Science.gov

Sample records for activation augments nmda

  1. RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Scott, Michael A.; Demeo, Martha E.

    1992-01-01

    The topics are presented in viewgraph form and include: RMS active damping augmentation; potential space station assembly benefits to CSI; LaRC/JSC bridge program; control law design process; draper RMS simulator; MIMO acceleration control laws improve damping; potential load reduction benefit; DRS modified to model distributed accelerations; accelerometer location; Space Shuttle aft cockpit simulator; simulated shuttle video displays; SES test goals and objectives; and SES modifications to support RMS active damping augmentation.

  2. Antidepressant Augmentation Using the NMDA-Antagonist Memantine: A Randomized, Double-Blind, Placebo-Controlled Trial

    PubMed Central

    Smith, Eric G.; Deligiannidis, Kristina M.; Ulbricht, Christine M.; Landolin, Chelsea S.; Patel, Jayendra K.; Rothschild, Anthony J.

    2014-01-01

    Objective Intravenous NMDA antagonists have shown promising results in rapidly ameliorating depression symptoms, but placebo-controlled trials of oral NMDA antagonists as monotherapy have not observed efficacy. We conducted a randomized, double-blind, placebo-controlled trial (NCT00344682) of the NMDA antagonist memantine as an augmentation treatment for patients with DSM-IV major depressive disorder. Method 31 participants with partial or nonresponse to their current antidepressant were randomized (from 2006–2011) to add memantine (flexible dose 5–20 mg/day, with all memantine group participants reaching the dose of 20 mg/day) (n= 15) or placebo (n= 16) to their existing treatment for 8 weeks. The primary outcome, change in Montgomery-Asberg Depression Rating Score (MADRS), was evaluated with repeated measures mixed effects models using last-observation-carried-forward methods. Secondary outcomes included other depression and anxiety rating scales, suicidal and delusional ideation, and other adverse effects. Results Participants receiving memantine did not show a statistically or clinically significant change in MADRS scores compared to placebo, either over the entire study (β=0.133, favoring placebo, p=0.74) or at study completion (week 8 MADRS score change: −7.13 +/−6.61 (memantine); −7.25 +/−11.14 (placebo), p=0.97). A minimal-to-small effect size (comparing change to baseline variability) was observed (d=0.19), favoring placebo. Similarly, no substantial effect sizes favoring memantine, nor statistically significant between-group differences, were observed on secondary efficacy or safety outcomes. Conclusions This trial did not detect significant statistical or effect size differences between memantine and placebo augmentation among nonresponders or poor responders to conventional antidepressants. While the small number of participants is a limitation, this study suggests memantine lacks substantial efficacy as an augmentation treatment against

  3. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  4. Non-NMDA and NMDA receptor agonists induced excitation and their differential effect in activation of superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Ishizuka, Ken'Ichi; Oskutyte, Diana; Satoh, Yoshihide; Murakami, Toshiki

    2008-02-29

    We investigated the effects of the ionophoretic application of ionotropic non-NMDA receptor agonist (AMPA) and NMDA receptor agonist (NMDA) on extracellularly recorded and antidromically identified superior salivatory nucleus (SSN) neurons. A great majority (93%) of SSN neurons was induced to fire by ionophoretic application of AMPA, and they were classified into high firing rate (more than 6 spikes/s), and low firing rate (less than 3 spikes/s) neurons. No clear differences were found between high firing rate and low firing rate neurons according their fibre type and histological locations. Of the SSN neurons that excited by AMPA, 22% (4/18) and 50% (5/9) of the neurons also were induced to fire following ionophoretic application of the NMDA receptor agonist NMDA in different concentrations, 20 mM and 100 mM, respectively. In neurons that induced firing by AMPA and by NMDA, AMPA-evoked firings were induced by the lower intensities of applied current and had higher mean firing rates than NMDA-evoked firing. Neurons that were induced firing by AMPA and by NMDA had B fibre and C fibre axons as well as those that induced firing only by AMPA. Neurons that were fired only by AMPA were found in whole SSN area, whereas neurons that were induced firing by AMPA and by NMDA were mainly found in intermediate SSN area. In conclusion, activation of ionotoropic non-NMDA receptor has a greater excitatory effect on the SSN neurons than that of ionotropic of NMDA receptor. Our data support the view that non-NMDA receptor plays a major role, whereas NMDA receptor plays a minor role, in the activation of SSN neurons.

  5. Augmenting NMDA receptor signaling boosts experience-dependent neuroplasticity in the adult human brain

    PubMed Central

    Forsyth, Jennifer K.; Bachman, Peter; Mathalon, Daniel H.; Roach, Brian J.; Asarnow, Robert F.

    2015-01-01

    Experience-dependent plasticity is a fundamental property of the brain. It is critical for everyday function, is impaired in a range of neurological and psychiatric disorders, and frequently depends on long-term potentiation (LTP). Preclinical studies suggest that augmenting N-methyl-d-aspartate receptor (NMDAR) signaling may promote experience-dependent plasticity; however, a lack of noninvasive methods has limited our ability to test this idea in humans until recently. We examined the effects of enhancing NMDAR signaling using d-cycloserine (DCS) on a recently developed LTP EEG paradigm that uses high-frequency visual stimulation (HFvS) to induce neural potentiation in visual cortex neurons, as well as on three cognitive tasks: a weather prediction task (WPT), an information integration task (IIT), and a n-back task. The WPT and IIT are learning tasks that require practice with feedback to reach optimal performance. The n-back assesses working memory. Healthy adults were randomized to receive DCS (100 mg; n = 32) or placebo (n = 33); groups were similar in IQ and demographic characteristics. Participants who received DCS showed enhanced potentiation of neural responses following repetitive HFvS, as well as enhanced performance on the WPT and IIT. Groups did not differ on the n-back. Augmenting NMDAR signaling using DCS therefore enhanced activity-dependent plasticity in human adults, as demonstrated by lasting enhancement of neural potentiation following repetitive HFvS and accelerated acquisition of two learning tasks. Results highlight the utility of considering cellular mechanisms underlying distinct cognitive functions when investigating potential cognitive enhancers. PMID:26621715

  6. Status report of RMS active damping augmentation

    NASA Technical Reports Server (NTRS)

    Gilbert, Mike; Demeo, Martha E.

    1993-01-01

    A status report of Remote Manipulator System (RMS) active damping augmentation is presented. Topics covered include: active damping augmentation; benefits of RMS ADA; simulated payload definition; sensor and actuator definition; ADA control law design; Shuttle Engineering Simulator (SES) real-time simulation; and astronaut evaluation.

  7. Activation of NMDA receptors increases proliferation and differentiation of hippocampal neural progenitor cells.

    PubMed

    Joo, Jae-Yeol; Kim, Byung-Woo; Lee, Jeong-Sik; Park, Jin-Yong; Kim, Sunoh; Yun, Young-Joo; Lee, Sang-Hun; Lee, Suk-Ho; Rhim, Hyewhon; Son, Hyeon

    2007-04-15

    The prolonged effects of N-methyl-D-aspartate (NMDA) receptor activation on the proliferation and differentiation of hippocampal neural progenitor cells (NPCs) were studied. Under conditions of mitogen-mediated proliferation, a single NMDA pulse (5 microM) increased the fraction of 5-bromo-2-deoxyuridine (BrdU)-positive (BrdU(+)) cells after a delay of 72 hours. Similarly, a single systemic injection of NMDA (100 mg/kg) increased the number of BrdU(+) cells in the dentate gyrus (DG) after 28 days, but not after 3 days. NMDA receptor activation induced an immediate influx of Ca(2+) into the NPCs and the NPCs expressed and released vascular endothelial growth factor (VEGF) in an NMDA receptor-dependent manner within 72 hours. With repetitive stimulation at the same dose, NMDA stimulated the acquisition of a neuronal phenotype accompanied by an increase in the expression of proneural basic helix-loop-helix (bHLH) factors. Together these findings suggest that neurogenesis in the developing brain is likely to be both directly and indirectly regulated by complex interactions between Ca(2+) influx and excitation-releasable cytokines, even at mild levels of excitation. In addition, our results are the first to show that stimulation of NPCs may lead to either proliferation or neuronal differentiation, depending on the level of NMDA receptor activation.

  8. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  9. Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell

    PubMed Central

    Arrigoni, Elda; Greene, Robert W

    2004-01-01

    The two major inputs to CA1 pyramidal neurons, the perforant pathway (PP) that terminates on distal dendrites and the Schaffer collaterals (SCH) that terminate on proximal dendrites, activate both AMPA and N-methyl-D-aspartate (NMDA) receptors. In an in vitro slice preparation, the pharmacologically isolated NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) (NMDA-EPSCs) of either pathway can be selectively activated onto a single CA1 pyramidal neuron. Analysis of the decay phase of PP and SCH NMDA-EPSCs revealed no significant difference in their time constants, suggesting no apparent different distribution in NR2-subunit composition in the NMDA receptors (NMDAR) activated by the two synaptic inputs. However, application of the NR2B-selective antagonist, ifenprodil, differently affected the NMDA-EPSCs activated by the PP and SCH inputs. The reduction of the PP responses was only 30% compared to 75% for the SCH responses. In addition, for both pathways, the ifenprodil-insensitive component of the NMDA-EPSCs had significantly more rapid decay kinetics than those prior to application of ifenprodil. Our results show a greater NR2B subunit contribution to the NMDA component of the SCH EPSC, compared to the NMDA component of the PP EPSC and that in single CA1 pyramidal neurons NMDA composition is anatomically specific to the afferent input. PMID:15155538

  10. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation.

    PubMed

    Wong, Hayes; Dong, Xu-Dong; Cairns, Brian E

    2014-11-01

    Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. In vivo extracellular single-unit electrophysiological recordings of trigeminal ganglion neurons innervating the masseter muscle were performed in anesthetized rats 3 days after NGF injection (25 μg/ml, 10 μl) into the masseter muscle. Mechanical activation threshold was assessed before and after intramuscular injection of NMDA. NMDA injection induced mechanical sensitization in both sexes that was increased significantly following NGF injection in the male rats but not in the female rats. However, in female but not male rats, further examination found that preadministration of NGF induced a greater sensitization in slow Aδ-fibers (2-7 m/s) than fast Aδ-fibers (7-12 m/s). This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.

  11. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity.

    PubMed

    Yang, Junfeng; Hertz, Ellen; Zhang, Xiaoqun; Leinartaité, Lina; Lundius, Ebba Gregorsson; Li, Jie; Svenningsson, Per

    2016-01-12

    Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity. PMID:26610904

  12. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    PubMed

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  13. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory.

    PubMed

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guillaume; Mouly, Anne-Marie

    2014-12-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation.

  14. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory.

    PubMed

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guillaume; Mouly, Anne-Marie

    2014-12-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation. PMID:25403452

  15. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory

    PubMed Central

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guillaume

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation. PMID:25403452

  16. NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.

    PubMed

    Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I

    2015-07-01

    Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders.

  17. Trapping channel block of NMDA-activated responses by amantadine and memantine.

    PubMed

    Blanpied, T A; Boeckman, F A; Aizenman, E; Johnson, J W

    1997-01-01

    We investigated the mechanisms by which the antiparkinsonian and neuroprotective agents amantadine and memantine inhibit responses to N-methyl-D-aspartic acid (NMDA). Whole cell recordings were performed using cultured rat cortical neurons or Chinese hamster ovary (CHO) cells expressing NMDA receptors. Both amantadine and memantine blocked NMDA-activated channels by binding to a site at which they could be trapped after channel closure and agonist unbinding. For neuronal receptors, the IC50s of amantadine and memantine at -67 mV were 39 and 1.4 microM, respectively. When memantine and agonists were washed off after steady-state block, one-sixth of the blocked channels released rather than trapped the blocker; memantine exhibited "partial trapping." Thus memantine appears to have a lesser tendency to be trapped than do phencyclidine or (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[1,d]cyclihepten-5,1 0-imine (MK-801). We next investigated mechanisms that might underlie partial trapping. Memantine blocked and could be trapped by recombinant NMDA receptors composed of NR1 and either NR2A or NR2B subunits. In these receptors, as in the native receptors, the drug was released from one-sixth of blocked channels rather than being trapped in all of them. The partial trapping we observed therefore was not due to variability in the action of memantine on a heterogeneous population of NMDA receptors in cultured cortical neurons. Amantadine and memantine each noncompetitively inhibited NMDA-activated responses by binding at a second site with roughly 100-fold lower affinity, but this form of inhibition had little effect on the extent to which memantine was trapped. A simple kinetic model of blocker action was used to demonstrate that partial trapping can result if the presence of memantine in the channel affects the gating transitions or agonist affinity of the NMDA receptor. Partial trapping guarantees that during synaptic communication in the presence of blocker, some

  18. AMPA, not NMDA, activates RhoA GTPases and subsequently phosphorylates moesin.

    PubMed

    Kim, Su-Jin; Jeon, Songhee; Shin, Eun-Young; Kim, Eung-Gook; Park, Joobae; Bae, Chang-Dae

    2004-02-29

    Glutamate induced rapid phosphorylation of moesin, one of ERM family proteins involved in the ligation of membrane to actin cytoskeleton, in rat hippocampal cells (JBC, 277:16576-16584, 2002). However, the identity of glutamate receptor has not been explored. Here we show that a-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is responsible for glutamate-induced RhoA activation and phosphorylation of moesin. Glutamate induced phosphorylation at Thr-558 of moesin was still detectible upon chelation of Ca(2+), suggesting involvement of AMPA receptor instead of N-methyl D-Aspartate (NMDA) receptor in this phosphorylation of moesin. AMPA but not NMDA- induced moesin phosphorylation was independent of Ca(2+). Both AMPA and NMDA but not Kainate induced moesin phosphorylation at similar levels. However, the kinetics of phosphorylation varied greatly between AMPA and NMDA where AMPA treatment rapidly increased phosphomoesin, which reached a maximum at 10 min after treatment and returned to a basal level at 30 min. In contrast, NMDA-induced phosphorylation of moesin reached a maximum at 30 min after treatment and was remained at higher levels at 60 min. A possible involvement of RhoA and its downstream effector, Rho kinase in the AMPA receptor-triggered phosphorylation of moesin was also explored. The kinetics for the glutamate- induced membrane translocation of RhoA was similar to that of moesin phosphorylation induced by AMPA. Moreover, Y-27632, a specific Rho kinase inhibitor, completely blocked AMPA-induced moesin phosphorylation but had no effect on NMDA-induced moesin phosphorylation. These results suggest that glutamate-induced phosphorylation of moesin may be mediated through the AMPA receptor/RhoA/Rho kinase pathway.

  19. Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity.

    PubMed

    Iki, Junko; Inoue, Akihiro; Bito, Haruhiko; Okabe, Shigeo

    2005-12-01

    Abstract Cortactin is an F-actin-associated protein which interacts with the postsynaptic scaffolding protein Shank at the SH3 domain and is localized within the dendritic spine in the mouse neuron. Green fluorescent protein (GFP)-based time-lapse imaging revealed cortactin redistribution from dendritic cytoplasm to postsynaptic sites by application of brain-derived neurotrophic factor (BDNF). This response was mediated by mitogen-activated protein (MAP) kinase activation and was dependent on the C-terminal SH3 domain. In contrast, activation of N-methyl-D-aspartate (NMDA) receptors induced loss of cortactin from postsynaptic sites. This NMDA-dependent redistribution was blocked by an Src family kinase inhibitor. Conversely, increasing Src family kinase activity induced cortactin phosphorylation and loss of cortactin from the postsynaptic sites. Finally, blocking of endogenous BDNF reduced the amount of cortactin at the postsynaptic sites and an NMDA receptor antagonist prevented this reduction. These results indicate the importance of counterbalance between BDNF and NMDA receptor-mediated signalling in the reorganization of the postsynaptic actin cytoskeleton during neuronal development.

  20. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  1. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity.

  2. Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage

    PubMed Central

    Tian, Li; Stefanidakis, Michael; Ning, Lin; Van Lint, Philippe; Nyman-Huttunen, Henrietta; Libert, Claude; Itohara, Shigeyoshi; Mishina, Masayoshi; Rauvala, Heikki; Gahmberg, Carl G.

    2007-01-01

    Matrix metalloproteinase (MMP)-2 and -9 are pivotal in remodeling many tissues. However, their functions and candidate substrates for brain development are poorly characterized. Intercellular adhesion molecule-5 (ICAM-5; Telencephalin) is a neuronal adhesion molecule that regulates dendritic elongation and spine maturation. We find that ICAM-5 is cleaved from hippocampal neurons when the cells are treated with N-methyl-d-aspartic acid (NMDA) or α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA). The cleavage is blocked by MMP-2 and -9 inhibitors and small interfering RNAs. Newborn MMP-2– and MMP-9–deficient mice brains contain more full-length ICAM-5 than wild-type mice. NMDA receptor activation disrupts the actin cytoskeletal association of ICAM-5, which promotes its cleavage. ICAM-5 is mainly located in dendritic filopodia and immature thin spines. MMP inhibitors block the NMDA-induced cleavage of ICAM-5 more efficiently in dendritic shafts than in thin spines. ICAM-5 deficiency causes retraction of thin spine heads in response to NMDA stimulation. Soluble ICAM-5 promotes elongation of dendritic filopodia from wild-type neurons, but not from ICAM-5–deficient neurons. Thus, MMPs are important for ICAM-5–mediated dendritic spine development. PMID:17682049

  3. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors.

    PubMed

    Mapelli, Jonathan; Gandolfi, Daniela; Vilella, Antonietta; Zoli, Michele; Bigiani, Albertino

    2016-08-30

    Dynamic changes of the strength of inhibitory synapses play a crucial role in processing neural information and in balancing network activity. Here, we report that the efficacy of GABAergic connections between Golgi cells and granule cells in the cerebellum is persistently altered by the activity of glutamatergic synapses. This form of plasticity is heterosynaptic and is expressed as an increase (long-term potentiation, LTPGABA) or a decrease (long-term depression, LTDGABA) of neurotransmitter release. LTPGABA is induced by postsynaptic NMDA receptor activation, leading to calcium increase and retrograde diffusion of nitric oxide, whereas LTDGABA depends on presynaptic NMDA receptor opening. The sign of plasticity is determined by the activation state of target granule and Golgi cells during the induction processes. By controlling the timing of spikes emitted by granule cells, this form of bidirectional plasticity provides a dynamic control of the granular layer encoding capacity. PMID:27531957

  4. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain.

    PubMed

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I

    2015-04-01

    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection.

  5. NMDA Receptor-Mediated Activation of NADPH Oxidase and Glomerulosclerosis in Hyperhomocysteinemic Rats

    PubMed Central

    Zhang, Chun; Yi, Fan; Xia, Min; Boini, Krishna M.; Zhu, Qing; Laperle, Laura A.; Abais, Justine M.; Brimson, Christopher A.

    2010-01-01

    Abstract This study investigated the role of NMDA receptor in hyperhomocyteinemia (hHcys)-induced NADPH oxidase (Nox) activation and glomerulosclerosis. Sprague–Dawley rats were fed a folate-free (FF) diet to produce hHcys, and a NMDA receptor antagonist, MK-801, was administrated. Rats fed the FF diet exhibited significantly increased plasma homocysteine levels, upregulated NMDA receptor expression, enhanced Nox activity and Nox-dependent O2.− production in the glomeruli, which were accompanied by remarkable glomerulosclerosis. MK-801 treatment significantly inhibited Nox-dependent O2.− production induced by hHcys and reduced glomerular damage index as compared with vehicle-treated hHcys rats. Correspondingly, glomerular deposition of extracellular matrix components in hHcys rats was ameliorated by the administration of MK-801. Additionally, hHcys induced an increase in tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and a decrease in matrix metalloproteinase (MMP)-1 and MMP-9 activities, all of which were abolished by MK-801 treatment. In vitro studies showed that homocysteine increased Nox-dependent O2.− generation in rat mesangial cells, which was blocked by MK-801. Pretreatment with MK-801 also reversed homocysteine-induced decrease in MMP-1 activity and increase in TIMP-1 expression. These results support the view that the NMDA receptor may mediate Nox activation in the kidney during hHcys and thereby play a critical role in the development of hHcys-induced glomerulosclerosis. Antioxid. Redox Signal. 13, 975–986. PMID:20406136

  6. Time course and mechanism of hippocampal neuronal death in an in vitro model of status epilepticus: Role of NMDA receptor activation and NMDA dependent calcium entry

    PubMed Central

    Deshpande, Laxmikant S.; Lou, Jeffrey K.; Mian, Ali; Blair, Robert E.; Sombati, Sompong; Attkisson, Elisa; DeLorenzo, Robert J.

    2008-01-01

    The hippocampus is especially vulnerable to seizure-induced damage and excitotoxic neuronal injury. This study examined the time course of neuronal death in relationship to seizure duration and the pharmacological mechanisms underlying seizure-induced cell death using low magnesium (Mg2+) induced continuous high frequency epileptiform discharges (in vitro status epilepticus) in hippocampal neuronal cultures. Neuronal death was assessed using cell morphology and Fluorescein diacetate-Propidium iodide staining. Effects of low Mg2+ and various receptor antagonists on spike frequency were assessed using patch clamp electrophysiology. We observed a linear and time-dependent increase in neuronal death with increasing durations of status epilepticus. This cell death was dependent upon extracellular calcium that entered primarily through the N-methyl-D-aspartate (NMDA) glutamate receptor channel subtype. Neuronal death was significantly decreased by co-incubation with the NMDA receptor antagonists and was also inhibited by reduction of extracellular calcium (Ca2+) during status epilepticus. In contrast, neuronal death from in vitro status epilepticus was not significantly prevented by inhibition of other glutamate receptor subtypes or voltage-gated Ca2+ channels. Interestingly this NMDA-Ca2+ dependent neuronal death was much more gradual in onset compared to cell death from excitotoxic glutamate exposure. The results provide evidence that in vitro status epilepticus results in increased activation of the NMDA-Ca2+ transduction pathway leading to neuronal death in a time dependent fashion. The results also indicate that there is a significant window of opportunity during the initial time of continuous seizure activity to be able to intervene, protect neurons and decrease the high morbidity and mortality associated with status epilepticus. PMID:18289526

  7. Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation.

    PubMed

    Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F

    2011-07-01

    Using an antibody against 5α-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1 region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min administration of 60 mm but not 20 mm ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of 5α-reductase, a key enzyme required for allopregnanolone synthesis. Consistent with a prior report indicating that N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can promote steroid production, we observed that D-2-amino-5-phosphonovalerate (APV), a competitive NMDAR antagonist, blocked the effects of 60 mm ethanol on staining. We previously reported that 60 mm ethanol inhibits the induction of long-term potentiation (LTP), a cellular model for memory formation, in the CA1 region. In the present study, LTP inhibition by 60 mm ethanol was also overcome by both the 5α-reductase inhibitors and by APV. Furthermore, the effects of ethanol on neurosteroid production and LTP were mimicked by a low concentration of NMDA (1 μm), and the ability of NMDA to inhibit LTP and to enhance neurosteroid staining was reversed by finasteride and dutasteride, as well as by APV. These results indicate that ethanol paradoxically enhances GABAergic neurosteroid production by activation of unblocked NMDARs and that acute LTP inhibition by ethanol represents a form of NMDAR-mediated metaplasticity. PMID:21734282

  8. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism.

    PubMed

    Chen, H S; Lipton, S A

    1997-02-15

    1. N-methyl-D-aspartic acid (NMDA)-activated currents were recorded from dissociated rat retinal ganglion cells using whole-cell recording. The NMDA open-channel blocking drug memantine was evaluated for non-competitive and/or uncompetitive components of antagonism. A rapid superfusion system was used to apply various drugs for kinetic analysis. 2. Dose-response data revealed that memantine blocked 200 microM NMDA-evoked responses with a 50% inhibition constant (IC50) of approximately 1 microM at -60 mV and an empirical Hill coefficient of approximately 1. The antagonism followed a bimolecular reaction process. This 1:1 stoichiometry is supported by the fact that the macroscopic blocking rate of memantine (kon) increased linearly with memantine concentration and the macroscopic unblocking rate (koff) was independent of it. The estimated pseudo-first order rate constant for macroscopic blockade was 4 x 10(5) M-1 S-1 and the rate constant for unblocking was 0.44 s-1. Both the blocking and unblocking actions of memantine were well fitted by a single exponential process. 3. The kon for 2 microM memantine decreased with decreasing concentrations of NMDA. By analysing kon behaviour, we estimate that memantine has minimal interaction with the closed-unliganded state of the channel. As channel open probability (Po) approached zero, a small residual action of memantine may be explained by the presence of endogenous glutamate and glycine. 4. Memantine could be trapped within the NMDA-gated channel if it was suddenly closed by fast washout of agonist. The measured gating process of channel activation and deactivation appeared at least 10-20-fold faster than the kinetics of memantine action. By combining the agonist and voltage dependence of antagonism, a trapping scheme was established for further kinetic analysis. 5. With low agonist concentrations, NMDA-gated channels recovered slowly from memantine blockade. By analysing the probability of a channel remaining blocked, we

  9. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism.

    PubMed Central

    Chen, H S; Lipton, S A

    1997-01-01

    1. N-methyl-D-aspartic acid (NMDA)-activated currents were recorded from dissociated rat retinal ganglion cells using whole-cell recording. The NMDA open-channel blocking drug memantine was evaluated for non-competitive and/or uncompetitive components of antagonism. A rapid superfusion system was used to apply various drugs for kinetic analysis. 2. Dose-response data revealed that memantine blocked 200 microM NMDA-evoked responses with a 50% inhibition constant (IC50) of approximately 1 microM at -60 mV and an empirical Hill coefficient of approximately 1. The antagonism followed a bimolecular reaction process. This 1:1 stoichiometry is supported by the fact that the macroscopic blocking rate of memantine (kon) increased linearly with memantine concentration and the macroscopic unblocking rate (koff) was independent of it. The estimated pseudo-first order rate constant for macroscopic blockade was 4 x 10(5) M-1 S-1 and the rate constant for unblocking was 0.44 s-1. Both the blocking and unblocking actions of memantine were well fitted by a single exponential process. 3. The kon for 2 microM memantine decreased with decreasing concentrations of NMDA. By analysing kon behaviour, we estimate that memantine has minimal interaction with the closed-unliganded state of the channel. As channel open probability (Po) approached zero, a small residual action of memantine may be explained by the presence of endogenous glutamate and glycine. 4. Memantine could be trapped within the NMDA-gated channel if it was suddenly closed by fast washout of agonist. The measured gating process of channel activation and deactivation appeared at least 10-20-fold faster than the kinetics of memantine action. By combining the agonist and voltage dependence of antagonism, a trapping scheme was established for further kinetic analysis. 5. With low agonist concentrations, NMDA-gated channels recovered slowly from memantine blockade. By analysing the probability of a channel remaining blocked, we

  10. Effect of activity at metabotropic, as well as ionotropic (NMDA), glutamate receptors on morphine dependence.

    PubMed Central

    Fundytus, M E; Coderre, T J

    1994-01-01

    1. The contribution of various excitatory amino acid (EAA) receptors (NMDA, AMPA/kainate and metabotropic) in the brain to the development of morphine dependence was examined. This was performed by measuring the severity of the precipitated withdrawal syndrome following chronic subcutaneous (s.c.) morphine and intracerebroventricular (i.c.v.) EAA antagonist treatment. 2. Continuous subcutaneous (s.c.) treatment with morphine sulphate (36.65 mumol day-1) produced an intense and reliable naloxone-precipitated withdrawal syndrome. 3. Chronic i.c.v. treatment with antagonists selective for metabotropic and NMDA receptors, but not AMPA/kainate receptors, significantly attenuated abstinence symptoms. Conversely, EAA antagonists had very little effect on non-withdrawal behaviours. 4. These results suggest that, as well as changes elicited by activation of NMDA receptors, metabotropic receptors and intracellular changes in the phosphatidylinositol (PI) second-messenger system or the cyclic adenosine 3',5'-monophosphate (cAMP) second messenger system, to which EAA metabotropic receptors are linked, may be involved in the development of opioid dependence with chronic morphine treatment. PMID:7889275

  11. Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist

    PubMed Central

    Taniguchi, Kana; Shinjo, Katsuhiro; Mizutani, Mayumi; Shimada, Kaoru; Ishikawa, Toshihisa; Menniti, Frank S; Nagahisa, Atsushi

    1997-01-01

    The analgesic activity of CP-101,606, an NR2B subunit-selective N-methyl-D-aspartate (NMDA) receptor antagonist, was examined in carrageenan-induced hyperalgesia, capsaicin- and 4β-phorbol-12-myristate-13-acetate (PMA)-induced nociceptive tests in the rat. CP-101,606 30 mg kg−1, s.c., at 0.5 and 2.5 h after carrageenan challenge suppressed mechanical hyperalgesia without any apparant alternations in motor coordination or behaviour in the rat. CP-101,606 also inhibited capsaicin- and PMA-induced nociceptive responses (licking behaviour) with ED50 values of 7.5 and 5.7 mg kg−1, s.c., respectively. These results suggest that inhibition of the NR2B subunit of the NMDA receptor is effective in vivo at modulating nociception and hyperalgesia responses without causing the behavioural side effects often observed with currently available NMDA receptor antagonists. PMID:9384494

  12. Ethanol (EtOH) inhibition of NMDA-activated ion current is not voltage-dependent and EtOH does not interact with other binding sites on the NMDA receptor/ionophore complex

    SciTech Connect

    Lovinger, D.M.; White, G.; Weight, F.F. )

    1990-02-26

    Recent studies indicate that intoxicating concentrations of EtOH inhibit neuronal responses to activation of NMDA-type glutamate receptors. The authors have observed that the potency of different alcohols for inhibiting NMDA-activated ion current in hippocampal neurons increases as a function of increasing hydrophobicity, suggesting that EtOH acts at a hydrophobic site. To further characterize the mechanisms of this effect, the authors examined the voltage-dependence of the EtOH inhibition of NMDA-activated ion current as well as potential interactions of EtOH with other effectors of the NMDA receptor/ionophore complex. The amount of inhibition of peak NMDA-activated current by 50 mM EtOH did not differ over a range of membrane potentials from {minus}60 to +60 mV, and EtOH did not alter the reversal potential of NMDA-activated current. The percent inhibition observed in the presence of 10-100 mM EtOH did not differ with NMDA concentrations from 10-100 {mu}M. The percent inhibition by 50 mM EtOH (30-48%) did not differ in the absence or presence of the channel blockers Mg{sup 2+} (50-500 {mu}M), Zn{sup 2+} (5 and 20 {mu}M) or ketamine (2 and 10 {mu}M), or with increasing concentrations of the NMDA receptor cofactor glycine (0.01-1 {mu}M). These data indicate that: (i) EtOH does not change the ion selectivity of the ionophore, and (ii) EtOH does not appear to interact with previously described binding sites on the NMDA receptor/ionophore complex.

  13. NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development.

    PubMed

    Monti, Barbara; Marri, Lucia; Contestabile, Antonio

    2002-10-01

    During both in vivo and in vitro development, cerebellar granule cells depend on the activity of the NMDA glutamate receptor subtype for survival and full differentiation. With the present results, we demonstrate that CREB activation, downstream of the NMDA receptor, is a necessary step to ensure survival of these neurons. The levels of CREB expression and activity increase progressively during the second week of postnatal cerebellar development and the phosphorylated form of CREB is localized selectively to cerebellar granule cells during the critical developmental stages examined. Chronically blocking the NMDA receptor through systemic administration of the competitive antagonist, CGP 39551, during the in vivo critical developmental period, between 7-11 postnatal days, results in increased apoptotic elimination of differentiating granule neurons in the cerebellum [Monti & Contestabile, Eur. J. Neurosci., 12, 3117-3123 (2000)]. We report here that this event is accompanied by a significant decrease of CREB phosphorylation in the cerebellum of treated rat pups. When cerebellar granule neurons are explanted and maintained in dissociated cultures, the levels of CREB phosphorylation increase with differentiation, similar to that which happens during in vivo development. When granule cells are kept in non-trophic conditions, their viability is affected and both CREB phosphorylation and transcriptional activity are decreased significantly. The neuronal viability and the deficiency of CREB activity, are both rescued by the pharmacological activation of the NMDA receptor. These results provide good circumstantial evidence for a functional link between the NMDA receptor and CREB activity in promoting neuronal survival during development.

  14. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  15. Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats.

    PubMed

    Podlacha, Magdalena; Glac, Wojciech; Listowska, Magdalena; Grembecka, Beata; Majkutewicz, Irena; Myślińska, Dorota; Plucińska, Karolina; Jerzemowska, Grażyna; Grzybowska, Maria; Wrona, Danuta

    2016-03-01

    The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions. PMID:26454750

  16. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention?

    PubMed

    Haddad, John J

    2005-11-01

    Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.

  17. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  18. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus

    PubMed Central

    Dinamarca, Margarita C; Guzzetti, Francesca; Karpova, Anna; Lim, Dmitry; Mitro, Nico; Musardo, Stefano; Mellone, Manuela; Marcello, Elena; Stanic, Jennifer; Samaddar, Tanmoy; Burguière, Adeline; Caldarelli, Antonio; Genazzani, Armando A; Perroy, Julie; Fagni, Laurent; Canonico, Pier Luigi; Kreutz, Michael R; Gardoni, Fabrizio; Luca, Monica Di

    2016-01-01

    Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.12430.001 PMID:26977767

  19. Astrocytes increase the activity of synaptic GluN2B NMDA receptors

    PubMed Central

    Hahn, Junghyun; Wang, Xianhong; Margeta, Marta

    2015-01-01

    Astrocytes regulate excitatory synapse formation and surface expression of glutamate AMPA receptors (AMPARs) during development. Less is known about glial modulation of glutamate NMDA receptors (NMDARs), which mediate synaptic plasticity and regulate neuronal survival in a subunit- and subcellular localization-dependent manner. Using primary hippocampal cultures with mature synapses, we found that the density of NMDA-evoked whole-cell currents was approximately twice as large in neurons cultured in the presence of glia compared to neurons cultured alone. The glial effect was mediated by (an) astrocyte-secreted soluble factor(s), was Mg2+ and voltage independent, and could not be explained by a significant change in the synaptic density. Instead, we found that the peak amplitudes of total and NMDAR miniature excitatory postsynaptic currents (mEPSCs), but not AMPAR mEPSCs, were significantly larger in mixed than neuronal cultures, resulting in a decreased synaptic AMPAR/NMDAR ratio. Astrocytic modulation was restricted to synaptic NMDARs that contain the GluN2B subunit, did not involve an increase in the cell surface expression of NMDAR subunits, and was mediated by protein kinase C (PKC). Taken together, our findings indicate that astrocyte-secreted soluble factor(s) can fine-tune synaptic NMDAR activity through the PKC-mediated regulation of GluN2B NMDAR channels already localized at postsynaptic sites, presumably on a rapid time scale. Given that physiologic activation of synaptic NMDARs is neuroprotective and that an increase in the synaptic GluN2B current is associated with improved learning and memory, the astrocyte-induced potentiation of synaptic GluN2B receptor activity is likely to enhance cognitive function while simultaneously strengthening neuroprotective signaling pathways. PMID:25941471

  20. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons.

    PubMed

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca(2+)-activated K(+) (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5'-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  1. Diazepam improves aspects of social behaviour and neuron activation in NMDA receptor-deficient mice.

    PubMed

    Mielnik, C A; Horsfall, W; Ramsey, A J

    2014-09-01

    NR1 knockdown (NR1KD) mice are genetically modified to express low levels of the NR1 subunit of N-methyl-D-aspartate (NMDA) receptors, and show deficits in affiliative social behaviour. In this study, we determined which brain regions were selectively activated in response to social stimulation and asked whether differences in neuronal activation could be observed in mice with reduced sociability. Furthermore, we aimed to determine whether brain activation patterns correlated with the amelioration of social deficits through pharmacological intervention. The cingulate cortex, lateral septal nuclei, hypothalamus, thalamus and amygdala showed an increase in c-Fos immunoreactivity that was selective for exposure to social stimuli. NR1KD mice displayed a reduction in social behaviour and a reduction in c-Fos immunoreactivity in the cingulate cortex and septal nuclei. Acute clozapine did not significantly alter sociability; however, diazepam treatment did increase sociability and neuronal activation in the lateral septal region. This study has identified the lateral septal region as a neural substrate of social behaviour and the GABA system as a potential therapeutic target for social dysfunction.

  2. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage

    PubMed Central

    Stein, Ivar S.; Gray, John A.

    2015-01-01

    The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca2+ transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca2+ influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca2+ influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long

  3. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin

    PubMed Central

    Okamoto, Shu-ichi; Pouladi, Mahmoud A.; Talantova, Maria; Yao, Dongdong; Xia, Peng; Ehrnhoefer, Dagmar E.; Zaidi, Rameez; Clemente, Arjay; Kaul, Marcus; Graham, Rona K.; Zhang, Dongxian; Chen, H.-S. Vincent; Tong, Gary; Hayden, Michael R.; Lipton, Stuart A.

    2009-01-01

    The neurodegenerative disorder Huntington disease (HD) is caused by an expanded CAG repeat in the huntingtin gene, resulting in loss of striatal and cortical neurons. Although, the gene product is widely expressed, it remains unclear why neurons are selectively targeted. Here, we demonstrate the relationship between synaptic and extrasynaptic activity, inclusion formation of mutant huntingtin protein (mtHtt), and neuronal survival. Synaptic NMDA receptor (NMDAR) activity induces mtHtt inclusions via a TCP1 ring complex (TRiC)-dependent mechanism, rendering neurons more resistant to mtHtt-mediated cell death. In contrast, stimulation of extrasynaptic NMDARs increases vulnerability of mtHtt-neurons to cell death by impairing a neuroprotective CREB—PGC-1α cascade and increasing the small guanine nucleotide-binding protein Rhes, which is known to sumoylate and disaggregate mtHtt. Treatment of transgenic YAC128 HD mice with low-dose memantine blocks extrasynaptic (but not synaptic) NMDARs and ameliorates neuropathological and behavioral manifestations. By contrast, high-dose memantine also blocks synaptic NMDAR activity, decreases neuronal inclusions, and worsens these outcomes. Our findings offer a rational therapeutic approach for protecting susceptible neurons in HD. PMID:19915593

  4. Chloride Homeostasis Critically Regulates Synaptic NMDA Receptor Activity in Neuropathic Pain.

    PubMed

    Li, Lingyong; Chen, Shao-Rui; Chen, Hong; Wen, Lei; Hittelman, Walter N; Xie, Jing-Dun; Pan, Hui-Lin

    2016-05-17

    Chronic neuropathic pain is a debilitating condition that remains difficult to treat. Diminished synaptic inhibition by GABA and glycine and increased NMDA receptor (NMDAR) activity in the spinal dorsal horn are key mechanisms underlying neuropathic pain. However, the reciprocal relationship between synaptic inhibition and excitation in neuropathic pain is unclear. Here, we show that intrathecal delivery of K(+)-Cl(-) cotransporter-2 (KCC2) using lentiviral vectors produces a complete and long-lasting reversal of pain hypersensitivity induced by nerve injury. KCC2 gene transfer restores Cl(-) homeostasis disrupted by nerve injury in both spinal dorsal horn and primary sensory neurons. Remarkably, restoring Cl(-) homeostasis normalizes both presynaptic and postsynaptic NMDAR activity increased by nerve injury in the spinal dorsal horn. Our findings indicate that nerve injury recruits NMDAR-mediated signaling pathways through the disruption of Cl(-) homeostasis in spinal dorsal horn and primary sensory neurons. Lentiviral vector-mediated KCC2 expression is a promising gene therapy for the treatment of neuropathic pain. PMID:27160909

  5. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies. PMID:26795565

  6. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.

  7. Relief learning is dependent on NMDA receptor activation in the nucleus accumbens

    PubMed Central

    Mohammadi, Milad; Fendt, Markus

    2015-01-01

    Background and Purpose Recently, we demonstrated that the nucleus accumbens (NAC) is required for the acquisition and expression of relief memory. The purpose of this study was to investigate the role of NMDA receptors within the NAC in relief learning. Experimental Approach The NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) was injected into the NAC. The effects of these injections on the acquisition and expression of relief memory, as well as on the reactivity to aversive electric stimuli, were tested. Key Results Intra-accumbal AP-5 injections blocked the acquisition but not the expression of relief memory. Furthermore, reactivity to aversive electric stimuli was not affected by the AP-5 injections. Conclusion and Implication The present data indicate that NMDA-dependent plasticity within the NAC is crucial for the acquisition of relief memory. PMID:25572550

  8. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  9. Pharmacological Modulation of NMDA Receptor Activity and the Advent of Negative and Positive Allosteric Modulators

    PubMed Central

    Monaghan, Daniel T.; Irvine, Mark W.; Costa, Blaise Mathias; Fang, Guangyu; Jane, David E.

    2012-01-01

    The NMDA receptor (NMDAR) family of L-glutamate receptors are well known to have diverse roles in CNS function as well as in various neuropathological and psychiatric conditions. Until recently, the types of agents available to pharmacologically regulate NMDAR function have been quite limited in terms of mechanism of action and subtype selectivity. This has changed significantly in the past two years. The purpose of this review is to summarize the many drug classes now available for modulating NMDAR activity. Previously, this included competitive antagonists at the L-glutamate and glycine binding sites, high and low affinity channel blockers, and GluN2B-selective N-terminal domain binding site antagonists. More recently, we and others have identifed new classes of NMDAR agents that are either positive or negative allosteric modulators (PAMs and NAMs, respectively). These compounds include the pan potentiator UBP646, the GluN2A-selective potentiator/GluN2C & GluN2D inhibitor UBP512, the GluN2D-selective potentiator UBP551, the GluN2C/GluN2D-selective potentiator CIQ as well as the new NMDAR-NAMs such as the pan-inhibitor UBP618, the GluN2C/GluN2D-selective inhibitor QZN46 and the GluN2A inhibitors UBP608 and TCN201. These new agents do not bind within the L-glutamate or glycine binding sites, the ion channel pore or the N-terminal regulatory domain. Collectively, these new allosteric modulators appear to be acting at multiple novel sites on the NMDAR complex. Importantly, these agents display improved subtype-selectivity and as NMDAR PAMs and NAMs, they represent a new generation of potential NMDAR therapeutics. PMID:22269804

  10. Blockade of PARP activity attenuates poly(ADP-ribosyl)ation but offers only partial neuroprotection against NMDA-induced cell death in the rat retina.

    PubMed

    Goebel, Dennis J; Winkler, Barry S

    2006-09-01

    Recent reports have linked neuronal cell death by necrosis to poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation. It is believed that under stress, the activity of this enzyme is up-regulated, resulting in extensive poly(ADP-ribosyl)ation of nuclear proteins, using NAD(+) as its substrate, which, in turn, leads to the depletion of NAD(+). In efforts to restore the level of NAD(+), depletion of ATP occurs, resulting in the shutdown of ATP-dependent ionic pumps. This results in cell swelling and eventual loss of membrane selectivity, hallmarks of necrosis. Reports from in vitro and in vivo studies in the brain have shown that NMDA receptor activation stimulates PARP activity and that blockade of the enzyme provides substantial neuroprotection. The present study was undertaken to determine whether PARP activity is regulated by NMDA in the rat retina, and whether blockade of PARP activity provides protection against toxic effects of NMDA. Rat retinas exposed to intravitreal injections containing NMDA, with or without the PARP inhibitor N-(6-oxo-5, 6-dihydrophenanthridin-2-yl)-(N,-dimethylamino) acetamide hydrochloride (PJ-34), were assessed for changes in PARP-1 activity as evidenced by poly(ADP-ribosyl)ation (PAR), loss of membrane integrity, morphological indicators of apoptosis and necrosis, and ganglion cell loss. Results showed that: NMDA increased PAR formation in a concentration-dependent manner and caused a decline in retinal ATP levels; PJ-34 blockade attenuated the NMDA-induced formation of PAR and decline in ATP; NMDA induced the loss of membrane selectivity to ethidium bromide (EtBr) in inner retinal neurons, but loss of membrane selectivity was not prevented by blocking PARP activity; cells stained with EtBr, or reacted for TUNEL-labeling, displayed features characteristic of both apoptosis and necrosis. In the presence of PJ-34, greater numbers of cells exhibited apoptotic features; PJ-34 provided partial neuroprotection against NMDA-induced ganglion

  11. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: a new mechanism for the regulation of nitric oxide production.

    PubMed

    Cossenza, Marcelo; Cadilhe, Daniel V; Coutinho, Rodrigo N; Paes-de-Carvalho, Roberto

    2006-06-01

    The synthesis of nitric oxide (NO) is limited by the intracellular availability of L-arginine. Here we show that stimulation of NMDA receptors promotes an increase of intracellular L-arginine which supports an increase in the production of NO. Although L-[3H]arginine uptake measured in cultured chick retina cells incubated in the presence of cycloheximide (CHX, a protein synthesis inhibitor) was inhibited approximately 75% at equilibrium, quantitative thin-layer chromatography analysis showed that free intracellular L-[3H]arginine was six times higher in CHX-treated than in control cultures. Extracellular L-[3H]citrulline levels increased threefold in CHX-treated groups, an effect blocked by NG-nitro-L-arginine, a NO synthase (NOS) inhibitor. NMDA promoted a 40% increase of free intracellular L-[3H]arginine in control cultures, an effect blocked by the NMDA antagonist 2-amino 5-phosphonovaleric acid. In parallel, NMDA promoted a reduction of 40-50% in the incorporation of 35[S]methionine or L-[3H]arginine into proteins. Western blot analysis revealed that NMDA stimulates the phosphorylation of eukaryotic elongation factor 2 (eEF2, a factor involved in protein translation), an effect inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK801). In conclusion, we have shown that the stimulation of NMDA receptors promotes an inhibition of protein synthesis and a consequent increase of an intracellular L-arginine pool available for the synthesis of NO. This effect seems to be mediated by activation of eEF2 kinase, a calcium/calmodulin-dependent enzyme which specifically phosphorylates and blocks eEF2. The results raise the possibility that NMDA receptor activation stimulates two different calmodulin-dependent enzymes (eEF2 kinase and NOS) reinforcing local NO production by increasing precursor availability together with NOS catalytic activity.

  12. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning.

    PubMed

    Smith-Roe, S L; Kelley, A E

    2000-10-15

    The nucleus accumbens, a brain structure ideally situated to act as an interface between corticolimbic information-processing regions and motor output systems, is well known to subserve behaviors governed by natural reinforcers. In the accumbens core, glutamatergic input from its corticolimbic afferents and dopaminergic input from the ventral tegmental area converge onto common dendrites of the medium spiny neurons that populate the accumbens. We have previously found that blockade of NMDA receptors in the core with the antagonist 2-amino-5-phosphonopentanoic acid (AP-5; 5 nmol) abolishes acquisition but not performance of an appetitive instrumental learning task (Kelley et al., 1997). Because it is currently hypothesized that concurrent dopamine D(1) and glutamate receptor activation is required for long-term changes associated with plasticity, we wished to examine whether the dopamine system in the accumbens core modulates learning via NMDA receptors. Co-infusion of low doses of the D(1) receptor antagonist SCH-23390 (0.3 nmol) and AP-5 (0.5 nmol) into the accumbens core strongly impaired acquisition of instrumental learning (lever pressing for food), whereas when infused separately, these low doses had no effect. Infusion of the combined low doses had no effect on indices of feeding and motor activity, suggesting a specific effect on learning. We hypothesize that co-activation of NMDA and D(1) receptors in the nucleus accumbens core is a key process for acquisition of appetitive instrumental learning. Such an interaction is likely to promote intracellular events and gene regulation necessary for synaptic plasticity and is supported by a number of cellular models.

  13. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood. PMID:24295633

  14. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood.

  15. Antidepressant-like activity of magnesium in the chronic mild stress model in rats: alterations in the NMDA receptor subunits.

    PubMed

    Pochwat, Bartłomiej; Szewczyk, Bernadeta; Sowa-Kucma, Magdalena; Siwek, Agata; Doboszewska, Urszula; Piekoszewski, Wojciech; Gruca, Piotr; Papp, Mariusz; Nowak, Gabriel

    2014-03-01

    Recent data suggests that the glutamatergic system is involved in the pathophysiology and treatment of major depressive disorder (MDD) and that the N-methyl-D-aspartate (NMDA) receptor is a potential target for antidepressant drugs. The magnesium ion blocks the ion channel of the NMDA receptor and prevents its excessive activation. Some preclinical and clinical evidence suggests also that magnesium may be useful in the treatment of depression. The present study investigated the effect of magnesium treatment (10, 15 and 20 mg/kg, given as magnesium hydroaspartate) in the chronic mild stress (CMS) model of depression in rats. Moreover, the effect of CMS and magnesium (with an effective dose) on the level of the proteins related to the glutamatergic system (GluN1, GluN2A, GluN2B and PSD-95) in the hippocampus, prefrontal cortex (PFC) and amygdala were examined. A significant reduction in the sucrose intake induced by CMS was increased by magnesium treatment at a dose of 15 mg/kg, beginning from the third week of administration. Magnesium did not affect this behavioural parameter in the control animals. CMS significantly increased the level of the GluN1 subunit in the amygdala (by 174%) and GluN2A in the hippocampus (by 191%), both of which were significantly attenuated by magnesium treatment. Moreover, magnesium treatment in CMS animals increased the level of GluN2B (by 116%) and PSD-95 (by 150%) in the PFC. The present results for the first time demonstrate the antidepressant-like activity of magnesium in the animal model of anhedonia (CMS), thus indicating the possible involvement of the NMDA/glutamatergic receptors in this activity.

  16. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation.

    PubMed

    Lipton, Stuart A

    2007-05-01

    Alzheimer's disease (AD) and Vascular dementia represent the most common forms of dementia. If left unabated, the economic cost of caring for patients with these maladies would consume the entire gross national product of the industrialized world by the middle of this century. Until recently, the only available drugs for this condition were cholinergic treatments, which symptomatically enhance cognitive state to some degree, but they were not neuroprotective. Many potential neuroprotective drugs tested in clinical trials failed because of intolerable side effects. However, after our discovery of its clinically-tolerated mechanism of action, one putatively neuroprotective drug, memantine, was recently approved by the European Union and the U.S. Food and Drug Administration (FDA) for the treatment of dementia. Recent phase 3 clinical trials have shown that memantine is effective in the treatment of both mild and moderate-to-severe Alzheimer's disease and possibly Vascular dementia (multi-infarct dementia). Here we review the molecular mechanism of memantine's action and also the basis for the drug's use in these neurological diseases, which are mediated at least in part by excitotoxicity. Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. Excitotoxic neuronal cell damage is mediated in part by overactivation of N-methyl-D-aspartate (NMDA)-type glutamate receptors, which results in excessive Ca(2+) influx through the receptor associated ion channel and subsequent free radical formation. Physiological NMDA receptor activity, however, is also essential for normal neuronal function. This means that potential neuroprotective agents that block virtually all NMDA receptor activity will very likely have unacceptable clinical side effects. For this reason many previous NMDA receptor antagonists have disappointingly failed advanced clinical trials for a number of

  17. Activation of NMDA receptors prevents excessive metabolic decrease in hypoxic rat pups.

    PubMed

    Baig, Mirza Shafiulla; Joseph, Vincent

    2006-05-01

    We tested the hypothesis that glutamate NMDA receptors may help maintain metabolic rate and body temperature during acute or chronic hypoxic exposure in newborn rats. We recorded ventilation, metabolism ((.)V(O(2)) -- ((.)V(CO(2)) and rectal temperature, under normoxia, acute hypoxia (30 min -- 12% O(2)), or following 10 days of chronic hypoxia, in 10 days old male and female rats, receiving saline i.p. injection or the NMDA receptor antagonist MK-801. Acute hypoxia decreased rectal temperature and metabolism, and increased ventilation, and (.)V(E)/((.)V(O(2) and (.)V(E)/((.)V(CO(2) to the same extent in males and females. MK-801 injection amplified the metabolic decrease under acute (in males and females) and chronic (in males) hypoxia, prevented the increase of minute ventilation, while (.)V(E)/((.)V(O(2) or (.)V(E)/((.)V(CO(2)remained constant. Hence, NMDA glutamate receptors help to maintain metabolic rate, minute ventilation and body temperature at a determined level in acute (males and females) and chronic hypoxia (males only).

  18. Improved Chemical Structure-Activity Modeling Through Data Augmentation.

    PubMed

    Cortes-Ciriano, Isidro; Bender, Andreas

    2015-12-28

    Extending the original training data with simulated unobserved data points has proven powerful to increase both the generalization ability of predictive models and their robustness against changes in the structure of data (e.g., systematic drifts in the response variable) in diverse areas such as the analysis of spectroscopic data or the detection of conserved domains in protein sequences. In this contribution, we explore the effect of data augmentation in the predictive power of QSAR models, quantified by the RMSE values on the test set. We collected 8 diverse data sets from the literature and ChEMBL version 19 reporting compound activity as pIC50 values. The original training data were replicated (i.e., augmented) N times (N ∈ 0, 1, 2, 4, 6, 8, 10), and these replications were perturbed with Gaussian noise (μ = 0, σ = σnoise) on either (i) the pIC50 values, (ii) the compound descriptors, (iii) both the compound descriptors and the pIC50 values, or (iv) none of them. The effect of data augmentation was evaluated across three different algorithms (RF, GBM, and SVM radial) and two descriptor types (Morgan fingerprints and physicochemical-property-based descriptors). The influence of all factor levels was analyzed with a balanced fixed-effect full-factorial experiment. Overall, data augmentation constantly led to increased predictive power on the test set by 10-15%. Injecting noise on (i) compound descriptors or on (ii) both compound descriptors and pIC50 values led to the highest drop of RMSEtest values (from 0.67-0.72 to 0.60-0.63 pIC50 units). The maximum increase in predictive power provided by data augmentation is reached when the training data is replicated one time. Therefore, extending the original training data with one perturbed repetition thereof represents a reasonable trade-off between the increased performance of the models and the computational cost of data augmentation, namely increase of (i) model complexity due to the need for optimizing

  19. Dynamic Changes in Cytosolic ATP Levels in Cultured Glutamatergic Neurons During NMDA-Induced Synaptic Activity Supported by Glucose or Lactate.

    PubMed

    Lange, Sofie C; Winkler, Ulrike; Andresen, Lars; Byhrø, Mathilde; Waagepetersen, Helle S; Hirrlinger, Johannes; Bak, Lasse K

    2015-12-01

    We have previously shown that synaptic transmission fails in cultured neurons in the presence of lactate as the sole substrate. Thus, to test the hypothesis that the failure of synaptic transmission is a consequence of insufficient energy supply, ATP levels were monitored employing the ATP biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined following NMDA-induced neurotransmission activity, as indicated by a reversible 10-20 % decrease in the response of the biosensor. The responses were absent when the NMDA receptor antagonist memantine was present. In the presence of lactate alone, the ATP response dropped significantly more than in the presence of glucose following the 2nd pulse of NMDA (approx. 10 vs. 20 %). Further, cytosolic Ca(2+) homeostasis during NMDA-induced synaptic transmission is partially inhibited by verapamil indicating that voltage-gated Ca(2+) channels are activated. Lastly, we showed that cytosolic Ca(2+) homeostasis is supported equally well by both glucose and lactate, and that a pulse of NMDA causes accumulation of Ca(2+) in the mitochondrial matrix. In summary, we have shown that ATP homeostasis during neurotransmission activity in cultured neurons is supported by both glucose and lactate. However, ATP homeostasis seems to be negatively affected by the presence of lactate alone, suggesting that glucose is needed to support neuronal energy metabolism during activation.

  20. Structure-activity relationships of N-substituted 4-(trifluoromethoxy)benzamidines with affinity for GluN2B-containing NMDA receptors.

    PubMed

    Beinat, Corinne; Banister, Samuel D; Hoban, Jane; Tsanaktsidis, John; Metaxas, Athanasios; Windhorst, Albert D; Kassiou, Michael

    2014-02-01

    GluN2B subtype-selective NMDA antagonists represent promising therapeutic targets for the symptomatic treatment of multiple CNS pathologies. A series of N-benzyl substituted benzamidines were synthesised and the benzyl ring was further replaced with various polycyclic moieties. Compounds were evaluated for activity at GluN2B containing NMDA receptors where analogues 9, 12, 16 and 18 were the most potent of the series, replacement of the benzyl ring with polycycles resulted in a complete loss of activity. PMID:24412068

  1. Augmented reality to enhance an active telepresence system

    NASA Astrophysics Data System (ADS)

    Wheeler, Alison; Pretlove, John R. G.; Parker, Graham A.

    1996-12-01

    Tasks carried out remotely via a telerobotic system are typically complex, occur in hazardous environments and require fine control of the robot's movements. Telepresence systems provide the teleoperator with a feeling of being physically present at the remote site. Stereoscopic video has been successfully applied to telepresence vision systems to increase the operator's perception of depth in the remote scene and this sense of presence can be further enhanced using computer generated stereo graphics to augment the visual information presented to the operator. The Mechatronic Systems and Robotics Research Group have over seven years developed a number of high performance active stereo vision systems culminating in the latest, a four degree-of-freedom stereohead. This carries two miniature color cameras and is controlled in real time by the motion of the operator's head, who views the stereoscopic video images on an immersive head mounted display or stereo monitor. The stereohead is mounted on a mobile robot, the movement of which is controlled by a joystick interface. This paper describes the active telepresence system and the development of a prototype augmented reality (AR) application to enhance the operator's sense of presence at the remote site. The initial enhancements are a virtual map and compass to aid navigation in degraded visual conditions and a virtual cursor that provides a means for the operator to interact with the remote environment. The results of preliminary experiments using the initial enhancements are presented.

  2. PAR1-Activated Astrocytes in the Nucleus of the Solitary Tract Stimulate Adjacent Neurons via NMDA Receptors

    PubMed Central

    Vance, Katie M.; Rogers, Richard C.

    2015-01-01

    Severe autonomic dysfunction, including the loss of control of the cardiovascular, respiratory, and gastrointestinal systems, is a common comorbidity of stroke and other bleeding head injuries. Previous studies suggest that this collapse of autonomic control may be caused by thrombin acting on astrocytic protease-activated receptors (PAR1) in the hindbrain. Using calcium imaging and electrophysiological techniques, we evaluated the mechanisms by which astrocytic PAR1s modulate the activity of presynaptic vagal afferent terminals and postsynaptic neurons in the rat nucleus of the solitary tract (NST). Our calcium-imaging data show that astrocytic and neuronal calcium levels increase after brain slices are treated with the PAR1 agonist SFLLRN-NH2. This increase in activity is blocked by pretreating the slices with the glial metabolic blocker fluorocitrate. In addition, PAR1-activated astrocytes communicate directly with NST neurons by releasing glutamate. Calcium responses to SFLLRN-NH2 in the astrocytes and neurons significantly increase after bath application of the excitatory amino acid transporter blocker dl-threo-β-benzyloxyaspartic acid (TBOA) and significantly decrease after bath application of the NMDA receptor antagonist dl-2-amino-5-phosphonopentanoic acid (dl-AP5). Furthermore, astrocytic glutamate activates neuronal GluN2B-containing NMDA receptors. Voltage-clamp recordings of miniature EPSCs (mEPSCs) from NST neurons show that astrocytes control presynaptic vagal afferent excitability directly under resting and activated conditions. Fluorocitrate significantly decreases mEPSC frequency and SFLLRN-NH2 significantly increases mEPSC frequency. These data show that astrocytes act within a tripartite synapse in the NST, controlling the excitability of both postsynaptic NST neurons and presynaptic vagal afferent terminals. PMID:25589770

  3. PAR1-activated astrocytes in the nucleus of the solitary tract stimulate adjacent neurons via NMDA receptors.

    PubMed

    Vance, Katie M; Rogers, Richard C; Hermann, Gerlinda E

    2015-01-14

    Severe autonomic dysfunction, including the loss of control of the cardiovascular, respiratory, and gastrointestinal systems, is a common comorbidity of stroke and other bleeding head injuries. Previous studies suggest that this collapse of autonomic control may be caused by thrombin acting on astrocytic protease-activated receptors (PAR1) in the hindbrain. Using calcium imaging and electrophysiological techniques, we evaluated the mechanisms by which astrocytic PAR1s modulate the activity of presynaptic vagal afferent terminals and postsynaptic neurons in the rat nucleus of the solitary tract (NST). Our calcium-imaging data show that astrocytic and neuronal calcium levels increase after brain slices are treated with the PAR1 agonist SFLLRN-NH2. This increase in activity is blocked by pretreating the slices with the glial metabolic blocker fluorocitrate. In addition, PAR1-activated astrocytes communicate directly with NST neurons by releasing glutamate. Calcium responses to SFLLRN-NH2 in the astrocytes and neurons significantly increase after bath application of the excitatory amino acid transporter blocker DL-threo-β-benzyloxyaspartic acid (TBOA) and significantly decrease after bath application of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (DL-AP5). Furthermore, astrocytic glutamate activates neuronal GluN2B-containing NMDA receptors. Voltage-clamp recordings of miniature EPSCs (mEPSCs) from NST neurons show that astrocytes control presynaptic vagal afferent excitability directly under resting and activated conditions. Fluorocitrate significantly decreases mEPSC frequency and SFLLRN-NH2 significantly increases mEPSC frequency. These data show that astrocytes act within a tripartite synapse in the NST, controlling the excitability of both postsynaptic NST neurons and presynaptic vagal afferent terminals. PMID:25589770

  4. A risk variant for alcoholism in the NMDA receptor affects amygdala activity during fear conditioning in humans.

    PubMed

    Cacciaglia, Raffaele; Nees, Frauke; Pohlack, Sebastian T; Ruttorf, Michaela; Winkelmann, Tobias; Witt, Stephanie H; Nieratschker, Vanessa; Rietschel, Marcella; Flor, Herta

    2013-09-01

    People at high risk for alcoholism show deficits in aversive learning, as indicated by impaired electrodermal responses during fear conditioning, a basic form of associative learning that depends on the amygdala. A positive family history of alcohol dependence has also been related to decreased amygdala responses during emotional processing. In the present study we report reduced amygdala activity during the acquisition of conditioned fear in healthy carriers of a risk variant for alcoholism (rs2072450) in the NR2A subunit-containing N-methyl-d-aspartate (NMDA)-receptor. These results indicate that rs2072450 might confer risk for alcohol dependence through deficient fear acquisition indexed by a diminished amygdala response during aversive learning, and provide a neural basis for a weak behavioral inhibition previously documented in individuals at high risk for alcohol dependence. Carriers of the risk variant additionally exhibit dampened insula activation, a finding that further strengthens our data, given the importance of this brain region in fear conditioning.

  5. Abdomen and spinal cord segmentation with augmented active shape models.

    PubMed

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC. PMID:27610400

  6. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats.

    PubMed

    Li, Frederick W; Deurveilher, Samuel; Semba, Kazue

    2011-10-31

    The perifornical lateral hypothalamic area (PeFLH), which houses orexin/hypocretin (OX) neurons, is thought to play an important role in arousal, feeding, and locomotor activity. The present study examined behavioural effects of activating PeFLH neurons with microinjections of ionotropic glutamate receptor agonists. Three separate unilateral microinjections of either (1) AMPA (1 and 2mM in 0.1 μL artificial cerebrospinal fluid, ACSF) and ACSF, or (2) NMDA (1 and 10mM in 0.1 μL ACSF), and ACSF were made into the PeFLH of adult male rats. Following each injection, the rats were placed into an open field for behavioural scoring for 45 min. Rats were perfused after the third injection for immunohistochemistry for c-Fos and OX to assess the level of activation of OX neurons. Behavioural analyses showed that, as compared to ACSF conditions, AMPA injections produced a dose-dependent increase in locomotion and rearing that persisted throughout the 45 min recording period, and an increase in drinking. Injection of NMDA at 10mM, but not 1mM, induced a transient increase in locomotion and an increase in feeding. Histological analyses showed that while both agonists increased the number of neurons immunoreactive for c-Fos in the PeFLH, only AMPA increased the number of neurons immunoreactive for both c-Fos and OX. There were positive correlations between the number of c-Fos/OX-immunoreactive neurons and the amounts of locomotion, rearing, and drinking. These results support the role of ionotropic glutamate receptors on OX and other neurons in the PeFLH in the regulation of locomotor and ingestive behaviours.

  7. Synergistic activity between the delta-opioid agonist SNC80 and amphetamine occurs via a glutamatergic NMDA-receptor dependent mechanism

    PubMed Central

    Bosse, Kelly E.; Jutkiewicz, Emily M.; Schultz, Kristin N.; Mabrouk, Omar S.; Kennedy, Robert T.; Gnegy, Margaret E.; Traynor, John R.

    2014-01-01

    Glutamate is known to cause the release of dopamine through a Ca2+-sensitive mechanism that involves activation of NMDA ionotropic glutamate receptors. In the current study, we tested the hypothesis that the delta opioid agonist SNC80 acts indirectly, via the glutamatergic system, to enhance both amphetamine-stimulated dopamine efflux from striatal preparations and amphetamine-stimulated locomotor activity. SNC80 increased extracellular glutamate content, which was accompanied by a concurrent decrease in GABA levels. Inhibition of NMDA signaling with the selective antagonist MK801 blocked the enhancement of both amphetamine-induced dopamine efflux and hyperlocomotion observed with SNC80 pretreatment. Addition of exogenous glutamate also potentiated amphetamine-stimulated dopamine efflux in a Mg2+- and MK801-sensitive manner. After removal of Mg2+ to relieve the ion conductance inhibition of NMDA receptors, SNC80 both elicited dopamine release alone and produced a greater enhancement of amphetamine-evoked dopamine efflux. The action of SNC80 to enhance amphetamine-evoked dopamine efflux was mimicked by the GABAB antagonist 2-hydroxysaclofen. These cumulative findings suggest SNC80 modulates amphetamine-stimulated dopamine efflux through an intra-striatal mechanism involving inhibition of GABA transmission leading to the local release of glutamate followed by subsequent activation of NMDA receptors. PMID:24035916

  8. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  9. Glycine triggers a non-ionotropic activity of GluN2A-containing NMDA receptors to confer neuroprotection

    PubMed Central

    Hu, Rong; Chen, Juan; Lujan, Brendan; Lei, Ruixue; Zhang, Mi; Wang, Zefen; Liao, Mingxia; Li, Zhiqiang; Wan, Yu; Liu, Fang; Feng, Hua; Wan, Qi

    2016-01-01

    Ionotropic activation of NMDA receptors (NMDARs) requires agonist glutamate and co-agonist glycine. Here we show that glycine enhances the activation of cell survival-promoting kinase Akt in cultured cortical neurons in which both the channel activity of NMDARs and the glycine receptors are pre-inhibited. The effect of glycine is reduced by shRNA-mediated knockdown of GluN2A subunit-containing NMDARs (GluN2ARs), suggesting that a non-ionotropic activity of GluN2ARs mediates glycine-induced Akt activation. In support of this finding, glycine enhances Akt activation in HEK293 cells over-expressing GluN2ARs. The effect of glycine on Akt activation is sensitive to the antagonist of glycine-GluN1 binding site. As a functional consequence, glycine protects against excitotoxicity-induced neuronal death through the non-ionotropic activity of GluN2ARs and the neuroprotective effect is attenuated by Akt inhibition. Thus, this study reveals an unexpected role of glycine in eliciting a non-ionotropic activity of GluN2ARs to confer neuroprotection via Akt activation. PMID:27694970

  10. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  11. Activity-Dependent Shedding of the NMDA Receptor Glycine Binding Site by Matrix Metalloproteinase 3: A PUTATIVE Mechanism of Postsynaptic Plasticity

    PubMed Central

    Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen

    2008-01-01

    Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS. PMID:18629001

  12. Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4

    PubMed Central

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora

    2014-01-01

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity. PMID:25392500

  13. Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation.

    PubMed

    Yin, Xiao-Hui; Zhang, Quan-Guang; Miao, Bei; Zhang, Guang-Yi

    2005-05-01

    A number of works show that the mitogen-activated protein kinase (MAPK) signalling pathway responds actively in cerebral ischaemia and reperfusion. We undertook our present studies to clarify the role of mixed-lineage kinase 3 (MLK3), a MAPK kinase kinase (MAPKKK) in MAPK cascades, in global ischaemia and ischaemic tolerance. The mechanism concerning NMDA receptor-mediated Akt1 activation underlying ischaemic tolerance, was also investigated. Sprague-Dawley rats were subjected to 6 min of ischaemia and differing times of reperfusion. Our results showed MLK3 was activated in the hippocampal CA1 region with two peaks occurring at 30 min and 6 h, respectively. This activation returned to base level 3 days later. Both preconditioning with 3 min of sublethal ischaemia and NMDA pretreatment inhibited the 6-h peak of activation. However, pretreatment of ketamine before preconditioning reversed the inhibiting effect of preconditioning on MLK3 activation at 6 h of reperfusion. In the case of Akt1, however, preconditioning and NMDA pretreatment enhanced Akt1 activation at 10 min of reperfusion. Furthermore, ketamine pretreatment reversed preconditioning-induced increase of Akt1 activation. We also noted that pretreatment of LY294002 before preconditioning reversed both the inhibition of MLK3 activation at 6 h of reperfusion and the increase in Akt1 activation at 10 min of reperfusion. The above-mentioned results lead us to conclude that, in the hippocampal CA1 region, preconditioning inhibits MLK3 activation after lethal ischaemia and reperfusion and, furthermore, this effect is mediated by Akt1 activation through NMDA receptor stimulation.

  14. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.

    PubMed

    Sun, Lu; June Liu, Siqiong

    2007-09-01

    The repetitive activation of synaptic glutamate receptors can induce a lasting change in the number or subunit composition of synaptic AMPA receptors (AMPARs). However, NMDA receptors that are present extrasynaptically can also be activated by a burst of presynaptic activity, and thus may be involved in the induction of synaptic plasticity. Here we show that the physiological-like activation of extrasynaptic NMDARs induces a lasting change in the synaptic current, by changing the subunit composition of AMPARs at the parallel fibre-to-cerebellar stellate cell synapse. This extrasynaptic NMDAR-induced switch in synaptic AMPARs from GluR2-lacking (Ca(2+)-permeable) to GluR2-containing (Ca(2+)-impermeable) receptors requires the activation of protein kinase C (PKC). These results indicate that the activation of extrasynaptic NMDARs by glutamate spillover is an important mechanism that detects the pattern of afferent activity and subsequently exerts a remote regulation of AMPAR subtypes at the synapse via a PKC-dependent pathway.

  15. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA.

    PubMed

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-06-25

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor antagonist MK-801. Further, the relative amount of Arc mRNA compared to c-Fos mRNA was higher for BDNF, equal for NMDA and lower for AMPA. These results demonstrate BDNF to be a highly potent and efficient inducer of arc gene expression in vitro, emphasizing the role of this growth factor in synaptic plasticity in the frontal cortex. PMID:21515256

  16. Modulation of Neuronal Migration by NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Komuro, Hitoshi; Rakic, Pasko

    1993-04-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is essential for neuronal differentiation and establishment or elimination of synapses in a developing brain. The activity of the NMDA receptor has now been shown to also regulate the migration of granule cells in slice preparations of the developing mouse cerebellum. First, blockade of NMDA receptors by specific antagonists resulted in the curtailment of cell migration. Second, enhancement of NMDA receptor activity by the removal of magnesium or by the application of glycine increased the rate of cell movement. Third, increase of endogenous extracellular glutamate by inhibition of its uptake accelerated the rate of cell migration. These results suggest that NMDA receptors may play an early role in the regulation of calcium-dependent cell migration before neurons reach their targets and form synaptic contacts.

  17. Autocrine activation of neuronal NMDA receptors by aspartate mediates dopamine- and cAMP-induced CREB-dependent gene transcription.

    PubMed

    Almeida, Luis E F; Murray, Peter D; Zielke, H Ronald; Roby, Clinton D; Kingsbury, Tami J; Krueger, Bruce K

    2009-10-01

    cAMP can stimulate the transcription of many activity-dependent genes via activation of the transcription factor, cAMP response element-binding protein (CREB). However, in mouse cortical neuron cultures, prior to synaptogenesis, neither cAMP nor dopamine, which acts via cAMP, stimulated CREB-dependent gene transcription when NR2B-containing NMDA receptors (NMDARs) were blocked. Stimulation of transcription by cAMP was potentiated by inhibitors of excitatory amino acid uptake, suggesting a role for extracellular glutamate or aspartate in cAMP-induced transcription. Aspartate was identified as the extracellular messenger: enzymatic scavenging of l-aspartate, but not glutamate, blocked stimulation of CREB-dependent gene transcription by cAMP; moreover, cAMP induced aspartate but not glutamate release. Together, these results suggest that cAMP acts via an autocrine or paracrine pathway to release aspartate, which activates NR2B-containing NMDARs, leading to Ca(2+) entry and activation of transcription. This cAMP/aspartate/NMDAR signaling pathway may mediate the effects of transmitters such as dopamine on axon growth and synaptogenesis in developing neurons or on synaptic plasticity in mature neural networks.

  18. NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice.

    PubMed

    Wlaź, Piotr; Kasperek, Regina; Wlaź, Aleksandra; Szumiło, Michał; Wróbel, Andrzej; Nowak, Gabriel; Poleszak, Ewa

    2011-01-01

    It is known that tianeptine exhibits antidepressant-like activity. Its influence on the glutamatergic system is also known, but the mechanisms involved in this activity remain to be established. The aim of this study was to investigate the involvement of the glutamate pathway in the antidepressant-like action of tianeptine. We investigated the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor ligands on tianeptine-induced activity in the forced swim test (FST) in mice. The antidepressant-like activity of tianeptine (30 m/kg, ip) was significantly antagonized by D-serine (100 nmol/mouse icv) and NBQX (10 mg/kg, ip). Moreover, low, ineffective doses of the glycine/NMDA site antagonist L-701,324 (1 mg/kg, ip) administered together with low, ineffective doses of tianeptine (20 mg/kg, ip) exhibited a significant reduction of immobility time in the FST. These doses of the examined agents, which did have an effect in the FST, did not alter locomotor activity. The present study indicates that the antidepressant-like activity of tianeptine in the FST involves both NMDA and AMPA receptors and suggests that the interaction between serotonergic and glutamatergic transmission may play an important role in the action of tianeptine.

  19. NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice.

    PubMed

    Wlaź, Piotr; Kasperek, Regina; Wlaź, Aleksandra; Szumiło, Michał; Wróbel, Andrzej; Nowak, Gabriel; Poleszak, Ewa

    2011-01-01

    It is known that tianeptine exhibits antidepressant-like activity. Its influence on the glutamatergic system is also known, but the mechanisms involved in this activity remain to be established. The aim of this study was to investigate the involvement of the glutamate pathway in the antidepressant-like action of tianeptine. We investigated the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor ligands on tianeptine-induced activity in the forced swim test (FST) in mice. The antidepressant-like activity of tianeptine (30 m/kg, ip) was significantly antagonized by D-serine (100 nmol/mouse icv) and NBQX (10 mg/kg, ip). Moreover, low, ineffective doses of the glycine/NMDA site antagonist L-701,324 (1 mg/kg, ip) administered together with low, ineffective doses of tianeptine (20 mg/kg, ip) exhibited a significant reduction of immobility time in the FST. These doses of the examined agents, which did have an effect in the FST, did not alter locomotor activity. The present study indicates that the antidepressant-like activity of tianeptine in the FST involves both NMDA and AMPA receptors and suggests that the interaction between serotonergic and glutamatergic transmission may play an important role in the action of tianeptine. PMID:22358100

  20. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (INMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated INMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on INMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated INMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of INMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  1. Memantine, an NMDA receptor antagonist, differentially influences Go/No-Go performance and fMRI activity in individuals with and without a family history of alcoholism

    PubMed Central

    DeVito, E. E.; Jiantonio, R. E.; Meda, S. A.; Stevens, M. C.; Potenza, M. N.; Krystal, J. H.; Pearlson, G. D.

    2013-01-01

    Rationale Individuals with a family history of alcoholism (family history positive [FHP]) show higher alcoholism rates and are more impulsive than those without such a family history (family history negative [FHN]), possibly due to altered N-methyl-D-aspartate (NMDA) receptor function. Objectives We investigated whether memantine, an NMDA receptor antagonist, differentially influences impulsivity measures and Go/No-Go behavior and fMRI activity in matched FHP and FHN individuals. Methods On separate days, participants received a single dose of 40 mg memantine or identical-appearing placebo. Results No group performance differences were observed on placebo for Go correct hit or No-Go false alarm reaction time on the Go/No-Go task. During fMRI, right cingulate activation differed for FHP vs. FHN subjects during No-Go correct rejects. Memantine had attenuated effects in FHP vs. FHN subjects: For No-Go false alarms, memantine was associated with limited reduction in subcortical, cingulate, and temporal regions in FHP subjects and reduced activity in fronto-striatal–parietal networks in FHN subjects. For No-Go correct rejects, memantine (relative to placebo) reduced activity in left cingulate and caudate in FHP but not FHN subjects. Conclusions Lower sensitivity to the effects of memantine in FHP subjects is consistent with greater NMDA receptor function in this group. PMID:22311382

  2. Neuroprotective effect of Chuk-Me-Sun-Dan on NMDA- and AMPA-evoked nitric oxide synthase activity in mouse brain.

    PubMed

    Koo, Byung-Soo; Choi, Eun-Gyu; Park, Jae-Bok; Cho, Chang-Ho; Chung, Kang-Hyun; Kim, Cheorl-Ho

    2005-01-01

    Chukmesundan (CMSD) is composed of 8 medicinal herbs including Panex ginseng C.A. MEYER, Atractylodes macrocephala KOID, Poria cocos WOLF, Pinellia ternata BREIT, Brassica alba BOISS, Aconitum carmichaeli DEBX, Cynanchum atratum BGE, and Cuscuta chinensis LAM and used for the treatment of various symptoms accompanying hypertension and cerebrovascular disorders. This study was carried out to examine the effects of CMSD on N-methyl-D-aspartate (NMDA)-evoked, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-evoked nitric oxide synthase (NOS) activity in mouse brain. In adult forebrain, CMSD influences neuronal maintenance and is neuroprotective in several injury models through mechanisms that are incompletely understood. Interaction is observed between CMSD and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, we hypothesized that CMSD might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of L-[14C] arginine to L-[14C] citrulline as an accurate reflection of NOS activity in adult mouse hippocampus. CMSD significantly reduced NOS activities to 62% of basal levels within 2 days of onset of delivery and maintained NOS activity at less than 45% of baseline throughout 3 days of delivery. These effects did not occur with control (distilled water) and were not mediated by effect of CMSD on glutamate levels. In addition, simultaneous delivery of CMSD treatment prevented significant increases in NOS activity triggered by the glutamate receptor agonists NMDA and AMPA. Rapid suppression by CMSD of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of CMSD. It is shown that NMDA receptor stimulation leads to activation of p21ras (Ras) through generation of NO via neuronal NOS. The competitive NOS inhibitor, L-nitroarginine methyl ester, and CMSD prevents Ras

  3. Effects of ifenprodil on the antidepressant-like activity of NMDA ligands in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wośko, Sylwia; Serefko, Anna; Szopa, Aleksandra; Wlaź, Aleksandra; Szewczyk, Bernadeta; Nowak, Gabriel; Wlaź, Piotr

    2013-10-01

    Multiple pre-clinical and clinical studies clearly displayed implication of the NMDA receptors in development of depressive disorders since a variety of NMDA receptor antagonists exhibit an antidepressant-like effect. The main aim of our study was to assess the influence of ifenprodil - an allosteric modulator selectively binding at the NR2B subunit on the performance in the forced swim test in mice of various NMDA receptor ligands interacting with distinct components of the NMDA receptor complex. Ifenprodil at a dose of 10mg/kg enhanced the antidepressant-like effect of CGP 37849 (a competitive NMDA receptor antagonist, 0.312mg/kg), L-701,324 (an antagonist at glycine site, 1mg/kg), MK-801 (a non-competitive antagonist, 0.05mg/kg) and d-cycloserine (a partial agonist of a glycine site, 2.5mg/kg) but it did not shorten the immobility time of animals which concurrently received an inorganic modulator of the NMDA receptor complex, such as Zn(2+) (2.5mg/kg) or Mg(2+) (10mg/kg). On the other hand, the antidepressant-like effect of ifenprodil (20mg/kg) was reversed by N-methyl-d-aspartic acid (an agonist at the glutamate site, 75mg/kg) or d-serine (an agonist at the glycine site, 100nmol/mouse). In conclusion, the antidepressant-like potential of ifenprodil given concomitantly with NMDA ligands was either reinforced (in the case of both partial agonist and antagonists, except for magnesium and zinc) or diminished (in the case of conventional full agonists).

  4. Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating.

    PubMed

    Carlson, G C; Lin, R E; Chen, Y; Brookshire, B R; White, R S; Lucki, I; Siegel, S J; Kim, S F

    2016-05-13

    Dexras1 is a novel GTPase that acts at a confluence of signaling mechanisms associated with psychiatric and neurological disease including NMDA receptors, NOS1AP and nNOS. Recent work has shown that Dexras1 mediates iron trafficking and NMDA-dependent neurodegeneration but a role for Dexras1 in normal brain function or psychiatric disease has not been studied. To test for such a role, mice with germline knockout (KO) of Dexras1 were assayed for behavioral abnormalities as well as changes in NMDA receptor subunit protein expression. Because Dexras1 is up-regulated during stress or by dexamethasone treatment, we included measures associated with emotion including anxiety and depression. Baseline anxiety-like measures (open field and zero maze) were not altered, nor were depression-like behavior (tail suspension). Measures of memory function yielded mixed results, with no changes in episodic memory (novel object recognition) but a significant decrement on working memory (T-maze). Alternatively, there was an increase in pre-pulse inhibition (PPI), without concomitant changes in either startle amplitude or locomotor activity. PPI data are consistent with the direction of change seen following exposure to dopamine D2 antagonists. An examination of NMDA subunit expression levels revealed an increased expression of the NR2A subunit, contrary to previous studies demonstrating down-regulation of the receptor following antipsychotic exposure (Schmitt et al., 2003) and up-regulation after exposure to isolation rearing (Turnock-Jones et al., 2009). These findings suggest a potential role for Dexras1 in modulating a selective subset of psychiatric symptoms, possibly via its interaction with NMDARs and/or other disease-related binding-partners. Furthermore, data suggest that modulating Dexras1 activity has contrasting effects on emotional, sensory and cognitive domains.

  5. Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating.

    PubMed

    Carlson, G C; Lin, R E; Chen, Y; Brookshire, B R; White, R S; Lucki, I; Siegel, S J; Kim, S F

    2016-05-13

    Dexras1 is a novel GTPase that acts at a confluence of signaling mechanisms associated with psychiatric and neurological disease including NMDA receptors, NOS1AP and nNOS. Recent work has shown that Dexras1 mediates iron trafficking and NMDA-dependent neurodegeneration but a role for Dexras1 in normal brain function or psychiatric disease has not been studied. To test for such a role, mice with germline knockout (KO) of Dexras1 were assayed for behavioral abnormalities as well as changes in NMDA receptor subunit protein expression. Because Dexras1 is up-regulated during stress or by dexamethasone treatment, we included measures associated with emotion including anxiety and depression. Baseline anxiety-like measures (open field and zero maze) were not altered, nor were depression-like behavior (tail suspension). Measures of memory function yielded mixed results, with no changes in episodic memory (novel object recognition) but a significant decrement on working memory (T-maze). Alternatively, there was an increase in pre-pulse inhibition (PPI), without concomitant changes in either startle amplitude or locomotor activity. PPI data are consistent with the direction of change seen following exposure to dopamine D2 antagonists. An examination of NMDA subunit expression levels revealed an increased expression of the NR2A subunit, contrary to previous studies demonstrating down-regulation of the receptor following antipsychotic exposure (Schmitt et al., 2003) and up-regulation after exposure to isolation rearing (Turnock-Jones et al., 2009). These findings suggest a potential role for Dexras1 in modulating a selective subset of psychiatric symptoms, possibly via its interaction with NMDARs and/or other disease-related binding-partners. Furthermore, data suggest that modulating Dexras1 activity has contrasting effects on emotional, sensory and cognitive domains. PMID:26946266

  6. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  7. NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea.

    PubMed

    Zhang-Hooks, YingXin; Agarwal, Amit; Mishina, Masayoshi; Bergles, Dwight E

    2016-01-20

    Spontaneous bursts of activity in developing sensory pathways promote maturation of neurons, refinement of neuronal connections, and assembly of appropriate functional networks. In the developing auditory system, inner hair cells (IHCs) spontaneously fire Ca(2+) spikes, each of which is transformed into a mini-burst of action potentials in spiral ganglion neurons (SGNs). Here we show that NMDARs are expressed in SGN dendritic terminals and play a critical role during transmission of activity from IHCs to SGNs before hearing onset. NMDAR activation enhances glutamate-mediated Ca(2+) influx at dendritic terminals, promotes repetitive firing of individual SGNs in response to each synaptic event, and enhances coincident activity of neighboring SGNs that will eventually encode similar frequencies of sound. Loss of NMDAR signaling from SGNs reduced their survival both in vivo and in vitro, revealing that spontaneous activity in the prehearing cochlea promotes maturation of auditory circuitry through periodic activation of NMDARs in SGNs. PMID:26774161

  8. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline

    NASA Technical Reports Server (NTRS)

    Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.

    1992-01-01

    We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.

  9. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5–Nrf2 pathway

    PubMed Central

    Jimenez-Blasco, D; Santofimia-Castaño, P; Gonzalez, A; Almeida, A; Bolaños, J P

    2015-01-01

    Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-d-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca2+ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca2+ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr395, Ser433 and Thr439 that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5–Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival. PMID:25909891

  10. Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens.

    PubMed

    Zappettini, Stefania; Grilli, Massimo; Olivero, Guendalina; Chen, Jiayang; Padolecchia, Cristina; Pittaluga, Anna; Tomé, Angelo R; Cunha, Rodrigo A; Marchi, Mario

    2014-01-01

    We here provide functional and immunocytochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid receptors (NMDARs) in glutamatergic terminals of the nucleus accumbens (NAc). Immunocytochemical studies showed that a significant percentage of NAc terminals were glutamatergic and possessed GluN1 and α7-containing nAChR. A short-term pre-exposure of synaptosomes to nicotine (30 µM) or choline (1 mM) caused a significant potentiation of the 100 µM NMDA-evoked [(3)H]D-aspartate ([(3)H]D-Asp) outflow, which was prevented by α-bungarotoxin (100 nM). The pre-exposure to nicotine (100 µM) or choline (1 mM) also enhanced the NMDA-induced cytosolic free calcium levels, as measured by FURA-2 fluorescence imaging in individual NAc terminals, an effect also prevented by α-bungarotoxin. Pre-exposure to the α4-nAChR agonists 5IA85380 (10 nM) or RJR2429 (1 µM) did not modify NMDA-evoked ([(3)H]D-Asp) outflow and calcium transients. The NMDA-evoked ([(3)H]D-Asp) overflow was partially antagonized by the NMDAR antagonists MK801, D-AP5, 5,7-DCKA and R(-)CPP and unaffected by the GluN2B-NMDAR antagonists Ro256981 and ifenprodil. Notably, pre-treatment with choline increased GluN2A biotin-tagged proteins. In conclusion, our results show that the GluN2A-NMDA receptor function can be positively regulated in NAc terminals in response to a brief incubation with α7 but not α4 nAChRs agonists. This might be a general feature in different brain areas since a similar nAChR-mediated bolstering of NMDA-induced ([(3)H]D-Asp) overflow was also observed in hippocampal synaptosomes.

  11. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor.

    PubMed

    Sałat, Kinga; Siwek, Agata; Starowicz, Gabriela; Librowski, Tadeusz; Nowak, Gabriel; Drabik, Urszula; Gajdosz, Ryszard; Popik, Piotr

    2015-12-01

    Ketamine produces rapid and long-lasting antidepressant effects in patients. The involvement of ketamine metabolites in these actions has been proposed. The effects of ketamine and its metabolites norketamine and dehydronorketamine on ligand binding to 80 receptors, ion channels and transporters was investigated at a single concentration of 10 μM. The affinities of all three compounds were then assessed at NMDA receptors using [3H]MK-801 binding. The dose-response relationships of all 3 compounds in the forced swim test were also investigated in mice 30 min after IP administration. The effects of ketamine and norketamine (both 50 mg/kg) were then examined at 30 min, 3 days and 7 days post administration. Among the 80 potential targets examined, only NMDA receptors were affected with a magnitude of >50% by ketamine and norketamine at the concentration of 10 μM. The Ki values of ketamine, norketamine and dehydronorketamine at NMDA receptors were 0.119±0.01, 0.97±0.1 and 3.21±0.3 μM, respectively. Ketamine and norketamine reduced immobility with minimum effective doses (MEDs) of 10 and 50 mg/kg, respectively; dehydronorketamine did not affect immobility at doses of up to 50 mg/kg. Neither ketamine nor norketamine reduced immobility in the forced swim test 3 and 7 days following administration. Further, oral administration of ketamine (5-50 mg/kg) did not affect immobility. We demonstrate that ketamine and norketamine but not dehydronorketamine given acutely at subanesthetic doses reduced immobility in the forced swim test. These antidepressant-like effects appear attributable to NMDA receptor inhibition.

  12. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  13. NMDA-receptor inhibition restores Protease-Activated Receptor 1 (PAR1) mediated alterations in homeostatic synaptic plasticity of denervated mouse dentate granule cells.

    PubMed

    Becker, Denise; Ikenberg, Benno; Schiener, Sabine; Maggio, Nicola; Vlachos, Andreas

    2014-11-01

    A common feature of neurological diseases is the loss of central neurons, which leads to deafferentation of connected brain regions. In turn, the remodeling of denervated neuronal networks is considered to play an important role for the postlesional recovery, but has also been linked to maladaptive plasticity resulting in disease-related complications such as memory dysfunction or epilepsy. Recent work has indicated that Protease-Activated Receptor 1 (PAR1), which can be activated by thrombin that enters the brain under pathological conditions, alters synaptic plasticity and neuronal excitability. However, the role of PAR1 in lesion-induced synaptic plasticity remains incompletely understood. Here, we used entorhinal denervation of organotypic hippocampal slice cultures to study the effects of PAR1 on denervation-induced homeostatic synaptic plasticity. Our results disclose that PAR1 activation counters the ability of denervated dentate granule cells to increase their excitatory synaptic strength in a compensatory, i.e., homeostatic manner. Furthermore, we demonstrate that this PAR1 effect is rescued by pharmacological inhibition of N-methyl-d-aspartate receptors (NMDA-R). Thus, NMDA-R inhibitors may restore the ability of denervated neurons to express homeostatic synaptic plasticity under conditions of increased PAR1-activity, which may contribute to their beneficial effects seen in the context of neurological diseases. PMID:25086265

  14. NMDA treatment and K(+)-induced depolarization selectively promote the expression of an NMDA-preferring class of the ionotropic glutamate receptors in cerebellar granule neurones.

    PubMed

    Balázs, R; Resink, A; Hack, N; Van der Valk, J B; Kumar, K N; Michaelis, E

    1992-03-16

    Growth conditions which promote the survival of cerebellar granule cells in culture, such as high K+ or N-methyl-D-aspartate (NMDA) treatment, also promote the functional expression of an NMDA-preferring subtype alone of the ionotropic glutamate receptors. The selective regulation of NMDA receptors detected electrophysiologically in individual cells, using the whole cell patch clamp technique, is characteristic of granule cells in general: NMDA-induced 45Ca2+ influx increased several-fold in cultures treated with either high K+ or NMDA. The increase in NMDA receptor activity was correlated with an increase in the expression of an NMDA receptor protein. Since the effect of these 'trophic' conditions is mediated through Ca2+, the induced increase in the density of NMDA receptors (which gate a Ca2+ conductance) provides a positive feedback for strengthening the trophic influences.

  15. Serotonin and NMDA receptors in respiratory long-term facilitation

    PubMed Central

    Ling, Liming

    2008-01-01

    Some have postulated that long-term facilitation (LTF), a persistent augmentation of respiratory activity after episodic hypoxia, may play a beneficial role in helping stabilize upper airway patency in obstructive sleep apnea (OSA) patients. However, the neuronal and cellular mechanisms underlying this plasticity of respiratory motor behavior are still poorly understood. The main purpose of this review is to summarize recent findings about serotonin and NMDA receptors involved in both LTF and its enhancement after chronic intermittent hypoxia (CIH). The potential roles of these receptors in the initiation, formation and/or maintenance of LTF, as well as the CIH effect on LTF, will be discussed. As background, different paradigms for the stimulus protocol, different patterns of LTF expression and their mechanistic implications in LTF will also be discussed. PMID:18606575

  16. HIV-Tat Induces the Nrf2/ARE Pathway through NMDA Receptor-Elicited Spermine Oxidase Activation in Human Neuroblastoma Cells

    PubMed Central

    Mastrantonio, Roberta; Cervelli, Manuela; Pietropaoli, Stefano; Mariottini, Paolo; Colasanti, Marco; Persichini, Tiziana

    2016-01-01

    Previously, we reported that HIV-Tat elicits spermine oxidase (SMO) activity upregulation through NMDA receptor (NMDAR) stimulation in human SH-SY5Y neuroblastoma cells, thus increasing ROS generation, which in turn leads to GSH depletion, oxidative stress, and reduced cell viability. In several cell types, ROS can trigger an antioxidant cell response through the transcriptional induction of oxidative stress-responsive genes regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). Here, we demonstrate that Tat induces both antioxidant gene expression and Nrf2 activation in SH-SY5Y cells, mediated by SMO activity. Furthermore, NMDAR is involved in Tat-induced Nrf2 activation. These findings suggest that the NMDAR/SMO/Nrf2 pathway is an important target for protection against HIV-associated neurocognitive disorders. PMID:26895301

  17. Requirements for PKC-augmented JNK activation by MKK4/7

    PubMed Central

    Lopez-Bergami, Pablo; Ronai, Ze'ev

    2008-01-01

    The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling. PMID:18182317

  18. Frontopolar activity and connectivity support dynamic conscious augmentation of creative state.

    PubMed

    Green, Adam E; Cohen, Michael S; Raab, Hillary A; Yedibalian, Christopher G; Gray, Jeremy R

    2015-03-01

    No ability is more valued in the modern innovation-fueled economy than thinking creatively on demand, and the "thinking cap" capacity to augment state creativity (i.e., to try and succeed at thinking more creatively) is of broad importance for education and a rich mental life. Although brain-based creativity research has focused on static individual differences in trait creativity, less is known about changes in creative state within an individual. How does the brain augment state creativity when creative thinking is required? Can augmented creative state be consciously engaged and disengaged dynamically across time? Using a novel "thin slice" creativity paradigm in 55 fMRI participants performing verb-generation, we successfully cued large, conscious, short-duration increases in state creativity, indexed quantitatively by a measure of semantic distance derived via latent semantic analysis. A region of left frontopolar cortex, previously associated with creative integration of semantic information, exhibited increased activity and functional connectivity to anterior cingulate gyrus and right frontopolar cortex during cued augmentation of state creativity. Individual differences in the extent of increased activity in this region predicted individual differences in the extent to which participants were able to successfully augment state creative performance after accounting for trait creativity and intelligence.

  19. Frontopolar activity and connectivity support dynamic conscious augmentation of creative state.

    PubMed

    Green, Adam E; Cohen, Michael S; Raab, Hillary A; Yedibalian, Christopher G; Gray, Jeremy R

    2015-03-01

    No ability is more valued in the modern innovation-fueled economy than thinking creatively on demand, and the "thinking cap" capacity to augment state creativity (i.e., to try and succeed at thinking more creatively) is of broad importance for education and a rich mental life. Although brain-based creativity research has focused on static individual differences in trait creativity, less is known about changes in creative state within an individual. How does the brain augment state creativity when creative thinking is required? Can augmented creative state be consciously engaged and disengaged dynamically across time? Using a novel "thin slice" creativity paradigm in 55 fMRI participants performing verb-generation, we successfully cued large, conscious, short-duration increases in state creativity, indexed quantitatively by a measure of semantic distance derived via latent semantic analysis. A region of left frontopolar cortex, previously associated with creative integration of semantic information, exhibited increased activity and functional connectivity to anterior cingulate gyrus and right frontopolar cortex during cued augmentation of state creativity. Individual differences in the extent of increased activity in this region predicted individual differences in the extent to which participants were able to successfully augment state creative performance after accounting for trait creativity and intelligence. PMID:25394198

  20. Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels.

    PubMed

    Novelli, A; Díaz-Trelles, R; Groppetti, A; Fernández-Sánchez, M T

    2005-03-01

    Nefopam hydrochloride is a potent non sedative benzoxazocine analgesic that possesses a profile distinct from that of anti-inflammatory drugs. Previous evidence suggested a central action of nefopam but the detailed mechanism remains unclear. We have investigated the actions of nefopam on voltage sensitive calcium channels and calcium-mediated pathways. We found that nefopam prevented N-methyl-D-aspartate (NMDA)-mediated excitotoxicity following stimulation of L-type voltage sensitive calcium channels by the specific agonist BayK8644. Nefopam protection was concentration-dependent. 47 muM nefopam provided 50% protection while full neuroprotection was achieved at 100 muM nefopam. Neuroprotection was associated with a 73% reduction in the BayK8644-induced increase in intracellular calcium concentration. Nefopam also inhibited intracellular cGMP formation following BayK8644 in a concentration-dependent manner, 100 muM nefopam providing full inhibition of cGMP synthesis and 58 muM allowing 50% cGMP formation. Nefopam reduced NMDA receptor-mediated cGMP formation resulting from the release of glutamate following activation of channels by BayK8644. Finally, we also showed that nefopam effectively reduced cGMP formation following stimulation of cultures with domoic acid, while not providing neuroprotection against domoic acid. Thus, the novel action of nefopam we report here may be important both for its central analgesic effects and for its potential therapeutic use in neurological and neuropsychiatric disorders involving an excessive glutamate release.

  1. Phrenic long-term facilitation requires NMDA receptors in the phrenic motonucleus in rats

    PubMed Central

    McGuire, Michelle; Zhang, Yi; White, David P; Ling, Liming

    2005-01-01

    Exposure to episodic hypoxia induces a persistent augmentation of respiratory activity, known as long-term facilitation (LTF). LTF of phrenic nerve activity has been reported to require serotonin receptor activation and protein syntheses. However, the underlying cellular mechanism still remains poorly understood. NMDA receptors play key roles in synaptic plasticity (e.g. some forms of hippocampal long-term potentiation). The present study was designed to examine the role of NMDA receptors in phrenic LTF and test if the relevant receptors are located in the phrenic motonucleus. Integrated phrenic nerve activity was measured in anaesthetized, vagotomized, neuromuscularly blocked and artificially ventilated rats before, during and after three episodes of 5 min isocapnic hypoxia (Pa,O2= 30–45 mmHg), separated by 5 min hyperoxia (50% O2). Either saline (as control) or the NMDA receptor antagonist MK-801 (0.2 mg kg−1, i.p.) was systemically injected ∼1 h before hypoxia. Phrenic LTF was eliminated by the MK-801 injection (vehicle, 32.8 ± 3.7% above baseline in phrenic amplitude at 60 min post-hypoxia; MK-801, −0.5 ± 4.1%, means ± s.e.m.), with little change in both the CO2-apnoeic threshold and the hypoxic phrenic response (HPR). Vehicle (saline, 5 × 100 nl) or MK-801 (10 μm; 5 × 100 nl) was also microinjected into the phrenic motonucleus region in other groups. Phrenic LTF was eliminated by the MK-801 microinjection (vehicle, 34.2 ± 3.4%; MK-801, −2.5 ± 2.8%), with minimal change in HPR. Collectively, these results suggest that the activation of NMDA receptors in the phrenic motonucleus is required for the episodic hypoxia-induced phrenic LTF. PMID:15932891

  2. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.

    PubMed

    Khan, A M; Lee, Y K; Kim, T S

    2008-01-01

    Automatic recognition of human activities is one of the important and challenging research areas in proactive and ubiquitous computing. In this work, we present some preliminary results of recognizing human activities using augmented features extracted from the activity signals measured using a single triaxial accelerometer sensor and artificial neural nets. The features include autoregressive (AR) modeling coefficients of activity signals, signal magnitude areas (SMA), and title angles (TA). We have recognized four human activities using AR coefficients (ARC) only, ARC with SMA, and ARC with SMA and TA. With the last augmented features, we have achieved the recognition rate above 99% for all four activities including lying, standing, walking, and running. With our proposed technique, real time recognition of some human activities is possible.

  3. Selective blockade of CaMKII-alpha inhibits NMDA-induced caspase-3-dependent cell death but does not arrest PARP-1 activation or loss of plasma membrane selectivity in rat retinal neurons.

    PubMed

    Goebel, Dennis J

    2009-02-23

    Calcium/calmodulin-dependent protein kinase II-alpha (CaMKII-alpha) has been implicated in a number of receptor mediated events in neurons. Pharmacological blockade of CaMKII-alpha has been shown to prevent phosphorylation of NMDA-R2A and R2B receptor subunits, suggesting that this enzyme may be linked to receptor trafficking of glutamate receptors and serve as a regulatory protein for neuronal cell death. In the retina, inhibition of CaMKII-alpha has been reported to be neuroprotective against NMDA-induced cell death by preventing the activation of the caspase-3 dependent pathway. However, the effects of CaMKII-alpha blockade on the caspase-3 independent, PARP-1 dependent and the non-programmed cell death pathways have not previously been investigated. In the present study, blockade of CaMKII-alpha with the highly specific antagonist myristoylated autocamtide-2-related inhibitory peptide (AIP) was used in a rat in vivo model of retinal toxicity to compare the effects of on NMDA-induced caspase-3-dependent, PARP-1 dependent and the non-programmed (necrosis) cell death pathways. Results confirmed that AIP fully attenuates caspase-3 activation for at least 8 h following NMDA insult and also significantly improves retinal ganglion cell survival. However, this blockade had little effect on reducing the loss of plasma membrane selectivity (LPMS, e.g. necrosis) in cells located in the ganglion cell and inner nuclear layers and did not alter NMDA-induced PARP-1 hyperactivation, or prevent TUNEL labeling following a moderate NMDA-insult. These findings support a specific role for CaMKII-alpha in mediating the caspase-3 dependent cell death pathway and provide evidence that it is not directly linked to the signaling of either the PARP-1 dependent or the non-programmed cell death pathways.

  4. In vitro augmentation of human natural cytotoxic activity.

    PubMed Central

    Potter, M R; Moore, M

    1981-01-01

    Stimulation of human blood lymphocyte preparations with mitomycin C-treated lymphoid cell lines produced increased levels of cytotoxicity against both NK-susceptible and NK-resistant target cell lines. The greatest effect was seen following stimulation by the B lymphocyte-derived lines, Bri8 and raji. K562 also stimulated high levels of activity while the T lymphocyte-derived lines, CCRF/CEM and MOLT 4, produced smaller increases activity was also found in PHA- and MLC-stimulated populations. Stimulation by lymphoid cell lines gave increased cytotoxic activity against all five cell lines when used as target cells and the pattern of target cell susceptibility was maintained, with K562, CCRF/CEM and MOLT 4 being more susceptible than Bri8 and Raji. No direct correlation was found between the level of cytotoxic activity and the level of 3H-thymidine uptake in stimulated effector cell populations. The B cell lines stimulated high levels of isotopic uptake, while the T cell lines gave no significant stimulation. Similarly, the level of 3H-thymidine incorporation following PHA and MLC stimulation showed no direct correlation with the level of cytotoxic activity. Stimulation of lymphocyte transformation did not appear to be necessary for the induction of cytotoxic activity, although the largest increases in cytotoxicity occurred in populations showing high isotope incorporation. No correlation was found between the target cell susceptibility of the different cell lines and their ability to stimulate cytotoxicity. PMID:7307338

  5. Development and flight evaluation of an augmented stability active controls concept with a small tail

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.

  6. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  7. Optimal placement of active elements in control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  8. NMDA receptors and memory encoding.

    PubMed

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  9. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  10. Phase diversity and polarization augmented techniques for active imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Peter M.

    A firm understanding of the space environment is necessary to defend US access to space-based systems. Conventional imaging systems have been developed to gather information on space-based objects, but they are incapable of imaging objects in the earth's shadow. In order close this gap in imaging-system coverage, an active-illumination based approach must be used. To facilitate this, a multi-frame active phase diversity imaging (APDI) algorithm is derived and demonstrated for the statistics of coherent light. In addition to conventional focal-plane and diversity-plane data, a statistical description for the pupil plane intensity distribution is formed and included in the derivation. The algorithm is implemented and characterized using a Monte Carlo approach. Analysis shows that the algorithm is robust, that the effect of system configuration on optimal algorithm parameters is minimal, that the algorithm is insensitive to detection noise for SNR ≥ 7, and that it performs well for SNRs as low as 2. Furthermore, it's shown that introduction of pupil-plane data on average results in a 60% better image reconstruction from dynamically aberrated data than is obtained using only focal-plane and diversity-plane data. Both an Expectation-Maximization algorithm and a lensless-APDI approach are presented for generating imagery directly from pupil-plane polarization measurements. Shortfalls of these methods and areas worthy of further consideration are identified. The use of pupil-plane polarization state measurements in place of pupil-plane intensity measurements in the APDI algorithm is explored. A framework for including polarization measurements into the APDI algorithm is demonstrated, and an initial statistical model and results are presented. Under the developed implementation, introduction of the polarization data doesn't result in better performance. Areas that may result in better reconstructions are discussed.

  11. Differential protease activity augments polyphagy in Helicoverpa armigera.

    PubMed

    Chikate, Y R; Tamhane, V A; Joshi, R S; Gupta, V S; Giri, A P

    2013-06-01

    Helicoverpa armigera (Lepidoptera: Noctuidae) and other polyphagous agricultural pests are extending their plant host range and emerging as serious agents in restraining crop productivity. Dynamic regulation, coupled with a diversity of digestive and detoxifying enzymes, play a crucial role in the adaptation of polyphagous insects. To investigate the functional intricacy of serine proteases in the development and polyphagy of H. armigera, we profiled the expression of eight trypsin-like and four chymotrypsin-like phylogenetically diverse mRNAs from different life stages of H. armigera reared on nutritionally distinct host plants. These analyses revealed diet- and stage-specific protease expression patterns. The trypsins expressed showed structural variations, which might result in differential substrate specificity and interaction with inhibitors. Protease profiles in the presence of inhibitors and their mass spectrometric analyses revealed insight into their differential activity. These findings emphasize the differential expression of serine proteases and their consequences for digestive physiology in promoting polyphagy in H. armigera. PMID:23432026

  12. Osmotic Edema Rapidly Increases Neuronal Excitability Through Activation of NMDA Receptor-Dependent Slow Inward Currents in Juvenile and Adult Hippocampus

    PubMed Central

    Lauderdale, Kelli; Murphy, Thomas; Tung, Tina; Davila, David; Binder, Devin K.

    2015-01-01

    Cellular edema (cell swelling) is a principal component of numerous brain disorders including ischemia, cortical spreading depression, hyponatremia, and epilepsy. Cellular edema increases seizure-like activity in vitro and in vivo, largely through nonsynaptic mechanisms attributable to reduction of the extracellular space. However, the types of excitability changes occurring in individual neurons during the acute phase of cell volume increase remain unclear. Using whole-cell patch clamp techniques, we report that one of the first effects of osmotic edema on excitability of CA1 pyramidal cells is the generation of slow inward currents (SICs), which initiate after approximately 1 min. Frequency of SICs increased as osmolarity decreased in a dose-dependent manner. Imaging of real-time volume changes in astrocytes revealed that neuronal SICs occurred while astrocytes were still in the process of swelling. SICs evoked by cell swelling were mainly nonsynaptic in origin and NMDA receptor-dependent. To better understand the relationship between SICs and changes in neuronal excitability, recordings were performed in increasingly physiological conditions. In the absence of any added pharmacological reagents or imposed voltage clamp, osmotic edema induced excitatory postsynaptic potentials and burst firing over the same timecourse as SICs. Like SICs, action potentials were blocked by NMDAR antagonists. Effects were more pronounced in adult (8–20 weeks old) compared with juvenile (P15–P21) mice. Together, our results indicate that cell swelling triggered by reduced osmolarity rapidly increases neuronal excitability through activation of NMDA receptors. Our findings have important implications for understanding nonsynaptic mechanisms of epilepsy in relation to cell swelling and reduction of the extracellular space. PMID:26489684

  13. Cytochrome b5 augments 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity.

    PubMed

    Goosen, Pierre; Storbeck, Karl-Heinz; Swart, Amanda C; Conradie, Riaan; Swart, Pieter

    2011-11-01

    During adrenal steroidogenesis the competition between 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD) and cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) for Δ(5) steroid intermediates greatly influences steroidogenic output. Cytochrome-b(5) (Cyt-b(5)), a small electron transfer hemoprotein, known to augment the lyase activity of CYP17A1, has been shown to alter the steroidogenic outcome of this competition. In this study, the influence of Cyt-b(5) on 3βHSD activity was investigated. In COS-1 cells, Cyt-b(5) was shown to significantly increase the activity of both caprine and ovine 3βHSD towards pregnenolone, 17-OH pregnenolone and dehydroepiandrosterone in a substrate and species specific manner. Furthermore, kinetic studies revealed Cyt-b(5) to have no influence on the K(m) values while significantly increasing the V(max) values of ovine 3βHSD for all its respective substrates. In addition, the activity of ovine 3βHSD in microsomal preparations was significantly influenced by the addition of either purified Cyt-b(5) or anti-Cyt-b(5) IgG. The results presented in this study indicate that Cyt-b(5) augments 3βHSD activity and represents the first documentation of such augmentation in any species. PMID:21930205

  14. D1/5 modulation of synaptic NMDA receptor currents

    PubMed Central

    Varela, Juan A.; Hirsch, Silke J.; Chapman, David; Leverich, Leah S.; Greene, Robert W.

    2009-01-01

    Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D1/5 receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D1/5 modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D1/5 receptor activation elicits a bi-directional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition. This plasticity results in a decrease in the NR2A/NR2B ratio of subunit composition. Synaptic responses mediated by NMDA receptors that include NR2B subunits are potentiated by D1/5 receptor activation, while responses mediated by NMDA receptors that include NR2A subunits are depressed. Furthermore, these bidirectional, subunit-specific effects are mediated by distinctive intracellular signaling mechanisms. As there is a predominance of NMDA receptors composed of NR2A subunits observed in entorhinal-CA1 inputs and a predominance of NMDA receptors composed of NR2B subunits in CA3-CA1 synapses, potentiation of synaptic NMDA currents predominates in the proximal CA3-CA1 synapses, while depression of synaptic NMDA currents predominates in the distal entorhinal-CA1 synapses. Finally, all of these effects are reproduced by the release of endogenous monoamines through activation of D1/5 receptors. Thus, endogenous D1/5 activation can, 1) decrease the NR2A/B ratio of NMDAR subunit composition at glutamatergic synapses, a rejuvenation to a composition similar to developmentally immature synapses, and, 2) in CA1, bias NMDA receptor responsiveness towards the more highly processed tri-synaptic CA3-CA1 circuit and away from the direct entorhinal-CA1 input. PMID:19279248

  15. Augmented pressor and sympathetic responses to skeletal muscle metaboreflex activation in type 2 diabetes patients.

    PubMed

    Holwerda, Seth W; Restaino, Robert M; Manrique, Camila; Lastra, Guido; Fisher, James P; Fadel, Paul J

    2016-01-15

    Previous studies have reported exaggerated increases in arterial blood pressure during exercise in type 2 diabetes (T2D) patients. However, little is known regarding the underlying neural mechanism(s) involved. We hypothesized that T2D patients would exhibit an augmented muscle metaboreflex activation and this contributes to greater pressor and sympathetic responses during exercise. Mean arterial pressure (MAP), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were measured in 16 patients with T2D (8 normotensive and 8 hypertensive) and 10 healthy controls. Graded isolation of the muscle metaboreflex was achieved by postexercise ischemia (PEI) following static handgrip performed at 30% and 40% maximal voluntary contraction (MVC). A cold pressor test (CPT) was also performed as a generalized sympathoexcitatory stimulus. Increases in MAP and MSNA during 30 and 40% MVC handgrip were augmented in T2D patients compared with controls (P < 0.05), and these differences were maintained during PEI (MAP: 30% MVC PEI: T2D, Δ16 ± 2 mmHg vs. controls, Δ8 ± 1 mmHg; 40% MVC PEI: T2D, Δ26 ± 3 mmHg vs. controls, Δ16 ± 2 mmHg, both P < 0.05). MAP and MSNA responses to handgrip and PEI were not different between normotensive and hypertensive T2D patients (P > 0.05). Interestingly, MSNA responses were also greater in T2D patients compared with controls during the CPT (P < 0.05). Collectively, these findings indicate that muscle metaboreflex activation is augmented in T2D patients and this contributes, in part, to augmented pressor and sympathetic responses to exercise in this patient group. Greater CPT responses suggest that a heightened central sympathetic reactivity may be involved. PMID:26566729

  16. The use of active controls to augment rotor/fuselage stability

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Warmbrodt, W.

    1985-01-01

    The use of active blade pitch control to increase helicopter rotor/body damping is studied. Control is introduced through a conventional nonrotating swashplate. State variable feedback of rotor and body states is used. Feedback parameters include cyclic rotor flap and lead-lag states, and body pitch and roll rotations. The use of position, rate, and acceleration feedback is studied for the various state variables. In particular, the influence of the closed loop feedback gain and phase on system stability is investigated. For the rotor/body configuration analyzed, rotor cyclic inplane motion and body roll-rate and roll-acceleration feedback can considerably augment system damping levels and eliminate ground resonance instabilities. Scheduling of the feedback state, phase, and gain with rotor rotation speed can be used to maximize the damping augmentation. This increase in lead-lag damping can be accomplished without altering any of the system modal frequencies. Investigating various rotor design parameters (effective hinge offset, blade precone, blade flap stiffness) indicates that active control for augmenting rotor/body damping will be particularly powerful for hingeless and bearingless rotor hubs.

  17. Augmented force output in skeletal muscle fibres of Xenopus following a preceding bout of activity.

    PubMed Central

    Bruton, J D; Westerblad, H; Katz, A; Lännergren, J

    1996-01-01

    1. The effect of a brief period of activity on subsequent isometric tetanic force production was investigated in single muscle fibres of Xenopus laevis. 2. Following a train of ten tetani separated by 4 s intervals, tetanic force was significantly augmented by about 10%. The tetanic force augmentation persisted for at least 15 min and then slowly subsided. A similar potentiation was seen following trains of five and twenty tetani. 3. During the period of tetanic force potentiation, tetanic calcium was reduced by more than 30%, and intracellular pH was reduced from 7.15 +/- 0.07 to 7.03 +/- 0.11 (n = 4). 4. Fibre swelling was greatest at 1 min and then subsided over 15-20 min and possibly accounted for a small part of the observed force potentiation. 5. A reduction in the inorganic phosphate (P1) concentration of more than 40% was found in fibres frozen in liquid nitrogen at the peak of force potentiation compared with resting fibres. 6. It is concluded that the augmentation of tetanic force found after a brief preceding bout of activity is due to a reduction in inorganic phosphate. This mechanism may underlie the improved performance observed in athletes after warm-up. Images Figure 2 PMID:8735706

  18. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    SciTech Connect

    Dey, Nandini . E-mail: Don_Durden@oz.ped.emory.edu

    2005-07-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation.

  19. Spatial learning impairment, enhanced CDK5/p35 activity, and downregulation of NMDA receptor expression in transgenic mice expressing tau-tubulin kinase 1.

    PubMed

    Sato, Shinji; Xu, Jiqing; Okuyama, Satoshi; Martinez, Lindsey B; Walsh, Shannon M; Jacobsen, Michael T; Swan, Russell J; Schlautman, Joshua D; Ciborowski, Pawel; Ikezu, Tsuneya

    2008-12-31

    Tau-tubulin kinase-1 (TTBK1) is involved in phosphorylation of tau protein at specific Serine/Threonine residues found in paired helical filaments, suggesting its role in tauopathy pathogenesis. We found that TTBK1 levels were upregulated in brains of human Alzheimer' disease (AD) patients compared with age-matched non-AD controls. To understand the effects of TTBK1 activation in vivo, we developed transgenic mice harboring human full-length TTBK1 genomic DNA (TTBK1-Tg). Transgenic TTBK1 is highly expressed in subiculum and cortical pyramidal layers, and induces phosphorylated neurofilament aggregation. TTBK1-Tg mice show significant age-dependent memory impairment as determined by radial arm water maze test, which is associated with enhancement of tau and neurofilament phosphorylation, increased levels of p25 and p35, both activators of cyclin-dependent protein kinase 5 (CDK5), enhanced calpain I activity, and reduced levels of hippocampal NMDA receptor types 2B (NR2B) and D. Enhanced CDK5/p35 complex formation is strongly correlated with dissociation of F-actin from p35, suggesting the inhibitory mechanism of CDK5/p35 complex formation by F-actin. Expression of recombinant TTBK1 in primary mouse cortical neurons significantly downregulated NR2B in a CDK5- and calpain-dependent manner. These data suggest that TTBK1 in AD brain may be one of the underlying mechanisms inducing CDK5 and calpain activation, NR2B downregulation, and subsequent memory dysfunction.

  20. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the β-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Aβ) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that Aβ peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  1. Subunit Arrangement and Function in NMDA Receptors

    SciTech Connect

    Furukawa,H.; Singh, S.; Mancusso, R.; Gouaux, E.

    2005-01-01

    Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

  2. NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus.

    PubMed

    Feldman, D E; Knudsen, E I

    1994-10-01

    subdivisions, and mediate the bulk of auditory transmission in the lateral shell. The time course of the NMDA receptor contribution to ICx auditory responses and the dependence of this contribution on stimulus level were both examined in detail. AP5 preferentially blocked spikes late in ICx auditory responses, while CNQX blocked spikes equally throughout the responses. This pattern is consistent with a simple model in which slow NMDA receptor currents and faster non-NMDA receptor currents are both activated by auditory inputs to ICx neurons. PMID:7931555

  3. Exogenous t-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism?

    PubMed Central

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling. PMID:24670989

  4. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?

    PubMed

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling.

  5. Augmentation of macrophage growth-stimulating activity of lipids by their peroxidation

    SciTech Connect

    Yui, S.; Yamazaki, M. )

    1990-02-15

    Previously, we reported that some kinds of lipids (cholesterol esters, triglycerides, and some negatively charged phospholipids) that are constituents of lipoproteins or cell membranes induce growth of peripheral macrophages in vitro. In this paper, we examined the effect of peroxidation of lipids on their macrophage growth-stimulating activity because lipid peroxidation is observed in many pathological states such as inflammation. When phosphatidylserine, one of the phospholipids with growth-stimulating activity, was peroxidized by UV irradiation, its macrophage growth-stimulating activity was augmented in proportion to the extent of its peroxidation. The activity of phosphatidylethanolamine was also increased by UV irradiation. On the other hand, phosphatidylcholine or highly unsaturated free fatty acids, such as arachidonic acid and eicosapentaenoic acid, did not induce macrophage growth irrespective of whether they were peroxidized. The augmented activity of UV-irradiated phosphatidylserine was not affected by the coexistence of an antioxidant, vitamin E or BHT. These results suggest that some phospholipids included in damaged cells or denatured lipoproteins which are scavenged by macrophages in vivo may induce growth of peripheral macrophages more effectively when they are peroxidized by local pathological processes.

  6. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system.

    PubMed

    Friese, A; Seiller, E; Quack, G; Lorenz, B; Kreuter, J

    2000-03-01

    A novel non-competitive NMDA receptor antagonist MRZ 2/576 is a potent but rather short-acting (5-15 min) anticonvulsant following intravenous administration to mice as estimated by the prevention of maximal electroshock induced convulsions. This is most probably due to a rapid elimination of the drug from the central nervous system by transport processes that are sensitive to probenecid. Intravenous administration of the drug bound to poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 prolongs the duration of the anticonvulsive activity in mice up to 210 min and after probenecid pre-treatment up to 270 min compared to 150 min with probenecid and MRZ 2/576 alone. The results of this study demonstrate that polysorbate 80 coated poly(butylcyanoacrylate) nanoparticles used so far as a delivery system to the brain for drugs that do not freely penetrate the blood brain barrier can also be used as a parenteral controlled release system to prolong the CNS availability of drugs that have a short duration of action.

  7. Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons.

    PubMed

    Khodr, Christina E; Chen, Lihua; Dave, Sonya; Al-Harthi, Lena; Hu, Xiu-Ti

    2016-10-01

    Human Immunodeficiency Virus type 1 (HIV-1) infection induces neurological and neuropsychological deficits, which are associated with dysregulation of the medial prefrontal cortex (mPFC) and other vulnerable brain regions. We evaluated the impact of HIV infection in the mPFC and the therapeutic potential of targeting over-active voltage-gated L-type Ca(2+) channels (L-channel) and NMDA receptors (NMDAR), as modeled in HIV-1 transgenic (Tg) rats. Whole-cell patch-clamp recording was used to assess the membrane properties and voltage-sensitive Ca(2+) potentials (Ca(2+) influx) in mPFC pyramidal neurons. Neurons from HIV-1 Tg rats displayed reduced rheobase, spike amplitude and inwardly-rectifying K(+) influx, increased numbers of action potentials, and a trend of aberrant firing compared to those from non-Tg control rats. Neuronal hyper-excitation was associated with abnormally-enhanced Ca(2+) influx (independent of NMDAR), which was eliminated by acute L-channel blockade. Combined chronic blockade of over-active L-channels and NMDARs with open-channel blockers abolished HIV effects on spiking, aberrant firing and Ca(2+) potential half-amplitude duration, though not the reduced inward rectification. In contrast, individual chronic blockade of over-active L-channels or NMDARs did not alleviate HIV-induced mPFC hyper-excitability. These studies demonstrate that HIV alters mPFC neuronal activity by dysregulating membrane excitability and Ca(2+) influx through the L-channels. This renders these neurons more susceptible and vulnerable to excitatory stimuli, and could contribute to HIV-associated neuropathogenesis. Combined targeting of over-active L-channels/NMDARs alleviates HIV-induced dysfunction of mPFC pyramidal neurons, emphasizing a potential novel therapeutic strategy that may effectively decrease HIV-induced Ca(2+) dysregulation in the mPFC.

  8. Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons.

    PubMed

    Khodr, Christina E; Chen, Lihua; Dave, Sonya; Al-Harthi, Lena; Hu, Xiu-Ti

    2016-10-01

    Human Immunodeficiency Virus type 1 (HIV-1) infection induces neurological and neuropsychological deficits, which are associated with dysregulation of the medial prefrontal cortex (mPFC) and other vulnerable brain regions. We evaluated the impact of HIV infection in the mPFC and the therapeutic potential of targeting over-active voltage-gated L-type Ca(2+) channels (L-channel) and NMDA receptors (NMDAR), as modeled in HIV-1 transgenic (Tg) rats. Whole-cell patch-clamp recording was used to assess the membrane properties and voltage-sensitive Ca(2+) potentials (Ca(2+) influx) in mPFC pyramidal neurons. Neurons from HIV-1 Tg rats displayed reduced rheobase, spike amplitude and inwardly-rectifying K(+) influx, increased numbers of action potentials, and a trend of aberrant firing compared to those from non-Tg control rats. Neuronal hyper-excitation was associated with abnormally-enhanced Ca(2+) influx (independent of NMDAR), which was eliminated by acute L-channel blockade. Combined chronic blockade of over-active L-channels and NMDARs with open-channel blockers abolished HIV effects on spiking, aberrant firing and Ca(2+) potential half-amplitude duration, though not the reduced inward rectification. In contrast, individual chronic blockade of over-active L-channels or NMDARs did not alleviate HIV-induced mPFC hyper-excitability. These studies demonstrate that HIV alters mPFC neuronal activity by dysregulating membrane excitability and Ca(2+) influx through the L-channels. This renders these neurons more susceptible and vulnerable to excitatory stimuli, and could contribute to HIV-associated neuropathogenesis. Combined targeting of over-active L-channels/NMDARs alleviates HIV-induced dysfunction of mPFC pyramidal neurons, emphasizing a potential novel therapeutic strategy that may effectively decrease HIV-induced Ca(2+) dysregulation in the mPFC. PMID:27326669

  9. Neuroprotective activity of parawixin 10, a compound isolated from Parawixia bistriata spider venom (Araneidae: Araneae) in rats undergoing intrahippocampal NMDA microinjection

    PubMed Central

    Fachim, Helene Aparecida; Mortari, Marcia Renata; Gobbo-Netto, Leonardo; dos Santos, Wagner Ferreira

    2015-01-01

    Background: Parawixia bistriata is a semi-colonial spider found mainly in southeastern of Brazil. Parawixin 10 (Pwx 10) a compound isolated from this spider venom has been demonstrated to act as neuroprotective in models of injury regulating the glutamatergic neurotransmission through glutamate transporters. Objectives: The aim of this work was to evaluate the neuroprotective effect of Pwx 10 in a rat model of excitotoxic brain injury by N-methyl-D-aspartate (NMDA) injection. Material and Methods: Male Wistar rats have been used, submitted to stereotaxic surgery for saline or NMDA microinjection into dorsal hippocampus. Two groups of animals were treated with Pwx 10. These treated groups received a daily injection of the Pwx 10 (2.5 mg/μL) in the right lateral ventricle into rats pretreated with NMDA, always at the same time, each one starting the treatment 1 h or 24 h. Nissl staining was performed for evaluating the extension and efficacy of the NMDA injury and the neuroprotective effect of Pwx 10. Results: The treatment with Pwx 10 showed neuroprotective effect, being most pronounced when the compound was administrated from 1 h after NMDA in all hippocampal subfields analyzed (CA1, CA3 and hilus). Conclusion: These results indicated that Pwx 10 may be a good template to develop therapeutic drugs for treating neurodegenerative diseases, reinforcing the importance of continuing studies on its effects in the central nervous system. PMID:26246735

  10. Arsenic trioxide and reduced glutathione act synergistically to augment inhibition of thyroid peroxidase activity in vitro.

    PubMed

    Palazzolo, Dominic L; Ely, Emily A

    2015-05-01

    Thyroid peroxidase (TPO) is the enzyme involved in thyroid hormone synthesis. Arsenic trioxide (As2O3) is known to inhibit TPO activity in vitro. This inhibition is believed to occur when As2O3 binds to TPO's free sulfhydryl groups. Reduced glutathione (GSH) is also known to inhibit TPO activity in vitro. This inhibition may occur because GSH acts as a competitive substrate for hydrogen peroxide, or possibly reduce the oxidized form of iodide, requirements for TPO action. On the other hand, one could speculate that GSH reduces arsenic-induced TPO inhibition by interacting directly with arsenic or TPO, consequently limiting arsenic's ability to inhibit TPO activity. Since GSH is known to inhibit thyroid hormone synthesis while at the same time it is also known to be an important antioxidant preventing cellular damage induced by oxidative stress and protecting the thyroid gland from oxidative damage induced by arsenic, we wanted to determine if a combination of As2O3 and reduced GSH would either attenuate or augment the As2O3-induced inhibition on TPO activity. Using an in vitro system, TPO was assayed spectrophotometrically in the presence of As2O3 (0.01, 0.1, 1, and 10 ppm), GSH (0.1, 1, 5, and 10 ppm), and As2O3 (0.1 ppm) and GSH (0.01, 0.1, 1, or 10 ppm) combinations. Our results show that 0.1, 1.0, and 10 ppm As2O3 inhibit TPO activity. Similarly, 5 and 10 ppm GSH also inhibit TPO activity. When 0.1 ppm As2O3 (i.e., the lowest dose of arsenic able to partially inhibit TPO activity) is combined with 0.01, 0.1, 1.0, or 10 ppm GSH inhibition of in vitro TPO activity is augmented as indicated by complete inhibition of TPO. The mechanism of this augmentation and whether it translates to living systems remains unclear.

  11. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  12. Active glass-type human augmented cognition system considering attention and intention

    NASA Astrophysics Data System (ADS)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  13. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  14. [Beta]-Adrenergic Receptor Activation Rescues Theta Frequency Stimulation-Induced LTP Deficits in Mice Expressing C-Terminally Truncated NMDA Receptor GluN2A Subunits

    ERIC Educational Resources Information Center

    Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.

    2011-01-01

    Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…

  15. Extinction of Conditioned Taste Aversion Depends on Functional Protein Synthesis but Not on NMDA Receptor Activation in the Ventromedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Akirav, Irit; Khatsrinov, Vicktoria; Vouimba, Rose-Marie; Merhav, Maayan; Ferreira, Guillaume; Rosenblum, Kobi; Maroun, Mouna

    2006-01-01

    We investigated the role of the ventromedial prefrontal cortex (vmPFC) in extinction of conditioned taste aversion (CTA) by microinfusing a protein synthesis inhibitor or N-methyl-d-asparate (NMDA) receptors antagonist into the vmPFC immediately following a non-reinforced extinction session. We found that the protein synthesis blocker anisomycin,…

  16. Aspirin augments carotid-cardiac baroreflex sensitivity during muscle mechanoreflex and metaboreflex activation in humans.

    PubMed

    Drew, Rachel C; Muller, Matthew D; Blaha, Cheryl A; Mast, Jessica L; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2013-10-15

    Muscle mechanoreflex activation decreases the sensitivity of carotid baroreflex (CBR)-heart rate (HR) control during local metabolite accumulation in humans. However, the contribution of thromboxane A2 (TXA2) toward this response is unknown. Therefore, the effect of inhibiting TXA2 production via low-dose aspirin on CBR-HR sensitivity during muscle mechanoreflex and metaboreflex activation in humans was examined. Twelve young subjects performed two trials during two visits, preceded by 7 days' low-dose aspirin (81 mg) or placebo. One trial involved 3-min passive calf stretch (mechanoreflex) during 7.5-min limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex). HR (ECG) and mean arterial pressure (Finometer) were recorded. CBR function was assessed using rapid neck pressures ranging from +40 to -80 mmHg. Aspirin significantly decreased baseline thromboxane B2 production by 84 ± 4% (P < 0.05) but did not affect 6-keto prostaglandin F1α. Following aspirin, stretch with metabolite accumulation significantly augmented maximal gain (GMAX) and operating point gain (GOP) of CBR-HR (GMAX; -0.71 ± 0.14 vs. -0.37 ± 0.08 and GOP; -0.69 ± 0.13 vs. -0.35 ± 0.12 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively; P < 0.05). CBR-HR function curves were reset similarly with aspirin and placebo during stretch with metabolite accumulation. In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in humans. This increased sensitivity appears linked to reduced TXA2 production, which likely plays a role in metabolite sensitization of muscle mechanoreceptors. PMID:23970529

  17. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402

  18. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  19. Augmented vagal heart rate modulation in active hypoestrogenic pre-menopausal women with functional hypothalamic amenorrhoea.

    PubMed

    O'Donnell, Emma; Goodman, Jack M; Morris, Beverly L; Floras, John S; Harvey, Paula J

    2015-11-01

    Compared with eumenorrhoeic women, exercise-trained women with functional hypothalamic amenorrhoea (ExFHA) exhibit low heart rates (HRs) and absent reflex renin-angiotensin-system activation and augmentation of their muscle sympathetic nerve response to orthostatic stress. To test the hypothesis that their autonomic HR modulation is altered concurrently, three age-matched (pooled mean, 24 ± 1 years; mean ± S.E.M.) groups of women were studied: active with either FHA (ExFHA; n=11) or eumenorrhoeic cycles (ExOv; n=17) and sedentary with eumenorrhoeic cycles (SedOv; n=17). Blood pressure (BP), HR and HR variability (HRV) in the frequency domain were determined during both supine rest and graded lower body negative pressure (LBNP; -10, -20 and -40 mmHg). Very low (VLF), low (LF) and high (HF) frequency power spectra (ms(2)) were determined and, owing to skewness, log10-transformed. LF/HF ratio and total power (VLF + LF + HF) were calculated. At baseline, HR and systolic BP (SBP) were lower (P<0.05) and HF and total power were higher (P<0.05) in ExFHA than in eumenorrhoeic women. In all groups, LBNP decreased (P<0.05) SBP, HF and total power and increased (P<0.05) HR and LF/HF ratio. However, HF and total power remained higher (P<0.05) and HR, SBP and LF/HF ratio remained lower (P<0.05) in ExFHA than in eumenorrhoeic women, in whom measures did not differ (P>0.05). At each stage, HR correlated inversely (P<0.05) with HF. In conclusion, ExFHA women demonstrate augmented vagal yet unchanged sympathetic HR modulation, both at rest and during orthostatic stress. Although the role of oestrogen deficiency is unclear, these findings are in contrast with studies reporting decreased HRV in hypoestrogenic post-menopausal women.

  20. Pre and Post Synaptic NMDA Effects Targeting Purkinje Cells in the Mouse Cerebellar Cortex

    PubMed Central

    Lonchamp, Etienne; Gambino, Frédéric; Dupont, Jean Luc; Doussau, Frédéric; Valera, Antoine; Poulain, Bernard; Bossu, Jean-Louis

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not juvenile rat and mice. A presynaptic effect of NMDA on GABA release by cerebellar interneurons was identified recently. Nevertheless whereas NMDA receptor subunits are detected on parallel fiber terminals, a presynaptic effect of NMDA on spontaneous release of glutamate has not been demonstrated. Using mouse cerebellar cultures and patch-clamp recordings we show that NMDA facilitates glutamate release onto Purkinje cells in young cultures via a presynaptic mechanism, whereas NMDA activates extrasynaptic receptors in Purkinje cells recorded in old cultures. The presynaptic effect of NMDA on glutamate release is also observed in Purkinje cells recorded in acute slices prepared from juvenile but not from adult mice and requires a specific protocol of NMDA application. PMID:22276158

  1. Proteomic analysis of the mice hippocampus after preconditioning induced by N-methyl-D-aspartate (NMDA).

    PubMed

    do Amaral e Silva Müller, Gabrielle; Vandresen-Filho, Samuel; Tavares, Carolina Pereira; Menegatti, Angela C O; Terenzi, Hernán; Tasca, Carla Inês; Severino, Patricia Cardoso

    2013-05-01

    Preconditioning induced by N-methyl-D-aspartate (NMDA) has been used as a therapeutic tool against later neuronal insults. NMDA preconditioning affords neuroprotection against convulsions and cellular damage induced by the NMDA receptor agonist, quinolinic acid (QA) with time-window dependence. This study aimed to evaluate the molecular alterations promoted by NMDA and to compare these alterations in different periods of time that are related to the presence or lack of neuroprotection. Putative mechanisms related to NMDA preconditioning were evaluated via a proteomic analysis by using a time-window study. After a subconvulsant and protective dose of NMDA administration mice, hippocampi were removed (1, 24 or 72 h) and total protein analyzed by 2DE gels and identified by MALDI-TOF. Differential protein expression among the time induction of NMDA preconditioning was observed. In the hippocampus of protected mice (24 h), four proteins: HSP70(B), aspartyl-tRNA synthetase, phosphatidylethanolamine binding protein and creatine kinase were found to be up-regulated. Two other proteins, HSP70(A) and V-type proton ATPase were found down-regulated. Proteomic analysis showed that the neuroprotection induced by NMDA preconditioning altered signaling pathways, cell energy maintenance and protein synthesis and processing. These events may occur in a sense to attenuate the excitotoxicity process during the activation of neuroprotection promoted by NMDA preconditioning.

  2. Memantine selectively blocks extrasynaptic NMDA receptors in rat substantia nigra dopamine neurons.

    PubMed

    Wu, Yan-Na; Johnson, Steven W

    2015-04-01

    Recent studies suggest that selective block of extrasynaptic N-methyl-d-aspartate (NMDA) receptors might protect against neurodegeneration. We recorded whole-cell currents with patch pipettes to characterize the ability of memantine, a low-affinity NMDA channel blocker, to block synaptic and extrasynaptic NMDA receptors in substantia nigra zona compacta (SNC) dopamine neurons in slices of rat brain. Pharmacologically isolated NMDA receptor-mediated EPSCs were evoked by electrical stimulation, whereas synaptic and extrasynaptic receptors were activated by superfusing the slice with NMDA (10 µM). Memantine was 15-fold more potent for blocking currents evoked by bath-applied NMDA compared to synaptic NMDA receptors. Increased potency for blocking bath-applied NMDA currents was shared by the GluN2C/GluN2D noncompetitive antagonist DQP-1105 but not by the high-affinity channel blocker MK-801. Our data suggest that memantine causes a selective block of extrasynaptic NMDA receptors that are likely to contain GluN2C/2D subunits. Our results justify further investigations on the use of memantine as a neuroprotective agent in Parkinson's disease.

  3. beta. -endorphin augments the cytolytic activity and interferon production of natural killer cells

    SciTech Connect

    Mandler, R.N.; Biddison, W.E.; Mandler, R.; Serrate, S.A.

    1986-02-01

    The in vitro effects of the neurohormone ..beta..-endorphin (b-end) on natural killer (NK) activity and interferon (IFN) production mediated by large granular lymphocytes (LGL) were investigated. LGL-enriched fractions from peripheral blood mononuclear cells (PBMC) from normal human volunteers were obtained by fractionation over discontinuous Percoll gradients. LGL were preincubated with or without various concentrations of b-end or the closely related peptides ..cap alpha..-endorphin (a-end), ..gamma..-endorphin (g-end), or D-ALA/sub 2/-..beta..-endorphin (D-ALA/sub 2/-b-end), a synthetic b-end analogue. NK activity was assayed on /sup 51/Cr-labeled K562 target cells. Preincubation of LGL effectors (but not K562 targets) for 2 to 18 hr with concentrations of b-end between 10/sup -7/ M and 10/sup -10/ M produced significant augmentation of NK cytolytic activity (mean percentage increase: 63%). The classic opiate antagonist naloxone blocked the enhancing effect when used at a 100-fold molar excess relative to b-end. These findings demonstrate that b-end enhances NK activity and IFN production of purified LGL, and suggests that b-end might bind to an opioid receptor on LGL that can be blocked by naloxone. These results lend support to the concepts of regulation of the immune response by neurohormones and the functional relationship between the nervous and immune systems.

  4. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5

    PubMed Central

    Yan, Yi; Tsukamoto, Osamu; Nakano, Atsushi; Kato, Hisakazu; Kioka, Hidetaka; Ito, Noriaki; Higo, Shuichiro; Yamazaki, Satoru; Shintani, Yasunori; Matsuoka, Ken; Liao, Yulin; Asanuma, Hiroshi; Asakura, Masanori; Takafuji, Kazuaki; Minamino, Tetsuo; Asano, Yoshihiro; Kitakaze, Masafumi; Takashima, Seiji

    2015-01-01

    Augmented AMP-activated protein kinase (AMPK) activity inhibits cell migration, possibly contributing to the clinical benefits of chemical AMPK activators in preventing atherosclerosis, vascular remodelling and cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we identify PDZ and LIM domain 5 (Pdlim5) as a novel AMPK substrate and show that it plays a critical role in the inhibition of cell migration. AMPK directly phosphorylates Pdlim5 at Ser177. Exogenous expression of phosphomimetic S177D-Pdlim5 inhibits cell migration and attenuates lamellipodia formation. Consistent with this observation, S177D-Pdlim5 suppresses Rac1 activity at the cell periphery and displaces the Arp2/3 complex from the leading edge. Notably, S177D-Pdlim5, but not WT-Pdlim5, attenuates the association with Rac1-specific guanine nucleotide exchange factors at the cell periphery. Taken together, our findings indicate that phosphorylation of Pdlim5 on Ser177 by AMPK mediates inhibition of cell migration by suppressing the Rac1-Arp2/3 signalling pathway. PMID:25635515

  5. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats

    PubMed Central

    Streeter, K. A.

    2014-01-01

    Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population. PMID:25103979

  6. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  7. Homeostatic plasticity and NMDA receptor trafficking.

    PubMed

    Pérez-Otaño, Isabel; Ehlers, Michael D

    2005-05-01

    Learning, memory and brain development are associated with long-lasting modifications of synapses that are guided by specific patterns of neuronal activity. Such modifications include classical Hebbian plasticities (such as long-term potentiation and long-term depression), which are rapid and synapse-specific, and others, such as synaptic scaling and metaplasticity, that work over longer timescales and are crucial for maintaining and orchestrating neuronal network function. The cellular mechanisms underlying Hebbian plasticity have been well studied and involve rapid changes in the trafficking of highly mobile AMPA receptors. An emerging concept is that activity-dependent alterations in NMDA receptor trafficking contribute to homeostatic plasticity at central glutamatergic synapses.

  8. Augmentation by transferrin of IL-2-inducible killer activity and perforin production of human CD8+ T cells.

    PubMed Central

    Nakamura, A; Sone, S; Nabioullin, R; Sugihara, K; Munekata, M; Nishioka, Y; Nii, A; Ogura, T

    1993-01-01

    The effects of human transferrin (Tf) on lymphokine (IL-2)-activated killer (LAK) induction from blood lymphocytes of healthy donors was examined. LAK cells were induced by 6-day incubation in medium with recombinant human IL-2 of lymphocytes, and their cytotoxic activity was assessed by measuring 51Cr release from NK-resistant Daudi cells. Tf alone did not induce any LAK activity, but in combination with IL-2, it augmented LAK induction dose- and time-dependently. This augmenting effect was completely abolished by pretreatment with anti-Tf antiserum. Tf augmented the proliferative response of lymphocytes to IL-2 and their expressions of receptors for IL-2 and Tf. CD8+ T cells were isolated from purified blood lymphocytes using antibody-bound magnetic beads. Addition of Tf to cultures of CD8+ cells resulted in significant augmentation of killer cell induction and perforin (PFP) production after 4 days stimulation with IL-2. These results indicate that Tf is important in generation of IL-2-inducible killer properties and PFP activity of human CD8+ T cells. PMID:8467561

  9. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    PubMed Central

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  10. NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex.

    PubMed

    Martin, Kathryn P; Wellman, Cara L

    2011-10-01

    The development and relapse of many psychopathologies can be linked to both stress and prefrontal cortex dysfunction. Glucocorticoid stress hormones target medial prefrontal cortex (mPFC) and either chronic stress or chronic administration of glucocorticoids produces dendritic remodeling in prefrontal pyramidal neurons. Exposure to stress also causes an increase in the release of the excitatory amino acid glutamate, which binds to N-methyl-D-aspartate (NMDA) receptors, which are plentiful in mPFC. NMDA receptor activation is crucial for producing hippocampal dendritic remodeling due to stress and for dendritic reorganization in frontal cortex after cholinergic deafferentation. Thus, NMDA receptors could mediate stress-induced dendritic retraction in mPFC. To test this hypothesis, dendritic morphology of pyramidal cells in mPFC was assessed after blocking NMDA receptors with the competitive NMDA antagonist ±3-(2-carboxypiperazin-4yl)propyl-1-phosphonic acid (CPP) during restraint stress. Administration of CPP prevented stress-induced dendritic atrophy. Instead, CPP-injected stressed rats showed hypertrophy of apical dendrites compared with controls. These results suggest that NMDA activation is crucial for stress-induced dendritic atrophy in mPFC. Furthermore, NMDA receptor blockade uncovers a new pattern of stress-induced dendritic changes, suggesting that other neurohormonal changes in concert with NMDA receptor activation underlie the net dendritic retraction seen after chronic stress.

  11. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain

    NASA Astrophysics Data System (ADS)

    Mintun, Mark A.; Vlassenko, Andrei G.; Rundle, Melissa M.; Raichle, Marcus E.

    2004-01-01

    The factors regulating cerebral blood flow (CBF) changes in physiological activation remain the subject of great interest and debate. Recent experimental studies suggest that an increase in cytosolic NADH mediates increased blood flow in the working brain. Lactate injection should elevate NADH levels by increasing the lactate/pyruvate ratio, which is in near equilibrium with the NADH/NAD+ ratio. We studied CBF responses to bolus lactate injection at rest and in visual stimulation by using positron-emission tomography in seven healthy volunteers. Bolus lactate injection augmented the CBF response to visual stimulation by 38-53% in regions of the visual cortex but had no effect on the resting CBF or the whole-brain CBF. These lactate-induced CBF increases correlated with elevations in plasma lactate/pyruvate ratios and in plasma lactate levels but not with plasma pyruvate levels. Our observations support the hypothesis that an increase in the NADH/NAD+ ratio activates signaling pathways to selectively increase CBF in the physiologically stimulated brain regions.

  12. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  13. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning.

    PubMed

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.

  14. SLC11A1 is expressed by innate lymphocytes and augments their activation1

    PubMed Central

    Hedges, Jodi F.; Kimmel, Emily; Snyder, Deann T.; Jerome, Maria; Jutila, Mark A.

    2013-01-01

    SLC11A1 is a divalent ion transporter formerly known as the natural resistance-associated macrophage protein (NRAMP1) and the Bcg/Lsh/Ity locus. SLC11A1 was thought to be exclusively expressed in monocyte/macrophages and to have roles in phagosome maturation and cell activation. We characterized the expression of SLC11A1 in the majority of human and bovine γδ T cells and NK cells, and in human CD3+CD45RO+ T cells. Consistent with a role for iron-dependent inhibition of protein tyrosine phosphatases, SLC11A1+ lymphocytes were moreprone to activation and retained tyrosine phosphorylation. Transfection of SLC11A1 into a human γδ T cell-like line rendered the cells more prone to activation. Non-adherent splenocytes from wild type mice expressed significantly greater IFN-γ compared to cells from Sv/129 (SLC11A1−/−) mice. Our data suggest that SLC11A1 has a heretofore unknown role in activation of a large subset of innate lymphocytes that are critical sources of IFN-γ. SLC11A1+ animals have enhanced innate IFN-γ expression in response to Salmonella infection compared to SLC11A1−mice, which includes commonly used inbred laboratory mice. Expression of SLC11A1 in innate lymphocytes and its role in augmenting their activation may account for inconsistencies in studies of innate lymphocytes in different animal models. PMID:23509347

  15. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds

    PubMed Central

    Lagrue, Kathryn; Carisey, Alex; Morgan, David J.; Chopra, Rajesh

    2015-01-01

    As multiple myeloma (MM) progresses, natural killer (NK)-cell responses decline against malignant plasma cells. The immunomodulatory drug lenalidomide is widely used for treatment of MM but its influence on NK-cell biology is unclear. Here, we report that lenalidomide lowers the threshold for NK-cell activation, causing a 66% decrease in the 50% effective concentration (EC50) for activation through CD16, and a 38% decrease in EC50 for NK group 2 member D (NKG2D)–mediated activation, allowing NK cells to respond to lower doses of ligand. In addition, lenalidomide augments NK-cell responses, causing a twofold increase in the proportion of primary NK cells producing interferon-γ (IFN-γ), and a 20-fold increase in the amount of IFN-γ produced per cell. Importantly, lenalidomide did not trigger IFN-γ production in unstimulated NK cells. Thus, lenalidomide enhances the NK-cell arm of the immune response, without activating NK cells inappropriately. Of particular clinical importance, lenalidomide also allowed NK cells to be activated by lower doses of rituximab, an anti-CD20 monoclonal antibody (mAb) widely used to treat B-cell malignancies. This supports combined use of lenalidomide and rituximab in a clinical setting. Finally, superresolution microscopy revealed that lenalidomide increased the periodicity of cortical actin at immune synapses, resulting in an increase in the area of the actin mesh predicted to be penetrable to vesicles containing IFN-γ. NK cells from MM patients also responded to lenalidomide in this way. This indicates that nanometer-scale rearrangements in cortical actin, a recently discovered step in immune synapse assembly, are a potential new target for therapeutic compounds. PMID:26002964

  16. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase.

    PubMed

    Klaus, Susanne; Keipert, Susanne; Rossmeisl, Martin; Kopecky, Jan

    2012-07-01

    Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction. PMID:22139637

  17. Ionotropic NMDA receptor evokes an excitatory response in superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Oskutyte, Diana; Ishizuka, Ken'Ichi; Satoh, Yoshihide; Murakami, Toshiki

    2004-02-27

    Extracellular recordings were taken from preganglionic superior salivatory nucleus (SSN) neurons projecting to submandibular and intra-lingual ganglia, in order to study the action of SSN neurons resulting from ionophoretic application of ionotropic NMDA receptor agonist in urethane-chloralose anaesthetized rats. Single SSN neurons were identified by their antidromic spike responses following stimulation of the chorda-lingual nerve (CLN), chorda tympani branches (CTBs) and the lingual nerve (LN). About one-third (33%, 10/30) of the identified SSN neurons were induced to fire by ionophoretic application of the NMDA receptor agonists used, dl-homocysteic acid (DLH) and N-methyl-D-aspartic acid (NMDA). More than half exhibited firing at high frequencies, often exceeding 40 Hz. About one-fifth (20%; 6/30) of the identified SSN neurons exhibited orthodromic spike responses to the combination of NMDA receptor agonist application and sensory nerve (CLN or LN) stimulus. These excitatory responses evoked by application of NMDA receptor agonist were attenuated (n = 4) by ionophoretic application of DL-2-amino-5-phosphonovaleric acid (AP5; NMDA receptor antagonist). About half (47%) of the neurons did not respond to any combination of NMDA receptor agonist and sensory nerve stimuli. No differences were observed between SSN neurons with B fibre axons and those with C fibre axons in response to ionophoresis of the NMDA receptor agonists. The NMDA-sensitive neurons, which exhibited high frequency firing, were predominantly found in the rostral part of the SSN. In summary, activation of ionotropic NMDA receptors exerts an excitatory effect on about half of the SSN neurons. These data support the view that NMDA receptors are involved in information processing and transmission on SSN neurons.

  18. Integrating a Mobile Augmented Reality Activity to Contextualize Student Learning of a Socioscienti?c Issue

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…

  19. Ipilimumab augments antitumor activity of bispecific antibody-armed T cells

    PubMed Central

    2014-01-01

    Background Ipilimumab is an antagonistic monoclonal antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) that enhances antitumor immunity by inhibiting immunosuppressive activity of regulatory T cells (Treg). In this study, we investigated whether inhibiting Treg activity with ipilimumab during ex vivo T cell expansion could augment anti-CD3-driven T cell proliferation and enhance bispecific antibody (BiAb)-redirected antitumor cytotoxicity of activated T cells (ATC). Methods PBMC from healthy individuals were stimulated with anti-CD3 monoclonal antibody with or without ipilimumab and expanded for 10-14 days. ATC were harvested and armed with anti-CD3 x anti-EGFR BiAb (EGFRBi) or anti-CD3 x anti-CD20 BiAb (CD20Bi) to test for redirected cytotoxicity against COLO356/FG pancreatic cancer cell line or Burkitt’s lymphoma cell line (Daudi). Results In PBMC from healthy individuals, the addition of ipilimumab at the initiation of culture significantly enhanced T cell proliferation (p = 0.0029). ATC grown in the presence of ipilimumab showed significantly increased mean tumor-specific cytotoxicity at effector:target (E:T) ratio of 25:1 directed at COLO356/FG and Daudi by 37.71% (p < 0.0004) and 27.5% (p < 0.0004), respectively, and increased the secretion of chemokines (CCL2, CCL3, CCL4,CCL5, CXCL9, and granulocyte-macrophage colony stimulating factor(GM-CSF)) and cytokines (IFN-γ, IL-2R, IL-12, and IL-13), while reducing IL-10 secretion. Conclusions Expansion of ATC in the presence of ipilimumab significantly improves not only the T cell proliferation but it also enhances cytokine secretion and the specific cytotoxicity of T cells armed with bispecific antibodies. PMID:25008236

  20. Steroid hormones augment nitric oxide synthase activity and expression in rat uterus.

    PubMed

    Ogando, D; Farina, M; Ribeiro, M L; Perez Martinez, S; Cella, M; Rettori, V; Franchi, A

    2003-01-01

    Nitric oxide (NO) is synthesized in a variety of tissues, including rat uterus, from L-arginine by NO synthase (NOS), of which there are three isoforms, namely neuronal, endothelial and inducible NOS (nNOS, eNOS and iNOS, respectively). Nitric oxide is an important regulator of the biology and physiology of the organs of the reproductive system, including the uterus. Some studies have shown increased variation in NO production and NOS expression during the oestrous cycle. However, the factors that regulate NO production in the uterus remain unclear. Therefore, in the present study, we investigated the effect of sex steroids on NOS expression and activity in the ovariectomized rat uterus. Ovariectomized rats received progesterone (4 mg per rat) or 17beta-oestradiol (1 microg per rat). All rats were killed 18 h after treatment. Both progesterone and oestradiol were able to augment NOS activity. The effect of oestradiol was abolished by pre-incubation with 500 micro M aminoguanidine, an iNOS inhibitor, or by coadministration of oestradiol with 3 mg kg(-1) dexamethasone, but the effect of progesterone was not affected by these treatments. Uterine nNOS, eNOS and iNOS protein levels were assessed using Western blots. Ovariectomized rat uteri expressed iNOS and eNOS. Progesterone increased the expression of eNOS and iNOS, whereas oestradiol increased iNOS expression only. These results suggest that oestradiol and progesterone are involved in the regulation of NOS expression and activity during pregnancy and implantation in the rat. PMID:14588184

  1. Heavy Resistance Training and Supplementation With the Alleged Testosterone Booster Nmda has No Effect on Body Composition, Muscle Performance, and Serum Hormones Associated With the Hypothalamo-Pituitary-Gonadal Axis in Resistance-Trained Males

    PubMed Central

    Willoughby, Darryn S.; Spillane, Mike; Schwarz, Neil

    2014-01-01

    The effects of 28 days of heavy resistance training while ingesting the alleged testosterone-boosting supplement, NMDA, were determined on body composition, muscle strength, serum cortisol, prolactin, and hormones associated with the hypothalamo-pituitary- gonadal (HPG) axis. Twenty resistance-trained males engaged in 28 days of resistance training 4 times/wk while orally ingesting daily either 1.78 g of placebo (PLAC) or NMDA. Data were analyzed with separate 2 x 2 ANOVA (p < 0.05). Criterion measures involved body composition, muscle strength, serum cortisol, prolactin, and gonadal hormone levels [free and total testosterone, luteininzing hormome (LH), gonadotrophin releasing hormone (GnRH), estradiol], and were assessed before (Day 0) and after (Day 29) resistance training and supplementation. No changes were noted for total body water and fat mass in response to resistance training (p > 0.05) or supplementation (p > 0.05). In regard to total body mass and fat-free mass, however, each was significantly increased in both groups in response to resistance training (p < 0.05), but were not affected by supplementation (p > 0.05). In both groups, lower-body muscle strength was significantly increased in response to resistance training (p < 0.05); however, supplementation had no effect (p > 0.05). All serum hormones (total and free testosterone, LH, GnRH, estradiol, cortisol, prolactin) were unaffected by resistance training (p > 0.05) or supplementation (p > 0.05). The gonadal hormones and cortisol and prolactin were unaffected by 28 days of NMDA supplementation and not associated with the observed increases in muscle strength and mass. At the dose provided, NMDA had no effect on HPG axis activity or ergogenic effects in skeletal muscle. Key Points In response to 28 days of heavy resistance training and NMDA supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups. The

  2. NMDA receptor contributions to visual contrast coding

    PubMed Central

    Manookin, Michael B.; Weick, Michael; Stafford, Benjamin K.; Demb, Jonathan B.

    2010-01-01

    Summary In the retina, it is not well understood how visual processing depends on AMPA- and NMDA-type glutamate receptors. Here, we investigated how these receptors contribute to contrast coding in identified guinea pig ganglion cell types, in vitro. NMDA-mediated responses were negligible in ON α cells but substantial in OFF α and δ cells. OFF δ cell NMDA receptors were composed of GluN2B subunits. Using a novel deconvolution method, we determined the individual contributions of AMPA, NMDA and inhibitory currents to light responses of each cell type. OFF α and δ cells used NMDA receptors for encoding either the full contrast range (α), including near-threshold responses, or only a high range (δ). However, contrast sensitivity depended substantially on NMDA receptors only in OFF α cells. NMDA receptors contribute to visual contrast coding in a cell-type specific manner. Certain cell types generate excitatory responses using primarily AMPA receptors or disinhibition. PMID:20670835

  3. Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1.

    PubMed

    Moshal, Karni S; Kumar, Munish; Tyagi, Neetu; Mishra, Paras K; Metreveli, Naira; Rodriguez, Walter E; Tyagi, Suresh C

    2009-03-01

    Homocysteine (HCY) activated mitochondrial matrix metalloproteinase-9 and led to cardiomyocyte dysfunction, in part, by inducing mitochondrial permeability (MPT). Treatment with MK-801 [N-methyl-d-aspartate (NMDA) receptor antagonist] ameliorated the HCY-induced decrease in myocyte contractility. However, the role of cardiomyocyte NMDA-receptor 1 (R1) activation in hyperhomocysteinemia (HHCY) leading to myocyte dysfunction was not well understood. We tested the hypothesis that the cardiac-specific deletion of NMDA-R1 mitigated the HCY-induced decrease in myocyte contraction, in part, by decreasing nitric oxide (NO). Cardiomyocyte-specific knockout of NMDA-R1 was generated using cre/lox technology. NMDA-R1 expression was detected by Western blot and confocal microscopy. MPT was determined using a spectrophotometer. Myocyte contractility and calcium transients were studied using the IonOptix video-edge detection system and fura 2-AM loading. We observed that HHCY induced NO production by agonizing NMDA-R1. HHCY induced the MPT by agonizing NMDA-R1. HHCY caused a decrease in myocyte contractile performance, maximal rate of contraction and relaxation, and prolonged the time to 90% peak shortening and 90% relaxation by agonizing NMDA-R1. HHCY decreased contraction amplitude with the increase in calcium concentration. The recovery of calcium transient was prolonged in HHCY mouse myocyte by agonizing NMDA-R1. It was suggested that HHCY increased mitochondrial NO levels and induced MPT, leading to the decline in myocyte mechanical function by agonizing NMDA-R1.

  4. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients.

    PubMed

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L; Mann, Sarah; Jurovcik, Andrew J; Demidova, Olga; Wilson, Thad E

    2015-09-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component.

  5. Asparagus racemosus ameliorates cisplatin induced toxicities and augments its antileishmanial activity by immunomodulation in vivo.

    PubMed

    Sachdeva, Heena; Sehgal, Rakesh; Kaur, Sukhbir

    2014-02-01

    Current drugs for the treatment of visceral leishmaniasis are inadequate and their efficacies are also compromised due to suppression of immune function associated during the course of infection. To overcome this problem, efforts are needed to develop therapies with effective immunomodulatory agents where decrease of parasitic burden and simultaneous enhancement of adaptive immunity can be achieved. In this study we have evaluated a new therapeutic approach based on combination of Asparagus racemosus, an immunomodulatory drug, in combination with cisplatin against Leishmania donovani infected BALB/c mice. We demonstrate that A. racemosus (650 mg/kg b.wt./day for 15 days, orally) in combination with cisplatin (5 mg/kg b.wt./day for 5 days, intraperitoneally) enhanced the clearance of parasites as determined by Giemsa-stained liver impression smears. Besides having better killing activity, this combination group achieved increased production of disease resolving Th-1 response (IFN-gamma, IL-2), heightened DTH (delayed type hypersensitivity) response and augmented levels of IgG2a. Moreover, A. racemosus in combination with cisplatin not only provided enhanced protective immune response but also resulted in remarkable improved kidney and liver function tests as manifested by normal levels of SGOT, SGPT, alkaline phosphatase, creatinine and urea in blood plasma with normal histological observations as compared to only cisplatin treated L. donovani infected BALB/c mice. Through this study we have ascertained that A. racemosus in combination with cisplatin in L. donovani infected BALB/c mice boosted as well as restored both cellular and humoral immunity. Thus in view of severe immunosuppression in visceral leishmaniasis, a better and effective strategy for optimum efficacy of future antileishmanial drugs would direct not only killing of parasite by the drug, but also simultaneous generation of immunity against the disease.

  6. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients.

    PubMed

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L; Mann, Sarah; Jurovcik, Andrew J; Demidova, Olga; Wilson, Thad E

    2015-09-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component. PMID:26133800

  7. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients

    PubMed Central

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L.; Mann, Sarah; Jurovcik, Andrew J.; Demidova, Olga

    2015-01-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm−2·min−1, P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component. PMID:26133800

  8. Augmented photocatalytic activity and luminescence response of Tb³⁺ doped nanoscale titania systems

    SciTech Connect

    Paul, Nibedita; Deka, Amrita; Mohanta, Dambarudhar

    2014-10-14

    The present work reports on the effect of Tb³⁺ doping on the luminescence and photocatalytic performance of nano-structured titania derived through a sol-gel route. X-ray diffraction patterns have revealed the existence of anatase phase with and without Tb³⁺ doping and with an improved orientation factor along (004) and (200) planes. Transmission electron microscopy and selective area electron diffraction studies, while exhibiting ample poly-crystallinity feature, have predicted an average particle size of ~9 nm and ~6 nm for the un-doped and 5% Tb³⁺ doped nano-titania samples; respectively. Apart from emissions accompanied by different types of defects, Tb³⁺ related transitions, such as, ⁵D₃ → ⁷F₅, ⁵D₃ → ⁷F₄, and ⁵D₄ → ⁷F₆ were identified in the photoluminescence spectra. Brunauer-Emmett-Teller surface area analysis, as carried out on a Tb³⁺ doped nano-titania system, has demonstrated a more-open hysteretic loop owing to significant difference of N₂ adsorption/desorption rates. The photocatalytic activity of nano-titania, as evaluated from the nature of degradation of methyl orange under UV illumination, exhibited the highest efficiency for a Tb³⁺ doping level of 2.5%. The augmented photocatalytic degradation has also been discussed in the light of a model based on pseudo first-order kinetics.

  9. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    SciTech Connect

    Shi, Wen-Zhu; Miao, Yu-Liang; Guo, Wen-Zhi; Wu, Wei; Li, Bao-Wei; An, Li-Na; Fang, Wei-Wu; Mi, Wei-Dong

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  10. Tetrahydrobiopterin lowers muscle sympathetic nerve activity and improves augmentation index in patients with chronic kidney disease

    PubMed Central

    Liao, Peizhou; Sher, Salman; Lyles, Robert H.; Deveaux, Don D.; Quyyumi, Arshed A.

    2014-01-01

    Chronic kidney disease (CKD) is characterized by overactivation of the sympathetic nervous system (SNS) that contributes to cardiovascular risk. Decreased nitric oxide (NO) bioavailability is a major factor contributing to SNS overactivity in CKD, since reduced neuronal NO leads to increased central SNS activity. Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthase that increases NO bioavailability in experimental models of CKD. We conducted a randomized, double-blinded, placebo-controlled trial testing the benefits of oral sapropterin dihydrochloride (6R-BH4, a synthetic form of BH4) in CKD. 36 patients with CKD and hypertension were randomized to 12 wk of 1) 200 mg 6R-BH4 twice daily + 1 mg folic acid once daily; vs. 2) placebo + folic acid. The primary endpoint was a change in resting muscle sympathetic nerve activity (MSNA). Secondary endpoints included arterial stiffness using pulse wave velocity (PWV) and augmentation index (AIx), endothelial function using brachial artery flow-mediated dilation and endothelial progenitor cells, endothelium-independent vasodilatation (EID), microalbuminuria, and blood pressure. We observed a significant reduction in MSNA after 12 wk of 6R-BH4 (−7.5 ± 2.1 bursts/min vs. +3.2 ± 1.3 bursts/min; P = 0.003). We also observed a significant improvement in AIx (by −5.8 ± 2.0% vs. +1.8 ± 1.7 in the placebo group, P = 0.007). EID increased significantly (by +2.0 ± 0.59%; P = 0.004) in the 6R-BH4 group, but there was no change in endothelial function. There was a trend toward a reduction in diastolic blood pressure by −4 ± 3 mmHg at 12 wk with 6R-BH4 (P = 0.055). 6R-BH4 treatment may have beneficial effects on SNS activity and central pulse wave reflections in hypertensive patients with CKD. PMID:25477424

  11. Tetrahydrobiopterin lowers muscle sympathetic nerve activity and improves augmentation index in patients with chronic kidney disease.

    PubMed

    Park, Jeanie; Liao, Peizhou; Sher, Salman; Lyles, Robert H; Deveaux, Don D; Quyyumi, Arshed A

    2015-02-01

    Chronic kidney disease (CKD) is characterized by overactivation of the sympathetic nervous system (SNS) that contributes to cardiovascular risk. Decreased nitric oxide (NO) bioavailability is a major factor contributing to SNS overactivity in CKD, since reduced neuronal NO leads to increased central SNS activity. Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthase that increases NO bioavailability in experimental models of CKD. We conducted a randomized, double-blinded, placebo-controlled trial testing the benefits of oral sapropterin dihydrochloride (6R-BH4, a synthetic form of BH4) in CKD. 36 patients with CKD and hypertension were randomized to 12 wk of 1) 200 mg 6R-BH4 twice daily + 1 mg folic acid once daily; vs. 2) placebo + folic acid. The primary endpoint was a change in resting muscle sympathetic nerve activity (MSNA). Secondary endpoints included arterial stiffness using pulse wave velocity (PWV) and augmentation index (AIx), endothelial function using brachial artery flow-mediated dilation and endothelial progenitor cells, endothelium-independent vasodilatation (EID), microalbuminuria, and blood pressure. We observed a significant reduction in MSNA after 12 wk of 6R-BH4 (-7.5 ± 2.1 bursts/min vs. +3.2 ± 1.3 bursts/min; P = 0.003). We also observed a significant improvement in AIx (by -5.8 ± 2.0% vs. +1.8 ± 1.7 in the placebo group, P = 0.007). EID increased significantly (by +2.0 ± 0.59%; P = 0.004) in the 6R-BH4 group, but there was no change in endothelial function. There was a trend toward a reduction in diastolic blood pressure by -4 ± 3 mmHg at 12 wk with 6R-BH4 (P = 0.055). 6R-BH4 treatment may have beneficial effects on SNS activity and central pulse wave reflections in hypertensive patients with CKD. PMID:25477424

  12. Molecular pharmacology of human NMDA receptors

    PubMed Central

    Hedegaard, Maiken K.; Hansen, Kasper B.; Andersen, Karen T.; Bräuner-Osborne, Hans; Traynelis, Stephen F.

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. NMDA receptors are also important drug targets that are implicated in a number of pathophysiological conditions. To facilitate the transition from lead compounds in pre-clinical animal models to drug candidates for human use, it is important to establish whether NMDA receptor ligands have similar properties at rodent and human NMDA receptors. Here, we compare amino acid sequences for human and rat NMDA receptor subunits and discuss inter-species variation in the context of our current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest that the binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human and rat NMDA receptors. PMID:22197913

  13. Augmentative and Alternative Communication and Language: Evidence-Based Practice and Language Activity Monitoring

    ERIC Educational Resources Information Center

    Hill, Katya

    2004-01-01

    The goal of augmentative and alternative communication (AAC) is the most effective communication possible. Speech-language pathologists are obligated to collect data, measure communication, and apply the principles of evidence-based practice (EBP). This article presents a model for EBP that represents how collecting and evaluating performance data…

  14. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.

  15. The Rac1 inhibitor NSC23766 suppresses CREB signaling by targeting NMDA receptor function.

    PubMed

    Hou, Hailong; Chávez, Andrés E; Wang, Chih-Chieh; Yang, Hongtian; Gu, Hua; Siddoway, Benjamin A; Hall, Benjamin J; Castillo, Pablo E; Xia, Houhui

    2014-10-15

    NMDA receptor signaling plays a complex role in CREB activation and CREB-mediated gene transcription, depending on the subcellular location of NMDA receptors, as well as how strongly they are activated. However, it is not known whether Rac1, the prototype of Rac GTPase, plays a role in neuronal CREB activation induced by NMDA receptor signaling. Here, we report that NSC23766, a widely used specific Rac1 inhibitor, inhibits basal CREB phosphorylation at S133 (pCREB) and antagonizes changes in pCREB levels induced by NMDA bath application in rat cortical neurons. Unexpectedly, we found that NSC23766 affects the levels of neuronal pCREB in a Rac1-independent manner. Instead, our results indicate that NSC23766 can directly regulate NMDA receptors as indicated by their strong effects on both exogenous and synaptically evoked NMDA receptor-mediated currents in mouse and rat neurons, respectively. Our findings strongly suggest that Rac1 does not affect pCREB signaling in cortical neurons and reveal that NSC23766 could be a novel NMDA receptor antagonist.

  16. Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes

    PubMed Central

    Poleg-Polsky, Alon

    2015-01-01

    Cortical neurons can respond to glutamatergic stimulation with regenerative N-Methyl-D-aspartic acid (NMDA)-spikes. NMDA-spikes were initially thought to depend on clustered synaptic activation. Recent work had shown however a new variety of a global NMDA-spike, which can be generated by randomly distributed inputs. Very little is known about the factors that influence the generation of these global NMDA-spikes, as well the potentially distinct rules of synaptic integration and the computational significance conferred by the two types of NMDA-spikes. Here I show that the input resistance (RIN) plays a major role in influencing spike initiation; while the classical, focal NMDA-spike depended upon the local (dendritic) RIN, the threshold of global NMDA-spike generation was set by the somatic RIN. As cellular morphology can exert a large influence on RIN, morphologically distinct neuron types can have dissimilar rules for NMDA-spikes generation. For example, cortical neurons in superficial layers were found to be generally prone to global NMDA-spike generation. In contrast, electric properties of cortical layer 5b cells clearly favor focal NMDA-spikes. These differences can translate into diverse synaptic integration rules for the different classes of cortical cells; simulated superficial layers neurons were found to exhibit strong synaptic interactions between different dendritic branches, giving rise to a single integrative compartment mediated by the global NMDA-spike. In these cells, efficiency of postsynaptic activation was relatively little dependent on synaptic distribution. By contrast, layer 5b neurons were capable of true multi-unit computation involving independent integrative compartments formed by clustered synaptic input which could trigger focal NMDA-spikes. In a sharp contrast to superficial layers neurons, randomly distributed synaptic inputs were not very effective in driving firing the layer 5b cells, indicating a possibility for different

  17. Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus

    PubMed Central

    Zdobnova, Irina; König, Imbritt; Landwehr, Marco; Kreutz, Martin; Smalla, Karl-Heinz; Richter, Karin; Landgraf, Peter; Reissner, Carsten; Boeckers, Tobias M; Zuschratter, Werner; Spilker, Christina; Seidenbecher, Constanze I; Garner, Craig C; Gundelfinger, Eckart D; Kreutz, Michael R

    2008-01-01

    NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-α to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration. PMID:18303947

  18. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    SciTech Connect

    Deng Xue; Tamai, Riyoko; Endo, Yasuo; Kiyoura, Yusuke

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, a promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.

  19. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity.

    PubMed

    Chen, H S; Pellegrini, J W; Aggarwal, S K; Lei, S Z; Warach, S; Jensen, F E; Lipton, S A

    1992-11-01

    Excessive activation of NMDA receptors is thought to mediate the calcium-dependent neurotoxicity associated with hypoxic-ischemic brain injury, trauma, epilepsy, and several neurodegenerative diseases. For this reason, various NMDA antagonists have been investigated for their therapeutic potential in these diseases, but heretofore none have proven to be both effective and safe. In the present study, memantine, an adamantane derivative similar to the antiviral drug amantadine, is shown to block the channels activated by NMDA receptor stimulation. From whole-cell and single-channel recording experiments, the mechanism of action of memantine is deduced to be open-channel block, similar to MK-801; however, unlike MK-801, memantine is well tolerated clinically. Compared to MK-801, memantine's safety may be related to its faster kinetics of action with rapid blocking and unblocking rates at low micromolar concentrations. Furthermore, at these levels memantine is an uncompetitive antagonist and should theoretically allow near-normal physiological NMDA activity throughout the brain even in the face of pathologically high focal concentrations of glutamate. These pharmacological properties confer upon memantine a therapeutic advantage against NMDA receptor-mediated neurotoxicity with few side effects compared with other organic NMDA open-channel blockers. Moreover, memantine is increasingly effective against escalating levels of glutamate, such as those observed during a stroke. Low micromolar concentrations of memantine, levels known to be tolerated by patients receiving the drug for the treatment of Parkinson's disease, prevent NMDA receptor-mediated neurotoxicity in cultures of rat cortical and retinal ganglion cell neurons; memantine also appears to be both safe and effective in a rat stroke model. These results suggest that memantine has considerable therapeutic potential for the myriad of clinical entities associated with NMDA receptor-mediated neurotoxicity.

  20. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition. PMID:27325034

  1. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons.

    PubMed

    Fleming, Tiffany M; Scott, Victoria; Naskar, Krishna; Joe, Natalie; Brown, Colin H; Stern, Javier E

    2011-08-15

    Despite the long-established presence of glutamate NMDA receptors at extrasynaptic sites (eNMDARs), their functional roles remain poorly understood. Factors influencing the concentration and time course of glutamate in the extrasynaptic space, such as the topography of the neuronal–glial microenvironment, as well as glial glutamate transporters, are expected to affect eNMDAR-mediated signalling strength. In this study, we used in vitro and in vivo electrophysiological recordings to assess the properties, functional relevance and modulation of a persistent excitatory current mediated by activation of eNMDARs in hypothalamic supraoptic nucleus (SON) neurons. We found that ambient glutamate of a non-synaptic origin activates eNMDARs to mediate a persistent excitatory current (termed tonic I(NMDA)), which tonically stimulates neuronal activity. Pharmacological blockade of GLT1 astrocyte glutamate transporters, as well as the gliotoxin α-aminodadipic acid, enhanced tonic I(NMDA) and neuronal activity, supporting an astrocyte regulation of tonic I(NMDA) strength. Dehydration, a physiological challenge known to increase SON firing activity and to induce neuroglial remodelling, including reduced neuronal ensheathment by astrocyte processes, resulted in blunted GLT1 efficacy, enhanced tonic I(NMDA) strength, and increased neuronal activity. Taken together, our studies support the view that glial modulation of tonic I(NMDA) activation contributes to regulation of SON neuronal activity, contributing in turn to neuronal homeostatic responses during a physiological challenge. PMID:21690192

  2. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.

  3. Thrust Augmentation Through Active Flow Control: Lessons from a Bluegill Sunfish

    NASA Astrophysics Data System (ADS)

    Akhtar, Imran; Mittal, Rajat; Lauder, George

    2002-11-01

    Numerical simulations are being used to analyze the effect that vortices shed from the dorsal fin have on the thrust of the tail fin for a Bluegill Sunfish. The simulations are being carried out using a Cartesian grid method which allows us to simulate flows with complex moving boundararies on stationary Cartesian grids. The simulations attempt to model the kinematics of the fin motion and the flow conditions as measured by Drucker & Lauder (J. Exp. Bio. Vol. 202, pp 2393-2412, 1999) for a live specimen using PIV. Our simulations indicate that vortex shedding from the upstream dorsal fin is indeed capable of increasing the thrust of the tail fin significantly. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. Furthermore, the maximum thrust augmentation is found for phase angles that match those observed for the Bluegill Sunfish! The numerical simulation allow us to examine the underlying physical mechanism for this thrust augmentation and results pertaining to this will be presented.

  4. NADH augments blood flow in physiologically activated retina and visual cortex

    NASA Astrophysics Data System (ADS)

    Ido, Yasuo; Chang, Katherine; Williamson, Joseph R.

    2004-01-01

    The mechanism(s) that increase retinal and visual cortex blood flows in response to visual stimulation are poorly understood. We tested the hypothesis that increased transfer of electrons and protons from glucose to cytosolic free NAD+, reducing it to NADH, evoked by increased energy metabolism, fuels redox-signaling pathways that augment flow. The near-equilibrium between free cytosolic NADH/NAD+ and lactate/pyruvate ratios established by lactate dehydrogenase predicts that transfer of additional electrons and protons from injected lactate to NAD+ will augment the elevated blood flows in stimulated retina and cortex, whereas transfer of electrons and protons from NADH to injected pyruvate will attenuate the elevated flows. These predictions were tested and confirmed in rats. Increased flows evoked by stimulation also were prevented by inhibition of nitric oxide synthase. These findings support an important role for cytosolic free NADH in fueling a signaling cascade that increases NO production, which augments blood flow in photostimulated retina and visual cortex.

  5. 3-Carboxy-pyrazolinalanine as a new scaffold for developing potent and selective NMDA receptor antagonists.

    PubMed

    Tamborini, Lucia; Pinto, Andrea; Mastronardi, Federica; Iannuzzi, Maria C; Cullia, Gregorio; Nielsen, Birgitte; De Micheli, Carlo; Conti, Paola

    2013-10-01

    A synthetic method for the preparation of suitably protected 3-carboxy-Δ2-pyrazolin-5-yl-alanine was developed. This scaffold is amenable to further decoration at the N1 position and was used to generate novel NMDA receptor ligands. Although weaker than the previously reported N1-Ph derivatives, the new ligands retain the ability to selectively bind to NMDA receptor with micromolar to submicromolar affinity. Considering the relevance of the N-functionalization for the biological activity, the results presented in this communication are preliminary to a full SAR study of this novel class of NMDA receptor antagonists. PMID:23954238

  6. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.

    PubMed

    Dukoff, David James; Hogg, David William; Hawrysh, Peter John; Buck, Leslie Thomas

    2014-09-15

    Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria. Anoxia also blocks mitochondrial reactive oxygen species (ROS) generation, which is another potential signaling mechanism to regulate glutamate receptors. To assess the effects of decreased intracellular [ROS] on NMDA and AMPA receptor currents, we scavenged ROS with N-2-mercaptopropionylglycine (MPG) or N-acetylcysteine (NAC). Unlike anoxia, ROS scavengers increased NMDA receptor whole-cell currents by 100%, while hydrogen peroxide decreased currents. AMPA receptor currents and [Ca(2+)]i concentrations were unaffected by ROS manipulation. Because decreases in [ROS] increased NMDA receptor currents, we next asked whether mitochondrial Ca(2+) release prevents receptor potentiation during anoxia. Normoxic activation of mitochondrial ATP-sensitive potassium (mKATP) channels with diazoxide decreased NMDA receptor currents and was unaffected by subsequent ROS scavenging. Diazoxide application following ROS scavenging did not rescue scavenger-mediated increases in NMDA receptor currents. Fluorescent measurement of [Ca(2+)]i and ROS levels demonstrated that [Ca(2+)]i increases before ROS decreases. We conclude that decreases in ROS concentration are not linked to anoxia-mediated decreases in NMDA/AMPA receptor currents but are rather associated with an increase in NMDA receptor currents that is prevented during anoxia by mitochondrial Ca(2+) release.

  7. N-methyl-D-aspartate (NMDA)-mediated muscle relaxant action of memantine in rats.

    PubMed

    Schwarz, M; Block, F; Sontag, K H

    1992-08-31

    The present study examined in vivo whether memantine exerts muscle relaxant activity via an antagonistic action at N-methyl-D-aspartate (NMDA) receptors. Intraperitoneal (i.p.) administration of memantine, 50-100 mumol/kg, reduced the tonic activity in the electromyogram recorded from the gastrocnemius muscle of spastic mutant rats. This effect was prevented by coadministration of NMDA. Memantine, while not affecting monosynaptic Hoffmann (H)-reflexes, depressed polysynaptic flexor reflexes in anaesthetized rats following i.p. (6.25-100 mumol/kg) or intrathecal (i.t., 10-500 nmol) administration. The latter effect was prevented by i.t. coadministration of NMDA, but not of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). These observations suggest that NMDA receptors might be involved in the mediation of the muscle relaxant activity of memantine.

  8. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.

    PubMed

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-09-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer. PMID:24988892

  9. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation

    PubMed Central

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-01-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer. PMID:24988892

  10. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.

    PubMed

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-09-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer.

  11. Subunit Arrangement and Phenylethanolamine Binding in GluN1/GluN2B NMDA Receptors

    SciTech Connect

    E Karakas; N Simorowski; H Furukawa

    2011-12-31

    Since it was discovered that the anti-hypertensive agent ifenprodil has neuroprotective activity through its effects on NMDA (N-methyl-D-aspartate) receptors, a determined effort has been made to understand the mechanism of action and to develop improved therapeutic compounds on the basis of this knowledge. Neurotransmission mediated by NMDA receptors.

  12. In search of augmentation at human SI: Somatosensory cortical responses to stimulus trains and their modulation by motor activity.

    PubMed

    Huttunen, Juha

    2010-05-17

    In many animal preparations, repeated stimulation at ca. 10 Hz in thalamic nuclei leads to rapid changes in the cortical evoked responses, known as the augmenting response. The present study was undertaken to evaluate whether anything similar to the augmenting response can be observed in awake human subjects when a peripheral nerve is stimulated, and whether a possible human correlate of augmenting would be modified when the subject is engaged in an active motor task. Somatosensory-evoked magnetic fields (SEFs) were recorded in healthy human subjects in response to stimulus trains (15 pulses at 10 Hz) applied to the left median nerve. SEFs were recorded in a resting condition and during a finger-tapping task performed with the stimulated hand. In the resting condition, the most marked change in the SEF configuration was a reduction of the P35m deflection and a concurrent enhancement of the N45m deflection during the 1st few stimuli of the trains. Another conspicuous feature was a prolongation of the latencies of the N45m and P60m deflections toward the end of the train. In the motor task, the response modulation during the pulse trains was in general similar to the resting condition. The most notable difference was that the P35m amplitude was markedly reduced already for the 1st pulse of the train when compared with rest. Also, the latencies of N45m and P60m were not prolonged during the train. We discuss the possibility that the reduction of P35m and a concurrent increase of N45m during a pulse train constitute a human analogue to the augmenting response, and suggest that these changes may reflect a decrease of inhibitory postsynaptic potentials (IPSPs, P35m) and an increase of secondary excitatory postsynaptic potentials (N45m) during stimulus train presentation. The reduction of P35m during motor activity compared with rest already at the beginning of stimulus trains suggests that postsynaptic IPSPs in response to afferent stimulation are reduced during active

  13. In search of augmentation at human SI: Somatosensory cortical responses to stimulus trains and their modulation by motor activity.

    PubMed

    Huttunen, Juha

    2010-05-17

    In many animal preparations, repeated stimulation at ca. 10 Hz in thalamic nuclei leads to rapid changes in the cortical evoked responses, known as the augmenting response. The present study was undertaken to evaluate whether anything similar to the augmenting response can be observed in awake human subjects when a peripheral nerve is stimulated, and whether a possible human correlate of augmenting would be modified when the subject is engaged in an active motor task. Somatosensory-evoked magnetic fields (SEFs) were recorded in healthy human subjects in response to stimulus trains (15 pulses at 10 Hz) applied to the left median nerve. SEFs were recorded in a resting condition and during a finger-tapping task performed with the stimulated hand. In the resting condition, the most marked change in the SEF configuration was a reduction of the P35m deflection and a concurrent enhancement of the N45m deflection during the 1st few stimuli of the trains. Another conspicuous feature was a prolongation of the latencies of the N45m and P60m deflections toward the end of the train. In the motor task, the response modulation during the pulse trains was in general similar to the resting condition. The most notable difference was that the P35m amplitude was markedly reduced already for the 1st pulse of the train when compared with rest. Also, the latencies of N45m and P60m were not prolonged during the train. We discuss the possibility that the reduction of P35m and a concurrent increase of N45m during a pulse train constitute a human analogue to the augmenting response, and suggest that these changes may reflect a decrease of inhibitory postsynaptic potentials (IPSPs, P35m) and an increase of secondary excitatory postsynaptic potentials (N45m) during stimulus train presentation. The reduction of P35m during motor activity compared with rest already at the beginning of stimulus trains suggests that postsynaptic IPSPs in response to afferent stimulation are reduced during active

  14. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.

  15. Mutants of lymphotoxin-α with augmented cytotoxic activity via TNFR1 for use in cancer therapy.

    PubMed

    Morishige, Tomohiro; Yoshioka, Yasuo; Narimatsu, Shogo; Ikemizu, Shinji; Tsunoda, Shin-ichi; Tsutsumi, Yasuo; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku

    2013-02-01

    The cytokine lymphotoxin-α (LTα) is a promising candidate for use in cancer therapy. However, the instability of LTαin vivo and the insufficient levels of tumor necrosis factor receptor 1 (TNFR1)-mediated bioactivity of LTα limit its therapeutic potential. Here, we created LTα mutants with increased TNFR1-mediated bioactivity by using a phage display technique. We constructed a phage library displaying lysine-deficient structural variants of LTα with randomized amino acid residues. After affinity panning, we screened three clones of lysine-deficient LTα mutant, and identified a LTα mutant with TNFR1-mediated bioactivity that was 32 times that of the wild-type LTα (wtLTα). When compared with wtLTα, the selected clone showed augmented affinity to TNFR1 due to slow dissociation rather than rapid association. In contrast, the mutant showed only 4 times the TNFR2-mediated activity of wtLTα. In addition, the LTα mutant strongly and rapidly activated caspases that induce TNFR1-mediated cell death, whereas the mutant and wtLTα activated nuclear factor-kappa B to a similar extent. Our data suggest that the kinetics of LTα binding to TNFR1 play an important role in signal transduction patterns, and a TNFR1-selective LTα mutant with augmented bioactivity would be a superior candidate for cancer therapy. PMID:23246116

  16. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury.

    PubMed

    Wang, Y; Rao, W; Zhang, C; Zhang, C; Liu, M-D; Han, F; Yao, L-b; Han, H; Luo, P; Su, N; Fei, Z

    2015-08-06

    Excessive N-methyl-D-aspartate receptor (NMDAR) activation and the resulting activation of neuronal nitric oxide synthase (nNOS) cause neuronal injury. Homer1b/c facilitates NMDAR-PSD95-nNOS complex interactions, and Homer1a is a negative competitor of Homer1b/c. We report that Homer1a was both upregulated by and protected against NMDA-induced neuronal injury in vitro and in vivo. The neuroprotective activity of Homer1a was associated with NMDA-induced Ca2+ influx, oxidative stress and the resultant downstream signaling activation. Additionally, we found that Homer1a functionally regulated NMDAR channel properties in neurons, but did not regulate recombinant NR1/NR2B receptors in HEK293 cells. Furthermore, we found that Homer1a detached the physical links among NR2B, PSD95 and nNOS and reduced the membrane distribution of NMDAR. NMDA-induced neuronal injury was more severe in Homer1a homozygous knockout mice (KO, Homer1a-/-) when compared with NMDA-induced neuronal injury in wild-type mice (WT, Homer1a+/+). Additionally, Homer1a overexpression in the cortex of Homer1a-/- mice alleviated NMDA-induced neuronal injury. These findings suggest that Homer1a may be a key neuroprotective endogenous molecule that protects against NMDA-induced neuronal injury by disassembling NR2B-PSD95-nNOS complexes and reducing the membrane distribution of NMDARs.

  17. Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neurones in vitro.

    PubMed Central

    Khateb, A; Fort, P; Serafin, M; Jones, B E; Mühlethaler, M

    1995-01-01

    1. Intracellular recordings were performed in neurones within the basal forebrain of guinea-pig brain slices. Following injection of biocytin (or biotinamide), a subset of recorded neurones which displayed distinct intrinsic membrane properties were confirmed as being cholinergic by immunohistochemical staining for choline acetyltransferase (ChAT). They were all located within the nucleus basalis magnocellularis. The response of the cholinergic cells to NMDA and to the agonists of the other glutamate receptors was tested by bath application of NMDA, t-ACPD, AMPA and kainate. 2. When depolarized from a hyperpolarized level, cholinergic basalis neurones display the intrinsic ability to discharge in rhythmic bursts that are generated by low-threshold Ca2+ spikes. In control solution, these rhythmic bursts were not sustained for more than 5-6 cycles. However, in the presence of NMDA when the membrane was held at a hyperpolarized level, low-threshold bursting activity was sustained for prolonged periods of time. This activity could be reversibly eliminated by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), showing that it depended upon specific activation of NMDA receptors. 3. NMDA-induced, voltage-dependent, rhythmic depolarizations persisted in the presence of tetrodotoxin (TTX), indicating that they did not depend upon a TTX-sensitive Na+ current and were generated postsynaptically. The rhythmic depolarizations were, however, eliminated by the partial replacement of Na+ with choline, demonstrating that they did depend upon Na+, the major carrier of the NMDA current. 4. In the presence of TTX, the NMDA-induced rhythmic depolarizations were also eliminated by removal of Ca2+ from or addition of Ni2+ to the bath, indicating that they also depended upon Ca2+, which is carried by both the NMDA current and the low-threshold Ca2+ current. The duration of the rhythmic depolarizations was increased in the presence of apamin, suggesting that the repolarization of the cells

  18. Statin Attenuates Experimental Anti-Glomerular Basement Membrane Glomerulonephritis Together with the Augmentation of Alternatively Activated Macrophages

    PubMed Central

    Fujita, Emiko; Shimizu, Akira; Masuda, Yukinari; Kuwahara, Naomi; Arai, Takashi; Nagasaka, Shinya; Aki, Kaoru; Mii, Akiko; Natori, Yasuhiro; Iino, Yasuhiko; Katayama, Yasuo; Fukuda, Yuh

    2010-01-01

    Macrophages are heterogeneous and include classically activated M1 and alternatively activated M2 macrophages, characterized by pro- and anti-inflammatory functions, respectively. Macrophages that express heme oxygenase-1 also exhibit anti-inflammatory effects. We assessed the anti-inflammatory effects of statin in experimental anti-glomerular basement membrane glomerulonephritis and in vitro, focusing on the macrophage heterogeneity. Rats were induced anti-glomerular basement membrane glomerulonephritis and treated with atorvastatin (20 mg/kg/day) or vehicle (control). Control rats showed infiltration of macrophages in the glomeruli at day 3 and developed crescentic glomerulonephritis by day 7, together with increased mRNA levels of the M1 macrophage-associated cytokines, interferon-γ, tumor necrosis factor-α, and interleukin-12. In contrast, statin reduced the level of proteinuria, reduced infiltration of macrophages in glomeruli with suppression of monocyte chemotactic protein-1 expression, and inhibited the formation of necrotizing and crescentic lesions. The number of glomerular ED3-positive macrophages decreased with down-regulation of M1 macrophage-associated cytokines. Furthermore, statin augmented ED2-positive M2 macrophages with up-regulation of the M2 macrophage-associated chemokines and cytokines, chemokine (C-C motif) Iigand-17 and interleukin-10. Statin also increased the glomerular interleukin-10-expressing heme oxygenase-1-positive macrophages. Statin inhibited macrophage development, and suppressed ED3-positive macrophages, but augmented ED2-positive macrophages in M2-associated cytokine environment in vitro. We conclude that the anti-inflammatory effects of statin in glomerulonephritis are mediated through inhibition of macrophage infiltration as well as augmentation of anti-inflammatory macrophages. PMID:20696778

  19. Interaction between positive allosteric modulators and trapping blockers of the NMDA receptor channel

    PubMed Central

    Emnett, Christine M; Eisenman, Lawrence N; Mohan, Jayaram; Taylor, Amanda A; Doherty, James J; Paul, Steven M; Zorumski, Charles F; Mennerick, Steven

    2015-01-01

    Background and Purpose Memantine and ketamine are clinically used, open-channel blockers of NMDA receptors exhibiting remarkable pharmacodynamic similarities despite strikingly different clinical profiles. Although NMDA channel gating constitutes an important difference between memantine and ketamine, it is unclear how positive allosteric modulators (PAMs) might affect the pharmacodynamics of these NMDA blockers. Experimental Approach We used two different PAMs: SGE-201, an analogue of an endogenous oxysterol, 24S-hydroxycholesterol, along with pregnenolone sulphate (PS), to test on memantine and ketamine responses in single cells (oocytes and cultured neurons) and networks (hippocampal slices), using standard electrophysiological techniques. Key Results SGE-201 and PS had no effect on steady-state block or voltage dependence of a channel blocker. However, both PAMs increased the actions of memantine and ketamine on phasic excitatory post-synaptic currents, but neither revealed underlying pharmacodynamic differences. SGE-201 accelerated the re-equilibration of blockers during voltage jumps. SGE-201 also unmasked differences among the blockers in neuronal networks – measured either by suppression of activity in multi-electrode arrays or by neuroprotection against a mild excitotoxic insult. Either potentiating NMDA receptors while maintaining the basal activity level or increasing activity/depolarization without potentiating NMDA receptor function is sufficient to expose pharmacodynamic blocker differences in suppressing network function and in neuroprotection. Conclusions and Implications Positive modulation revealed no pharmacodynamic differences between NMDA receptor blockers at a constant voltage, but did expose differences during spontaneous network activity. Endogenous modulator tone of NMDA receptors in different brain regions may underlie differences in the effects of NMDA receptor blockers on behaviour. PMID:25377730

  20. Lip augmentation.

    PubMed

    Byrne, Patrick J; Hilger, Peter A

    2004-02-01

    Lip augmentation has become increasingly popular in recent years as a reflection of cultural trends emphasizing youth and beauty. Techniques to enhance the appearance of the lips have evolved with advances in biotechnology. An understanding of lip anatomy and aesthetics forms the basis for successful results. We outline the pertinent anatomy and aesthetics of the preoperative evaluation. A summary of various filler materials available is provided. Augmentation options include both injectable and open surgical techniques. The procedures and materials currently favored by the authors are described in greater detail.

  1. The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism.

    PubMed

    Dajas-Bailador, F A; Lima, P A; Wonnacott, S

    2000-10-01

    Neuronal nicotinic acetylcholine receptors (nAChR) have been suggested to play a role in a variety of modulatory and regulatory processes, including neuroprotection. Here we have characterized the neuroprotective effects of nicotine against an excitotoxic insult in primary hippocampal cultures. Exposure of hippocampal neurons to 200 microM NMDA for 1 h decreased cell viability by 25+/-5%, an effect blocked by NMDA receptor antagonists. Nicotine (10 microM) counteracted the NMDA-induced cell death when co-incubated with NMDA or when present subsequent to the NMDA treatment. Nicotine protection was prevented by 1 microM MLA, confirming that it was mediated by nAChR, and by 1 microM alpha-bungarotoxin, demonstrating that the alpha7 nAChR subtype was responsible. Both the NMDA evoked neurotoxicity and nicotine neuroprotection were Ca(2+)-dependent. In Fura-2-loaded hippocampal neurons, nicotine (10 microM) and NMDA (200 microM) acutely increased intracellular resting Ca(2+) from 70 nM to 200 and 500 nM, respectively. Responses to NMDA were unaffected by the presence of nicotine. (45)Ca(2+) uptake after a 1 h exposure to nicotine or NMDA also demonstrated quantitative differences between the two drugs. This study demonstrates that the alpha7 subtype of nAChR can support neuronal survival after an excitotoxic stimulus, through a Ca(2+) dependent mechanism that operates downstream of NMDA receptor activation.

  2. Antihistamine terfenadine potentiates NMDA receptor-mediated calcium influx, oxygen radical formation, and neuronal death.

    PubMed

    Díaz-Trelles, R; Novelli, A; Vega, J A; Marini, A; Fernández-Sánchez, M T

    2000-10-13

    We previously reported that the histamine H1 receptor antagonist terfenadine enhances the excitotoxic response to N-methyl-D-aspartate (NMDA) receptor agonists in cerebellar neurons. Here we investigated whether this unexpected action of terfenadine relates to its antihistamine activity, and which specific events in the signal cascade coupled to NMDA receptors are affected by terfenadine. Low concentrations of NMDA (100 microM) or glutamate (15 microM) that were only slightly (<20%) toxic when added alone, caused extensive cell death in cultures pre-exposed to terfenadine (5 microM) for 5 h. Terfenadine potentiation of NMDA receptor response was mimicked by other H1 antagonists, including chlorpheniramine (25 microM), oxatomide (20 microM), and triprolidine (50 microM), was prevented by histamine (1 mM), and did not require RNA synthesis. Terfenadine increased NMDA-mediated intracellular calcium and cGMP synthesis by approximately 2.4 and 4 fold respectively. NMDA receptor-induced cell death in terfenadine-treated neurons was associated with a massive production of hydrogen peroxides, and was significantly inhibited by the application of either (+)-alpha-tocopherol (200 microM) or the endogenous antioxidant melatonin (200 microM) 15 min before or up to 30 min after receptor stimulation. This operational time window suggests that an enduring production of reactive oxygen species is critical for terfenadine-induced NMDA receptor-mediated neurodegeneration, and strengthens the importance of antioxidants for the treatment of excitotoxic injury. Our results also provide direct evidence for antihistamine drugs enhancing the transduction signaling activated by NMDA receptors in cerebellar neurons.

  3. Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit

    SciTech Connect

    Karakas, E.; Simorowski, N; Furukawa, H

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-free and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.

  4. Magnesium as NMDA receptor blocker in the traditional Chinese medicine Danshen.

    PubMed

    Sun, X; Chan, L N; Sucher, N J

    2005-03-01

    Aqueous extracts of the traditional Chinese medicine Danshen, the dried roots of Salvia miltiorrhiza Bunge (Labiatae), blocked N-methyl-D-aspartate (NMDA) evoked currents in cerebrocortical neurons in vitro. The block of the NMDA-evoked currents was voltage dependent and showed the negative slope conductance reminiscent of the effect of Mg2+ ions. Atomic absorption spectrophotometry (AAS) revealed that aqueous Danshen extracts contained approximately 9mM magnesium. Fractionation of the extracts by high performance liquid chromatography followed by patch clamp recording and AAS indicated that magnesium ions were present in two distinct fractions. One fraction contained approximately 5 mM magnesium and blocked NMDA-induced currents indicating that it contained mostly free Mg2+ ions, while a second fraction did not possess NMDA antagonist activity despite the presence of approximately 4 mM magnesium suggesting that Mg2+ in this fraction was mostly chelated. Following removal of the free Mg2+ by ion exchange chromatography, the previously observed block of the NMDA-induced currents was abolished. These data demonstrate that Danshen contains both free and chelated Mg2+. Free Mg2+ ions account for the NMDA antagonist activity of Danshen in vitro.

  5. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina.

    PubMed

    Zhou, Yifan; Tencerová, Barbora; Hartveit, Espen; Veruki, Margaret L

    2016-01-01

    At many glutamatergic synapses, non-N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg(2+)-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca(2+)-free extracellular solution, potentially reflecting Ca(2+)-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway.

  6. Augmentation cheiloplasty.

    PubMed

    Ho, L C

    1994-06-01

    A technique of augmentation cheiloplasty with prior correction of a thin vermillion is described. Preserving and accentuating the natural contours of the lips is emphasised in vermillion correction and volume expansion with fat cell grafts. Thin vermillion correction, lip volume expansion and the state of fat cell grafts are reviewed.

  7. The HIV coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains

    PubMed Central

    Xu, Hangxiu; Bae, Mihyun; Tovar-y-Romo, Luis B.; Patel, Neha; Bandaru, Veera Venkata Ratnam; Pomerantz, Daniel; Steiner, Joseph; Haughey, Norman J.

    2011-01-01

    Infection by the Human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV associated neurocognitive disorders (HAND). While the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. HIV gp120 enlarged, and stabilized the structure of lipid rafts on neuronal dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2; nSMase2) to the plasma membrane. A concurrent pathway was activated that enhanced the forward traffic of NMDA receptors by promoting a PKA-dependent phopshorylation of the NR1 C-terminal serine 897 (that masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses, and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse, and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced three-fold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from enhancing the surface localization and clustering of NMDA receptors, while disrupting the structure of membrane microdomains restored the ability of NMDA receptors to disperse and internalize following gp120. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV-infection by interfering with the traffic of NMDA receptors. PMID:22114277

  8. Aromatic Interactions in Organocatalyst Design: Augmenting Selectivity Reversal in Iminium Ion Activation.

    PubMed

    Holland, Mareike C; Metternich, Jan Benedikt; Daniliuc, Constantin; Schweizer, W Bernd; Gilmour, Ryan

    2015-07-01

    Substituting N-methylpyrrole for N-methyindole in secondary-amine-catalysed Friedel-Crafts reactions leads to a curious erosion of enantioselectivity. In extreme cases, this substrate dependence can lead to an inversion in the sense of enantioinduction. Indeed, these closely similar transformations require two structurally distinct catalysts to obtain comparable selectivities. Herein a focussed molecular editing study is disclosed to illuminate the structural features responsible for this disparity, and thus identify lead catalyst structures to further exploit this selectivity reversal. Key to effective catalyst re-engineering was delineating the non-covalent interactions that manifest themselves in conformation. Herein we disclose preliminary validation that intermolecular aromatic (CH-π and cation-π) interactions between the incipient iminium cation and the indole ring system is key to rationalising selectivity reversal. This is absent in the N-methylpyrrole alkylation, thus forming the basis of two competing enantio-induction pathways. A simple L-valine catalyst has been developed that significantly augments this interaction. PMID:25982418

  9. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation

    PubMed Central

    Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong

    2015-01-01

    During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8+ T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential. PMID:26442863

  10. High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8(+) T Cell Activation.

    PubMed

    Choi, Ho Jin; Jang, So-Young; Hwang, Eun Seong

    2015-10-01

    During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8(+) T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential. PMID:26442863

  11. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus

  12. Healthy older humans exhibit augmented carotid-cardiac baroreflex sensitivity with aspirin during muscle mechanoreflex and metaboreflex activation.

    PubMed

    Drew, Rachel C; Blaha, Cheryl A; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2015-10-01

    Low-dose aspirin inhibits thromboxane production and augments the sensitivity of carotid baroreflex (CBR) control of heart rate (HR) during concurrent muscle mechanoreflex and metaboreflex activation in healthy young humans. However, it is unknown how aging affects this response. Therefore, the effect of low-dose aspirin on carotid-cardiac baroreflex sensitivity during muscle mechanoreflex with and without metaboreflex activation in healthy older humans was examined. Twelve older subjects (6 men and 6 women, mean age: 62 ± 1 yr) performed two trials during two visits preceded by 7 days of low-dose aspirin (81 mg) or placebo. One trial involved 3 min of passive calf stretch (mechanoreflex) during 7.5 min of limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise (mechanoreflex and metaboreflex). HR (ECG) and mean arterial blood pressure (MAP; Finometer) were recorded. CBR function was assessed using rapid neck pressure application (+40 to -80 mmHg). Aspirin significantly decreased baseline thromboxane B2 production by 83 ± 4% (P < 0.05) but did not affect 6-keto-PGF1α. After aspirin, CBR-HR maximal gain and operating point gain were significantly higher during stretch with metabolite accumulation compared with placebo (maximal gain: -0.23 ± 0.03 vs. -0.14 ± 0.02 and operating point gain: -0.11 ± 0.03 vs. -0.04 ± 0.01 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively, P < 0.05). In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in healthy older humans. This increased sensitivity appears linked to reduced thromboxane sensitization of muscle mechanoreceptors, which consequently improves CBR-HR control. PMID:26371168

  13. Healthy older humans exhibit augmented carotid-cardiac baroreflex sensitivity with aspirin during muscle mechanoreflex and metaboreflex activation.

    PubMed

    Drew, Rachel C; Blaha, Cheryl A; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2015-10-01

    Low-dose aspirin inhibits thromboxane production and augments the sensitivity of carotid baroreflex (CBR) control of heart rate (HR) during concurrent muscle mechanoreflex and metaboreflex activation in healthy young humans. However, it is unknown how aging affects this response. Therefore, the effect of low-dose aspirin on carotid-cardiac baroreflex sensitivity during muscle mechanoreflex with and without metaboreflex activation in healthy older humans was examined. Twelve older subjects (6 men and 6 women, mean age: 62 ± 1 yr) performed two trials during two visits preceded by 7 days of low-dose aspirin (81 mg) or placebo. One trial involved 3 min of passive calf stretch (mechanoreflex) during 7.5 min of limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise (mechanoreflex and metaboreflex). HR (ECG) and mean arterial blood pressure (MAP; Finometer) were recorded. CBR function was assessed using rapid neck pressure application (+40 to -80 mmHg). Aspirin significantly decreased baseline thromboxane B2 production by 83 ± 4% (P < 0.05) but did not affect 6-keto-PGF1α. After aspirin, CBR-HR maximal gain and operating point gain were significantly higher during stretch with metabolite accumulation compared with placebo (maximal gain: -0.23 ± 0.03 vs. -0.14 ± 0.02 and operating point gain: -0.11 ± 0.03 vs. -0.04 ± 0.01 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively, P < 0.05). In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in healthy older humans. This increased sensitivity appears linked to reduced thromboxane sensitization of muscle mechanoreceptors, which consequently improves CBR-HR control.

  14. Nitric oxide modulates blood pressure through NMDA receptors in the rostral ventrolateral medulla of conscious rats.

    PubMed

    Machado, Natalia L S; Silva, Fernanda C S; Chianca, Deoclecio A; de Menezes, Rodrigo C

    2016-07-15

    The rostral ventrolateral medulla (RVLM) is an important site of cardiovascular control related to the tonic excitation and regulating the sympathetic vasomotor tone through local presympathetic neurons. Nitric oxide (NO) has been implicated in the modulation of neurotransmission by several areas of the central nervous system including the RVLM. However the pathways driving NO affects and the correlation between NO and glutamate-induced mechanisms are not well established. Here, we investigate the influence of NO on the cardiovascular response evoked by the activation of NMDA and non-NMDA glutamatergic receptors in the RVLM in conscious rats. For that, we examined the influence of acute inhibition of the NO production within the RVLM, by injecting the nonselective constitutive NOS inhibitor, l-NAME, on responses evoked by the microinjection of excitatory amino acids l-glutamate, NMDA or AMPA agonists into RVLM. Our results show that the injection of l-glutamate, NMDA or AMPA agonists into RVLM, unilaterally, induced a marked increase in the mean arterial pressure (MAP). Pretreatment with l-NAME reduced the hypertensive response evoked by the glutamate injection, and also abolished the pressor response induced by the injection of NMDA into the RVLM. However, blocking the NO synthesis did not alter the response produced by the injection of AMPA agonist. These data provide evidence that the glutamatergic neurotransmission within the RVLM depends on excitatory effects exerted by NO on NMDA receptors, and that this mechanism might be essential to regulate systemic blood pressure. PMID:27150817

  15. Differential Expression of AMPA Subunits Induced by NMDA Intrahippocampal Injection in Rats

    PubMed Central

    Fachim, Helene A.; Pereira, Adriana C.; Iyomasa-Pilon, Melina M.; Rosa, Maria L. N. M.

    2016-01-01

    Glutamate is involved in excitotoxic mechanisms by interacting with different receptors. Such interactions result in neuronal death associated with several neurodegenerative disorders of the central nervous system (CNS). The aim of this work was to study the time course of changes in the expression of GluR1 and GluR2 subunits of glutamate amino-acid-3-hydroxy-5-methyl-isoxazol-4-propionic acid (AMPA) receptors in rat hippocampus induced by NMDA intrahippocampal injection. Rats were submitted to stereotaxic surgery for NMDA or saline (control) microinjection into dorsal hippocampus and the parameters were evaluated 24 h, 1, 2, and 4 weeks after injection. The extension and efficacy of the NMDA-induced injury were evaluated by Morris water maze (MWM) behavioral test and Nissl staining. The expression of GluR1 and GluR2 receptors, glial fibrillary acidic protein (GFAP), and neuronal marker (NeuN) was analyzed by immunohistochemistry. It was observed the impairment of learning and memory functions, loss of neuronal cells, and glial proliferation in CA1 area of NMDA compared with control groups, confirming the injury efficacy. In addition, NMDA injection induced distinct changes in GluR1 and GluR2 expression over the time. In conclusion, such changes may be related to the complex mechanism triggered in response to NMDA injection resulting in a local injury and in the activation of neuronal plasticity. PMID:26912994

  16. Competitive NMDA and strychnine-insensitive glycine-site antagonists disrupt prepulse inhibition.

    PubMed

    Furuya, Y; Ogura, H

    1997-08-01

    Prepulse inhibition (PPI) is thought to reflect the operation of a sensorimotor gating system in the brain. Sensorimotor gating abnormalities have been identified in schizophrenic patients, and various neural systems are involved in this function. To study the modulation of the sensorimotor gating system by the N-methyl-D-aspartate (NMDA) receptor channel complex, the effects of noncompetitive and competitive NMDA antagonists on PPI were examined in rats. PPI was not disrupted by CGS 19755, a competitive NMDA antagonist, at 30 min after subcutaneous (s.c.) administration. However, CGS 19755 (40 mg/kg s.c.) decreased PPI at 120 min after administration with a marked decrease of startle amplitude. Late onset of the effect of CGS 19755 was also observed in the increase of spontaneous locomotor activity (SLA). On the other hand, phencyclidine, a noncompetitive NMDA antagonist, disrupted PPI at 30 min after administration and increased SLA from 20 min after administration. PPI was also disrupted by bilateral intracerebroventricular administration of 5,7-dichlorokyn urenate (10 and 20 micrograms/side X 2), an antagonist at the strychnine-insensitive glycine receptor, which is an allosteric binding site in the NMDA receptor-channel complex. It is concluded that the NMDA receptor-channel complex plays an important role in regulation of PPI.

  17. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong

    2010-09-01

    Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.

  18. Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities.

    PubMed

    Lin, Chien-Yu; Chang, Yu-Ming

    2015-02-01

    This study uses a body motion interactive game developed in Scratch 2.0 to enhance the body strength of children with disabilities. Scratch 2.0, using an augmented-reality function on a program platform, creates real world and virtual reality displays at the same time. This study uses a webcam integration that tracks movements and allows participants to interact physically with the project, to enhance the motivation of children with developmental disabilities to perform physical activities. This study follows a single-case research using an ABAB structure, in which A is the baseline and B is the intervention. The experimental period was 2 months. The experimental results demonstrated that the scores for 3 children with developmental disabilities increased considerably during the intervention phrases. The developmental applications of these results are also discussed. PMID:25460214

  19. Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities.

    PubMed

    Lin, Chien-Yu; Chang, Yu-Ming

    2015-02-01

    This study uses a body motion interactive game developed in Scratch 2.0 to enhance the body strength of children with disabilities. Scratch 2.0, using an augmented-reality function on a program platform, creates real world and virtual reality displays at the same time. This study uses a webcam integration that tracks movements and allows participants to interact physically with the project, to enhance the motivation of children with developmental disabilities to perform physical activities. This study follows a single-case research using an ABAB structure, in which A is the baseline and B is the intervention. The experimental period was 2 months. The experimental results demonstrated that the scores for 3 children with developmental disabilities increased considerably during the intervention phrases. The developmental applications of these results are also discussed.

  20. Chin augmentation.

    PubMed

    Choe, K S; Stucki-McCormick, S U

    2000-01-01

    The primary goal of facial aesthetic surgery is to restore, enhance, and rejuvenate the aging face to a more youthful appearance, achieving balance and harmony. The mental area must be addressed in order to have a complete synthesis of the face. The concept of augmenting the mental area with implants has evolved so significantly that it now stands by itself as an important procedure. Various autogenous implants for chin augmentation have been in use for over 100 years but have complications. The advent of synthetic materials has given rise to various types of alloplastic implants: Gore-Tex, Medpor, Supramid, Silastic, and Mersilene. No one implant is perfect for every face. This article overviews several alloplastic implants--their advantages, disadvantages, and complications, in addition to the different techniques of preparing and delivering the implants.

  1. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors

    PubMed Central

    Lambot, Laurie; Chaves Rodriguez, Elena; Houtteman, Delphine; Li, Yuquing; Schiffmann, Serge N.; Gall, David

    2016-01-01

    The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic

  2. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain.

    PubMed

    Wang, Wen-Jie; Cheng, Wang; Luo, Ming; Yan, Qingyu; Yu, Hong-Mei; Li, Qiong; Cao, Dong-Dong; Huang, Shengfeng; Xu, Anlong; Mariuzza, Roy A; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 Å crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lys-type PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1~3 novel PGRPs of augmented catalytic activity and broad recognition spectrum.

  3. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain

    PubMed Central

    Wang, Wen-Jie; Cheng, Wang; Luo, Ming; Yan, Qingyu; Yu, Hong-Mei; Li, Qiong; Cao, Dong-Dong; Huang, Shengfeng; Xu, Anlong; Mariuzza, Roy A.; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 Å crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lys-type PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1~3 novel PGRPs of augmented catalytic activity and broad recognition spectrum. PMID:26479246

  4. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain.

    PubMed

    Wang, Wen-Jie; Cheng, Wang; Luo, Ming; Yan, Qingyu; Yu, Hong-Mei; Li, Qiong; Cao, Dong-Dong; Huang, Shengfeng; Xu, Anlong; Mariuzza, Roy A; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 Å crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lys-type PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1~3 novel PGRPs of augmented catalytic activity and broad recognition spectrum. PMID:26479246

  5. NMDA receptors mediate an early up-regulation of brain-derived neurotrophic factor expression in substantia nigra in a rat model of presymptomatic Parkinson's disease.

    PubMed

    Bustos, Gonzalo; Abarca, Jorge; Bustos, Victor; Riquelme, Eduardo; Noriega, Viviana; Moya, Catherine; Campusano, Jorge

    2009-08-01

    The clinical symptoms of Parkinson's disease (PD) appear late and only when the degenerative process at the level of the nigrostriatal dopamine (DA) pathway is quite advanced. An increase in brain-derived neurotrophic factor (BDNF) expression may be one of the molecular signals associated to compensatory and plastic responses occurring in basal ganglia during presymptomatic PD. In the present study, we used in vivo microdialysis, semiquantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry to study N-methyl-D-aspartic acid (NMDA) receptor regulation of BDNF expression in substantia nigra (SN) of adult rats after partial lesioning of the nigrostriatal DA pathway with unilateral striatal injections of 6-hydroxydopamine (6-OHDA). A time-dependent partial decrease of striatal DA tissue content as well as parallel and gradual increases in extracellular glutamate and aspartate levels in SN were found 1 to 7 days after unilateral 6-OHDA intrastriatal injection. Instead, the number of tyrosine hydroxylase-immunoreactive (IR) cells in the ipsilateral SN pars compacta remained statistically unchanged after neurotoxin injection. Intrastriatal administration of 6-OHDA also produced an early and transient augmentation of pan-BDNF, exon II-BDNF, and exon III-BDNF transcripts in the ipsilateral SN. The pan-BDNF and exon II-BDNF transcript increases were completely abolished by the prior systemic administration of MK-801, a selective antagonist of NMDA receptors. MK-801 also blocked the increase in BDNF-IR cells in SN observed 7 days after unilateral 6-OHDA intrastriatal injections. Our findings suggest that a coupling between glutamate release, NMDA receptor activation, and BDNF expression may exist in the adult SN and represent an important signal in this midbrain nucleus triggered in response to partial DA loss occurring in striatal nerve endings during presymptomatic PD.

  6. Musical Peddy-Paper: A Collaborative Learning Activity Suported by Augmented Reality

    ERIC Educational Resources Information Center

    Gomes, José Duarte Cardoso; Figueiredo, Mauro Jorge Guerreiro; Amante, Lúcia da Graça Cruz Domingues; Gomes, Cristina Maria Cardoso

    2014-01-01

    Gaming activities are an integral part of the human learning process, in particular for children. Game-based learning focuses on motivation and children's engagement towards learning. Educational game-based activities are becoming effective strategies to enhance the learning process. This paper presents an educational activity focusing to merge…

  7. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Heikkila, John J; Beazely, Michael A

    2013-04-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors.

  8. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression.

    PubMed

    Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A

    2004-09-10

    While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these

  9. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.

  10. Synthesis of 4-(aminoalkyl) substituted 1,3-dioxanes as potent NMDA and σ receptor antagonists.

    PubMed

    Utech, Tina; Köhler, Jens; Wünsch, Bernhard

    2011-06-01

    Elongation of the distance between the oxygen heterocycle and the basic amino moiety or ring expansion of the oxygen heterocycle of the NMDA receptor antagonists dexoxadrol and etoxadrol led to compounds with promising NMDA receptor affinity. Herein the combination of both structural features, i.e. elongation of the O-heterocycle--amine distance with a 1,3-dioxane ring is envisaged. The synthesis of aminoethyl-1,3-dioxanes 13, 22, 23 and 29 was performed by transacetalization of various acetals with pentane-1,3,5-triol, activation of the remaining free OH moiety with tosyl chloride and subsequent nucleophilic substitution. The corresponding 3-aminopropyl derivatives 33-35 were prepared by substitution of the tosylates with KCN and LiAlH4 reduction. The highest NMDA receptor affinity was found for 1,3-dioxanes with a phenyl and an ethyl residue at the acetalic position (23) followed by diphenyl (22) and monophenyl derivatives (13). Generally the NMDA affinity of primary amines is higher than the NMDA affinity of secondary and tertiary amines. Altogether the primary amine 23a (Ki=24 nM) represents the most promising NMDA receptor antagonist of this series exceeding the NMDA affinity of the mono-homologues (2-aminoethyl)-1,3-dioxolanes (3,4) and (aminomethyl)-1,3-dioxanes (5,6). Whereas the primary amine 23a turned out to be selective against σ1 and σ2 receptors the benzylamine 13d was identified as potent (Ki=19 nM) and selective σ1 antagonist, which showed extraordinarily high antiallodynic activity in the capsaicin assay. PMID:21444132

  11. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801.

    PubMed

    Roshanravan, Hila; Kim, Eun Young; Dryer, Stuart E

    2016-10-01

    N-methyl-d-aspartate (NMDA) receptors are expressed throughout the kidney, and the abundance of these receptors and some of their endogenous agonists are increased in diabetes. Moreover, sustained activation of podocyte NMDA receptors induces Ca(2+) influx, oxidative stress, loss of slit diaphragm proteins, and apoptosis. We observed that NMDA receptor subunits and their transcripts are increased in podocytes and mesangial cells cultured in elevated glucose compared with controls. A similar increase in NMDA subunits, especially NR1, NR2A, and NR2C, was observed in glomeruli and tubules of Akita mice. Sustained continuous treatment with the strong NMDA receptor antagonist dizocilpine (MK-801) for 28 days starting at 8 weeks of age reduced 24-h albumin excretion and mesangial matrix expansion and improved glomerular ultrastructure in Akita mice. MK-801 did not alleviate reduced Akita mouse body weight and had no effect on kidney histology or ultrastructure in DBA/2J controls. The structurally dissimilar NMDA antagonist memantine also reduced diabetic nephropathy, although it was less effective than MK-801. Inhibition of NMDA receptors may represent a valid therapeutic approach to reduce renal complications of diabetes, and it is possible to develop well-tolerated agents with minimal central nervous system effects. Two such agents, memantine and dextromethorphan, are already in widespread clinical use.

  12. Pomegranate Juice Augments Memory and fMRI Activity in Middle-Aged and Older Adults with Mild Memory Complaints

    PubMed Central

    Bookheimer, Susan Y.; Renner, Brian A.; Ekstrom, Arne; Henning, Susanne M.; Brown, Jesse A.; Jones, Mike; Moody, Teena; Small, Gary W.

    2013-01-01

    Despite increasing emphasis on the potential of dietary antioxidants in preventing memory loss and on diet as a precursor of neurological health, rigorous studies investigating the cognitive effects of foods and their components are rare. Recent animal studies have reported memory and other cognitive benefits of polyphenols, found abundantly in pomegranate juice. We performed a preliminary, placebo-controlled randomized trial of pomegranate juice in older subjects with age-associated memory complaints using memory testing and functional brain activation (fMRI) as outcome measures. Thirty-two subjects (28 completers) were randomly assigned to drink 8 ounces of either pomegranate juice or a flavor-matched placebo drink for 4 weeks. Subjects received memory testing, fMRI scans during cognitive tasks, and blood draws for peripheral biomarkers before and after the intervention. Investigators and subjects were all blind to group membership. After 4 weeks, only the pomegranate group showed a significant improvement in the Buschke selective reminding test of verbal memory and a significant increase in plasma trolox-equivalent antioxidant capacity (TEAC) and urolithin A-glucuronide. Furthermore, compared to the placebo group, the pomegranate group had increased fMRI activity during verbal and visual memory tasks. While preliminary, these results suggest a role for pomegranate juice in augmenting memory function through task-related increases in functional brain activity. PMID:23970941

  13. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  14. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity.

    PubMed

    Kim, Jong H; Chan, Kathleen L; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated "structure-activity relationship" for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention.

  15. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity

    PubMed Central

    Kim, Jong H.; Chan, Kathleen L.; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated “structure-activity relationship” for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  16. Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation

    PubMed Central

    Zhang, Qi; Deng, Yafei; Lai, Wenjing; Guan, Xiao; Sun, Xiongshan; Han, Qi; Wang, Fangjie; Pan, Xiaodong; Ji, Yan; Luo, Hongqin; Huang, Pei; Tang, Yuan; Gu, Liangqi; Dan, Guorong; Yu, Jianhua; Namaka, Michael; Zhang, Jianxiang; Deng, Youcai; Li, Xiaohui

    2016-01-01

    Maternal inflammation contributes to the increased incidence of adult cardiovascular disease. The current study investigated the susceptibility of cardiac damage responding to isoproterenol (ISO) in adult offspring that underwent maternal inflammation (modeled by pregnant Sprague-Dawley rats with lipopolysaccharides (LPS) challenge). We found that 2 weeks of ISO treatment in adult offspring of LPS-treated mothers led to augmented heart damage, characterized by left-ventricular systolic dysfunction, cardiac hypertrophy and myocardial fibrosis. Mechanistically, prenatal exposure to LPS led to up-regulated expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, antioxidant enzymes, and p38 MAPK activity in left ventricular of adult offspring at resting state. ISO treatment exaggerated ROS generation, p38 MAPK activation but down-regulated reactive oxygen species (ROS) elimination capacity in the left ventricular of offspring from LPS-treated mothers, while antioxidant N-acetyl-L-cysteine (NAC) reversed these changes together with improved cardiac functions. The p38 inhibitor SB202190 alleviated the heart damage only via inhibiting the expression of NADPH oxidases. Collectively, our data demonstrated that prenatal inflammation programs pre-existed ROS activation in the heart tissue, which switches on the early process of oxidative damages on heart rapidly through a ROS-p38 MAPK-NADPH oxidase-ROS positive feedback loop in response to a myocardial hypertrophic challenge in adulthood. PMID:27443826

  17. Real-time RMS active damping augmentation: Heavy and very light payload evaluations

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Lepanto, Janet A.; Flueckiger, Karl W.; Bains, Elizabeth M.; Jensen, Mary C.

    1994-01-01

    Controls-Structures Integration Technology has been applied to the Space Shuttle Remote Manipulator System (RMS) to improve on-orbit performance. The objective was to actively damp undesired oscillatory motions of the RMS following routine payload maneuvering and Shuttle attitude control thruster firings. Simulation of active damping was conducted in the real-time, man-in-the-loop Systems Engineering Simulator at NASA's Johnson Space Center. The simulator was used to obtain qualitative and quantitative data on active damping performance from astronaut operators. Using a simulated three-axis accelerometer mounted on the RMS, 'sensed' vibration motions were used to generate joint motor commands that reduced the unwanted oscillations. Active damping of the RMS with heavy and light attached payloads was demonstrated in this study. Five astronaut operators examined the performance of active damping following operator commanded RMS maneuvers and Shuttle thruster firings. Noticeable improvements in the damping response of the RMS with the heavy, Hubble Space Telescope payload and the very light, astronaut in Manipulator Foot Restraint payload were observed. The potential of active damping to aid in precisely maneuvering payloads was deemed significant.

  18. An Augmented Reality-Based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities

    ERIC Educational Resources Information Center

    Chiang, Tosti H. C.; Yang, Stephen J. H.; Hwang, Gwo-Jen

    2014-01-01

    In this study, an augmented reality-based mobile learning system is proposed for conducting inquiry-based learning activities. An experiment has been conducted to examine the effectiveness of the proposed approach in terms of learning achievements and motivations. The subjects were 57 fourth graders from two classes taught by the same teacher in…

  19. Isolated neuronal growth cones from developing rat forebrain possess adenylate cyclase activity which can be augmented by various receptor agonists.

    PubMed

    Lockerbie, R O; Hervé, D; Blanc, G; Tassin, J P; Glowinski, J

    1988-01-01

    Isolated neuronal growth cones from neonatal rat forebrain were found to contain a high specific activity of adenylate cyclase (61 pmol cyclic AMP/min/mg protein) compared to the pelleted starting homogenate (5 pmol cyclic AMP/min/mg protein). Forskolin at 10(-4) M increased adenylate cyclase activity in both the pelleted homogenate and growth cone fraction by 70 and 217 pmol cyclic AMP/min/mg protein, respectively, over basal levels. The incremental effect of forskolin was 3-fold greater in the growth cone fraction than in the pelleted homogenate. However, relative to basal levels in each of the two fractions, forskolin increased adenylate cyclase activity in the growth cone fraction by only approx. 5-fold compared to 15-fold in the pelleted homogenate. Dopamine (10(-4) M), vasoactive intestinal polypeptide (10(-6) M) and isoproterenol (10(-5) M) also augmented adenylate cyclase activity in the two fractions. In the growth cone fraction, dopamine and vasoactive intestinal polypeptide produced a stimulation over basal levels by approx. 20 pmol cyclic AMP/min/mg protein while isoproterenol produced a stimulation of approx. 10 pmol cAMP/min/mg protein. The incremental effects of these receptor agonists in the growth cone fraction are approx. 5-fold greater than in the pelleted homogenate. The dopamine-sensitive adenylate cyclase activity in the growth cone fraction could be blocked by the compound SCH23390, a selective D1 receptor antagonist. At saturating concentrations, all combinations of dopamine, vasoactive intestinal polypeptide and isoproterenol were found to be completely additive on adenylate cyclase activity in the growth cone fraction.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Augmentation of GG2EE macrophage cell line-mediated anti-Candida activity by gamma interferon, tumor necrosis factor, and interleukin-1.

    PubMed Central

    Blasi, E; Farinelli, S; Varesio, L; Bistoni, F

    1990-01-01

    The expression of anti-Candida activity in the GG2EE macrophage cell line, generated by immortalization of fresh bone marrow with v-raf and v-myc oncogenes, was studied. GG2EE cells spontaneously inhibited the growth of an agerminative mutant of Candida albicans in vitro. The anti-Candida activity was maximal after 8 h of coculture and was proportional to the effector-to-target ratio. Gamma interferon (IFN-gamma), interleukin-1 (IL-1), and tumor necrosis factor (TNF) all significantly enhanced the anti-Candida activity of GG2EE cells. In contrast, IL-3, IL-4, and colony-stimulating factor 1 were ineffective. The augmentation of anti-Candida activity was not always concomitant with enhancement of phagocytosis, since IFN-gamma and colony-stimulating factor 1, but not IL-1 or TNF, augmented the phagocytic ability of GG2EE cells. Furthermore, the augmentation of anti-Candida activity in GG2EE cells did not correlate with the acquisition of antitumor activity. In fact, none of the cytokines alone were able to induce antitumor activity in GG2EE cells, which, however, could be activated to a tumoricidal stage by IFN-gamma plus heat-killed Listeria monocytogenes. These findings demonstrate that GG2EE cells exhibit spontaneous anti-Candida activity and that such activity is enhanced by TNF, IL-1, and IFN-gamma. PMID:2108087

  1. A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses.

    PubMed

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2016-08-01

    Glutamatergic synapses play a pivotal role in brain excitation. The synaptic response is mediated by the activity of two receptor types (AMPA and NMDA). In the present paper we propose a model of glutamatergic synaptic activity where the fast current generated by the AMPA conductance produces a local depolarization which activates the voltage- and [Mg(2+)]-dependent NMDA conductance. This cooperative effect is dependent on the biophysical properties of the synaptic spine which can be considered a high input resistance specialized compartment. Herein we present results of simulations where different values of the spine resistance and of the Mg(2+) concentrations determine different levels of cooperativeness between AMPA and NMDA receptors in shaping the post-synaptic response.

  2. A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses.

    PubMed

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2016-08-01

    Glutamatergic synapses play a pivotal role in brain excitation. The synaptic response is mediated by the activity of two receptor types (AMPA and NMDA). In the present paper we propose a model of glutamatergic synaptic activity where the fast current generated by the AMPA conductance produces a local depolarization which activates the voltage- and [Mg(2+)]-dependent NMDA conductance. This cooperative effect is dependent on the biophysical properties of the synaptic spine which can be considered a high input resistance specialized compartment. Herein we present results of simulations where different values of the spine resistance and of the Mg(2+) concentrations determine different levels of cooperativeness between AMPA and NMDA receptors in shaping the post-synaptic response. PMID:27468319

  3. Indomethacin augments lymphokine-activated killer cell generation by patients with malignant mesothelioma

    SciTech Connect

    Manning, L.S.; Bowman, R.V.; Davis, M.R.; Musk, A.W.; Robinson, B.W. )

    1989-10-01

    Human malignant mesothelioma (MM) cells are resistant to natural killer (NK) cell lysis but susceptible to lysis by lymphokine-activated killer (LAK) cells from control individuals. The present study was performed to determine the capacity of patients with MM (n = 22) and individuals occupationally exposed to asbestos (the major population at risk of developing this disease, n = 52) to generate LAK cells capable of effectively lysing human mesothelioma cells. Compared to controls (n = 20), both patient groups demonstrated significantly depressed LAK cell activity against mesothelioma tumor cell targets (55 +/- 3% lysis by controls vs 34 +/- 3% lysis by patients with MM, P less than 0.005; and 45 +/- 3% lysis by asbestos-exposed individuals, P less than 0.025). Addition of 10 micrograms/ml indomethacin during LAK cell generation restored normal LAK cell activity for patients with MM (52 +/- 6% lysis of cultured human MM cells, P = NS compared to controls), suggesting that the defective cytolytic cell function observed in some patients with MM is a result of prostaglandin-induced immunosuppression. The ability of indomethacin to restore suppressed LAK cell activity in patients with MM suggests that the concomitant use of this agent in ex vivo LAK cell generation and in patients undergoing interleukin/LAK cell therapy may be beneficial.

  4. Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion.

    PubMed

    Desfougères, Yann; Neumann, Heinz; Mayer, Andreas

    2016-07-15

    Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.

  5. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells*

    PubMed Central

    Wittmann, Alexandra; Lamprinaki, Dimitra; Bowles, Kristian M.; Katzenellenbogen, Ewa; Knirel, Yuriy A.; Whitfield, Chris; Nishimura, Takashi; Matsumoto, Naoki; Yamamoto, Kazuo; Iwakura, Yoichiro; Saijo, Shinobu; Kawasaki, Norihito

    2016-01-01

    LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2. PMID:27358401

  6. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells.

    PubMed

    Wittmann, Alexandra; Lamprinaki, Dimitra; Bowles, Kristian M; Katzenellenbogen, Ewa; Knirel, Yuriy A; Whitfield, Chris; Nishimura, Takashi; Matsumoto, Naoki; Yamamoto, Kazuo; Iwakura, Yoichiro; Saijo, Shinobu; Kawasaki, Norihito

    2016-08-19

    LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2. PMID:27358401

  7. An application of active surface heating for augmenting lift and reducing drag of an airfoil

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Badavi, Forooz F.; Noonan, Kevin W.

    1988-01-01

    Application of active control to separated flow on the RC(6)-08 airfoil at high angle of attack by localized surface heating is numerically simulated by integrating the compressible 2-D nonlinear Navier-Stokes equation solver. Active control is simulated by local modification of the temperature boundary condition over a narrow strip of the upper surface of the airfoil. Both mean and perturbed profiles are favorably altered when excited with the same natural frequency of the shear layer by moderate surface heating for both laminar and turbulent separation. The shear layer is found to be very sensitive to localized surface heating in the vicinity of the separation point. The excitation field at the surface sufficiently altered both the local as well as the global circulation to cause a significant increase in lift and reduction in drag.

  8. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    SciTech Connect

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  9. Augmentation of the in vitro activity of azlocillin against Bacteroides fragilis by clavulanic acid.

    PubMed Central

    Bansal, M B; Chuah, S K; Thadepalli, H

    1984-01-01

    Azlocillin was active against 90% of 154 strains of Bacteroides fragilis at a concentration of 64 micrograms/ml. Twenty-eight strains of B. fragilis with an azlocillin MIC of greater than or equal to 8 micrograms/ml were retested with a combination of azlocillin plus clavulanic acid. Of these strains, 71% showed a 4- to 32-fold decrease in the MIC of azlocillin plus clavulanic acid. PMID:6517552

  10. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  11. Leptin into the rostral ventral lateral medulla (RVLM) augments renal sympathetic nerve activity and blood pressure

    PubMed Central

    Barnes, Maria J.; McDougal, David H.

    2014-01-01

    Leptin is a hormone released from adipose tissue. While this hormone normally acts to reduce feeding behavior and increase energy expenditure, in obesity, resistance to these effects occurs even though the hormone is released in large amounts. Although leptin no longer works to suppress feeding in the obese, leptin retains its potent effects on other autonomic functions such as blood pressure regulation. Leptin has been associated with hypertension and increased sympathetic autonomic activity. Therefore, leptin is emerging as a major contributor to the hypertensive state observed in obesity. Sympathetic control of blood pressure is maintained principally by autonomic reflex control circuits in the caudal brainstem. The rostral ventral-lateral medulla (RVLM) is the primary regulator of the sympathetic nervous system, sending excitatory fibers to sympathetic preganglionic neurons to regulate sympathetic control over resistance vessels and blood pressure. Previous studies from our laboratory have shown that neurons in the ventral lateral medulla express leptin receptors (ObRb). Our present study using pseudo-rabies multi-synaptic retrograde tract tracing and immunohistochemical methods revealed that neurons within the RVLM that send sympathetic projections to the kidney express leptin receptors. Acute microinjection of leptin (1 and 3 μg; 40 nL) into the RVLM evoked a significant increase in Mean Arterial Pressure (MAP) and renal sympathetic nerve activity (RSNA). When the 3 μg dose of leptin was preceded with a leptin antagonist, (SLAN-4; 1 ng), it attenuated the cardiovascular response of leptin. Taken together, these data suggest that leptin's actions within the RVLM may influence blood pressure and renal sympathetic nerve activity. PMID:25152707

  12. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  13. Pregnenolone sulfate and its enantiomer: differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice

    PubMed Central

    Petit, Géraldine H.; Tobin, Christine; Krishnan, Kathiresan; Moricard, Yves; Covey, Douglas F.; Rondi-Reig, Laure; Akwa, Yvette

    2010-01-01

    This study examined the role of forebrain N-methyl-D-aspartate receptors (NMDA-Rs) in the promnesiant effects of natural (+) pregnenolone sulfate (PREGS) and its synthetic (−) enantiomer ent-PREGS in young adult mice. Using the two-trial arm discrimination task in a Y-maze, PREGS and ent-PREGS administration to control mice increased memory performances. In mice with a knock-out of the NR1 subunit of NMDA-Rs in the forebrain, the promnesiant effect of ent-PREGS was maintained whereas the activity of PREGS was lost. Memory enhancement by PREGS involves the NMDA-R activity in the hippocampal CA1 area and possibly in some locations of the cortical layers, whereas ent-PREGS acts independently of NMDA-R function. PMID:21036556

  14. Augmented expression of urokinase plasminogen activator and extracellular matrix proteins associates with multiple myeloma progression.

    PubMed

    Khan, Rehan; Gupta, Nidhi; Kumar, Raman; Sharma, Manoj; Kumar, Lalit; Sharma, Alpana

    2014-06-01

    Multiple myeloma (MM) represents a B cell malignancy, characterized by a monoclonal proliferation of malignant plasma cells. Interactions between tumor cells and extracellular matrix (ECM) are of importance for tumor invasion and metastasis. Protein levels of urokinase plasminogen activator (uPA) and fibulin 1, nidogen and laminin in plasma and serum respectively and mRNA levels of these molecules in peripheral blood mononuclear cells were determined in 80 subjects by using ELISA and quantitative PCR and data was analyzed with severity of disease. Pearson correlation was determined to observe interrelationship between different molecules. A statistical significant increase for ECM proteins (laminin, nidogen and fibulin 1) and uPA at circulatory level as well as at mRNA level was observed compared to healthy controls. The levels of these molecules in serum might be utilized as a marker of active disease. Significant positive correlation of all ECM proteins with uPA was found and data also correlates with severity of disease. Strong association found between ECM proteins and uPA in this study supports that there might be interplay between these molecules which can be targeted. This study on these molecules may help to gain insight into processes of growth, spread, and clinical behavior of MM.

  15. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  16. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters

    PubMed Central

    Bradley, Sean P.; Prendergast, Brian J.

    2014-01-01

    Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9 h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5 h interval of the light phase. Running wheel activity occurring within a 3 h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce. PMID:24666779

  17. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters.

    PubMed

    Bradley, Sean P; Prendergast, Brian J

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5h interval of the light phase. Running wheel activity occurring within a 3h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce.

  18. Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-03-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.

  19. Whole Abdominal Wall Segmentation using Augmented Active Shape Models (AASM) with Multi-Atlas Label Fusion and Level Set

    PubMed Central

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-01-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes. PMID:27127333

  20. Interleukin 2 secretion by lectin-activated human blood lymphocytes is markedly augmented by vascular endothelial cells

    SciTech Connect

    Guinan, E.C.; Pober, J.S.

    1986-03-01

    Since the initial interaction (and possible activation) of a blood borne T lymphocyte involves contact with the endothelial lining of the vasculature at the site of an immune response, the authors have examined the effect of cultured human endothelial cells (HEC) upon polyclonal T cell activation. Addition of 10/sup 4/ HEC to 10/sup 4/-10/sup 5/ peripheral blood lymphocytes (PBL) stimulated with phytohemagglutinin (PHA, 0.3-10 ..mu..g/ml) leads to marked augmentation of interleukin 2 (IL-2) production. The relative increase in IL-2 (mean of 3 expts. +/- SEM) is present at 24 h (5.8 fold +/- 1.5) and become more marked at 48 h (12.6 fold +/- 3.5) and 72 h (18.5 fold +/- 3.7). This relative enhancement is greater for HEC added to 10/sup 4/ than 10/sup 5/ PBL and is also greater when 10/sup 4/ rather than 2 x 10/sup 3/ HEC are added to a given number of PBL. This increased IL-2 concentration has two biological consequences. First, at suboptimal PHA doses or at low PBL number, PBL proliferation as measured by /sup 3/H-thymidine incorporation is increased up to two fold. Second, the phenotype of the proliferating cells appears altered, including a decrease in mean density of IL-2 receptor. The authors hypothesize that such modulation of the concentration of locally produced IL-2 may play a key role in the nature of an immune response, influencing both its magnitude and the functional profile of the activated and amplified effector cells.

  1. Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells.

    PubMed

    Roepke, Martin; Diestel, Antje; Bajbouj, Khuloud; Walluscheck, Diana; Schonfeld, Peter; Roessner, Albert; Schneider-Stock, Regine; Gali-Muhtasib, Hala

    2007-02-01

    We have recently shown that thymoquinone (TQ) is an antineoplastic drug that induces p53-dependent apoptosis in human colon cancer cells. This study evaluated the antiproliferative and pro-apoptotic effects of TQ in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM). Cell viability was reduced more selectively in MG63 tumor cells than in normal human osteoblasts. Flow cytometric analysis showed that TQ induced a much greater increase in the PreG(1) (apoptotic) cell population, but no cell cycle arrest in MG63. G(2)/M arrest in MNNG/HOS cells was associated with p21(WAF1) upregulation. Using three DNA damage assays, TQ was confirmed to result in a significantly greater extent of apoptosis in p53 null MG63 cells. Although the Bax/Bcl-2 ratios were not differentially modulated in both cell lines, the mitochondrial pathway appeared to be involved in TQ-induced apoptosis in MG63 by showing the cleavage of caspases-9 and -3. Oxidative stress and mitochondrial O(2)(*-) generation in isolated rat mitochondria were enhanced by TQ as measured by the dose-dependent reduction in aconitase enzyme activity and Amplex Red oxidation respectively. TQ-induced oxidative damage, reflected by an increase in gamma-H2AX foci and increased protein expression levels of gamma-H2AX and the DNA repair enzyme, NBS1, was more pronounced in MNNG/HOS than in MG63. We suggest that the resistance of MNNG/HOS cells to drug-induced apoptosis is caused by the up-regulation of p21(WAF1) by the mutant p53 (transcriptional activity was shown by p53 siRNA treatment) which induces cell cycle arrest and allows to repair DNA damage. Collectively, these findings show that TQ induces p53-independent apoptosis in human osteosarcoma cells. As the loss of p53 function is frequently observed in osteosarcoma patients, our data suggest

  2. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration.

    PubMed

    Mantuano, Elisabetta; Lam, Michael S; Shibayama, Masataka; Campana, W Marie; Gonias, Steven L

    2015-09-15

    NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  3. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration

    PubMed Central

    Mantuano, Elisabetta; Lam, Michael S.; Shibayama, Masataka; Campana, W. Marie; Gonias, Steven L.

    2015-01-01

    ABSTRACT NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  4. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine.

    PubMed Central

    Benveniste, M; Mayer, M L

    1995-01-01

    1. N-methyl-D-aspartate (NMDA) receptor responses were recorded from rat hippocampal neurons grown in dissociated culture, using whole-cell, outside-out and nucleated patch recording techniques. Rapid perfusion was used to study voltage-dependent block of NMDA receptors by 9-aminoacridine (9-AA) and by Mg2+. 2. Large amplitude tail currents were evoked on depolarization to +60 mV after application at -100 mV of NMDA and 9-AA but not NMDA and Mg2+. These tail currents were resistant to block by competitive antagonists to the glutamate and glycine binding sites on NMDA receptors and were not evoked when either NMDA or 9-AA were applied alone. 3. The decay kinetics of the tail current were dependent on agonist affinity; the time required for 80% charge transfer was 10-fold briefer for NMDA than for glutamate and 7-fold briefer for L-alanine than for glycine. These results are in accord with a sequential model for block of NMDA receptors by 9-AA, in which neither glutamate nor glycine can dissociate from the open-blocked state of the receptor. 4. Tail current responses had amplitudes 2- to 4-fold larger than responses to maximally effective concentrations of glutamate and glycine, indicating that NMDA receptor channels accumulate in the open-blocked state during co-application of agonist and 9-AA. The rise time and decay kinetics of tail current responses were faster than the response to brief applications of a maximally effective concentration of glutamate. Together, these results suggest that at +60 mV recovery from block by 9-AA occurs faster than the rate of opening of NMDA receptors in response to glutamate. 5. Our experiments suggest that open channel block of NMDA receptors can provide a novel approach for measurement of both open probability and the first latency distribution for ion channel opening in response to the binding of agonists, and provide additional evidence suggesting that the delayed opening of NMDA receptor channels underlies slow activation and

  5. Development and flight evaluation of an augmented stability active controls concept: Executive summary

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.

    1982-01-01

    A pitch active control system (PACS) was developed and flight tested on a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. Discussions are given regarding piloted flight simulation and vehicle system simulation and vehicle system simulation tests that are performed to verify control laws and system operation prior to installation on the aircraft. Modifications to the basic aircraft included installation of the PACS, addition of a c.g. management system to provide a c.g. range from 25 to 39% mac, and downrigging of the geared elevator to provide the required nose down control authority for aft c.g. flight test conditions. Three pilots used the Cooper-Harper Rating Scale to judge flying qualities of the aircraft with PACS on and off. The handling qualities with the c.g. at 39% mac (41% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% mac (+15% stability margin) and PACS off.

  6. Development and flight evaluation of an augmented stability active controls concept with a small horizontal tail

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.

    1982-01-01

    A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.

  7. Actions of bupivacaine, a widely used local anesthetic, on NMDA receptor responses.

    PubMed

    Paganelli, Meaghan A; Popescu, Gabriela K

    2015-01-14

    NMDA receptors mediate excitatory neurotransmission in brain and spinal cord and play a pivotal role in the neurological disease state of chronic pain, which is caused by central sensitization. Bupivacaine is the indicated local anesthetic in caudal, epidural, and spinal anesthesia and is widely used clinically to manage acute and chronic pain. In addition to blocking Na(+) channels, bupivacaine affects the activity of many other channels, including NMDA receptors. Importantly, bupivacaine inhibits NMDA receptor-mediated synaptic transmission in the dorsal horn of the spinal cord, an area critically involved in central sensitization. We used recombinant NMDA receptors expressed in HEK293 cells and found that increasing concentrations of bupivacaine decreased channel open probability in GluN2 subunit- and pH-independent manner by increasing the mean duration of closures and decreasing the mean duration of openings. Using kinetic modeling of one-channel currents, we attributed the observed current decrease to two main mechanisms: a voltage-dependent "foot-in-the-door" pore block and an allosteric gating effect. Further, the inhibition was state-independent because it occurred to the same degree whether the drug was applied before or after glutamate stimulation and was mediated by extracellular and intracellular inhibitory sites, via hydrophilic and hydrophobic pathways. These results predict that clinical doses of bupivacaine would decrease the peak and accelerate the decay of synaptic NMDA receptor currents during normal synaptic transmission. These quantitative predictions inform possible applications of bupivacaine as preventative and therapeutic approaches in chronic pain.

  8. Effects of Anti-NMDA Antibodies on Functional Recovery and Synaptic Rearrangement Following Hemicerebellectomy.

    PubMed

    Laricchiuta, Daniela; Cavallucci, Virve; Cutuli, Debora; De Bartolo, Paola; Caporali, Paola; Foti, Francesca; Finke, Carsten; D'Amelio, Marcello; Manto, Mario; Petrosini, Laura

    2016-06-01

    The compensation that follows cerebellar lesions is based on synaptic modifications in many cortical and subcortical regions, although its cellular mechanisms are still unclear. Changes in glutamatergic receptor expression may represent the synaptic basis of the compensated state. We analyzed in rats the involvement of glutamatergic system of the cerebello-frontal network in the compensation following a right hemicerebellectomy. We evaluated motor performances, spatial competencies and molecular correlates in compensated hemicerebellectomized rats which in the frontal cortex contralateral to the hemicerebellectomy side received injections of anti-NMDA antibodies from patients affected by anti-NMDA encephalitis. In the compensated hemicerebellectomized rats, the frontal injections of anti-NMDA antibodies elicited a marked decompensation state characterized by slight worsening of the motor symptoms as well as severe impairment of spatial mnesic and procedural performances. Conversely, in the sham-operated group the frontal injections of anti-NMDA antibodies elicited slight motor and spatial impairment. The molecular analyses indicated that cerebellar compensatory processes were related to a relevant rearrangement of glutamatergic synapses (NMDA and AMPA receptors and other glutamatergic components) along the entire cortico-cerebellar network. The long-term maintenance of the rearranged glutamatergic activity plays a crucial role in the maintenance of recovered function. PMID:27027521

  9. Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice.

    PubMed

    Lu, Lingling; Mamiya, Takayoshi; Lu, Ping; Toriumi, Kazuya; Mouri, Akihiro; Hiramatsu, Masayuki; Kim, Hyoung-Chun; Zou, Li-Bo; Nagai, Taku; Nabeshima, Toshitaka

    2010-08-01

    Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.

  10. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors.

    PubMed

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-01-01

    Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 μg/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat). PMID:24200896

  11. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors.

    PubMed

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-01-01

    Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 μg/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat).

  12. The function of the NMDA-receptor during normal brain aging.

    PubMed

    Müller, W E; Stoll, S; Scheuer, K; Meichelböck, A

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA-receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA-receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7897387

  13. Reconsolidation of Reminder-Induced Amnesia: Role of NMDA and AMPA Glutamate Receptors.

    PubMed

    Nikitin, V P; Kozyrev, S A; Solntseva, S V

    2015-11-01

    We studied the role of glutamate receptors and reminder in the mechanisms of amnesia maintenance caused by disruption of conditioned food aversion reconsolidation with an antagonist of NMDA glutamate receptor in snails. At the early stage of amnesia (day 3 after induction), injection or NMDA of AMPA glutamate receptor antagonists prior to reminder (presentation of the conditioned food stimulus) led to memory recovery. Reminder alone or injection of antagonists without reminder or after reminder was ineffective. At the late stage of amnesia (day 10), antagonists/reminder had no effect on amnesia maintenance. It was hypothesized that reminder at the early stage of amnesia led to reactivation and reconsolidation of the molecular processes of amnesia including activation NMDA and AMPA glutamate receptors. Injection of antagonists of these receptors prior to reminder led to disruption of reactivation/reconsolidation of amnesia and recovery of the conditioned food aversion memory.

  14. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  15. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

    PubMed Central

    Chen, L; Gu, Y; Huang, L Y

    1995-01-01

    1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. PMID:7537820

  16. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin

    PubMed Central

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; de Oliveira Alvares, Lucas

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time. PMID:26947131

  17. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    ERIC Educational Resources Information Center

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  18. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin.

    PubMed

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; Alvares, Lucas de Oliveira

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca(2+) channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca(2+) influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time.

  19. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study.

    PubMed

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  20. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  1. In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model.

    PubMed

    Hipólito, Lucia; Fakira, Amanda K; Cabañero, David; Blandón, Rebecca; Carlton, Susan M; Morón, Jose A; Melyan, Zara

    2015-05-01

    N-methyl-D-aspartate receptor (NMDAR) antagonists have been shown to reduce mechanical hypersensitivity in animal models of inflammatory pain. However, their clinical use is associated with significant dose-limiting side effects. Small-conductance Ca-activated K channels (SK) have been shown to modulate NMDAR activity in the brain. We demonstrate that in vivo activation of SK channels in the spinal cord can alleviate mechanical hypersensitivity in a rat model of inflammatory pain. Intrathecal (i.t.) administration of the SK channel activator, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), attenuates complete Freund adjuvant (CFA)-induced mechanical hypersensitivity in a dose-dependent manner. Postsynaptic expression of the SK channel subunit, SK3, and apamin-sensitive SK channel-mediated currents recorded from superficial laminae are significantly reduced in the dorsal horn (DH) after CFA. Complete Freund adjuvant-induced decrease in SK-mediated currents can be reversed in vitro by bath application of NS309. In addition, immunostaining for the SK3 subunit indicates that SK3-containing channels within DH neurons can have both somatic and dendritic localization. Double immunostaining shows coexpression of SK3 and NMDAR subunit, NR1, compatible with functional interaction. Moreover, we demonstrate that i.t. coadministration of NS309 with an NMDAR antagonist reduces the dose of NMDAR antagonist, DL-2-amino-5-phosphonopentanoic acid (DL-AP5), required to produce antinociceptive effects in the CFA model. This reduction could attenuate the unwanted side effects associated with NMDAR antagonists, giving this combination potential clinical implications.

  2. Presynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule.

    PubMed

    Bidoret, Céline; Ayon, Annick; Barbour, Boris; Casado, Mariano

    2009-08-18

    The detailed characterization of synaptic plasticity has led to the replacement of simple Hebbian rules by more complex rules depending on the order of presynaptic and postsynaptic action potentials. Here, we describe a mechanism endowing a plasticity rule with additional computational complexity--a dependence on the pattern of presynaptic action potentials. The classical Hebbian rule is based on detection of conjunctive presynaptic and postsynaptic activity by postsynaptic NMDA receptors, but there is also accumulating evidence for the existence of presynaptic NMDA receptors in several brain structures. Here, we examine the role of presynaptic NMDA receptors in defining the temporal structure of the plasticity rule governing induction of long-term depression (LTD) at the cerebellar parallel fiber-Purkinje cell synapse. We show that multiple presynaptic action potentials at frequencies between 40 Hz and 1 kHz are necessary for LTD induction. We characterize the subtype, kinetics, and role of presynaptic NMDA receptors involved in the induction of LTD, showing how the kinetics of the NR2A subunits expressed by parallel fibers implement a high-pass filter plasticity rule that will selectively attenuate synapses undergoing high-frequency bursts of activity. Depending on the type of NMDA receptor subunit expressed, high-pass filters of different corner frequencies could be implemented at other synapses expressing NMDA autoreceptors.

  3. Modulation of the NMDA receptor by polyamines

    SciTech Connect

    Williams, K.; Romano, C.; Dichter, M.A.; Molinoff, P.B. )

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.

  4. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain.

    PubMed

    Xie, Jing-Dun; Chen, Shao-Rui; Chen, Hong; Zeng, Wei-An; Pan, Hui-Lin

    2016-09-01

    Painful peripheral neuropathy is a severe adverse effect of chemotherapeutic drugs such as paclitaxel (Taxol). The glutamate N-methyl-d-aspartate receptors (NMDARs) are critically involved in the synaptic plasticity associated with neuropathic pain. However, paclitaxel treatment does not alter the postsynaptic NMDAR activity of spinal dorsal horn neurons. In this study, we determined whether paclitaxel affects presynaptic NMDAR activity by recording excitatory postsynaptic currents (EPSCs) of dorsal horn neurons in spinal cord slices. In paclitaxel-treated rats, the baseline frequency of miniature EPSCs (mEPSCs) was significantly increased; the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) completely normalized this frequency. Also, AP5 significantly reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation and reversed the reduction in the paired-pulse ratio of evoked EPSCs in paclitaxel-treated rats. Blocking GluN2A-containing, but not GluN2B-containing, NMDARs largely decreased the frequency of mEPSCs and the amplitude of evoked EPSCs of dorsal horn neurons in paclitaxel-treated rats. Furthermore, inhibition of protein kinase C fully reversed the increased frequency of mEPSCs and the amplitude of evoked EPSCs in paclitaxel-treated rats. Paclitaxel treatment significantly increased the protein level of GluN2A and phosphorylated GluN1 in the dorsal root ganglion. In addition, intrathecal injection of AP5 or systemic administration of memantine profoundly attenuated pain hypersensitivity induced by paclitaxel. Our findings indicate that paclitaxel treatment induces tonic activation of presynaptic NMDARs in the spinal cord through protein kinase C to potentiate nociceptive input from primary afferent nerves. Targeting presynaptic NMDARs at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain. PMID:27458019

  5. Activity-induced synaptic delivery of the GluN2A-containing NMDA receptor is dependent on endoplasmic reticulum chaperone Bip and involved in fear memory

    PubMed Central

    Zhang, Xiao-min; Yan, Xun-yi; Zhang, Bin; Yang, Qian; Ye, Mao; Cao, Wei; Qiang, Wen-bin; Zhu, Li-jun; Du, Yong-lan; Xu, Xing-xing; Wang, Jia-sheng; Xu, Fei; Lu, Wei; Qiu, Shuang; Yang, Wei; Luo, Jian-hong

    2015-01-01

    The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca2+-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation. PMID:26088419

  6. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  7. NMDA receptors in the medial zona incerta stimulate luteinizing hormone and prolactin release.

    PubMed

    Bregonzio, Claudia; Moreno, Griselda N; Cabrera, Ricardo J; Donoso, Alfredo O

    2004-06-01

    1. The aim of the present work is to demonstrate the interaction between the glutamatergic/NMDA and dopaminergic systems in the medial zona incerta on the control of luteinizing hormone and prolactin secretion and the influence of reproductive hormones. 2. Proestrus and ovariectomized rats were primed with estrogen and progesterone to induce high or low levels of luteinizing hormone and prolactin. 2-Amino-7-phosphonoheptanoic acid, an NMDA receptor antagonist, and dopamine were injected in the medial zona incerta. Blood samples were withdrawn every hour between 1,600 and 2,000 hours or 2,200 hours via intracardiac catheter from conscious rats. Additional groups of animals injected with the NMDA receptor antagonist were killed 1 or 4 h after injection. Dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were measured in different hypothalamic regions. 3. 2-Amino-7-phosphonoheptanoic acid blocked the ovulatory luteinizing hormone surge in proestrus rats. 2-Amino-7-phosphonoheptanoic acid also blocked the increase in luteinizing hormone induced by ovarian hormones in ovariectomized rats, an effect that was partially reversed by dopamine injection. Conversely, the increased release of luteinizing hormone and prolactin induced by dopamine was prevented by 2-amino-7-phosphonoheptanoic acid. We found that the NMDA antagonist injection decreased the dopaminergic activity--as evaluated by the 3,4-dihydroxyphenylacetic acid/dopamine ratio--in the medio basal hypothalamus and increased in the preoptic area. 4. Our results show an stimulatory role of NMDA receptors on the ovulatory luteinizing hormone release and on luteinizing hormone release induced by sexual hormones and demonstrate that the stimulatory effect of dopamine on luteinizing hormone and prolactin is mediated by the NMDA receptors. These results suggest a close interaction between the glutamatergic and dopaminergic incertohypothalamic systems on the control of luteinizing hormone and prolactin release

  8. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus.

    PubMed

    Kervern, Myriam; Silvestre de Ferron, Benoît; Alaux-Cantin, Stéphanie; Fedorenko, Olena; Antol, Johann; Naassila, Mickael; Pierrefiche, Olivier

    2015-08-01

    Irreversible cognitive deficits induced by ethanol exposure during fetal life have been ascribed to a lower NMDA-dependent synaptic long-term potentiation (LTP) in the hippocampus. Whether NMDA-dependent long-term depression (LTD) may also play a critical role in those deficits remains unknown. Here, we show that in vitro LTD induced with paired-pulse low frequency stimulation is enhanced in CA1 hippocampus field of young adult rats exposed to ethanol during brain development. Furthermore, single pulse low frequency stimulation, ineffective at this age (LFS600), induced LTD after ethanol exposure accompanied with a stronger response than controls during LFS600, thus revealing an aberrant form of activity-dependent plasticity at this age. Blocking NMDA receptor or GluN2B containing NMDA receptor prevented both the stronger response during LFS600 and LTD whereas Zinc, an antagonist of GluN2A containing NMDA receptor, was ineffective on both responses. In addition, LFS600-induced LTD was revealed in controls only with a reduced-Mg(2+) medium. In whole dissected hippocampus CA1 field, perinatal ethanol exposure increased GluN2B subunit expression in the synaptic compartment whereas GluN2A was unaltered. Using pharmacological tools, we suggest that LFS600 LTD was of synaptic origin. Altogether, we describe a new mechanism by which ethanol exposure during fetal life induces a long-term alteration of synaptic plasticity involving NMDA receptors, leading to an aberrant LTD. We suggest this effect of ethanol may reflect a delayed maturation of the synapse and that aberrant LTD may also participates to long-lasting cognitive deficits in fetal alcohol spectrum disorder.

  9. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress.

    PubMed

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Zhang, Yuan; Lv, Xuan; Chao, Jie; Yao, Honghong

    2015-05-01

    The N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of several neurological diseases, including epilepsy. The present study investigated the effect of NMDA receptor NR2B subunits on pentylenetetrazole (PTZ)-kindling-induced pathological and biochemical events in mice. Our results showed that PTZ-kindling up-regulates the expression of NMDA receptor NR2B subunits in the hippocampus and that kindled mice were characterized by significant astrocytosis and neuron loss in the hippocampus. Oxidative stress, including excessive malondialdehyde (MDA) production and decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were detected in the hippocampus after the mice were fully kindled. Additionally, expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was found to be up-regulated in PTZ-kindled mice. However, selectively blocking NMDA receptor NR2B subunits by ifenprodil significantly suppressed PTZ-kindling-induced hippocampal astrocytosis, oxidative stress and neuron loss. Furthermore, blocking NMDA receptor NR2B subunits also abolished PTZ-kindling-induced BDNF expression. These results indicate that NMDA receptor NR2B subunits contribute to epilepsy-associated pathological and biochemical events, including hippocampal astrocytosis, oxidative stress and neuron loss, and these events might be correlated with up-regulation of BDNF expression.

  10. The hippocampal NMDA receptors may be involved in acquisition, but not expression of ACPA-induced place preference.

    PubMed

    Nasehi, Mohammad; Sharaf-Dolgari, Elmira; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2015-12-01

    Numerous studies have investigated the functional interactions between the endocannabinoid and glutamate systems in the hippocampus. The present study was made to test whether N-methyl-D-aspartate (NMDA) receptors of the CA1 region of the dorsal hippocampus (CA1) are implicated in ACPA (a selective cannabinoid CB1 receptor agonist)-induced place preference. Using a 3-day schedule of conditioning, it was found that intraperitoneal (i.p.) administration of ACPA (0.02mg/kg) caused a significant conditioned place preference (CPP) in male albino NMRI mice. Intra-CA1 microinjection of the NMDA or D-[1]-2-amino-7-Phosphonoheptanoic acid (D-AP7, NMDA receptor antagonist), failed to induce CPP or CPA (condition place aversion), while NMDA (0.5μg/mouse) potentiated the ACPA (0.01mg/kg)-induced CPP; and D-AP7 (a specific NMDA receptor antagonist; 0.5 and 1μg/mouse) reversed the ACPA (0.02mg/kg)-induced CPP. Moreover, microinjection of different doses of glutamatergic agents on the testing day did not alter the expression of ACPA-induced place preference. None of the treatments, with the exception of ACPA (0.04mg/kg), had an effect on locomotor activity. In conclusion, these observations provide evidence that glutamate NMDA receptors of the CA1 may be involved in the potentiation of ACPA rewarding properties in the acquisition, but not expression, of CPP in mice.

  11. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling

    PubMed Central

    Cooray, Gerald K.; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-01-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory–inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis. PMID:26032883

  12. Modulation of low-frequency-induced synaptic depression in the developing CA3-CA1 hippocampal synapses by NMDA and metabotropic glutamate receptor activation.

    PubMed

    Strandberg, Joakim; Wasling, Pontus; Gustafsson, Bengt

    2009-05-01

    Brief test-pulse stimulation (0.2-0.05 Hz) of naïve (previously nonstimulated) developing hippocampal CA3-CA1 synapses leads to a substantial synaptic depression, explained by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) silencing. Using field recordings in hippocampal slices from P8 to P12 rats, we examined this depression of naïve synapses using more prolonged test-pulse stimulation as well as low-frequency (1 Hz) stimulation (LFS). We found that 900 stimuli produced depression during stimulation to approximately 40% of the naïve level independent of whether test-pulse stimulation or LFS was used. This result was also observed during combined blockade of N-methyl-d-aspartate/metabotropic glutamate receptors (NMDAR/mGluRs) although the depression was smaller (to approximately 55% of naïve level). Using separate blockade of either NMDARs or mGluRs, we found that this impairment of the depression resulted from the NMDAR, and not from the mGluR, blockade. In fact, during NMDAR blockade alone, depression was smaller even than that observed during combined blockade. We also found that mGluR blockade alone facilitated the LFS-induced depression. In conclusion, test-pulse stimulation produced as much depression as LFS when applied to naïve synapses even when allowing for NMDAR and mGluR activation. Our results seem in line with the notion that NMDARs and mGluRs may exert a bidirectional control on AMPA receptor recruitment to synapses.

  13. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function

    PubMed Central

    Liu, Xuefeng; Roberts, Jeffrey; Dakic, Aleksandra; Zhang, Yiyu; Schlegel, Richard

    2009-01-01

    The E6 and E7 proteins of high-risk HPVs are both required for the immortalization of primary human keratinocytes and the maintenance of the malignant phenotype of HPV-positive cancer cell lines. Our previous studies have shown that E6 protein binds Myc protein and that both E6 and Myc associate with and cooperatively activate the hTERT promoter, thereby increasing cellular telomerase activity. In this study, we evaluated the role of E7 in the maintenance and activation of telomerase in immortalized and tumorigenic cells. siRNA knockdown of either E6 or E7 (or both) in HPV-immortalized cells or an HPV-positive cancer cell line reduced hTERT transcription and telomerase activity. Since telomerase was inhibited by E7 siRNA in cells that independently expressed the E6 and E7 genes, our results reveal an independent role for E7 in the maintenance of telomerase activity. However, E7 alone was insufficient to increase endogenous hTERT mRNA or telomerase activity, although it significantly augmented E6-induced hTERT transcription and telomerase activity. To further explore this apparent E7-induced promoter augmentation, we analyzed an exogenous hTERT core promoter in transduced keratinocytes. E7 alone induced the wt hTERT promoter and augmented E6-induced hTERT promoter activity. Mutation of the E2F site in the hTERT promoter abrogated the ability of E7 to induce the hTERT promoter or to enhance the ability of E6 to induce the promoter. Correspondingly, keratinocytes expressing E6 and a mutant E7 (defective for binding pRb pocket proteins) showed lower telomerase activity than cells expressing wt E6 and wt E7. Thus, HPV E7 plays a role in the maintenance of telomerase activity in stable cell lines and augments acute, E6-induced hTERT promoter activity. PMID:18367227

  14. Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F-344 rats.

    PubMed

    Barnes, C A; Rao, G; McNaughton, B L

    1996-01-01

    Previous studies have reported a lack of an age effect in the induction of long-term potentiation (LTP) at CA1 synapses, using robust (supramaximal) stimulation parameters, but an apparent age effect on the induction threshold of LTP using less robust stimulation, in the perithreshold region. These findings have led to the suggestion that old animals may experience an alteration either in the efficacy of activation of N-methyl-D-aspartate (NMDA) receptors or in the metabolic processes subsequent to NMDA receptor activation that lead to LTP expression. An alternative explanation for the apparent threshold change in old animals is that, because of the known reduction of the intracellularly recorded, compound EPSP magnitude in old rats, equivalent electrical stimulation results in a smaller effective depolarization of the postsynaptic cells and a consequently less effective activation of NMDA receptors, which are otherwise functionally normal. To distinguish between these two hypotheses, weak orthodromic stimulation was paired with intracellularly applied current pulses, thus holding constant the degree of postsynaptic depolarization. No differences in LTP induction threshold or magnitude were observed in a large sample of rats from three age groups. It is concluded that the NMDA receptor mechanisms and associated biochemical processes leading to LTP induction are not altered in aged F-344 rats. The reduced compound EPSP in old animals was reconfirmed in the present study, and a significant correlation was found in old rats between the magnitude of the EPSP at a fixed stimulus level and their performance on a spatial memory task.

  15. Ethanol withdrawal hyper-responsiveness mediated by NMDA receptors in spinal cord motor neurons

    PubMed Central

    Li, Hui-Fang; Kendig, Joan J

    2003-01-01

    Following ethanol (EtOH) exposure, population excitatory postsynaptic potentials (pEPSPs) in isolated spinal cord increase to a level above control (withdrawal hyper-responsiveness). The present studies were designed to characterize this phenomenon and in particular to test the hypothesis that protein kinases mediate withdrawal. Patch-clamp studies were carried out in motor neurons in rat spinal cord slices. Currents were evoked by brief pulses of glutamate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or N-methyl-D-aspartic acid (NMDA). Of 15 EtOH-sensitive neurons in which currents were evoked by glutamate, four (27%) displayed withdrawal hyper-responsiveness in the washout period. Mean current area after washout was 129.6±5% of control. When currents were evoked by AMPA, two of 10 neurons (20%) displayed withdrawal hyper-responsiveness, with a mean current area 122±8% of control on washout. Of a group of 11 neurons in which currents were evoked by NMDA, nine (82%) displayed withdrawal hyper-responsiveness. Mean increase in current area at the end of the washout period was to 133±6% of control (n=9, P<0.001). When NMDA applications were stopped durithe period of EtOH exposure, mean area of NMDA-evoked responses on washout was only 98.0±5% of control (n=6, P>0.05). The tyrosine kinase inhibitor genistein (10–20 μM) blocked withdrawal hyper-responsiveness. Of six EtOH-sensitive neurons, the mean NMDA-evoked current area after washout was 89±6% of control, P>0.05. The protein kinase A (PKA) inhibitor Rp-cAMP (20–500 μM) did not block withdrawal hyper-responsiveness. On washout, the mean NMDA-evoked current area was 124±6% of control (n=5, P<0.05). Two broad-spectrum specific protein kinase C (PKC) inhibitors, GF-109203X (0.3 μM) and chelerythrine chloride (0.5–2 nM), blocked withdrawal hyper-responsiveness. Responses on washout were 108±7%, n=5 and 88±4%, n=4 of control, respectively, P>0.05. NMDA activation during EtOH exposure

  16. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    PubMed

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti

  17. Lateral hypothalamic signaling mechanisms underlying feeding stimulation: differential contributions of Src family tyrosine kinases to feeding triggered either by NMDA injection or by food deprivation.

    PubMed

    Khan, Arshad M; Cheung, Herman H; Gillard, Elizabeth R; Palarca, Jennifer A; Welsbie, Derek S; Gurd, James W; Stanley, B Glenn

    2004-11-24

    In rats, feeding can be triggered experimentally using many approaches. Included among these are (1) food deprivation and (2) acute microinjection of the neurotransmitter l-glutamate (Glu) or its receptor agonist NMDA into the lateral hypothalamic area (LHA). Under both paradigms, the NMDA receptor (NMDA-R) within the LHA appears critically involved in transferring signals encoded by Glu to stimulate feeding. However, the intracellular mechanisms underlying this signal transfer are unknown. Because protein-tyrosine kinases (PTKs) participate in NMDA-R signaling mechanisms, we determined PTK involvement in LHA mechanisms underlying both types of feeding stimulation through food intake and biochemical measurements. LHA injections of PTK inhibitors significantly suppressed feeding elicited by LHA NMDA injection (up to 69%) but only mildly suppressed deprivation feeding (24%), suggesting that PTKs may be less critical for signals underlying this feeding behavior. Conversely, food deprivation but not NMDA injection produced marked increases in apparent activity for Src PTKs and in the expression of Pyk2, an Src-activating PTK. When considered together, the behavioral and biochemical results demonstrate that, although it is easier to suppress NMDA-elicited feeding by PTK inhibitors, food deprivation readily drives PTK activity in vivo. The latter result may reflect greater PTK recruitment by neurotransmitter receptors, distinct from the NMDA-R, that are activated during deprivation-elicited but not NMDA-elicited feeding. These results also demonstrate how the use of only one feeding stimulation paradigm may fail to reveal the true contributions of signaling molecules to pathways underlying feeding behavior in vivo.

  18. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  19. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    PubMed

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  20. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    SciTech Connect

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  1. Deramciclane improves object recognition in rats: potential role of NMDA receptors.

    PubMed

    Kertész, Szabolcs; Kapus, Gábor; Gacsályi, István; Lévay, György

    2010-02-01

    The cognition-enhancing properties of deramciclane (N,N-dimethyl-2-([(1R,4R,6S)-1,7,7-trimethyl-6-phenyl-6-bicyclo[2.2.1]heptanyl]oxy)ethanamine) and memantine (3,5-dimethyl-tricyclo[3.3.1.1(3,7)]decylamine-3,5-dimethyladamantan-1-amine) were evaluated in the novel object recognition (OR) test in the rat, while their effect in comparison with other N-methyl-D-aspartate (NMDA) receptor blockers such us MK-801 ([+]-5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine maleate) and CPP ([+/-]-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid) on NMDA-evoked spreading depression (SD) was investigated in the chicken retina, in vitro. In the OR test, pretreatment of rats with either deramciclane (30 mg/kg p.o.) or memantine (10 and 30 mg/kg, p.o.) resulted in preference for the novel object, compared to the familiar one, indicating procognitive activity of the compounds. In the in vitro studies memantine (10-30 M), or deramciclane (30-100 M) as well as CPP (0.1-1 M), MK-801 (0.3-1 M), concentration-dependently inhibited NMDA evoked SD. Furthermore, the inhibitory effect of memantine, deramciclane and MK-801 was activity-dependent. These results support the role of NMDA receptors in the procognitive effect of deramciclane.

  2. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons.

    PubMed

    Kim, Sunoh; Ahn, Kwangseog; Oh, Tae Hwan; Nah, Seung-Yeol; Rhim, Hyewhon

    2002-08-16

    Alternative medicines such as herbal products are increasingly being used for preventive and therapeutic purposes. Ginseng is the best known and most popular herbal medicine used worldwide. In spite of some beneficial effects of ginseng on the CNS, little scientific evidence shows at the cellular level. In the present study, we have examined the direct modulation of ginseng on the activation of glutamate, especially NMDA, receptors in cultured hippocampal neurons. Using fura-2-based digital imaging techniques, we found ginseng total saponins inhibited NMDA-induced but less effectively glutamate-induced increase in [Ca2+]i. Ginseng total saponins also modulated Ca2+ transients evoked by depolarization with 50mM KCl along with its own effects on [Ca2+]i. Furthermore, we demonstrated that ginsenoside Rg3 is an active component for ginseng actions on NMDA receptors. The data obtained suggest that the inhibition of NMDA receptors by ginseng, in particular by ginsenoside Rg3, could be one of the mechanisms for ginseng-mediated neuroprotective actions.

  3. NMDA Receptors in Dopaminergic Neurons are Crucial for Habit Learning

    PubMed Central

    Wang, Lei Phillip; Li, Fei; Wang, Dong; Xie, Kun; Wang, Deheng; Shen, Xiaoming; Tsien, Joe Z.

    2011-01-01

    Summary Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning however remain unclear. Here we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit learning tasks while normal in some other dopamine-modulated functions such as locomotor activities, goal directed learning, and spatial reference memories. In vivo neural recording revealed that DA neurons in these mutant mice could still develop the cue-reward association responses, but their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning. PMID:22196339

  4. Spatial learning and goldfish telencephalon NMDA receptors.

    PubMed

    Gómez, Yolanda; Vargas, Juan Pedro; Portavella, Manuel; López, Juan Carlos

    2006-05-01

    Recent results have demonstrated that the mammalian hippocampus and the dorso-lateral telencephalon of ray-finned fishes share functional similarities in relation to spatial memory systems. In the present study, we investigated whether the physiological mechanisms of this hippocampus-dependent spatial memory system were also similar in mammals and ray-finned fishes, and therefore possibly conserved through evolution in vertebrates. In Experiment 1, we studied the effects of the intracranial administration of the noncompetitive NMDA receptor antagonist MK-801 during the acquisition of a spatial task. The results indicated dose-dependent drug-induced impairment of spatial memory. Experiment 2 evaluated if the MK-801 produced disruption of retrieval of a learned spatial response. Data showed that the administration of MK-801 did not impair the retrieval of the information previously stored. The last experiment analyzed the involvement of the telencephalic NMDA receptors in a spatial and in a cue task. Results showed a clear impairment in spatial learning but not in cue learning when NMDA receptors were blocked. As a whole, these results indicate that physiological mechanisms of this hippocampus-dependent system could be a general feature in vertebrate, and therefore phylogenetically conserved.

  5. Anti-NMDA Receptor Encephalitis in a Pregnant Woman

    PubMed Central

    Kim, Jiyoung; Park, Seung Ha; Jung, Yu Ri; Park, Soon Won; Jung, Dae Soo

    2015-01-01

    Anti N-methyl-D-aspartate (NMDA) receptor encephalitis is one of the most common types of autoimmune synaptic encephalitis. Anti-NMDA receptor encephalitis commonly occurs in young women with ovarian teratoma. It has variable clinical manifestations and treatment responses. Sometimes it is misdiagnosed as a psychiatric disorder or viral encephalitis. To the best of our knowledge, anti-NMDA receptor encephalitis is a rare condition in pregnant women. We report a case of anti-NMDA receptor encephalitis in a pregnant woman who presented with abnormal behavior, epileptic seizure, and hypoventilation. PMID:26157673

  6. Augmentation of cognitive behavioral therapy with pharmacotherapy.

    PubMed

    Ganasen, K A; Ipser, J C; Stein, D J

    2010-09-01

    There has long been interest in combining pharmacotherapy with psychotherapy, including cognitive behavioral therapy (CBT). More recently, basic research on fear extinction has led to interest in augmentation of CBT with the N-methyl Daspartate (NMDA) glutamate receptor partial agonist D-cycloserine (DCS) for anxiety disorders. In this article, the literature on clinical trials that have combined pharmacotherapy and CBT is briefly reviewed, focusing particularly on the anxiety disorders. The literature on CBT and DCS is then systematically reviewed. A series of randomized placebo-controlled trials on panic disorder, obsessive-compulsive disorder, social anxiety disorder, and specific phobia suggest that low dose DCS before therapy sessions may be more effective compared with CBT alone in certain anxiety disorders. The strong translational foundation of this work is compelling, and the positive preliminary data gathered so far encourage further work. Issues for future research include delineating optimal dosing, and demonstrating effectiveness in real-world settings.

  7. Comparative study of action mechanisms of dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons.

    PubMed

    Grigorev, V V; Dranyi, O A; Bachurin, S O

    2003-11-01

    Dimebon in low concentrations potentiated activity of AMPA-receptors in rat cerebellar Purkinje neurons, while memantine produced only an insignificant potentiation in a small group of these cells. In cortical neurons of rat brain memantine efficiently blocked NMDA-induced currents in dimebon-insensitive neurons. By contrast, its effect was far weaker in neurons, where the blocking action of dimebon on NMDA-receptors was most pronounced. It was hypothesized that the differences in the effects of memantine and dimebon are determined by their interaction with different sites of NMDA-receptors.

  8. NMDA-mediated and self-induced bdnf exon IV transcriptions are differentially regulated in cultured cortical neurons.

    PubMed

    Zheng, Fei; Wang, Hongbing

    2009-01-01

    Activity-dependent transcriptional up-regulation of bdnf (brain-derived neurotrophic factor) is involved in regulating many aspects of neuronal functions. The NMDA (N-methyl-D-aspartic acid)-mediated and BDNF-mediated exon IV transcription may represent mechanistically different responses, and relevant to activity-dependent changes in neurons. We found that the activities of ERK (extracellular signal regulated kinase), CaM KII/IV (calmodulin-dependent protein kinase II and IV), PI3K (phosphoinositide 3-kinase), and PLC (phospholipase C) are required for NMDA receptor-mediated bdnf exon IV transcription in cultured cortical neurons. In contrast, the BDNF-induced and TrkB-dependent exon IV transcription was regulated by ERK and CaM KII/IV, but not by PI3K and PLC. While ERK and CaM KII/IV are separate signaling pathways in BDNF-stimulated neurons, CaM KII/IV appeared to regulate exon IV transcription through ERK in NMDA-stimulated neurons. Similarly, the PI3K and PLC signaling pathways converged on ERK in NMDA- but not BDNF-stimulated neurons. Our results implicate that the NMDA-induced and the self-maintenance of bdnf transcription are differentially regulated.

  9. Embedding Augmentative Communication within Early Childhood Classrooms.

    ERIC Educational Resources Information Center

    DiCarlo, Cynthia; Banajee, Meher; Stricklin, Sarintha Buras

    2000-01-01

    This article first describes various augmentative communication systems including sign language, picture symbols, and voice output communication devices. It then explains ways to embed augmentative communication within four types of early childhood classroom activities: (1) special or planned activities, (2) meal time, (3) circle time, and (4)…

  10. Structural Basis for Negative Allosteric Modulation of GluN2A-Containing NMDA Receptors.

    PubMed

    Yi, Feng; Mou, Tung-Chung; Dorsett, Katherine N; Volkmann, Robert A; Menniti, Frank S; Sprang, Stephen R; Hansen, Kasper B

    2016-09-21

    NMDA receptors mediate excitatory synaptic transmission and regulate synaptic plasticity in the central nervous system, but their dysregulation is also implicated in numerous brain disorders. Here, we describe GluN2A-selective negative allosteric modulators (NAMs) that inhibit NMDA receptors by stabilizing the apo state of the GluN1 ligand-binding domain (LBD), which is incapable of triggering channel gating. We describe structural determinants of NAM binding in crystal structures of the GluN1/2A LBD heterodimer, and analyses of NAM-bound LBD structures corresponding to active and inhibited receptor states reveal a molecular switch in the modulatory binding site that mediate the allosteric inhibition. NAM binding causes displacement of a valine in GluN2A and the resulting steric effects can be mitigated by the transition from glycine bound to apo state of the GluN1 LBD. This work provides mechanistic insight to allosteric NMDA receptor inhibition, thereby facilitating the development of novel classes NMDA receptor modulators as therapeutic agents. PMID:27618671

  11. NMDA-induced accumulation of Shank at the postsynaptic density is mediated by CaMKII

    SciTech Connect

    Tao-Cheng, Jung-Hwa; Yang, Yijung; Bayer, K. Ulrich; Reese, Thomas S.; Dosemeci, Ayse

    2014-07-18

    Highlights: • NMDA-induces accumulation of Shank at the postsynaptic density. • Shank accumulation is preferential to the distal region of the postsynaptic density. • Shank accumulation is mediated by CaMKII. - Abstract: Shank is a specialized scaffold protein present in high abundance at the postsynaptic density (PSD). Using pre-embedding immunogold electron microscopy on cultured hippocampal neurons, we had previously demonstrated further accumulation of Shank at the PSD under excitatory conditions. Here, using the same experimental protocol, we demonstrate that a cell permeable CaMKII inhibitor, tatCN21, blocks NMDA-induced accumulation of Shank at the PSD. Furthermore we show that NMDA application changes the distribution pattern of Shank at the PSD, promoting a 7–10 nm shift in the median distance of Shank labels away from the postsynaptic membrane. Inhibition of CaMKII with tatCN21 also blocks this shift in the distribution of Shank. Altogether these results imply that upon activation of NMDA receptors, CaMKII mediates accumulation of Shank, preferentially at the distal regions of the PSD complex extending toward the cytoplasm.

  12. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats.

    PubMed

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-08-01

    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  13. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    SciTech Connect

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  14. Protein kinase A activity at the endoplasmic reticulum surface is responsible for augmentation of human ether-a-go-go-related gene product (HERG).

    PubMed

    Sroubek, Jakub; McDonald, Thomas V

    2011-06-17

    Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. PMID:21536683

  15. Protein Kinase A Activity at the Endoplasmic Reticulum Surface Is Responsible for Augmentation of Human ether-a-go-go-related Gene Product (HERG)*

    PubMed Central

    Sroubek, Jakub; McDonald, Thomas V.

    2011-01-01

    Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. PMID:21536683

  16. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling

    PubMed Central

    Vullhorst, Detlef; Mitchell, Robert M.; Keating, Carolyn; Roychowdhury, Swagata; Karavanova, Irina; Tao-Cheng, Jung-Hwa; Buonanno, Andres

    2015-01-01

    The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. PMID:26027736

  17. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    PubMed Central

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  18. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line.

    PubMed

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-12-11

    Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer's disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  19. Evaluation of agonist selectivity for the NMDA receptor ion channel in bilayer lipid membranes based on integrated single-channel currents.

    PubMed

    Hirano, A; Sugawara, M; Umezawa, Y; Uchino, S; Nakajima-Iijima, S

    2000-06-01

    A new method for evaluating chemical selectivity of agonists to activate the N-methyl-D-aspartate (NMDA) receptor was presented by using typical agonists NMDA, L-glutamate and (2S, 3R, 4S)-2-(carboxycyclopropyl)glycine (L-CCG-IV) and the mouse epsilon1/zeta1 NMDA receptor incorporated in bilayer lipid membranes (BLMs) as an illustrative example. The method was based on the magnitude of an agonist-induced integrated single-channel current corresponding to the number of total ions passed through the open channel. The very magnitudes of the integrated single-channel currents were compared with the different BLMs as a new measure of agonist selectivity. The epsilon1/zeta1 NMDA receptor was partially purified from Chinese hamster ovary (CHO) cells expressing the epsilon1/zeta1 NMDA receptor and incorporated in BLMs formed by the tip-dip method. The agonist-induced integrated single-channel currents were obtained at 50 microM agonist concentration, where the integrated current for NMDA was shown to reach its saturated value. The obtained integrated currents were found to be (4.5 +/- 0.55) x 10(-13) C/s for NMDA, (5.8 +/- 0.72) x 10(-13) C/s for L-glutamate and (6.6 +/- 0.61) x 10(-13) C/s for L-CCG-IV, respectively. These results suggest that the agonist selectivity in terms of the total ion flux through the single epsilon1/zeta1 NMDA receptor is in the order of L-CCG-IV approximately = L-glutamate > NMDA.

  20. NMDA-Dependent Switch of proBDNF Actions on Developing GABAergic Synapses

    PubMed Central

    Langlois, Anais; Diabira, Diabe; Ferrand, Nadine; Porcher, Christophe

    2013-01-01

    The brain-derived neurotrophic factor (BDNF) has emerged as an important messenger for activity-dependent development of neuronal network. Recent findings have suggested that a significant proportion of BDNF can be secreted as a precursor (proBDNF) and cleaved by extracellular proteases to yield the mature form. While the actions of proBDNF on maturation and plasticity of excitatory synapses have been studied, the effect of the precursor on developing GABAergic synapses remains largely unknown. Here, we show that regulated secretion of proBDNF exerts a bidirectional control of GABAergic synaptic activity with NMDA receptors driving the polarity of the plasticity. When NMDA receptors are activated during ongoing synaptic activity, regulated Ca2+-dependent secretion of proBDNF signals via p75NTR to depress GABAergic synaptic activity, while in the absence of NMDA receptors activation, secreted proBDNF induces a p75NTR-dependent potentiation of GABAergic synaptic activity. These results revealed a new function for proBDNF-p75NTR signaling in synaptic plasticity and a novel mechanism by which synaptic activity can modulate the development of GABAergic synaptic connections. PMID:22510533

  1. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  2. Subtype selective NMDA receptor antagonists induce recovery of synapses lost following exposure to HIV-1 Tat

    PubMed Central

    Shin, AH; Kim, HJ; Thayer, SA

    2012-01-01

    BACKGROUND AND PURPOSE Neurocognitive disorders afflict approximately 20% of HIV-infected patients. HIV-1-infected cells in the brain shed viral proteins such as transactivator of transcription (Tat). Tat elicits cell death and synapse loss via processes initiated by NMDA receptor activation but mediated by separate downstream signalling pathways. Subunit selective NMDA receptor antagonists may differentially modulate survival relative to synaptic changes. EXPERIMENTAL APPROACH Tat-evoked cell death was quantified by measuring propidium iodide uptake into rat hippocampal neurons in culture. The effects of Tat on synaptic changes were measured using an imaging-based assay that quantified clusters of the scaffolding protein postsynaptic density 95 fused to green fluorescent protein. KEY RESULTS Dizocilpine, a non-competitive NMDA receptor antagonist, inhibited Tat-induced synapse loss, subsequent synapse recovery and Tat-induced cell death with comparable potencies. Memantine (10 µM) and ifenprodil (10 µM), which preferentially inhibit GluN2B-containing NMDA receptors, protected from Tat-induced cell death with no effect on synapse loss. Surprisingly, memantine and ifenprodil induced synapse recovery in the presence of Tat. In contrast, the GluN2A-prefering antagonist TCN201 prevented synapse loss and recovery with no effect on cell death. CONCLUSIONS AND IMPLICATIONS Synapse loss is a protective mechanism that enables the cell to cope with excess excitatory input. Thus, memantine and ifenprodil are promising neuroprotective drugs because they spare synaptic changes and promote survival. These GluN2B-preferring drugs induced recovery from Tat-evoked synapse loss, suggesting that synaptic pharmacology changed during the neurotoxic process. NMDA receptor subtypes differentially participate in the adaptation and death induced by excitotoxic insult. PMID:22142193

  3. Modulation of NMDA receptors by intrathecal administration of the sensory neuron-specific receptor agonist BAM8-22.

    PubMed

    Chen, Tingjun; Hu, Zhijing; Quirion, Rémi; Hong, Yanguo

    2008-04-01

    The sensory neuron-specific receptor (SNSR) is exclusively distributed in dorsal root ganglion (DRG) cells. We have demonstrated that intrathecal (i.t.) administration of SNSR agonists inhibits formalin-evoked responses and the development of morphine tolerance [Chen, T., Cai, Q., Hong, Y., 2006. Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (tyr(6))-gamma2-msh-6-12 inhibit formalin-evoked nociception and neuronal fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 141, 965-975]. The present study was undertaken to examine the possible impact of the activation of SNSR on NMDA receptors. I.t. administration of NMDA (6.8 nmol) induced nociceptive behaviors, including scratching, biting and lifting, followed by thermal hypoalgesia and hyperalgesia. These responses were associated with the expression of Fos-like immunoreactivity (FLI) throughout the spinal dorsal horn with highest effect seen in laminae I-II. I.t. NMDA also induced an increase in nitric oxide synthase (NOS) activity in superficial layers of the dorsal horn, but not around the central canal, as revealed by NADPH diaphorase histochemistry. Pretreatment with the SNSR agonist bovine adrenal medulla 8-22 (3, 10 and 30 nmol) dose-dependently diminished NMDA-evoked nocifensive behaviors and hyperalgesia. This agonist also reduced NMDA-evoked expression of FLI and NADPH reactivity in the spinal dorsal horn. Taken together, these data suggest that the activation of SNSR induces spinal analgesia by suppressing NMDA receptor-mediated activation of spinal dorsal horn neurons and an increase in NOS activity.

  4. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

    PubMed Central

    Sonekatsu, Mayumi; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Background Glia–neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. Results IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S–containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Conclusion Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia

  5. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging.

    PubMed

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  6. The NMDA receptor as a target for cognitive enhancement

    PubMed Central

    Collingridge, Graham L.; Volianskis, Arturas; Bannister, Neil; France, Grace; Hanna, Lydia; Mercier, Marion; Tidball, Patrick; Fang, Guangyu; Irvine, Mark W.; Costa, Blaise M.; Monaghan, Daniel T.; Bortolotto, Zuner A.; Molnár, Elek; Lodge, David; Jane, David E.

    2015-01-01

    NMDA receptors (NMDAR) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. PMID:22796429

  7. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  8. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function

    PubMed Central

    Szklarczyk, Arek; Ewaleifoh, Osefame; Beique, Jean-Claude; Wang, Yue; Knorr, David; Haughey, Norman; Malpica, Tanya; Mattson, Mark P.; Huganir, Richard; Conant, Katherine

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of ∼65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.—Szklarczyk, A., Ewaleifoh, O., Beique, J.-C., Wang, Y., Knorr, D., Haughey, N., Malpica, T., Mattson, M. P., Huganir, R., Conant, K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. PMID:18644839

  9. Hippocampus NMDA receptors selectively mediate latent extinction of place learning.

    PubMed

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2016-09-01

    Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were

  10. Hippocampus NMDA receptors selectively mediate latent extinction of place learning.

    PubMed

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2016-09-01

    Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were

  11. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors

    PubMed Central

    Fedder, Karlie N.; Sabo, Shasta L.

    2015-01-01

    Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases. PMID:26694480

  12. Cathepsin B-like proteolysis and MARCKS degradation in sub-lethal NMDA-induced collapse of dendritic spines.

    PubMed

    Graber, S; Maiti, S; Halpain, Shelley

    2004-10-01

    Sub-lethal excitotoxic injury to dendrites can elicit loss or shrinkage of dendritic spines. Here, we used a cell culture model of sub-lethal NMDA-induced injury to investigate a role for proteolysis in spine collapse. Transient incubation with NMDA-induced spine collapse and spine F-actin loss within 10 min, an effect not mimicked by the actin assembly inhibitor latrunculin A. NMDA-induced spine collapse was significantly attenuated by preincubation with broad-spectrum cysteine protease inhibitors. Results obtained using several class-specific protease inhibitors suggested that this protective effect was due to specific blockade of cathepsin B/L type protease activity, since selective inhibitors of only these proteases significantly attenuated spine loss. Cathepsin B-like immunoreactivity was observed at synaptic sites, but lysosomes were not. Immunoblot analysis showed that MARCKS (myristoylated-alanine-rich C-kinase substrate), a known substrate of cathepsin B, was specifically degraded in response to intense NMDA receptor stimulation. This effect was blocked by preincubation with a cathepsin B-selective inhibitor. Together these data suggest a model in which NMDA-induced spine collapse involves cathepsin B-like proteolysis of MARCKS, and possibly other proteins that regulate the actin-based cytoskeleton.

  13. NMDA receptor antagonism in the basolateral amygdala blocks enhancement of inhibitory avoidance learning in previously trained rats.

    PubMed

    Roesler, R; Vianna, M R; de-Paris, F; Rodrigues, C; Sant'Anna, M K; Quevedo, J; Ferreira, M B

    2000-07-01

    Extensive evidence suggests that N-methyl-D-aspartate (NMDA) glutamate receptor channels in the amygdala are involved in fear-motivated learning, and infusion of NMDA receptor antagonists into the amygdala blocks memory of fear-motivated tasks. Recent studies have shown that previous training can prevent the amnestic effects of NMDA receptor antagonists on spatial learning. In the present study, we evaluated whether infusion of the NMDA antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) impairs reinforcement of inhibitory avoidance learning in rats given previous training. Adult male Wistar rats (220-310 g) were bilaterally implanted under thionembutal anesthesia (30 mg/kg, i.p.) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Infusion of AP5 (5.0 microg) 10 min prior to training in a step-down inhibitory avoidance task (0.4 mA footshock) blocked retention measured 24 h after training. When infused 10 min prior to a second training session in animals given previous training (0.2 mA footshock), AP5 blocked the enhancement of retention induced by the second training. Control experiments showed that the effects were not due to alterations in motor activity or footshock sensitivity. The results suggest that NMDA receptors in the basolateral amygdala are involved in both formation of memory for inhibitory avoidance and enhancement of retention in rats given previous training.

  14. Sleep-Dependent Declarative Memory Consolidation—Unaffected after Blocking NMDA or AMPA Receptors but Enhanced by NMDA Coagonist D-Cycloserine

    PubMed Central

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-01-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors. PMID:23887151

  15. Combined stimulation of IL-2 and 4-1BB receptors augments the antitumor activity of E7 DNA vaccines by increasing Ag-specific CTL responses.

    PubMed

    Kim, Ha; Kwon, Byungsuk; Sin, Jeong-Im

    2013-01-01

    Human papillomavirus (HPV) infection is a major cause of cervical cancer. Here, we investigate whether concurrent therapy using HPV E7 DNA vaccines (pE7) plus IL-2 vs. IL-15 cDNA and anti-4-1BB Abs might augment antitumor activity against established tumors. IL-2 cDNA was slightly better than IL-15 cDNA as a pE7 adjuvant. Co-delivery of pE7+IL-2 cDNA increased tumor cure rates from 7% to 27%, whereas co-delivery of pE7+IL-2 cDNA with anti-4-1BB Abs increased tumor cure rates from 27% to 67% and elicited long-term memory responses. This increased activity was concomitant with increased induction of Ag-specific CTL activity and IFN-γ responses, but not with Ag-specific IgG production. Moreover, the combined stimulation of IL-2 and 4-1BB receptors with rIL-2 and anti-4-1BB Abs resulted in enhanced production of IFN-γ from Ag-specific CD8+ T cells. However, this effect was abolished by treatment with anti-IL-2 Abs and 4-1BB-Fc, suggesting that the observed effect was IL-2- and anti-4-1BB Ab-specific. A similar result was also obtained for Ag-specific CTL activity. Thus, these studies demonstrate that combined stimulation through the IL-2 and 4-1BB receptors augments the Ag-specific CD8+ CTL responses induced by pE7, increasing tumor cure rates and long-term antitumor immune memory. These findings may have implications for the design of DNA-based therapeutic vaccines against cancer. PMID:24391824

  16. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling.

    PubMed

    Saia, Gregory; Lalonde, Jasmin; Sun, Xinxin; Ramos, Belén; Gill, Grace

    2014-05-01

    The regulation of transcription factor function in response to neuronal activity is important for development and function of the nervous system. The transcription factor Sp4 regulates the developmental patterning of dendrites, contributes to complex processes including learning and memory, and has been linked to psychiatric disorders such as schizophrenia and bipolar disorder. Despite its many roles in the nervous system, the molecular mechanisms regulating Sp4 activity are poorly understood. Here, we report a site of phosphorylation on Sp4 at serine 770 that is decreased in response to membrane depolarization. Inhibition of the voltage-dependent NMDA receptor increased Sp4 phosphorylation. Conversely, stimulation with NMDA reduced the levels of Sp4 phosphorylation, and this was dependent on the protein phosphatase 1/2A. A phosphomimetic substitution at S770 impaired the Sp4-dependent maturation of cerebellar granule neuron primary dendrites, whereas a non-phosphorylatable Sp4 mutant behaved like wild type. These data reveal that transcription factor Sp4 is regulated by NMDA receptor-dependent activation of a protein phosphatase 1/2A signaling pathway. Our findings also suggest that the regulated control of Sp4 activity is an important mechanism governing the developmental patterning of dendrites.

  17. Potent quinoxaline-spaced phosphono alpha-amino acids of the AP-6 type as competitive NMDA antagonists: synthesis and biological evaluation.

    PubMed

    Baudy, R B; Greenblatt, L P; Jirkovsky, I L; Conklin, M; Russo, R J; Bramlett, D R; Emrey, T A; Simmonds, J T; Kowal, D M; Stein, R P

    1993-02-01

    A series of alpha-amino-3-(phosphonoalkyl)-2-quinoxalinepropanoic acids was synthesized and evaluated for NMDA receptor affinity using a [3H] CPP binding assay. Functional antagonism of the NMDA receptor complex was evaluated in vitro using a stimulated [3H]TCP binding assay and in vivo by employing an NMDA-induced seizure model. Some analogues also were evaluated in the [3H]-glycine binding assay. Several compounds of the AP-6 type show potent and selective NMDA antagonistic activity both in vitro and in vivo. In particular alpha-amino-7-chloro-3-(phosphonomethyl)-2-quinoxalinepropanoic acid (1) displayed an ED50 of 1.1 mg/kg ip in the NMDA lethality model. Noteworthy is alpha-amino-6,7-dichloro-3-(phosphonomethyl)-2-quinoxalinepropanoic++ + acid (3) with a unique dual activity, displaying in the NMDA receptor binding assay an IC50 of 3.4 nM and in the glycine binding assay an IC50 of 0.61 microM.

  18. NMDA Receptor Function During Senescence: Implication on Cognitive Performance

    PubMed Central

    Kumar, Ashok

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function. PMID:26732087

  19. Augmentation-related brain plasticity.

    PubMed

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  20. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  1. Augmentation-related brain plasticity.

    PubMed

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self.

  2. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  3. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption. PMID:19660541

  4. Glossopharyngeal long-term facilitation requires serotonin 5-HT2 and NMDA receptors in rats

    PubMed Central

    Cao, Ying; Liu, Chun; Ling, Liming

    2009-01-01

    Although the glossopharyngeal nerve (IX) is mainly a sensory nerve, it innervates stylopharyngeus and some other pharyngeal muscles, whose excitations would likely improve upper airway patency since electrical IX stimulation increases pharyngeal airway size. As acute intermittent hypoxia (AIH) induces hypoglossal and genioglossal long-term facilitation (LTF), we hypothesized that AIH induces glossopharyngeal LTF, which requires serotonin 5-HT2 and NMDA receptors. Integrated IX activity was recorded in anesthetized, vagotomized, paralyzed and ventilated rats before, during and after 5 episodes of 3-min isocapnic 12% O2 with 3-min intervals of 50% O2. Either saline, ketanserin (5-HT2 antagonist, 2 mg/kg) or MK-801 (NMDA antagonist, 0.2 mg/kg) was (i.v.) injected 30–60 min before AIH. Both phasic and tonic IX activities were persistently increased (both P<0.05) after AIH in vehicle, but not ketanserin or MK-801, rats. Hypoxic glossopharyngeal responses were minimally changed after either drug. These data suggest that AIH induces both phasic and tonic glossopharyngeal LTF, which requires activation of 5-HT2 and NMDA receptors. PMID:20026287

  5. INFLUENCE OF NMDA AND NON-NMDA ANTAGONISTS ON ACUTE AND INFLAMMATORY PAIN IN THE TRIGEMINAL TERRITORY

    PubMed Central

    Piovesan, Elcio Juliato; Randunz, Vitor; Utiumi, Marco; Lange, Marcos Cristiano; Kowacs, Pedro André; Mulinari, Rogério Andrade; Oshinsky, Michael; Vital, Maria; Sereniki, Adriana; Fernandes, Artur Furlaneto; Silva, Lucas Leite e; Werneck, Lineu César

    2016-01-01

    NMDA and non-NMDA receptors are involved in spinal transmission of nociceptive information in physiological and pathological conditions. Our objective was to study the influence of NMDA and non-NMDA receptor antagonists on pain control in the trigeminal system using a formalin-induced orofacial pain model. Motor performance was also evaluated. Male Rattus norvegicus were pre-treated with topiramate (T) (n=8), memantine (M) (n=8), divalproex (D) (n=8) or isotonic saline solution (ISS) (n=10) intraperitoneally 30 minutes before the formalin test. Formalin 2.5% was injected into the right upper lip (V2 branch) and induced two phases: phase I (early or neurogenic) (0–3 min) and phase II (late or inflammatory) (12–30 min). For motor behavior performance we used the open-field test and measured latency to movement onset, locomotion and rearing frequencies, and immobility time. Pre-treatment of animals with M and D only attenuated nociceptive formalin behavior for phase II. T increased locomotion and rearing frequencies and reduced immobility time. Treatment with M increased immobility time and with D reduced locomotion frequency. Our results showed that the NMDA antagonist (M) is more potent than the non-NMDA antagonists (D and T) in the control of pain in the inflammatory phase. The non-NMDA topiramate improved motor performance more than did D and M, probably because T has more anxiolytic properties. PMID:19099122

  6. Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site.

    PubMed

    Lench, Alex M; Robson, Emma; Jones, Roland S G

    2015-01-01

    Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.

  7. Bilaterally evoked monosynaptic EPSPs, NMDA receptors and potentiation in rat sympathetic preganglionic neurones in vitro.

    PubMed

    Spanswick, D; Renaud, L P; Logan, S D

    1998-05-15

    1. Whole-cell patch clamp and intracellular recordings were obtained from 190 sympathetic preganglionic neurones (SPNs) in spinal cord slices of neonatal rats. Fifty-two of these SPNs were identified histologically as innervating the superior cervical ganglion (SCG) by the presence of Lucifer Yellow introduced from the patch pipette and the appearance of retrograde labelling following the injection of rhodamine-dextran-lysine into the SCG. 2. Electrical stimulation of the ipsilateral (n = 71) or contralateral (n = 32) lateral funiculi (iLF and cLF, respectively), contralateral intermediolateral nucleus (cIML, n = 41) or ipsilateral dorsal horn (DH, n = 34) evoked EPSPs or EPSCs that showed a constant latency and rise time, graded response to increased stimulus intensity, and no failures, suggesting a monosynaptic origin. 3. In all neurones tested (n = 60), fast rising and decaying components of EPSPs or EPSCs evoked from the iLF, cLF, cIML and DH in response to low-frequency stimulation (0.03-0.1 Hz) were sensitive to non-NMDA receptor antagonists. 4. In approximately 50 % of neurones tested (n = 29 of 60), EPSPs and EPSCs evoked from the iLF, cLF, cIML and DH during low-frequency stimulation were reduced by NMDA receptor antagonists. In the remaining neurones, an NMDA receptor antagonist-sensitive EPSP or EPSC was revealed only in magnesium-free bathing medium, or following high-frequency stimulation. 5. EPSPs evoked by stimulation of the iLF exhibited a sustained potentiation of the peak amplitude (25.3 +/- 11.4 %) in six of fourteen SPNs tested following a brief high-frequency stimulus (10-20 Hz, 0.1-2 s). 6. These results indicate that SPNs, including SPNs innervating the SCG, receive monosynaptic connections from both sides of the spinal cord. The neurotransmitter mediating transmission in some of the pathways activated by stimulation of iLF, cLF, cIML and DH is glutamate acting via both NMDA and non-NMDA receptors. Synaptic plasticity is a feature of

  8. Effects of 2-phenoxyethanol on N-methyl-D-aspartate (NMDA) receptor-mediated ion currents.

    PubMed

    Musshoff, U; Madeja, M; Binding, N; Witting, U; Speckmann, E J

    1999-02-01

    The actions were examined of 17 frequently used glycol ether compounds on the glutamate receptor-mediated ion currents. The receptors were expressed in Xenopus oocytes by injection of rat brain mRNA. Most of the 17 glycol ethers exerted no effects on the glutamate subreceptors activated by kainate and N-methyl-D-aspartate (NMDA), whereas 2-phenoxyethanol (ethylene glycol monophenyl ether) caused a considerable reduction of NMDA-induced membrane currents in a reversible and concentration-dependent manner. The threshold concentration of the ethylene glycol monophenyl ether effect was < 10 mumol/l. The concentration for a 50% inhibition (IC50) was approximately 360 mumol/l. The results indicate a neurotoxic potential for 2-phenoxyethanol.

  9. Equating of Augmented Subscores

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Haberman, Shelby J.

    2011-01-01

    Recently, there has been an increasing level of interest in subscores for their potential diagnostic value. Haberman (2008b) suggested reporting an augmented subscore that is a linear combination of a subscore and the total score. Sinharay and Haberman (2008) and Sinharay (2010) showed that augmented subscores often lead to more accurate…

  10. Confronting an Augmented Reality

    ERIC Educational Resources Information Center

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  11. Malar and submalar augmentation.

    PubMed

    Binder, William J; Azizzadeh, Babak

    2008-02-01

    Over the past four decades, revolutionary improvements in the design and manufacture of facial implants have broadened the application of midface augmentation. The contemporary practice of facial rejuvenation reflects a 20-year culmination of rapid advances made in the understanding and treatment of midface aging. This article highlights the practice of malar and submalar augmentation: when and how it should be used.

  12. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  13. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release.

    PubMed

    Ilyinskii, Petr O; Roy, Christopher J; O'Neil, Conlin P; Browning, Erica A; Pittet, Lynnelle A; Altreuter, David H; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A; Iannacone, Matteo; Radovic-Moreno, Aleksandar F; Langer, Robert S; Farokhzad, Omid C; von Andrian, Ulrich H; Johnston, Lloyd P M; Kishimoto, Takashi Kei

    2014-05-19

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required.

  14. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release.

    PubMed

    Ilyinskii, Petr O; Roy, Christopher J; O'Neil, Conlin P; Browning, Erica A; Pittet, Lynnelle A; Altreuter, David H; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A; Iannacone, Matteo; Radovic-Moreno, Aleksandar F; Langer, Robert S; Farokhzad, Omid C; von Andrian, Ulrich H; Johnston, Lloyd P M; Kishimoto, Takashi Kei

    2014-05-19

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-a and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  15. Anti-NMDA-receptor antibody encephalitis in infants

    PubMed Central

    Matoq, Amr A.; Rappoport, Adam S.; Yang, Yiting; O'Babatunde, Jessica; Bakerywala, Rubina; Sheth, Raj D.

    2015-01-01

    Purpose Anti-N-methyl-d-aspartate (NMDA) receptor antibody encephalitis is an autoimmune disorder manifesting subacutely with prominent aberrant movements and psychiatric symptoms. The clinical course is one of progressive clinical deterioration that can be halted and often reversed by early diagnosis and treatment. Patterns of presentation and etiology of anti-NMDA-receptor antibody encephalitis are dependent on age and can be challenging to recognize in very young children. Reports Sequential clinical case observations of anti-NMDA-receptor antibody encephalitis presenting in very young children were examined over a year at a single tertiary pediatric institution. Cerebrospinal fluid confirmed anti-NMDA-receptor antibodies in two cases (a 21-month-old boy and a 29-month-old girl) that demonstrated either bizarre behavioral patterns or status epilepticus both associated with progressive deterioration. Once recognized, the clinical course was arrested and reversed by aggressive treatment with plasma exchange, immunoglobulin, and high dose IV steroids. Conclusion Infants with anti-NMDA-receptor antibody encephalitis can present with frank seizures or seizure mimics. Regardless, prompt recognition and aggressive treatment of anti-NMDA-receptor antibody encephalitis, while challenging, can quickly arrest deterioration and hasten recovery, thereby, limiting neurological morbidity. PMID:26744696

  16. Synaptic localization of NMDA receptor subunits in the rat retina.

    PubMed

    Fletcher, E L; Hack, I; Brandstätter, J H; Wässle, H

    2000-04-24

    The distribution and synaptic clustering of N-methyl-D-aspartate (NMDA) receptors were studied in the rat retina by using subunit specific antisera. A punctate immunofluorescence was observed in the inner plexiform layer (IPL) for all subunits tested, and electron microscopy confirmed that the immunoreactive puncta represent labeling of receptors clustered at postsynaptic sites. Double labeling of sections revealed that NMDA receptor clusters within the IPL are composed of different subunit combinations: NR1/NR2A, NR1/NR2B, and in a small number of synapses NR1/NR2A/NR2B. The majority of NMDA receptor clusters were colocalized with the postsynaptic density proteins PSD-95, PSD-93, and SAP 102. Double labeling of the NMDA receptor subunit specific antisera with protein kinase C (PKC), a marker of rod bipolar cells, revealed very little colocalization at the rod bipolar cell axon terminal. This suggests that NMDA receptors are important in mediating neurotransmission within the cone bipolar cell pathways of the IPL. The postsynaptic neurons are a subset of amacrine cells and most ganglion cells. Usually only one of the two postsynaptic processes at the bipolar cell ribbon synapses expressed NMDA receptors. In the outer plexiform layer (OPL), punctate immunofluoresence was observed for the NR1C2; subunit, which was shown by electron microscopy to be localized presynaptically within both rod and cone photoreceptor terminals.

  17. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  18. Combined stimulation of the glycine and polyamine sites of the NMDA receptor attenuates NMDA blockade-induced learning deficits of rats in a 14-unit T-maze.

    PubMed

    Meyer, R C; Knox, J; Purwin, D A; Spangler, E L; Ingram, D K

    1998-02-01

    The present study examined the effects of multi-site activation of the glycine and polyamine sites of the NMDA receptor on memory formation in rats learning a 14-unit T-maze task. The competitive NMDA receptor antagonist, (+/-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP, 9 mg/kg), was used to impair learning. The objectives were two-fold: (1) to investigate the effects of independent stimulation of the strychnine-insensitive glycine site or the polyamine site; (2) to investigate the effects of simultaneous activation of these two sites. Male, Fischer-344 rats were pretrained to a criterion of 13 out of 15 shock avoidances in a straight runway, and 24 h later were trained in a 14-unit T-maze that also required shock avoidance. Prior to maze training, rats received intraperitoneal (i.p.) injections of saline, saline plus CPP, CPP plus the glycine agonist, D-cycloserine (DCS, 30 or 40 mg/kg), CPP plus the polyamine agonist, spermine (SPM, 2.5 or 5 mg/kg), or CPP plus a combination of DCS (7.5 mg/kg) and SPM (0.625 mg/kg). Individual administration of either DCS or SPM attenuated the CPP-induced maze learning impairment in a dose-dependent manner. However, the combined treatment with both DCS and SPM completely reversed the learning deficit at doses five-fold less than either drug given alone. These findings provide additional evidence that the glycine and polyamine modulatory sites of the NMDA receptor are involved in memory formation. Furthermore, the potent synergistic effect resulting from combined activation of the glycine and polyamine sites would suggest a stronger interaction between these two sites than previously considered, and might provide new therapeutic approaches for enhancing glutamatergic function. PMID:9498733

  19. Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation.

    PubMed

    Omotuyi, Olaposi I; Ueda, Hiroshi

    2015-04-01

    Plastic changes in the brain required for memory formation and long-term learning are dependent on N-methyl-d-aspartic acid (NMDA) receptor signaling. Nefiracetam reportedly boosts NMDA receptor functions as a basis for its nootropic properties. Previous studies suggest that nefiracetam potentiates the NMDA receptor activation, as a more potent co-agonist for glycine binding site than glycine, though the underlying mechanisms remain elusive. Here, using BSP-SLIM method, a novel binding site within the core of spiral β-strands-1-5 of LBD-GLUN1 has been predicted in glycine-bound GLUN1 conformation in addition to the glycine pocket in Apo-GLUN1. Within the core of spiral β-strands-1-5 of LBD-GLUN1 pocket, all-atom molecular dynamics simulation revealed that nefiracetam disrupts Arg523-glycine-Asp732 interaction resulting in open GLUN1 conformation and ultimate diffusion of glycine out of the clamshell cleft. Open GLUN1 conformation coerces other intra-chain domains and proximal inter-chain domains to sample inactivate conformations resulting in closure of the transmembrane gate via a novel gauche trap on threonine 647 (chi-1 dihedral (χ1)=-45° instead of +45°). Docking of nefiracetam into the glycine pocket reversed the gauche trap and meditates partial opening of the TMD gate within a time-scale of 100ns as observed in glycine-only state. All these results suggest that nefiracetam can favorably complete with glycine for GLUN1-LBD in a two-step process, first by binding to a novel site of GLUN1-LBD-NMDA receptor followed by disruption of glycine-binding dynamics then replacing glycine in the GLUN1-LBD cleft. PMID:25659913

  20. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    SciTech Connect

    Dekundy, Andrzej . E-mail: andrzej.dekundy@merz.de; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-03-15

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  1. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice.

    PubMed

    Dekundy, Andrzej; Kaminski, Rafal M; Zielinska, Elzbieta; Turski, Waldemar A

    2007-03-01

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  2. The role of NMDA receptors of the medial septum and dorsal hippocampus on memory acquisition.

    PubMed

    Khakpai, Fatemeh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2016-04-01

    The glutamatergic neurons in the medial septal/diagonal band of broca (MS/DB) affect the hippocampal functions by modulating the septo-hippocampal neurons. Our study investigated the possible role of NMDA receptors of the medial septum nucleus (MS) and dorsal hippocampus (CA1) on memory acquisition in male Wistar rats. Animals were bilaterally implanted with chronic cannulae in the MS and CA1. Rats were trained in a step-through type inhibitory avoidance task, and tested 24h after training to measure step-through latency as memory retrieval. Our results indicated that pre-training intra-MS or intra-CA1 infusions of NMDA (0.125 μg/rat) and D-AP7 (0.012 μg/rat) increased and decreased memory acquisition, respectively when compared to saline control group. Also, pre-training intra-CA1 and intra-MS injection of an effect dose of D-AP7 (0.012 μg/rat) along with an effect dose of NMDA (0.125 μg/rat) impaired memory acquisition. Interestingly, pre-training intra-CA1/MS infusion of D-AP7 (0.012 μg/rat) diminished memory response produced by pre-training injection of NMDA (0.125 μg/rat) in the MS/CA1, respectively (cross injection or bilateral injection). Also, all above doses of drugs did not alter locomotor activity. These results suggest that the glutamatergic pathway between the MS and CA1 regions is involved in memory acquisition process. PMID:26780596

  3. Comparison of behavioral effects of the NMDA receptor channel blockers memantine and ketamine in rats.

    PubMed

    Kotermanski, Shawn E; Johnson, Jon W; Thiels, Edda

    2013-08-01

    Memantine and ketamine block N-methyl-D-aspartate (NMDA) receptors with similar affinity and kinetics, yet their behavioral consequences differ: e.g., memantine is used to alleviate symptoms of Alzheimer's disease, whereas ketamine reproduces symptoms of schizophrenia. The two drugs exhibit different pharmacokinetics, which may play a principal role in their differential behavioral effects. To gain insight into the drugs' behavioral consequences, we treated adult male rats acutely with varying doses (0-40 mg/kg i.p.) of memantine or ketamine and assessed exploratory behavior and spatial working memory. To examine the importance of pharmacokinetics, we assessed behavior either 15 or 45 min after drug administration. Both drugs decreased ambulation, fine movements, and rearing at the beginning of the exploratory activity test; however, at the end of the test, high doses of only memantine increased ambulation and fine movements. High doses of both drugs disrupted spontaneous alternation, a measure of working memory, but high doses of only memantine elicited perseverative behavior. Surprisingly, ketamine's effects were influenced by the delay between drug administration and testing no more frequently than were memantine's. Our findings show that, regardless of test delay, memantine and ketamine evoke similar behavioral effects at lower doses, consistent with NMDA receptors being both drugs' principal site of action, but can have divergent effects at higher doses. Our results suggest that the divergence of memantine's and ketamine's behavioral consequences is likely to result from differences in mechanisms of NMDA receptor antagonism or actions at other targets.

  4. Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats.

    PubMed

    Mesches, Michael H; Gemma, Carmelina; Veng, Lone M; Allgeier, Chrissy; Young, David A; Browning, Michael D; Bickford, Paula C

    2004-03-01

    Inflammatory processes in the central nervous system are thought to contribute to Alzheimer's disease (AD). Chronic administration of nonsteroidal anti-inflammatory drugs (NSAIDs) decreases the incidence of Alzheimer's disease. There are very few studies, however, on the cognitive impact of chronic NSAID administration. The N-methyl-d-aspartate (NMDA) receptor is implicated in learning and memory, and age-related decreases in the NMDA NR2B subunit correlate with memory deficits. Sulindac, an NSAID that is a nonselective cyclooxygenase (COX) inhibitor was chronically administered to aged Fischer 344 rats for 2 months. Sulindac, but not its non-COX active metabolite, attenuated age-related deficits in learning and memory as assessed in the radial arm water maze and contextual fear conditioning tasks. Sulindac treatment also attenuated an age-related decrease in the NR1 and NR2B NMDA receptor subunits and prevented an age-related increase in the pro-inflammatory cytokine, interleukin 1beta (IL-1beta), in the hippocampus. These findings support the inflammation hypothesis of aging and have important implications for potential cognitive enhancing effects of NSAIDs in the elderly.

  5. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons

    PubMed Central

    Yang, Jiangyan; Ruchti, Evelyne; Petit, Jean-Marie; Jourdain, Pascal; Grenningloh, Gabriele; Allaman, Igor; Magistretti, Pierre J.

    2014-01-01

    l-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons l-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. l-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, l-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of l-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of l-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived l-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of l-lactate as a signaling molecule for neuronal plasticity. PMID:25071212

  6. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    PubMed

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway. PMID:25662715

  7. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV.

    PubMed

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H; Wang, Yijin; Hakim, Mohamad S; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M; van der Laan, Luc J W; van der Woude, C Janneke; Sprengers, Dave; Metselaar, Herold J; Smits, Ron; Poot, Raymond A; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-01-01

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV. PMID:27150018

  8. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV

    PubMed Central

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H.; Wang, Yijin; Hakim, Mohamad S.; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M.; van der Laan, Luc J. W.; van der Woude, C. Janneke; Sprengers, Dave; Metselaar, Herold J.; Smits, Ron; Poot, Raymond A.; Peppelenbosch, Maikel P.; Pan, Qiuwei

    2016-01-01

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV. PMID:27150018

  9. Control Augmented Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Lust, Robert V.; Schmit, Lucien A.

    1988-01-01

    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.

  10. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-01

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  11. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  12. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex

    PubMed Central

    Lalo, U.; Palygin, O.; Verkhratsky, A.; Grant, S. G. N.; Pankratov, Y.

    2016-01-01

    Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity. PMID:27640997

  13. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex.

    PubMed

    Lalo, U; Palygin, O; Verkhratsky, A; Grant, S G N; Pankratov, Y

    2016-01-01

    Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca(2+)-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca(2+)-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity. PMID:27640997

  14. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory.

    PubMed

    Alaghband, Yasaman; O'Dell, Steven J; Azarnia, Siavash; Khalaj, Anna J; Guzowski, John F; Marshall, John F

    2014-12-01

    The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine

  15. SUMO-specific protease 1 modulates cadmium-augmented transcriptional activity of androgen receptor (AR) by reversing AR SUMOylation.

    PubMed

    Wu, Ruiqin; Cui, Yaxiong; Yuan, Xiaoyan; Yuan, Haitao; Wang, Yimei; He, Jun; Zhao, Jun; Peng, Shuangqing

    2014-09-01

    Cadmium is a potential prostate carcinogen and can mimic the effects of androgen by a mechanism that involves the hormone-binding domain of the androgen receptor (AR), which is a key transcriptional factor in prostate carcinogenesis. We focused on transcriptional activity of AR to investigate the toxicity of cadmium exposure on human prostate cell lines. Cadmium increased the proliferative index of LNCaP and the proliferative effect was obstructed significantly by AR blocking agent. In luciferase assay, cadmium activated the transcriptional activity of AR in 293T cells co-transfected with wild-type AR and an ARE (AR response elements)-luciferase reporter gene. Cadmium also increased expression of PSA, a downstream gene of AR, whereas the metal had no significant effect on AR amount. AR is regulated by multiple posttranslational modifications including SUMOylation. SUMOylated AR shows a lower transcriptional activity. SUMO-specific protease 1 (SENP1) decreases AR SUMOylation by deconjugating AR-SUMO covalent bond. We detected that cadmium increased the amount of SENP1 in a dose and time dependent manner. Knocking down of SENP1 by RNAi led to decrease of PSA expression and transcriptional activity of AR in luciferase assay. Furthermore, co-immunoprecipitation (Co-IP) results showed that SUMOylation level of AR was decreased after cadmium treatment. In conclusion, our results indicated that cadmium-induced SENP1 enhanced AR transcriptional activity by decreasing AR SUMOylation.

  16. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries.

  17. Augmented reality: a review.

    PubMed

    Berryman, Donna R

    2012-01-01

    Augmented reality is a technology that overlays digital information on objects or places in the real world for the purpose of enhancing the user experience. It is not virtual reality, that is, the technology that creates a totally digital or computer created environment. Augmented reality, with its ability to combine reality and digital information, is being studied and implemented in medicine, marketing, museums, fashion, and numerous other areas. This article presents an overview of augmented reality, discussing what it is, how it works, its current implementations, and its potential impact on libraries. PMID:22559183

  18. Augmentation of the Lipopolysaccharide-Neutralizing Activities of Human Cathelicidin CAP18/LL-37-Derived Antimicrobial Peptides by Replacement with Hydrophobic and Cationic Amino Acid Residues

    PubMed Central

    Nagaoka, Isao; Hirota, Satoko; Niyonsaba, François; Hirata, Michimasa; Adachi, Yoshiyuki; Tamura, Hiroshi; Tanaka, Shigenori; Heumann, Didier

    2002-01-01

    Mammalian myeloid and epithelial cells express various peptide antibiotics (such as defensins and cathelicidins) that contribute to the innate host defense against invading microorganisms. Among these peptides, human cathelicidin CAP18/LL-37 (L1 to S37) possesses not only potent antibacterial activity against gram-positive and gram-negative bacteria but also the ability to bind to gram-negative lipopolysaccharide (LPS) and neutralize its biological activities. In this study, to develop peptide derivatives with improved LPS-neutralizing activities, we utilized an 18-mer peptide (K15 to V32) of LL-37 as a template and evaluated the activities of modified peptides by using the CD14+ murine macrophage cell line RAW 264.7 and the murine endotoxin shock model. By replacement of E16 and K25 with two L residues, the hydrophobicity of the peptide (18-mer LL) was increased, and by further replacement of Q22, D26, and N30 with three K residues, the cationicity of the peptide (18-mer LLKKK) was enhanced. Among peptide derivatives, 18-mer LLKKK displayed the most powerful LPS-neutralizing activity: it was most potent at binding to LPS, inhibiting the interaction between LPS and LPS-binding protein, and attaching to the CD14 molecule, thereby suppressing the binding of LPS to CD14+ cells and attenuating production of tumor necrosis factor alpha (TNF-α) by these cells. Furthermore, in the murine endotoxin shock model, 18-mer LLKKK most effectively suppressed LPS-induced TNF-α production and protected mice from lethal endotoxin shock. Together, these observations indicate that the LPS-neutralizing activities of the amphipathic human CAP18/LL-37-derived 18-mer peptide can be augmented by modifying its hydrophobicity and cationicity, and that 18-mer LLKKK is the most potent of the peptide derivatives, with therapeutic potential for gram-negative bacterial endotoxin shock. PMID:12204946

  19. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor.

    PubMed

    Resch, Jon M; Albano, Rebecca; Liu, XiaoQian; Hjelmhaug, Julie; Lobner, Doug; Baker, David A; Choi, SuJean

    2014-07-28

    In the central nervous system, cystine import in exchange for glutamate through system xc(-) is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc(-) activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally-derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc(-) . In the current study, 24-hour treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc(-) function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc(-) inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc(-) activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc(-) . Furthermore, the potentiation of system xc(-) activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc(-) activity. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  20. Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils.

    PubMed Central

    Coffey, M J; Phare, S M; George, S; Peters-Golden, M; Kazanjian, P H

    1998-01-01

    Neutrophil (PMN) dysfunction occurs in HIV infection. Leukotrienes (LT) are mediators derived from the 5-lipoxygenase (5-LO) pathway that play a role in host defense and are synthesized by PMN. We investigated the synthesis of LT by PMN from HIV-infected subjects. There was a reduction (4.0+/-1.3% of control) in LT synthesis in PMN from HIV-infected compared with normal subjects. This was associated with reduced expression of 5-LO-activating protein (31.2+/-9.6% of normal), but not of 5-LO itself. Since HIV does not directly infect PMN, we considered that these effects were due to reduced release of cytokines, such as granulocyte colony-stimulating factor (G-CSF). We examined the effect of G-CSF treatment (300 microgram daily for 5 d) on eight HIV-infected subjects. PMN were studied in vitro before therapy (day 1) and on days 4 and 7. LTB4 synthesis was increased on day 4 of G-CSF treatment, and returned toward day 1 levels on day 7. 5-LO and 5-LO-activating protein expression were increased in parallel. As a functional correlate to this increase in PMN LT synthesis by G-CSF, we examined the effects on killing of Cryptococcus neoformans. Anticryptococcal activity of PMN from HIV-infected subjects was less than that of PMN from normal subjects. G-CSF treatment improved fungistatic activity of PMN. This increase in antifungal activity was attenuated by in vitro treatment with the LT synthesis inhibitor, MK-886. In conclusion, PMN from HIV-infected subjects demonstrate reduced 5-LO metabolism and antifungal activity in vitro, which was reversed by in vivo G-CSF therapy. PMID:9710433

  1. Media-Augmented Exercise Machines

    NASA Astrophysics Data System (ADS)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  2. Catalysts possessing augmented C-O and C-N hydrogenolysis activity. Preliminary progress report, August-September 1983

    SciTech Connect

    Massoth, F.E.; Shabtai, J.S.

    1983-10-31

    The aim of the proposed research is to synthesize and investigate new sulfided catalyst systems having higher carbon-heteroatom hydrogenolysis activity as compared to ring hydrogenation activity. A fundamental approach is planned to gain understanding of the basic catalytic properties which relate to hydrogenolysis, hydrogenation and cracking functions of the catalysts. This will involve preparation of new catalysts, characterization of their properties and model compound reactivity studies. In another part of the project, selected catalysts will be applied in studies of more complex O- and N-containing model compounds with the objective of providing fundamental data on the stereochemistry of HDO and HDN reactions. These data will be used to develop steric surface-reactant models for sulfided catalysts. These new catalysts should be of particular importance for upgrading of coal-derived liquids and solids, as well as other heavy feedstocks. The research is divided into four tasks: (1) catalyst preparation and activity testing; (2) catalyst characterization; (2) study of catalyst activity under hydroprocessing conditions; and (4) stereochemical studies. This report covers a period of only one month. Work was initiated on catalyst preparation. A brief literature search was made to ascertain what different preparation methods can be applied to supported sulfide catalysts besides the standard wetness method. Several Cr/Al/sub 2/O/sub 3/ catalysts containing Co or Ni were prepared by the standard impregnation method. 3 references.

  3. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes.

    PubMed

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-09-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.

  4. Augmentation of platelet and endothelial cell eNOS activity decreases sepsis-related neutrophil-endothelial cell interactions.

    PubMed

    Khan, Raymond; Kirschenbaum, Linda A; LaRow, Catherine; Berna, Gioiamaria; Griffin, Kelly; Astiz, Mark E

    2010-03-01

    NO is an important mediator of microvascular patency and blood flow. The purpose of this study was to examine the role of enhanced eNOS activity in attenuating sepsis-induced neutrophil-endothelial cell interactions. Microslides coated with human umbilical vein endothelial cells were stimulated with plasma from patients with septic shock. Neutrophil and platelets from control subjects were also stimulated with plasma from patients in septic shock and perfused over stimulated endothelial cells. l-Arginine (LA) with and without NG-monomethyl l-arginine (LNMMA), a nonselective NOS inhibitor, and N-(3-(aminomethyl) benzyl acetamide) ethanimidamide dihydrochloride (1400W), a highly selective iNOS inhibitor, were added to the septic plasma. The number of neutrophils adherent to endothelial cells, neutrophil rolling velocity, and the number of neutrophil aggregates were determined. Cell activation and the formation of platelet-neutrophil aggregates were assessed by flow cytometry. Separate experiments were done with isolated platelets using platelet aggregometry. l-Arginine significantly decreased sepsis-related neutrophil adhesion and aggregation and increased rolling velocity. The addition of LNMMA to LA and cell suspensions reversed the effects of LA on these parameters, whereas the addition of 1400W had no effect on LA-related changes. Platelet-neutrophil aggregation, platelet aggregation, platelet activation, and neutrophil activation induced by septic plasma were also significantly decreased by LA. Again, the addition of LNMMA reversed the effects of LA on these parameters, whereas 1400W had no effect on LA-related changes. These data suggest that enhancement of platelet and endothelial cell eNOS activity decreases sepsis-induced neutrophil-endothelial cell interactions and may play a role in maintaining microvascular patency in septic shock.

  5. Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons.

    PubMed

    Fukuchi, Mamoru; Tabuchi, Akiko; Kuwana, Yuki; Watanabe, Shinjiro; Inoue, Minami; Takasaki, Ichiro; Izumi, Hironori; Tanaka, Ayumi; Inoue, Ran; Mori, Hisashi; Komatsu, Hidetoshi; Takemori, Hiroshi; Okuno, Hiroyuki; Bito, Haruhiko; Tsuda, Masaaki

    2015-04-01

    Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline β, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated.

  6. Modulation of spike clustering by NMDA receptors and neurotensin in rat supraoptic nucleus neurons.

    PubMed

    Gagnon, Ariane; Walsh, Michael; Okuda, Tika; Choe, Katrina Y; Zaelzer, Cristian; Bourque, Charles W

    2014-10-01

    Magnocellular neurosecretory cells (MNCs) in the rat supraoptic nucleus display clustered firing during hyperosmolality or dehydration. This response is beneficial because this type of activity potentiates vasopressin secretion from axon terminals in the neurohypophysis and thus promotes homoeostatic water reabsorption from the kidney. However, the mechanisms which lead to the generation of clustering activity in MNCs remain unknown. Previous work has shown that clustered firing can be induced in these neurons through the pharmacological activation of NMDA receptors (NMDARs) and that silent pauses observed during this activity are mediated by apamin-sensitive calcium activated potassium (SK) channels. However, it remains unknown if clustered firing can be induced in situ by endogenous glutamate release from axon terminals. Here we show that electrical stimulation of glutamatergic osmosensory afferents in the organum vasculosum lamina terminalis (OVLT) can promote clustering in MNCs via NMDARs and apamin-sensitive channels.We also show that the rate of spike clustering induced by NMDA varies as a bell-shaped function of voltage, and that partial inhibition of SK channels can increase cluster duration and reduce the rate of clustering. Finally,we show that MNCs express neurotensin type 2 receptors, and that activation of these receptors can simultaneously depolarize MNCs and suppress clustered firing induced by bath application of NMDA or by repetitive stimulation of glutamate afferents. These studies reveal that spike clustering can be induced in MNCs by glutamate release from afferent nerve terminals and that that this type of activity can be fine-tuned by neuromodulators such as neurotensin.

  7. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    that an MHD accelerator can be an effective augmentation system for increasing engine exhaust velocity. More specifically, the experiment is intended to show that electromagnetic effects are effective at producing flow acceleration whereas electrothermal effects do not cause unacceptable heating of the working fluid. The MHD accelerator was designed as an externally diagonalized segmented Faraday channel, which will be inserted into an existing 2-tesla electromagnet. This allows the external power to be connected through two terminals thereby minimizing the complexity and cost associated with powering each segment independently. The design of the accelerator and other components in the flow path has been completed and fabrication activities are underway. This paper provides a full description of MAPX including performance analysis, design, and test plans, and current status.

  8. NMDA-induced ERK signalling is mediated by NR2B subunit in rat cortical neurons and switches from positive to negative depending on stage of development.

    PubMed

    Sava, Anna; Formaggio, Elena; Carignani, Corrado; Andreetta, Filippo; Bettini, Ezio; Griffante, Cristiana

    2012-02-01

    It is known that NMDA receptor stimulation can activate or inhibit the extracellular signal-regulated kinase (ERK) signalling cascade, a key pathway involved in neuronal plasticity and survival. However, the specific subtype(s) of NMDA receptor that exert bi-directional regulation of ERK signalling is under debate. Here we show that in young neurons (7-9 days in vitro, DIV), NMDA activated ERK signalling. In mature neurons (14-16 DIV), NMDA-evoked, in coincidence with a concentration-dependent increase in intracellular Ca(2+) ([Ca(2+)](i)), an increase in ERK phosphorylation at low concentrations (1-30 μM) while an inhibition at high concentrations (30 μM-250 μM). In more mature neurons (21-23 DIV) NMDA inhibited ERK signalling. Both activation and inhibition of ERK signalling were fully reversed by the selective NR2B receptor antagonists Ro 25-6981 and ifenprodil. Thus, the NR2B subunit can be both negatively or positively coupled to ERK signalling in rat cortical neurons, depending on their stage of development. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  9. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen

    PubMed Central

    Dutta, Noton K.; He, Rongjun; Pinn, Michael L.; He, Yantao; Burrows, Francis; Zhang, Zhong-Yin; Karakousis, Petros C.

    2016-01-01

    Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. PMID:27478867

  10. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.

    PubMed

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.

  11. Blockade of cannabinoid CB(1) receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity.

    PubMed

    Hansen, Henrik H; Azcoitia, Iñigo; Pons, Sebastián; Romero, Julián; García-Segura, Luis Miguel; Ramos, José Antonio; Hansen, Harald S; Fernández-Ruiz, Javier

    2002-07-01

    The ability of cannabinoid CB(1) receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB(1) receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB(1) /CB(2) receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB(1) and SR144528 for CB(2) ) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB(1) receptor function. In contrast, blockade of CB(1), but not CB(2), receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest a critical involvement of CB(1) receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo.

  12. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.

    PubMed

    Hall, Christopher J; Boyle, Rachel H; Astin, Jonathan W; Flores, Maria Vega; Oehlers, Stefan H; Sanderson, Leslie E; Ellett, Felix; Lieschke, Graham J; Crosier, Kathryn E; Crosier, Philip S

    2013-08-01

    Evidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid β-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function.

  13. Catalysts possessing augmented C-O and C-N hydrogenolysis activity. Progress report No. 3, April-June 1984

    SciTech Connect

    Massoth, F.E.; Shabtai, J.S.

    1984-07-01

    The aim this research project is to synthesize and investigate new sulfided catalyst systems having higher carbon-heteroatom hydrogenolysis activity as compared with ring hydrogenation activity. A fundamental approach is being applied to gain understanding of the basic catalytic properties which relate to hydrogenolysis, hydrogenation and cracking functions of the catalysts. This involves preparation of new catalysts, characterization of their properties and model compound reactivity studies. In another part of the project, selected catalysts are being applied in studies of more complex O- and N- containing model compounds with the objective of providing fundamental data on the stereochemistry of HDO and HDN reactions. These data will be used to develop steric surface-reactant models for sulfided catalysts. Supported noble metal catalysts containing Rh and Pd were prepared by incipient wetness impregnation of ..gamma..-Al/sub 2/O/sub 3/ using nitrate solutions. Catalysts containing also Co and Cr were similarly prepared. Catalyst activities for HDO and HDN were evaluated using the model compounds dibenzofuran and indole. Characterization work by ESCA and oxygen chemisorption, of CoMo catalysts, and stereochemical studies with several catalysts were also initiated. 15 references, 1 figure, 3 tables.

  14. Catalysts possessing augmented C-O and C-N hydrogenolysis activity. Progress report No. 1, October-December 1983

    SciTech Connect

    Massoth, F.E.; Shabtai, J.S.

    1984-01-09

    The aim of the proposed research is to synthesize and investigate new sulfided catalyst systems having higher carbon-heteroatom hydrogenolysis activity as compared to ring hydrogenation activity. A fundamental approach is planned to gain understanding of the basic catalytic properties which relate to hydrogenolysis, hydrogenation and cracking functions of the catalysts. This will involve preparation of new catalysts, characterization of their properties and model compound reactivity studies. In another part of the project, selected catalysts will be applied in studies of more complex O- and N- containing model compounds with the objective of providing fundamental data on the stereochemistry of HDO and HDN reactions. These data will be used to develop steric surface-reactant models for sulfided catalysts. During this quarter additional catalysts were prepared by incipient wetness impregnation using solutions at various pH levels. Catalysts prepared by this method included: 3% and 6% Co, or 3% and 6% Ni with either 8% Mo or with 4.5% Cr supported on ..gamma.. alumina. Five catalysts were tested for hydrodeoxygenation (HDO) and hydrodenitrogenation (HDN) activity using model compounds indole and dibenzofuran. 5 references, 5 figures, 1 table.

  15. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons.

    PubMed

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L; Anggono, Victor; Gether, Ulrik; Huganir, Richard L; Madsen, Kenneth L

    2013-08-27

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity. PMID:23940334

  16. Evidence for an atypical receptor mediating the augmented bronchoconstrictor response to adenosine induced by allergen challenge in actively sensitized Brown Norway rats.

    PubMed

    Hannon, J P; Tigani, B; Wolber, C; Williams, I; Mazzoni, L; Howes, C; Fozard, J R

    2002-02-01

    The bronchoconstrictor response to adenosine is markedly and selectively increased following ovalbumin (OA) challenge in actively sensitized, Brown Norway rats. We present a pharmacological analysis of the receptor mediating this response. Like adenosine, the broad-spectrum adenosine receptor agonist, NECA, induced dose-related bronchoconstriction in actively sensitized, OA-challenged animals. In contrast, CPA, CGS 21680 and 2-Cl-IB-MECA, agonists selective for A(1) A(2A) and A(3) receptors, respectively, induced no, or minimal, bronchoconstriction. Neither the selective A(1) receptor antagonist, DPCPX, nor the selective A(2A) receptor antagonist, ZM 241385, blocked the bronchoconstrictor response to adenosine. MRS 1754, which has similar affinity for rat A(2B) and A(1) receptors, failed to block the bronchoconstrictor response to adenosine despite blockade of the A(1) receptor-mediated bradycardia induced by NECA. 8-SPT and CGS 15943, antagonists at A(1), A(2A), and A(2B) but not A(3) receptors, inhibited the bronchoconstrictor response to adenosine. However, the degree of blockade (approximately 3 fold) did not reflect the plasma concentrations, which were 139 and 21 times greater than the K(B) value at the rat A(2B) receptor, respectively. Adenosine and NECA, but not CPA, CGS 21680 or 2-Cl-IB-MECA, induced contraction of parenchymal strip preparations from actively sensitized OA-challenged animals. Responses to adenosine could not be antagonized by 8-SPT or MRS 1754 at concentrations >50 times their affinities at the rat A(2B) receptor. The receptor mediating the bronchoconstrictor response to adenosine augmented following allergen challenge in actively sensitized BN rats cannot be categorized as one of the four recognized adenosine receptor subtypes.

  17. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test.

    PubMed

    Zhang, Lin; Xu, Tianyuan; Wang, Shuang; Yu, Lanqing; Liu, Dexiang; Zhan, Renzhi; Yu, Shu Yan

    2013-01-10

    The antidepressant-like effect of curcumin, a major active component of Curcuma longa, has been previously demonstrated in the forced swimming test. However, the mechanism of this beneficial effect on immobility scores, which is used to evaluate antidepressants, remains largely uncharacterized. The present study attempts to investigate the effects of curcumin on depressive-like behavior with a focus upon the possible contribution of N-methyl-D-aspartate (NMDA) subtype glutamate receptors in this antidepressant-like effect of curcumin. Male mice were pretreated with specific receptor antagonists to different NMDA receptor subtypes such as CPP, NVP-AAM077 and Ro25-6981 as well as to a partial NMDA receptor agonist, D-cycloserine (DCS), prior to administration of curcumin to observe the effects on depressive behavior as measured by immobility scores in the forced swim test. We found that pre-treatment of mice with CPP, a broad-spectrum competitive NMDA receptor antagonist, blocked the anti-immobility effect of curcumin, suggesting the involvement of the glutamate-NMDA receptors. While pretreatment with NVP-AAM077 (the GluN2A-preferring antagonist) did not affect the anti-immobility effect of curcumin, Ro25-6981 (the GluN2B-preferring antagonist) was found to prevent the effect of curcumin in the forced swimming test. Furthermore, pre-treatment with a sub-effective dose of DCS potentiated the anti-immobility effect of a sub-effective dose of curcumin in the forced swimming test. Taken together, these results suggest that curcumin shows antidepressant-like effects in mice and the activation of GluN2B-containing NMDARs is likely to play a predominate role in this beneficial effect. Therefore, the antidepressant-like effect of curcumin in the forced swim test may be mediated, at least in part, by the glutamatergic system.

  18. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells.

    PubMed

    Gill, R; Jen, K L; McCabe, M J J; Rosenspire, A

    2016-10-15

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune sequelae of

  19. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells.

    PubMed

    Gill, R; Jen, K L; McCabe, M J J; Rosenspire, A

    2016-10-15

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune sequelae of

  20. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation

    PubMed Central

    Carpenter, Erica L; Mick, Rosemarie; Rüter, Jens; Vonderheide, Robert H

    2009-01-01

    ligation augments the effect of CP-870,893 alone. These results provide further rationale for combining CD40 and TLR9 activation using available clinical reagents in strategies of novel tumor immunotherapy. PMID:19906293

  1. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    PubMed

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions. PMID:21420786

  2. Inter-α/β subunits coupling mediating pre-inactivation and augmented activation of BKCa(β2).

    PubMed

    Hou, Panpan; Zeng, Wenping; Gan, Geliang; Lv, Caixia; Guo, Xiying; Zhang, Zheng; Liu, Haowen; Wu, Ying; Yao, Jing; Wei, Aguan D; Wang, Sheng; Ding, Jiuping

    2013-01-01

    Large-conductance calcium-activated potassium (BK) channels regulate the electric properties and neurotransmitter release in excitable cells. Its auxiliary β2 subunits not only enhance gating, but also confer inactivation via a short-lived preinactivated state. However, the mechanism of enhancement and preinactivation of BK channels by β2 remains elusive. Using our newly developed methods, we demonstrated that electrostatic forces played a crucial role in forming multiple complementary pairs of binding sites between α and β subunits including a "PI site" required for channel preinactivation, an "E site" enhancing calcium sensitivity and an "ECaB" coupling site transferring force to gate from the Ca(2+)-bowl via the β2(K33, R34, K35), E site and S6-C linker, independent of another Ca(2+) binding site mSlo1(D362,D367). A comprehensive structural model of the BK(β2) complex was reconstructed based on these functional studies, which paves the way for a clearer understanding of the structural mechanisms of activation and preinactivation of other BK(β) complexes. PMID:23588888

  3. ANTIDEPRESSANT-LIKE EFFECTS OF LOW KETAMINE DOSE IS ASSOCIATED WITH INCREASED HIPPOCAMPAL AMPA/NMDA RECEPTOR DENSITY RATIO IN FEMALE WISTAR-KYOTO RATS

    PubMed Central

    Tizabi, Yousef; Bhatti, Babur H; Manaye, Kebreten F; Das, Jharna R; Akinfiresoye, Luli

    2012-01-01

    Preclinical as well as limited clinical studies indicate that ketamine, a non-competitive glutamate NMDA receptor antagonist, may exert a quick and prolonged antidepressant effect. It has been postulated that ketamine action is due to inhibition of NMDA and stimulation of AMPA receptors. Here, we sought to determine whether ketamine would exert antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of depression and whether this effect would be associated with changes in AMPA/NMDA receptor densities in the hippocampus. Adult female WKY rats and their control Wistar rats were subjected to acute and chronic ketamine doses and their locomotor activity (LMA) and immobility in the forced swim test (FST) were evaluated. Hippocampal AMPA and NMDA receptor densities were also measured following a chronic ketamine dose. Ketamine, both acutely (0.5–5.0 mg/kg ip) and chronically (0.5–2.5 mg/kg daily for 10 days) resulted in a dose-dependent and prolonged decrease in immobility in the FST in WKY rats only, suggesting an antidepressant-like effect in this model. Chronic treatment with an effective dose of ketamine also resulted in an increase in AMPA/NMDA receptor density ratio in the hippocampus of WKY rats. LMA was not affected by any ketamine treatment in either strain. These results indicate a rapid and lasting antidepressant-like effect of a low ketamine dose in WKY rat model of depression. Moreover, the increase in AMPA/NMDA receptor density in hippocampus could be a contributory factor to behavioral effects of ketamine. These findings suggest potential therapeutic benefit in simultaneous reduction of central NMDA and elevation of AMPA receptor function in treatment of depression. PMID:22521815

  4. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis

    PubMed Central

    Fukata, Masayuki; Shang, Limin; Santaolalla, Rebeca; Sotolongo, John; Pastorini, Cristhine; España, Cecilia; Ungaro, Ryan; Harpaz, Noam; Cooper, Harry S.; Elson, Greg; Kosco-Vilbois, Marie; Zaias, Julia; Perez, Maria T.; Mayer, Lloyd; Vamadevan, Arunan S.; Lira, Sergio A.; Abreu, Maria T.

    2010-01-01

    Chronic intestinal inflammation culminates in cancer and a link to TLR4 has been suggested by our observation that TLR4 deficiency prevents colitis-associated neoplasia. In the current study, we address the effect of the aberrant activation of epithelial TLR4 on induction of colitis and colitis-associated tumor development. We take a translational approach to address the consequences of increased TLR signaling in the intestinal mucosa. Mice transgenic for a constitutively-active TLR4 under the intestine-specific villin promoter (villin-TLR4 mice) were treated with DSS for acute colitis and azoxymethane-dextran sulfate sodium. TLR4 expression was analyzed by immunohistochemistry in colonic tissue from patients with ulcerative colitis and ulcerative colitis associated cancer. The effect of an antagonist TLR4 Ab was tested in prevention of colitis-associated neoplasia in the AOM-DSS model. Villin-TLR4 mice were highly susceptible to both acute colitis and colitis-associated neoplasia. Villin-TLR4 mice had increased epithelial expression of COX-2 and mucosal PGE2 production at baseline. Increased severity of colitis in villin-TLR4 mice was characterized by enhanced expression of inflammatory mediators and increased neutrophilic infiltration. In human UC samples, TLR4 expression was upregulated in almost all CAC and progressively increases with grade of dysplasia. As a proof of principle, a TLR4/MD-2 antagonist antibody inhibited colitis-associated neoplasia in the mouse model. Our results show that regulation of TLR's can affect the outcome of both acute colitis and its consequences—cancer. Targeting TLR4 and other TLR's may ultimately play a role in prevention or treatment of colitis-associated cancer. PMID:21674704

  5. Ovariectomy augments hypertension through rho-kinase activation in the brain stem in female spontaneously hypertensive rats.

    PubMed

    Ito, Koji; Hirooka, Yoshitaka; Kimura, Yoshikuni; Sagara, Yoji; Sunagawa, Kenji

    2006-10-01

    Estrogen protects against increases in arterial pressure (AP) by acting on blood vessels and on cardiovascular centers in the brain. The mechanisms underlying the effects of estrogen in the brain stem, however, are not clear. The aim of the present study was to determine whether ovariectomy affects AP via the Rho/Rho-kinase pathway in the brain stem. We performed bilateral ovariectomy in 12-week-old female spontaneously hypertensive rats. AP and heart rate (HR), measured using radiotelemetry in awake rats, were increased in ovariectomized rats compared with control rats (mean AP: 163+/-3 versus 144+/-4 mm Hg; HR: 455+/-4 versus 380+/-6 bpm). Continuous intracisternal infusion of Y-27632 significantly attenuated the ovariectomy-induced increase in AP and HR (mean AP: 137+/-6 versus 163+/-3 mm Hg; HR: 379+/-10 versus 455+/-4 bpm). In addition, we confirmed the increase of Rho-kinase activity in the brain stem in ovariectomized rats, and the increase was attenuated by intracisternal infusion of Y-27632 via the phosphorylated ezrin, radixin, and moesin (ERM) family, which are Rho-kinase target proteins. Furthermore, angiotensin II type 1 receptor expression in the brain stem was significantly greater in ovariectomized rats than in control rats, and the increase was partially reduced by intracisternal infusion of Y-27632. In a separate group of animals, we confirmed that the serum and cerebrospinal fluid 17beta-estradiol concentrations decreased in ovariectomized rats. These results suggest that depletion of endogenous estrogen by ovariectomy, at least in part, induces hypertension in female spontaneously hypertensive rats via activation of the renin-angiotensin system and the Rho/Rho-kinase pathway in the brain stem.

  6. Effects of 5-HT1A receptor agonists and NMDA receptor antagonists in the social interaction test and the elevated plus maze.

    PubMed

    Dunn, R W; Corbett, R; Fielding, S

    1989-10-01

    The effects of several 5-HT1A agonists and excitatory amino acid antagonists were compared to the standard benzodiazepines, diazepam and chlordiazepoxide (CDP) in two assays predictive of anxiolytic activity, the social interaction and elevated plus maze procedures. Indicative of anxiolytic effects the 5-HT1A agonists, buspirone, gepirone and 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) all significantly increased social interaction time and open arm exploration time in the social interaction and elevated plus maze procedures, respectively. Likewise, anxiolytic activity in these assays were also produced by the competitive N-methyl-D-aspartate (NMDA) antagonists, 2-amino-5-phosphonovaleric acid (AP-5), 2-amino-7-phosphonoheptanoic acid (AP-7), 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) and the non-competitive NMDA antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) while NMDA produced anxiogenic effects. Furthermore, the anxiolytic effects of these agents were of equal magnitude to the benzodiazepines. These two classes of compounds were differentiated in the yohimbine-induced seizure assay, with the NMDA antagonists dose dependently antagonizing seizures similar to the benzodiazepines while the 5-HT1A agonists were inactive. These results suggest that the 5-HT1A agonists and the NMDA antagonists may be potential non-classical anxiolytic agents with different mechanisms of action.

  7. Spermidine and Ca(2+), but not Na(+), can permeate NMDA receptors consisting of GluN1 and GluN2A or GluN2B in the presence of Mg(2+).

    PubMed

    Hirose, Tadao; Saiki, Ryotaro; Yoshizawa, Yuki; Imamura, Masataka; Higashi, Kyohei; Ishii, Itsuko; Toida, Toshihiko; Williams, Keith; Kashiwagi, Keiko; Igarashi, Kazuei

    2015-08-01

    N-Methyl-D-aspartate receptors (NMDA receptors) are known to be permeable to Na(+) and Ca(2+) ions. In this study, we tested whether polyamines (putrescine, spermidine, spermine), organic cations found in cells, can permeate NMDA receptors expressed in Xenopus laevis oocytes and HEK293 cells. It was found that polyamines, especially spermidine, can permeate NMDA channels expressed from GluN1/GluN2A or GluN1/GluN2B activated by glycine and glutamate. Furthermore, spermidine and Ca(2+) influx through NMDA receptors was observed in the presence of Mg(2+), although Na(+) influx was strongly inhibited by Mg(2+). The Km values for spermidine influx through GluN1/GluN2A and GluN1/GluN2B were 2.2 mM and 2.7 mM, respectively in the presence of isotonic extracellular ion solutions. Spermidine uptake by NMDA receptors was dependent on the presence of glycine and glutamate, and inhibited by Ca(2+) and by memantine, an NMDA receptor channel blocker. The Km values for Ca(2+) influx through GluN1/GluN2A and GluN1/GluN2B were 4.6 mM and 3.3 mM, respectively, under the same ionic conditions. The results indicate that spermidine and Ca(2+), but not Na(+), can permeate NMDA receptors in the presence of Mg(2+). Spermidine, if released locally from presynaptic terminals (where its concentration is high in synaptosomes and synaptic vesicles) could permeate NMDA receptors and play a role in synaptic plasticity mediated by NMDA receptors together with Ca(2+).

  8. NMDA Receptor Blockade by Ketamine Abrogates Lipopolysaccharide-Induced Depressive-Like Behavior in C57BL/6J Mice

    PubMed Central

    Walker, Adam K; Budac, David P; Bisulco, Stephanie; Lee, Anna W; Smith, Robin A; Beenders, Brent; Kelley, Keith W; Dantzer, Robert

    2013-01-01

    We have previously demonstrated that lipopolysaccharide (LPS) induces depressive-like behavior by activating indoleamine 2,3 dioxygenase (IDO; O'Connor et al, 2009c). IDO degrades tryptophan along the kynurenine pathway. Using mass-spectrometry (LC-MS) analysis of kynurenine metabolites in the brain of mice injected at the periphery with 1 mg/kg LPS, we show that LPS activates the kynurenine 3-monooxygenase pathway that ultimately degrades kynurenine into quinolinic acid. As quinolinic acid acts as an N-methyl-𝒟-aspartate (NMDA) receptor agonist, we used the NMDA receptor antagonist ketamine to assess the role of NMDA receptor activation in LPS-induced depressive-like behavior. Here, we report that a low dose of ketamine (6 mg/kg, intraperitoneally) immediately before administration of LPS (0.83 mg/kg, intraperitoneally) in C57Bl/6 J mice abrogated the development of LPS-induced depressive-like behavior, without altering LPS-induced sickness measured by body weight loss, decreased motor activity, and reduced food intake. Depressive-like behavior was measured 24 h after LPS by decreased sucrose preference and increased immobility in the forced swim test (FST). Ketamine had no effect on LPS-induced cytokine expression in the liver and brain, IDO activation, and brain-derived neurotrophic factor (BDNF) transcripts. The ability of ketamine to abrogate LPS-induced depressive-like behavior independently of a possible interference with LPS-induced inflammatory signaling was confirmed when ketamine was administered 10 h after LPS instead of immediately before LPS. In contrast, ketamine had no effect when administered 24 h before LPS. To confirm that NMDA receptor antagonism by ketamine mediates the antidepressant-like activity of this compound in LPS-treated mice, mice were pretreated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione (NBQX) to block

  9. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy.

    PubMed

    Xu, Cheng-Xiong; Zhao, Liqun; Yue, Ping; Fang, Guofu; Tao, Hui; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R; Sun, Shi-Yong

    2011-09-15

    Autophagy is a cellular lysosomal degradation pathway essential for regulation of cell survival and death to maintain homeostasis. This process is negatively regulated by mammalian target of rapamycin (mTOR) signaling and often counteracts efficacy of certain cancer therapeutic agents. NVP-BEZ235 (BEZ235) is a novel, orally bioavailable dual PI3K/mTOR inhibitor that has exhibited promising activity against non-small cell lung cancer (NSCLC) in preclinical models. The current study focuses on evaluating the role of BEZ235 in regulating autophagy. BEZ235 was effective in inhibiting the growth of NSCLC cells including induction of apoptosis. It also potently induced the expression of type-II LC3, indicating induction of autophagy. When BEZ235 was used in combination with the lysosomal or autophagic inhibitor chloroquine (CQ), enhanced inhibitory effects on monolayer growth and colony formation of NSCLC cells was observed. In addition, enhanced induction of apoptosis was also detected in cells exposed to the combination of BEZ235 and CQ. Moreover, the combination of BEZ235 and CQ was more effective than each single agent alone in inhibiting the growth of NSCLC xenografts in nude mice. Thus, induction of autophagy by BEZ235 appears to be a survival mechanism that may counteract its anticancer effects. Based on these, we suggest a strategy to enhance BEZ235's anticancer efficacy by blockade of autophagy. PMID:21738008

  10. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy

    PubMed Central

    Xu, Cheng-Xiong; Zhao, Liqun; Yue, Ping; Fang, Guofu; Tao, Hui; Owonikoko, Taofeek K; Ramalingam, Suresh S; Khuri, Fadlo R

    2011-01-01

    Autophagy is a cellular lysosomal degradation pathway essential for regulation of cell survival and death to maintain homeostasis. This process is negatively regulated by mammalian target of rapamycin (mTOR) signaling and often counteracts efficacy of certain cancer therapeutic agents. NVP-BEZ235 (BEZ235) is a novel, orally bioavailable dual PI3K/mTOR inhibitor that has exhibited promising activity against non-small cell lung cancer (NSCLC) in preclinical models. The current study focuses on evaluating the role of BEZ235 in regulating autophagy. BEZ235 was effective in inhibiting the growth of NSCLC cells including induction of apoptosis. It also potently induced the expression of type-II LC3, indicating induction of autophagy. When BEZ235 was used in combination with the lysosomal or autophagic inhibitor chloroquine (CQ), enhanced inhibitory effects on monolayer growth and colony formation of NSCLC cells was observed. In addition, enhanced induction of apoptosis was also detected in cells exposed to the combination of BEZ235 and CQ. Moreover, the combination of BEZ235 and CQ was more effective than each single agent alone in inhibiting the growth of NSCLC xenografts in nude mice. Thus, induction of autophagy by BEZ235 appears to be a survival mechanism that may counteract its anticancer effects. Based on these, we suggest a strategy to enhance BEZ235's anticancer efficacy by blockade of autophagy. PMID:21738008

  11. A complex dietary supplement augments spatial learning, brain mass, and mitochondrial electron transport chain activity in aging mice.

    PubMed

    Aksenov, Vadim; Long, Jiangang; Liu, Jiankang; Szechtman, Henry; Khanna, Parul; Matravadia, Sarthak; Rollo, C David

    2013-02-01

    We developed a complex dietary supplement designed to offset five key mechanisms of aging and tested its effectiveness in ameliorating age-related cognitive decline using a visually cued Morris water maze test. All younger mice (<1 year old) learned the task well. However, older untreated mice (>1 year) were unable to learn the maze even after 5 days, indicative of strong cognitive decline at older ages. In contrast, no cognitive decline was evident in older supplemented mice, even when ∼2 years old. Supplemented older mice were nearly 50% better at locating the platform than age-matched controls. Brain weights of supplemented mice were significantly greater than controls, even at younger ages. Reversal of cognitive decline in activity of complexes III and IV by supplementation was significantly associated with cognitive improvement, implicating energy supply as one possible mechanism. These results represent proof of principle that complex dietary supplements can provide powerful benefits for cognitive function and brain aging.

  12. In vitro augmented photodynamic bactericidal activity of tetracycline and chitosan against Clostridium difficile KCTC5009 in the planktonic cultures.

    PubMed

    Choi, SungSook; Lee, HaeKyung; Yu, JiHan; Chae, HiunSuk

    2015-12-01

    Infection with Clostridium difficile (C. difficile) causes a severe colitis with high recurrence. Treatment of C. difficile infection (CDI) is based on antibiotics in spite of the increase of resistance. To interrupt the vicious cycles such as new antibiotics treatment and appearance of resistance strains, photodynamic therapy (PDT) might be a possible alternative therapy for CDI. Tetracycline (TC) has been used as a broad spectrum antibiotic with low risk of CDI and a photosensitizer (PS) in PDT. In vitro PDT against C. difficile was conducted using UVA and TC as a PS before in vivo study. To enhance the photodynamic antibacterial activity of TC, we applied chitosan as a boostering agent. Bactericidal effects after PDT, were measured by counting viable cells, DNA damage and membrane integrity. At 1mg/mL of TC, chitosan treatment combined with PDT, increased the bactericidal effect by >10,000-fold of the effect of PDT alone. Membrane damage and cellular DNA damage demonstrated by EMA-qPCR were also greater in the group treated with PDT+chitosan than in that treated PDT alone. The present study showed that PDT using a combination of TC and chitosan is an effective method for killing C. difficile.

  13. The role of the mGluR allosteric modulation in the NMDA-hypofunction model of schizophrenia.

    PubMed

    Doreulee, N; Alania, M; Mitaishvili, E; Chikovani, M; Chkhartishvili, B

    2009-12-01

    Schizophrenia is one of the most important forms of psychiatric illness and may be chronic and highly disabling. It has been suggested that specific neurochemical abnormality is due to dopaminergic overactivity in the brain. Schizophrenia is currently thought to be associated with a hypoglutamatergic state that is mimicked by acute Phencyclidine (PCP), an antagonist of the N-methyl-D-aspartate (NMDA) receptor subtype. Administration of PCP or ketamine in rodents has been used to model aspects of schizophrenia. Taken into consideration the role of glutamatergic system in development of schizophrenia and involvement of striatal dopaminergic receptors in generation of schizophrenia symptoms, it was planned to study functional interaction between NMDA and metabotropic glutamatergic receptors 5 (mGluR5) in schizophrenia-associated behavioral and memory disturbance and the role of mGluRs allosteric modulation in cortico-striatal synaptic plasticity. In our experiments investigation of dose-dependent effects of ketamine revealed that 0.3mg/kg ketamine induces statistical changes most of behavioral and cognitive parameters in rats. Changes in emotional state showed decrease of the number and total duration of groomings in open field experiments as wall as in passive avoidance task. Decrease of motor activity was also detected, while no significant changes were observed in number of defecations. In T-maze test it was shown that spatial memory was damaged. To determine whether mGlu5 and NMDA receptor interact to regulate complex behaviors that are relevant to cognitive disorders such as schizophrenia we focused on assessing whether the selective mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine MPEP mimics or exacerbates the effects of the NMDA receptor antagonist. Ketamine-induced memory disturbance was significantly increased after injection of mGluR5 negative allosteric modulators MPEP. In In vitro experiments the agonist at group I metabotropic glutamate

  14. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    SciTech Connect

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr. )

    1991-04-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.

  15. The role of NMDA and non-NMDA receptors in the NTS in mediating three distinct sympathoinhibitory reflexes.

    PubMed

    Sartor, Daniela M; Verberne, Anthony J M

    2007-12-01

    Cholecystokinin (CCK) elicits a sympathetic vasomotor reflex that is implicated in gastrointestinal circulatory control. We sought to determine (1) the site in the solitary tract nucleus (NTS) responsible for mediating this reflex and (2) the possible involvement of excitatory amino acid (EAA) receptors. In addition, we sought to determine whether the NTS site responsible for mediating the baroreflex (phenylephrine, PE, 10 microg/kg i.v.) and the von Bezold-Jarisch reflex (phenylbiguanide, PBG, 10 microg/kg i.v) overlap with that involved in the CCK-induced reflex (CCK, 4 microg/kg, i.v.), and to compare the relative importance of NMDA and non-NDMA receptors in these reflexes. In separate experiments, the effects of PE, PBG, and CCK on mean arterial blood pressure, heart rate, and splanchnic sympathetic nerve discharge were tested before and after bilateral microinjection into the NTS of the gamma-aminobutyric acid(A) (GABA(A)) agonist muscimol, the EAA antagonist kynurenate, the NMDA receptor antagonist D: (-)-2-amino-5-phosphopentanoic acid (AP-5), the non-NMDA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), AP-5 + NBQX, or vehicle. While all treatments (except vehicle) significantly attenuated/abolished/reversed the splanchnic sympathoinhibitory responses to PE, PBG, and CCK, the extent of blockade varied between the different treatment groups. Both NMDA and non-NMDA receptors were essential to the baroreflex and the von Bezold-Jarisch reflex, whereas the CCK reflex was more dependent on non-NMDA receptors. Muscimol, kynurenate, and AP-5 + NBQX significantly attenuated the bradycardic responses to PE and PBG (P < 0.05), whereas AP-5, NBQX, or vehicle did not. The bradycardic responses to CCK remained intact after all treatments. These results suggest that while there is overlap in the area of the NTS responsible for eliciting all three reflexes, NMDA and non-NMDA receptors are recruited differentially for the

  16. Augmenting computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1984-01-01

    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.

  17. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  18. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons.

    PubMed

    Centeno, C; Repici, M; Chatton, J-Y; Riederer, B M; Bonny, C; Nicod, P; Price, M; Clarke, P G H; Papa, S; Franzoso, G; Borsello, T

    2007-02-01

    Excitotoxic insults induce c-Jun N-terminal kinase (JNK) activation, which leads to neuronal death and contributes to many neurological conditions such as cerebral ischemia and neurodegenerative disorders. The action of JNK can be inhibited by the D-retro-inverso form of JNK inhibitor peptide (D-JNKI1), which totally prevents death induced by N-methyl-D-aspartate (NMDA) in vitro and strongly protects against different in vivo paradigms of excitotoxicity. To obtain optimal neuroprotection, it is imperative to elucidate the prosurvival action of D-JNKI1 and the death pathways that it inhibits. In cortical neuronal cultures, we first investigate the pathways by which NMDA induces JNK activation and show a rapid and selective phosphorylation of mitogen-activated protein kinase kinase 7 (MKK7), whereas the only other known JNK activator, mitogen-activated protein kinase kinase 4 (MKK4), was unaffected. We then analyze the action of D-JNKI1 on four JNK targets containing a JNK-binding domain: MAPK-activating death domain-containing protein/differentially expressed in normal and neoplastic cells (MADD/DENN), MKK7, MKK4 and JNK-interacting protein-1 (IB1/JIP-1).

  19. The inhibitor of I kappa B alpha phosphorylation BAY 11-7082 prevents NMDA neurotoxicity in mouse hippocampal slices.

    PubMed

    Goffi, F; Boroni, F; Benarese, M; Sarnico, I; Benetti, A; Spano, P F; Pizzi, M

    2005-04-01

    NF-kappaB is a nuclear transcription factor involved in the control of fundamental cellular functions including cell survival. Among the many target genes of this factor, both pro- and anti-apoptotic genes have been described. To evaluate the contribution of NF-kappaB activation to excitotoxic insult, we analysed the effect of IkappaBalpha (IkappaBalpha) phosphorylation blockade on glutamate-induced toxicity in adult mouse hippocampal slices. By using immunocytochemical and EMSA techniques, we found that (i) acute exposure of hippocampal slices to NMDA induced nuclear translocation of NF-kappaB, (ii) NMDA-mediated activation of NF-kappaB was prevented by BAY 11-7082, an inhibitor of IkappaBalpha phosphorylation and degradation, and (iii) BAY 11-7082-mediated inhibition of NF-kappaB activation was associated with neuroprotection.

  20. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  1. NMDA receptor complex blockade by oral administration of magnesium: comparison with MK-801.

    PubMed

    Decollogne, S; Tomas, A; Lecerf, C; Adamowicz, E; Seman, M

    1997-09-01

    The ion channel of the N-methyl-D-aspartate (NMDA) receptor complex is subject to a voltage-dependent regulation by Mg2+ cations. Under physiological conditions, this channel is supposed to be blocked by a high concentration of magnesium in extracellular fluids. A single dose of magnesium organic salts (i.e., aspartate, pyroglutamate, and lactate) given orally to normal mice rapidly increases the plasma Mg2+ level and reveals a significant dose-dependent antagonist effect of magnesium on the latency of NMDA-induced convulsions; this effect is similar to that seen after administration of the dizocilpine (MK-801) channel blocker. An anticonvulsant effect of Mg2+ treatment is also observed with strychnine-induced convulsions but not with bicuculline-, picrotoxin-, or pentylenetetrazol-induced convulsions. In the forced swimming test, Mg2+ salts reduce the immobility time in a way similar to imipramine and thus resemble the antidepressant-like activity of MK-801. This activity is masked at high doses of magnesium by a myorelaxant effect that is comparable to MK-801-induced ataxia. Potentiation of yohimbine fatal toxicity is another test commonly used to evaluate putative antidepressant drugs. Administration of Mg2+ salts, like administration of imipramine strongly potentiates yohimbine lethality in contrast to MK-801, which is only poorly active in this test. Neither Mg2+ nor MK-801 treatment can prevent reserpine-induced hypothermia. These data demonstrate that oral administration of magnesium to normal animals can antagonize NMDA-mediated responses and lead to antidepressant-like effects that are comparable to those of MK-801. This important regulatory role of Mg2+ in the central nervous system needs further investigation to evaluate the potential therapeutic advantages of magnesium supplementation in psychiatric disorders. PMID:9264101

  2. Time and space profiling of NMDA receptor co-agonist functions.

    PubMed

    Mothet, Jean-Pierre; Le Bail, Matildé; Billard, Jean-Marie

    2015-10-01

    The N-Methyl D-Aspartic acid (NMDA) receptors (NMDAR) are key tetrameric ionotropic glutamate receptors that transduce glutamatergic signals throughout the central nervous system (CNS) and spinal cord. Although NMDARs are diverse in their subunit composition, subcellular localization, and biophysical and pharmacological properties, their activation always requires the binding of a co-agonist that has long been thought to be glycine. However, intense research over the last decade has challenged this classical model by showing that another amino acid, d-serine, is the preferential co-agonist for a subset of synaptic NMDARs in many areas of the adult brain. Nowadays, a totally new picture of glutamatergic synapses at work is emerging where both glycine and d-serine are involved in a complex interplay to regulate NMDAR functions in the CNS following time and space constraints. The purpose of this review was to highlight the particular role of each co-agonist in modulating NMDAR-dependent activities in healthy and diseased brains. We have herein integrated our most advanced knowledge of how glycine and d-serine may orchestrate synapse dynamics and drive neuronal network activity in a time- and synapse-specific manner and how changes in synaptic availability of these amino acids may contribute to cognitive impairments such as those associated with healthy aging, epilepsy, and schizophrenia. The N-Methyl D-Aspartic acid (NMDA) subtype of glutamate receptors are central to many physiological functions and are linked to brain disorders. Their functions require glutamate and a co-agonist d-serine or glycine. After years of intense research and controversy on the identity of the amino acid that serves as the right co-agonist, we are just entering a new era of consensus where glycine and d-serine are teaming up to regulate the function of different subsets of NMDA receptors and at different synapses during different time windows of brain development. PMID:26088787

  3. Soft tissue augmentation.

    PubMed

    Hirsch, Ranella J; Cohen, Joel L

    2006-09-01

    Recent additions to the soft tissue augmentation armamentarium have greatly increased the dermatologic surgeon's choices in optimizing facial contouring and the treatment of acne scars. In this article, we review the science of fillers and look at the future of dermal fillers.

  4. Augmented Reality Binoculars.

    PubMed

    Oskiper, Taragay; Sizintsev, Mikhail; Branzoi, Vlad; Samarasekera, Supun; Kumar, Rakesh

    2015-05-01

    In this paper we present an augmented reality binocular system to allow long range high precision augmentation of live telescopic imagery with aerial and terrain based synthetic objects, vehicles, people and effects. The inserted objects must appear stable in the display and must not jitter and drift as the user pans around and examines the scene with the binoculars. The design of the system is based on using two different cameras with wide field of view and narrow field of view lenses enclosed in a binocular shaped shell. Using the wide field of view gives us context and enables us to recover the 3D location and orientation of the binoculars much more robustly, whereas the narrow field of view is used for the actual augmentation as well as to increase precision in tracking. We present our navigation algorithm that uses the two cameras in combination with an inertial measurement unit and global positioning system in an extended Kalman filter and provides jitter free, robust and real-time pose estimation for precise augmentation. We have demonstrated successful use of our system as part of information sharing example as well as a live simulated training system for observer training, in which fixed and rotary wing aircrafts, ground vehicles, and weapon effects are combined with real world scenes. PMID:26357208

  5. Augmentative & Alternative Communication

    ERIC Educational Resources Information Center

    Murphy, Patti

    2007-01-01

    There is no definitive recipe for augmentative and alternative communication (AAC) success, but its universal ingredients can be found at home. The main ones are: (1) Understanding that all children need to express themselves, however outgoing or shy they may be; (2) Willingness to embrace the technology that may help your child regardless of your…

  6. Augmented thermal bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1993-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.

  7. Augmented Thermal Bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1996-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.

  8. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Szewczyk, Bernadeta; Wlaź, Aleksandra; Kasperek, Regina; Wróbel, Andrzej; Nowak, Gabriel

    2011-11-01

    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and D: -cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and D: -cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or D: -cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and D: -cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by D: -serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway.

  9. Pindolol does not act only on 5-HT1A receptors in augmenting antidepressant activity in the mouse forced swimming test.

    PubMed

    Bourin, M; Redrobe, J P; Baker, G B

    1998-04-01

    The present study was undertaken to identify the receptor subtypes involved in (+/-) pindolol's ability to enhance the effects of antidepressant drugs in the mouse forced swimming test. Interaction studies were performed with S 15535 (presynaptic 5-HT1A receptor agonist) and methiothepin (5-HT1B autoreceptor antagonist) in an attempt to attenuate or potentiate antidepressant-like activity. (+/-) Pindolol was tested in combination with selective agonists and antagonists at 5-HT1, 5-HT2 and 5-HT3 receptor subtypes. Pretreatment with S 15535 and methiothepin attenuated the activity of paroxetine, fluvoxamine and citalopram (32 mg/kg, i.p.; P < 0.01). (+/-) Pindolol (32 mg/kg, i.p.) induced significant anti-immobility effects when tested in combination with 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridyl)-1H-indole (RU 24969) (1 mg/kg, i.p.; P < 0.05), 1-(2-methoxyphenyl)-4-[-(2-phthalimido) butyl]piperazine) (NAN 190) (0.5 mg/kg; P < 0.05) and ondansetron (0.00001 mg/kg, i.p.; P < 0.01). Pretreatment with NAN 190 (0.5 mg/kg, i.p.) potentiated the effects of RU 24969 (1 mg/kg, i.p.; P < 0.05) and (+/-) pindolol (32 mg/kg, i.p.; P < 0.05) in the forced swimming test, as did ondansetron (0.00001 mg/kg, i.p.). Significant additive effects were induced when RU 24969 (1 mg/kg, i.p.) was tested in combination with NAN 190 (0.5 mg/kg, i.p.; P < 0.05), (+/-) pindolol (32 mg/kg, i.p.; P < 0.05) and ondansetron (0.0000 mg/kg, i.p.; P < 0.05). 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, i.p.) or ketanserin (8 mg/kg, i.p.) did not induce significant antidepressant-like effects with any of the agonists/antagonists tested. The results of the present study suggest that pindolol is acting at presynaptic 5-HT1B serotonergic receptors, in addition to the 5-HT1A subtype, in augmenting the activity of antidepressants in the mouse forced swimming test.

  10. [Anti-NMDA receptor encephalitis: two paediatric cases].

    PubMed

    González-Toro, M Cristina; Jadraque-Rodríguez, Rocío; Sempere-Pérez, Ángela; Martínez-Pastor, Pedro; Jover-Cerdá, Jenaro; Gómez-Gosálvez, Francisco

    2013-12-01

    Introduccion. La encefalitis asociada a anticuerpos antirreceptores de N-metil-D-aspartato (NMDA) es una patologia neurologica autoinmune documentada en la poblacion pediatrica de manera creciente en los ultimos años. Se presentan dos casos de nuestra experiencia con clinica similar. Casos clinicos. Caso 1: niña de 5 años que inicia un cuadro de convulsiones y alteracion de conciencia, asociando trastornos del movimiento y regresion de habilidades previamente adquiridas que evoluciona a autismo. Caso 2: niña de 13 años que presenta hemiparesia izquierda, movimientos anomalos, trastorno de conducta y disautonomia. En ambos casos se obtienen anticuerpos antirreceptores de NMDA positivos en el liquido cefalorraquideo y se diagnostican de encefalitis antirreceptor de NMDA. En el primer caso se inicia el tratamiento con perfusion intravenosa de corticoides e inmunoglobulinas y es necesario asociar rituximab. En el segundo, corticoides e inmunoglobulinas. La evolucion fue favorable en ambas pacientes, con una leve alteracion del lenguaje como secuela en el primer caso y una recaida en el segundo caso, con resolucion completa. Conclusion. La encefalitis antirreceptor de NMDA es un trastorno tratable y es importante el diagnostico y tratamiento precoz, ya que mejora el pronostico y disminuye las recaidas.

  11. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    PubMed

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic. PMID:11554551

  12. NMDA receptor structures reveal subunit arrangement and pore architecture

    PubMed Central

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-01-01

    Summary N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present x-ray crystal structures of the GluN1/GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino terminal and ligand binding domains. The transmembrane domains harbor a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ~2-fold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. PMID:25008524

  13. NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist.

    PubMed Central

    Dijk, S. N.; Francis, P. T.; Stratmann, G. C.; Bowen, D. M.

    1995-01-01

    1. We have investigated an aspect of the regulation of cortical pyramidal neurone activity. Microdialysis was used to assess whether topical application of drugs (in 10 microliter) to fill a burr hole over the frontal cortex, where part of the corticostriatal pathway originates, would change concentrations of the excitatory amino acids glutamate and aspartate in the striatum of the anaesthetized rat. 2. Topical application of N-methyl-D-aspartate (NMDA, 2 and 20 mM) dose-dependently increased glutamate and aspartate concentrations in the striatum. Coapplication of tetrodotoxin (10 microM) blocked the NMDA-evoked rise in these amino acids. A calcium-free medium, perfused through the probe also blocked the rise, indicating that it was due to an exocytotic mechanism in the striatum. 3. It was hypothesized that the rise observed was due to an increase in the activity of the corticostriatal pathway. As 5-hydroxytryptamine1A (5-HT1A) receptors are enriched on cell bodies of corticostriatal neurones, a selective 5-HT1A-antagonist (WAY 100135) was coapplied with the lower dose of NMDA. Compared to NMDA alone, coapplication of 50 microM WAY 100135 significantly increased glutamate release. This effect was sensitive to tetrodotoxin and calcium-dependent. Application of 50 microM WAY 100135 alone significantly enhanced glutamate release above baseline; this was also tested at 100 microM (not significant). 4. Compared to NMDA alone, coapplication of WAY 100135 (20 microM) significantly enhanced aspartate release; the mean value was also increased (not significantly) with 50 microM. This rise was calcium-dependent, but not tetrodotoxin-sensitive. WAY 100135 (100 microM) reduced NMDA-induced aspartate release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582540

  14. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    PubMed Central

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  15. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    PubMed

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  16. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  17. From molecular phylogeny towards differentiating pharmacology for NMDA receptor subtypes.

    PubMed

    Platt, Randall J; Curtice, Kigen J; Twede, Vernon D; Watkins, Maren; Gruszczyński, Paweł; Bulaj, Grzegorz; Horvath, Martin P; Olivera, Baldomero M

    2014-04-01

    In order to decode the roles that N-methyl-D-aspartate (NMDA) receptors play in excitatory neurotransmission, synaptic plasticity, and neuropathologies, there is need for ligands that differ in their subtype selectivity. The conantokin family of Conus peptides is the only group of peptidic natural products known to target NMDA receptors. Using a search that was guided by phylogeny, we identified new conantokins from the marine snail Conus bocki that complement the current repertoire of NMDA receptor pharmacology. Channel currents measured in Xenopus oocytes demonstrate conantokins conBk-A, conBk-B, and conBk-C have highest potencies for NR2D containing receptors, in contrast to previously characterized conantokins that preferentially block NR2B containing NMDA receptors. Conantokins are rich in γ-carboxyglutamate, typically 17-34 residues, and adopt helical structure in a calcium-dependent manner. As judged by CD spectroscopy, conBk-C adopts significant helical structure in a calcium ion-dependent manner, while calcium, on its own, appears insufficient to stabilize helical conformations of conBk-A or conBk-B. Molecular dynamics simulations help explain the differences in calcium-stabilized structures. Two-dimensional NMR spectroscopy shows that the 9-residue conBk-B is relatively unstructured but forms a helix in the presence of TFE and calcium ions that is similar to other conantokin structures. These newly discovered conantokins hold promise that further exploration of small peptidic antagonists will lead to a set of pharmacological tools that can be used to characterize the role of NMDA receptors in nervous system function and disease.

  18. Modulation of functional EEG networks by the NMDA antagonist nitrous oxide.

    PubMed

    Kuhlmann, Levin; Foster, Brett L; Liley, David T J

    2013-01-01

    Parietal networks are hypothesised to play a central role in the cortical information synthesis that supports conscious experience and behavior. Significant reductions in parietal level functional connectivity have been shown to occur during general anesthesia with propofol and a range of other GABAergic general anesthetic agents. Using two analysis approaches (1) a graph theoretic analysis based on surrogate-corrected zero-lag correlations of scalp EEG, and (2) a global coherence analysis based on the EEG cross-spectrum, we reveal that sedation with the NMDA receptor antagonist nitrous oxide (N2O), an agent that has quite different electroencephalographic effects compared to the inductive general anesthetics, also causes significant alterations in parietal level functional networks, as well as changes in full brain and frontal level networks. A total of 20 subjects underwent N2O inhalation at either 20%, 40% or 60% peak N2O/O2 gas concentration levels. N2O-induced reductions in parietal network level functional connectivity (on the order of 50%) were exclusively detected by utilising a surface Laplacian derivation, suggesting that superficial, smaller spatial scale, cortical networks were most affected. In contrast reductions in frontal network functional connectivity were optimally discriminated using a common-reference derivation (reductions on the order of 10%), indicating that the NMDA antagonist N2O induces spatially coherent and widespread perturbations in frontal activity. Our findings not only give important weight to the idea of agent invariant final network changes underlying drug-induced reductions in consciousness, but also provide significant impetus for the application and development of multiscale functional analyses to systematically characterise the network level cortical effects of NMDA receptor related hypofunction. Future work at the source space level will be needed to verify the consistency between cortical network changes seen at the source

  19. Ethanol upregulates NMDA receptor subunit gene expression in human embryonic stem cell-derived cortical neurons.

    PubMed

    Xiang, Yangfei; Kim, Kun-Yong; Gelernter, Joel; Park, In-Hyun; Zhang, Huiping

    2015-01-01

    Chronic alcohol consumption may result in sustained gene expression alterations in the brain, leading to alcohol abuse or dependence. Because of ethical concerns of using live human brain cells in research, this hypothesis cannot be tested directly in live human brains. In the present study, we used human embryonic stem cell (hESC)-derived cortical neurons as in vitro cellular models to investigate alcohol-induced expression changes of genes involved in alcohol metabolism (ALDH2), anti-apoptosis (BCL2 and CCND2), neurotransmission (NMDA receptor subunit genes: GRIN1, GRIN2A, GRIN2B, and GRIN2D), calcium channel activity (ITPR2), or transcriptional repression (JARID2). hESCs were differentiated into cortical neurons, which were characterized by immunostaining using antibodies against cortical neuron-specific biomarkers. Ethanol-induced gene expression changes were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). After a 7-day ethanol (50 mM) exposure followed by a 24-hour ethanol withdrawal treatment, five of the above nine genes (including all four NMDA receptor subunit genes) were highly upregulated (GRIN1: 1.93-fold, P = 0.003; GRIN2A: 1.40-fold, P = 0.003; GRIN2B: 1.75-fold, P = 0.002; GRIN2D: 1.86-fold, P = 0.048; BCL2: 1.34-fold, P = 0.031), and the results of GRIN1, GRIN2A, and GRIN2B survived multiple comparison correction. Our findings suggest that alcohol responsive genes, particularly NMDA receptor genes, play an important role in regulating neuronal function and mediating chronic alcohol consumption-induced neuroadaptations.

  20. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    SciTech Connect

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  1. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  2. Blockade of NMDA receptors unmasks a long-term depression in synaptic efficacy in rat prefrontal neurons in vitro.

    PubMed

    Hirsch, J C; Crepel, F

    1991-01-01

    All the experiments were carried out in slices of rat prefrontal cortex maintained in vitro. The effect of 2-amino-5-phosphonovalerate (APV) was tested on the postsynaptic potential (PSP) recorded in layer V pyramidal cells, in response to single or high frequency stimulation of the superficial layers I-II. Wash-out of Mg2+ increased the amplitude and duration of the PSPs. This effect resulted from activation of N-methyl-D-aspartate (NMDA) receptors since it was suppressed by bath application of APV. Furthermore, in every cell tested in Mg2+ containing medium (N = 16), exposure to APV reversibly reduced both mono- and polysynaptic components of the PSPs, indicating that, even in the control solution, activation of NMDA-coupled channels contributed to these synaptic events. Finally, the anomalous voltage-dependence of the EPSP in the presence of Mg2+ and its sensitivity to APV suggests that at least a fraction of the NMDA receptors are postsynaptically located. Tetanization was applied to the afferents of cells bathed in control- or APV-medium. Long-term potentiation (LTP) or long-term depression (LTD) is defined as an increase or a decrease respectively, of the PSPs peak amplitude or initial slope, lasting 20 min. In the control medium, LTP in synaptic efficacy was observed in 34% of the cells and LTD in 48% (N = 23). When exposed to APV, none of the cells tested (N = 16) showed LTP of the response. In contrast, the tetanus induced a LTD of the PSP amplitude or slope in 14 out of these 16 cells. The percentage of cells showing LTD in synaptic efficacy (87%) when the NMDA receptors activation was blocked was significantly higher than that in control-medium.

  3. The dual effect of CA1 NMDA receptor modulation on ACPA-induced amnesia in step-down passive avoidance learning task.

    PubMed

    Nasehi, Mohammad; Amin-Yavari, Samaneh; Ebrahimi-Ghiri, Mohaddeseh; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza

    2015-04-01

    It is well documented that cannabinoids play an important role in certain hippocampal memory processes in rodents. On the other hand, N-Methyl-d-aspartate receptors (NMDARs) mediate the synaptic plasticity related to learning and memory processes which take place in the hippocampus. Such insights prompted us to investigate the influence of dorsal hippocampal (CA1) NMDA receptor agents on amnesia induced by cannabinoid CB1 receptor agonist, arachidonylcyclopropylamide (ACPA) in male mice. One-trial step-down passive avoidance and hole-board apparatuses were used to examine the memory retrieval and exploratory behaviors, respectively. Based on our findings, pre-training intraperitoneal (i.p.) administration of ACPA (0.01mg/kg) decreased memory acquisition. Moreover, pre-training intra-CA1 infusion of NMDA (0.001, 0.0125, 0.025 and 0.2µg/mouse), d-AP7 (0.5 and 1µg/mouse) or AM251 (50ng/mouse) impaired the memory acquisition. Meanwhile, NMDA-treated animals at the doses of 0.0005, 0.05 and 0.1µg/mouse acquired memory formation. In addition, intra-CA1 microinjection of NMDA (0.0005) plus different doses of ACPA potentiated the ACPA response, while NMDA (0.1) plus the lower or the higher dose of ACPA potentiated or restored the ACPA response, respectively. Further investigation revealed that a subthreshold dose of d-AP7 could potentiate the memory acquisition impairment induced by ACPA. Moreover, the subthreshold dose of AM251 did not alter the ACPA response, while the effective dose of the drug restored the memory acquisition impairment induced by ACPA. According to these results, we concluded that activation of the NMDA receptors in the CA1 mediates a dual effect on ACPA-induced amnesia in step-down passive avoidance learning task.

  4. Increased brain monoaminergic tone after the NMDA receptor GluN2A subunit gene knockout is responsible for resistance to the hypnotic effect of nitrous oxide.

    PubMed

    Petrenko, Andrey B; Yamakura, Tomohiro; Kohno, Tatsuro; Sakimura, Kenji; Baba, Hiroshi

    2013-01-01

    N-methyl-d-aspartate (NMDA) receptors can be inhibited by inhalational anesthetics in vitro at clinically relevant concentrations. Here, to clarify the role of NMDA receptors in anesthetic-induced unconsciousness, we examined the hypnotic properties of isoflurane, sevoflurane and nitrous oxide in NMDA receptor GluN2A subunit knockout mice. The hypnotic properties of inhalational anesthetics were evaluated in mice in the loss of righting reflex (LORR) assay by measuring the 50% concentration for LORR (LORR ED(50)). Knockout mice displayed isoflurane and sevoflurane LORR ED(50) values similar to wild-type controls, indicating no significant contribution of these receptors to the hypnotic action of halogenated anesthetics. However, compared with wild-type controls, mutant mice displayed larger isoflurane LORR ED(50) values in the presence of nitrous oxide, indicating a resistance to this gaseous anesthetic. Knockout mice have enhanced brain monoaminergic activity which occurs secondary to NMDA receptor dysfunction, and the observed resistance to the isoflurane LORR ED(50)-sparing effect of nitrous oxide could be abolished by pretreatment with the dopamine D(2) receptor antagonist droperidol or with the serotonin 5-HT(2A) receptor antagonist ketanserin. Thus, resistance to nitrous oxide in knockout mice appears to be a secondary phenomenon of monoaminergic origin and not a direct result of impaired NMDA receptor function. Our results indicate that NMDA receptors are not critically involved in the hypnotic action of conventionally-used inhalational anesthetics. Also, they suggest that increased brain monoaminergic tone can diminish the effects of general anesthesia. Finally, they provide further evidence that changes secondary to genetic manipulation can explain the results obtained in global knockouts. PMID:23123346

  5. Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex.

    PubMed

    Conti, F; Barbaresi, P; Melone, M; Ducati, A

    1999-03-01

    N-Methyl-D-aspartate (NMDA) receptors play a critical role in many cortical functions and are implicated in several neuropsychiatric diseases. In this study, the cellular expression of the NMDAR1 (NR1) and NMDAR2A and B (NR2A and B) subunits was investigated in the human cerebral cortex by immunocytochemistry with antibodies that recognize the NR1 or the NR2A and B subunits of the NMDA receptor. In frontal (areas 10 and 46) and temporal (area 21) association cortices and the cingulofrontal transition cortex (area 32), NR1 and NR2A/B immunoreactivity (ir) were similar and were localized to numerous neurons in all cortical layers. NR1- and NR2A/B-positive neurons were mostly pyramidal cells, but some nonpyramidal neurons were also labeled. Electron-microscopic observations showed that NR1 and NR2A/B ir were similar. In all cases, labeling of dendrites and dendritic spines was intense. In addition, both NR1 and NR2A/B were consistently found in the axoplasm of some axon terminals and in distal astrocytic processes. This investigation revealed that numerous NMDA receptors are localized to dendritic spines, and that they are also localized to axon terminals and astrocytic processes. These findings suggest that the effects of cortical NMDA activation in the human cortex do not depend exclusively on the opening of NMDA channels located at postsynaptic sites, and that the localization of NMDA receptors is similar in a variety of mammalian species.

  6. Timosaponin derivative YY-23 acts as a non-competitive NMDA receptor antagonist and exerts a rapid antidepressant-like effect in mice

    PubMed Central

    Zhang, Qi; Guo, Fei; Fu, Zhi-wen; Zhang, Bing; Huang, Cheng-gang; Li, Yang

    2016-01-01

    Aim: N-methyl-D-aspartic acid (NMDA) receptor modulators have shown promising results as potential antidepressant agents, whereas timosaponins extracted from the Chinese herb Rhizoma Anemarrhenae exhibit antidepressant activities. In the present study we examined whether YY-23, a modified metabolite of timosaponin B-III, could affect NMDA receptors in rat hippocampal neurons in vitro, and evaluated its antidepressant-like effects in stressed mice. Methods: NMDA-induced currents were recorded in acutely dissociated rat hippocampal CA1 neurons using a whole-cell recording technique. C57BL/6 mice were exposed to a 6-week chronic mild stress (CMS) or a 10-d chronic social defeat stress (CSDS). The stressed mice were treated with YY-23 (20 mg·kg−1·d−1) or a positive-control drug, fluoxetine (10 mg·kg−1·d−1) for 3 weeks. Behavioral assessments were carried out every week. Results: In acutely dissociated rat hippocampal CA1 neurons, YY-23 selectively and reversibly inhibited NMDA-induced currents with an EC50 value of 2.8 μmol/L. This inhibition of NMDA-induced currents by YY-23 was non-competitive, and had no features of voltage-dependency or use-dependency. Treatment of the stressed mice with YY-23 not only reversed CMS-induced deficiency of sucrose preference and immobility time, and CSDS-induced reduction of social interaction, but also had faster onset as compared to fluoxetine. Conclusion: YY-23 is a novel non-competitive antagonist of NMDA receptors with promising rapid antidepressant-like effects in mouse models of CMS and CSDS depression. PMID:26687936

  7. Simple Implant Augmentation Rhinoplasty.

    PubMed

    Nguyen, Anh H; Bartlett, Erica L; Kania, Katarzyna; Bae, Sang Mo

    2015-11-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  8. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing.

    PubMed

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-03-01

    The role of N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  9. Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors

    SciTech Connect

    K Vance; N Simorowski; S Traynelis; H Furukawa

    2011-12-31

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands reveal that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.

  10. Dentate gyrus–CA3 glutamate release/NMDA transmission mediates behavioral despair and antidepressant-like responses to leptin

    PubMed Central

    Wang, Xuezhen; Zhang, Di; Lu, Xin-Yun

    2014-01-01

    Compelling evidence supports the important role of the glutamatergic system in the pathophysiology of major depression and also as a target for rapid-acting antidepressants. However, the functional role of glutamate release/transmission in behavioral processes related to depression and antidepressant efficacy remains to be elucidated. In this study, glutamate release and behavioral responses to tail suspension, a procedure commonly used for inducing behavioral despair, were simultaneously monitored in real time. The onset of tail suspension stress evoked a rapid increase in glutamate release in hippocampal field CA3, which declined gradually after its offset. Blockade of NMDA receptors by intra-CA3 infusion of MK-801, a non-competitive NMDA receptor antagonist, reversed behavioral despair. The CA3 was innervated by granule neurons expressing the leptin receptor (LepRb) in the dentate gyrus (DG), representing a subpopulation of granule neurons that were devoid of stress-induced activation. Leptin treatment dampened tail suspension-evoked glutamate release in CA3. On the other hand, intra-CA3 infusion of NMDA blocked the antidepressant-like effect of leptin in reversing behavioral despair in both the tail suspension and forced swim tests, which involved activation of Akt signaling in DG. Together, these results suggest that the DG-CA3 glutamatergic pathway is critical for mediating behavioral despair and antidepressant-like responses to leptin. PMID:25092243

  11. The pharmacological stimulation of NMDA receptors via co-agonist site: an fMRI study in the rat brain.

    PubMed

    Panizzutti, Rogério; Rausch, Martin; Zurbrügg, Stefan; Baumann, Diana; Beckmann, Nicolau; Rudin, Markus

    d-Serine has been proposed as an endogenous modulator at the co-agonist glycine-binding site of N-methyl-d-aspartate (NMDA) receptors. There is still some debate as to whether this site is saturated in vivo, but it seems likely that this depends on regional differences in local glycine or d-serine concentrations. In order to identify areas where the co-agonist site was not fully activated in vivo, we studied the effect of intraperitoneal d-serine administration in the rat brain using functional magnetic resonance imaging (fMRI). Using contrast agent injection, the variations in the relative cerebral blood volume (CBVrel) in several regions of interest were evaluated. d-Serine (50 mg/kg) elicited a significant statistical increase in the CBVrel in the hippocampus. This effect was inhibited by the specific full antagonist of the co-agonist glycine site L-701,324 indicating that the hippocampal activation occurred through the binding of the agonist d-serine to the glycine-binding site of NMDA receptors. This result demonstrates that in the hippoc