant cross sections with nuclear accelerator measurements; and the preparation of an extended gamma ray calibration sources continues through planning and direct measurement of gamma ray efficiency for a Ge(Li) as a function of position along the surface of the detector housing.

  9. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  10. Recent upgrade of the in vivo neutron activation facility at Brookhaven National Laboratory

    SciTech Connect

    Ma, R.; Dilmanian, F.A..; Rarback, H.; Meron, M.; Kamen, Y.; Yasumura, S.; Weber, D.A.; Stamatelatos, I.E.; Lidofsky, L.J.; Pierson, R.N. Jr.

    1993-10-01

    The in vivo neutron activation facility at Brookhaven National Laboratory consists of a delayed- and a prompt-gamma neutron activation (DGNA and PGNA) system and an inelastic neutron scattering (INS) system. The total body contents of several basic elements, including potassium, calcium, chlorine, sodium, and phosphorus are measured at the DGNA system; total body carbon is measured at the INS system; and the nitrogen-tohydrogen ratio is measured at the PGNA system. Based on the elemental composition, body compartments, such as total body fat and total body protein can be computed with additional independently measured parameters, such as total body water, body size, and body weight. Information on elemental and compartmental body composition obtained through neutron activation analysis is useful, if not essential, for research on growth, malnutrition, aging diseases, such as osteoporosis and acquired immunodeficiency syndrome in which the progression of the illness is closely related to changes in major body compartments, such as bone, adipose tissue, and muscle. The DGNA system has been modified and upgraded several times since it was first built. Recently, all three systems underwent major upgrades. This upgrading and some preliminary studies carried out with the modified facilities are reported here.

  11. Bayesian Statistical Analysis Applied to NAA Data for Neutron Flux Spectrum Determination

    NASA Astrophysics Data System (ADS)

    Chiesa, D.; Previtali, E.; Sisti, M.

    2014-04-01

    In this paper, we present a statistical method, based on Bayesian statistics, to evaluate the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation analysis (NAA) experiment [A. Borio di Tigliole et al., Absolute flux measurement by NAA at the Pavia University TRIGA Mark II reactor facilities, ENC 2012 - Transactions Research Reactors, ISBN 978-92-95064-14-0, 22 (2012)] performed at the TRIGA Mark II reactor of Pavia University (Italy). In order to evaluate the neutron flux spectrum, subdivided in energy groups, we must solve a system of linear equations containing the grouped cross sections and the activation rate data. We solve this problem with Bayesian statistical analysis, including the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, is used to define the problem statistical model and solve it. The energy group fluxes and their uncertainties are then determined with great accuracy and the correlations between the groups are analyzed. Finally, the dependence of the results on the prior distribution choice and on the group cross section data is investigated to confirm the reliability of the analysis.

  12. New models for carrying out cyclic neutron activation. Discussion of the theoretical response

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper studies two specific procedures for analyzing mining samples through a neutron activation technique called DGNAA (Delayed Gamma Neutron Activation Analysis). This particular study is part of a broader line of research, whose overall objective is to find the optimal procedure for analyzing the fluorite content of samples taken from different parts of a fluorite concentration plant, using the DGNAA method [1-2]. The mining sample is fluorspar, which contains other minerals in addition to fluorite, such as silica, barite, iron oxides and silicates. The main contribution of the article is the development of a new method for determining the fluorite content in minerals and the increase of sensitivity in respect to the symmetrical method and single-cycle activation.

  13. Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a

  14. A militarily fielded thermal neutron activation sensor for landmine detection

    NASA Astrophysics Data System (ADS)

    Clifford, E. T. H.; McFee, J. E.; Ing, H.; Andrews, H. R.; Tennant, D.; Harper, E.; Faust, A. A.

    2007-08-01

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on 14N. The TNA uses a 100 μg252Cf neutron source surrounded by four 7.62 cm×7.62 cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  15. Studies on osteoporosis. V. Comparison of methods of evaluation of osteoporosis and study of chromosome changes induced by neutron activation

    SciTech Connect

    Robin, J.C.; Sirianni, S.R.; Pragay, D.A.; Ambrus, J.L.

    1981-01-01

    In vivo activation analysis was compared with ashing and atomic absorption spectrophotometry for the determination of total skeletal calcium content in mice. The results were close to identical. The possible mutagenic-carcinogenic effect of repeated exposure to whole body neutron irradiation was studied by chromosome analysis. Under the conditions of these experiments, no significant chromosome changes were seen.

  16. Thermal neutron activation system for confirmatory nonmetallic land mine detection

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Cousins, Thomas; Jones, Trevor; Brisson, Jean R.; Jamieson, Terry; Waller, Ed; LeMay, Francois; Ing, Harry; Clifford, Edward T. H.; Selkirk, Barkley

    1998-09-01

    To detect and locate buried landmines, the Canadian Department of National Defence (DND) is developing a teleoperated, vehicle-mounted, multisensor system called ILDP. In operation, a suite of 4 detectors scan ahead of the vehicle. Their outputs are combined through data fusion to indicate the possibility of a mine at a particular location, within a 30 cm radius. A thermal neutron activation (TNA) sensor, mounted behind the vehicle, is used to confirm the presence of explosives via detection of the 10.83 MeV gamma-ray associated with neutron capture on 14N. The TNA system developed for this uses a 100 microgram 252Cf neutron source surrounded by four 7.62 cm X 7.62 cm NaI(Tl) detectors. A combination of the use of state-of-the art radiation transport codes for design, judicious choice of specialized shielding materials and development of high-rate, fast pulse processing electronics has led to a system which can; (1) confirm the presence of all surface-laid or shallowly-buried anti-tank mines in a few seconds to a minute (depending on mass of explosive) (2) confirm the presence of anti-tank mines down to 20 cm depth in less than 5 minutes. (3) confirm the presence of large (greater than 100 g Nitrogen) anti-personnel mines in less than five minutes (4) operate in adverse climatic conditions. These results have been verified in field trials using the prototype sensor. Work is now ongoing to miniaturize the electronics, make the system robust and easy to use and investigate the use of an electronic neutron generator expected to enter service by the year 2000.

  17. Neutron distribution and induced activity inside a Linac treatment room.

    PubMed

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-08-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff. PMID:26737878

  18. Validation of computational methods for treatment planning of fast-neutron therapy using activation foil techniques

    SciTech Connect

    Nigg, D.W.; Wemple, C.A.; Hartwell, J.K.; Harker, Y.D.; Venhuizen, J.R.; Risler, R.

    1997-12-01

    A closed-form direct method for unfolding neutron spectra from foil activation data is presented. The method is applied to measurements of the free-field neutron spectrum produced by the proton-cyclotron-based fast-neutron radiotherapy facility at the University of Washington (UW) School of Medicine. The results compare favorably with theoretical expectations based on an a-priori calculational model of the target and neutron beamline configuration of the UW facility.

  19. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  20. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  1. Activation of cobalt by neutrons from the Hiroshima bomb

    SciTech Connect

    Kerr, G.D.; Dyer, F.F.; Emery, J.F.; Pace, J.V. III ); Brodzinski, R.L. ); Marcum, J. )

    1990-02-01

    A study has been completed of cobalt activation in samples from two new locations in Hiroshima. The samples consisted of a piece of steel from a bridge located at a distance of about 1300 m from the hypocenter and pieces of both steel and concrete from a building located at approximately 700 m. The concrete was analyzed to obtain information needed to calculate the cobalt activation in the two steel samples. Close agreement was found between calculated and measured values for cobalt activation of the steel sample from the building at 700 m. It was found, however, that the measured values for the bridge sample at 1300 m were approximately twice the calculated values. Thus, the new results confirm the existence of a systematic error in the transport calculations for neutrons from the Hiroshima bomb. 52 refs., 32 figs., 16 tabs.

  2. Neutron scattering for analysis of processes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Bobrikov, I. A.; Samoylova, N. Yu; Drozhzhin, O. A.; Antipov, E. V.

    2014-12-01

    The review is concerned with analysis and generalization of information on application of neutron scattering for elucidation of the structure of materials for rechargeable energy sources (mainly lithium-ion batteries) and on structural rearrangements in these materials occurring in the course of electrochemical processes. Applications of the main methods including neutron diffraction, small-angle neutron scattering, inelastic neutron scattering, neutron reflectometry and neutron introscopy are considered. Information on advanced neutron sources is presented and a number of typical experiments are outlined. The results of some studies of lithium-containing materials for lithium-ion batteries, carried out at IBR-2 pulsed reactor, are discussed. The bibliography includes 50 references.

  3. Post-separation detection of nucleic acids and proteins by neutron activation.

    PubMed Central

    Snapka, R M; Kwok, K; Bernard, J A; Harling, O K; Varshavsky, A

    1986-01-01

    We describe approaches to neutron activation analysis and their application to post-separation autoradiographic detection of biological compounds. Specifically, we have extended the use of a "direct-labeling" method to the post-separation detection of DNA after gel electrophoresis and to the detection of nucleotides separated by TLC. In addition, we describe a more generally applicable "indirect-labeling" method in which separated compounds of interest are selectively bound to ligands containing highly neutron-activatable elements, such as manganese (55Mn), europium (151Eu), or dysprosium (164Dy), and then irradiated with thermal neutrons. This method is illustrated with nucleotides separated by TLC and with proteins separated by polyacrylamide gel electrophoresis. In contrast to the direct-labeling approach, the indirect-labeling method can be adapted to detect any class of substances for which a highly neutron-activatable, selectively binding ligand is available. The theoretically achievable sensitivity of the indirect-labeling method is in the attomole (10(-18) mol) range. Images PMID:3466168

  4. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Tomar, B. S.; Kaushik, T. C.; Andola, Sanjay; Ramniranjan; Rout, R. K.; Kumar, Ashwani; Paranjape, D. B.; Kumar, Pradeep; Ramakumar, K. L.; Gupta, S. C.; Sinha, R. K.

    2013-03-01

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of 235U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×109 D-D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U3O8 samples of varying amounts (0.1-40 g) containing enriched 235U (14.8%) in the device. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ˜109. The detection limit of the system is estimated to be 18 mg of 235U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets.

  5. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  6. Neutron activation determination of iridium, gold, platinum, and silver in geologic samples

    USGS Publications Warehouse

    Millard, H.T., Jr.

    1987-01-01

    Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.

  7. Gamma-ray and neutron radiography for a pulsed fast- neutron analysis cargo inspection system

    NASA Astrophysics Data System (ADS)

    Rynes, Joel Christian

    1999-11-01

    This dissertation presents the design, optimization, and characterization of a gamma-ray and neutron radiographic subsystem that was developed for the Pulsed Fast Neutron Analysis (PFNA) cargo inspection system. The PFNA inspection system uses nanosecond pulsed neutrons to produce three-dimensional elemental density images of cargo. Contraband in the cargo can be detected by its elemental content. The PFNA neutron source produces gamma rays as well as neutrons. The radiographic subsystem measures these radiations in an array of plastic scintillators to produce gamma-ray and neutron transmission images of the cargo simultaneously with the PFNA measurement. Although the radiographic subsystem improves PFNA performance in many forms of contraband detection, it was specifically designed to detect Special Nuclear Material (SNM) in cargo containers and trucks. A feasibility study, including experiments and modeling, was performed to determine the usefulness of gamma-ray radiography in this application. The study assumed a baseline configuration of the PFNA source, a relatively small rectangular radiation beam, and a plastic detector with a 5.1 cm diameter and a 7.6 cm length. The study showed that the baseline configuration was useful in cargoes up to 144 g/cm2 thick. At this thickness, a signal-to-noise ratio of three was obtainable per pixel. The maximum cargo thickness was later increased to 180 g/cm2 by increasing the detector length to 17.0 cm and by changing the source beam stop from gold to copper. An experiment was then performed that determined a 3.5 cm radiographic resolution was adequate for SNM detection. The detector configuration and the source motion were optimized to obtain a resolution of approximately 3.5 cm using the minimal number of detectors and the maximum detector diameter. The source is moved up and down as the cargo is pulled through the system to irradiate the entire surface of the cargo with the radiation beam. The final design consisted of

  8. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  9. SENNA: device for explosives' detection based on nanosecond neutron analysis

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Osetrov, Oleg; Vakhtin, Dmitry; Gorshkov, Igor

    2006-05-01

    Portable device for explosives' detection (SENNA) based on Nanosecond Neutron Analysis (NNA) / Associated Particles Technique (APT) has been created and tested. SENNA is a single suitcase weighting 35 kg; it is remotely controlled from any PC-compatible computer. Inside is an APT neutron generator with a 3×3 matrix of semiconductor detectors of associated alpha-particles, two BGO-based detectors of gamma-rays, fully-digital data acquisition electronics, data analysis and decision-making software, and batteries. Detection technology is based on determining chemical composition of the concealed substance by analyzing secondary gamma-rays from interaction of tagged fast neutrons with its material. A combination of position-sensitive alpha-detector and time-of-flight analysis allows one to determine the location of the detected material within the inspected volume and its approximate mass. Fully digital data acquisition electronics is capable of performing alpha-gamma coincidence analysis at very high counting rates, which leads to reduction of the detection time down to dozens of seconds. SENNA's scenario-driven automatic decisionmaking algorithm based of "fuzzy logic" mechanism allows one to detect not only standard military or industrial explosives, but also improvised explosives (including those containing no nitrogen), even if their chemical composition differs from that of standard explosives. SENNA can also be "trained" to detect other hazardous materials, such as chemical/toxic materials, if their chemical composition is in any way different from that of the surrounding materials.

  10. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.

    1994-03-01

    This paper describes an automated cargo inspection system (CIS) based on pulsed fast neutron analysis (PFNA). The system uses a pulsed beam of fast neutrons to interrogate the contents of small volume elements--voxels--of a cargo container or truck. The neutrons interact with the elemental contents of each voxel and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs, explosives, and contraband. From the time of arrival of the gamma rays, the position of the voxel within the truck is determined. Full-scale physics simulation of time-dependent neutron and gamma ray interactions in various cargo materials have aided in the design of the system. These simulations have been benchmarked against laboratory measurements. A scaled model of the PFNA CIS is in operation in SAIC's PFNA facility and has been used to demonstrate the detection of drugs and other contraband concealed in a full-size cargo container with a variety of contents. A full-scale system is presently being designed and fabricated for the U.S. Government's Cargo Container Inspection Technology Testbed at Tacoma, Washington. This system is designed to scan five or more trucks per hour and is scheduled to come into operation in July 1995.

  11. Neutronic Calculation Analysis for CN HCCB TBM-Set

    NASA Astrophysics Data System (ADS)

    Cao, Qixiang; Zhao, Fengchao; Zhao, Zhou; Wu, Xinghua; Li, Zaixin; Wang, Xiaoyu; Feng, Kaiming

    2015-07-01

    Using the Monte Carlo transport code MCNP, neutronic calculation analysis for China helium cooled ceramic breeder test blanket module (CN HCCB TBM) and the associated shield block (together called TBM-set) has been carried out based on the latest design of HCCB TBM-set and C-lite model. Key nuclear responses of HCCB TBM-set, such as the neutron flux, tritium production rate, nuclear heating and radiation damage, have been obtained and discussed. These nuclear performance data can be used as the basic input data for other analyses of HCCB TBM-set, such as thermal-hydraulics, thermal-mechanics and safety analysis. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  12. Spectral measurements of neutrons produced by 52 MeV protons with activation detectors

    NASA Astrophysics Data System (ADS)

    Shin, Kazuo; Saito, Takatsugu; Fujii, Masahiko; Nakamura, Takashi

    The accuracy of the neutron spectral measurement of energy up to ˜40 MeV with activation detectors was examined using high energy neutrons from thick targets bombarded by 52 MeV protons. The measured activation rates were unfolded with the modified SAND-II code and compared with the neutron spectra measured by the NE-213 scintillator. Quite good agreement in absolute values was obtained between the spectra recorded by these two different detectors. The activation detector was shown to be useful for neutron spectroscopy at energies higher than ˜ 10 MeV.

  13. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

    DOE PAGESBeta

    Wang, Cai -Lin; Riedel, Richard A.

    2016-01-14

    A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 104. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a1, b0) obtained from Wiener filter; iv). an effective amplitude (m)more » obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Moreover, our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.« less

  14. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    SciTech Connect

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  15. WHOLE BODY COUNTING AND NEUTRON ACTIVATION ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition of the human body can be described using a number of different models. The most basic is the atomic model. This chapter describes several nuclear-based techniques that have been used to obtain direct in vivo chemical assays of the whole body of humans. In particular, the body's co...

  16. Additive analysis of nano silicon under the influence of neutron irradiation

    NASA Astrophysics Data System (ADS)

    Garibli, Aydan; Huseynov, Elchin; Garibov, Adil; Mehdiyeva, Ravan

    2016-04-01

    Nano silicon with 80m2g‑1 specific surface area, 100 nm size and 0.08 g/cm3 density has been irradiated continuously with neutrons (2 × 1013n ṡcm‑2s‑1) up to 20 h at various periods in TRIGA Mark II type research reactor. After the neutron irradiation, cooling time of the samples is taken approximately 360 h. It is found that the initial radioactivity of the irradiated samples changes within 0.1 kBq-3.1 GBq range. Definition of elements’ concentration is determined based on the activities formed in the relevant energy range. After the irradiation, the result of activity analysis carried out the element content of 1% mixture existing in nano Si which has been defined with radionuclides of the relevant element. Moreover, from activities of mixed radioisotopes, their amounts in percentage has been determined.

  17. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV.

    PubMed

    Yashima, H; Sekimoto, S; Ninomiya, K; Kasamatsu, Y; Shima, T; Takahashi, N; Shinohara, A; Matsumura, H; Satoh, D; Iwamoto, Y; Hagiwara, M; Nishiizumi, K; Caffee, M W; Shibata, S

    2014-10-01

    Neutron activation cross sections for Bi and Co at 386 MeV were measured by activation method. A quasi-monoenergetic neutron beam was produced using the (7)Li(p,n) reaction. The energy spectrum of these neutrons has a high-energy peak (386 MeV) and a low-energy tail. Two neutron beams, 0° and 25° from the proton beam axis, were used for sample irradiation, enabling a correction for the contribution of the low-energy neutrons. The neutron-induced activation cross sections were estimated by subtracting the reaction rates of irradiated samples for 25° irradiation from those of 0° irradiation. The measured cross sections were compared with the findings of other studies, evaluated in relation to nuclear data files and the calculated data by Particle and Heavy Ion Transport code System code. PMID:24368868

  18. Tables for simplifying calculations of activities produced by thermal neutrons

    USGS Publications Warehouse

    Senftle, F.E.; Champion, W.R.

    1954-01-01

    The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.

  19. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Gozani, T.

    1995-05-01

    Pulsed Fast Neutron Analysis (PFNA) is a technique which uses a collimated pulsed beam of fast neutrons to excite the nuclei of common elements in bulk materials. Direct imaging of the elemental contents of the material is accomplished by using time-of-flight analysis to identify the position of the interactions and gamma-ray spectroscopy to identify the elemental gamma-rays. From the ratios and absolute measurements of elemental abundances the identification of the material can be deduced. The PFNA cargo inspection system uses a volume type negative ion source and a double drift bunching system to create an intense beam of nano-second bunched negative deuterium ions which, after acceleration to around 6 MeV, impinge on a deuterium gas target producing pulsed neutrons. A unique high speed data acquisition system digitizes and analyzes the time-energy data in real time. Experimental studies and computer simulations were extensively employed to characterize and optimize the design parameters of the system.

  20. Application of pulsed fast neutrons analysis to cargo inspection

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Gozani, T.; Loveman, R.; Bendahan, J.; Ryge, P.; Stevenson, J.; Liu, F.; Sivakumar, M.

    1994-12-01

    Pulsed Fast Neutron Analysis (PFNA) is a technique which uses a collimated pulsed beam of fast neutrons to excite the nuclei of common elements in bulk materials. Direct imaging of the elemental contents of the material is accomplished by using time-of-flight analysis to identify the position of the interactions and gamma-ray spectroscopy to identify the elemental gamma rays. From the ratios and absolute measurements of elemental abundances the identification of the material can be deduced. The PFNA Cargo Inspection System uses a volume type negative ion source and a double drift bunching system to create an intense beam of nano-second bunched negative deuterium ions which, after acceleration to around 6 MeV, impinge on a deuterium gas target producing pulsed neutrons. A unique high speed data acquisition system digitizes and analyzes the time-energy data in real time. Experimental studies and computer simulations were extensively employed to characterize and optimize the design parameters of the system. The system described is scheduled for full scale laboratory testing in the fall of 1994 and for field testing at a Government Testbed in Tacoma, WA in 1995.

  1. Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute

    NASA Astrophysics Data System (ADS)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Sutton, L. F.; Scherillo, A.; Bognetti, L.; Bini, A.; Barzagli, E.; Schooneveld, E.; Andreani, C.

    2013-09-01

    A metallic 19th century flute was studied by means of integrated and simultaneous neutron-based techniques: neutron diffraction, neutron radiative capture analysis and neutron radiography. This experiment follows benchmark measurements devoted to assessing the effectiveness of a multitask beamline concept for neutron-based investigation on materials. The aim of this study is to show the potential application of the approach using multiple and integrated neutron-based techniques for musical instruments. Such samples, in the broad scenario of cultural heritage, represent an exciting research field. They may represent an interesting link between different disciplines such as nuclear physics, metallurgy and acoustics.

  2. Measurement of residual 60Co activity induced by atomic-bomb neutrons in Nagasaki and background contribution by environmental neutrons.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Shimazaki, Tatsuya; Okumura, Yutaka; Fujita, Shoichiro; Watanabe, Tadaaki; Imanaka, Tetsuji

    2002-12-01

    Residual 60Co activity in five steel samples induced by neutrons from the Nagasaki atomic bomb has been measured within about 1000 m from the hypocenter. The chemical separation of cobalt and nickel from steel samples was performed, and cobalt-enriched samples were prepared for all samples. Gamma-ray measurements were carried out with a low-background well-type germanium detector. The gamma-ray spectra for five samples were compared with the spectrum of a control sample to ensure that the observed 60Co was actually induced by A-bomb neutrons. The activation of cobalt by environmental neutrons was also investigated. It has been shown that the present 60Co data are consistent with earlier Hashizume's data. PMID:12674203

  3. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  4. Irradiation Effects for the Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System

    SciTech Connect

    Slater, C.O.

    2001-02-02

    At the request of Safety and Ecology Corporation of Tennessee, radiation effects of the proposed Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System have been examined. First, fissile cargo were examined to determine if a significant neutron signal would be observable during interrogation. Results indicated that ample multiplication would be seen for near critical bare targets. The water-reflected sphere showed relatively little multiplication. By implication, a fissile target shielded by hydrogenous cargo might not be detectable by neutron interrogation, particularly if reliance is placed on the neutron signal. The cargo may be detectable if use can be made of the ample increase in the photon signal. Second, dose rates were calculated at various locations within and just outside the facility building. These results showed that some dose rates may be higher than the target dose rate of 0.05 mrem/h. However, with limited exposure time, the total dose may be well below the allowed total dose. Lastly, estimates were made of the activation of structures and typical cargo. Most cargo will not be exposed long enough to be activated to levels of concern. On the other hand, portions of the structure may experience buildup of some radionuclides to levels of concern.

  5. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  6. Irradiation embrittlement of neutron-irradiated low activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Kayano, H.; Kimura, A.; Narui, M.; Sasaki, Y.; Suzuki, Y.; Ohta, S.

    1988-07-01

    Effects of neutron irradiation and additions of small amounts of alloying elements on the ductile-brittle transition temperature (DBTT) of three different groups of ferritic steels were investigated by means of the Charpy impact test in order to gain an insight into the development of low-activation ferritic steels suitable for the nuclear fusion reactor. The groups of ferritic steels used in this study were (1) basic 0-5% Cr ferritic steels, (2) low-activation ferritic steels which are FeCrW steels with additions of small amounts of V, Mn, Ta, Ti, Zr, etc. and (3) FeCrMo, Nb or V ferritic steels for comparison. In Fe-0-15% Cr and FeCrMo steels, Fe-3-9% Cr steels showed minimum brittleness and provided good resistance against irradiation embrittlement. Investigations on the effects of additions of trace amounts of alloying elements on the fracture toughness of low-activation ferritic steels made clear the optimum amounts of each alloying element to obtain higher toughness and revealed that the 9Cr-2W-Ta-Ti-B ferritic steel showed the highest toughness. This may result from the refinement of crystal grains and improvement of quenching characteristics caused by the complex effect of Ti and B.

  7. Active Neutron Interrogation of Non-Radiological Materials with NMIS

    SciTech Connect

    Walker, Mark E; Mihalczo, John T

    2012-02-01

    The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

  8. Improved thermal neutron activation sensor for detection of bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Faust, Anthony A.; Andrews, H. Robert; Clifford, Edward T. H.; Mosquera, Cristian M.

    2012-06-01

    Defence R&D Canada - Suffield and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives since 1994. First generation sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on the ILDS teleoperated, vehicle-mounted, multi-sensor anti-tank landmine detection systems. The first generation TNA could detect anti-tank mines buried 10 cm or less in no more than a minute, but deeper mines and those significantly displaced horizontally required considerably longer times. Mines as deep as 30 cm could be detected with long counting times (1000 s). The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. This improved sensitivity can translate to either decreased counting times, decreased minimum detectable explosive quantities, increased maximum sensor-to-target displacement, or a trade off among all three. Experiments to characterize the performance of the latest generation TNA in detecting buried landmines and IEDs hidden in culverts were conducted during 2011. This paper describes the second generation system. The experimental setup and methodology are detailed and preliminary comparisons between the performance of first and second generation systems are presented.

  9. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

    NASA Astrophysics Data System (ADS)

    Wang, C. L.; Riedel, R. A.

    2016-01-01

    A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at Spallation Neutron Source. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 104. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, six digital signal analysis methods of individual waveforms acquired from photomultiplier tubes were proposed using (i) charge integration, (ii) pulse-amplitude histograms, (iii) power spectrum analysis combined with the maximum pulse-amplitude, (iv) two event parameters (a1, b0) obtained from a Wiener filter, (v) an effective amplitude (m) obtained from an adaptive least-mean-square filter, and (vi) a cross-correlation coefficient between individual and reference waveforms. The NGD ratios are about 70 times those from the traditional PHA method. Our results indicate the NGD capabilities of neutron Anger cameras based on GS20 scintillators can be significantly improved with digital signal analysis methods.

  10. Improved neutron-gamma discrimination for a (6)Li-glass neutron detector using digital signal analysis methods.

    PubMed

    Wang, C L; Riedel, R A

    2016-01-01

    A (6)Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at Spallation Neutron Source. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10(4). The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, six digital signal analysis methods of individual waveforms acquired from photomultiplier tubes were proposed using (i) charge integration, (ii) pulse-amplitude histograms, (iii) power spectrum analysis combined with the maximum pulse-amplitude, (iv) two event parameters (a1, b0) obtained from a Wiener filter, (v) an effective amplitude (m) obtained from an adaptive least-mean-square filter, and (vi) a cross-correlation coefficient between individual and reference waveforms. The NGD ratios are about 70 times those from the traditional PHA method. Our results indicate the NGD capabilities of neutron Anger cameras based on GS20 scintillators can be significantly improved with digital signal analysis methods. PMID:26827314

  11. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  12. Real-time active cosmic neutron background reduction methods

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray‒induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory-Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the lowenergy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of manmade neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  13. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.; Coates, Allison; Kuo, Stelly N.; Loveman, Robert; Pentaleri, Ed; Rynes, Joel C.

    1997-02-01

    The pulsed fast neutron analysis (PFNA) cargo inspection system (CIS) uses a nanosecond pulsed beam of fast neutrons to interrogate the contents of small volume elements -- voxels -- of a cargo container or truck. A color display shows the three-dimensional location of suspected contraband, such as drugs or explosives. The neutrons interact with the elemental contents of each vowel, and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs and other contraband. From the time of arrival of the gamma rays, the position of the vowel within the truck is determined. The PFNA CIS is designed to scan five or more trucks per hour. The operator interface has been designed to assist in the rapid identification of drugs, explosives or other contraband. This paper describes the system and the tests for drugs and explosives that have been carried out during the past year. These tests were aimed at exploring the envelope of performance of the system.

  14. Feasibility of culvert IED detection using thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; McFee, John E.; Clifford, Edward T. H.; Andrews, Hugh Robert; Mosquera, Cristian; Roberts, William C.

    2012-06-01

    Bulk explosives hidden in culverts pose a serious threat to the Canadian and allied armies. Culverts provide an opportunity to conceal insurgent activity, avoid the need for detectable surface disturbances, and limit the applicability of conventional sub-surface sensing techniques. Further, in spite of the large masses of explosives that can be employed, the large sensor{target separation makes detection of the bulk explosive content challeng- ing. Defence R&D Canada { Sueld and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives for over 15 years. The next generation TNA sensor, known as TNA2, incorporates a number of improvements that allow for increased sensor-to-target dis- tances, making it potentially feasible to detect large improvised explosive devices (IEDs) in culverts using TNA. Experiments to determine the ability of TNA2 to detect improvised explosive devices in culverts are described, and the resulting signal levels observed for relevant quantities of explosives are presented. Observations conrm that bulk explosives detection using TNA against a culvert-IED is possible, with large charges posing a detection challenge at least as dicult as that of a deeply buried anti-tank landmine. Because of the prototype nature of the TNA sensor used, it is not yet possible to make denitive statements about the absolute sensitivity or detection time. Further investigation is warranted.

  15. Calculations of neutron spectra after neutron neutron scattering

    NASA Astrophysics Data System (ADS)

    Crawford, B. E.; Stephenson, S. L.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu; Nekhaev, G. V.; Strelkov, A. V.; Sharapov, E. I.; Shvetsov, V. N.

    2004-09-01

    A direct neutron-neutron scattering length, ann, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of ann will not only help resolve conflicting results of ann by indirect means, but also in comparison to the proton-proton scattering length, app, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum—Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  16. Nanosecond pulsed fast neutron analysis - a progress report

    SciTech Connect

    Gozani, T.

    1994-12-31

    The status of the nanosecond Pulsed Fast Neutron Analysis (PFNA) at the time of the conference will be given. PFNA is a new technique researched and developed over the last several years to detect non-intrusively, a large variety of materials in containers as small as luggage or as large as trucks. The first full sized truck/container inspection system is being assembled at the Science Applications International Corporation (SAIC) Santa Clara facility for test and evaluation. Following this, the system will be operationally field tested at a designated government test bed in the Port of Tacoma, Washington.

  17. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  18. Computational neutronic analysis of the nuclear vapor thermal rocket engine

    SciTech Connect

    Dugan, E.T.; Watanabe, Y.; Kuras, S.; Maya, I.; Diaz, N.J. )

    1992-01-01

    Calculational procedures and results are presented for the neutronic analysis of the Nuclear Vapor Thermal Reactor (NVTR) rocket engine. The NVTR, in a rocket engine, uses modified NERVA geometry and systems with the solid fuel replaced by highly enriched (>85%) uranium tetrafluoride (UF[sub 4]) vapor. In the NVTR, the hydrogen propellant is the primary coolant, is physically separated from the UF[sub 4] vapor (which is not circulated), is maintained at high pressure (50 to 100 atm), and exits the core at 3100 to 3500 K.

  19. Fast-neutron activation of long-lived nuclides in natural Pb

    NASA Astrophysics Data System (ADS)

    Guiseppe, V. E.; Elliott, S. R.; Fields, N. E.; Hixon, D.

    2015-04-01

    We measured the production of the long-lived nuclides 207 Bi, 202 Pb, and 194 Hg in a sample of natural Pb due to high-energy neutron interactions using a neutron beam at the Los Alamos Neutron Science Center. The activated sample was counted by a HPGe detector to measure the amount of radioactive nuclides present. These nuclides are critical in understanding potential backgrounds in low background experiments utilizing large amounts of Pb shielding due to cosmogenic neutron interactions in the Pb while residing on the Earth's surface. By scaling the LANSCE neutron flux to a cosmic neutron flux, we measure the sea level cosmic ray production rates of 8.0 ± 1.3 atoms/kg/day of 194 Hg, 120 ± 25 atoms/kg/day 202 Pb, and <0.17 ± 0.04 atoms/kg/day 207 Bi.

  20. Search for reaction-in-flight neutrons using thulium activation at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Rundberg, Robert; Tonchev, Anton; Fowler, Malcolm; Wilhelmy, Jerry; Archuleta, Tom; Bionta, Richard; Boswell, Mitzi; Gostic, Julie; Griego, Jeff; Knittel, Kenn; Klein, Andi; Moody, Ken; Shaughnessy, Dawn; Wilde, Carl; Yeamans, Charles

    2013-10-01

    We report on measurements of reaction-in-flight (RIF) neutrons at the National Ignition Facility. RIF neutrons are produced in cryogenically layered implision by up-scattered deuterium, or tritium ions that undergo subsequent fusion reactions. The rate of RIF neutron production is proportional to the fuel areal density (| | R) and ion-stopping length in the dense fuel assembly. Thus, RIF neutrons provide information on charge particle stopping in a strongly coupled plasma, where perturbative modeling breaks down. To measure RIF neutrons, a set of thulium activation foils was placed 50 cm from layered cryogenic implosions at the NIF. The reaction 169Tm(n,3n)167Tm has a neutron kinetic energy threshold of 14.96 MeV. We will present results from initial experiments performed during the spring of 2013. Prepared by LANL under Contract DE-AC-52-06-NA25396, TSPA, LA-UR-13-22085.

  1. Problems encountered in the use of neutron methods for elemental analysis on planetary surfaces

    USGS Publications Warehouse

    Senftle, F.; Philbin, P.; Moxham, R.; Boynton, G.; Trombka, J.

    1974-01-01

    From experimental studies of gamma rays from fast and thermal neutron reactions in hydrogeneous and non-hydrogeneous, semi-infinite samples and from Monte Carlo calculations on soil of a composition which might typically be encountered on planetary surfaces, it is found that gamma rays from fast or inelastic scattering reactions would dominate the observed spectra. With the exception of gamma rays formed by inelastically scattered neutrons on oxygen, useful spectra would be limited to energies below 3 MeV. Other experiments were performed which show that if a gamma-ray detector were placed within 6 m of an isotopic neutron source in a spacecraft, it would be rendered useless for gamma-ray spectrometry below 3 MeV because of internal activation produced by neutron exposure during space travel. Adequate shielding is not practicable because of the size and weight constraints for planetary missions. Thus, it is required that the source be turned off or removed to a safe distance during non-measurement periods. In view of these results an accelerator or an off-on isotopic source would be desirable for practical gamma-ray spectral analysis on planetary surfaces containing but minor amounts of hydrogen. ?? 1974.

  2. 3D neutronic/thermal-hydraulic coupled analysis of MYRRHA

    SciTech Connect

    Vazquez, M.; Martin-Fuertes, F.

    2012-07-01

    The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

  3. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE PAGESBeta

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; Heller, William T.

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO3)4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/Rg, where Rg is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis from SANS data when Rgmore » is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  4. Measurement of residual 152Eu activity induced by atomic bomb neutrons in Nagasaki and the contribution of environmental neutrons to this activity.

    PubMed

    Shizuma, Kiyoshi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Ishikawa, Masayori; Iwatani, Kazuo; Hasai, Hiromi; Oka, Takamitsu; Fujita, Shoichiro; Watanabe, Tadaaki; Yamashita, Tomoaki; Imanaka, Tetsuji

    2003-06-01

    Residual 152Eu activities induced by neutrons from the Nagasaki atomic bomb were measured for nine mineral samples located up to 1,061 m in the slant range and one control sample at 2,850 m from the hypocenter. A chemical separation to prepare europium-enriched samples was performed for all samples, and gamma ray measurements were carried out with a low background well-type germanium detector. In this paper, the measured specific activities of 152Eu are compared with activation calculations based on the DS86 neutron fluence and the 93Rev one. The calculated-to-measured ratios are also compared with those of 60Co and 36Cl. The present results indicate that the measurements agree to the calculation within a factor of three as observed in the nuclear tests at Nevada. The activation level of environmental neutrons and the detection limit for 152Eu are also discussed. PMID:13678342

  5. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    SciTech Connect

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.

    1990-11-01

    The irradiation behavior of high-density uranium silicides has been a matter of interest to the nuclear industry for use in high power or low enrichment applications. Transmission electron microscopy studies have found that heavy ion bombardment renders U{sub 3}Si and U{sub 3}Si{sub 2} amorphous at temperatures below about 250 C and that U{sub 3}Si becomes mechanically unstable suffering rapid growth by plastic flow. In this present work, crystallographic changes preceding amorphization by fission fragment damage have been studied by high-resolution neutron diffraction as a function of damage produced by uranium fission at room temperature. Initially, both silicides had tetragonal crystal structures. Crystallographic and amorphous phases were studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering analysis of the non-crystalline scattering component. 13 refs., 5 figs.

  6. Iso-geometric analysis for neutron diffusion problems

    SciTech Connect

    Hall, S. K.; Eaton, M. D.; Williams, M. M. R.

    2012-07-01

    Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry to be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)

  7. Predicting long-lived, neutron-induced activation of concrete in a cyclotron vault

    NASA Astrophysics Data System (ADS)

    Carroll, L. R.

    2001-07-01

    Many elements in concrete can become activated by neutrons in a cyclotron vault, but only a few of the activation products are long-lived. The most prominent of these are Eu-152, Eu-154, Co-60, and Cs-134 which build up over time from (n, γ) reactions in trace amounts of stable Europium, Cobalt, and Cesium that are normally present in concrete in concentrations of a few parts per million, or less, by weight. A retrospective analysis of data taken in connection with a previous decommissioning of a cyclotron vault, coupled with independent published data, gives us an estimate of the concentrations of these elements in concrete. With that estimate as a benchmark, we then employ a Monte Carlo Radiation Transport Code to estimate the long-term activation profile in concrete for arbitrary irradiation conditions.

  8. Improved analysis for matrix effect correction in LLW neutronic assay

    NASA Astrophysics Data System (ADS)

    Raoux, A.-C.; Loridon, J.; Mariani, A.; Passard, C.

    2008-11-01

    The matrix effect correction for the differential die-away (DDA) measurement is an improvement in the fissile material content determination. In low-level radioactive waste (LLW) packages examination, the most widely used methods are based on neutron flux monitoring with 3He tubes, associated to a "matrix interrogation source" (MIS) originally developed for passive neutron measurement and which determine an experimental detection efficiency. This paper describes two new approaches developed with the goal of increasing the accuracy of the matrix effect correction and reducing the measurement time, which is a major objective in the non destructive assay (NDA) of large number of waste packages. The first method is based on an active prompt neutron coincidence measurement using a new generation list mode data card, which is an alternative to the MIS. Monte Carlo simulations have been performed to determine the correction function parameters. An experimental agreement within 20% is obtained with a fissile sample localized at the centre of different matrices provided that the positioning effect remains negligible. Homogeneous distributions of the fissile material have also been simulated and lead to a deviation less than 15% for most of the cases. The second method exploits the effect of matrices on the total active signal. A simulated annealing algorithm, using a reference data base of multi-channel scaling (MCS) spectra, is performed to fit the raw signal. The construction of the MCS library involves a learning phase to define and acquire the DDA signals as representative as possible of the real measurement conditions. Most of the cases are within a 4% agreement interval with the expected experimental value.

  9. Neutron radiography activity in the european program cost 524: Neutron imaging techniques

    NASA Astrophysics Data System (ADS)

    Chirco, P.; Bach, P.; Lehmann, E.; Balasko, M.

    2001-07-01

    COST is a framework for scientific and technical cooperation, allowing the coordination of national research on a European level, including 32 member countries. Participation of institutes from non-COST countries is possible. From an initial 7 Actions in 1971, COST has grown to 200 Actions at the beginning of 2000. COST Action 524 is under materials domain, the title of which being "Neutron Imaging Techniques for the Detection of Defects in Materials", under the Chairmanship of Dr. P. Chirco (I.N.F.N.). The following countries are represented in the Management Committee of Action 524: Italy, France, Austria, Germany, United Kingdom, Hungary, Switzerland, Spain, Czech Republic, Slovenia, and Russia. The six working groups of this Action are working respectively on standardization of neutron radiography techniques, on aerospace application, on civil engineering applications, on comparison and integration of neutron imaging techniques with other NDT, on neutron tomography, and on non radiographic techniques such as neutron scattering techniques. A specific effort is devoted to standardization issues, with respect to other non European standards. Results of work performed in the COST frame are published or will be published in the review INSIGHT, edited by the British Institute of Non Destructive Testing.

  10. Ultra Sensitive Neutron Activation Measurements of {sup 232}Th in Copper

    SciTech Connect

    Clemenza, M.; Previtali, E.; Borio di Tigliole, A.; Salvini, A.

    2011-04-27

    Copper, thanks to its low content in radioactive contaminations, is a material widely used for shielding, holders and other objects close to the sensitive parts of the detectors in many experiments in rare event physics. This implies that tools able to reach sensitivity of the order of <10{sup -12} gram of contaminants per gram of copper are of crucial importance. A methodology based in Neutron Activation Analysis (NAA) has been developed to obtain an extremely high sensitivity in the analysis of {sup 232}Th in copper samples. A detection limit of 5x10{sup -13} g {sup 232}Th/g Cu has been achieved through the irradiation of 200 g of copper sample which subsequently was radio-chemically concentrated using nitric acid and then actinide resin from Eichrom Inc. Several elutions were performed with various inorganic acids to concentrate the {sup 232}Th activation product ({sup 233}Pa) from the copper matrix and to also eliminate the radioactive background induced by the neutron bombardment to reach higher sensitivity.

  11. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    SciTech Connect

    MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

    2004-10-13

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

  12. Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, Michael J.; Barry, Devin P.; Burke, John A.; Drindak, Noel J.; Leinweber, Greg; Ballad, Robert V.; Slovacek, Rudy E.; Danon, Yaron; Block, Robert C.

    2005-05-24

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions.Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen-section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically enriched liquid samples. The liquid samples were designed to provide information on the 176Hf and 178Hf contributions to the 8-eV doublet without saturation.Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

  13. Manufacture and properties of erythromycin beads containing neutron-activated erbium-171

    SciTech Connect

    Parr, A.F.; Digenis, G.A.; Sandefer, E.P.; Ghebre-Sellassie, I.; Iyer, U.; Nesbitt, R.U.; Scheinthal, B.M. )

    1990-03-01

    To evaluate the effects of a neutron activation radiolabeling technique on an enteric-coated multiparticulate formulation of erythromycin, test quantities were produced under industrial pilot scale conditions. The pellets contained the stable isotope erbium oxide (Er-170), which was later converted by neutron activation into the short-lived gamma ray-emitting radionuclide, erbium-171. In vitro studies indicated that the dissolution profile, acid resistance, and enteric-coated surface of the pellets were minimally affected by the irradiation procedure. Antimicrobial potency was also unaffected, as determined by microbiological assay. Neutron activation thus appears to simplify the radiolabeling of complex pharmaceutical dosage forms for in vivo study by external gamma scintigraphy.

  14. A neutron activation technique for manganese measurements in humans.

    PubMed

    Bhatia, C; Byun, S H; Chettle, D R; Inskip, M J; Prestwich, W V

    2015-01-01

    Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments. To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the (7)Li(p,n)(7)Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4 π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo. PMID:25169978

  15. Perspectives for on-line analysis of bauxite by neutron irradiation

    NASA Astrophysics Data System (ADS)

    Beurton, Gabriel; Ledru, Bertrand; Letourneur, Philippe

    1995-03-01

    The interest in bauxite as a major source of alumina results in a strong demand for on-line instrumentation suitable for sorting, blending, and processing operations at the bauxite mine and for monitoring instrumentation in the Bayer process. The results of laboratory experiments based on neutron interactions with bauxite are described. The technique was chosen in order to overcome the problem of spatial heterogeneity in bulk mineral analysis. The evaluated elements contributed to approximately 99.5% of the sample weight. In addition, the measurements provide valuable information on physical parameters such as density, hygrometry, and material flow. Using a pulsed generator, the analysis system offers potential for on-line measurements (borehole logging or conveyor belt). An overall description of the experimental set-up is given. The experimental data include measurements of natural radioactivity, delayed radioactivity induced by activation, and prompt gamma rays following neutron reaction. In situ applications of neutron interactions provide continuous analysis and produce results which are more statistically significant. The key factors contributing to advances in industrial applications are the development of high count rate gamma spectroscopy and computational tools to design measurement systems and interpret their results.

  16. Active mode calibration of the combined thermal epithermal neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2001-01-01

    The Combined Thermal Epithermal Neutron (CTEN) system was developed by the Los Alamos National Laboratory to perform active and passive neutron interrogation of waste. The higher energy epithermal neutrons are able to penetrate further into the matrix and active material, thus reducing matrix attenuation and self-shielding effects compared to a thermal neutron pulse alone. The developmental unit was installed in 2001 at the Los Alamos Non-Destructive Assay (NDA) facility to characterize waste for the TRU Waste Characterization Project (TWCP). This paper summarizes the active mode certification results. National Institute of Standards and Technology (NIST) traceable standards were used to determine the system response as a function of mass. Finally, NIST-traceable verification standards were used to verify the calibration in the range 30 milligrams to 25 g of weapons grade plutonium although self-shielding limits the upper active interrogation to 10 g.

  17. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.

    PubMed

    Murata, Isao; Otani, Yuki; Sato, Fuminobu

    2015-12-01

    Proton-lithium (p-Li) reaction is being examined worldwide as a candidate nuclear production reaction for accelerator based neutron source (ABNS) for BNCT. In this reaction, the emitted neutron energy is not so high, below 1 MeV, and especially in backward angles the energy is as low as about 100 keV. The intensity measurement was thus known to be difficult so far. In the present study, a simple method was investigated to monitor the absolute neutron intensity of the p-Li neutron source by employing the foil activation method based on isomer production reactions in order to cover around several hundreds keV. As a result of numerical examination, it was found that (107)Ag, (115)In and (189)Os would be feasible. Their features found out are summarized as follows: (107)Ag: The most convenient foil, since the half life is short. (115)In: The accuracy is the best at 0°, though it cannot be used for backward angles. And (189)Os: Suitable nuclide which can be used in backward angles, though the gamma-ray energy is a little too low. These would be used for p-Li source monitoring depending on measuring purposes in real BNCT scenes. PMID:26242557

  18. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    SciTech Connect

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  19. Response of thunderstorm activity in data of neutron monitoring at Tien Shan

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Kryukov, Sergey; Lutsenko, Vadim

    2015-04-01

    We present results of the study of data of the monitoring of high-energy and thermal neutrons at Tien Shan at different stages of thunderstorm activity. The data of the neutron monitoring were used taking into account the barometric effect. The intensity of the neutron component of cosmic rays is recorded in seven energy ranges. The electric field has values of ~ 100 V/m under fair weather conditions. Standard deviation of minute values of the neutron monitor data at the high altitude station does not exceed 0.5-0.6 %. Found that the standard deviation of the data during thunderstorms always exceeds these values. We selected events during the passage of thunderstorm clouds over the high altitude station without lightning discharges or with a small number of them. It was found that the particle rate of the neutron monitor changes in antiphase with the electric field changes. Atmospheric electric field of positive polarity decreases the count rate of the neutron monitor, and negative polarity - increases. Change of the count rate occurs at values of electric field ≥ 10-15 kV/m and reaches 2 %. The neutron monitor at the high-altitude station has the ability to measure the energy of recorded particles through determination of their multiplicity. We experimentally established that the sensitivity of the detected particles to change in Ez increases with decreasing their energy. The upper energy threshold of sensitivity of neutrons to change electric field is ~10 GeV. The physical mechanism of effect is based on lead nucleus capture of soft negative muons with the subsequent generation of neutrons. It is known that 7% of the neutron monitor count rate caused by negative muons. Absence of this effect in thermal neutrons data confirms the conclusion since the main difference of the thermal neutrons detector from the neutron monitor is the absence of the lead. In the active phase of a thunderstorm in the formed thundercloud the picture of distribution of charges is

  20. Mobile neutron/gamma waste assay system for characterization of waste containing transuranics, uranium, and fission/activation products

    SciTech Connect

    Davidson, D.R.; Haggard, D.; Lemons, C.

    1994-12-31

    A new integrated neutron/gamma assay system has been built for measuring 55-gallon drums at Pacific Northwest Laboratory. The system is unique because it allows simultaneous measurement of neutrons and gamma-rays. This technique also allows measurement of transuranics (TRU), uranium, and fission/activation products, screening for shielded Special Nuclear Material prior to disposal, and critically determinations prior to transportation. The new system is positioned on a platform with rollers and installed inside a trailer or large van to allow transportation of the system to the waste site instead of movement of the drums to the scanner. The ability to move the system to the waste drums is particularly useful for drum retrieval programs common to all DOE sites and minimizes transportation problems on the site. For longer campaigns, the system can be moved into a facility. The mobile system consists of two separate subsystems: a passive Segmented Gamma Scanner (SGS) and a {open_quotes}clam-shell{close_quotes} passive neutron counter. The SGS with high purity germanium detector and {sup 75}Se transmission source simultaneously scan the height of the drum allowing identification of unshieled {open_quotes}hot spots{close_quotes} in the drum or segments where the matrix is too dense for the transmission source to penetrate. Dense segments can flag shielding material that could be used to hide plutonium or uranium during the gamma analysis. The passive nuetron counter with JSR-12N Neutron Coincidence Analyzer measures the coincident neutrons from the spontaneous fission of even isotopes of plutonium. Because high-density shielding produces minimal absorption of neutrons, compared to gamma rays, the passive neutron portion of the system can detect shielded SNM. Measurements to evaluate the performance of the system are still underway at Pacific Northwest Laboratory.

  1. A neutron multiplicity analysis method for uranium samples with liquid scintillators

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Lin, Hongtao; Liu, Guorong; Li, Jinghuai; Liang, Qinglei; Zhao, Yonggang

    2015-10-01

    A new neutron multiplicity analysis method for uranium samples with liquid scintillators is introduced. An active well-type fast neutron multiplicity counter has been built, which consists of four BC501A liquid scintillators, a n/γdiscrimination module MPD-4, a multi-stop time to digital convertor MCS6A, and two Am-Li sources. A mathematical model is built to symbolize the detection processes of fission neutrons. Based on this model, equations in the form of R=F*P*Q*T could be achieved, where F indicates the induced fission rate by interrogation sources, P indicates the transfer matrix determined by multiplication process, Q indicates the transfer matrix determined by detection efficiency, T indicates the transfer matrix determined by signal recording process and crosstalk in the counter. Unknown parameters about the item are determined by the solutions of the equations. A 252Cf source and some low enriched uranium items have been measured. The feasibility of the method is proven by its application to the data analysis of the experiments.

  2. Pulse-shape analysis of CLYC for thermal neutrons, fast neutrons, and gamma-rays

    NASA Astrophysics Data System (ADS)

    D'Olympia, N.; Chowdhury, P.; Lister, C. J.; Glodo, J.; Hawrami, R.; Shah, K.; Shirwadkar, U.

    2013-06-01

    Cs2LiYCl6:Ce (CLYC) has been demonstrated to be sensitive to thermal neutrons via the 6Li(n, α)t reaction, and recently to fast neutrons via the 35Cl(n,p) reaction. The scintillation properties of CLYC have been investigated in more detail to further understand its capabilities. Pulses from thermal neutron, fast neutron, and γ-ray induced excitations were captured, digitized over a 16 μs time range, and analyzed to identify the scintillation mechanisms responsible for the observed shapes. Additionally, the timing resolutions of CLYC crystals of different sizes were measured in coincidence with a fast CeBr3 scintillator. The effect of high count rates on fast neutron energy resolution and pulse-shape discrimination was investigated up to 45 kHz.

  3. HFIR cold neutron source moderator vessel design analysis

    SciTech Connect

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper.

  4. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  5. Radiolabeling of intact dosage forms by neutron activation: effects on in vitro performance

    SciTech Connect

    Parr, A.; Jay, M.

    1987-12-01

    Compressed tablets containing various quantities of stable isotopes of Ba, Er, and Sm for use in neutron activation studies were evaluated for the effect of stable isotope incorporation on tablet hardness and disintegration times. At concentrations likely to be used in scintigraphic studies employing neutron activation as a radiolabeling method, no significant effect on in vitro parameters were observed. While the incorporation of stable isotopes influenced tablet hardness to a greater degree than disintegration time, irradiation of tablets in a neutron flux of 4.4 x 10(13) n/cm2 sec had a direct effect on tablet disintegration time. Thus, future neutron activation studies should focus on minimizing the amount of stable isotope to be incorporated with the formulation while using the shortest feasible irradiation time.

  6. Evaluation of radioisotope tracer and activation analysis techniques for contamination monitoring in space environment simulation chambers

    NASA Technical Reports Server (NTRS)

    Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.

    1973-01-01

    Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.

  7. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  8. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    SciTech Connect

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie; J. Wharton; A. J. Caffrey

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  9. Neutron scattering analysis with microscopic optical model potentials

    SciTech Connect

    Hansen, L.F.

    1991-09-03

    A review of microscopic optical model potentials used in the analysis of neutron scattering and analyzing power data below 100 MeV (5 {le}E{sub n}{le}100 MeV) is presented. The quality of the fits to the data over a wide massd ({sup 6}Li-{sup 239}Pu) and energy range is discussed. It is shown that reasonably good agreement with the data is obtained with only three parameters, {lambda}{sub V}, {lambda}{sub W}, and {lambda}{sub SO}, which show a smooth mass and energy dependence. These parameters are normalizing constants to the real (V), and imaginary (W) central potentials and the real spin-orbit (V{sub SO}) potential. 14 refs., 7 figs.

  10. Analysis of neutron noise spectra using neural networks

    SciTech Connect

    Korsah, K. ); Uhrig, R.E. Tennessee Univ., Knoxville, TN )

    1991-01-01

    Neural network architectures based on the back-propagation paradigm have been developed to recognize the features, and detect resonance shifts in, power spectral density (PSD) data. Our goal is to advance the state of the art in the application of noise analysis techniques to monitor nuclear reactor internals. The initial objectives have been to use PSD data, acquired over a period of about 2 years by PSDREC (power spectral density recognition system), to develop neural networks that are able to differentiate between normal neutron power spectral density data and anomalous spectral data, and detect significant shifts in the positions of spectral resonances while reducing the effect of small shifts. Neural network systems referred to in this paper as spectral feature detectors (SFDs) and integral network filters have been developed to meet these objectives. The performance of the SFDs is the subject of this paper. 2 refs., 2 figs.

  11. Bayesian Library for the Analysis of Neutron Diffraction Data

    NASA Astrophysics Data System (ADS)

    Ratcliff, William; Lesniewski, Joseph; Quintana, Dylan

    During this talk, I will introduce the Bayesian Library for the Analysis of Neutron Diffraction Data. In this library we use of the DREAM algorithm to effectively sample parameter space. This offers several advantages over traditional least squares fitting approaches. It gives us more robust estimates of the fitting parameters, their errors, and their correlations. It also is more stable than least squares methods and provides more confidence in finding a global minimum. I will discuss the algorithm and its application to several materials. I will show applications to both structural and magnetic diffraction patterns. I will present examples of fitting both powder and single crystal data. We would like to acknowledge support from the Department of Commerce and the NSF.

  12. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    NASA Astrophysics Data System (ADS)

    Kavrigin, P.; Finocchiaro, P.; Griesmayer, E.; Jericha, E.; Pappalardo, A.; Weiss, C.

    2015-09-01

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a 6Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of 6Li(n,T)4He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in 6Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  13. Object-oriented data analysis framework for neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Jiro; Nakatani, Takeshi; Ohhara, Takashi; Inamura, Yasuhiro; Yonemura, Masao; Morishima, Takahiro; Aoyagi, Tetsuo; Manabe, Atsushi; Otomo, Toshiya

    2009-02-01

    Materials and Life Science Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC) is one of the facilities that provided the highest intensity pulsed neutron and muon beams. The MLF computing environment design group organizes the computing environments of MLF and instruments. It is important that the computing environment is provided by the facility side, because meta-data formats, the analysis functions and also data analysis strategy should be shared among many instruments in MLF. The C++ class library, named Manyo-lib, is a framework software for developing data reduction and analysis softwares. The framework is composed of the class library for data reduction and analysis operators, network distributed data processing modules and data containers. The class library is wrapped by the Python interface created by SWIG. All classes of the framework can be called from Python language, and Manyo-lib will be cooperated with the data acquisition and data-visualization components through the MLF-platform, a user interface unified in MLF, which is working on Python language. Raw data in the event-data format obtained by data acquisition systems will be converted into histogram format data on Manyo-lib in high performance, and data reductions and analysis are performed with user-application software developed based on Manyo-lib. We enforce standardization of data containers with Manyo-lib, and many additional fundamental data containers in Manyo-lib have been designed and developed. Experimental and analysis data in the data containers can be converted into NeXus file. Manyo-lib is the standard framework for developing analysis software in MLF, and prototypes of data-analysis softwares for each instrument are being developed by the instrument teams.

  14. Energy and angular dependence of active-type personal dosemeter for high-energy neutron.

    PubMed

    Rito, Hirotaka; Yamauchi, Tomoya; Oda, Keiji

    2011-07-01

    In order to develop an active-type personal dosemeter having suitable sensitivity to high-energy neutrons, the characteristic response of silicon surface barrier detector has been investigated experimentally and theoretically. An agreement of the shape of pulse-height distribution, its change with radiator thickness and the relative sensitivity was confirmed between the calculated and experimental results for 14.8-MeV neutrons. The angular dependence was estimated for other neutron energies, and found that the angular dependence decreased with the incident energy. The reason was also discussed with regard to the radiator thickness relative to maximum range of recoil protons. PMID:21613268

  15. A portable active interrogation system using a switchable AmBe neutron source

    NASA Astrophysics Data System (ADS)

    Allen, Matthew; Hertz, Kristin; Kunz, Christopher; Mascarenhas, Nicholas

    2005-09-01

    Active neutron interrogation is an effective technique used to locate fissionable material. This paper discusses a portable system that utilizes a AmBe neutron source. The AmBe source consists of an americium alpha source and a beryllium target that can be switched into alignment to turn the source on and out of alignment to turn the source off. This offers a battery operated backpack portable source. The detector system that has been fabricated for use with this source is a fifteen tube 3He neutron detector. The results of initial experiments with the detector and MCNP calculations are discussed.

  16. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  17. Studies of Neutron and Proton Nuclear Activation in Low-Earth Orbit 2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1983-01-01

    The study of neutron and proton nuclear activation in low-Earth orbit reported in NASA CR-162051 has been continued with increasing emphasis given to primary and secondary neutron activation. The previously reported activation due to protons has been modified to include: (1) flux attenuation caused by all inelastic reactions; (2) the modification of the proton flux distribution caused by sample covering material; and (3) the activation of the sample as a function of the distance into the sample from the surface of incidence. A method has been developed for including the effects on the activation of the finite width and length of the samples. The reactant product spectra produced by proton-induced reactions has been studied. Cross sections needed for neutron induced reactions leading to long-lived (half-life 1 day) radioisotopes have been identified and, in some cases, compiled.

  18. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  19. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  20. Monte Carlo code for neutron scattering instrumentation design and analysis

    SciTech Connect

    Daemen, L.; Fitzsimmons, M.; Hjelm, R.; Olah, G.; Roberts, J.; Seeger, P.; Smith, G.; Thelliez, T.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) at the Los Alamos National Laboratory (LANL). The development of next generation, accelerator based neutron sources calls for the design of new instruments for neutron scattering studies of materials. It will be necessary, in the near future, to evaluate accurately and rapidly the performance of new and traditional neutron instruments at short- and long-pulse spallation neutron sources, as well as continuous sources. We have developed a code that is a design tool to assist the instrument designer model new or existing instruments, test their performance, and optimize their most important features.

  1. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method.

    PubMed

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is (252)Cf or (241)Am-Be. In this study, (252)Cf with a neutron flux of 6.3x10(6)n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with (3)He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of approximately 0.947g/cc and area of 40cmx25cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei. PMID:19285419

  2. Neutron- and proton-induced reactions for analysis of bioenvironmental samples

    SciTech Connect

    Spyrou, N.M.; Altaf, W.J.; Khrbish, Y.S. )

    1988-01-01

    The study of the elemental composition of bioenvironmental samples is of continuing interest in a wide variety of medical and environmental investigations, be it as environmental monitors or as indicators of the state of health and disease of an individual or a population. Nuclear activation methods play an important role in these studies as research tools and in certain cases are employed as rapid, routine analytical techniques. Although the authors have been using instrumental neutron activation analysis as the main technique for obtaining information about elemental composition and concentration, they have also developed techniques, for further or complementary analysis, in which proton-induced reactions have been exploited. Two recent studies, in which the composition of human lung tissue and the elemental concentration in plant samples were determined, have been selected as illustrations of the techniques employed.

  3. Implementation of an enhanced, permanently installed neutron activation diagnostic hardware for NIF

    NASA Astrophysics Data System (ADS)

    Jedlovec, Donald R.; Edwards, Ellen R.; Carrera, Jorge A.; Yeamans, Charles B.

    2015-08-01

    Neutron activation diagnostics are commonly employed as baseline neutron yield and relative spatial flux measurement instruments. Much insight into implosion performance has been gained by deployment of up to 19 identical activation diagnostic samples distributed around the target chamber at unique angular locations. Their relative simplicity and traceability provide neutron facilities with a diagnostic platform that is easy to implement and verify. However, the current National Ignition Facility (NIF) implementation relies on removable activation samples, creating a 1-2 week data turn-around time and considerable labor costs. The system described here utilizes a commercially-available lanthanum bromide (cerium-doped) scintillator with an integrated MCA emulator as the counting system and a machined zirconium-702 cap as the activation medium. The device is installed within the target bay and monitored remotely. Additionally, this system allows the placement of any activation medium tailored to the specific measurement needs. We discuss the design and function of a stand-alone and permanently installed neutron activation detector unit to measure the yield and average energy of a nominal 14 MeV neutron source with a pulse length less than one nanosecond.

  4. Simulation of a Novel Active Target for Neutron-Unbound State Measurements

    NASA Astrophysics Data System (ADS)

    Frank, Nathan; MoNA Collaboration

    2013-10-01

    Measurement of nuclei at extreme ratios of protons to neutrons is challenging due to the low production rate. New facilities will increase the production of neutron-rich isotopes, but still not reach the neutron dripline for heavier nuclei. We simulated a carbon-based active target system that could be constructed to both increase statistics while preserving the experimental resolution. This simulation is an adaptation of the in-house MoNA Collaboration C + + based simulation tool to extract the decay energy of neutron-unbound states. A number of experiments of this type have been carried out at the National Superconducting Cyclotron Laboratory (NSCL). In most experiments, we produce neutron-unbound nuclei by bombarding a Beryllium target with a radioactive beam. The nucleus of interest immediately decays into a charged particle and one or more neutrons. In this simulation, we have constructed a carbon-based active target that provides a measurement of energy loss, which is used to calculate the nuclear interaction point within the target. This additional information is used to improve the resolution or preserve the resolution of a thinner target while increasing statistics. This presentation will cover some aspects of the simulation process as well as show a resolution improvement of up to about 4 with a ~700 mg/cm2 active target compared to a Be-target. The simulation utilized experimental settings from published work. Work supported by National Science Foundation Grant #0969173.

  5. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  6. A neutron resonance capture analysis experimental station at the ISIS spallation source.

    PubMed

    Pietropaolo, Antonino; Gorini, Giuseppe; Festa, Giulia; Reali, Enzo; Grazzi, Francesco; Schooneveld, Erik M

    2010-09-01

    Neutron resonance capture analysis (NRCA) is a nuclear technique that is used to determine the elemental composition of materials and artifacts (e.g., bronze objects) of archaeological interest. NRCA experiments are mostly performed at the GELINA facility in Belgium, a pulsed neutron source operating with an electron linear accelerator. Very intense fluxes of epithermal neutrons are also provided by spallation neutron sources, such as the ISIS spallation neutron source in the United Kingdom. In the present study, the suitability of the Italian Neutron Experimental Station (INES) beam line for NRCA measurements is assessed using a compact (n, γ) resonance detector made of a Yttrium-Aluminum-Perovskite (YAP) scintillation crystal coupled with a silicon photomultiplier (SiPM) readout. The measurements provided a qualitative recognition of the composition of the standard sample, a lower limit for the sensitivity for NRCA for almost-in-traces elements, and an estimation of the relative isotopic concentration in the sample. PMID:20828445

  7. Neutron activation analyses and half-life measurements at the usgs triga reactor

    NASA Astrophysics Data System (ADS)

    Larson, Robert E.

    Neutron activation of materials followed by gamma spectroscopy using high-purity germanium detectors is an effective method for making measurements of nuclear beta decay half-lives and for detecting trace amounts of elements present in materials. This research explores applications of neutron activation analysis (NAA) in two parts. Part 1. High Precision Methods for Measuring Decay Half-Lives, Chapters 1 through 8 Part one develops research methods and data analysis techniques for making high precision measurements of nuclear beta decay half-lives. The change in the electron capture half-life of 51Cr in pure chromium versus chromium mixed in a gold lattice structure is explored, and the 97Ru electron capture decay half-life are compared for ruthenium in a pure crystal versus ruthenium in a rutile oxide state, RuO2. In addition, the beta-minus decay half-life of 71mZn is measured and compared with new high precision findings. Density Functional Theory is used to explain the measured magnitude of changes in electron capture half-life from changes in the surrounding lattice electron configuration. Part 2. Debris Collection Nuclear Diagnostic at the National Ignition Facility, Chapters 9 through 11 Part two explores the design and development of a solid debris collector for use as a diagnostic tool at the National Ignition Facility (NIF). NAA measurements are performed on NIF post-shot debris collected on witness plates in the NIF chamber. In this application NAA is used to detect and quantify the amount of trace amounts of gold from the hohlraum and germanium from the pellet present in the debris collected after a NIF shot. The design of a solid debris collector based on material x-ray ablation properties is given, and calculations are done to predict performance and results for the collection and measurements of trace amounts of gold and germanium from dissociated hohlraum debris.

  8. The Use of Neutron Analysis Techniques for Detecting The Concentration And Distribution of Chloride Ions in Archaeological Iron

    PubMed Central

    Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L

    2014-01-01

    Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670

  9. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    SciTech Connect

    Tinsley, J.R., Hurley, J.P., Trainham, R., Keegan, R.P.

    2008-11-14

    In an extension of the Associated Particle Imaging technique that is used for the detection and imaging of hidden explosives, the present measurements use a beam of tagged 14.1 MeV neutrons in coincidence with two or more gammas to probe for the presence of fissionable materials. We have measured neutron-gamma-gamma coincidences with targets of depleted uranium, tungsten, lead, iron, and carbon and will present results that show the multiple-coincidence counting rate for the depleted uranium is substantially higher than any of the non-fissionable materials. In addition, the presence of coincidences involving delayed particle spectra provides a signature for fissionable materials that is distinct from that for non-fissionable ones. Information from the tagged neutron involved in the coincidence event is used to compute the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is compact and portable, and produces relatively low levels of background radiation. Simultaneous measurements on packages of interest for both explosives and fissionable materials are now feasible.

  10. Incident spectrum determination for time-of-flight neutron powder diffraction data analysis.

    SciTech Connect

    Hodges, J. P.

    1998-08-27

    Accurate characterization of the incident neutron spectrum is an important requirement for precise Rietveld analysis of time-of-flight powder neutron diffraction data. Without an accurate incident spectrum the calculated model for the measured relative intensities of individual Bragg reflections will possess systematic errors. We describe a method for obtaining an accurate numerical incident spectrum using data from a transmitted beam monitor.

  11. Mantid-Data analysis and visualization package for neutron scattering and μ SR experiments

    NASA Astrophysics Data System (ADS)

    Arnold, O.; Bilheux, J. C.; Borreguero, J. M.; Buts, A.; Campbell, S. I.; Chapon, L.; Doucet, M.; Draper, N.; Ferraz Leal, R.; Gigg, M. A.; Lynch, V. E.; Markvardsen, A.; Mikkelson, D. J.; Mikkelson, R. L.; Miller, R.; Palmen, K.; Parker, P.; Passos, G.; Perring, T. G.; Peterson, P. F.; Ren, S.; Reuter, M. A.; Savici, A. T.; Taylor, J. W.; Taylor, R. J.; Tolchenov, R.; Zhou, W.; Zikovsky, J.

    2014-11-01

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described.

  12. Development of Enhanced, Permanently-Installed, Neutron Activation Diagnostic Hardware for NIF

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Jedlovec, D. R.; Carrera, J. A.; Yeamans, C. B.

    2016-05-01

    Neutron activation diagnostics are baseline neutron yield and flux measurement instruments at the National Ignition Facility. Up to 19 activation samples are distributed around the target chamber. Currently the samples must be removed to be counted, creating a 1-2 week data turn-around time and considerable labor costs. An improved system consisting of a commercially available LaBr3(Ce) scintillator and Power over Ethernet electronics is under development. A machined zirconium-702 cap over the detector is the activation medium to measure the 90Zr(n,2n)89Zr reaction. The detectors are located at the current neutron activation diagnostic sites and monitored remotely. Because they collect data in real time yield values are returned within a few hours after a NIF shot.

  13. Calculated analysis of experiments in fast neutron reactors

    SciTech Connect

    Davydov, V. K. Kalugina, K. M.; Gomin, E. A.

    2012-12-15

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  14. Calculated analysis of experiments in fast neutron reactors

    NASA Astrophysics Data System (ADS)

    Davydov, V. K.; Kalugina, K. M.; Gomin, E. A.

    2012-12-01

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  15. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics.

    PubMed

    Landoas, Olivier; Glebov, Vladimir Yu; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range. PMID:21806179

  16. CAFNA{reg{underscore}sign}, coded aperture fast neutron analysis for contraband detection: Preliminary results

    SciTech Connect

    Zhang, L.; Lanza, R.C.

    1999-12-01

    The authors have developed a near field coded aperture imaging system for use with fast neutron techniques as a tool for the detection of contraband and hidden explosives through nuclear elemental analysis. The technique relies on the prompt gamma rays produced by fast neutron interactions with the object being examined. The position of the nuclear elements is determined by the location of the gamma emitters. For existing fast neutron techniques, in Pulsed Fast Neutron Analysis (PFNA), neutrons are used with very low efficiency; in Fast Neutron Analysis (FNS), the sensitivity for detection of the signature gamma rays is very low. For the Coded Aperture Fast Neutron Analysis (CAFNA{reg{underscore}sign}) the authors have developed, the efficiency for both using the probing fast neutrons and detecting the prompt gamma rays is high. For a probed volume of n{sup 3} volume elements (voxels) in a cube of n resolution elements on a side, they can compare the sensitivity with other neutron probing techniques. As compared to PFNA, the improvement for neutron utilization is n{sup 2}, where the total number of voxels in the object being examined is n{sup 3}. Compared to FNA, the improvement for gamma-ray imaging is proportional to the total open area of the coded aperture plane; a typical value is n{sup 2}/2, where n{sup 2} is the number of total detector resolution elements or the number of pixels in an object layer. It should be noted that the actual signal to noise ratio of a system depends also on the nature and distribution of background events and this comparison may reduce somewhat the effective sensitivity of CAFNA. They have performed analysis, Monte Carlo simulations, and preliminary experiments using low and high energy gamma-ray sources. The results show that a high sensitivity 3-D contraband imaging and detection system can be realized by using CAFNA.

  17. Benchmarking of activation reaction distribution in an intermediate energy neutron field.

    PubMed

    Ogawa, Tatsuhiko; Morev, Mikhail N; Hirota, Masahiro; Abe, Takuya; Koike, Yuya; Iwai, Satoshi; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    Neutron-induced reaction rate depth profiles inside concrete shield irradiated by intermediate energy neutron were calculated using a Monte-Carlo code and compared with an experiment. An irradiation field of intermediate neutron produced in the forward direction from a thick (stopping length) target bombarded by 400 MeV nucleon(-1) carbon ions was arranged at the heavy ion medical accelerator in Chiba. Ordinary concrete shield of 90 cm thickness was installed 50 cm downstream the iron target. Activation detectors of aluminum, gold and gold covered with cadmium were inserted at various depths. Irradiated samples were extracted after exposure and gamma-ray spectrometry was performed for each sample. Comparison of experimental and calculated shows good agreement for both low- and high-energy neutron-induced reaction except for (27)Al(n,X)(24)Na reaction at the surface. PMID:21515619

  18. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R

    2007-02-06

    The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental

  19. DIVERSE ACTIVE WELL NEUTRON COINCIDENCE COUNTER UTILITY AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Dewberry, R; Saleem Salaymeh, S

    2007-01-08

    In this paper we describe use of the Aquila active well neutron coincidence counter for nuclear material assays of {sup 235}U in multiple analytical techniques at Savannah River Site (SRS), at the Savannah River National Laboratory (SRNL), and at Argonne West National Laboratory (AWNL). The uses include as a portable passive neutron counter for field measurements searching for evidence of {sup 252}Cf deposits and storage; as a portable active neutron counter using an external activation source for field measurements searching for trace {sup 235}U deposits and holdup; for verification measurements of U-Al reactor fuel elements; for verification measurements of uranium metal; and for verification measurements of process waste of impure uranium in a challenging cement matrix. The wide variety of uses described demonstrate utility of the technique for neutron coincidence verification measurements over the dynamic ranges of 100 g-5000 g for U metal, 200 g-1300 g for U-Al, and 8 g-35 g for process waste. In addition to demonstrating use of the instrument in both the passive and active modes, we also demonstrate its use in both the fast and thermal neutron modes.

  20. Investigation of the neutron activation of endohedral rare earth metallofullerenes

    SciTech Connect

    Shilin, V. A. Lebedev, V. T.; Kolesnik, S. G.; Kozlov, V. S.; Grushko, Yu. S.; Sedov, V. P.; Kukorenko, V. V.

    2011-12-15

    Endohedral lanthanide metallofullerenes and their water-soluble biocompatible derivatives have been synthesized. The effect that fast-neutron irradiation has on the stability and nuclear physical properties of endohedral metallofullerenes that are used as magnetocontrast materials ({sup 46}Sc, {sup 140}La, {sup 141}Nd, {sup 153}Sm, {sup 152}Eu, {sup 154}Eu, {sup 153}Sm, {sup 160}Tb, {sup 169}Yb, {sup 170}Tm (isomers I and III), and {sup 177}Lu) is studied. Our hypothesis, according to which carbon-shell relaxation is based on the fast nonradiative processes of an electron shake-off type, is confirmed.