Science.gov

Sample records for activation augments nmda

  1. Sodium channel activation augments NMDA receptor function and promotes neurite outgrowth in immature cerebrocortical neurons

    PubMed Central

    George, Joju; Dravid, Shashank M.; Prakash, Anand; Xie, Jun; Peterson, Jennifer; Jabba, Sairam V.; Baden, Daniel G.; Murray, Thomas F.

    2009-01-01

    A range of extrinsic signals, including afferent activity, affect neuronal growth and plasticity. Neuronal activity regulates intracellular Ca2+ and activity-dependent calcium signaling has been shown to regulate dendritic growth and branching (Konur and Ghosh, 2005). NMDA receptor (NMDAR) stimulation of Ca2+/calmodulin-dependent protein kinase signaling cascades has moreover been demonstrated to regulate neurite/axonal outgrowth (Wayman et al., 2004). We used a sodium channel activator, brevetoxin (PbTx-2), to explore the relationship between intracellular [Na+] and NMDAR-dependent development. PbTx-2 alone, at a concentration of 30 nM, did not affect Ca2+ dynamics in DIV-2 cerebrocortical neurons; however, this treatment robustly potentiated NMDA-induced Ca2+ influx. The 30 nM PbTx-2 treatment produced a maximum [Na+]i of 16.9 ± 1.5 mM representing an increment of 8.8 ± 1.8 mM over basal. The corresponding membrane potential change produced by 30 nM PbTx-2 was modest and therefore insufficient to relieve the voltage-dependent Mg2+ block of NMDARs. To unambiguously demonstrate the enhancement of NMDA receptor function by PbTx-2, we recorded single-channel currents from cell-attached patches. PbTx-2 treatment was found to increase both the mean open time and open probability of NMDA receptors. These effects of PbTx-2 on NMDA receptor function were dependent on extracellular Na+ and activation of Src kinase. The functional consequences of PbTx-2-induced enhancement of NMDAR function were evaluated in immature cerebrocortical neurons. PbTx-2 concentrations between 3 and 300 nM enhanced neurite outgrowth. Voltage-gated sodium channel activators may accordingly represent a novel pharmacologic strategy to regulate neuronal plasticity through an NMDA receptor and Src family kinase-dependent mechanism. PMID:19279266

  2. Novel benzopolycyclic amines with NMDA receptor antagonist activity.

    PubMed

    Valverde, Elena; Sureda, Francesc X; Vázquez, Santiago

    2014-05-01

    A new series of benzopolycyclic amines active as NMDA receptor antagonists were synthesized. Most of them exhibited increased activity compared with related analogues previously published. All the tested compounds were more potent than clinically approved amantadine and one of them displayed a lower IC50 value than memantine, an anti-Alzheimer's approved drug.

  3. Contribution of NMDA and non-NMDA receptors to in vivo glutamate-induced calpain activation in the rat striatum. Relation to neuronal damage.

    PubMed

    Del Río, Perla; Montiel, Teresa; Massieu, Lourdes

    2008-08-01

    Glutamate, the major excitatory neurotransmitter, can cause the death of neurons by a mechanism known as excitotoxicity. This is a calcium-dependent process and activation of the NMDA receptor subtype contributes mainly to neuronal damage, due to its high permeability to calcium. Activation of calpain, a calcium-dependent cysteine protease, has been implicated in necrotic excitotoxic neuronal death. We have investigated the contribution of NMDA and non-NMDA ionotropic receptors to calpain activation and neuronal death induced by the acute administration of glutamate into the rat striatum. Calpain activity was assessed by the cleavage of the cytoskeletal protein, alpha-spectrin. Caspase-3 activity was also studied because glutamate can also lead to apoptosis. Results show no caspase-3 activity, but a strong calpain activation involving both NMDA and non-NMDA receptors. Although neuronal damage is mediated mainly by the NMDA receptor subtype, it can not be attributed solely to calpain activity.

  4. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  5. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons

    PubMed Central

    Bock, Tobias

    2016-01-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels on N-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  6. Mechanical stress activates NMDA receptors in the absence of agonists.

    PubMed

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K; Sachs, Frederick; Hua, Susan Z

    2017-01-03

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca(2+) entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca(2+) influx. Extracellular Mg(2+) at 2 mM did not significantly affect the shear induced Ca(2+) influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.

  7. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  8. Topiramate antagonizes NMDA- and AMPA-induced seizure-like activity in planarians.

    PubMed

    Rawls, Scott M; Thomas, Timmy; Adeola, Mobilaji; Patil, Tanvi; Raymondi, Natalie; Poles, Asha; Loo, Michael; Raffa, Robert B

    2009-10-01

    The mechanism of anticonvulsant action of topiramate includes inhibition of glutamate-activated ion channels. The evidence is most convincing for direct inhibitory action at the ionotropic AMPA (alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid) and kainate ((2S,3S,4S)-3-(Carboxymethyl)-4-prop-1-en-2-ylpyrrolidine-2-carboxylic acid) glutamate receptor subtypes. Less direct connection has been made to the NMDA (N-Methyl-d-aspartate) subtype. In the present study, we demonstrate that NMDA and AMPA produce concentration-dependent seizure-like activity in planarians, a type of flatworm which possesses mammalian-like neurotransmitters. In contrast, planarians exposed to the inhibitory amino acid, glycine, did not display pSLA. For combination experiments, topiramate significantly reduced planarian seizure-like activity (pSLA) produced by NMDA or AMPA. Additionally, NMDA-induced pSLA was antagonized by either an NMDA receptor antagonist (MK-801) or AMPA receptor antagonist (DNQX), thus suggesting that NMDA-induced pSLA was mediated by NMDA and non-NMDA receptors. The present results provide pharmacologic evidence of a functional inhibitory action of topiramate on glutamate receptor activity in invertebrates and provide a sensitive, quantifiable end-point for studying anti-seizure pharmacology.

  9. Ethanol inhibits epileptiform activity and NMDA receptor-mediated synaptic transmission in rat amygdaloid slices

    SciTech Connect

    Gean, P.W. )

    1992-02-26

    The effect of ethanol on the epileptiform activity induced by Mg{sup ++}-free solution was studied in rat amygdalar slices using intracellular recording techniques. The spontaneous and evoked epileptiform discharges consisting of an initial burst followed by afterdischarges were observed 20-30 min after switching to Mg{sup ++}-free medium. Superfusion with ethanol reversibly reduced the duration of spontaneous and evoked bursting discharges in a concentration-dependent manner. Synaptic response mediated by N-methyl-D-aspartate (NMDA) receptor activation was isolated by application of a solution containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and either in Mg{sup ++}-free solution or in the presence of 50 {mu}M bicuculline. Application of ethanol reversibly suppressed the duration of NMDA receptor-mediated synaptic response. These results suggest that intoxicating concentrations of ethanol possess anticonvulsant activity through blocking the NMDA receptor-mediated synaptic excitation.

  10. Further insights into the anti-aggregating activity of NMDA in human platelets

    PubMed Central

    Franconi, Flavia; Miceli, Mauro; Alberti, Luisa; Seghieri, Giuseppe; De Montis, M Graziella; Tagliamonte, Alessandro

    1998-01-01

    In the present study the effect of N-methyl-D-aspartate (NMDA) on thromboxane B2 synthesis and on [Ca2+]i was studied in human platelets.NMDA (10−7 M) completely inhibited the synthesis of thromboxane B2 from exogenous arachidonic acid (AA), while it did not interfere with the aggregating effect of the thromboxane A2 receptor agonist U-46619.NMDA (0.1 μM–10 μM) dose-dependently increased intracellular calcium in washed platelets pre-loaded with fura 2 AM, and this effect was not additive with that of AA.NMDA shifted the dose-response curve of AA to the right. At the highest AA concentrations platelet aggregation was not inhibited.The antiaggregating effect of NMDA was not antagonized by NG-monomethyl-L-arginine (L-NMMA), a nitric oxide synthase (NOS) inhibitor.Finally, NMDA (0.01 nM–100 nM) associated with either aspirin or indomethacin significantly potentiated the antiaggregating activity of both cyclo-oxygenase inhibitors.It was concluded that NMDA is a potent inhibitor of platelet aggregation and thromboxane B2 synthesis in human platelet rich plasma (PRP). PMID:9630340

  11. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission.

    PubMed

    Hampson, A J; Bornheim, L M; Scanziani, M; Yost, C S; Gray, A T; Hansen, B M; Leonoudakis, D J; Bickler, P E

    1998-02-01

    Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as delta9-tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA-induced calcium flux (deltaCa2+NMDA) in rat brain slices. The presence of anandamide reduced deltaCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting deltaCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences deltaCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated deltaCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA-stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor-dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.

  12. Bridge feedback for active damping augmentation

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Lurie, B. J.

    1990-01-01

    A method is described for broadband damping augmentation of a structural system in which the active members (with feedback control) were developed such that their mechanical input impedance can be electrically adjusted to maximize the energy dissipation rate in the structural system. The active member consists of sensors, an actuator, and a control scheme. A mechanical/electrical analogy is described to model the passive structures and the active members in terms of their impedance representation. As a result, the problem of maximizing dissipative power is analogous to the problem of impedance matching in the electrical network. Closed-loop performance was demonstrated for single- and multiple-active-member controlled truss structure.

  13. Sos2 is dispensable for NMDA-induced Erk activation and LTP induction

    PubMed Central

    Arai, Junko A.; Li, Shaomin; Feig, Larry A.

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptor-induced activation of extracellular signal-related protein kinase (Erk) plays important roles in various neuronal functions including long-term potentiation (LTP). Son of sevenless (Sos) proteins have been implicated in NMDA-induced Erk activation in neurons of young mice. However, contribution of each of the two Sos isoforms, Sos1 and Sos2, has not been clarified. In this study, Sos2 involvement in NMDA-induced Erk activation was examined. We observed no defect in Erk phosphorylation induced by NMDA treatment of cortical neuronal cultures from Sos2-/- newborn mice. Moreover, theta-burst induced LTP induction in the hippocampus of Sos2-/- mice was also normal. Finally, Erk activation by either depolarization or BDNF treatment was also normal in cultured neurons from Sos2 knockout mice. These results imply that Sos1 is the major regulator of these well-known neuronal Sos functions and suggest that a novel function for Sos2 in neurons remains to be determined. PMID:19429099

  14. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.

  15. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  16. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors.

    PubMed

    Pawlak, Robert; Melchor, Jerry P; Matys, Tomasz; Skrzypiec, Anna E; Strickland, Sidney

    2005-01-11

    Chronic ethanol abuse causes up-regulation of NMDA receptors, which underlies seizures and brain damage upon ethanol withdrawal (EW). Here we show that tissue-plasminogen activator (tPA), a protease implicated in neuronal plasticity and seizures, is induced in the limbic system by chronic ethanol consumption, temporally coinciding with up-regulation of NMDA receptors. tPA interacts with NR2B-containing NMDA receptors and is required for up-regulation of the NR2B subunit in response to ethanol. As a consequence, tPA-deficient mice have reduced NR2B, extracellular signal-regulated kinase 1/2 phosphorylation, and seizures after EW. tPA-mediated facilitation of EW seizures is abolished by NR2B-specific NMDA antagonist ifenprodil. These results indicate that tPA mediates the development of physical dependence on ethanol by regulating NR2B-containing NMDA receptors.

  17. NMDA receptors are the basis for persistent network activity in neocortex slices.

    PubMed

    Castro-Alamancos, Manuel A; Favero, Morgana

    2015-06-01

    During behavioral quiescence the neocortex generates spontaneous slow oscillations that consist of Up and Down states. Up states are short epochs of persistent activity, but their underlying source is unclear. In neocortex slices of adult mice, we monitored several cellular and network variables during the transition between a traditional buffer, which does not cause Up states, and a lower-divalent cation buffer, which leads to the generation of Up states. We found that the resting membrane potential and input resistance of cortical cells did not change with the development of Up states. The synaptic efficacy of excitatory postsynaptic potentials mediated by non-NMDA receptors was slightly reduced, but this is unlikely to facilitate the generation of Up states. On the other hand, we identified two variables that are associated with the generation of Up states: an enhancement of the intrinsic firing excitability of cortical cells and an enhancement of NMDA-mediated responses evoked by electrical or optogenetic stimulation. The fact that blocking NMDA receptors abolishes Up states indicates that the enhancement in intrinsic firing excitability alone is insufficient to generate Up states. NMDA receptors have a crucial role in the generation of Up states in neocortex slices.

  18. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors

    PubMed Central

    Gandolfi, Daniela; Vilella, Antonietta; Zoli, Michele; Bigiani, Albertino

    2016-01-01

    Dynamic changes of the strength of inhibitory synapses play a crucial role in processing neural information and in balancing network activity. Here, we report that the efficacy of GABAergic connections between Golgi cells and granule cells in the cerebellum is persistently altered by the activity of glutamatergic synapses. This form of plasticity is heterosynaptic and is expressed as an increase (long-term potentiation, LTPGABA) or a decrease (long-term depression, LTDGABA) of neurotransmitter release. LTPGABA is induced by postsynaptic NMDA receptor activation, leading to calcium increase and retrograde diffusion of nitric oxide, whereas LTDGABA depends on presynaptic NMDA receptor opening. The sign of plasticity is determined by the activation state of target granule and Golgi cells during the induction processes. By controlling the timing of spikes emitted by granule cells, this form of bidirectional plasticity provides a dynamic control of the granular layer encoding capacity. PMID:27531957

  19. Rhythmic delta activity represents a form of nonconvulsive status epilepticus in anti-NMDA receptor antibody encephalitis.

    PubMed

    Kirkpatrick, McNeill P; Clarke, Charles D; Sonmezturk, Hasan H; Abou-Khalil, Bassel

    2011-02-01

    Anti-NMDA receptor antibody encephalitis is a limbic encephalitis with psychiatric manifestations, abnormal movements, coma, and seizures. The coma and abnormal movements are not typically attributed to seizure activity, and slow activity is the most common EEG finding. We report drug-resistant nonconvulsive status epilepticus as the basis for coma in a 19-year-old woman with anti-NMDA receptor antibodies and a mediastinal teratoma. The EEG showed generalized rhythmic delta activity, with evolution in morphology, frequency, and field typical of nonconvulsive status epilepticus. The status was refractory to antiepileptic drugs, repeated drug-induced coma, resection of the tumor, intravenous steroids, rituximab, and plasmapheresis. She awoke after the addition of felbamate, and the rhythmic delta activity ceased. The rhythmic delta activity described with coma in anti-NMDA receptor antibody encephalitis may represent a pattern of status epilepticus in some patients. Felbamate, which has NMDA receptor antagonist activity, should be studied as a therapeutic agent in this condition.

  20. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit

    PubMed Central

    Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J.; Jackson, Michael F.; MacDonald, John F.

    2016-01-01

    N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation. PMID:27857196

  1. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain.

    PubMed

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I

    2015-04-01

    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection.

  2. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs.

    PubMed

    Sanderson, Thomas M; Collingridge, Graham L; Fitzjohn, Stephen M

    2011-07-27

    The removal of AMPA receptors from synapses is a major component of long-term depression (LTD). How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2) expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses). In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP) inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  3. Progressive Brain Damage, Synaptic Reorganization and NMDA Activation in a Model of Epileptogenic Cortical Dysplasia

    PubMed Central

    Colciaghi, Francesca; Finardi, Adele; Nobili, Paola; Locatelli, Denise; Spigolon, Giada; Battaglia, Giorgio Stefano

    2014-01-01

    Whether severe epilepsy could be a progressive disorder remains as yet unresolved. We previously demonstrated in a rat model of acquired focal cortical dysplasia, the methylazoxymethanol/pilocarpine - MAM/pilocarpine - rats, that the occurrence of status epilepticus (SE) and subsequent seizures fostered a pathologic process capable of modifying the morphology of cortical pyramidal neurons and NMDA receptor expression/localization. We have here extended our analysis by evaluating neocortical and hippocampal changes in MAM/pilocarpine rats at different epilepsy stages, from few days after onset up to six months of chronic epilepsy. Our findings indicate that the process triggered by SE and subsequent seizures in the malformed brain i) is steadily progressive, deeply altering neocortical and hippocampal morphology, with atrophy of neocortex and CA regions and progressive increase of granule cell layer dispersion; ii) changes dramatically the fine morphology of neurons in neocortex and hippocampus, by increasing cell size and decreasing both dendrite arborization and spine density; iii) induces reorganization of glutamatergic and GABAergic networks in both neocortex and hippocampus, favoring excitatory vs inhibitory input; iv) activates NMDA regulatory subunits. Taken together, our data indicate that, at least in experimental models of brain malformations, severe seizure activity, i.e., SE plus recurrent seizures, may lead to a widespread, steadily progressive architectural, neuronal and synaptic reorganization in the brain. They also suggest the mechanistic relevance of glutamate/NMDA hyper-activation in the seizure-related brain pathologic plasticity. PMID:24587109

  4. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-.

    PubMed

    Kim, W K; Choi, Y B; Rayudu, P V; Das, P; Asaad, W; Arnelle, D R; Stamler, J S; Lipton, S A

    1999-10-01

    Recent evidence indicates that the NO-related species, nitroxyl anion (NO), is produced in physiological systems by several redox metal-containing proteins, including hemoglobin, nitric oxide synthase (NOS), superoxide dismutase, and S-nitrosothiols (SNOs), which have recently been identified in brain. However, the chemical biology of NO- remains largely unknown. Here, we show that NO- -unlike NO*, but reminiscent of NO+ transfer (or S-nitrosylation)- -reacts mainly with Cys-399 in the NR2A subunit of the N-methyl-D-aspartate (NMDA) receptor to curtail excessive Ca2+ influx and thus provide neuroprotection from excitotoxic insults. This effect of NO- closely resembles that of NOS, which also downregulates NMDA receptor activity under similar conditions in culture.

  5. NMDA receptor activity and the transmission of sensory input into motor output in introverts and extraverts.

    PubMed

    Rammsayer, Thomas H

    2003-05-01

    Recent research suggests that individual differences in brain dopamine functioning may be related to the personality dimension of extraversion. The major goal of the present study was to answer the question of whether a pharmacologically induced change in glutamatergic NMDA receptor activity would also differentially affect the transmission of sensory input into motor out-put in introverts and extraverts. Therefore, in a double-blind within-subjects design, either 30 mg of the NMDA receptor antagonist memantine or placebo were administered to 48 healthy male volunteers before performing a choice reaction-time task. In introverts, memantine caused a pronounced increase in lift-off time (i.e., the time required to lift the finger from a home button) compared to that in extraverts, whereas movement time (i.e., the time required to move the finger from the home button to a response button) was decreased in both groups. The pattern of results suggests that extraversion-related differential sensitivity to pharmacologically induced changes in NMDA receptor activity is limited to functions that involve an interaction between the glutamatergic and dopaminergic systems.

  6. Synthesis of benzopolycyclic cage amines: NMDA receptor antagonist, trypanocidal and antiviral activities

    PubMed Central

    Torres, Eva; Duque, María D.; López-Querol, Marta; Taylor, Martin C.; Naesens, Lieve; Ma, Chunlong; Pinto, Lawrence H.; Sureda, Francesc X.; Kelly, John M.; Vázquez, Santiago

    2012-01-01

    The synthesis of several 6,7,8,9,10,11-hexahydro-9-methyl-5,7:9,11-dimethano-5H-benzocyclononen-7-amines is reported. Several of them display low micromolar NMDA receptor antagonist and/or trypanocidal activities. Two compounds are endowed with micromolar anti vesicular stomatitis virus activity, while only one compound shows micromolar anti-influenza activity. The anti-influenza activity of this compound does not seem to be mediated by blocking of the M2 protein. PMID:22178660

  7. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    PubMed

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  8. Acceleration-augmented LQG control of an active magnetic bearing

    NASA Astrophysics Data System (ADS)

    Feeley, Joseph J.

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  9. Acceleration-Augmented LQG Control of an Active Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.

    1993-01-01

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  10. PDI regulates seizure activity via NMDA receptor redox in rats

    PubMed Central

    Kim, Ji Yang; Ko, Ah-Rhem; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2017-01-01

    Redox modulation of cysteine residues is one of the post-translational modifications of N-methyl-D-aspartate receptor (NMDAR). Protein disulfide isomerases (PDI), an endoplasmic reticulum (ER) chaperone, plays a crucial role in catalyzing disulfide bond formation, reduction, and isomerization. In the present study, we found that PDI bound to NMDAR in the normal hippocampus, and that this binding was increased in chronic epileptic rats. In vitro thiol reductase assay revealed that PDI increased the amount of thiols on full-length recombinant NR1 protein. PDI siRNA, 5–5′-dithio-bis(2-nitrobenzoic acid) (DTNB), bacitracin and PDI antibody reduced seizure susceptibility in response to pilocarpine. In addition, PDI knockdown effectively ameliorated spontaneous seizure activity in chronic epileptic rats. Anticonvulsive effects of PDI siRNA were correlated to the reduction of the amount of free- and nitrosothiols on NMDAR, accompanied by the inhibition of PDI activity. However, PDI knockdown did not lead to alteration in basal neurotransmission or ER stress under physiological condition. These findings provide mechanistic insight into sulfhydration of disulfide bonds on NMDAR by PDI, and suggest that PDI may represent a target of potential therapeutics for epilepsy, which avoids a possible side effect on physiological receptor functionality. PMID:28198441

  11. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  12. Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Li, Lin; Qu, Weijun; Zhou, Libin; Lu, Zihong; Jie, Pinghui; Chen, Lei; Chen, Ling

    2013-01-01

    The glutamate excitotoxicity, mediated through N-methyl-d-aspartate receptors (NMDARs), plays an important role in cerebral ischemia injury. Transient receptor potential vanilloid 4 (TRPV4) can be activated by multiple stimuli that may happen during stroke. The present study evaluated the effect of TRPV4 activation on NMDA-activated current (INMDA) and that of blocking TRPV4 on brain injury after focal cerebral ischemia in mice. We herein report that activation of TRPV4 by 4α-PDD and hypotonic stimulation increased INMDA in hippocampal CA1 pyramidal neurons, which was sensitive to TRPV4 antagonist HC-067047 and NMDAR antagonist AP-5, indicating that TRPV4 activation potentiates NMDAR response. In addition, the increase in INMDA by hypotonicity was sensitive to the antagonist of NMDAR NR2B subunit, but not of NR2A subunit. Furthermore, antagonists of calcium/calmodulin-dependent protein kinase II (CaMKII) significantly attenuated hypotonicity-induced increase in INMDA, while antagonists of protein kinase C or casein kinase II had no such effect, indicating that phosphorylation of NR2B subunit by CaMKII is responsible for TRPV4-potentiated NMDAR response. Finally, we found that intracerebroventricular injection of HC-067047 after 60 min middle cerebral artery occlusion reduced the cerebral infarction with at least a 12 h efficacious time-window. These findings indicate that activation of TRPV4 increases NMDAR function, which may facilitate glutamate excitotoxicity. Closing TRPV4 may exert potent neuroprotection against cerebral ischemia injury through many mechanisms at least including the prevention of NMDAR-mediated glutamate excitotoxicity. PMID:23459987

  13. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production.

    PubMed

    Lesné, Sylvain; Ali, Carine; Gabriel, Cecília; Croci, Nicole; MacKenzie, Eric T; Glabe, Charles G; Plotkine, Michel; Marchand-Verrecchia, Catherine; Vivien, Denis; Buisson, Alain

    2005-10-12

    Acute brain injuries have been identified as a risk factor for developing Alzheimer's disease (AD). Because glutamate plays a pivotal role in these pathologies, we studied the influence of glutamate receptor activation on amyloid-beta (Abeta) production in primary cultures of cortical neurons. We found that sublethal NMDA receptor activation increased the production and secretion of Abeta. This effect was preceded by an increased expression of neuronal Kunitz protease inhibitory domain (KPI) containing amyloid-beta precursor protein (KPI-APP) followed by a shift from alpha-secretase to beta-secretase-mediated APP processing. This shift is a result of the inhibition of the alpha-secretase candidate tumor necrosis factor-alpha converting enzyme (TACE) when associated with neuronal KPI-APPs. This KPI-APP/TACE interaction was also present in AD brains. Thus, our findings reveal a cellular mechanism linking NMDA receptor activation to neuronal Abeta secretion. These results suggest that even mild deregulation of the glutamatergic neurotransmission may increase Abeta production and represent a causal risk factor for developing AD.

  14. Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5

    PubMed Central

    Hou, Hailong; Sun, Lu; Siddoway, Benjamin A.; Petralia, Ronald S.; Yang, Hongtian; Gu, Hua; Nairn, Angus C.

    2013-01-01

    The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity. PMID:24189275

  15. Active member bridge feedback control for damping augmentation

    NASA Technical Reports Server (NTRS)

    Chen, Gun-Shing; Lurie, Boris J.

    1992-01-01

    An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.

  16. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking.

    PubMed

    Lopez, Joëlle; Gamache, Karine; Schneider, Rilla; Nader, Karim

    2015-02-11

    Whereas consolidation and reconsolidation are considered dynamic processes requiring protein synthesis, memory retrieval has long been considered a passive readout of previously established plasticity. However, previous findings suggest that memory retrieval may be more dynamic than previously thought. This study therefore aimed at investigating the molecular mechanisms underlying memory retrieval in the rat. Infusion of protein synthesis inhibitors (rapamycin or anisomycin) in the amygdala 10 min before memory retrieval transiently impaired auditory fear memory expression, suggesting ongoing protein synthesis is required to enable memory retrieval. We then investigated the role of protein synthesis in NMDA receptor activity-mediated AMPA receptor trafficking. Coinfusion of an NMDA receptor antagonist (ifenprodil) or infusion of an AMPA receptor endocytosis inhibitor (GluA23Y) before rapamycin prevented this memory impairment. Furthermore, rapamycin transiently decreased GluA1 levels at the postsynaptic density (PSD), but did not affect extrasynaptic sites. This effect at the PSD was prevented by an infusion of GluA23Y before rapamycin. Together, these data show that ongoing protein synthesis is required before memory retrieval is engaged, and suggest that this protein synthesis may be involved in the NMDAR activity-mediated trafficking of AMPA receptors that takes place during memory retrieval.

  17. Fast, non-competitive and reversible inhibition of NMDA-activated currents by 2-BFI confers neuroprotection.

    PubMed

    Han, Zhao; Yang, Jin-Long; Jiang, Susan X; Hou, Sheng-Tao; Zheng, Rong-Yuan

    2013-01-01

    Excessive activation of the N-methyl-D-aspartic acid (NMDA) type glutamate receptors (NMDARs) causes excitotoxicity, a process important in stroke-induced neuronal death. Drugs that inhibit NMDA receptor-mediated [Ca(2+)]i influx are potential leads for development to treat excitotoxicity-induced brain damage. Our previous studies showed that 2-(2-benzofu-ranyl)-2-imidazoline (2-BFI), an immidazoline receptor ligand, dose-dependently protects rodent brains from cerebral ischemia injury. However, the molecular mechanisms remain unclear. In this study, we found that 2-BFI transiently and reversibly inhibits NMDA, but not AMPA currents, in a dose-dependent manner in cultured rat cortical neurons. The mechanism of 2-BFI inhibition of NMDAR is through a noncompetitive fashion with a faster on (Kon = 2.19±0.33×10(-9) M(-1) sec(-1)) and off rate (Koff = 0.67±0.02 sec(-1)) than those of memantine, a gold standard for therapeutic inhibition NMDAR-induced excitotoxicity. 2-BFI also transiently and reversibly blocked NMDA receptor-mediated calcium entry to cultured neurons and provided long-term neuroprotection against NMDA toxicity in vitro. Collectively, these studies demonstrated a potential mechanism of 2-BFI-mediated neuroprotection and indicated that 2-BFI is an excellent candidate for repositioning as a drug for stroke treatment.

  18. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  19. Bradykinin Enhances AMPA and NMDA Receptor Activity in Spinal Cord Dorsal Horn Neurons by Activating Multiple Kinases to Produce Pain Hypersensitivity

    PubMed Central

    Kohno, Tatsuro; Wang, Haibin; Amaya, Fumimasa; Brenner, Gary J.; Cheng, Jen-Kun; Ji, Ru-Rong; Woolf, Clifford J.

    2009-01-01

    Bradykinin potentiates synaptic glutamate release and action in the spinal cord via presynaptic and postsynaptic B2 receptors, contributing thereby to activity-dependent central sensitization and pain hypersensitivity (Wang et al., 2005). We have now examined the signaling pathways that are responsible for the postsynaptic modulatory actions of bradykinin on glutamatergic action and transmission in superficial dorsal horn neurons. B2 receptors are coexpressed in dorsal horn neurons with protein kinase A (PKA) and the δ isoform of protein kinase C (PKC), and we find that the augmentation by bradykinin of AMPA and NMDA receptor-mediated currents in lamina II neurons requires coactivation of both PKC and PKA. The activation of PKA is downstream of COX1 (cyclooxygenase-1). Extracellular signal-regulated kinase (ERK) activation is involved after the PKC and PKA coactivation, and intrathecal administration of bradykinin induces a thermal hyperalgesia in vivo, which is reduced by inhibition of ERK, PKA, and PKC. We conclude that bradykinin, by activating multiple kinases in dorsal horn neurons, potentiates glutamatergic synaptic transmission to produce pain hypersensitivity. PMID:18434532

  20. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus

    PubMed Central

    Dinamarca, Margarita C; Guzzetti, Francesca; Karpova, Anna; Lim, Dmitry; Mitro, Nico; Musardo, Stefano; Mellone, Manuela; Marcello, Elena; Stanic, Jennifer; Samaddar, Tanmoy; Burguière, Adeline; Caldarelli, Antonio; Genazzani, Armando A; Perroy, Julie; Fagni, Laurent; Canonico, Pier Luigi; Kreutz, Michael R; Gardoni, Fabrizio; Luca, Monica Di

    2016-01-01

    Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.12430.001 PMID:26977767

  1. Chronic administration of nicotine enhances NMDA-activated currents in the prefrontal cortex and core part of the nucleus accumbens of rats.

    PubMed

    Ávila-Ruiz, Tania; Carranza, Vladimir; Gustavo, López-López; Limón, Daniel I; Martínez, Isabel; Flores, Gonzalo; Flores-Hernández, Jorge

    2014-06-01

    Nicotine is an addictive substance of tobacco. It has been suggested that nicotine acts on glutamatergic (N-methyl-d-aspartate, NMDA) neurotransmission affecting dopamine release in the mesocorticolimbic system. This effect is reflected in neuroadaptative changes that can modulate neurotransmission in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) core (cNAcc) and shell (sNAcc) regions. We evaluated the effect of chronic administration of nicotine (4.23 mg/kg/day for 14 days) on NMDA activated currents in dissociated neurons from the PFC, and NAcc (from core and shell regions). We assessed nicotine blood levels by mass spectrophotometry and we confirmed that nicotine increases locomotor activity. An electrophysiological study showed an increase in NMDA currents in neurons from the PFC and core part of the NAcc in animals treated with nicotine compared to those of control rats. No change was observed in neurons from the shell part of the NAcc. The enhanced glutamatergic activity observed in the neurons of rats with chronic administration of nicotine may explain the increased locomotive activity also observed in such rats. To assess one of the possible causes of increased NMDA currents, we used magnesium, to block NMDA receptor that contains the NR2B subunit. If there is a change in percent block of NMDA currents, it means that there is a possible change in expression of NMDA receptor subunits. Our results showed that there is no difference in the blocking effect of magnesium on the NMDA currents. The magnesium lacks of effect after nicotinic treatment suggests that there is no change in expression of NR2B subunit of NMDA receptors, then, the effect of nicotine treatment on amplitude of NMDA currents may be due to an increase in the quantity of receptors or to a change in the unitary conductance, rather than a change in the expression of the subunits that constitute it.

  2. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    PubMed

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.

  3. Early chronic blockade of NR2B subunits and transient activation of NMDA receptors modulate LTP in mouse auditory cortex.

    PubMed

    Mao, Yuting; Zang, Shaoyun; Zhang, Jiping; Sun, Xinde

    2006-02-16

    In the auditory cortex, the properties of NMDA receptors depend primarily on the ratio of NR2A and NR2B subunits. NR2B subunit expression is high at the beginning of critical period and lower in adulthood. Because NMDA receptors are crucial in triggering long-term potentiation (LTP) and long-term depression, developmental or experience-dependent modification of NMDAR subunit composition is likely to influence synaptic plasticity. To examine how NMDA subunit change during postnatal development affect the adult synaptic plasticity, we employed chronic ifenprodil blockade of NR2B subunits and analyzed evoked field potentials in adult C57BL/6 mice auditory cortex (AC). We found that chronic loss of NR2B activity led to a decline in LTP magnitude in the AC of adult mice. Adding NMDA to the artificial cerebrospinal fluid (ACSF) in blocked mice had the opposite effect, producing LTP magnitudes at or exceeding those found in treated or untreated animals. These results suggest that, even in adulthood when NR2B expression is downregulated, these receptor subunits play an important role in experience-dependent plasticity of mouse auditory cortex. Blockade from P60 did not result in any decrease of LTP amplitude, suggesting that chronic block in postnatal period may permanently affect cortical circuits so that they cannot produce significant LTP in adulthood.

  4. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    PubMed Central

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  5. A Clickable Analogue of Ketamine Retains NMDA Receptor Activity, Psychoactivity, and Accumulates in Neurons

    PubMed Central

    Emnett, Christine; Li, Hairong; Jiang, Xiaoping; Benz, Ann; Boggiano, Joseph; Conyers, Sara; Wozniak, David F.; Zorumski, Charles F.; Reichert, David E.; Mennerick, Steven

    2016-01-01

    Ketamine is a psychotomimetic and antidepressant drug. Although antagonism of cell-surface NMDA receptors (NMDARs) may trigger ketamine’s psychoactive effects, ketamine or its major metabolite norketamine could act intracellularly to produce some behavioral effects. To explore the viability of this latter hypothesis, we examined intracellular accumulation of novel visualizable analogues of ketamine/norketamine. We introduced an alkyne “click” handle into norketamine (alkyne-norketamine, A-NK) at the key nitrogen atom. Ketamine, norketamine, and A-NK, but not A-NK-amide, showed acute and persisting psychoactive effects in mice. This psychoactivity profile paralleled activity of the compounds as NMDAR channel blockers; A-NK-amide was inactive at NMDARs, and norketamine and A-NK were active but ~4-fold less potent than ketamine. We incubated rat hippocampal cells with 10 μM A-NK or A-NK-amide then performed Cu2+ catalyzed cycloaddition of azide-Alexa Fluor 488, which covalently attaches the fluorophore to the alkyne moiety in the compounds. Fluorescent imaging revealed intracellular localization of A-NK but weak A-NK-amide labeling. Accumulation was not dependent on membrane potential, NMDAR expression, or NMDAR activity. Overall, the approach revealed a correlation among NMDAR activity, intracellular accumulation/retention, and behavioral effects. Thus, we advance first generation chemical biology tools to aid in the identification of ketamine targets. PMID:27982047

  6. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex.

    PubMed

    Xiang, Kangjian; Zhao, Xuefei; Li, Youjun; Zheng, Liang; Wang, Jue; Li, Yan-Hai

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that modulates N-methyl-D-aspartate (NMDA) receptor activity by binding to several different 5-HT receptor subtypes. In the present study, we used whole-cell patch-clamp recordings in transverse slice preparations to test the role of 5-HT receptors in modulating the NMDA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA receptor-mediated component of mEPSCs could be potentiated by exogenously applied 5-HT. Similar results were obtained by exogenously applied 5-CT or 8-OH-DPAT (the 5-HT1A and 5-HT7 receptor agonist). A specific antagonist for the 5-HT7 receptor, SB-269970, completely blocked the increase in NMDA receptor-mediated component of mEPSCs by 5-CT or 8- OH-DPAT. Moreover, the selective 5-HT1A receptor antagonist, WAY-100135, displayed no influence on the enhancement in NMDA receptor-mediated component of mEPSCs by 5-CT or 8-OHDPAT. These results indicated that the increase in NMDA receptor-mediated component of mEPSCs by 5-HT in layer II/III pyramidal neurons of the young rat visual cortex requires activation of 5-HT7 receptors, but not 5-HT1A receptors. These observations might be clinically relevant to schizophrenia and Alzheimer's disease (AD), where enhancing NMDA receptor-mediated neurotransmission is considered to be a promising strategy for treatment of these diseases.

  7. DOPAMINE RECEPTOR ACTIVATION REVEALS A NOVEL, KYNURENATE-SENSITIVE COMPONENT OF STRIATAL NMDA NEUROTOXICITY

    PubMed Central

    Poeggeler, Burkhard; Rassoulpour, Arash; Wu, Hui-Qiu; Guidetti, Paolo; Roberts, Rosalinda C.; Schwarcz, Robert

    2007-01-01

    The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors plays an important role in brain physiology, but excessive receptor stimulation results in seizures and excitotoxic nerve cell death. NMDA receptor-mediated neuronal excitation and injury can be prevented by high, non-physiological concentrations of the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA). Here we report that endogenous KYNA, which is formed in and released from astrocytes, controls NMDA receptors in vivo. This was revealed with the aid of the dopaminergic drugs d-amphetamine and apomorphine, which cause rapid, transient decreases in striatal KYNA levels in rats. Intrastriatal injections of the excitotoxins NMDA or quinolinate (but not the non-NMDA receptor agonist kainate) at the time of maximal KYNA reduction resulted in 2-3-fold increases in excitotoxic lesion size. Pre-treatment with kynurenine 3-hydroxylase inhibitors or dopamine receptor antagonists, two classes of pharmacological agents that prevented the reduction in brain KYNA caused by dopaminergic stimulation, abolished the potentiation of neurotoxicity. Thus, the present study identifies a previously unappreciated role of KYNA as a functional link between dopamine receptor stimulation and NMDA neurotoxicity in the striatum. PMID:17629627

  8. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system

    PubMed Central

    Baxter, Paul S.; Bell, Karen F.S.; Hasel, Philip; Kaindl, Angela M.; Fricker, Michael; Thomson, Derek; Cregan, Sean P.; Gillingwater, Thomas H.; Hardingham, Giles E.

    2015-01-01

    How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. PMID:25854456

  9. Multiple faces elicit augmented neural activity

    PubMed Central

    Puce, Aina; McNeely, Marie E.; Berrebi, Michael E.; Thompson, James C.; Hardee, Jillian; Brefczynski-Lewis, Julie

    2013-01-01

    How do our brains respond when we are being watched by a group of people?Despite the large volume of literature devoted to face processing, this question has received very little attention. Here we measured the effects on the face-sensitive N170 and other ERPs to viewing displays of one, two and three faces in two experiments. In Experiment 1, overall image brightness and contrast were adjusted to be constant, whereas in Experiment 2 local contrast and brightness of individual faces were not manipulated. A robust positive-negative-positive (P100-N170-P250) ERP complex and an additional late positive ERP, the P400, were elicited to all stimulus types. As the number of faces in the display increased, N170 amplitude increased for both stimulus sets, and latency increased in Experiment 2. P100 latency and P250 amplitude were affected by changes in overall brightness and contrast, but not by the number of faces in the display per se. In Experiment 1 when overall brightness and contrast were adjusted to be constant, later ERP (P250 and P400) latencies showed differences as a function of hemisphere. Hence, our data indicate that N170 increases its magnitude when multiple faces are seen, apparently impervious to basic low-level stimulus features including stimulus size. Outstanding questions remain regarding category-sensitive neural activity that is elicited to viewing multiple items of stimulus categories other than faces. PMID:23785327

  10. Spinal leptin contributes to the development of morphine antinociceptive tolerance by activating the STAT3-NMDA receptor pathway in rats.

    PubMed

    Hu, Fen; Cui, Yu; Guo, Ruixian; Chen, Jingfu; Guo, Runming; Shen, Ning; Hua, Xiaoxiao; Mo, Liqiu; Feng, Jianqiang

    2014-08-01

    Leptin, an adipokine synthesized mainly by non‑neuronal tissues, has been reported to contribute to the pathogenesis of neuropathic pain. It has been hypothesized that morphine tolerance and neuropathic pain share some common pathological mechanisms. The present study was designed to examine whether spinal leptin is implicated in the development of morphine antinociceptive tolerance, and whether spinal leptin induces the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway and the NR1 subunit of N‑methyl‑D‑aspartate (NMDA) receptor, in morphine antinociceptive tolerance in rats. The results demonstrated that intrathecal (i.t.) administration of a leptin antagonist (LA) prevented the development of morphine antinociceptive tolerance in rats. Further studies revealed that the levels of the spinal leptin and the leptin receptor (Ob‑R) were time‑dependently increased following chronic morphine treatment. Mechanistic examination indicated that chronic morphine triggered activation of the STAT3 pathway and an increase in the expression of the NR1 subunit of the NMDA receptor, which was ameliorated by i.t. administration of AG490 [a Janus kinase (JAK)‑STAT inhibitor]. The increased activation of STAT3 and the NR1 subunit was markedly attenuated by i.t. treatment with LA. In addition, the spinal administration of AG490 or MK‑801 (a non‑competitive NMDA receptor inhibitor) blocked the development of morphine antinociceptive tolerance. Taken together, these results have demonstrated, for the first time, to the best of our knowledge, that spinal leptin contributes to the development of morphine antinociceptive tolerance by activating the spinal STAT3‑NMDA receptor pathway.

  11. Enhanced GABAA receptor-mediated activity following activation of NMDA receptors in Cajal-Retzius cells in the developing mouse neocortex

    PubMed Central

    Chan, Chun-Hung; Yeh, Hermes H

    2003-01-01

    Cajal-Retzius (CR) cells are among the earliest generated population of neurons in the developing neocortex and have been implicated in regulating cortical lamination. In rodents, CR cells are transient, being present only up to 2–3 weeks after birth. Although previous electrophysiological studies have demonstrated the presence of NMDA and GABAA receptors in CR cells, little is known about the functional properties of these receptors. Using whole-cell patch-clamp techniques in neocortical slices, we confirmed the presence of D-aminophosphonovaleric acid (APV)- and ifenprodil-sensitive NMDA receptors, and found that the functional expression of this receptor subtype is strain specific. The NMDA-induced response was consistently accompanied by overriding current transients that were blocked by APV and ifenprodil. In addition, bicuculline readily abolished these transients without affecting the NMDA-induced current response. The generation of these overriding current transients was dependent upon intracellular Ca2+ and was prevented by dialysis with the high-affinity Ca2+-chelator BAPTA. Overall, this study uncovered a synergistic interaction between these receptors, whereby activation of NMDA receptors leads to enhanced GABAA receptor-mediated activity through a Ca2+-dependent mechanism. PMID:12730335

  12. Pattern-dependent Role of NMDA receptors in Action Potential Generation: Consequences on ERK Activation

    PubMed Central

    Zhao, Meilan; Adams, J. Paige

    2005-01-01

    Synaptic long-term potentiation is maintained through gene transcription, but how the nucleus is recruited remains controversial. Activation of extracellular-signal regulated kinases 1 and 2 (ERKs) with synaptic stimulation has been shown to require NMDA receptors (NMDARs), yet stimulation intensities sufficient to recruit action potentials (APs) also appear to be required. This has led us to ask the question whether NMDARs are necessary for AP generation as they relate to ERK activation. To test this, we examined the effects of NMDAR blockade on APs induced with synaptic stimulation using whole-cell current clamp recordings from CA1 pyramidal cells in hippocampal slices. NMDAR antagonists were found to potently inhibit APs generated with 5 and 100 Hz synaptic stimulation. Blockade of APs, and ERK activation, could be overcome with the addition of the GABA-A antagonist bicuculline, indicating that APs are sufficient to activate signals such as ERK in the nucleus and throughout the neuron in the continued presence of NMDAR antagonists. Interestingly, no effects of the NMDAR antagonists were observed when theta-burst stimulation (TBS) was used. This resistance to the antagonists is conferred by temporal summation during the bursts. These results clarify findings from a previous study showing that ERK activation induced with TBS is resistant to APV, in contrast to that induced with 5 Hz or 100 Hz stimulation, which is sensitive. By showing that NMDAR blockade inhibits AP generation, we demonstrate that a major role NMDARs play in cell-wide and nuclear ERK activation is through their contribution to action potential generation. PMID:16049179

  13. Arcuate Src activation-induced phosphorylation of NR2B NMDA subunit contributes to inflammatory pain in rats.

    PubMed

    Xu, Longsheng; Pan, Yanyan; Zhu, Qi; Gong, Shan; Tao, Jin; Xu, Guang-Yin; Jiang, Xinghong

    2012-12-01

    The tyrosine kinases of Src family play an important role in the central sensitization following peripheral inflammation. However, whether the Src family in the arcuate nucleus (ARC) of mediobasal hypothalamus is involved in central sensitization remains unknown. The aim of this study was to investigate the role and mechanisms of tyrosine kinases of Src family in N-methyl-d-aspartate (NMDA) receptor activity in the ARC following peripheral inflammation. Peripheral inflammation was induced by unilateral injection of complete Freund's adjuvant (CFA) into rat hindpaw. The neuronal activities of the ARC were recorded using electrophysiological field recording from the in vitro mediobasal hypothalamic slices from control and CFA rats. Expression of total and phosphorylated Src and NR2B subunit protein was analyzed by Western blot and immuoprecipitation. Our results showed that CFA injection resulted in an increase in mechanical and thermal sensitivity, which was partially blocked by neonatal monosodium glutamate treatment. CFA injection also enhanced spontaneous firings of ARC neurons, which were reversed by the NMDA receptor NR2B subunit specific antagonist Ro25-6981 and by PP2, an Src family tyrosine kinase inhibitor. In addition, peripheral inflammation enhanced Src phosphorylation and NMDA receptor NR2B subunit phosphorylation without alteration of total NR2B subunit expression in the ARC. Peripheral inflammation also increased the association of NR2B protein with p-Src protein in the ARC. Administration of PP2 blocked the upregulation of NR2B phosphorylation induced by CFA injection. Taken together, our present results suggest that the arcuate Src activation-induced tyrosine phosphorylation of NR2B NMDA subunit may contribute to inflammatory pain.

  14. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.

  15. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  16. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels.

    PubMed

    Coussens, C M; Kerr, D S; Abraham, W C

    1997-07-01

    The effects of the glucocorticoid receptor agonist RU-28362 on homosynaptic long-term depression (LTD) were examined in hippocampal slices obtained from adrenal-intact adult male rats. Field excitatory postsynaptic potentials were evoked by stimulation of the Schaffer collateral/commissural pathway and recorded in stratum radiatum of area CA1. Low-frequency stimulation (LFS) was delivered at LTD threshold (2 bouts of 600 pulses, 1 Hz, at baseline stimulation intensity). LFS of the Schaffer collaterals did not produce significant homosynaptic LTD in control slices. However, identical conditioning in the presence of the glucocorticoid receptor agonist RU-28362 (10 microM) produced a robust LTD, which was blocked by the selective glucocorticoid antagonist RU-38486. The LTD induced by glucocorticoid receptor activation was dependent on N-methyl-D-aspartate (NMDA) receptor activity, because the specific NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) blocked the facilitation. However, the facilitation of LTD was not due to a potentiation of the isolated NMDA receptor potential by RU-28362. The facilitation of LTD by RU-28362 was also blocked by coincubation of the L-type voltage-dependent calcium channel (VDCC) antagonist nimodipine. Selective activation of the L-type VDCCs by the agonist Bay K 8644 also facilitated LTD induction. Both nimodipine and D-AP5 were effective in blocking the facilitation of LTD by Bay K 8644. These results indicate that L-type VDCCs can contribute to NMDA-receptor-dependent LTD induction.

  17. An activity systemic approach to augmentative and alternative communication.

    PubMed

    Hedvall, Per-Olof; Rydeman, Bitte

    2010-12-01

    The purpose of this paper is to discuss and highlight how Cultural-Historical Activity Theory (CHAT) can contribute to the understanding of the different factors at play when a person is using augmentative and alternative communication (AAC). It is based on data from a 3-year project concerning activity-based vocabulary design of voice output communication aids (VOCAs). Four persons who used AAC and their assistants were interviewed about shopping activities and their views about a vocabulary that included pre-stored phrases. A CHAT model, the Activity Diamond, was applied in an analysis of the data. The result was a multiplicity of human, artifactual, and natural factors, in which six themes were identified: Attitude/Preference, Expectation/Trust, Goal/Power, Place/Space, Time/Learning, and Usability/Accessibility. The themes are exemplified and discussed in relation to AAC.

  18. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    PubMed

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  19. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood.

  20. Usability Engineering: Domain Analysis Activities for Augmented Reality Systems

    DTIC Science & Technology

    2002-01-01

    This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured...management principals and techniques, formal and semiformal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system...originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented

  1. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation.

    PubMed

    Lipton, Stuart A

    2007-05-01

    Alzheimer's disease (AD) and Vascular dementia represent the most common forms of dementia. If left unabated, the economic cost of caring for patients with these maladies would consume the entire gross national product of the industrialized world by the middle of this century. Until recently, the only available drugs for this condition were cholinergic treatments, which symptomatically enhance cognitive state to some degree, but they were not neuroprotective. Many potential neuroprotective drugs tested in clinical trials failed because of intolerable side effects. However, after our discovery of its clinically-tolerated mechanism of action, one putatively neuroprotective drug, memantine, was recently approved by the European Union and the U.S. Food and Drug Administration (FDA) for the treatment of dementia. Recent phase 3 clinical trials have shown that memantine is effective in the treatment of both mild and moderate-to-severe Alzheimer's disease and possibly Vascular dementia (multi-infarct dementia). Here we review the molecular mechanism of memantine's action and also the basis for the drug's use in these neurological diseases, which are mediated at least in part by excitotoxicity. Excitotoxicity is defined as excessive exposure to the neurotransmitter glutamate or overstimulation of its membrane receptors, leading to neuronal injury or death. Excitotoxic neuronal cell damage is mediated in part by overactivation of N-methyl-D-aspartate (NMDA)-type glutamate receptors, which results in excessive Ca(2+) influx through the receptor associated ion channel and subsequent free radical formation. Physiological NMDA receptor activity, however, is also essential for normal neuronal function. This means that potential neuroprotective agents that block virtually all NMDA receptor activity will very likely have unacceptable clinical side effects. For this reason many previous NMDA receptor antagonists have disappointingly failed advanced clinical trials for a number of

  2. The balance of NMDA- and AMPA/kainate receptor-mediated activity in normal adult goldfish and during optic nerve regeneration.

    PubMed

    Taylor, Andrew L; Rodger, Jennifer; Stirling, R Victoria; Beazley, Lyn D; Dunlop, Sarah A

    2005-10-01

    Retinotectal topography is established during development and relies on the sequential recruitment of glutamate receptors within postsynaptic tectal cells. NMDA receptors underpin plastic changes at early stages when retinal ganglion cell (RGC) terminal arbors are widespread and topography is coarse; AMPA/kainate receptors mediate fast secure neurotransmission characteristic of mature circuits once topography is refined. Here, we have examined the relative contributions of these receptors to visually evoked activity in normal adult goldfish, in which retinotectal topography is constantly adjusted to compensate for the continual neurogenesis and the addition of new RGC arbors. Furthermore, we examined animals at two stages of optic nerve regeneration. In the first, RGC arbors are widespread and receptive fields large resulting in coarse topography; in the second, RGC arbors are pruned to reduce receptive fields leading to refined topography. Antagonists were applied to the tectum during multiunit recording of postsynaptic responses. Normal goldfish have low levels of NMDA receptor-mediated activity and high levels of AMPA/kainate. When coarse topography has been restored, NMDA receptor-mediated activity is increased and that of AMPA/kainate decreased. Once topography has been refined, the balance of NMDA and AMPA/kainate receptor-mediated activity returns to normal. The data suggest that glutamatergic neurotransmission in normal adult goldfish is dual with NMDA receptors fine-tuning topography and AMPA receptors allowing stable synaptic function. Furthermore, the normal operation of both receptors allows a response to injury in which the balance can be transiently reversed to restore topography and vision.

  3. Abdomen and spinal cord segmentation with augmented active shape models.

    PubMed

    Xu, Zhoubing; Conrad, Benjamin N; Baucom, Rebeccah B; Smith, Seth A; Poulose, Benjamin K; Landman, Bennett A

    2016-07-01

    Active shape models (ASMs) have been widely used for extracting human anatomies in medical images given their capability for shape regularization of topology preservation. However, sensitivity to model initialization and local correspondence search often undermines their performances, especially around highly variable contexts in computed-tomography (CT) and magnetic resonance (MR) images. In this study, we propose an augmented ASM (AASM) by integrating the multiatlas label fusion (MALF) and level set (LS) techniques into the traditional ASM framework. Using AASM, landmark updates are optimized globally via a region-based LS evolution applied on the probability map generated from MALF. This augmentation effectively extends the searching range of correspondent landmarks while reducing sensitivity to the image contexts and improves the segmentation robustness. We propose the AASM framework as a two-dimensional segmentation technique targeting structures with one axis of regularity. We apply AASM approach to abdomen CT and spinal cord (SC) MR segmentation challenges. On 20 CT scans, the AASM segmentation of the whole abdominal wall enables the subcutaneous/visceral fat measurement, with high correlation to the measurement derived from manual segmentation. On 28 3T MR scans, AASM yields better performances than other state-of-the-art approaches in segmenting white/gray matter in SC.

  4. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model

    PubMed Central

    Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.

    2016-01-01

    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level

  5. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor.

    PubMed

    Ng, Kay-Siong; Leung, How-Wing; Wong, Peter T-H; Low, Chian-Ming

    2012-07-20

    Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.

  6. Influences of NR2B-containing NMDA receptors knockdown on neural activity in hippocampal newborn neurons.

    PubMed

    Li, Zhi-jun; Zhang, Hui-wen; Tang, Na

    2013-08-01

    Adult-born neurons undergo a transient period of plasticity during their integration into the neural circuit. This transient plasticity may involve NMDA receptors containing NR2B, the major subunit expressed at early developmental stages. The main objective of the present study was to investigate the effects of NR2B gene knockdown on the functional integration of the adult-born granule cells generated from the subgranule zone (SGZ) in the hippocampus. The small interfering RNA (siRNA) was used to knock down the NR2B gene in the adult-born hippocampal neurons. In the functional integration test, the mice were exposed to a novel environment (open field arena), and the expression of c-fos was immunohistochemically detected in the hippocampus. After exposure to the novel environment, siRNA-NR2B mice were significantly different from control mice in either the number of squares or the number of rears they crossed, showing decreased horizontal and vertical activity (P<0.05). Moreover, the c-fos expression was increased in both control and siRNA-NR2B mice after open field test. But, it was significantly lower in siRNA-NR2B neurons than in control neurons. It was concluded that the neural activity of newborn neurons is regulated by their own NR2B-containing NMDA glutamate receptors during a short, critical period after neuronal birth.

  7. Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex.

    PubMed

    Hanson, Elizabeth; Armbruster, Moritz; Cantu, David; Andresen, Lauren; Taylor, Amaro; Danbolt, Niels Christian; Dulla, Chris G

    2015-10-01

    Glutamate uptake by astrocytes controls the time course of glutamate in the extracellular space and affects neurotransmission, synaptogenesis, and circuit development. Astrocytic glutamate uptake has been shown to undergo post-natal maturation in the hippocampus, but has been largely unexplored in other brain regions. Notably, glutamate uptake has never been examined in the developing neocortex. In these studies, we investigated the development of astrocytic glutamate transport, intrinsic membrane properties, and control of neuronal NMDA receptor activation in the developing neocortex. Using astrocytic and neuronal electrophysiology, immunofluorescence, and Western blot analysis we show that: (1) glutamate uptake in the neonatal neocortex is slow relative to neonatal hippocampus; (2) astrocytes in the neonatal neocortex undergo a significant maturation of intrinsic membrane properties; (3) slow glutamate uptake is accompanied by lower expression of both GLT-1 and GLAST; (4) glutamate uptake is less dependent on GLT-1 in neonatal neocortex than in neonatal hippocampus; and (5) the slow glutamate uptake we report in the neonatal neocortex corresponds to minimal astrocytic control of neuronal NMDA receptor activation. Taken together, our results clearly show fundamental differences between astrocytic maturation in the developing neocortex and hippocampus, and corresponding changes in how astrocytes control glutamate signaling.

  8. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.

    PubMed

    Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han

    2015-02-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.

  9. A risk variant for alcoholism in the NMDA receptor affects amygdala activity during fear conditioning in humans.

    PubMed

    Cacciaglia, Raffaele; Nees, Frauke; Pohlack, Sebastian T; Ruttorf, Michaela; Winkelmann, Tobias; Witt, Stephanie H; Nieratschker, Vanessa; Rietschel, Marcella; Flor, Herta

    2013-09-01

    People at high risk for alcoholism show deficits in aversive learning, as indicated by impaired electrodermal responses during fear conditioning, a basic form of associative learning that depends on the amygdala. A positive family history of alcohol dependence has also been related to decreased amygdala responses during emotional processing. In the present study we report reduced amygdala activity during the acquisition of conditioned fear in healthy carriers of a risk variant for alcoholism (rs2072450) in the NR2A subunit-containing N-methyl-d-aspartate (NMDA)-receptor. These results indicate that rs2072450 might confer risk for alcohol dependence through deficient fear acquisition indexed by a diminished amygdala response during aversive learning, and provide a neural basis for a weak behavioral inhibition previously documented in individuals at high risk for alcohol dependence. Carriers of the risk variant additionally exhibit dampened insula activation, a finding that further strengthens our data, given the importance of this brain region in fear conditioning.

  10. NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice.

    PubMed

    Pomierny-Chamioło, Lucyna; Poleszak, Ewa; Pilc, Andrzej; Nowak, Gabriel

    2010-01-01

    Several lines of evidence suggest an antidepressant-like activity for 3-[(methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP), a highly selective, non-competitive antagonist of metabotropic glutamate receptors subtype 5 (mGluR(5)). This effect has been observed following both acute and chronic MTEP treatments in behavioral tests and experimental models of depression, such as the forced swim test (FST), the tail suspension test, and the olfactory bulbectomy model of depression. However, the mechanism of action for mGluR(5) antagonists remains unclear. The aim of this study was to investigate whether the antidepressant-like action of MTEPis dependent on ionotropic glutamatergic receptors. Male Albino Swiss mice were used, and antidepressant-like activity was evaluated using the FST. The antidepressant-like effect of MTEP (0.3 mg/kg) was significantly antagonized by pre-treatment with the NMDA receptor agonist N-methyl-D-aspartic acid (NMDA, 75 mg/kg, i.p.). The AMPA receptor antagonist NBQX (10 mg/kg, i.p.) did not affect the MTEP activity. Our results indicate that the antidepressant-like activity of MTEP in the FST involves NMDA but not AMPA receptors and suggest that the interaction between mGluR(5) and NMDA receptors plays an important role in the underlying antidepressant mechanism(s).

  11. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats

    PubMed Central

    Burke, Dennis A.; Heshmati, Pooneh; Kholdebarin, Ehsan; Levin, Edward D.

    2014-01-01

    Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1–4 mg/kg), DHβE (1–4 mg/kg), mecamylamine (0.125–0.5 mg/kg) or sazetidine-A (1 and 3 mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10 mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted. PMID:25064338

  12. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats.

    PubMed

    Li, Frederick W; Deurveilher, Samuel; Semba, Kazue

    2011-10-31

    The perifornical lateral hypothalamic area (PeFLH), which houses orexin/hypocretin (OX) neurons, is thought to play an important role in arousal, feeding, and locomotor activity. The present study examined behavioural effects of activating PeFLH neurons with microinjections of ionotropic glutamate receptor agonists. Three separate unilateral microinjections of either (1) AMPA (1 and 2mM in 0.1 μL artificial cerebrospinal fluid, ACSF) and ACSF, or (2) NMDA (1 and 10mM in 0.1 μL ACSF), and ACSF were made into the PeFLH of adult male rats. Following each injection, the rats were placed into an open field for behavioural scoring for 45 min. Rats were perfused after the third injection for immunohistochemistry for c-Fos and OX to assess the level of activation of OX neurons. Behavioural analyses showed that, as compared to ACSF conditions, AMPA injections produced a dose-dependent increase in locomotion and rearing that persisted throughout the 45 min recording period, and an increase in drinking. Injection of NMDA at 10mM, but not 1mM, induced a transient increase in locomotion and an increase in feeding. Histological analyses showed that while both agonists increased the number of neurons immunoreactive for c-Fos in the PeFLH, only AMPA increased the number of neurons immunoreactive for both c-Fos and OX. There were positive correlations between the number of c-Fos/OX-immunoreactive neurons and the amounts of locomotion, rearing, and drinking. These results support the role of ionotropic glutamate receptors on OX and other neurons in the PeFLH in the regulation of locomotor and ingestive behaviours.

  13. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  14. Regulation of neuronal gene expression and survival by basal NMDA receptor activity: a role for histone deacetylase 4.

    PubMed

    Chen, Yelin; Wang, Yuanyuan; Modrusan, Zora; Sheng, Morgan; Kaminker, Joshua S

    2014-11-12

    Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDAR activity. The genes altered by AP5 treatment of basal cultures were enriched for pathways related to class IIa histone deacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under long-term tetrodotoxin or AP5 treatment in rat hippocampal organotypic slice cultures. These data suggest that basal, but not evoked, NMDAR activity regulates gene expression in part through HDAC4, and, that HDAC4 has neuroprotective functions under conditions of low NMDAR activity.

  15. Autocrine activation of neuronal NMDA receptors by aspartate mediates dopamine- and cAMP-induced CREB-dependent gene transcription

    PubMed Central

    Almeida, Luis E. F.; Murray, Peter D.; Zielke, H. Ronald; Roby, Clinton D.; Kingsbury, Tami J.; Krueger, Bruce K.

    2009-01-01

    Cyclic AMP can stimulate the transcription of many activity-dependent genes via activation of the transcription factor, CREB. However, in mouse cortical neuron cultures, prior to synaptogenesis, neither cAMP nor dopamine, which acts via cAMP, stimulated CREB-dependent gene transcription when NR2B-containing NMDA receptors (NMDARs) were blocked. Stimulation of transcription by cAMP was potentiated by inhibitors of excitatory amino acid uptake, suggesting a role for extracellular glutamate or aspartate in cAMP-induced transcription. Aspartate was identified as the extracellular messenger: enzymatic scavenging of L-aspartate, but not glutamate, blocked stimulation of CREB-dependent gene transcription by cAMP; moreover, cAMP induced aspartate but not glutamate release. Taken together, these results suggest that cAMP acts via an autocrine or paracrine pathway to release aspartate, which activates NR2B-containing NMDARs, leading to Ca2+ entry and activation of transcription. This cAMP/aspartate/NMDAR signaling pathway may mediate the effects of transmitters such as dopamine on axon growth and synaptogenesis in developing neurons or on synaptic plasticity in mature neural networks. PMID:19812345

  16. NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice.

    PubMed

    Wlaź, Piotr; Kasperek, Regina; Wlaź, Aleksandra; Szumiło, Michał; Wróbel, Andrzej; Nowak, Gabriel; Poleszak, Ewa

    2011-01-01

    It is known that tianeptine exhibits antidepressant-like activity. Its influence on the glutamatergic system is also known, but the mechanisms involved in this activity remain to be established. The aim of this study was to investigate the involvement of the glutamate pathway in the antidepressant-like action of tianeptine. We investigated the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor ligands on tianeptine-induced activity in the forced swim test (FST) in mice. The antidepressant-like activity of tianeptine (30 m/kg, ip) was significantly antagonized by D-serine (100 nmol/mouse icv) and NBQX (10 mg/kg, ip). Moreover, low, ineffective doses of the glycine/NMDA site antagonist L-701,324 (1 mg/kg, ip) administered together with low, ineffective doses of tianeptine (20 mg/kg, ip) exhibited a significant reduction of immobility time in the FST. These doses of the examined agents, which did have an effect in the FST, did not alter locomotor activity. The present study indicates that the antidepressant-like activity of tianeptine in the FST involves both NMDA and AMPA receptors and suggests that the interaction between serotonergic and glutamatergic transmission may play an important role in the action of tianeptine.

  17. Active and passive techniques for tiltrotor aeroelastic stability augmentation

    NASA Astrophysics Data System (ADS)

    Hathaway, Eric L.

    Tiltrotors are susceptible to whirl flutter, an aeroelastic instability characterized by a coupling of rotor-generated aerodynamic forces and elastic wing modes in high speed airplane-mode flight. The conventional approach to ensuring adequate whirl flutter stability will not scale easily to larger tiltrotor designs. This study constitutes an investigation of several alternatives for improving tiltrotor aerolastic stability. A whirl flutter stability analysis is developed that does not rely on more complex models to determine the variations in crucial input parameters with flight condition. Variation of blade flap and lag frequency, and pitch-flap, pitch-lag, and flap-lag couplings, are calculated from physical parameters, such as blade structural flap and lag stiffness distribution (inboard or outboard of pitch bearing), collective pitch, and precone. The analysis is used to perform a study of the influence of various design parameters on whirl flutter stability. While previous studies have investigated the individual influence of various design parameters, the present investigation uses formal optimization techniques to determine a unique combination of parameters that maximizes whirl flutter stability. The optimal designs require only modest changes in the key rotor and wing design parameters to significantly increase flutter speed. When constraints on design parameters are relaxed, optimized configurations are obtained that allow large values of kinematic pitch-flap (delta3) coupling without degrading aeroelastic stability. Larger values of delta3 may be desirable for advanced tiltrotor configurations. An investigation of active control of wing flaperons for stability augmentation is also conducted. Both stiff- and soft-inplane tiltrotor configurations are examined. Control systems that increase flutter speed and wing mode sub-critical damping are designed while observing realistic limits on flaperon deflection. The flaperon is shown to be particularly

  18. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (INMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated INMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on INMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated INMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of INMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  19. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production.

    PubMed

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain

    2010-11-24

    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  20. HIV-1 gp120Bal down-regulates phosphorylated NMDA receptor subunit 1 in cortical neurons via activation of glutamate and chemokine receptors

    PubMed Central

    Ru, Wenjuan; Tang, Shao-Jun

    2015-01-01

    HIV-1 envelope glycoprotein gp120 (gp120) is a major virulence protein implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Although gp120 has been suggested to cause synaptic and neuronal injuries by disrupting NMDA receptor (NMDAR) function, the underlying mechanism is unclear. Here, we show that gp120Bal down-regulates the phosphorylation of the NMDAR subunit 1 NR1 (at Ser896 and Ser897), which is essential for NMDAR function. This effect of gp120Bal is blocked by specific antagonists of both NMDA and AMPA receptors, indicating a critical role of synaptic activation. Furthermore, AMD3100 and maraviroc, antagonists of CCR5 and CXCR4 chemokine receptors, respectively, inhibit the effect of gp120Bal on NR1, suggesting that CXCR4 and CCR5 activation are involved. These findings may provide mechanistic insights into the synaptopathogenesis caused by HIV-1 infection. PMID:26582091

  1. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone.

    PubMed

    Liu, Tiemin; Kong, Dong; Shah, Bhavik P; Ye, Chianping; Koda, Shuichi; Saunders, Arpiar; Ding, Jun B; Yang, Zongfang; Sabatini, Bernardo L; Lowell, Bradford B

    2012-02-09

    AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles in controlling AgRP neurons and determining the cellular and behavioral response to fasting.

  2. Neuroprotective effect of Chuk-Me-Sun-Dan on NMDA- and AMPA-evoked nitric oxide synthase activity in mouse brain.

    PubMed

    Koo, Byung-Soo; Choi, Eun-Gyu; Park, Jae-Bok; Cho, Chang-Ho; Chung, Kang-Hyun; Kim, Cheorl-Ho

    2005-01-01

    Chukmesundan (CMSD) is composed of 8 medicinal herbs including Panex ginseng C.A. MEYER, Atractylodes macrocephala KOID, Poria cocos WOLF, Pinellia ternata BREIT, Brassica alba BOISS, Aconitum carmichaeli DEBX, Cynanchum atratum BGE, and Cuscuta chinensis LAM and used for the treatment of various symptoms accompanying hypertension and cerebrovascular disorders. This study was carried out to examine the effects of CMSD on N-methyl-D-aspartate (NMDA)-evoked, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-evoked nitric oxide synthase (NOS) activity in mouse brain. In adult forebrain, CMSD influences neuronal maintenance and is neuroprotective in several injury models through mechanisms that are incompletely understood. Interaction is observed between CMSD and nitric oxide (NO). Because NO affects both neural plasticity and degeneration, we hypothesized that CMSD might rapidly modulate NO production. Using in vivo microdialysis we measured conversion of L-[14C] arginine to L-[14C] citrulline as an accurate reflection of NOS activity in adult mouse hippocampus. CMSD significantly reduced NOS activities to 62% of basal levels within 2 days of onset of delivery and maintained NOS activity at less than 45% of baseline throughout 3 days of delivery. These effects did not occur with control (distilled water) and were not mediated by effect of CMSD on glutamate levels. In addition, simultaneous delivery of CMSD treatment prevented significant increases in NOS activity triggered by the glutamate receptor agonists NMDA and AMPA. Rapid suppression by CMSD of basal and glutamate-stimulated NOS activity may regulate neuromodulatory functions of NO or protect neurons from NO toxicity and suggests a novel mechanism for rapidly mediating functions of CMSD. It is shown that NMDA receptor stimulation leads to activation of p21ras (Ras) through generation of NO via neuronal NOS. The competitive NOS inhibitor, L-nitroarginine methyl ester, and CMSD prevents Ras

  3. Effects of ifenprodil on the antidepressant-like activity of NMDA ligands in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wośko, Sylwia; Serefko, Anna; Szopa, Aleksandra; Wlaź, Aleksandra; Szewczyk, Bernadeta; Nowak, Gabriel; Wlaź, Piotr

    2013-10-01

    Multiple pre-clinical and clinical studies clearly displayed implication of the NMDA receptors in development of depressive disorders since a variety of NMDA receptor antagonists exhibit an antidepressant-like effect. The main aim of our study was to assess the influence of ifenprodil - an allosteric modulator selectively binding at the NR2B subunit on the performance in the forced swim test in mice of various NMDA receptor ligands interacting with distinct components of the NMDA receptor complex. Ifenprodil at a dose of 10mg/kg enhanced the antidepressant-like effect of CGP 37849 (a competitive NMDA receptor antagonist, 0.312mg/kg), L-701,324 (an antagonist at glycine site, 1mg/kg), MK-801 (a non-competitive antagonist, 0.05mg/kg) and d-cycloserine (a partial agonist of a glycine site, 2.5mg/kg) but it did not shorten the immobility time of animals which concurrently received an inorganic modulator of the NMDA receptor complex, such as Zn(2+) (2.5mg/kg) or Mg(2+) (10mg/kg). On the other hand, the antidepressant-like effect of ifenprodil (20mg/kg) was reversed by N-methyl-d-aspartic acid (an agonist at the glutamate site, 75mg/kg) or d-serine (an agonist at the glycine site, 100nmol/mouse). In conclusion, the antidepressant-like potential of ifenprodil given concomitantly with NMDA ligands was either reinforced (in the case of both partial agonist and antagonists, except for magnesium and zinc) or diminished (in the case of conventional full agonists).

  4. Pattern-dependent role of NMDA receptors in action potential generation: consequences on extracellular signal-regulated kinase activation.

    PubMed

    Zhao, Meilan; Adams, J Paige; Dudek, Serena M

    2005-07-27

    Synaptic long-term potentiation is maintained through gene transcription, but how the nucleus is recruited remains controversial. Activation of extracellular signal-regulated kinases (ERKs) 1 and 2 with synaptic stimulation has been shown to require NMDA receptors (NMDARs), yet stimulation intensities sufficient to recruit action potentials (APs) also appear to be required. This has led us to ask the question of whether NMDARs are necessary for AP generation as they relate to ERK activation. To test this, we examined the effects of NMDAR blockade on APs induced with synaptic stimulation using whole-cell current-clamp recordings from CA1 pyramidal cells in hippocampal slices. NMDAR antagonists were found to potently inhibit APs generated with 5 and 100 Hz synaptic stimulation. Blockade of APs and ERK activation could be overcome with the addition of the GABAA antagonist bicuculline, indicating that APs are sufficient to activate signals such as ERK in the nucleus and throughout the neuron in the continued presence of NMDAR antagonists. Interestingly, no effects of the NMDAR antagonists were observed when theta-burst stimulation (TBS) was used. This resistance to the antagonists is conferred by temporal summation during the bursts. These results clarify findings from a previous study showing that ERK activation induced with TBS is resistant to 2-amino-5-phosphonovalerate, in contrast to that induced with 5 or 100 Hz stimulation, which is sensitive. By showing that NMDAR blockade inhibits AP generation, we demonstrate that a major role that NMDARs play in cell-wide and nuclear ERK activation is through their contribution to action potential generation.

  5. Dopamine promotes NMDA receptor hypofunction in the retina through D1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation

    PubMed Central

    Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domith, Ivan; Encarnação, Thaísa G.; Loiola, Erick C.; Ventura, Ana L. M.; Cossenza, Marcelo; Relvas, João B.; Castro, Newton G.; Paes-de-Carvalho, Roberto

    2017-01-01

    Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons. PMID:28098256

  6. Endogenous activation of nAChRs and NMDA receptors contributes to the excitability of CA1 stratum radiatum interneurons in rat hippocampal slices: effects of kynurenic acid.

    PubMed

    Alkondon, Manickavasagom; Pereira, Edna F R; Albuquerque, Edson X

    2011-10-15

    CA1 stratum radiatum interneurons (SRIs) express α7 nicotinic receptors (nAChRs) and receive inputs from glutamatergic neurons/axons that express α3β4β2 nAChRs. To test the hypothesis that endogenously active α7 and/or α3β4β2 nAChRs control the excitability of CA1 SRIs in the rat hippocampus, we examined the effects of selective receptor antagonists on spontaneous fast current transients (CTs) recorded from these interneurons under cell-attached configuration. The frequency of CTs, which represent action potentials, increased in the absence of extracellular Mg(2+) and decreased in the presence of the α3β4β2 nAChR antagonist mecamylamine (3 μM) or the NMDA receptor antagonist APV (50 μM). However, it was unaffected by the α7 nAChR antagonist MLA (10 nM) or the AMPA receptor antagonist CNQX (10 μM). Thus, in addition to synaptically and tonically activated NMDA receptors, α3β4β2 nAChRs that are present on glutamatergic axons/neurons synapsing onto SRIs and are activated by basal levels of acetylcholine contribute to the maintenance of the excitability of these interneurons. Kynurenic acid (KYNA), an astrocyte-derived kynurenine metabolite whose levels are increased in the brains of patients with schizophrenia, also controls the excitability of SRIs. At high micromolar concentrations, KYNA, acting primarily as an NMDA receptor antagonist, decreased the CT frequency recorded from the interneurons. At 2 μM, KYNA reduced the CA1 SRI excitability via mechanisms independent of NMDA receptor block. KYNA-induced reduction of excitability of SRIs may contribute to sensory gating deficits that have been attributed to deficient hippocampal GABAergic transmission and high levels of KYNA in the brain of patients with schizophrenia.

  7. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  8. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  9. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells.

    PubMed

    Tam, See-Ying; Lilla, Jennifer N; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.

  10. NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea

    PubMed Central

    Zhang-Hooks, YingXin; Agarwal, Amit; Mishina, Masayoshi; Bergles, Dwight E.

    2016-01-01

    Summary Spontaneous bursts of activity in developing sensory pathways promote maturation of neurons, refinement of neuronal connections and assembly of appropriate functional networks. In the developing auditory system, inner hair cells (IHCs) spontaneously fire Ca2+ spikes, each of which is transformed into a mini-burst of action potentials in spiral ganglion neurons (SGNs). Here we show that NMDARs are expressed in SGN dendritic terminals and play a critical role during transmission of activity from IHCs to SGNs before hearing onset. NMDAR activation enhances glutamate-mediated Ca2+ influx at dendritic terminals, promotes repetitive firing of individual SGNs in response to each synaptic event, and enhances coincident activity of neighboring SGNs that will eventually encode similar frequencies of sound. Loss of NMDAR signaling from SGNs reduced their survival both in vivo and in vitro, revealing that spontaneous activity in the prehearing cochlea promotes maturation of auditory circuitry through periodic activation of NMDARs in SGNs. PMID:26774161

  11. NMDA receptor-mediated epileptiform persistent activity requires calcium release from intracellular stores in prefrontal neurons.

    PubMed

    Gao, Wen-Jun; Goldman-Rakic, Patricia S

    2006-02-01

    Various normal and pathological forms of synchronized population activity are generated by recurrent excitation among pyramidal neurons in the neocortex. However, the intracellular signaling mechanisms underlying this activity remain poorly understood. In this study, we have examined the cellular properties of synchronized epileptiform activity in the prefrontal cortex with particular emphasis on a potential role of intracellular calcium stores. We find that the zero-magnesium-induced synchronized activity is blocked by inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPases, phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, and the ryanodine receptor. This same activity is, however, not affected by application of metabotropic glutamatergic receptor (mGluR) agonists, nor by introduction of an mGluR antagonist. These results suggest that persistent synchronized activity in vitro is dependent upon calcium release from internal calcium stores through the activation of PLC-IP3 receptor pathway. Our findings also raise the possibility that intracellular calcium release may be involved in the generation of pathologic synchronized activity in epilepsy in vivo and in physiological forms of synchronized cortical activity.

  12. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline

    NASA Technical Reports Server (NTRS)

    Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.

    1992-01-01

    We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.

  13. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation.

    PubMed

    Hernandez-Martinez, Juan-Manuel; Forrest, Caroline M; Darlington, L Gail; Smith, Robert A; Stone, Trevor W

    2017-03-01

    Glutamate and nicotinamide adenine dinucleotide (NAD(+) ) have been implicated in neuronal development and several types of cancer. The kynurenine pathway of tryptophan metabolism includes quinolinic acid (QA) which is both a selective agonist at N-methyl-D-aspartate (NMDA) receptors and also a precursor for the formation of NAD(+) . The effect of QA on cell survival and differentiation has therefore been examined on SH-SY5Y human neuroblastoma cells. Retinoic acid (RA, 10 μm) induced differentiation of SH-SY5Y cells into a neuronal phenotype showing neurite growth. QA (50-150 nm) also caused a concentration-dependent increase in the neurite/soma ratio, indicating differentiation. Both RA and QA increased expression of the neuronal marker β3-tubulin in whole-cell homogenates and in the neuritic fraction assessed using a neurite outgrowth assay. Expression of the neuronal proliferation marker doublecortin revealed that, unlike RA, QA did not decrease the number of mitotic cells. QA-induced neuritogenesis coincided with an increase in the generation of reactive oxygen species. Neuritogenesis was prevented by diphenylene-iodonium (an inhibitor of NADPH oxidase) and superoxide dismutase, supporting the involvement of reactive oxygen species. NMDA itself did not promote neuritogenesis and the NMDA antagonist dizocilpine (MK-801) did not prevent quinolinate-induced neuritogenesis, indicating that the effects of QA were independent of NMDA receptors. Nicotinamide caused a significant increase in the neurite/soma ratio and the expression of β3-tubulin in the neuritic fraction. Taken together, these results suggest that QA induces neuritogenesis by promoting oxidizing conditions and affecting the availability of NAD(+) , independently of NMDA receptors.

  14. Immobilized-cell-augmented activated sludge process for treating wastewater containing hazardous compounds.

    PubMed

    Jittawattanarat, Rungrod; Kostarelos, Konstantinos; Khan, Eakalak

    2007-05-01

    A novel bioaugmentation scheme called immobilized-cell-augmented activated sludge (ICAAS) was developed. Offline enricher reactors were used to maintain immobilized acclimated cells applied to augment completely mixed activated sludge (CMAS) treating a pentachlorophenol (PCP) pulse loading. Cellulose triacetate (CA) and powder activated carbon (PAC) combined with CA (PAC + CA) were the two media types used for entrapping the PCP-degrading culture. With ICAAS at 5% by volume augmentation, PCP removal of 73.1 and 75.1% via biodegradation, volatilization, and adsorption onto suspended cells, entrapped cells, and media was achieved for the systems with CA and PAC + CA media, respectively, while PCP removal in a control CMAS, which had a comparable level of combined PCP adsorption onto suspended cells and volatilization as the ICAAS, was 48.7%. Results further showed that the immobilized cells retained their PCP-degrading ability when they were fed with the inducer (PCP) once every 20 days.

  15. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity.

    PubMed

    Baron, A; Montagne, A; Cassé, F; Launay, S; Maubert, E; Ali, C; Vivien, D

    2010-05-01

    Although the molecular bases of its actions remain debated, tissue-type plasminogen activator (tPA) is a paradoxical brain protease, as it favours some learning/memory processes, but increases excitotoxic neuronal death. Here, we show that, in cultured cortical neurons, tPA selectively promotes NR2D-containing N-methyl-D-aspartate receptor (NMDAR)-dependent activation. We show that tPA-mediated signalling and neurotoxicity through the NMDAR are blocked by co-application of an NR2D antagonist (phenanthrene derivative (2S(*), 3R(*))-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid, PPDA) or knockdown of neuronal NR2D expression. In sharp contrast with cortical neurons, hippocampal neurons do not exhibit NR2D both in vitro and in vivo and are consequently resistant to tPA-promoted NMDAR-mediated neurotoxicity. Moreover, we have shown that activation of synaptic NMDAR prevents further tPA-dependent NMDAR-mediated neurotoxicity and sensitivity to PPDA. This study shows that the earlier described pro-neurotoxic effect of tPA is mediated by NR2D-containing NMDAR-dependent extracellular signal-regulated kinase activation, a deleterious effect prevented by synaptic pre-activation.

  16. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5–Nrf2 pathway

    PubMed Central

    Jimenez-Blasco, D; Santofimia-Castaño, P; Gonzalez, A; Almeida, A; Bolaños, J P

    2015-01-01

    Neurotransmission unavoidably increases mitochondrial reactive oxygen species. However, the intrinsic antioxidant defense of neurons is weak and hence the mechanism whereby these cells are physiologically protected against oxidative damage is unknown. Here we found that the antioxidant defense of neurons is repressed owing to the continuous protein destabilization of the master antioxidant transcriptional activator, nuclear factor-erythroid 2-related factor-2 (Nrf2). By contrast, Nrf2 is highly stable in neighbor astrocytes explaining their robust antioxidant defense and resistance against oxidative stress. We also show that subtle and persistent stimulation of N-methyl-d-aspartate receptors (NMDAR) in astrocytes, through a mechanism not requiring extracellular Ca2+ influx, upregulates a signal transduction pathway involving phospholipase C-mediated endoplasmic reticulum release of Ca2+ and protein kinase Cδ activation. Active protein kinase Cδ promotes, by phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) cofactor. Active p35/Cdk5 complex in the cytosol phosphorylates Nrf2 at Thr395, Ser433 and Thr439 that is sufficient to promote Nrf2 translocation to the nucleus and induce the expression of antioxidant genes. Furthermore, this Cdk5–Nrf2 transduction pathway boosts glutathione metabolism in astrocytes efficiently protecting closely spaced neurons against oxidative damage. Thus, intercellular communication through NMDAR couples neurotransmission with neuronal survival. PMID:25909891

  17. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning.

    PubMed

    Nakamori, Tomoharu; Sato, Katsushige; Kinoshita, Masae; Kanamatsu, Tomoyuki; Sakagami, Hiroyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2015-01-01

    Imprinting in chicks is a good model for elucidating the processes underlying neural plasticity changes during juvenile learning. We recently reported that neural activation of a telencephalic region, the core region of the hyperpallium densocellulare (HDCo), was critical for success of visual imprinting, and that N-Methyl-D-aspartic (NMDA) receptors containing the NR2B subunit (NR2B/NR1) in this region were essential for imprinting. Using electrophysiological and multiple-site optical imaging techniques with acute brain slices, we found that long-term potentiation (LTP) and enhancement of NR2B/NR1 currents in HDCo neurons were induced in imprinted chicks. Enhancement of NR2B/NR1 currents as well as an increase in surface NR2B expression occurred even following a brief training that was too weak to induce LTP or imprinting behavior. This means that NR2B/NR1 activation is the initial step of learning, well before the activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors which induces LTP. We also showed that knockdown of NR2B/NR1 inhibited imprinting, and inversely, increasing the surface NR2B expression by treatment with a casein kinase 2 inhibitor successfully reduced training time required for imprinting. These results suggest that imprinting stimuli activate post-synaptic NR2B/NR1 in HDCo cells, increase NR2B/NR1 signaling through up-regulation of its expression, and induce LTP and memory acquisition. The study investigated the neural mechanism underlying juvenile learning. In the initial stage of chick imprinting, NMDA receptors containing the NMDA receptor subunit 2B (NR2B) are activated, surface expression of NR2B/NR1 (NMDA receptor subunit 1) is up-regulated, and consequently long-term potentiation is induced in the telencephalic neurons. We suggest that the positive feedback in the NR2B/NR1 activation is a unique process of juvenile learning, exhibiting rapid memory acquisition.

  18. Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity

    PubMed Central

    Lionikiene, Ausra S.; Georgiev, Georgi; Klemmer, Anja; Brain, Chelsea; Kim, Paul Y.

    2016-01-01

    Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70. Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP. PMID:27694320

  19. Requirements for PKC-augmented JNK activation by MKK4/7

    PubMed Central

    Lopez-Bergami, Pablo; Ronai, Ze'ev

    2008-01-01

    The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling. PMID:18182317

  20. Frontopolar activity and connectivity support dynamic conscious augmentation of creative state.

    PubMed

    Green, Adam E; Cohen, Michael S; Raab, Hillary A; Yedibalian, Christopher G; Gray, Jeremy R

    2015-03-01

    No ability is more valued in the modern innovation-fueled economy than thinking creatively on demand, and the "thinking cap" capacity to augment state creativity (i.e., to try and succeed at thinking more creatively) is of broad importance for education and a rich mental life. Although brain-based creativity research has focused on static individual differences in trait creativity, less is known about changes in creative state within an individual. How does the brain augment state creativity when creative thinking is required? Can augmented creative state be consciously engaged and disengaged dynamically across time? Using a novel "thin slice" creativity paradigm in 55 fMRI participants performing verb-generation, we successfully cued large, conscious, short-duration increases in state creativity, indexed quantitatively by a measure of semantic distance derived via latent semantic analysis. A region of left frontopolar cortex, previously associated with creative integration of semantic information, exhibited increased activity and functional connectivity to anterior cingulate gyrus and right frontopolar cortex during cued augmentation of state creativity. Individual differences in the extent of increased activity in this region predicted individual differences in the extent to which participants were able to successfully augment state creative performance after accounting for trait creativity and intelligence.

  1. An excessive increase in glutamate contributes to glucose-toxicity in β-cells via activation of pancreatic NMDA receptors in rodent diabetes

    PubMed Central

    Huang, Xiao-Ting; Li, Chen; Peng, Xiang-Ping; Guo, Jia; Yue, Shao-Jie; Liu, Wei; Zhao, Fei-Yan; Han, Jian-Zhong; Huang, Yan-Hong; Yang-Li, Y -L; Cheng, Qing-Mei; Zhou, Zhi-Guang; Chen, Chen; Feng, Dan-Dan; Luo, Zi-Qiang

    2017-01-01

    In the nervous system, excessive activation of NMDA receptors causes neuronal injury. Although activation of NMDARs has been proposed to contribute to the progress of diabetes, little is known about the effect of excessive long-term activation of NMDARs on β-cells, especially under the challenge of hyperglycemia. Here we thoroughly investigated whether endogenous glutamate aggravated β-cell dysfunction under chronic exposure to high-glucose via activation of NMDARs. The glutamate level was increased in plasma of diabetic mice or patients and in the supernatant of β-cell lines after treatment with high-glucose for 72 h. Decomposing the released glutamate improved GSIS of β-cells under chronic high-glucose exposure. Long-term treatment of β-cells with NMDA inhibited cell viability and decreased GSIS. These effects were eliminated by GluN1 knockout. The NMDAR antagonist MK-801 or GluN1 knockout prevented high-glucose-induced dysfunction in β-cells. MK-801 also decreased the expression of pro-inflammatory cytokines, and inhibited I-κB degradation, ROS generation and NLRP3 inflammasome expression in β-cells exposed to high-glucose. Furthermore, another NMDAR antagonist, Memantine, improved β-cells function in diabetic mice. Taken together, these findings indicate that an increase of glutamate may contribute to the development of diabetes through excessive activation of NMDARs in β-cells, accelerating β-cells dysfunction and apoptosis induced by hyperglycemia. PMID:28303894

  2. Antidepressant activity of fluoxetine in the zinc deficiency model in rats involves the NMDA receptor complex.

    PubMed

    Doboszewska, Urszula; Szewczyk, Bernadeta; Sowa-Kućma, Magdalena; Młyniec, Katarzyna; Rafało, Anna; Ostachowicz, Beata; Lankosz, Marek; Nowak, Gabriel

    2015-01-01

    The zinc deficiency animal model of depression has been proposed; however, it has not been validated in a detailed manner. We have recently shown that depression-like behavior induced by dietary zinc restriction is associated with up-regulation of hippocampal N-methyl-d-aspartate receptor (NMDAR). Here we examined the effects of chronic administration of a selective serotonin reuptake inhibitor, fluoxetine (FLX), on behavioral and biochemical alterations (within NMDAR signaling pathway) induced by zinc deficiency. Male Sprague Dawley rats were fed a zinc adequate diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then, FLX treatment (10mg/kg, i.p.) begun. Following 2 weeks of FLX administration the behavior of the rats was examined in the forced swim test (FST) and the spontaneous locomotor activity test. Twenty four hours later tissue was harvested. The proteins of NMDAR (GluN1, GluN2A and GluN2B) or AMPAR (GluA1) subunits, p-CREB and BDNF in the hippocampus (Western blot) and serum zinc level (TXRF) were examined. Depression-like behavior induced by ZnD in the FST was sensitive to chronic treatment with FLX. ZnD increased levels of GluN1, GluN2A, GluN2B and decreased pS485-GluA1, p-CREB and BDNF proteins. Administration of FLX counteracted the zinc restriction-induced changes in serum zinc level and hippocampal GluN1, GluN2A, GluN2B and p-CREB but not BDNF or pS845-GluA1 protein levels. This finding adds new evidence to the predictive validity of the proposed zinc deficiency model of depression. Antidepressant-like activity of FLX in the zinc deficiency model is associated with NMDAR complex.

  3. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor.

    PubMed

    Sałat, Kinga; Siwek, Agata; Starowicz, Gabriela; Librowski, Tadeusz; Nowak, Gabriel; Drabik, Urszula; Gajdosz, Ryszard; Popik, Piotr

    2015-12-01

    Ketamine produces rapid and long-lasting antidepressant effects in patients. The involvement of ketamine metabolites in these actions has been proposed. The effects of ketamine and its metabolites norketamine and dehydronorketamine on ligand binding to 80 receptors, ion channels and transporters was investigated at a single concentration of 10 μM. The affinities of all three compounds were then assessed at NMDA receptors using [3H]MK-801 binding. The dose-response relationships of all 3 compounds in the forced swim test were also investigated in mice 30 min after IP administration. The effects of ketamine and norketamine (both 50 mg/kg) were then examined at 30 min, 3 days and 7 days post administration. Among the 80 potential targets examined, only NMDA receptors were affected with a magnitude of >50% by ketamine and norketamine at the concentration of 10 μM. The Ki values of ketamine, norketamine and dehydronorketamine at NMDA receptors were 0.119±0.01, 0.97±0.1 and 3.21±0.3 μM, respectively. Ketamine and norketamine reduced immobility with minimum effective doses (MEDs) of 10 and 50 mg/kg, respectively; dehydronorketamine did not affect immobility at doses of up to 50 mg/kg. Neither ketamine nor norketamine reduced immobility in the forced swim test 3 and 7 days following administration. Further, oral administration of ketamine (5-50 mg/kg) did not affect immobility. We demonstrate that ketamine and norketamine but not dehydronorketamine given acutely at subanesthetic doses reduced immobility in the forced swim test. These antidepressant-like effects appear attributable to NMDA receptor inhibition.

  4. Tissue-type plasminogen activator controls neuronal death by raising surface dynamics of extrasynaptic NMDA receptors

    PubMed Central

    Lesept, Flavie; Chevilley, Arnaud; Jezequel, Julie; Ladépêche, Laurent; Macrez, Richard; Aimable, Margaux; Lenoir, Sophie; Bertrand, Thomas; Rubrecht, Laëtitia; Galea, Pascale; Lebouvier, Laurent; Petersen, Karl-Uwe; Hommet, Yannick; Maubert, Eric; Ali, Carine; Groc, Laurent; Vivien, Denis

    2016-01-01

    N-methyl-d-aspartate receptors (NMDARs) are ion channels whose synaptic versus extrasynaptic localization critically influences their functions. This distribution of NMDARs is highly dependent on their lateral diffusion at the cell membrane. Each obligatory subunit of NMDARs (GluN1 and GluN2) contains two extracellular clamshell-like domains with an agonist-binding domain and a distal N-terminal domain (NTD). To date, the roles and dynamics of the NTD of the GluN1 subunit in NMDAR allosteric signaling remain poorly understood. Using single nanoparticle tracking in mouse neurons, we demonstrate that the extracellular neuronal protease tissue-type plasminogen activator (tPA), well known to have a role in the synaptic plasticity and neuronal survival, leads to a selective increase of the surface dynamics and subsequent diffusion of extrasynaptic NMDARs. This process explains the previously reported ability of tPA to promote NMDAR-mediated calcium influx. In parallel, we developed a monoclonal antibody capable of specifically blocking the interaction of tPA with the NTD of the GluN1 subunit of NMDAR. Using this original approach, we demonstrate that the tPA binds the NTD of the GluN1 subunit at a lysine in position 178. Accordingly, when applied to mouse neurons, our selected antibody (named Glunomab) leads to a selective reduction of the tPA-mediated surface dynamics of extrasynaptic NMDARs, subsequent signaling and neurotoxicity, both in vitro and in vivo. Altogether, we demonstrate that the tPA is a ligand of the NTD of the obligatory GluN1 subunit of NMDAR acting as a modulator of their dynamic distribution at the neuronal surface and subsequent signaling. PMID:27831563

  5. Synaptically activated Ca2+ waves and NMDA spikes locally suppress voltage-dependent Ca2+ signalling in rat pyramidal cell dendrites

    PubMed Central

    Manita, Satoshi; Miyazaki, Kenichi; Ross, William N

    2011-01-01

    Abstract Postsynaptic [Ca2+]i changes contribute to several kinds of plasticity in pyramidal neurons. We examined the effects of synaptically activated Ca2+ waves and NMDA spikes on subsequent Ca2+ signalling in CA1 pyramidal cell dendrites in hippocampal slices. Tetanic synaptic stimulation evoked a localized Ca2+ wave in the primary apical dendrites. The [Ca2+]i increase from a backpropagating action potential (bAP) or subthreshold depolarization was reduced if it was generated immediately after the wave. The suppression had a recovery time of 30–60 s. The suppression only occurred where the wave was generated and was not due to a change in bAP amplitude or shape. The suppression also could be generated by Ca2+ waves evoked by uncaging IP3, showing that other signalling pathways activated by the synaptic tetanus were not required. The suppression was proportional to the amplitude of the [Ca2+]i change of the Ca2+ wave and was not blocked by a spectrum of kinase or phosphatase inhibitors, consistent with suppression due to Ca2+-dependent inactivation of Ca2+ channels. The waves also reduced the frequency and amplitude of spontaneous, localized Ca2+ release events in the dendrites by a different mechanism, probably by depleting the stores at the site of wave generation. The same synaptic tetanus often evoked NMDA spike-mediated [Ca2+]i increases in the oblique dendrites where Ca2+ waves do not propagate. These NMDA spikes suppressed the [Ca2+]i increase caused by bAPs in those regions. [Ca2+]i increases by Ca2+ entry through voltage-gated Ca2+ channels also suppressed the [Ca2+]i increases from subsequent bAPs in regions where the voltage-gated [Ca2+]i increases were largest, showing that all ways of raising [Ca2+]i could cause suppression. PMID:21844002

  6. Development and flight evaluation of an augmented stability active controls concept with a small tail

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.

  7. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development.

    PubMed

    Dengler, Christopher G; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A

    2017-02-20

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses.

  8. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development

    PubMed Central

    Dengler, Christopher G.; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A.

    2017-01-01

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses. PMID:28218241

  9. A functional coupling between extrasynaptic NMDA receptors and A-type K+ channels under astrocyte control regulates hypothalamic neurosecretory neuronal activity

    PubMed Central

    Naskar, Krishna; Stern, Javier E

    2014-01-01

    Neuronal activity is controlled by a fine-tuned balance between intrinsic properties and extrinsic synaptic inputs. Moreover, neighbouring astrocytes are now recognized to influence a wide spectrum of neuronal functions. Yet, how these three key factors act in concert to modulate and fine-tune neuronal output is not well understood. Here, we show that in rat hypothalamic magnocellular neurosecretory cells (MNCs), glutamate NMDA receptors (NMDARs) are negatively coupled to the transient, voltage-gated A-type K+ current (IA). We found that activation of NMDARs by extracellular glutamate levels influenced by astrocyte glutamate transporters resulted in a significant inhibition of IA. The NMDAR–IA functional coupling resulted from activation of extrasynaptic NMDARs, was calcium- and protein kinase C-dependent, and involved enhanced steady-state, voltage-dependent inactivation of IA. The NMDAR–IA coupling diminished the latency to the first evoked spike in response to membrane depolarization and increased the total number of evoked action potentials, thus strengthening the neuronal input/output function. Finally, we found a blunted NMDA-mediated inhibition of IA in dehydrated rats. Together, our findings support a novel signalling mechanism that involves a functional coupling between extrasynaptic NMDARs and A-type K+ channels, which is influenced by local astrocytes. We show this signalling complex to play an important role in modulating hypothalamic neuronal excitability, which may contribute to adaptive responses during a sustained osmotic challenge such as dehydration. PMID:24835172

  10. Optimal placement of active elements in control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  11. Malonate-induced generation of reactive oxygen species in rat striatum depends on dopamine release but not on NMDA receptor activation.

    PubMed

    Ferger, B; Eberhardt, O; Teismann, P; de Groote, C; Schulz, J B

    1999-09-01

    Intrastriatal injection of the reversible succinate dehydrogenase inhibitor malonate produces both energy depletion and striatal lesions similar to that seen in cerebral ischemia and Huntington's disease. The mechanisms of neuronal cell death involve secondary excitotoxicity and the generation of reactive oxygen species. Here, we investigated the effects of dopamine on malonate-induced generation of hydroxyl radicals and striatal lesion volumes. Using in vivo microdialysis, we found that malonate induced a 94-fold increase in extracellular striatal dopamine concentrations. This was paralleled by an increase in the generation of hydroxyl radicals. Prior unilateral lesioning of the nigrostriatal dopaminergic pathway by focal injection of 6-hydroxydopamine blocked the malonate-induced increase in dopamine concentrations and the generation of hydroxyl radicals and attenuated the lesion volume. In contrast, the NMDA receptor antagonist MK-801 attenuated malonate-induced lesion volumes but did not block the generation of hydroxyl radicals. Thus, the dopaminergic and glutamatergic pathways are essential in the pathogenesis of malonate-induced striatal lesions. Our results suggest that the malonate-induced release of dopamine but not NMDA receptor activation mediates hydroxyl radical formation.

  12. Moxibustion activates host defense against herpes simplex virus type I through augmentation of cytokine production.

    PubMed

    Takayama, Yuko; Itoi, Manami; Hamahashi, Takashi; Tsukamoto, Noriyuki; Mori, Kazuya; Morishita, Daisuke; Wada, Kumiko; Amagai, Takashi

    2010-09-01

    Moxibustion is a technique used in traditional oriental medicine, the aim of which is to cure and/or prevent illness by activating a person's ability for self-healing. In this study, we assessed how moxibustion would affect the immune system and whether it would augment protective immunity. Mice were treated with moxibustion at Zusanli (ST36) acupoints; we analyzed mortality and cytokine activity in sera after infection with herpes simplex virus type 1 (HSV-1), and cytokine gene expression in the skin and the spleen without a virus challenge. Our study demonstrates that pretreatment of BALB/c mice with moxibustion resulted in a marked increase in the survival rate after infection with lethal doses of HSV-1, and elevated serum levels of IL-1β and IFN-γ on days 1 and 6 post-infection with HSV-1. Semi-quantitative RT-PCR assay showed that moxibustion treatment augmented the expression of IL-1α, IL-1β, IL-6, universal-IFN-α, MIP-1α, and TNF-α mRNA in the skin, and IL-1α, IL-1β, IL-12p40, IL-15, u-IFN-α, MIP-1α, and TNF-α mRNA in the spleen. Moreover, moxibustion induces augmentation of natural killer cell activity. Collectively, our study demonstrates that moxibustion activates protective responses against HSV-1 infection through the activation of cytokine production including IFN, and of NK cells.

  13. Varenicline has antidepressant-like activity in the forced swim test and augments sertraline's effect.

    PubMed

    Rollema, Hans; Guanowsky, Victor; Mineur, Yann S; Shrikhande, Alka; Coe, Jotham W; Seymour, Patricia A; Picciotto, Marina R

    2009-03-01

    Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist developed as a smoking cessation aid, showed antidepressant-like activity in the forced swim test in two mouse strains. In addition, a low varenicline dose significantly enhanced the effects of moderately active doses of the selective serotonin reuptake inhibitor sertraline. These findings are consistent with the notion that reducing alpha4beta2 nicotinic acetylcholine receptor activity either by antagonists or by partial agonists that can partially activate or desensitize acetylcholine receptors is associated with antidepressant-like properties. These data suggest that varenicline may have antidepressant potential and can, when combined, augment antidepressant responses of selective serotonin reuptake inhibitors.

  14. Natural killer (NK) and mitogen (OKT3) augmented NK activity in insulin-dependent diabetes (IDDM)

    SciTech Connect

    Lewis, E.; Schwartz, S.

    1986-03-01

    The authors examined NK and OKT3 augmented NK activity in 14 IDDM patients and 15 age matched controls (28 +/- 6 vs 28.5 +/- 6 yrs respectively) to evaluate this aspect of antigen nonspecific immunity. NK and augmented NK function were examined at various target to effector cell ratios (E/T) using the K562 cell line (as target) in a 4 hr /sup 51/Cr release assay. Islet cell antibodies (ICA) were determined by standard methods. All of the diabetics (mean duration of disease 16 yrs) and controls were ICA (-). Their observations indicate that there is no significant difference between diabetic and control subjects in NK activity. The ability of OKT3 to augment NK activity (by a T-cell mediated process) is also not significantly different between the two groups. An abnormal immune response to beta cells has a central role in the pathogenesis of IDDM. The nature of this autoimmune defect is unclear. The authors' present observations indicate that antigen nonspecific immune function may be normal in patients with IDDM. They propose that IDDM is a disease only of abnormal antigen specific immunoregulation.

  15. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  16. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  17. Radioresistance of culture-induced augmented natural killer-like activity

    SciTech Connect

    Brovall, C.; Levitz, S.M.; Ellner, J.J.; Schacter, B.

    1983-07-01

    Human NK activity is radiosensitive under the control of X-linked genes. We have evaluated the expression of these genes in other forms of cellular cytotoxicity. The NK radioresistant and radiosensitive phenotype is expressed in ADCC. Specific cellular cytotoxicity, generated in a MLC with a radiosensitive donor as responder, was radioresistant. NK-like activity recruited from nonadherent cells of radiosensitive subjects stimulated with allogenic cells, mitogens (PHA, Con A or PWM), or recall antigens (TT or PPD) was radioresistant. The acquisition of radioresistance was relatively rapid, beginning within 24 hr after exposure to PHA, prior to detectable proliferation. Radioresistance of MLR augmented NK-like activity was maximal 3 days after initiation of the culture. MLR augmented NK-like activity was spared by the immunosuppressive polypeptide antibiotic CsA at doses up to 1 mu gm/ml. CsA did, however, reduce acquisition of radioresistance by the NK-like activity at doses above 0.01 mu gm/ml, a concentration which does not inhibit uptake of /sup 3/H-thymidine but does reduce the level of specific CML. These data suggest that mitogens and antigens, including allogeneic cells, are recruiting radioresistant NK-like activity which can be distinguished from the radiosensitive spontaneous NK activity of the cell donor. Further, in the MLR, both radiosensitive and radioresistant NK-like activity may be recruited.

  18. Differential Diagnostics of Neoplastic and Inflammatory Processes in the Brain by Modifications NMDA Receptor Activity in Blood Cells with Verapamil and Ketamine.

    PubMed

    Syatkin, S P; Frolov, V A; Gridina, N Ya; Draguntseva, N G; Skorik, A S

    2016-09-01

    For the development of methods of additional differential diagnostics of gliomas of various grades of malignancy and gliomas and local inflammatory processes in the CNS we studied the intensity of aggregation of peripheral blood cells under the influence of channel blockers ketamine and verapamil. In in vitro experiments, verapamil and ketamine in various dilutions (from 10 to 100,000 times) were added to blood samples and the effects of these dilutions on the intensity of blood aggregation in patients with gliomas of different degree of malignancy, traumatic brain injuries, and other types of neurosurgical pathologies were studied. A correlation was revealed between the decrease in surface charge of blood cells and the type of neurosurgical pathology. The use of functional properties of potential-dependent inotropic NMDA receptors and calcium channels allowed indirect estimation of their activity via parameters of blood cell aggregation induced by channel blockers ketamine and verapamil.

  19. Interactions between B lymphocyte subpopulations. Augmentation of the responses of resting B lymphocytes by activated B lymphocytes.

    PubMed

    Uher, F; Dickler, H B

    1988-03-01

    Mouse B lymphocytes were fractionated from normal T lymphocyte-depleted spleen cell populations using discontinuous percoll gradients and were stimulated with rabbit F(ab')2 anti-mouse mu-specific antibodies (anti-mu) plus the supernatant of Con A-stimulated rat spleen cells (SN) as a source of lymphokines. The responses of small (mean volume 120 mu 3), dense (greater than 1.087 specific gravity), resting (least spontaneous thymidine incorporation) B lymphocytes were augmented by irradiated (4000 rad), larger (mean volume greater than 170 mu 3), less dense (less than 1.081 specific gravity), activated (greater spontaneous thymidine incorporation) B lymphocytes. Proliferation was augmented 2- to 4-fold and polyclonal antibody-forming cell responses three- to sixfold. Maximal augmentation of the responses of 5 X 10(4) resting B cells was obtained with 10(4) activated B cells. Augmenting activity was specific for activated B lymphocytes in that responses were not augmented by irradiated thymocytes, T lymphoblasts, macrophages, or additional supernatant. B lymphocytes activated in vitro by LPS or anti-mu also had augmenting activity. Augmentation of responses was maximal only when activated B lymphocytes were added simultaneously with anti-mu. The interaction between activated and resting B lymphocytes did not appear to be genetically restricted. Interestingly, the augmenting activity of activated B cells could be reconstituted by a combination of supernatant and cell membranes from these cells but not by either alone, suggesting that two components are required, one soluble and the other membrane-bound. Thus, a functional interaction has been demonstrated between B lymphocyte subpopulations which differ in their state of activation, and this interaction appears to involve a novel mechanism of action.

  20. Augmentation of macrophage growth-stimulating activity of lipids by their peroxidation

    SciTech Connect

    Yui, S.; Yamazaki, M. )

    1990-02-15

    Previously, we reported that some kinds of lipids (cholesterol esters, triglycerides, and some negatively charged phospholipids) that are constituents of lipoproteins or cell membranes induce growth of peripheral macrophages in vitro. In this paper, we examined the effect of peroxidation of lipids on their macrophage growth-stimulating activity because lipid peroxidation is observed in many pathological states such as inflammation. When phosphatidylserine, one of the phospholipids with growth-stimulating activity, was peroxidized by UV irradiation, its macrophage growth-stimulating activity was augmented in proportion to the extent of its peroxidation. The activity of phosphatidylethanolamine was also increased by UV irradiation. On the other hand, phosphatidylcholine or highly unsaturated free fatty acids, such as arachidonic acid and eicosapentaenoic acid, did not induce macrophage growth irrespective of whether they were peroxidized. The augmented activity of UV-irradiated phosphatidylserine was not affected by the coexistence of an antioxidant, vitamin E or BHT. These results suggest that some phospholipids included in damaged cells or denatured lipoproteins which are scavenged by macrophages in vivo may induce growth of peripheral macrophages more effectively when they are peroxidized by local pathological processes.

  1. Emodin augments calcium activated chloride channel in colonic smooth muscle cells by Gi/Go protein.

    PubMed

    Xu, Long; Ting-Lou; Lv, Nonghua; Zhu, Xuan; Chen, Youxiang; Yang, Jing

    2009-08-01

    Emodin is a natural anthraquinone in rhubarb. It has been identified as a prokinetic drug for gastrointestinal motility in Chinese traditional medicine. Emodin contracts smooth muscle by increasing the concentration of intracellular Ca(2+). In many smooth muscles, increasing intracellular Ca(2+) activates Ca(2+)-activated Cl(-) channels (ClCA). The study was aimed to investigate the effects of emodin on ClCA channels in colonic smooth muscle. 4 channel physiology signal acquire system was used to measure isometric contraction of smooth muscle strips. ClCA currents were recorded by EPC10 with perforated whole cell model. Emodin contracted strips and cells in colonic smooth muscle and augmented ClCA currents. Niflumic acid (NFA) and 4', 4'-diisothiostilbene-2, 2-disulfonic acid (DIDS) blocked the effects. Gi/Go protein inhibits protein kinase A (PKA) and protein kinase C (PKC), and PKA and PKC reduced ClCA currents. Pertussis toxin (PTX, a special inhibitor of Gi/Go protein), 8-bromoadenosine 38, 58-cyclic monophosphate (8-BrcAMP, a membrane-permeant protein kinase A activator) and Phorbol-12-myristate-13-acetate (PMA, a membrane-permeant protein kinase C activator) inhibited the effects on ClCA currents significantly. Our findings suggest that emodin augments ClCA channels to contract smooth muscle in colon, and the effect is induced mostly by enhancement of membrane Gi/Go protein signal transducer pathway.

  2. Activation of metabotropic glutamate 5 and NMDA receptors underlies the induction of persistent bursting and associated long-lasting changes in CA3 recurrent connections.

    PubMed

    Stoop, Ron; Conquet, François; Zuber, Benoit; Voronin, Leon L; Pralong, Etienne

    2003-07-02

    The aim of this study was to describe the induction and expression mechanisms of a persistent bursting activity in a horizontal slice preparation of the rat limbic system that includes the ventral part of the hippocampus and the entorhinal cortex. Disinhibition of this preparation by bicuculline led to interictal-like bursts in the CA3 region that triggered synchronous activity in the entorhinal cortex. Washout of bicuculline after a 1 hr application resulted in a maintained production of hippocampal bursts that continued to spread to the entorhinal cortex. Separation of CA3 from the entorhinal cortex caused the activity in the latter to become asynchronous with CA3 activity in the presence of bicuculline and disappear after washout; however, in CA3, neither the induction of bursting nor its persistence were affected. Associated with the CA3 persistent bursting, a strengthening of recurrent collateral excitatory input to CA3 pyramidal cells and a decreased input to CA3 interneurons was found. Both the induction of the persistent bursting and the changes in synaptic strength were prevented by antagonists of metabotropic glutamate 5 (mGlu5) or NMDA receptors or protein synthesis inhibitors and did not occur in slices from mGlu5 receptor knock-out mice. The above findings suggest potential synaptic mechanisms by which the hippocampus switches to a persistent interictal bursting mode that may support a spread of interictal-like bursting to surrounding temporal lobe regions.

  3. Active glass-type human augmented cognition system considering attention and intention

    NASA Astrophysics Data System (ADS)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  4. The possible involvement of NMDA glutamate receptor in the etiopathogenesis of bipolar disorder.

    PubMed

    Fountoulakis, Konstantinos N

    2012-01-01

    Glutamate is the most abundant excitatory neurotransmitter in the brain and the ionotropic NMDA receptor is one of the major classes of its receptors, thought to play an important role in schizophrenia and mood disorders. The current systematic review summarized the evidence concerning the involvement of NMDA receptors in the pathophysiology of bipolar disorder. Genetic studies point to the genes encoding the NMDA 1, 2A and 2B subunits while neuropathological studies suggest a possible region specific decrease in the density of NMDA receptor and more consistently a reduced NMDA-mediated glutamatergic activity in patients with bipolar disorder in the frame of slower NMDA kinetics because of lower contribution of NR2A subunits. However the literature is poor and incomplete; future research is necessary to elucidate the mechanisms underlying bipolar disorder and its specific relationship to a possible NMDA malfunction and to explore the possibility of developing novel therapeutic agents.

  5. Exogenous t-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism?

    PubMed Central

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling. PMID:24670989

  6. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?

    PubMed

    Rodier, Marion; Prigent-Tessier, Anne; Béjot, Yannick; Jacquin, Agnès; Mossiat, Claude; Marie, Christine; Garnier, Philippe

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) through TrkB activation is central for brain functioning. Since the demonstration that plasmin is able to process pro-BDNF to mature BDNF and that these two forms have opposite effects on neuronal survival and plasticity, a particular attention has been paid to the link between tissue plasminogen activator (tPA)/plasmin system and BDNF metabolism. However, t-PA via its action on different N-methyl-D-aspartate (NMDA) receptor subunits is also considered as a neuromodulator of glutamatergic transmission. In this context, the aim of our study was to investigate the effect of recombinant (r)t-PA administration on brain BDNF metabolism in rats. In the hippocampus, we found that rt-PA (10 mg/kg) administration induced a progressive increase in mature BDNF levels associated with TrkB activation. In order to delineate the mechanistic involved, plasmin activity was assessed and its inhibition was attempted using tranexamic acid (30 or 300 mg/kg, i.v.) while NMDA receptors were antagonized with MK801 (0.3 or 3 mg/kg, i.p.) in combination with rt-PA treatment. Our results showed that despite a rise in rt-PA activity, rt-PA administration failed to increase hippocampal plasmin activity suggesting that the plasminogen/plasmin system is not involved whereas MK801 abrogated the augmentation in mature BDNF levels observed after rt-PA administration. All together, our results show that rt-PA administration induces increase in hippocampal mature BDNF expression and suggests that rt-PA contributes to the control of brain BDNF synthesis through a plasmin-independent potentiation of NMDA receptors signaling.

  7. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the β-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Aβ) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that Aβ peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  8. Costal and crural diaphragm, and intercostal and genioglossal electromyogram activities during spontaneous augmented breaths (sighs) in kittens.

    PubMed

    Watchko, J F; Brozanski, B S; O'Day, T L; Klesh, K W; Guthrie, R D

    1989-01-01

    Spontaneously occurring augmented breaths (sighs) are common in infants. The pattern of electrical activity of the inspiratory muscles of the thorax and upper airway during augmented breaths, however, has not been fully characterized in this less than fully mature age group. We therefore examined costal and crural diaphragm and external intercostal and genioglossal EMG activities during spontaneous augmented breaths (n = 46) in 10 anesthetized (1.35% halothane) 1-month-old kittens breathing room air. EMG responses were assessed by comparing the spontaneous augmented breaths (AB) to the five immediately preceding breaths (control). The peak moving time average EMG activity observed during the AB was 240 +/- 32% (mean +/- SD) of control for the costal diaphragm, 279 +/- 66% of control for the crural diaphragm, and 274 +/- 68% of control for the external intercostal muscle. The mean increase in EMG activity during the AB was not significantly different among these three muscle groups (P greater than 0.25). Genioglossal EMG activity during AB was observed in only 1 of 10 study animals. These results document that during AB in anesthetized kittens, activity of the thoracic inspiratory muscles (costal/crural diaphragm and external intercostal muscles) increase in parallel, suggesting that they are modulated in a uniform manner. The infrequent observance of genioglossal activity during AB suggests that either 1) halothane anesthesia depresses genioglossal activity more than diaphragmatic and intercostal activity during AB or 2) that genioglossal recruitment is not necessary to maintain upper airway patency during this period of heightened respiratory drive.

  9. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  10. Neuroprotective activity of parawixin 10, a compound isolated from Parawixia bistriata spider venom (Araneidae: Araneae) in rats undergoing intrahippocampal NMDA microinjection

    PubMed Central

    Fachim, Helene Aparecida; Mortari, Marcia Renata; Gobbo-Netto, Leonardo; dos Santos, Wagner Ferreira

    2015-01-01

    Background: Parawixia bistriata is a semi-colonial spider found mainly in southeastern of Brazil. Parawixin 10 (Pwx 10) a compound isolated from this spider venom has been demonstrated to act as neuroprotective in models of injury regulating the glutamatergic neurotransmission through glutamate transporters. Objectives: The aim of this work was to evaluate the neuroprotective effect of Pwx 10 in a rat model of excitotoxic brain injury by N-methyl-D-aspartate (NMDA) injection. Material and Methods: Male Wistar rats have been used, submitted to stereotaxic surgery for saline or NMDA microinjection into dorsal hippocampus. Two groups of animals were treated with Pwx 10. These treated groups received a daily injection of the Pwx 10 (2.5 mg/μL) in the right lateral ventricle into rats pretreated with NMDA, always at the same time, each one starting the treatment 1 h or 24 h. Nissl staining was performed for evaluating the extension and efficacy of the NMDA injury and the neuroprotective effect of Pwx 10. Results: The treatment with Pwx 10 showed neuroprotective effect, being most pronounced when the compound was administrated from 1 h after NMDA in all hippocampal subfields analyzed (CA1, CA3 and hilus). Conclusion: These results indicated that Pwx 10 may be a good template to develop therapeutic drugs for treating neurodegenerative diseases, reinforcing the importance of continuing studies on its effects in the central nervous system. PMID:26246735

  11. In vitro augmentation of natural killer cell activity by manganese chloride

    SciTech Connect

    Smialowicz, R.J.; Rogers, R.R.; Riddle, M.M.; Rowe, D.G.; Luebke, R.W.

    1986-01-01

    The in vitro cultivation of murine spleen cells with MnCl/sub 2/ resulted in the enhancement of natural killer (NK) cell activity as measured in a 4-h /sup 51/Cr-release assay. Optimal enhancement of NK activity was observed at concentrations of 10-20 ..mu..g MnCl/sub 2//culture (72-144 ..mu..M Mn/sup 2 +/). Enhancement of NK activity by MnCl/sub 2/ was not associated with any changes in the number or viability of cells following culture. The addition of antiasialo GM/sub 1/ antibody and complement to spleen cell cultures completely abrogated the enhancement of NK activity by MnCl/sub 2/. The enhancement of NK activity by MnCl/sub 2/ in vitro was accompanied by interferon induction. The addition of rabbit antimouse interferon to spleen cells cultured with MnCl/sub 2/ reduced NK activity. NK activity in cultures treated with MnCl/sub 2/ was also reduced upon removal of plastic adherent cells. However, restoration of enhanced NK activity by addition of adherent cells to nonadherent cells in the presence of MnCl/sub 2/ was not observed. Similar effects of NK activity were observed with polyinosinic-polycytidylic acid (Poly I x C), a known interferon inducer and NK enhancer. The results demonstrate that murine splenic NK activity is enhanced in vitro by MnCl/sub 2/ and that this enhancement may be mediated by interferon induction. The results also suggest that in vitro enhancement of NK activity by MnCl/sub 2/, as with Poly I x C, may require participation of an adherent cell population for NK augmentation.

  12. Can FES-Augmented Active Cycling Training Improve Locomotion in Post-Acute Elderly Stroke Patients?

    PubMed

    Peri, Elisabetta; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Nava, Claudia; Longoni, Valentina; Monticone, Marco; Ferrante, Simona

    2016-06-13

    Recent studies advocated the use of active cycling coupled with functional electrical stimulation to induce neuroplasticity and enhance functional improvements in stroke adult patients. The aim of this work was to evaluate whether the benefits induced by such a treatment are superior to standard physiotherapy. A single-blinded randomized controlled trial has been performed on post-acute elderly stroke patients. Patients underwent FES-augmented cycling training combined with voluntary pedaling or standard physiotherapy. The intervention consisted of fifteen 30-minutes sessions carried out within 3 weeks. Patients were evaluated before and after training, through functional scales, gait analysis and a voluntary pedaling test. Results were compared with an age-matched healthy group. Sixteen patients completed the training. After treatment, a general improvement of all clinical scales was obtained for both groups. Only the mechanical efficiency highlighted a group effect in favor of the experimental group. Although a group effect was not found for any other cycling or gait parameters, the experimental group showed a higher percentage of change with respect to the control group (e.g. the gait velocity was improved of 35.4% and 25.4% respectively, and its variation over time was higher than minimal clinical difference for the experimental group only). This trend suggests that differences in terms of motor recovery between the two groups may be achieved increasing the training dose. In conclusion, this study, although preliminary, showed that FES-augmented active cycling training seems to be effective in improving cycling and walking ability in post-acute elderly stroke patients. A higher sample size is required to confirm results.

  13. Augmented vagal heart rate modulation in active hypoestrogenic pre-menopausal women with functional hypothalamic amenorrhoea.

    PubMed

    O'Donnell, Emma; Goodman, Jack M; Morris, Beverly L; Floras, John S; Harvey, Paula J

    2015-11-01

    Compared with eumenorrhoeic women, exercise-trained women with functional hypothalamic amenorrhoea (ExFHA) exhibit low heart rates (HRs) and absent reflex renin-angiotensin-system activation and augmentation of their muscle sympathetic nerve response to orthostatic stress. To test the hypothesis that their autonomic HR modulation is altered concurrently, three age-matched (pooled mean, 24 ± 1 years; mean ± S.E.M.) groups of women were studied: active with either FHA (ExFHA; n=11) or eumenorrhoeic cycles (ExOv; n=17) and sedentary with eumenorrhoeic cycles (SedOv; n=17). Blood pressure (BP), HR and HR variability (HRV) in the frequency domain were determined during both supine rest and graded lower body negative pressure (LBNP; -10, -20 and -40 mmHg). Very low (VLF), low (LF) and high (HF) frequency power spectra (ms(2)) were determined and, owing to skewness, log10-transformed. LF/HF ratio and total power (VLF + LF + HF) were calculated. At baseline, HR and systolic BP (SBP) were lower (P<0.05) and HF and total power were higher (P<0.05) in ExFHA than in eumenorrhoeic women. In all groups, LBNP decreased (P<0.05) SBP, HF and total power and increased (P<0.05) HR and LF/HF ratio. However, HF and total power remained higher (P<0.05) and HR, SBP and LF/HF ratio remained lower (P<0.05) in ExFHA than in eumenorrhoeic women, in whom measures did not differ (P>0.05). At each stage, HR correlated inversely (P<0.05) with HF. In conclusion, ExFHA women demonstrate augmented vagal yet unchanged sympathetic HR modulation, both at rest and during orthostatic stress. Although the role of oestrogen deficiency is unclear, these findings are in contrast with studies reporting decreased HRV in hypoestrogenic post-menopausal women.

  14. Can FES-Augmented Active Cycling Training Improve Locomotion in Post-Acute Elderly Stroke Patients?

    PubMed Central

    Peri, Elisabetta; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Nava, Claudia; Longoni, Valentina; Monticone, Marco; Ferrante, Simona

    2016-01-01

    Recent studies advocated the use of active cycling coupled with functional electrical stimulation to induce neuroplasticity and enhance functional improvements in stroke adult patients. The aim of this work was to evaluate whether the benefits induced by such a treatment are superior to standard physiotherapy. A single-blinded randomized controlled trial has been performed on post-acute elderly stroke patients. Patients underwent FES-augmented cycling training combined with voluntary pedaling or standard physiotherapy. The intervention consisted of fifteen 30-minutes sessions carried out within 3 weeks. Patients were evaluated before and after training, through functional scales, gait analysis and a voluntary pedaling test. Results were compared with an age-matched healthy group. Sixteen patients completed the training. After treatment, a general improvement of all clinical scales was obtained for both groups. Only the mechanical efficiency highlighted a group effect in favor of the experimental group. Although a group effect was not found for any other cycling or gait parameters, the experimental group showed a higher percentage of change with respect to the control group (e.g. the gait velocity was improved of 35.4% and 25.4% respectively, and its variation over time was higher than minimal clinical difference for the experimental group only). This trend suggests that differences in terms of motor recovery between the two groups may be achieved increasing the training dose. In conclusion, this study, although preliminary, showed that FES-augmented active cycling training seems to be effective in improving cycling and walking ability in post-acute elderly stroke patients. A higher sample size is required to confirm results. PMID:27990234

  15. The role of active participation in interaction for children who use augmentative and alternative communication.

    PubMed

    Sundqvist, Annette; Plejert, Charlotta; Rönnberg, Jerker

    2010-01-01

    The present case-study investigates practices in interaction that manifest themselves as active participation for three Swedish children who use augmentative and alternative communication (AAC). Analyses are based on interaction data from three different settings, involving the children in dialogue with adults as well as peers. In-depth analysis of the data by means of Conversation Analysis revealed three practices conducive for active participation. The first one dealt with experiencing a sense of control, i.e. that the child who uses AAC was treated as a competent communicator, e.g. initiating topics and allocating turns, etc. The second practice revealed the importance of co-construction of communicative projects, and the possible negative effects of instances where adults attempted to impose an agenda on the children. Finally, analyses displayed different means by which participants could be included in the interaction, and the effects of such strategies. The study stresses the importance of communication partners' abilities to balance and counterbalance the necessity to follow, share or sometimes inhibit a need to shape contributions to interaction, in order to enhance active participation for the child who uses AAC.

  16. Location- and Subunit-Specific NMDA Receptors Determine the Developmental Sevoflurane Neurotoxicity Through ERK1/2 Signaling.

    PubMed

    Wang, Wen-Yuan; Jia, Li-Jie; Luo, Yan; Zhang, Hong-Hai; Cai, Fang; Mao, Hui; Xu, Wei-Cai; Fang, Jun-Biao; Peng, Zhi-You; Ma, Zheng-Wen; Chen, Yan-Hong; Zhang, Juan; Wei, Zhen; Yu, Bu-Wei; Hu, Shuang-Fei

    2016-01-01

    It is well established that developmental exposure of sevoflurane (an inhalational anesthetic) is capable of inducing neuronal apoptosis and subsequent learning and memory disorders. Synaptic NMDA receptors activity plays an essential role in cell survival, while the extra-synaptic NMDA receptors activation is usually associated with cell death. However, whether synaptic or extra-synaptic NMDA receptors mediate developmental sevoflurane neurotoxicity is largely unknown. Here, we show that developmental sevoflurane treatment decreased NR2A, but increased NR2B subunit expression both in vitro and in vivo. Sevoflurane-induced neuronal apoptosis was attenuated by synaptic NMDA receptors activation or low dose of exogenous NMDA in vitro. Interestingly, these effects could be abolished by NR2A inhibitor PEAQX, but not NR2B inhibitor Ifenprodil in vitro. In contrast, activation of extra-synaptic NMDA receptors alone had no effects on sevoflurane neurotoxicity. In the scenario of extra-synaptic NMDA receptors stimulation, however, sevoflurane-induced neuronal apoptosis could be prevented by addition of Ifenprodil, but not by PEAQX in vitro. In addition, sevoflurane neurotoxicity could also be rescued by memantine, an uncompetitive antagonist for preferential blockade of extra-synaptic NMDA receptors both in vitro and in vivo. Furthermore, we found that developmental sevoflurane-induced phospho-ERK1/2 inhibition was restored by synaptic NMDA receptor activation (in vitro), low dose of NMDA (in vitro) or memantine (in vivo). And the neuroprotective role of synaptic NMDA activity was able to be reversed by MEK1/2 inhibitor U0126 in vitro. Finally, administration of memantine or NMDA significantly improved spatial learning and memory dysfunctions induced by developmental sevoflurane exposure without influence on locomotor activity. These results indicated that activation of synaptic NR2A-containing NMDA receptors, or inhibition of extra-synaptic NR2B-containing NMDA receptors

  17. An Augmented Reality-Based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities

    ERIC Educational Resources Information Center

    Chiang, Tosti H. C.; Yang, Stephen J. H.; Hwang, Gwo-Jen

    2014-01-01

    In this study, an augmented reality-based mobile learning system is proposed for conducting inquiry-based learning activities. An experiment has been conducted to examine the effectiveness of the proposed approach in terms of learning achievements and motivations. The subjects were 57 fourth graders from two classes taught by the same teacher in…

  18. Extinction of Conditioned Taste Aversion Depends on Functional Protein Synthesis but Not on NMDA Receptor Activation in the Ventromedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Akirav, Irit; Khatsrinov, Vicktoria; Vouimba, Rose-Marie; Merhav, Maayan; Ferreira, Guillaume; Rosenblum, Kobi; Maroun, Mouna

    2006-01-01

    We investigated the role of the ventromedial prefrontal cortex (vmPFC) in extinction of conditioned taste aversion (CTA) by microinfusing a protein synthesis inhibitor or N-methyl-d-asparate (NMDA) receptors antagonist into the vmPFC immediately following a non-reinforced extinction session. We found that the protein synthesis blocker anisomycin,…

  19. [Beta]-Adrenergic Receptor Activation Rescues Theta Frequency Stimulation-Induced LTP Deficits in Mice Expressing C-Terminally Truncated NMDA Receptor GluN2A Subunits

    ERIC Educational Resources Information Center

    Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.

    2011-01-01

    Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…

  20. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  1. The role of striatal NMDA receptors in drug addiction.

    PubMed

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  2. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  3. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain

    NASA Astrophysics Data System (ADS)

    Mintun, Mark A.; Vlassenko, Andrei G.; Rundle, Melissa M.; Raichle, Marcus E.

    2004-01-01

    The factors regulating cerebral blood flow (CBF) changes in physiological activation remain the subject of great interest and debate. Recent experimental studies suggest that an increase in cytosolic NADH mediates increased blood flow in the working brain. Lactate injection should elevate NADH levels by increasing the lactate/pyruvate ratio, which is in near equilibrium with the NADH/NAD+ ratio. We studied CBF responses to bolus lactate injection at rest and in visual stimulation by using positron-emission tomography in seven healthy volunteers. Bolus lactate injection augmented the CBF response to visual stimulation by 38-53% in regions of the visual cortex but had no effect on the resting CBF or the whole-brain CBF. These lactate-induced CBF increases correlated with elevations in plasma lactate/pyruvate ratios and in plasma lactate levels but not with plasma pyruvate levels. Our observations support the hypothesis that an increase in the NADH/NAD+ ratio activates signaling pathways to selectively increase CBF in the physiologically stimulated brain regions.

  4. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds

    PubMed Central

    Lagrue, Kathryn; Carisey, Alex; Morgan, David J.; Chopra, Rajesh

    2015-01-01

    As multiple myeloma (MM) progresses, natural killer (NK)-cell responses decline against malignant plasma cells. The immunomodulatory drug lenalidomide is widely used for treatment of MM but its influence on NK-cell biology is unclear. Here, we report that lenalidomide lowers the threshold for NK-cell activation, causing a 66% decrease in the 50% effective concentration (EC50) for activation through CD16, and a 38% decrease in EC50 for NK group 2 member D (NKG2D)–mediated activation, allowing NK cells to respond to lower doses of ligand. In addition, lenalidomide augments NK-cell responses, causing a twofold increase in the proportion of primary NK cells producing interferon-γ (IFN-γ), and a 20-fold increase in the amount of IFN-γ produced per cell. Importantly, lenalidomide did not trigger IFN-γ production in unstimulated NK cells. Thus, lenalidomide enhances the NK-cell arm of the immune response, without activating NK cells inappropriately. Of particular clinical importance, lenalidomide also allowed NK cells to be activated by lower doses of rituximab, an anti-CD20 monoclonal antibody (mAb) widely used to treat B-cell malignancies. This supports combined use of lenalidomide and rituximab in a clinical setting. Finally, superresolution microscopy revealed that lenalidomide increased the periodicity of cortical actin at immune synapses, resulting in an increase in the area of the actin mesh predicted to be penetrable to vesicles containing IFN-γ. NK cells from MM patients also responded to lenalidomide in this way. This indicates that nanometer-scale rearrangements in cortical actin, a recently discovered step in immune synapse assembly, are a potential new target for therapeutic compounds. PMID:26002964

  5. Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds.

    PubMed

    Lagrue, Kathryn; Carisey, Alex; Morgan, David J; Chopra, Rajesh; Davis, Daniel M

    2015-07-02

    As multiple myeloma (MM) progresses, natural killer (NK)-cell responses decline against malignant plasma cells. The immunomodulatory drug lenalidomide is widely used for treatment of MM but its influence on NK-cell biology is unclear. Here, we report that lenalidomide lowers the threshold for NK-cell activation, causing a 66% decrease in the 50% effective concentration (EC50) for activation through CD16, and a 38% decrease in EC50 for NK group 2 member D (NKG2D)-mediated activation, allowing NK cells to respond to lower doses of ligand. In addition, lenalidomide augments NK-cell responses, causing a twofold increase in the proportion of primary NK cells producing interferon-γ (IFN-γ), and a 20-fold increase in the amount of IFN-γ produced per cell. Importantly, lenalidomide did not trigger IFN-γ production in unstimulated NK cells. Thus, lenalidomide enhances the NK-cell arm of the immune response, without activating NK cells inappropriately. Of particular clinical importance, lenalidomide also allowed NK cells to be activated by lower doses of rituximab, an anti-CD20 monoclonal antibody (mAb) widely used to treat B-cell malignancies. This supports combined use of lenalidomide and rituximab in a clinical setting. Finally, superresolution microscopy revealed that lenalidomide increased the periodicity of cortical actin at immune synapses, resulting in an increase in the area of the actin mesh predicted to be penetrable to vesicles containing IFN-γ. NK cells from MM patients also responded to lenalidomide in this way. This indicates that nanometer-scale rearrangements in cortical actin, a recently discovered step in immune synapse assembly, are a potential new target for therapeutic compounds.

  6. FK506 augments activation-induced programmed cell death of T lymphocytes in vivo.

    PubMed Central

    Migita, K; Eguchi, K; Kawabe, Y; Tsukada, T; Mizokami, A; Nagataki, S

    1995-01-01

    FK506 is an immunosuppressive drug that inhibits T cell receptor-mediated signal transduction. This drug can induce immunological tolerance in allograft recipients. In this study, we investigated the in vivo effects of FK506 on T cell receptor-mediated apoptosis induction. Injection of anti-CD3 antibody (Ab) in mice resulted in the elimination of CD4+ CD8+ thymocytes by DNA fragmentation. FK506 treatment significantly augmented thymic apoptosis induced by in vivo anti-CD3 Ab administration. Increased thymic apoptosis resulted in the disappearance of CD4+ CD8+ thymocytes after anti-CD3 Ab/FK506 treatment. DNA fragmentation triggered by FK506 was induced exclusively in antigen-stimulated T cells, since enhanced DNA fragmentation induced by in vivo staphylococcal enterotoxin B (SEB) injection was confirmed in SEB-reactive V beta 8+ thymocytes but not in SEB-nonreactive V beta 6+ thymocytes. In addition to thymocytes, mature peripheral T cells also die by activation-induced programmed cell death. A similar effect of FK506 on activation-induced programmed cell death was observed in SEB-activated peripheral spleen T cells. In contrast, cyclosporin A treatment did not enhance activation-induced programmed cell death of thymocytes and peripheral T cells. Apoptosis is required for the generation and maintenance of self-tolerance in the immune system. Our findings suggest that FK506-triggered apoptosis after elimination of antigen-activated T cells may represent a potential mechanism of the immunological tolerance achieved by FK506 treatment. Images PMID:7543492

  7. Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations?

    PubMed Central

    Allene, Camille; Cossart, Rosa

    2010-01-01

    Several patterns of coherent activity have been described in developing cortical structures, thus providing a general framework for network maturation. A detailed timely description of network patterns at circuit and cell levels is essential for the understanding of pathogenic processes occurring during brain development. Disturbances in the expression timetable of this pattern sequence are very likely to affect network maturation. This review focuses on the maturation of coherent activity patterns in developing neocortical structures. It emphasizes the intrinsic and synaptic cellular properties that are unique to the immature neocortex and, in particular, the critical role played by extracellular glutamate in controlling network excitability and triggering synchronous network waves of activity. PMID:19917570

  8. Integrating a Mobile Augmented Reality Activity to Contextualize Student Learning of a Socioscienti?c Issue

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao

    2013-01-01

    virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…

  9. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  10. Underlying mechanism for NMDA receptor antagonism by the anti-inflammatory drug, sulfasalazine, in mouse cortical neurons.

    PubMed

    Noh, Ji-Hyun; Gwag, Byoung-Joo; Chung, Jun-Mo

    2006-01-01

    Sulfasalazine (SULFA), of anti-inflammatory drugs, shows a protective action against NMDA-induced neuronal toxicity. Here, we used an electrophysiological study of the pharmacological effects of SULFA on NMDA receptors to examine the molecular mechanisms underlying the neuroprotective role of SULFA. The drug acted as a typical noncompetitive inhibitor with neither agonist- nor use-dependency, and antagonized NMDA-evoked responses in a voltage-independent manner, suggesting that SULFA is not an open channel blocker. Noise and single channel analyses showed that SULFA-blocked NMDA responses by reducing the number of NMDA channels available for activation, and also reduced the channel open probability without changing single channel conductance. Moreover, SULFA accelerated NMDA desensitization without affecting the affinity of the receptor for NMDA or glutamate. Taken together, these data indicate that SULFA blocks the NMDA response by reducing the number of NMDA channels available for activation. This appears to occur via a SULFA-induced decrease in the channel open probability, and a concomitant acceleration of the desensitization response, which is likely associated with a reduced affinity for glycine. SULFA indeed decreased the glycine-potentiated NMDA response without binding directly to the glycine site. Our results suggest that SULFA acts as a noncompetitive NMDA receptor antagonist with an allosteric glycine modulation.

  11. Enhancing Effects of NMDA-Receptor Blockade on Extinction Learning and Related Brain Activation Are Modulated by BMI

    PubMed Central

    Golisch, Anne; Heba, Stefanie; Glaubitz, Benjamin; Tegenthoff, Martin; Lissek, Silke

    2017-01-01

    A distributed network including prefrontal and hippocampal regions is involved in context-related extinction learning as well as in renewal. Renewal describes the recovery of an extinguished response if the context of extinction differs from the context of recall. Animal studies have demonstrated that prefrontal, but not hippocampal N-methyl-D-aspartate receptor (NMDAR) antagonism disrupted extinction learning and processing of task context. However, human studies of NMDAR in extinction learning are lacking, while NMDAR antagonism yielded contradictory results in other learning tasks. This fMRI study investigated the role of NMDAR for human behavioral and brain activation correlates of extinction and renewal. Healthy volunteers received a single dose of the NMDAR antagonist memantine prior to extinction of previously acquired stimulus-outcome associations presented in either identical or novel contexts. We observed better, and partly faster, extinction learning in participants receiving the NMDAR antagonist compared to placebo. However, memantine did not affect renewal. In both extinction and recall, the memantine group showed a deactivation in extinction-related brain regions, particularly in the prefrontal cortex, while hippocampal activity was increased. This higher hippocampal activation was in turn associated with the participants' body mass index (BMI) and extinction errors. Our results demonstrate potentially dose-related enhancing effects of memantine and highlight involvement of hippocampal NMDAR in context-related extinction learning. PMID:28326025

  12. CXCR4 and NMDA Receptors Are Functionally Coupled in Rat Hippocampal Noradrenergic and Glutamatergic Nerve Endings.

    PubMed

    Di Prisco, Silvia; Olivero, Guendalina; Merega, Elisa; Bonfiglio, Tommaso; Marchi, Mario; Pittaluga, Anna

    2016-12-01

    Previous studies had shown that the HIV-1 capsidic glycoprotein gp120 (strain IIIB) modulates presynaptic release-regulating NMDA receptors on noradrenergic and glutamatergic terminals. This study aims to assess whether the chemokine CXC4 receptors (CXCR4s) has a role in the gp120-mediated effects. The effect of CXCL12, the endogenous ligand at CXCR4, on the NMDA-mediated releasing activity was therefore investigated. Rat hippocampal synaptosomes were preloaded with [(3)H]noradrenaline ([(3)H]NA) or [(3)H]D-aspartate ([(3)H]D-Asp) and acutely exposed to CXCL12, to NMDA or to both agonists. CXCL12, inactive on its own, facilitated the NMDA-evoked tritium release. The NMDA antagonist MK-801 abolished the NMDA/CXCL12-evoked tritium release of both radiolabelled tracers, while the CXCR4 antagonist AMD 3100 halved it, suggesting that rat hippocampal nerve endings possess presynaptic release-regulating CXCR4 receptors colocalized with NMDA receptors. Accordingly, Western blot analysis confirmed the presence of CXCR4 proteins in synaptosomal plasmamembranes. In both synaptosomal preparations, CXCL12-induced facilitation of NMDA-mediated release was dependent upon PLC-mediated src-induced events leading to mobilization of Ca(2+) from intraterminal IP3-sensitive stores Finally, the gp120-induced facilitation of NMDA-mediated release of [(3)H]NA and [(3)H]D-Asp was prevented by AMD 3100. We propose that CXCR4s are functionally coupled to NMDA receptors in rat hippocampal noradrenergic and glutamatergic terminals and account for the gp120-induced modulation of the NMDA-mediated central effects. The NMDA/CXCR4 cross-talk could have a role in the neuropsychiatric symptoms often observed in HIV-1 positive patients.

  13. Nicotine-activated descending facilitation on spinal NMDA-dependent reflex potentiation from pontine tegmentum in rats.

    PubMed

    Pan, Shwu-Fen; Peng, Hsien-Yu; Chen, Chi-Chung; Chen, Mei-Jung; Lee, Shin-Da; Cheng, Chen-Li; Shyu, Jyh-Cherng; Liao, Jiuan-Miaw; Chen, Gin-Den; Lin, Tzer-Bin

    2008-05-01

    This study was conducted to investigate the possible neurotransmitter that activates the descending pathways coming from the dorsolateral pontine tegmentum (DPT) to modulate spinal pelvic-urethra reflex potentiation. External urethra sphincter electromyogram (EUSE) activity in response to test stimulation (TS, 1/30 Hz) and repetitive stimulation (RS, 1 Hz) on the pelvic afferent nerve of 63 anesthetized rats were recorded with or without microinjection of nicotinic cholinergic receptor (nAChR) agonists, ACh and nicotine, to the DPT. TS evoked a baseline reflex activity with a single action potential (1.00 +/- 0.00 spikes/stimulation, n = 40), whereas RS produced a long-lasting reflex potentiation (16.14 +/- 0.96 spikes/stimulation, n = 40) that was abolished by d-2-amino-5-phosphonovaleric acid (1.60 +/- 0.89 spikes/stimulation, n = 40) and was attenuated by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline (7.10 +/- 0.84 spikes/stimulation, n = 40). ACh and nicotine microinjections to DPT both produced facilitation on the RS-induced reflex potentiation (23.57 +/- 2.23 and 28.29 +/- 2.36 spikes/stimulation, P < 0.01, n = 10 and 20, respectively). Pretreatment of selective nicotinic receptor antagonist, chlorisondamine, reversed the facilitation on RS-induced reflex potentiation caused by nicotine (19.41 +/- 1.21 spikes/stimulation, P < 0.01, n = 10) Intrathecal WAY-100635 and spinal transection at the T(1) level both abolished the facilitation on reflex potentiation resulting from the DPT nicotine injection (12.86 +/- 3.13 and 15.57 +/- 1.72 spikes/stimulation, P < 0.01, n = 10 each). Our findings suggest that activation of nAChR at DPT may modulate N-methyl-d-aspartic acid-dependent reflex potentiation via descending serotonergic neurotransmission. This descending modulation may have physiological/pathological relevance in the neural controls of urethral closure.

  14. Proteomic analysis of the mice hippocampus after preconditioning induced by N-methyl-D-aspartate (NMDA).

    PubMed

    do Amaral e Silva Müller, Gabrielle; Vandresen-Filho, Samuel; Tavares, Carolina Pereira; Menegatti, Angela C O; Terenzi, Hernán; Tasca, Carla Inês; Severino, Patricia Cardoso

    2013-05-01

    Preconditioning induced by N-methyl-D-aspartate (NMDA) has been used as a therapeutic tool against later neuronal insults. NMDA preconditioning affords neuroprotection against convulsions and cellular damage induced by the NMDA receptor agonist, quinolinic acid (QA) with time-window dependence. This study aimed to evaluate the molecular alterations promoted by NMDA and to compare these alterations in different periods of time that are related to the presence or lack of neuroprotection. Putative mechanisms related to NMDA preconditioning were evaluated via a proteomic analysis by using a time-window study. After a subconvulsant and protective dose of NMDA administration mice, hippocampi were removed (1, 24 or 72 h) and total protein analyzed by 2DE gels and identified by MALDI-TOF. Differential protein expression among the time induction of NMDA preconditioning was observed. In the hippocampus of protected mice (24 h), four proteins: HSP70(B), aspartyl-tRNA synthetase, phosphatidylethanolamine binding protein and creatine kinase were found to be up-regulated. Two other proteins, HSP70(A) and V-type proton ATPase were found down-regulated. Proteomic analysis showed that the neuroprotection induced by NMDA preconditioning altered signaling pathways, cell energy maintenance and protein synthesis and processing. These events may occur in a sense to attenuate the excitotoxicity process during the activation of neuroprotection promoted by NMDA preconditioning.

  15. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  16. The expression of contextual fear conditioning involves activation of a NMDA receptor-nitric oxide-cGMP pathway in the dorsal hippocampus of rats.

    PubMed

    Fabri, Denise R S; Hott, Sara C; Reis, Daniel G; Biojone, Caroline; Corrêa, Fernando M A; Resstel, Leonardo B M

    2014-10-01

    The dorsal portion of the hippocampus is a limbic structure that is involved in fear conditioning modulation in rats. Moreover, evidence shows that the local dorsal hippocampus glutamatergic system, nitric oxide (NO) and cGMP modulate behavioral responses during aversive situations. Therefore, the present study investigated the involvement of dorsal hippocampus NMDA receptors and the NO/cGMP pathway in contextual fear conditioning expression. Male Wistar rats were submitted to an aversive contextual conditioning session and 48 h later they were re-exposed to the aversive context in which freezing, cardiovascular responses (increase of both arterial pressure and heart rate) and decrease of tail temperature were recorded. The intra-dorsal hippocampus administration of the NMDA receptor antagonist AP7, prior to the re-exposure to the aversive context, attenuated fear-conditioned responses. The re-exposure to the context evoked an increase in NO concentration in the dorsal hippocampus of conditioned animals. Similar to AP7 administration, we observed a reduction of contextual fear conditioning after dorsal hippocampus administration of either the neuronal NO synthase inhibitor N-propyl-L-arginine, the NO scavenger c-PTIO or the guanylate cyclase inhibitor ODQ. Therefore, the present findings suggest the possible existence of a dorsal hippocampus NMDA/NO/cGMP pathway modulating the expression of contextual fear conditioning in rats.

  17. Individual and combined manipulation of muscarinic, NMDA, and benzodiazepine receptor activity in the water maze task: implications for a rat model of Alzheimer dementia.

    PubMed

    Cain, D P; Ighanian, K; Boon, F

    2000-06-15

    Recent evidence indicates that Alzheimer disease typically involves different degrees of impairment in a variety of neurotransmitter systems, behaviors, and cognitive abilities in different patients. To investigate the relations between neurotransmitter system, behavioral, and cognitive impairments in an animal model of Alzheimer disease we studied spatial learning in a Morris water maze in male Long-Evans rats given neurochemical agents that targeted muscarinic cholinergic, NMDA, or benzodiazepine systems. Naive rats given a single agent or a combination of agents were severely impaired in place responding and had behavioral strategy impairments. Rats made familiar with the required water maze behavioral strategies by non-spatial pretraining performed as well as controls if given a single agent. Non-spatially pretrained rats with manipulation of both muscarinic cholinergic and NMDA or muscarinic cholinergic and benzodiazepine systems had a specific place response impairment but no behavioral strategy impairments. The results suggest that impairment of both muscarinic cholinergic and NMDA, or muscarinic cholinergic and benzodiazepine systems may model some aspects of human Alzheimer disease (impairments in navigation in familiar environments), but not other aspects of this disorder (global dementia leading to general loss of adaptive behavior). Previous research suggests that impairment of both muscarinic cholinergic and serotonergic systems may provide a better model of global dementia. The water maze testing and detailed behavioral analysis techniques used here appear to provide a means of investigating the contributions of various combinations of neurotransmitter system impairments to an animal model of Alzheimer disease.

  18. Asparagus racemosus ameliorates cisplatin induced toxicities and augments its antileishmanial activity by immunomodulation in vivo.

    PubMed

    Sachdeva, Heena; Sehgal, Rakesh; Kaur, Sukhbir

    2014-02-01

    Current drugs for the treatment of visceral leishmaniasis are inadequate and their efficacies are also compromised due to suppression of immune function associated during the course of infection. To overcome this problem, efforts are needed to develop therapies with effective immunomodulatory agents where decrease of parasitic burden and simultaneous enhancement of adaptive immunity can be achieved. In this study we have evaluated a new therapeutic approach based on combination of Asparagus racemosus, an immunomodulatory drug, in combination with cisplatin against Leishmania donovani infected BALB/c mice. We demonstrate that A. racemosus (650 mg/kg b.wt./day for 15 days, orally) in combination with cisplatin (5 mg/kg b.wt./day for 5 days, intraperitoneally) enhanced the clearance of parasites as determined by Giemsa-stained liver impression smears. Besides having better killing activity, this combination group achieved increased production of disease resolving Th-1 response (IFN-gamma, IL-2), heightened DTH (delayed type hypersensitivity) response and augmented levels of IgG2a. Moreover, A. racemosus in combination with cisplatin not only provided enhanced protective immune response but also resulted in remarkable improved kidney and liver function tests as manifested by normal levels of SGOT, SGPT, alkaline phosphatase, creatinine and urea in blood plasma with normal histological observations as compared to only cisplatin treated L. donovani infected BALB/c mice. Through this study we have ascertained that A. racemosus in combination with cisplatin in L. donovani infected BALB/c mice boosted as well as restored both cellular and humoral immunity. Thus in view of severe immunosuppression in visceral leishmaniasis, a better and effective strategy for optimum efficacy of future antileishmanial drugs would direct not only killing of parasite by the drug, but also simultaneous generation of immunity against the disease.

  19. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients

    PubMed Central

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L.; Mann, Sarah; Jurovcik, Andrew J.; Demidova, Olga

    2015-01-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm−2·min−1, P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component. PMID:26133800

  20. Augmented photocatalytic activity and luminescence response of Tb³⁺ doped nanoscale titania systems

    SciTech Connect

    Paul, Nibedita; Deka, Amrita; Mohanta, Dambarudhar

    2014-10-14

    The present work reports on the effect of Tb³⁺ doping on the luminescence and photocatalytic performance of nano-structured titania derived through a sol-gel route. X-ray diffraction patterns have revealed the existence of anatase phase with and without Tb³⁺ doping and with an improved orientation factor along (004) and (200) planes. Transmission electron microscopy and selective area electron diffraction studies, while exhibiting ample poly-crystallinity feature, have predicted an average particle size of ~9 nm and ~6 nm for the un-doped and 5% Tb³⁺ doped nano-titania samples; respectively. Apart from emissions accompanied by different types of defects, Tb³⁺ related transitions, such as, ⁵D₃ → ⁷F₅, ⁵D₃ → ⁷F₄, and ⁵D₄ → ⁷F₆ were identified in the photoluminescence spectra. Brunauer-Emmett-Teller surface area analysis, as carried out on a Tb³⁺ doped nano-titania system, has demonstrated a more-open hysteretic loop owing to significant difference of N₂ adsorption/desorption rates. The photocatalytic activity of nano-titania, as evaluated from the nature of degradation of methyl orange under UV illumination, exhibited the highest efficiency for a Tb³⁺ doping level of 2.5%. The augmented photocatalytic degradation has also been discussed in the light of a model based on pseudo first-order kinetics.

  1. Augmented supraorbital skin sympathetic nerve activity responses to symptom trigger events in rosacea patients.

    PubMed

    Metzler-Wilson, Kristen; Toma, Kumika; Sammons, Dawn L; Mann, Sarah; Jurovcik, Andrew J; Demidova, Olga; Wilson, Thad E

    2015-09-01

    Facial flushing in rosacea is often induced by trigger events. However, trigger causation mechanisms are currently unclear. This study tested the central hypothesis that rosacea causes sympathetic and axon reflex-mediated alterations resulting in trigger-induced symptomatology. Twenty rosacea patients and age/sex-matched controls participated in one or a combination of symptom triggering stressors. In protocol 1, forehead skin sympathetic nerve activity (SSNA; supraorbital microneurography) was measured during sympathoexcitatory mental (2-min serial subtraction of novel numbers) and physical (2-min isometric handgrip) stress. In protocol 2, forehead skin blood flow (laser-Doppler flowmetry) and transepithelial water loss/sweat rate (capacitance hygrometry) were measured during sympathoexcitatory heat stress (whole body heating by perfusing 50°C water through a tube-lined suit). In protocol 3, cheek, forehead, forearm, and palm skin blood flow were measured during nonpainful local heating to induce axon reflex vasodilation. Heart rate (HR) and mean arterial pressure (MAP) were recorded via finger photoplethysmography to calculate cutaneous vascular conductance (CVC; flux·100/MAP). Higher patient transepithelial water loss was observed (rosacea 0.20 ± 0.02 vs. control 0.10 ± 0.01 mg·cm(-2)·min(-1), P < 0.05). HR and MAP changes were not different between groups during sympathoexcitatory stressors or local heating. SSNA during early mental (32 ± 9 and 9 ± 4% increase) and physical (25 ± 4 and 5 ± 1% increase, rosacea and controls, respectively) stress was augmented in rosacea (both P < 0.05). Heat stress induced more rapid sweating and cutaneous vasodilation onset in rosacea compared with controls. No axon reflex vasodilation differences were observed between groups. These data indicate that rosacea affects SSNA and that hyperresponsiveness to trigger events appears to have a sympathetic component.

  2. Studies on the mechanism of natural killer cytotoxicity. III. Activation of NK cells by interferon augments the lytic activity of released natural killer cytotoxic factors (NKCF).

    PubMed

    Wright, S C; Bonavida, B

    1983-06-01

    The mechanism by which interferon (IFN) pretreatment of effector cells augments natural killer (NK) cell-mediated cytotoxicity (CMC) was examined by determining whether IFN has any effect on the production of natural killer cytotoxic factors (NKCF). NKCF are released into the supernatant of co-cultures of murine spleen cells and YAC-1 stimulator cells, and their lytic activity is measured against YAC-1 target cells. It was demonstrated that pretreatment of effector cells with murine fibroblast IFN or polyinosinic-polycytidylic acid (pIC) resulted in the release of NKCF with augmented lytic activity. Evidence indicated that the IFN-induced augmentation of NKCF activity required protein synthesis during the IFN pretreatment period, because concurrent pretreatment with both IFN and cycloheximide abrogated the IFN effect. Protein synthesis, however, is not required for the production of base levels of NKCF because emetine pretreatment of normal spleen cells did not result in a decrease in NKCF production. Furthermore, substantial levels of NKCF activity could be detected in freeze-thaw lysates of freshly isolated spleen cells. Cell populations enriched for NK effector cells, such as nylon wool-nonadherent nude mouse spleen cells, produced lysates with high levels of NKCF activity, whereas lysates of CBA thymocytes were devoid of NKCF activity. Pretreatment of spleen cells with either IFN or pIC resulted in an augmentation of the NKCF activity present in their cell lysates. Taken altogether, these findings suggest that freshly isolated NK cells contain preformed pools of NKCF. Pretreatment of these cells with IFN causes de novo synthesis of additional NKCF and/or activation of preexisting NKCF. According to our model for the mechanism of NK CMC, target cell lysis is ultimately the result of transfer of NKCF from the effector cell to the target cell. The evidence presented here suggests that the IFN-induced augmentation of NK activity could be accounted for by an

  3. Augmentative and Alternative Communication and Language: Evidence-Based Practice and Language Activity Monitoring

    ERIC Educational Resources Information Center

    Hill, Katya

    2004-01-01

    The goal of augmentative and alternative communication (AAC) is the most effective communication possible. Speech-language pathologists are obligated to collect data, measure communication, and apply the principles of evidence-based practice (EBP). This article presents a model for EBP that represents how collecting and evaluating performance data…

  4. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons.

    PubMed

    Gee, Christine E; Benquet, Pascal; Raineteau, Olivier; Rietschin, Lotty; Kirbach, Sebastian W; Gerber, Urs

    2006-05-01

    Transient cerebral ischemia causes an inhomogeneous pattern of cell death in the brain. We investigated mechanisms, which may underlie the greater susceptibility of hippocampal CA1 vs. CA3 pyramidal cells to ischemic insult. Using an in vitro oxygen-glucose deprivation (OGD) model of ischemia, we found that N-methyl-D-aspartate (NMDA) responses were enhanced in the more susceptible CA1 pyramidal cells and transiently depressed in the resistant CA3 pyramidal cells. The long-lasting potentiation of NMDA responses in CA1 cells was associated with delayed cell death and was prevented by blocking tyrosine kinase-dependent up-regulation of NMDA receptor function. In CA3 cells, the energy deprivation-induced transient depression of NMDA responses was converted to potentiation by blocking protein phosphatase signalling. These results suggest that energy deprivation differentially shifts the intracellular equilibrium between the tyrosine kinase and phosphatase activities that modulate NMDA responses in CA1 and CA3 pyramidal cells. Therapeutic modulation of tyrosine phosphorylation may thus prove beneficial in mitigating ischemia-induced neuronal death in vulnerable brain areas.

  5. IGF-1-Involved Negative Feedback of NR2B NMDA Subunits Protects Cultured Hippocampal Neurons Against NMDA-Induced Excitotoxicity.

    PubMed

    Li, Yun; Sun, Wei; Han, Song; Li, Jianing; Ding, Shu; Wang, Wei; Yin, Yanling

    2017-01-01

    Insulin-like growth factor 1 (IGF-1) is a multifunctional protein involved in neuronal polarity and axonal guidance. In our previous study, it was discovered that IGF-1 alleviated 50-μM NMDA-induced excitotoxicity against neuronal autophagy via depression of NR2B p-Ser1303 activation. However, it was found that NMDA at a higher dose did not cause neuronal autophagy. And, the performance of IGF-1 under severe excitotoxicity still needs to be clarified. In this study, we observed that IGF-1 can salvage the hippocampal neurons in an autophagy-independent manner after 150-μM NMDA exposure using thiazolyl blue tetrazolium bromide (MTT), lactate dehydrogenase (LDH), Western blot assay, and transmission electron microscopy. In addition, over-activation of post-synaptic NMDARs was found with the whole-cell patch clamp recording method. In order to explore whether there is a positive feedback way for post-synaptic NMDARs and the different pathway caused by 150 μM NMDA, the phosphorylation level of Fyn and the phosphorylation site of NR2B were investigated. It was observed that NR2B p-Tyr1472 was increased by the activation of Fyn after 150-μM NMDA exposure. When the neutralizing antibody against NR2B p-Ser1303 was added into the medium, both the activations of Fyn and NR2B p-Tyr1472 were blocked, suggesting NR2B p-Ser1303 may be the initial step of NMDA-induced excitotoxicity. In addition, since IGF-1 can block the initial step of NR2B activation, its effect is concluded to continue with the development of excitotoxicity. Overall, this study strongly indicates that the relationship between different phosphorylation sites of NR2B should be laid more emphasis on, which may be a vital target for the NR2B-involved excitotoxicity.

  6. Heavy Resistance Training and Supplementation With the Alleged Testosterone Booster Nmda has No Effect on Body Composition, Muscle Performance, and Serum Hormones Associated With the Hypothalamo-Pituitary-Gonadal Axis in Resistance-Trained Males

    PubMed Central

    Willoughby, Darryn S.; Spillane, Mike; Schwarz, Neil

    2014-01-01

    The effects of 28 days of heavy resistance training while ingesting the alleged testosterone-boosting supplement, NMDA, were determined on body composition, muscle strength, serum cortisol, prolactin, and hormones associated with the hypothalamo-pituitary- gonadal (HPG) axis. Twenty resistance-trained males engaged in 28 days of resistance training 4 times/wk while orally ingesting daily either 1.78 g of placebo (PLAC) or NMDA. Data were analyzed with separate 2 x 2 ANOVA (p < 0.05). Criterion measures involved body composition, muscle strength, serum cortisol, prolactin, and gonadal hormone levels [free and total testosterone, luteininzing hormome (LH), gonadotrophin releasing hormone (GnRH), estradiol], and were assessed before (Day 0) and after (Day 29) resistance training and supplementation. No changes were noted for total body water and fat mass in response to resistance training (p > 0.05) or supplementation (p > 0.05). In regard to total body mass and fat-free mass, however, each was significantly increased in both groups in response to resistance training (p < 0.05), but were not affected by supplementation (p > 0.05). In both groups, lower-body muscle strength was significantly increased in response to resistance training (p < 0.05); however, supplementation had no effect (p > 0.05). All serum hormones (total and free testosterone, LH, GnRH, estradiol, cortisol, prolactin) were unaffected by resistance training (p > 0.05) or supplementation (p > 0.05). The gonadal hormones and cortisol and prolactin were unaffected by 28 days of NMDA supplementation and not associated with the observed increases in muscle strength and mass. At the dose provided, NMDA had no effect on HPG axis activity or ergogenic effects in skeletal muscle. Key Points In response to 28 days of heavy resistance training and NMDA supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups. The

  7. Lead inhibition of NMDA channels in native and recombinant receptors.

    PubMed

    Gavazzo, P; Gazzoli, A; Mazzolini, M; Marchetti, C

    2001-10-08

    NMDA channels are key targets for lead (Pb2+) neurotoxicity and Pb2+-induced inhibition of NMDA current is age- and subunit-dependent. In rat cerebellar granule cells maintained in high KCl, glycine affinity as well as sensitivity to ifenprodil change significantly with the days in vitro, indicating a reduction of NR2B subunit expression. Pb2+ blocked NMDA current with IC50 approximately 4 microM and this effect decreased significantly during the second week in vitro. In Xenopus laevis oocytes expressing recombinant NR1-NR2A, NR1-NR2B or NR1-NR2C receptors, Pb2+ inhibited glutamate-activated currents with IC50 of 3.3, 2.5 and 4.7 microM respectively. These data indicate that Pb2+ action is dependent on subunit composition and suggest that down-regulation of the NR2B subunit is correlated to a diminished sensitivity to Pb2+ inhibition.

  8. NADH augments blood flow in physiologically activated retina and visual cortex

    NASA Astrophysics Data System (ADS)

    Ido, Yasuo; Chang, Katherine; Williamson, Joseph R.

    2004-01-01

    The mechanism(s) that increase retinal and visual cortex blood flows in response to visual stimulation are poorly understood. We tested the hypothesis that increased transfer of electrons and protons from glucose to cytosolic free NAD+, reducing it to NADH, evoked by increased energy metabolism, fuels redox-signaling pathways that augment flow. The near-equilibrium between free cytosolic NADH/NAD+ and lactate/pyruvate ratios established by lactate dehydrogenase predicts that transfer of additional electrons and protons from injected lactate to NAD+ will augment the elevated blood flows in stimulated retina and cortex, whereas transfer of electrons and protons from NADH to injected pyruvate will attenuate the elevated flows. These predictions were tested and confirmed in rats. Increased flows evoked by stimulation also were prevented by inhibition of nitric oxide synthase. These findings support an important role for cytosolic free NADH in fueling a signaling cascade that increases NO production, which augments blood flow in photostimulated retina and visual cortex.

  9. Synaptic NMDA Receptors Mediate Hypoxic Excitotoxic Death

    PubMed Central

    Wroge, Christine M.; Hogins, Joshua; Eisenman, Larry; Mennerick, Steven

    2012-01-01

    Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. In part, the extrasynaptic hypothesis is built on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a non-substrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase (GPT), which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate. PMID:22573696

  10. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    SciTech Connect

    Shi, Wen-Zhu; Miao, Yu-Liang; Guo, Wen-Zhi; Wu, Wei; Li, Bao-Wei; An, Li-Na; Fang, Wei-Wu; Mi, Wei-Dong

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  11. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors.

    PubMed

    Shi, Wen-Zhu; Miao, Yu-Liang; Guo, Wen-Zhi; Wu, Wei; Li, Bao-Wei; An, Li-Na; Fang, Wei-Wu; Mi, Wei-Dong

    2014-04-25

    Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  12. PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARγ activation in the liver.

    PubMed

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-10-15

    An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor α (PPARα) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPARα-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPARα-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPARα target genes such as Cyp4A10 and FGF21 was damped in PPARα-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPARα-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPARα activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPARγ and its coactivator PCG-1α were more effectively induced in PPARα-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPARγ antagonist, in both WT and PPARα-null mice. PPARγ activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression in the fatty liver.

  13. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death

    PubMed Central

    Poddar, Ranjana; Deb, Ishani; Mukherjee, Saibal; Paul, Surojit

    2011-01-01

    The present study examines the role of a neuron-specific tyrosine phosphatase (STEP) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAP kinase. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK. PMID:21029094

  14. Cytosolic phospholipase A(2) alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment.

    PubMed

    Shen, Ying; Kishimoto, Koji; Linden, David J; Sapirstein, Adam

    2007-04-03

    The arachidonic acid-generating enzyme cytosolic phospholipase A(2) alpha (cPLA(2)alpha) has been implicated in the progression of excitotoxic neuronal injury. However, the mechanisms of cPLA(2)alpha toxicity have yet to be determined. Here, we used a model system exposing mouse hippocampal slices to NMDA as an excitotoxic injury, in combination with simultaneous patch-clamp recording and confocal Ca(2+) imaging of CA1 pyramidal neurons. NMDA treatment caused significantly greater injury in wild-type (WT) than in cPLA(2)alpha null CA1 neurons. Bath application of NMDA evoked a slow inward current in voltage-clamped neurons (composed of both NMDA receptor-mediated and other conductances) that was smaller in cPLA(2)alpha null than in WT slices. This was not due to down-regulation of NMDA receptor function because NMDA receptor-mediated currents were equivalent in each genotype following brief photolysis of caged glutamate. Current-clamp recordings were made during and following NMDA exposure by eliciting a single action potential with a brief current injection. After NMDA exposure, WT CA1 neurons developed a spike-evoked plateau potential and an increased spike-evoked dendritic Ca(2+) transient. These effects were absent in CA1 neurons from cPLA(2)alpha null mice and WT neurons treated with a cPLA(2)alpha inhibitor. The Ca-sensitive K-channel toxins, apamin and paxilline, caused spike broadening and Ca(2+) enhancement in WT and cPLA(2)alpha null slices. NMDA application in WT and arachidonate applied to cPLA(2)alpha null cells occluded the effects of apamin/paxilline. These results indicate that cPLA(2)alpha activity is required for development of aberrant electrophysiologic events triggered by NMDA receptor activation, in part through attenuation of K-channel function.

  15. Chin augmentation

    MedlinePlus

    ... chisel to make a second cut through the jaw bone. The jaw bone is moved and wired or screwed in ... see the final appearance of your chin and jaw for 3 to 4 months. Alternative Names Augmentation ...

  16. In search of augmentation at human SI: Somatosensory cortical responses to stimulus trains and their modulation by motor activity.

    PubMed

    Huttunen, Juha

    2010-05-17

    In many animal preparations, repeated stimulation at ca. 10 Hz in thalamic nuclei leads to rapid changes in the cortical evoked responses, known as the augmenting response. The present study was undertaken to evaluate whether anything similar to the augmenting response can be observed in awake human subjects when a peripheral nerve is stimulated, and whether a possible human correlate of augmenting would be modified when the subject is engaged in an active motor task. Somatosensory-evoked magnetic fields (SEFs) were recorded in healthy human subjects in response to stimulus trains (15 pulses at 10 Hz) applied to the left median nerve. SEFs were recorded in a resting condition and during a finger-tapping task performed with the stimulated hand. In the resting condition, the most marked change in the SEF configuration was a reduction of the P35m deflection and a concurrent enhancement of the N45m deflection during the 1st few stimuli of the trains. Another conspicuous feature was a prolongation of the latencies of the N45m and P60m deflections toward the end of the train. In the motor task, the response modulation during the pulse trains was in general similar to the resting condition. The most notable difference was that the P35m amplitude was markedly reduced already for the 1st pulse of the train when compared with rest. Also, the latencies of N45m and P60m were not prolonged during the train. We discuss the possibility that the reduction of P35m and a concurrent increase of N45m during a pulse train constitute a human analogue to the augmenting response, and suggest that these changes may reflect a decrease of inhibitory postsynaptic potentials (IPSPs, P35m) and an increase of secondary excitatory postsynaptic potentials (N45m) during stimulus train presentation. The reduction of P35m during motor activity compared with rest already at the beginning of stimulus trains suggests that postsynaptic IPSPs in response to afferent stimulation are reduced during active

  17. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.

  18. A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity

    PubMed Central

    Yoon, Seo-Yeon; Kwon, Soon-Gu; Kim, Yong Ho; Yeo, Ji-Hee; Ko, Hyoung-Gon; Roh, Dae-Hyun; Kaang, Bong-Kiun; Beitz, Alvin J; Lee, Jang-Hern

    2017-01-01

    Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. Given that spinal NMDA receptors play a pivotal role in pain hypersensitivity, we investigated the possible role of Shank2 in nociceptive hypersensitivity by examining changes in spontaneous pain following intrathecal NMDA injection in Shank2−/− (Shank2 knock-out, KO) mice. Results Intrathecal NMDA injection evoked spontaneous nociceptive behaviors. These NMDA-induced nociceptive responses were significantly reduced in Shank2 KO mice. We also observed a significant decrease of NMDA currents in the spinal dorsal horn of Shank2 KO mice. Subsequently, we examined whether mitogen-activated protein kinase or AKT signaling is involved in this reduced pain behavior in Shank2 KO mice because the NMDA receptor is closely related to these signaling molecules. Western blotting and immunohistochemistry revealed that spinally administered NMDA increased the expression of a phosphorylated form of extracellular signal-regulated kinase (p-ERK) which was significantly reduced in Shank2 KO mice. However, p38, JNK, or AKT were not changed by NMDA administration. The ERK inhibitor, PD98059, decreased NMDA-induced spontaneous pain behaviors in a dose-dependent manner in wild-type mice. Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study

  19. Prazosin Augmentation of Outpatient Treatment of Alcohol Use Disorders in Active Duty Soldiers with and without PTSD

    DTIC Science & Technology

    2015-10-01

    Substance Abuse Program (ASAP) at Madigan Health Care System/Joint Base Lewis McChord. The aims of this trial are 1) to determine prazosin’s efficacy... Abuse Program (ASAP) at Madigan HCS/Joint Base Lewis McChord. The aims of this trial are 1) to determine prazosin’s efficacy for AUD in OIF/OEF soldiers...Augmentation of Outpatient Treatment of AUD in Active Duty Soldiers with and without PTSD. Presented at Joint Army/NIH Substance Abuse IP – September 29

  20. Human Augmentics: augmenting human evolution.

    PubMed

    Kenyon, Robert V; Leigh, Jason

    2011-01-01

    Human Augmentics (HA) refers to technologies for expanding the capabilities, and characteristics of humans. One can think of Human Augmentics as the driving force in the non-biological evolution of humans. HA devices will provide technology to compensate for human biological limitations either natural or acquired. The strengths of HA lie in its applicability to all humans. Its interoperability enables the formation of ecosystems whereby augmented humans can draw from other realms such as "the Cloud" and other augmented humans for strength. The exponential growth in new technologies portends such a system but must be designed for interaction through the use of open-standards and open-APIs for system development. We discuss the conditions needed for HA to flourish with an emphasis on devices that provide non-biological rehabilitation.

  1. Statin attenuates experimental anti-glomerular basement membrane glomerulonephritis together with the augmentation of alternatively activated macrophages.

    PubMed

    Fujita, Emiko; Shimizu, Akira; Masuda, Yukinari; Kuwahara, Naomi; Arai, Takashi; Nagasaka, Shinya; Aki, Kaoru; Mii, Akiko; Natori, Yasuhiro; Iino, Yasuhiko; Katayama, Yasuo; Fukuda, Yuh

    2010-09-01

    Macrophages are heterogeneous and include classically activated M1 and alternatively activated M2 macrophages, characterized by pro- and anti-inflammatory functions, respectively. Macrophages that express heme oxygenase-1 also exhibit anti-inflammatory effects. We assessed the anti-inflammatory effects of statin in experimental anti-glomerular basement membrane glomerulonephritis and in vitro, focusing on the macrophage heterogeneity. Rats were induced anti-glomerular basement membrane glomerulonephritis and treated with atorvastatin (20 mg/kg/day) or vehicle (control). Control rats showed infiltration of macrophages in the glomeruli at day 3 and developed crescentic glomerulonephritis by day 7, together with increased mRNA levels of the M1 macrophage-associated cytokines, interferon-gamma, tumor necrosis factor-alpha, and interleukin-12. In contrast, statin reduced the level of proteinuria, reduced infiltration of macrophages in glomeruli with suppression of monocyte chemotactic protein-1 expression, and inhibited the formation of necrotizing and crescentic lesions. The number of glomerular ED3-positive macrophages decreased with down-regulation of M1 macrophage-associated cytokines. Furthermore, statin augmented ED2-positive M2 macrophages with up-regulation of the M2 macrophage-associated chemokines and cytokines, chemokine (C-C motif) Iigand-17 and interleukin-10. Statin also increased the glomerular interleukin-10-expressing heme oxygenase-1-positive macrophages. Statin inhibited macrophage development, and suppressed ED3-positive macrophages, but augmented ED2-positive macrophages in M2-associated cytokine environment in vitro. We conclude that the anti-inflammatory effects of statin in glomerulonephritis are mediated through inhibition of macrophage infiltration as well as augmentation of anti-inflammatory macrophages.

  2. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function.

  3. Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes

    PubMed Central

    Poleg-Polsky, Alon

    2015-01-01

    Cortical neurons can respond to glutamatergic stimulation with regenerative N-Methyl-D-aspartic acid (NMDA)-spikes. NMDA-spikes were initially thought to depend on clustered synaptic activation. Recent work had shown however a new variety of a global NMDA-spike, which can be generated by randomly distributed inputs. Very little is known about the factors that influence the generation of these global NMDA-spikes, as well the potentially distinct rules of synaptic integration and the computational significance conferred by the two types of NMDA-spikes. Here I show that the input resistance (RIN) plays a major role in influencing spike initiation; while the classical, focal NMDA-spike depended upon the local (dendritic) RIN, the threshold of global NMDA-spike generation was set by the somatic RIN. As cellular morphology can exert a large influence on RIN, morphologically distinct neuron types can have dissimilar rules for NMDA-spikes generation. For example, cortical neurons in superficial layers were found to be generally prone to global NMDA-spike generation. In contrast, electric properties of cortical layer 5b cells clearly favor focal NMDA-spikes. These differences can translate into diverse synaptic integration rules for the different classes of cortical cells; simulated superficial layers neurons were found to exhibit strong synaptic interactions between different dendritic branches, giving rise to a single integrative compartment mediated by the global NMDA-spike. In these cells, efficiency of postsynaptic activation was relatively little dependent on synaptic distribution. By contrast, layer 5b neurons were capable of true multi-unit computation involving independent integrative compartments formed by clustered synaptic input which could trigger focal NMDA-spikes. In a sharp contrast to superficial layers neurons, randomly distributed synaptic inputs were not very effective in driving firing the layer 5b cells, indicating a possibility for different

  4. Fatty acid augmentation of the cardiac slowly activating delayed rectifier current (IKs) is conferred by hminK.

    PubMed

    Doolan, Gavin K; Panchal, Rekha G; Fonnes, Eva L; Clarke, Alison L; Williams, David A; Petrou, Steven

    2002-10-01

    The mechanism by which dietary fatty acids confer protection against cardiac arrhythmias and sudden cardiac death is not resolved. Here, we study the effects of several known cardio-protective and arrhythmogenic fatty acids on the slowly activating delayed rectifier potassium current (IKs), which is responsible for the repolarization phase of the cardiac action potential. cRNAs encoding either or both of the two subunits, KvLQT1 and hminK, that together produce IKs, were injected into Xenopus oocytes, and the effects of various fatty acids were determined. Docosahexaenoic acid (DHA) significantly augmented IKs as did the short-chained fully saturated lauric acid, and to a lesser extent the cis-unsaturated oleic acid. Eicosapentaenoic acid (EPA) was without significant effect on current magnitude, although it reduced the rate of activation. These results suggest that not all "antiarrhythmic" fatty acids target the same channel. To examine the role of hminK in this response, KvLQT1 was expressed alone. In this case, DHA, lauric acid, and oleic acid did not augment current, suggesting that hminK confers fatty acid sensitivity to IKs.

  5. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition.

  6. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.

  7. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.

    PubMed

    Petrovic, Jelena; Ciric, Jelena; Lazic, Katarina; Kalauzi, Aleksandar; Saponjic, Jasna

    2013-09-01

    that the PPT cholinergic neuronal loss sustainably increased the number of the Wake/REM and REM/Wake transitions and augmented sleep-states related cortical activation that was simultaneously expressed by the high frequency amplitude augmentation, as well as Wake and NREM delta frequency attenuation.

  8. Adult forebrain NMDA receptors gate social motivation and social memory.

    PubMed

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development.

  9. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals

    PubMed Central

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  10. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  11. Acute p38-mediated inhibition of NMDA-induced outward currents in hippocampal CA1 neurons by interleukin-1beta.

    PubMed

    Zhang, Ruoyu; Sun, Li; Hayashi, Yoshinori; Liu, Xia; Koyama, Susumu; Wu, Zhou; Nakanishi, Hiroshi

    2010-04-01

    Interleukin-1beta (IL-1beta) is a potent pro-inflammatory cytokine that is primarily produced by microglia in the brain. IL-1beta inhibits N-methyl-d-aspartate (NMDA)-induced outward currents (I(NMDA-OUT)) through IL-1 type I receptor (IL-1RI) in hippocampal CA1 neurons (Zhang, R., Yamada, J., Hayashi, Y., Wu, Z, Koyama, S., Nakanishi, H., 2008. Inhibition of NMDA-induced outward currents by interleukin-1beta in hippocampal neurons, Biochem. Biophys. Res. Commun. 372, 816-820). Although IL-1RI is associated with mitogen-activated protein kinases, their involvement in the effect of IL-1beta on I(NMDA-OUT) remains unclear. In the present study, we demonstrate that IL-1beta caused activation of p38 mitogen-activated protein kinase and that the p38 inhibitor SB203580 significantly blocked the effect of IL-1beta on I(NMDA-OUT) in hippocampal CA1 neurons. Furthermore, the intracellular perfusion of active recombinant p38alpha significantly decreased the mean amplitude of I(NMDA-OUT). In neurons prepared from inflamed hippocampus, the mean amplitude of I(NMDA-OUT) was significantly reduced. In the inflamed hippocampus, IL-1beta and IL-1RI were expressed mainly in microglia and neurons, respectively. These results suggest that IL-1beta increases the excitability of hippocampal CA1 neurons in the p38-dependent inhibition of I(NMDA-OUT).

  12. Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall.

    PubMed

    Jensen, O; Lisman, J E

    1996-01-01

    This paper examines the role of slow N-methyl-D-aspartate (NMDA) channels (deactivation approximately 150 msec) in networks that multiplex different memories in different gamma subcycles of a low frequency theta oscillation. The NMDA channels are in the synapses of recurrent collaterals and govern synaptic modification in accord with known physiological properties. Because slow NMDA channels have a time constant that spans several gamma cycles, synaptic connections will form between cells that represent different memories. This enables brain structures that have slow NMDA channels to store heteroassociative sequence information in long-term memory. Recall of this stored sequence information can be initiated by presentation of initial elements of the sequence. The remaining sequence is then recalled at a rate of one memory every gamma cycle. A new role for the NMDA channel suggested by our finding is that recall at gamma frequency works well if slow NMDA channels provide the dominant component of the EPSP at the synapse of recurrent collaterals: The slow onset of these channels and their long duration allows the firing of one memory during one gamma cycle to trigger the next memory during the subsequent gamma cycle. An interesting feature of the readout mechanism is that the activation of a given memory is due to cumulative input from multiple previous memories in the stored sequence, not just the previous one. The network thus stores sequence information in a doubly redundant way: Activation of a memory depends on the strength of synaptic inputs from multiple cells of multiple previous memories. The cumulative property of sequence storage has support from the psychophysical literature. Cumulative learning also provides a solution to the disambiguation problem that occurs when different sequences have a region of overlap. In a final set of simulations, we show how coupling an autoassociative network to a heteroassociative network allows the storage of episodic

  13. Healthy older humans exhibit augmented carotid-cardiac baroreflex sensitivity with aspirin during muscle mechanoreflex and metaboreflex activation.

    PubMed

    Drew, Rachel C; Blaha, Cheryl A; Herr, Michael D; Stocker, Sean D; Sinoway, Lawrence I

    2015-10-01

    Low-dose aspirin inhibits thromboxane production and augments the sensitivity of carotid baroreflex (CBR) control of heart rate (HR) during concurrent muscle mechanoreflex and metaboreflex activation in healthy young humans. However, it is unknown how aging affects this response. Therefore, the effect of low-dose aspirin on carotid-cardiac baroreflex sensitivity during muscle mechanoreflex with and without metaboreflex activation in healthy older humans was examined. Twelve older subjects (6 men and 6 women, mean age: 62 ± 1 yr) performed two trials during two visits preceded by 7 days of low-dose aspirin (81 mg) or placebo. One trial involved 3 min of passive calf stretch (mechanoreflex) during 7.5 min of limb circulatory occlusion (CO). In another trial, CO was preceded by 1.5 min of 70% maximal voluntary contraction isometric calf exercise (mechanoreflex and metaboreflex). HR (ECG) and mean arterial blood pressure (MAP; Finometer) were recorded. CBR function was assessed using rapid neck pressure application (+40 to -80 mmHg). Aspirin significantly decreased baseline thromboxane B2 production by 83 ± 4% (P < 0.05) but did not affect 6-keto-PGF1α. After aspirin, CBR-HR maximal gain and operating point gain were significantly higher during stretch with metabolite accumulation compared with placebo (maximal gain: -0.23 ± 0.03 vs. -0.14 ± 0.02 and operating point gain: -0.11 ± 0.03 vs. -0.04 ± 0.01 beats·min(-1)·mmHg(-1) for aspirin and placebo, respectively, P < 0.05). In conclusion, these findings suggest that low-dose aspirin augments CBR-HR sensitivity during concurrent muscle mechanoreflex and metaboreflex activation in healthy older humans. This increased sensitivity appears linked to reduced thromboxane sensitization of muscle mechanoreceptors, which consequently improves CBR-HR control.

  14. Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities.

    PubMed

    Lin, Chien-Yu; Chang, Yu-Ming

    2015-02-01

    This study uses a body motion interactive game developed in Scratch 2.0 to enhance the body strength of children with disabilities. Scratch 2.0, using an augmented-reality function on a program platform, creates real world and virtual reality displays at the same time. This study uses a webcam integration that tracks movements and allows participants to interact physically with the project, to enhance the motivation of children with developmental disabilities to perform physical activities. This study follows a single-case research using an ABAB structure, in which A is the baseline and B is the intervention. The experimental period was 2 months. The experimental results demonstrated that the scores for 3 children with developmental disabilities increased considerably during the intervention phrases. The developmental applications of these results are also discussed.

  15. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats.

    PubMed

    Ma, Yao-Ying; Guo, Chang-Yong; Yu, Peng; Lee, David Yue-Wei; Han, Ji-Sheng; Cui, Cai-Lian

    2006-08-01

    It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.

  16. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice.

    PubMed

    Hwang, Juen-Haur; Lee, I-Te; Jeng, Kee-Ching; Wang, Ming-Fu; Hou, Rolis Chien-Wei; Wu, Su-Mei; Chan, Yin-Ching

    2011-01-01

    Spirulina has proven to be effective in treating certain cancers, hyperlipidemia, immunodeficiency, and inflammatory processes. In this study, we aimed to investigate the effects of Spirulina on memory dysfunction, oxidative stress damage and antioxidant enzyme activity. Three-month-old male senescence-accelerated prone-8 (SAMP8) mice were randomly assigned to either a control group or to one of two experimental groups (one receiving daily dietary supplementation with 50 mg/kg BW and one with 200 mg/kg BW of Spirulina platensis water extract). Senescence-accelerated-resistant (SAMR1) mice were used as the external control. Results showed that the Spirulina-treated groups had better passive and avoidance scores than the control group. The amyloid β-protein (Aβ) deposition was significantly reduced at the hippocampus and whole brain in both Spirulina groups. The levels of lipid peroxidation were significantly reduced at the hippocampus, striatum, and cortex in both Spirulina groups, while catalase activity was significantly higher only in the 200 mg/kg BW Spirulina group than in the control group. Glutathione peroxidase activity was significantly higher only in the cortex of the 200 mg/kg group than in that of the SAMP8 control group. However, superoxide dismutase activity in all parts of the brain did not significantly differ among all groups. In conclusion, Spirulina platensis may prevent the loss of memory possibly by lessening Aβ protein accumulation, reducing oxidative damage and mainly augmenting the catalase activity.

  17. Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain

    PubMed Central

    Wang, Wen-Jie; Cheng, Wang; Luo, Ming; Yan, Qingyu; Yu, Hong-Mei; Li, Qiong; Cao, Dong-Dong; Huang, Shengfeng; Xu, Anlong; Mariuzza, Roy A.; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    Peptidoglycan recognition proteins (PGRPs), which have been identified in most animals, are pattern recognition molecules that involve antimicrobial defense. Resulting from extraordinary expansion of innate immune genes, the amphioxus encodes many PGRPs of diverse functions. For instance, three isoforms of PGRP encoded by Branchiostoma belcheri tsingtauense, termed BbtPGRP1~3, are fused with a chitin binding domain (CBD) at the N-terminus. Here we report the 2.7 Å crystal structure of BbtPGRP3, revealing an overall structure of an N-terminal hevein-like CBD followed by a catalytic PGRP domain. Activity assays combined with site-directed mutagenesis indicated that the individual PGRP domain exhibits amidase activity towards both DAP-type and Lys-type peptidoglycans (PGNs), the former of which is favored. The N-terminal CBD not only has the chitin-binding activity, but also enables BbtPGRP3 to gain a five-fold increase of amidase activity towards the Lys-type PGNs, leading to a significantly broadened substrate spectrum. Together, we propose that modular evolution via domain shuffling combined with gene horizontal transfer makes BbtPGRP1~3 novel PGRPs of augmented catalytic activity and broad recognition spectrum. PMID:26479246

  18. Musical Peddy-Paper: A Collaborative Learning Activity Suported by Augmented Reality

    ERIC Educational Resources Information Center

    Gomes, José Duarte Cardoso; Figueiredo, Mauro Jorge Guerreiro; Amante, Lúcia da Graça Cruz Domingues; Gomes, Cristina Maria Cardoso

    2014-01-01

    Gaming activities are an integral part of the human learning process, in particular for children. Game-based learning focuses on motivation and children's engagement towards learning. Educational game-based activities are becoming effective strategies to enhance the learning process. This paper presents an educational activity focusing to merge…

  19. Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via NMDA Receptors in Dopamine Neurons

    PubMed Central

    Castagna, Candace; Mrejeru, Ana; Lizardi-Ortiz, José E.; Klein, Zoe; Lindsley, Craig W.

    2013-01-01

    NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease. PMID:24133278

  20. Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity

    PubMed Central

    Chen, Yong; Khan, Reas S.; Cwanger, Alyssa; Song, Ying; Steenstra, Katie; Bang, Sookhee; Cheah, Jaime H.; Dunaief, Joshua; Shindler, Kenneth S.; Snyder, Solomon H.; Kim, Sangwon F.

    2013-01-01

    Dexras1, a small G-protein localized predominantly to the brain, is transcriptionally upregulated by the synthetic glucocorticoid dexamethasone. It has close homology to the Ras subfamily, but differs in that Dexras1 contains an extended 7 kDa C-terminal tail. Previous studies in our laboratory showed that NMDA receptor activation, via NO and Dexras1, physiologically stimulates DMT1, the major iron importer. A membrane permeable iron chelator substantially reduces NMDA-excitotoxicity suggesting that Dexras1-mediated iron influx plays a crucial role in NMDA/NO-mediated cell death. We here report that iron influx is elicited by nitric oxide but not by other pro-apoptotic stimuli such as H2O2 or staurosporine. Deletion of Dexras1 in mice attenuates NO-mediated cell death in dissociated primary cortical neurons and retinal ganglion cells in vivo. Thus Dexras1 appears to mediate NMDA-elicited neurotoxicity via NO and iron influx. PMID:23426685

  1. Supplemental nitric oxide augments satellite cell activity on cultured myofibers from aged mice.

    PubMed

    Betters, Jenna L; Lira, Vitor A; Soltow, Quinlyn A; Drenning, Jason A; Criswell, David S

    2008-12-01

    Skeletal muscle regenerative potential is reduced with aging. We hypothesized that in vitro activation of muscle satellite cells would be compromised, and that nitric oxide (NO) supplementation would improve satellite cell activity in old muscle. Single intact myofibers were isolated from the gastrocnemius muscles of young (2 mo), adult (10 mo), and aged (22 mo) mice. Fibers were centrifuged to stimulate satellite cells and incubated with L-arginine (2mM), the NO donor, diethylenetriamine NONOate (DETA-NO; 10 microM), or control media for 48 h. The number of activated satellite cells after centrifugation was reduced in aged fibers compared to young and adult. L-arginine or DETA-NO treatment increased satellite cell activation in all age groups. However, an age-dependent deficit in satellite cell activity persisted within treatment groups. In separate fibers, exogenous HGF was equally effective in activating satellite cells across age groups, indicating that events downstream of HGF release are intact in aged muscle. These data suggest that l-arginine bioavailability and NO production limit muscle satellite cell activity in response to a submaximal mechanical stimulus, regardless of age. Further, the decline in satellite cell activity in early senescence can be partially abrogated by exogenous L-arginine or an NO donor.

  2. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.

  3. CGX-1007 prevents excitotoxic cell death via actions at multiple types of NMDA receptors.

    PubMed

    Alex, Anitha B; Saunders, Gerald W; Dalpé-Charron, Alexandre; Reilly, Christopher A; Wilcox, Karen S

    2011-08-01

    Glutamate induced excitotoxic injury through over-activation of N-methyl-D-aspartate receptors (NMDARs) plays a critical role in the development of many neurodegenerative diseases. The present study was undertaken to evaluate the role of CGX-1007 (Conantokin G) as a neuroprotective agent against NMDA-induced excitotoxicity. Conantokin G, a cone snail peptide isolated from Conus geographus is reported to selectively inhibit NR2B containing NMDARs with high specificity and is shown to have potent anticonvulsant and antinociceptive effects. CGX-1007 significantly reduced the excitotoxic cell death induced by NMDA in organotypic hippocampal brain slice cultures in a concentration-dependent manner. In contrast, ifenprodil, another NR2B specific antagonist failed to offer neuroprotection against NMDA-induced excitotoxicity. We further determined that the neuroprotection observed is likely due to the action of CGX-1007 at multiple NMDA receptor subtypes. In a series of electrophysiology experiments, CGX-1007 inhibited NMDA-gated currents in human embryonic kidney (HEK) 293 cells expressing NMDA receptors containing either NR1a/NR2B or NR1a/NR2A subunit combinations. CGX-1007 produced a weak inhibition at NR1a/NR2C receptors, whereas it had no effect on NR1a/NR2D receptors. Further, the inhibition of NMDA receptors by CGX-1007 was voltage-dependent with greater inhibition seen at hyperpolarized membrane potentials. The voltage-dependence of CGX-1007 activity was also observed in recordings of NMDA-gated currents evoked in native receptors expressed in cortical neurons in culture. Based on our results, we conclude that CGX-1007 is a potent neuroprotective agent that acts as an antagonist at both NR2A and NR2B containing receptors.

  4. Activation of mu opioid receptors in the striatum differentially augments methamphetamine-induced gene expression and enhances stereotypic behavior.

    PubMed

    Horner, Kristen A; Hebbard, John C; Logan, Anna S; Vanchipurakel, Golda A; Gilbert, Yamiece E

    2012-03-01

    Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. To further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with d-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1 μg/μL), treated with methamphetamine (0.5 mg/kg) and killed at 45 min or 2 h later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pre-treatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine.

  5. Augmenting the Activity of Monoterpenoid Phenols against Fungal Pathogens Using 2-Hydroxy-4-methoxybenzaldehyde that Target Cell Wall Integrity

    PubMed Central

    Kim, Jong H.; Chan, Kathleen L.; Mahoney, Noreen

    2015-01-01

    Disruption of cell wall integrity system should be an effective strategy for control of fungal pathogens. To augment the cell wall disruption efficacy of monoterpenoid phenols (carvacrol, thymol), antimycotic potency of benzaldehyde derivatives that can serve as chemosensitizing agents were evaluated against strains of Saccharomyces cerevisiae wild type (WT), slt2Δ and bck1Δ (mutants of the mitogen-activated protein kinase (MAPK) and MAPK kinase kinase, respectively, in the cell wall integrity pathway). Among fourteen compounds investigated, slt2Δ and bck1Δ showed higher susceptibility to nine benzaldehydes, compared to WT. Differential antimycotic activity of screened compounds indicated “structure-activity relationship” for targeting the cell wall integrity, where 2-hydroxy-4-methoxybenzaldehyde (2H4M) exhibited the highest antimycotic potency. The efficacy of 2H4M as an effective chemosensitizer to monoterpenoid phenols (viz., 2H4M + carvacrol or thymol) was assessed in yeasts or filamentous fungi (Aspergillus, Penicillium) according to European Committee on Antimicrobial Susceptibility Testing or Clinical Laboratory Standards Institute M38-A protocols, respectively. Synergistic chemosensitization greatly lowers minimum inhibitory or fungicidal concentrations of the co-administered compounds. 2H4M also overcame the tolerance of two MAPK mutants (sakAΔ, mpkCΔ) of Aspergillus fumigatus to fludioxonil (phenylpyrrole fungicide). Collectively, 2H4M possesses chemosensitizing capability to magnify the efficacy of monoterpenoid phenols, which improves target-based (viz., cell wall disruption) antifungal intervention. PMID:26569223

  6. Maternal inflammation activated ROS-p38 MAPK predisposes offspring to heart damages caused by isoproterenol via augmenting ROS generation

    PubMed Central

    Zhang, Qi; Deng, Yafei; Lai, Wenjing; Guan, Xiao; Sun, Xiongshan; Han, Qi; Wang, Fangjie; Pan, Xiaodong; Ji, Yan; Luo, Hongqin; Huang, Pei; Tang, Yuan; Gu, Liangqi; Dan, Guorong; Yu, Jianhua; Namaka, Michael; Zhang, Jianxiang; Deng, Youcai; Li, Xiaohui

    2016-01-01

    Maternal inflammation contributes to the increased incidence of adult cardiovascular disease. The current study investigated the susceptibility of cardiac damage responding to isoproterenol (ISO) in adult offspring that underwent maternal inflammation (modeled by pregnant Sprague-Dawley rats with lipopolysaccharides (LPS) challenge). We found that 2 weeks of ISO treatment in adult offspring of LPS-treated mothers led to augmented heart damage, characterized by left-ventricular systolic dysfunction, cardiac hypertrophy and myocardial fibrosis. Mechanistically, prenatal exposure to LPS led to up-regulated expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, antioxidant enzymes, and p38 MAPK activity in left ventricular of adult offspring at resting state. ISO treatment exaggerated ROS generation, p38 MAPK activation but down-regulated reactive oxygen species (ROS) elimination capacity in the left ventricular of offspring from LPS-treated mothers, while antioxidant N-acetyl-L-cysteine (NAC) reversed these changes together with improved cardiac functions. The p38 inhibitor SB202190 alleviated the heart damage only via inhibiting the expression of NADPH oxidases. Collectively, our data demonstrated that prenatal inflammation programs pre-existed ROS activation in the heart tissue, which switches on the early process of oxidative damages on heart rapidly through a ROS-p38 MAPK-NADPH oxidase-ROS positive feedback loop in response to a myocardial hypertrophic challenge in adulthood. PMID:27443826

  7. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice.

    PubMed

    Hasan, Mazahir T; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking NMDA receptors in the [corrected] primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning.

  8. Real-time RMS active damping augmentation: Heavy and very light payload evaluations

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Lepanto, Janet A.; Flueckiger, Karl W.; Bains, Elizabeth M.; Jensen, Mary C.

    1994-01-01

    Controls-Structures Integration Technology has been applied to the Space Shuttle Remote Manipulator System (RMS) to improve on-orbit performance. The objective was to actively damp undesired oscillatory motions of the RMS following routine payload maneuvering and Shuttle attitude control thruster firings. Simulation of active damping was conducted in the real-time, man-in-the-loop Systems Engineering Simulator at NASA's Johnson Space Center. The simulator was used to obtain qualitative and quantitative data on active damping performance from astronaut operators. Using a simulated three-axis accelerometer mounted on the RMS, 'sensed' vibration motions were used to generate joint motor commands that reduced the unwanted oscillations. Active damping of the RMS with heavy and light attached payloads was demonstrated in this study. Five astronaut operators examined the performance of active damping following operator commanded RMS maneuvers and Shuttle thruster firings. Noticeable improvements in the damping response of the RMS with the heavy, Hubble Space Telescope payload and the very light, astronaut in Manipulator Foot Restraint payload were observed. The potential of active damping to aid in precisely maneuvering payloads was deemed significant.

  9. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    PubMed Central

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis. PMID:26108681

  10. The HIV coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains

    PubMed Central

    Xu, Hangxiu; Bae, Mihyun; Tovar-y-Romo, Luis B.; Patel, Neha; Bandaru, Veera Venkata Ratnam; Pomerantz, Daniel; Steiner, Joseph; Haughey, Norman J.

    2011-01-01

    Infection by the Human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV associated neurocognitive disorders (HAND). While the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. HIV gp120 enlarged, and stabilized the structure of lipid rafts on neuronal dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2; nSMase2) to the plasma membrane. A concurrent pathway was activated that enhanced the forward traffic of NMDA receptors by promoting a PKA-dependent phopshorylation of the NR1 C-terminal serine 897 (that masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses, and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse, and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced three-fold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from enhancing the surface localization and clustering of NMDA receptors, while disrupting the structure of membrane microdomains restored the ability of NMDA receptors to disperse and internalize following gp120. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV-infection by interfering with the traffic of NMDA receptors. PMID:22114277

  11. 32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... travels for the purpose of conducting hearings, it shall normally select Navy or Marine Corps installations in the area visited as review sites. (b) The NDRB Traveling Board shall normally consist of.... (c) Navy and Marine Corps activities in the geographical vicinity of selected review sites...

  12. 32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... travels for the purpose of conducting hearings, it shall normally select Navy or Marine Corps installations in the area visited as review sites. (b) The NDRB Traveling Board shall normally consist of.... (c) Navy and Marine Corps activities in the geographical vicinity of selected review sites...

  13. 32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... travels for the purpose of conducting hearings, it shall normally select Navy or Marine Corps installations in the area visited as review sites. (b) The NDRB Traveling Board shall normally consist of.... (c) Navy and Marine Corps activities in the geographical vicinity of selected review sites...

  14. 32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... travels for the purpose of conducting hearings, it shall normally select Navy or Marine Corps installations in the area visited as review sites. (b) The NDRB Traveling Board shall normally consist of.... (c) Navy and Marine Corps activities in the geographical vicinity of selected review sites...

  15. Indomethacin augments lymphokine-activated killer cell generation by patients with malignant mesothelioma

    SciTech Connect

    Manning, L.S.; Bowman, R.V.; Davis, M.R.; Musk, A.W.; Robinson, B.W. )

    1989-10-01

    Human malignant mesothelioma (MM) cells are resistant to natural killer (NK) cell lysis but susceptible to lysis by lymphokine-activated killer (LAK) cells from control individuals. The present study was performed to determine the capacity of patients with MM (n = 22) and individuals occupationally exposed to asbestos (the major population at risk of developing this disease, n = 52) to generate LAK cells capable of effectively lysing human mesothelioma cells. Compared to controls (n = 20), both patient groups demonstrated significantly depressed LAK cell activity against mesothelioma tumor cell targets (55 +/- 3% lysis by controls vs 34 +/- 3% lysis by patients with MM, P less than 0.005; and 45 +/- 3% lysis by asbestos-exposed individuals, P less than 0.025). Addition of 10 micrograms/ml indomethacin during LAK cell generation restored normal LAK cell activity for patients with MM (52 +/- 6% lysis of cultured human MM cells, P = NS compared to controls), suggesting that the defective cytolytic cell function observed in some patients with MM is a result of prostaglandin-induced immunosuppression. The ability of indomethacin to restore suppressed LAK cell activity in patients with MM suggests that the concomitant use of this agent in ex vivo LAK cell generation and in patients undergoing interleukin/LAK cell therapy may be beneficial.

  16. A translational approach for NMDA receptor profiling as a vulnerability biomarker for depression and schizophrenia.

    PubMed

    Gunduz-Bruce, Handan; Kenney, Joshua; Changlani, Suravi; Peixoto, Aldo; Gueorguieva, Ralitza; Leone, Cheryl; Stachenfeld, Nina

    2017-03-13

    Altered N-methyl-D-aspartate (NMDA) receptor activity and glutamate signaling may underlie the pathogenesis of both schizophrenia and depression in subgroups of patients. In schizophrenia, pharmacologic modeling, postmortem and imaging data suggest reduced NMDA signaling. In contrast, recent clinical trials demonstrating the efficacy of the NMDA antagonist ketamine in severely depressed patients suggest increased NMDA receptor signaling. We conducted a proof of concept study to assess whether there is any in vivo evidence for an inverse association in depression and schizophrenia with respect to the NMDA receptor function. For this purpose we used a translational approach, based on findings from animal studies that NMDA receptor is a key mediator of arginine-vasopressin (AVP) release into the bloodstream. Using hypertonic saline to induce AVP release, as done in animal studies, we found that in depressed patients, NMDA receptor mediated AVP release induced by hypertonic saline infusion was significantly increased 0.24 (0.15) pg/ml P[AVP] /mOsmol POsm , P< 0.05 compared to schizophrenia patients 0.07 (0.07) pg/ml P[AVP] /mOsmol POsm , in whom same response was abnormally low. Slopes for healthy control were 0.11 (0.09) pg/ml P[AVP] /mOsmol POsm , and not different than either group. These findings are consistent with implicated NMDA receptor related abnormalities in depression and schizophrenia in subgroups of patients, and provide the first in vivo evidence towards this dichotomy. This article is protected by copyright. All rights reserved.

  17. Role of ventral hippocampal NMDA receptors in anxiolytic-like effect of morphine.

    PubMed

    Motevasseli, Tahmineh; Rezayof, Ameneh; Zarrindast, Mohammad-Reza; Nayer-Nouri, Touraj

    2010-12-02

    The possible role of ventral hippocampal N-methyl-d-aspartate (NMDA) receptors on morphine-induced anxiolytic-like behavior in an elevated plus maze (EPM) task was investigated in the present study. Adult male mice (7 per group) with cannulas aimed at the ventral hippocampus (VH) received NMDA or a competitive NMDA receptor antagonist D-AP5 with or without morphine and 30min later were subjected to an EPM task. Intraperitoneal injection (i.p.) of morphine (3-9mg/kg) increased the percentage of open arm time (%OAT) and open arm entries (%OAE), which suggested an anxiolytic-like effect. Intra-VH microinjection of NMDA (0.5-1μg/mouse) with an ineffective dose of morphine (3mg/kg, i.p.) significantly increased %OAT and %OAE. However, microinjections of the same doses of NMDA into the VH in the absence of morphine had no effect on %OAT and %OAE. Intra-VH microinjection of D-AP5 (0.5-2μg/mouse) decreased the anxiolytic-like effect of morphine, while intra-VH microinjection of the same doses of D-AP5 alone increased %OAT and %OAE, which indicated an anxiolytic response. Furthermore, intra-VH microinjection of D-AP5 reversed the effect of NMDA response to the administration of a lower morphine dose as seen in the EPM task. It should be noted that intra-VH microinjection of D-AP5 plus NMDA, 5min before morphine increased locomotor activity, while other treatments had no effect on this parameter. The results suggest that VH-NMDA receptors participate in the mediation of morphine-induced anxiolytic-like behavior.

  18. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus

  19. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells*

    PubMed Central

    Wittmann, Alexandra; Lamprinaki, Dimitra; Bowles, Kristian M.; Katzenellenbogen, Ewa; Knirel, Yuriy A.; Whitfield, Chris; Nishimura, Takashi; Matsumoto, Naoki; Yamamoto, Kazuo; Iwakura, Yoichiro; Saijo, Shinobu; Kawasaki, Norihito

    2016-01-01

    LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2. PMID:27358401

  20. An application of active surface heating for augmenting lift and reducing drag of an airfoil

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Badavi, Forooz F.; Noonan, Kevin W.

    1988-01-01

    Application of active control to separated flow on the RC(6)-08 airfoil at high angle of attack by localized surface heating is numerically simulated by integrating the compressible 2-D nonlinear Navier-Stokes equation solver. Active control is simulated by local modification of the temperature boundary condition over a narrow strip of the upper surface of the airfoil. Both mean and perturbed profiles are favorably altered when excited with the same natural frequency of the shear layer by moderate surface heating for both laminar and turbulent separation. The shear layer is found to be very sensitive to localized surface heating in the vicinity of the separation point. The excitation field at the surface sufficiently altered both the local as well as the global circulation to cause a significant increase in lift and reduction in drag.

  1. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    SciTech Connect

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  2. Donor immunization with WT1 peptide augments antileukemic activity after MHC-matched bone marrow transplantation.

    PubMed

    Kohrt, Holbrook E; Müller, Antonia; Baker, Jeanette; Goldstein, Matthew J; Newell, Evan; Dutt, Suparna; Czerwinski, Debra; Lowsky, Robert; Strober, Samuel

    2011-11-10

    The curative potential of MHC-matched allogeneic bone marrow transplantation (BMT) is in part because of immunologic graft-versus-tumor (GvT) reactions mediated by donor T cells that recognize host minor histocompatibility antigens. Immunization with leukemia-associated antigens, such as Wilms Tumor 1 (WT1) peptides, induces a T-cell population that is tumor antigen specific. We determined whether allogeneic BMT combined with immunotherapy using WT1 peptide vaccination of donors induced more potent antitumor activity than either therapy alone. WT1 peptide vaccinations of healthy donor mice induced CD8(+) T cells that were specifically reactive to WT1-expressing FBL3 leukemia cells. We found that peptide immunization was effective as a prophylactic vaccination before tumor challenge, yet was ineffective as a therapeutic vaccination in tumor-bearing mice. BMT from vaccinated healthy MHC-matched donors, but not syngeneic donors, into recipient tumor-bearing mice was effective as a therapeutic maneuver and resulted in eradication of FBL3 leukemia. The transfer of total CD8(+) T cells from immunized donors was more effective than the transfer of WT1-tetramer(+)CD8(+) T cells and both required CD4(+) T-cell help for maximal antitumor activity. These findings show that WT1 peptide vaccination of donor mice can dramatically enhance GvT activity after MHC-matched allogeneic BMT.

  3. Aeromechanical stability augmentation using semi-active friction-based lead-lag damper

    NASA Astrophysics Data System (ADS)

    Agarwal, Sandeep

    2005-11-01

    Lead-lag dampers are present in most rotors to provide the required level of damping in all flight conditions. These dampers are a critical component of the rotor system, but they also represent a major source of maintenance cost. In present rotor systems, both hydraulic and elastomeric lead-lag dampers have been used. Hydraulic dampers are complex mechanical components that require hydraulic fluids and have high associated maintenance costs. Elastomeric dampers are conceptually simpler and provide a "dry" rotor, but are rather costly. Furthermore, their damping characteristics can degrade with time without showing external signs of failure. Hence, the dampers must be replaced on a regular basis. A semi-active friction based lead-lag damper is proposed as a replacement for hydraulic and elastomeric dampers. Damping is provided by optimized energy dissipation due to frictional forces in semi-active joints. An actuator in the joint modulates the normal force that controls energy dissipation at the frictional interfaces, resulting in large hysteretic loops. Various selective damping strategies are developed and tested for a simple system containing two different frequency modes in its response, one of which needs to be damped out. The system reflects the situation encountered in rotor response where 1P excitation is present along with the potentially unstable regressive lag motion. Simulation of the system response is obtained to compare their effectiveness. Next, a control law governing the actuation in the lag damper is designed to generate the desired level of damping for performing adaptive selective damping of individual blade lag motion. Further, conceptual design of a piezoelectric friction based lag damper for a full-scale rotor is presented and various factors affecting size, design and maintenance cost, damping capacity, and power requirements of the damper are discussed. The selective semi-active damping strategy is then studied in the context of classical

  4. PKCepsilon activation augments cardiac mitochondrial respiratory post-anoxic reserve--a putative mechanism in PKCepsilon cardioprotection.

    PubMed

    McCarthy, Joy; McLeod, Christopher J; Minners, Jan; Essop, M Faadiel; Ping, Peipei; Sack, Michael N

    2005-04-01

    Modest cardiac-overexpression of constitutively active PKCepsilon (aPKCepsilon) in transgenic mice evokes cardioprotection against ischemia. As aPKCepsilon interacts with mitochondrial respiratory-chain proteins we hypothesized that aPKCepsilon modulates respiration to induce cardioprotection. Using isolated cardiac mitochondria wild-type and aPKCepsilon mice display similar basal mitochondrial respiration, rate of ATP synthesis and adenosine nucleotide translocase (ANT) functional content. Conversely, the aPKCepsilon mitochondria exhibit modest hyperpolarization of their inner mitochondrial membrane potential (DeltaPsi(m)) compared to wild-type mitochondrial by flow cytometry. To assess whether this hyperpolarization engenders resilience to simulated ischemia, anoxia-reoxygenation experiments were performed. Mitochondria were exposed to 45 min anoxia followed by reoxygenation. At reoxygenation, aPKCepsilon mitochondria recovered ADP-dependent respiration to 44 +/- 3% of baseline compared to 28 +/- 2% in WT controls (P = 0.03) in parallel with enhanced ATP synthesis. This preservation in oxidative phosphorylation is coupled to greater ANT functional content [42% > concentration of atractyloside for inhibition in the aPKCepsilon mitochondria vs. WT control (P < 0.0001)], retention of mitochondrial cytochrome c and conservation of DeltaPsi(m). These data demonstrate that mitochondria from PKCepsilon activated mice are intrinsically resilient to anoxia-reoxygenation compared to WT controls. This resilience is in part due to enhanced recovery of oxidative phosphorylation coupled to maintained ANT activity. As maintenance of ATP is a prerequisite for cellular viability we conclude that PKCepsilon activation augmented mitochondrial respiratory capacity in response to anoxia-reoxygenation may contribute to the PKCepsilon cardioprotective program.

  5. NMDA receptor and schizophrenia: a brief history.

    PubMed

    Coyle, Joseph T

    2012-09-01

    Although glutamate was first hypothesized to be involved in the pathophysiology of schizophrenia in the 1980s, it was the demonstration that N-methyl-D-aspartate (NMDA) receptor antagonists, the dissociative anesthetics, could replicate the full range of psychotic, negative, cognitive, and physiologic features of schizophrenia in normal subjects that placed the "NMDA receptor hypofunction hypothesis" on firm footing. Additional support came from the demonstration that a variety of agents that enhanced NMDA receptor function at the glycine modulatory site significantly reduced negative symptoms and variably improved cognition in patients with schizophrenia receiving antipsychotic drugs. Finally, persistent blockade of NMDA receptors recreates in experimental animals the critical pathologic features of schizophrenia including downregulation of parvalbumin-positive cortical GABAergic neurons, pyramidal neuron dendritic dysgenesis, and reduced spine density.

  6. NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation.

    PubMed

    Kreipke, Christian W; Walker, Paul D

    2004-07-01

    Previous behavioral studies suggest that the striatum mediates a hyperactive response to systemic NMDA receptor antagonism in combination with systemic D1 receptor stimulation. However, many experiments conducted at the cellular level suggest that inhibition of NMDA receptors should block D1 receptor-mediated locomotor activity. Therefore, we investigated the consequences of NMDA receptor blockade on the ability of striatal D1 receptors to elicit locomotor activity using systemic and intrastriatal injections of the NMDA antagonist MK-801 combined with intrastriatal injections of the D1 full agonist SKF 82958. Following drug treatment locomotor activity was measured via computerized activity monitors designed to quantify multiple parameters of rodent open-field behavior. Both systemic (0.1 mg/kg) and intrastriatal (1.0 microg) MK-801 pretreatments completely blocked locomotor and stereotypic activity elicited by 10 microg of SKF 82958 directly infused into the striatum. Further, increased activity triggered by intrastriatal SKF 82958 was attenuated by a posttreatment with intrastriatal infusion of 1 microg MK-801. These data suggest that D1-stimulated locomotor behaviors controlled by the striatum require functional NMDA channels.

  7. Mitochondrial Ca(2+) Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity.

    PubMed

    Dong, Zhiwei; Shanmughapriya, Santhanam; Tomar, Dhanendra; Siddiqui, Naveed; Lynch, Solomon; Nemani, Neeharika; Breves, Sarah L; Zhang, Xueqian; Tripathi, Aparna; Palaniappan, Palaniappan; Riitano, Massimo F; Worth, Alison M; Seelam, Ajay; Carvalho, Edmund; Subbiah, Ramasamy; Jaña, Fabián; Soboloff, Jonathan; Peng, Yizhi; Cheung, Joseph Y; Joseph, Suresh K; Caplan, Jeffrey; Rajan, Sudarsan; Stathopulos, Peter B; Madesh, Muniswamy

    2017-03-16

    Ca(2+) dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca(2+)]m uptake rate, elevated mROS, and enhanced [Ca(2+)]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.

  8. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity

    PubMed Central

    West, Andrew B.; Moore, Darren J.; Biskup, Saskia; Bugayenko, Artem; Smith, Wanli W.; Ross, Christopher A.; Dawson, Valina L.; Dawson, Ted M.

    2005-01-01

    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease (PD) with a clinical appearance indistinguishable from idiopathic PD. Initial studies suggest that LRRK2 mutations are the most common yet identified determinant of PD susceptibility, transmitted in an autosomal-dominant mode of inheritance. Herein, we characterize the LRRK2 gene and transcript in human brain and subclone the predominant ORF. Exogenously expressed LRRK2 protein migrates at ≈280 kDa and is present largely in the cytoplasm but also associates with the mitochondrial outer membrane. Familial-linked mutations G2019S or R1441C do not have an obvious effect on protein steady-state levels, turnover, or localization. However, in vitro kinase assays using full-length recombinant LRRK2 reveal an increase in activity caused by familial-linked mutations in both autophosphorylation and the phosphorylation of a generic substrate. These results suggest a gain-of-function mechanism for LRRK2-linked disease with a central role for kinase activity in the development of PD. PMID:16269541

  9. Aeromechanical stability augmentation of helicopters using enhanced active constrained layer damping treatment on rotor flex beams

    NASA Astrophysics Data System (ADS)

    Badre Alam, Askari

    This thesis presents a study conducted to explore the feasibility of employing Enhanced Active Constrained Layer (EACL) damping treatment in helicopter rotor systems to alleviate aeromechanical instability. The central idea is to apply the EACL treatment on the flexbeams of soft in-plane bearingless main rotors (BMRs) and increase the damping of the first lag mode. In this research, it is explored whether EACL damping treatment can provide sufficient damping in rotor system without exceeding the physical design limits of actuators. To study the feasibility of the EACL damping treatment, a finite element based mathematical model of a rotor with EACL damping treatment on flexbeam is developed. A bench top experiment is conducted to verify the mathematical model. It is shown that the experimental results correlate well with the analytical results. A derivative controller, with control voltage based on the flexbeam tip transverse velocity, is used in this investigation. A filter is developed to remove 1/rev component of the feedback signal. An optimization study is conducted to understand the influence of EACL design parameters on the performance of the damping treatment. A study is conducted to analyze delamination of EACL damping treatment. In this study, a new finite element model is developed that is capable of accurately predicting both, the performance and interlaminar stresses in EACL damping treatment. A new configuration of PCL damping treatment is developed by tapering the constraining layer at the free ends. As compared to a conventional PCL, this configuration has significantly lower interlaminar stresses and similar damping performance. A study is conducted to compare ACL with purely active configuration. It was shown that in ACL configuration, the interlaminar stresses are an-order-of-magnitude lower than the purely active configuration for similar damping levels. A new ACL configuration is designed by changing the poling direction of the PZT constraining

  10. Augmentation of 5-lipoxygenase activity and expression during dengue serotype-2 infection

    PubMed Central

    2013-01-01

    Background Leukotriene B4, a 5-lipoxygenase product of arachidonic acid with potent chemotactic effects on neutrophils, has not been assessed in dengue patients. In this study, plasma leukotriene B4 and serum high-sensitivity C-reactive protein levels were determined in adult patients during the febrile, convalescent and defervescent stages of dengue serotype-2 (DENV-2) infection, and compared with those of age--matched healthy and non-dengue febrile subjects. In vitro studies were performed to examine the effects of live and heat-inactivated DENV-2 on the activities and expression of 5-lipoxygenase in human neutrophils. Results Plasma leukotriene B4 was elevated during the febrile stages of dengue infection compared to levels during convalescence and in study controls. Plasma leukotriene B4 also correlated with serum high-sensitivity C-reactive protein in dengue patients (febrile, r = 0.91, p < 0.001; defervescence, r = 0.87, p < 0.001; convalescence, r = 0.87, p < 0.001). Exposure of human neutrophils to DENV-2 resulted in a significant rise in leukotriene B4; the extent of increase, however, did not differ between exposure to live and heat-inactivated DENV-2. Pre-incubation of either live or heat-inactivated DENV-2 resulted in reduced leukotriene B4 release by neutrophils, indicating that contact with dengue antigens (and not replication) triggers the neutrophil response. Production of leukotriene B4 was associated with an increase in 5-lipoxygenase expression in human neutrophils; addition of MK886 (a 5-lipoxygenase activating protein inhibitor) attenuated further increase in leukotriene B4 production. Conclusion These findings provide important clinical and mechanistic data on the involvement of 5-lipoxygenase and its metabolites in dengue infection. Further studies are needed to elucidate the therapeutic implications of these findings. PMID:24168271

  11. Cigarette smoking augments sympathetic nerve activity in patients with coronary heart disease.

    PubMed

    Shinozaki, Norihiko; Yuasa, Toyoshi; Takata, Shigeo

    2008-05-01

    It has been shown that cigarette smoking increases blood pressure (BP) and heart rate (HR), and decreases muscle sympathetic nerve activity (MSNA) in healthy young smokers. The decrease in MSNA might be secondary to baroreflex responses to the pressor effect. We tested the hypothesis that cigarette smoking increases MSNA in smokers with impaired baroreflex function. The effects of cigarette smoking on BP, HR, forearm blood flow (FBF), forearm vascular resistance (FVR), and MSNA were examined in 14 patients with stable effort angina (59+/-3 years, group CAD) and 10 healthy smokers (23+/-1 years, group C). In group CAD, the arterial baroreflex sensitivity (BRS) was significantly lower than in group C (4.7+/-0.8 versus 15.1+/-2.2 msec/mmHg, P<0.01). In both groups, cigarette smoking increased the plasma concentration of nicotine, systolic and diastolic BP, HR, and FVR significantly (P<0.01), but decreased FBF significantly (P<0.01). After smoking, MSNA was decreased significantly in group C (from 35.2+/-3.5 to 23.5+/-3.2 bursts/100 beats, P<0.01), but increased significantly in group CAD (from 48.8+/-5.4 to 57.3+/-5.5 bursts/100 beats, P<0.01). There was significant correlation between BRS and changes in MSNA (r= -0.62, P<0.01). Cigarette smoking increased MSNA in smokers with impaired baroreflex function. This demonstrates that cigarette smoking stimulates sympathetic nerve activity by both a direct peripheral effect and a centrally mediated effect.

  12. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters.

    PubMed

    Bradley, Sean P; Prendergast, Brian J

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5h interval of the light phase. Running wheel activity occurring within a 3h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce.

  13. Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors

    PubMed Central

    Lambot, Laurie; Chaves Rodriguez, Elena; Houtteman, Delphine; Li, Yuquing; Schiffmann, Serge N.; Gall, David

    2016-01-01

    The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic

  14. Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-03-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.

  15. Augmented TLR9-induced Btk activation in PIR-B–deficient B-1 cells provokes excessive autoantibody production and autoimmunity

    PubMed Central

    Kubo, Tomohiro; Uchida, Yuki; Watanabe, Yuko; Abe, Masahiro; Nakamura, Akira; Ono, Masao; Akira, Shizuo

    2009-01-01

    Pathogens are sensed by Toll-like receptors (TLRs) expressed in leukocytes in the innate immune system. However, excess stimulation of TLR pathways is supposed to be connected with provocation of autoimmunity. We show that paired immunoglobulin (Ig)-like receptor B (PIR-B), an immunoreceptor tyrosine-based inhibitory motif–harboring receptor for major histocompatibility class I molecules, on relatively primitive B cells, B-1 cells, suppresses TLR9 signaling via Bruton's tyrosine kinase (Btk) dephosphorylation, which leads to attenuated activation of nuclear factor κB p65RelA but not p38 or Erk, and blocks the production of natural IgM antibodies, including anti-IgG Fc autoantibodies, particularly rheumatoid factor. The autoantibody production in PIR-B–deficient (Pirb−/−) mice was further augmented in combination with the Faslpr mutation, which might be linked to the development of autoimmune glomerulonephritis. These results show the critical link between TLR9-mediated sensing and a simultaneously evoked, PIR-B–mediated inhibitory circuit with a Btk intersection in B-1 cells, and suggest a novel way toward preventing pathogenic natural autoantibody production. PMID:19687229

  16. Whole Abdominal Wall Segmentation using Augmented Active Shape Models (AASM) with Multi-Atlas Label Fusion and Level Set

    PubMed Central

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-01-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes. PMID:27127333

  17. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity.

    PubMed

    Yamamoto, S; Yamamoto, T; Kataoka, T; Kuramoto, E; Yano, O; Tokunaga, T

    1992-06-15

    Thirty-mer single-stranded oligonucleotides, with a sequence chosen from the known cDNA encoding the 64-kDa protein named Ag A or the MPB-70 protein of Mycobacterium bovis BCG and the human cellular proteins such as complement component 1 inhibitor and Ig rearranged lambda-chain, were used to dissect the capability to induce IFN and to augment NK cell activity of mouse spleen cells by coincubation in vitro. Three with the hexamer palindromic sequence as GACGTC were active, whereas two kinds of oligonucleotides with no palindrome were inactive. The oligonucleotides containing at least one of the different palindromic sequences showed no activity. When a portion of the sequence of the inactive oligonucleotides was substituted with either palindromic sequence of GACGTC, AGCGCT, or AACGTT, the oligonucleotide acquired the ability to augment NK activity. In contrast, the oligonucleotides substituted with another palindromic sequence such as ACCGGT was without effect. Furthermore, exchange of two neighboring mononucleotides within, but not outside, the active palindromic sequence destroyed the ability of the oligonucleotides to augment NK cell activity. Stimulation of spleen cells with the substituted oligonucleotide, A4a-AAC, induced production of significant amounts of IFN-alpha/beta and small amounts of IFN-gamma. Augmentation of NK activity of the cells by the oligonucleotide was ascribed to IFN-alpha/beta production. These results strongly suggest that the presence of the unique palindromic sequences, such as GACGTC, AGCGCT, and AACGTT, but not ACCGGT, is essential for the immunostimulatory activity of oligonucleotides.

  18. NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Kedzierska, Ewa; Nieoczym, Dorota; Wróbel, Andrzej; Fidecka, Sylwia; Pilc, Andrzej; Nowak, Gabriel

    2007-12-01

    Antidepressant-like activity of magnesium in forced swim test (FST) was demonstrated previously. Also, enhancement of such activity by joint administration of magnesium and antidepressants was shown. However, the mechanism(s) involved in such activity remain to be established. In the present study we examined the involvement of NMDA/glutamate pathway in the magnesium activity in FST in mice. In the present study we investigated the effect of NMDA agonists on magnesium-induced activity in FST and the influence of NMDA antagonists with sub-effective doses of magnesium in this test. Magnesium-induced antidepressant-like activity was antagonized by N-methyl-d-aspartic acid (NMDA). Moreover, low, ineffective doses of NMDA antagonists (CGP 37849, L-701,324, d-cycloserine, and MK-801) administered together with low and ineffective doses of magnesium exhibit significant reduction of immobility time in FST. The active in FST doses of examined agents did not alter the locomotor activity (with an exception of increased activity induced by MK-801). The present study indicates the involvement of NMDA/glutamate pathway in the antidepressant-like activity of magnesium in mouse FST and further suggests antidepressant properties of magnesium.

  19. Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity

    PubMed Central

    Ghosh, Arnab; Dogan, Yildirim; Moroz, Maxim; Holland, Amanda M.; Yim, Nury L.; Rao, Uttam K.; Young, Lauren F.; Tannenbaum, Daniel; Masih, Durva; Velardi, Enrico; Tsai, Jennifer J.; Jenq, Robert R.; Penack, Olaf; Hanash, Alan M.; Smith, Odette M.; Piersanti, Kelly; Lezcano, Cecilia; Murphy, George F.; Liu, Chen; Palomba, M. Lia; Sauer, Martin G.; Sadelain, Michel; Ponomarev, Vladimir; van den Brink, Marcel R.M.

    2013-01-01

    Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro–generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD. PMID:23676461

  20. Development and flight evaluation of an augmented stability active controls concept: Executive summary

    NASA Technical Reports Server (NTRS)

    Guinn, W. A.

    1982-01-01

    A pitch active control system (PACS) was developed and flight tested on a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. Discussions are given regarding piloted flight simulation and vehicle system simulation and vehicle system simulation tests that are performed to verify control laws and system operation prior to installation on the aircraft. Modifications to the basic aircraft included installation of the PACS, addition of a c.g. management system to provide a c.g. range from 25 to 39% mac, and downrigging of the geared elevator to provide the required nose down control authority for aft c.g. flight test conditions. Three pilots used the Cooper-Harper Rating Scale to judge flying qualities of the aircraft with PACS on and off. The handling qualities with the c.g. at 39% mac (41% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% mac (+15% stability margin) and PACS off.

  1. Development and flight evaluation of an augmented stability active controls concept with a small horizontal tail

    NASA Technical Reports Server (NTRS)

    Rising, J. J.; Kairys, A. A.; Maass, C. A.; Siegart, C. D.; Rakness, W. L.; Mijares, R. D.; King, R. W.; Peterson, R. S.; Hurley, S. R.; Wickson, D.

    1982-01-01

    A limited authority pitch active control system (PACS) was developed for a wide body jet transport (L-1011) with a flying horizontal stabilizer. Two dual channel digital computers and the associated software provide command signals to a dual channel series servo which controls the stabilizer power actuators. Input sensor signals to the computer are pitch rate, column-trim position, and dynamic pressure. Control laws are given for the PACS and the system architecture is defined. The piloted flight simulation and vehicle system simulation tests performed to verify control laws and system operation prior to installation on the aircraft are discussed. Modifications to the basic aircraft are described. Flying qualities of the aircraft with the PACS on and off were evaluated. Handling qualities for cruise and high speed flight conditions with the c.g. at 39% mac ( + 1% stability margin) and PACS operating were judged to be as good as the handling qualities with the c.g. at 25% (+15% stability margin) and PACS off.

  2. Augmentation by interleukin-18 of MHC-nonrestricted killer activity of human peripheral blood mononuclear cells in response to interleukin-12.

    PubMed

    Singh, S M; Yanagawa, H; Hanibuchi, M; Miki, T; Okamura, H; Sone, S

    2000-01-01

    Interleukin (IL)-18 is a novel cytokine with pleiotropic functions. In the present study, we examined the induction of the killer activity of peripheral blood mononuclear cells (MNC) against lung cancer cell lines upon treatment with IL-18 in combination with IL-12. Cytotoxic activity was measured by standard (51)Cr release assay. IL-18 (100 ng/ml) was found to significantly augment IL-12-induced killer activity in a MHC-nonrestricted manner against allogeneic NK-resistant Daudi cells and lung cancer cell lines: SBC-3, RERF-LC-AI and A549. IL-18 could augment IL-12-induced killer activity both at the optimal as well as suboptimal doses of the latter. However, IL-18 was found to have little effect on the killer activity of MNC induced by optimal or suboptimal dose of IL-2 or IL-15. Treatment of MNC with IL-18 in combination with IL-12 for a period of more than 4 days was observed to optimally induce the killer activity. As for induction of IFN-gamma production by MNC, IL-18 augmented that induced by IL-2 and IL-15, as well as that induced by IL-12. These results show the potential of IL-18 in combination with IL-12 for clinical application in treatment of cancer.

  3. Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension.

    PubMed

    Huggett, Robert J; Burns, Joanna; Mackintosh, Alan F; Mary, David A S G

    2004-12-01

    Hypertension is a major cardiovascular risk factor in the metabolic syndrome (MS) in which the presence of insulin resistance, glucose intolerance, abnormal lipoprotein metabolism, and central obesity all confer an increased risk. Because essential hypertension (EHT), insulinemia, and visceral fat are associated with sympathetic hyperactivity, which is itself known to increase cardiovascular risk, the aim of this study was to see if MS is a state of sympathetic nerve hyperactivity and if the additional presence of EHT intensifies this hyperactivity. In 69 closely matched subjects, comprising hypertensive MS (MS+EHT, 18), normotensive MS (MS-EHT, 17), hypertensives without MS (EHT, 16), and normotensive controls without MS (NC, 18), we measured resting muscle sympathetic nerve activity (MSNA) as assessed from multiunit discharges and from single units with defined vasoconstrictor properties (s-MSNA). The s-MSNA in MS+EHT (76+/-3.1 impulses/100 beats) was greater (at least P<0.01) than in MS-EHT (62+/-3.2 impulses/100 beats) and in EHT (60+/-2.3 impulses/100 beats), and all these were significantly greater (at least P<0.01) than in NC (46+/-2.7 impulse/100 beats). The multi-unit MSNA followed a similar trend. These findings suggest that MS is a state of sympathetic nerve hyperactivity and that the additional presence of hypertension further intensifies this hyperactivity. The degree of sympathetic hyperactivity seen in this study could be argued at least partly to contribute to the higher cardiovascular risk and metabolic abnormalities seen in MS+EHT patients.

  4. Inflammation and activity augment brain-derived neurotrophic factor peripheral release.

    PubMed

    Qiao, L Y; Shen, S; Liu, M; Xia, C; Kay, J C; Zhang, Q L

    2016-03-24

    Brain-derived neurotrophic factor (BDNF) release to nerve terminals in the central nervous system is crucial in synaptic transmission and neuronal plasticity. However, BDNF release peripherally from primary afferent neurons has not been investigated. In the present study, we show that BDNF is synthesized by primary afferent neurons located in the dorsal root ganglia (DRG) in rat, and releases to spinal nerve terminals in response to depolarization or visceral inflammation. In two-compartmented culture that separates DRG neuronal cell bodies and spinal nerve terminals, application of 50mM K(+) to either the nerve terminal or the cell body evokes BDNF release to the terminal compartment. Inflammatory stimulation of the visceral organ (e.g. the urinary bladder) also facilitates an increase in spontaneous BDNF release from the primary afferent neurons to the axonal terminals. In the inflamed viscera, we show that BDNF immunoreactivity is increased in nerve fibers that are immuno-positive to the neuronal marker PGP9.5. Both BDNF and pro-BDNF levels are increased, however, pro-BDNF immunoreactivity is not expressed in PGP9.5-positive nerve-fiber-like structures. Determination of receptor profiles in the inflamed bladder demonstrates that BDNF high affinity receptor TrkB and general receptor p75 expression levels are elevated, with an increased level of TrkB tyrosine phosphorylation/activity. These results suggest a possibility of pro-proliferative effect in the inflamed bladder. Consistently we show that the proliferation marker Ki67 expression levels are enhanced in the inflamed organ. Our results imply that in vivo BDNF release to the peripheral organ is an important event in neurogenic inflammatory state.

  5. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    PubMed

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  6. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis

    PubMed Central

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H. Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis. PMID:28141831

  7. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects.

    PubMed

    Guilarte, Tomás R; Chen, Ming-Kai

    2007-11-01

    Humans exposed to excess levels of manganese (Mn(2+)) express psychiatric problems and deficits in attention and learning and memory. However, there is a paucity of knowledge on molecular mechanisms by which Mn(2+) produces such effects. We now report that Mn(2+) is a potent inhibitor of [(3)H]-MK-801 binding to the NMDA receptor channel in rat neuronal membrane preparations. The inhibition of [(3)H]-MK-801 to the NMDA receptor channel by Mn(2+) was activity-dependent since Mn(2+) was a more potent inhibitor in the presence of the NMDA receptor co-agonists glutamate and glycine (K(i)=35.9+/-3.1 microM) than in their absence (K(i)=157.1+/-6.5 microM). We also show that Mn(2+) is a NMDA receptor channel blocker since its inhibition of [(3)H]-MK-801 binding to the NMDA receptor channel is competitive in nature. That is, Mn(2+) significantly increased the affinity constant (K(d)) with no significant effect on the maximal number of [(3)H]-MK-801 binding sites (B(max)). Under stimulating conditions, Mn(2+) was equipotent in inhibiting [(3)H]-MK-801 binding to NMDA receptors expressed in neuronal membrane preparations from different brain regions. However, under basal, non-stimulated conditions, Mn(2+) was more potent in inhibiting NMDA receptors in the cerebellum than other brain regions. We have previously shown that chronic Mn(2+) exposure in non-human primates increases Cu(2+), but not zinc or iron concentrations in the basal ganglia [Guilarte TR, Chen M-K, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 2006a;202:381-90]. Therefore, we also tested the inhibitory effects of Cu(2+) on [(3)H]-MK-801 binding to the NMDA receptor channel. The data shows that Cu(2+) in the presence of glutamate and glycine is a more potent inhibitor of the NMDA receptor than Mn(2

  8. Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting.

    PubMed

    Hama, A T; Unnerstall, J R; Siegan, J B; Sagen, J

    1995-07-31

    Excessive activation of N-methyl-D-aspartate (NMDA) receptors in the spinal cord consequent to peripheral injury has been implicated in the initiation of neuropathologic events leading to a state of chronic hyperexcitability and persistence of exaggerated sensory processing. In other CNS disease or injury states, NMDA-mediated neurotoxic damage is associated with a loss of NMDA receptors, and outcome may be improved by agents reducing NMDA activation. Previous findings in our laboratory have demonstrated that the transplantation of adrenal medullary tissue into the spinal subarachnoid space can alleviate sensory abnormalities and reduce the induction of a putative nitric oxide synthase consequent to peripheral nerve injury. In order to determine changes in NMDA receptor expression in the spinal cord following peripheral nerve injury and adrenal medullary grafting, NMDA receptor binding using a high-affinity competitive NMDA receptor antagonist, CGP-39653, and NMDAR1 subunit distribution using immunocytochemistry were investigated. Two weeks following peripheral nerve injury by loose ligation of the right sciatic nerve, either adrenal medullary or striated muscle (control) tissue pieces were implanted in the spinal subarachnoid space. Binding studies revealed a marked reduction in [3H]CGP-39653 binding at L4-L5 levels ipsilateral to peripheral nerve injury in control transplanted animals. In contrast, NMDA binding was normalized in adrenal medullary grafted animals. In addition, NMDAR1 immunoreactivity was reduced in both the dorsal horn neuropil and motor neurons of the ventral horn in animals with peripheral nerve injury, while levels in adrenal medullary grafted animals appeared similar to intact controls. These results suggest that adrenal medullary transplants reduce abnormal sensory processing resulting from peripheral injury by intervening in the spinal NMDA-excitotoxicity cascade.

  9. Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice

    PubMed Central

    Jastrzębska, Kamila; Walczak, Magdalena; Cieślak, Przemysław Eligiusz; Szumiec, Łukasz; Turbasa, Mateusz; Engblom, David; Błasiak, Tomasz; Parkitna, Jan Rodriguez

    2016-01-01

    The role of changes in dopamine neuronal activity during the development of symptoms in affective disorders remains controversial. Here, we show that inactivation of NMDA receptors on dopaminergic neurons in adult mice led to the development of affective disorder-like symptoms. The loss of NMDA receptors altered activity and caused complete NMDA-insensitivity in dopamine-like neurons. Mutant mice exhibited increased immobility in the forced swim test and a decrease in social interactions. Mutation also led to reduced saccharin intake, however the preference of sweet taste was not significantly decreased. Additionally, we found that while mutant mice were slower to learn instrumental tasks, they were able to reach the same performance levels, had normal sensitivity to feedback and showed similar motivation to exert effort as control animals. Taken together these results show that inducing the loss of NMDA receptor-dependent activity in dopamine neurons is associated with development of affective disorder-like symptoms. PMID:27853270

  10. The NEDD8-activating enzyme inhibitor MLN4924 disrupts nucleotide metabolism and augments the efficacy of cytarabine

    PubMed Central

    Nawrocki, Steffan T.; Kelly, Kevin R.; Smith, Peter G.; Keaton, Mignon; Carraway, Hetty; Sekeres, Mikkael A.; Maciejewski, Jaroslaw P.; Carew, Jennifer S.

    2014-01-01

    Purpose New therapies are urgently needed for patients with acute myeloid leukemia (AML). The novel NEDDylation inhibitor MLN4924 (pevonedistat) has demonstrated significant preclinical anti-leukemic activity and preliminary efficacy in patients with AML in a Phase I trial. Based on its anti-myeloid and DNA-damaging properties, we investigated the ability of MLN4924 to augment conventional cytarabine (ara-C) therapy. Experimental Design The effects of MLN4924/ara-C on viability, clonogenic survival, apoptosis, DNA damage and relevant pharmacodynamic targets were determined. The efficacy and pharmacodynamics of MLN4924/ara-C were assessed in an AML xenograft model. Results Co-treatment of AML cell lines and primary patient specimens with MLN4924 and ara-C led to diminished clonogenic survival, increased apoptosis, and synergistic levels of DNA damage. RNA interference demonstrated that stabilization of CDT-1, an event previously shown to mediate the DNA damaging effects of MLN4924, was not a key regulator of sensitivity to the MLN4924/ara-C combination. Global metabolic profiling revealed that MLN4924 disrupts nucleotide metabolism and depletes intracellular nucleotide pools in AML cells. Subsequent experiments showed that MLN4924 promoted increased incorporation of ara-C into the DNA of AML cells. This effect as well as the therapeutic benefit of the MLN4924/ara-C combination were antagonized by supplementation with the nucleotide building block ribose. Co-administration of MLN4924 and ara-C to mice bearing FLT3-ITD+ AML xenografts stably inhibited disease progression and increased DNA damage in vivo. Conclusions Our findings provide strong rationale for clinical investigation of the MLN4924/ara-C combination and establish a new link between therapeutic inhibition of NEDDylation and alterations in nucleotide metabolism. PMID:25388161

  11. Histamine H3-receptor activation augments voltage-dependent Ca2+ current via GTP hydrolysis in rabbit saphenous artery.

    PubMed

    Oike, M; Kitamura, K; Kuriyama, H

    1992-03-01

    1. Actions of histamine on the voltage-dependent Ba2+(Ca2+) currents (IBa, ICa) were investigated using the whole-cell patch-clamp technique on dispersed smooth muscle cells from the rabbit saphenous artery. 2. Histamine (half-maximal dose, EC50 = 530 nM) augmented the IBa evoked by a brief depolarizing pulse (100 ms duration; to +10 mV from a holding potential of -80 mV) in a concentration-dependent manner. The maximum augmentation was obtained with 30 microM-histamine (1.29 times control). This augmentation of IBa was inhibited by the H3-antagonist, thioperamide (Ki = 30 nM, slope of the Schild plot = 1.0), but not by H1- or H2-antagonists (mepyramine or diphenhydramine, or cimetidine, respectively). 3. An H3-agonist, R alpha-methylhistamine (EC50 = 93 nM), also augmented IBa in a concentration-dependent manner at a holding potential of -80 mV and the maximum augmentation (1.25 times control) was obtained with 10 microM. This augmentation was also inhibited by thioperamide, but not by the above H1- and H2- antagonists. 4. Intracellularly applied 500 microM-guanosine 5'-triphosphate (GTP) enhanced, but 1 mM-guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) abolished, the histamine-induced augmentation of IBa. When one of the non-hydrolysable GTP analogues, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S; greater than 5 microM), guanylyl-imidodiphosphate (GMP-PNP; 200 microM) or guanylyl (beta, gamma-methylene)-diphosphonate (GMP-PCP; 1 mM) was intracellularly applied, the IBa amplitude evoked without the application of histamine was not affected, but the excitatory effect of histamine on IBa was reversed to an inhibition. Pre-treatment with pertussis toxin (PTX: 300 ng/ml and 3 micrograms/ml) did not modify the histamine-induced responses in the absence or presence of GTP gamma S. 5. 4 beta-Phorbol 12,13-dibutylate (PDBu) increased the amplitude of IBa. However, this action of PDBu was not enhanced by the application of GTP (500 microM) in the pipette, but

  12. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  13. Novel NMDA Receptor Modulators: An Update

    PubMed Central

    Santangelo, Rose M.; Acker, Timothy M.; Zimmerman, Sommer S.; Katzman, Brooke M.; Strong, Katie L.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Summary Introduction The NMDA receptor is a ligand-gated ion channel that plays a critical role in higher level brain processes and has been implicated in a range of neurological and psychiatric conditions. Although initial studies for the use of NMDA receptor antagonists in neuroprotection were unsuccessful, more recently, NMDA receptor antagonists have shown clinical promise in other indications such as Alzheimer’s disease, Parkinson’s disease, pain and depression. Based on the clinical observations and more recent insights into receptor pharmacology, new modulatory approaches are beginning to emerge, with potential therapeutic benefit. Areas Covered The article covers the known pharmacology and important features regarding NMDA receptors and their function. A discussion of pre-clinical and clinical relevance is included, as well. The subsequent patent literature review highlights the current state of the art targeting the receptor since the last review in 2010. Expert Opinion The complex nature of the NMDA receptor structure and function is becoming better understood. As knowledge about this receptor increases, it opens up new opportunities for targeting the receptor for many therapeutic indications. New strategies and advances in older technologies will need to be further developed before clinical success can be achieved. First-in-class potentiators and subunit-selective agents form the basis for most new strategies, complemented by efforts to limit off-target liability and fine-tune on-target properties. PMID:23009122

  14. NMDA Receptor Antagonists for Treatment of Depression

    PubMed Central

    Ates-Alagoz, Zeynep; Adejare, Adeboye

    2013-01-01

    Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA) receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker), and CGP 37849 (an NMDA receptor antagonist) have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery. PMID:24276119

  15. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  16. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  17. Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release

    PubMed Central

    Nisticò, Robert; Florenzano, Fulvio; Mango, Dalila; Ferraina, Caterina; Grilli, Massimo; Di Prisco, Silvia; Nobili, Annalisa; Saccucci, Stefania; D'Amelio, Marcello; Morbin, Michela; Marchi, Mario; Mercuri, Nicola B.; Davis, Roger J.; Pittaluga, Anna; Feligioni, Marco

    2015-01-01

    Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions. PMID:25762148

  18. HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function.

    PubMed

    Liu, Xuefeng; Roberts, Jeffrey; Dakic, Aleksandra; Zhang, Yiyu; Schlegel, Richard

    2008-06-05

    The E6 and E7 proteins of high-risk HPVs are both required for the immortalization of primary human keratinocytes and the maintenance of the malignant phenotype of HPV-positive cancer cell lines. Our previous studies have shown that E6 protein binds Myc protein and that both E6 and Myc associate with and cooperatively activate the hTERT promoter, thereby increasing cellular telomerase activity. In this study, we evaluated the role of E7 in the maintenance and activation of telomerase in immortalized and tumorigenic cells. siRNA knockdown of either E6 or E7 (or both) in HPV-immortalized cells or an HPV-positive cancer cell line reduced hTERT transcription and telomerase activity. Since telomerase was inhibited by E7 siRNA in cells that independently expressed the E6 and E7 genes, our results reveal an independent role for E7 in the maintenance of telomerase activity. However, E7 alone was insufficient to increase endogenous hTERT mRNA or telomerase activity, although it significantly augmented E6-induced hTERT transcription and telomerase activity. To further explore this apparent E7-induced promoter augmentation, we analyzed an exogenous hTERT core promoter in transduced keratinocytes. E7 alone induced the wt hTERT promoter and augmented E6-induced hTERT promoter activity. Mutation of the E2F site in the hTERT promoter abrogated the ability of E7 to induce the hTERT promoter or to enhance the ability of E6 to induce the promoter. Correspondingly, keratinocytes expressing E6 and a mutant E7 (defective for binding pRb pocket proteins) showed lower telomerase activity than cells expressing wt E6 and wt E7. Thus, HPV E7 plays a role in the maintenance of telomerase activity in stable cell lines and augments acute, E6-induced hTERT promoter activity.

  19. Triheteromeric NMDA Receptors at Hippocampal Synapses

    PubMed Central

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  20. Aloe-emodin suppressed NMDA-induced apoptosis of retinal ganglion cells through regulation of ERK phosphorylation.

    PubMed

    Lin, Hui-Ju; Chao, Pei-Dawn Lee; Huang, Shiuan-Yi; Wan, Lai; Wu, Chen-Ju; Tsai, Fuu-Jen

    2007-11-01

    A high concentration of glutamate in the vitreous body and optic nerves of the eyes activates N-methyl-D-aspartate (NMDA) receptors and is toxic to retina ganglion cells (RGCs) in glaucomatous patients. Aloe-emodin sulfates/glucuronides (s/g), the major metabolites of aloe-emodin, was found to be effective in decreasing NMDA-induced apoptosis in RGCs. In order to elucidate the mechanisms, an in vitro optic neuropathy model adding NMDA to N18 RGCs was used in this study. The phosphorylation level of extra-cellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 kinase (cytokines-suppressive antiinflammatory drug binding protein kinase) were measured by western blotting and luciferase reporter assay. The results showed that aloe-emodin metabolites significantly decreased the activation of three major mitogen-activated protein (MAP) kinase pathways and the activation of downstream genes in nucleus induced by NMDA, which were verified by the addition of the respective inhibitors. Comparing the effect of the inhibitors of the three MAP kinase pathways, the ERK pathway was found to be the major route of aloe-emodin metabolites in decreasing the apoptosis of NMDA-treated RGCs. Besides, cfos rather then cjun was the target downstream gene. Aloe-emodin emodin metabolites could regulate the phosphorylation of ERK kinases and it was a promising candidate for NMDA-induced apoptosis of RGCs.

  1. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors.

    PubMed

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-01-01

    Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 μg/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat).

  2. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond

    PubMed Central

    Balu, Darrick T; Coyle, Joseph T

    2016-01-01

    Schizophrenia is a severe psychiatric illness that is characterized by reduced cortical connectivity, for which the underlying biological and genetic causes are not well understood. Although the currently approved antipsychotic drug treatments, which primarily modulate dopaminergic function, are effective at reducing positive symptoms (i.e. delusions and hallucinations), they do little to improve the disabling cognitive and negative (i.e. anhedonia) symptoms of patients with schizophrenia. This review details the recent genetic and neurobiological findings that link N-methyl-d-aspartate receptor (NMDAR) hypofunction to the etiology of schizophrenia. It also highlights potential treatment strategies that augment NMDA receptor function to treat the synaptic deficits and cognitive impairments. PMID:25540902

  3. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration

    PubMed Central

    Mantuano, Elisabetta; Lam, Michael S.; Shibayama, Masataka; Campana, W. Marie; Gonias, Steven L.

    2015-01-01

    ABSTRACT NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  4. Scaffolding protein Homer1a protects against NMDA-induced neuronal injury

    PubMed Central

    Wang, Y; Rao, W; Zhang, C; Zhang, C; Liu, M-d; Han, F; Yao, L-b; Han, H; Luo, P; Su, N; Fei, Z

    2015-01-01

    Excessive N-methyl-D-aspartate receptor (NMDAR) activation and the resulting activation of neuronal nitric oxide synthase (nNOS) cause neuronal injury. Homer1b/c facilitates NMDAR-PSD95-nNOS complex interactions, and Homer1a is a negative competitor of Homer1b/c. We report that Homer1a was both upregulated by and protected against NMDA-induced neuronal injury in vitro and in vivo. The neuroprotective activity of Homer1a was associated with NMDA-induced Ca2+ influx, oxidative stress and the resultant downstream signaling activation. Additionally, we found that Homer1a functionally regulated NMDAR channel properties in neurons, but did not regulate recombinant NR1/NR2B receptors in HEK293 cells. Furthermore, we found that Homer1a detached the physical links among NR2B, PSD95 and nNOS and reduced the membrane distribution of NMDAR. NMDA-induced neuronal injury was more severe in Homer1a homozygous knockout mice (KO, Homer1a−/−) when compared with NMDA-induced neuronal injury in wild-type mice (WT, Homer1a+/+). Additionally, Homer1a overexpression in the cortex of Homer1a−/− mice alleviated NMDA-induced neuronal injury. These findings suggest that Homer1a may be a key neuroprotective endogenous molecule that protects against NMDA-induced neuronal injury by disassembling NR2B-PSD95-nNOS complexes and reducing the membrane distribution of NMDARs. PMID:26247728

  5. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    ERIC Educational Resources Information Center

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  6. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin.

    PubMed

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; Alvares, Lucas de Oliveira

    2016-03-07

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca(2+) channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca(2+) influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time.

  7. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin

    PubMed Central

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; de Oliveira Alvares, Lucas

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time. PMID:26947131

  8. Altered Excitatory-Inhibitory Balance in the NMDA-Hypofunction Model of Schizophrenia

    PubMed Central

    Kehrer, Colin; Maziashvili, Nino; Dugladze, Tamar; Gloveli, Tengis

    2008-01-01

    Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDA-receptor subtype in the aetiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation–inhibition (E/I) balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed. PMID:18946539

  9. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors.

    PubMed Central

    D'Angelo, E; De Filippi, G; Rossi, P; Taglietti, V

    1995-01-01

    1. Current-clamp recordings were made in whole-cell patch-clamp configuration from ninety-one granule cells in parasagittal cerebellar slices obtained from 21- to 31-day-old rats. Recordings were performed at 30 degrees C. 2. Resting membrane potential was -58 +/- 6 mV (n = 43). The membrane voltage response to step current injection showed inward rectification consistent with increasing input resistance during membrane depolarization. Over -35 +/- 7 mV (n = 14) repetitive firing with little or no adaptation was activated. Spike frequency increased nearly linearly with injected current. 3. Unitary EPSPs obtained by stimulating the mossy fibre bundle had an amplitude of 11.4 +/- 2.1 mV (n = 22, holding potential = -75 mV). Synchronous activation of greater than one to two mossy fibres was needed to elicit action potentials. Antidromic stimulation elicited antidromic spikes and also EPSPs, presumably through a mossy fibre 'axon reflex'. 4. EPSPs were brought about by NMDA and non-NMDA receptor activation, accounting for about 70 and 30%, respectively, of peak amplitude at the holding potential of -70 mV. The EPSP decay conformed to passive membrane discharge after blocking the NMDA receptors. 5. No appreciable correlation was found between the time-to-peak and decay time constant of the EPSPs, consistent with the compact electrotonic structure of these neurons. 6. During membrane depolarization EPSP amplitude increased transiently, due to both a voltage-dependent increase of the NMDA component and inward rectification. In addition, EPSPs slowed down due to a slowdown of the NMDA component. 7. Temporal summation during high-frequency stimulation was sustained by NMDA receptors, whose contribution to depolarization tended to prevail over that of non-NMDA receptors during the trains. A block of the NMDA receptors resulted in reduced depolarization and output spike frequency. 8. This study, as well as extending previous knowledge to the intracellular level in vivo

  10. Activity-induced synaptic delivery of the GluN2A-containing NMDA receptor is dependent on endoplasmic reticulum chaperone Bip and involved in fear memory

    PubMed Central

    Zhang, Xiao-min; Yan, Xun-yi; Zhang, Bin; Yang, Qian; Ye, Mao; Cao, Wei; Qiang, Wen-bin; Zhu, Li-jun; Du, Yong-lan; Xu, Xing-xing; Wang, Jia-sheng; Xu, Fei; Lu, Wei; Qiu, Shuang; Yang, Wei; Luo, Jian-hong

    2015-01-01

    The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca2+-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation. PMID:26088419

  11. Fast cortical oscillation after thalamic degeneration: pivotal role of NMDA receptor.

    PubMed

    Kyuhou, Shin-ichi; Gemba, Hisae

    2007-04-27

    We examined electrophysiological and molecular changes of the thalamocortical system after thalamic degeneration in Purkinje cell degeneration (pcd) mice. In pcd mice, neurons in specific thalamic nuclei including the ventral medial geniculate nucleus began to degenerate around postnatal day 50, whereas the visual thalamic nucleus and nonspecific thalamic nuclei remained almost intact. In association with the morphological changes, auditory evoked potentials in the primary auditory cortex (AC) began to decrease gradually. Fast Fourier transform analysis of spontaneous cortical field potentials revealed that fast oscillation (FO) around 25 Hz occurred in the AC but not in the visual cortex. Quantitative mRNA analysis demonstrated that expression of the N-methyl-D-aspartate (NMDA) receptor was up-regulated in the AC but not in the visual cortex. Systemic administration of an NMDA antagonist abolished the FO in the AC. These results indicate that increased NMDA activity may cause the FO in the AC of pcd mice.

  12. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  13. Reconsolidation of Reminder-Induced Amnesia: Role of NMDA and AMPA Glutamate Receptors.

    PubMed

    Nikitin, V P; Kozyrev, S A; Solntseva, S V

    2015-11-01

    We studied the role of glutamate receptors and reminder in the mechanisms of amnesia maintenance caused by disruption of conditioned food aversion reconsolidation with an antagonist of NMDA glutamate receptor in snails. At the early stage of amnesia (day 3 after induction), injection or NMDA of AMPA glutamate receptor antagonists prior to reminder (presentation of the conditioned food stimulus) led to memory recovery. Reminder alone or injection of antagonists without reminder or after reminder was ineffective. At the late stage of amnesia (day 10), antagonists/reminder had no effect on amnesia maintenance. It was hypothesized that reminder at the early stage of amnesia led to reactivation and reconsolidation of the molecular processes of amnesia including activation NMDA and AMPA glutamate receptors. Injection of antagonists of these receptors prior to reminder led to disruption of reactivation/reconsolidation of amnesia and recovery of the conditioned food aversion memory.

  14. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

    PubMed Central

    Chen, L; Gu, Y; Huang, L Y

    1995-01-01

    1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. PMID:7537820

  15. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers.

    PubMed

    Mexal, S; Frank, M; Berger, R; Adams, C E; Ross, R G; Freedman, R; Leonard, S

    2005-10-03

    Nicotine is known to induce the release of multiple neurotransmitters, including glutamate and dopamine, through activation of nicotinic receptors. Gene expression in the N-methyl-d-aspartate postsynaptic density (NMDA-PSD), as well as other functional groups, was compared in postmortem hippocampus of schizophrenic and nonmentally ill smokers and nonsmokers utilizing a microarray and quantitative RT-PCR approach. The expression of 277 genes was significantly changed between all smokers and nonsmokers. Specific gene groups, most notably genes expressed in the NMDA-PSD, were prevalent among these transcripts. Analysis of the interaction between smoking and schizophrenia identified several genes in the NMDA-PSD that were differentially affected by smoking in patients. The present findings suggest that smoking may differentially modulate glutamatergic function in schizophrenic patients and control subjects. The biological mechanisms underlying chronic tobacco use are likely to differ substantially between these two groups.

  16. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  17. Anti-NMDA Receptor Encephalitis and Vaccination

    PubMed Central

    Wang, Hsiuying

    2017-01-01

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint. PMID:28106787

  18. Anti-NMDA Receptor Encephalitis and Vaccination.

    PubMed

    Wang, Hsiuying

    2017-01-18

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint.

  19. Modulation of the NMDA receptor by polyamines

    SciTech Connect

    Williams, K.; Romano, C.; Dichter, M.A.; Molinoff, P.B. )

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.

  20. Peripheral NMDA and non-NMDA receptors contribute to nociception: an electrophysiological study.

    PubMed

    Wang, C; Wang, Y; Zhao, Z

    2000-05-01

    The present study investigated the effects of peripheral administration of N-methy-D-aspartate (NMDA) and non-NMDA receptor antagonists on C-fiber evoked responses of the spinal dorsal horn neurons in the spinalized rats. When DL-2-amino-5-phosphonovaleric acid (AP5) (10 mM, 1 mM, 0.1 mM, 20 microl) or 6, 7-dinitroquinoxaline-2, 3-dione (DNQX) (1 mM, 0.1 mM, 0.01 mM, 20 microl) was subcutaneously injected into the receptive field on the hindplantar region, C-fiber evoked responses of the dorsal horn neurons were profoundly inhibited in a dose-dependent manner. Three hours after subcutaneous injection of carrageenan into the ipsilateral hindpaw, NMDA and non-NMDA antagonist-induced inhibition of C-fiber evoked responses was more potent than that in the normal rat (Student's t-test, p < 0.05). In the carragenan-treated rats, DNQX-induced inhibition was stronger than AP-5-induced one (Student's t-test, p < 0.05). The results suggest that peripheral NMDA and non-NMDA receptors are involved in mediating excitation of nociceptors.

  1. Embedding Augmentative Communication within Early Childhood Classrooms.

    ERIC Educational Resources Information Center

    DiCarlo, Cynthia; Banajee, Meher; Stricklin, Sarintha Buras

    2000-01-01

    This article first describes various augmentative communication systems including sign language, picture symbols, and voice output communication devices. It then explains ways to embed augmentative communication within four types of early childhood classroom activities: (1) special or planned activities, (2) meal time, (3) circle time, and (4)…

  2. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    PubMed

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p < 0.05). The MD/UT ratio was significantly higher during condition 3 than during conditions 1 and 2, and higher during condition 2 than during condition 1 (p < 0.05). Shoulder abductor strength was significantly higher during condition 3 than during condition 1 (p < 0.05). These findings suggest that augmented trunk stabilization with the ECS may be advantageous with regard to reducing the compensatory muscle effort of the UT during isometric shoulder abduction and increasing shoulder abductor strength.

  3. Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones

    PubMed Central

    Peoples, Robert W; Li, Chaoying

    1998-01-01

    The action of suramin and reactive blue 2 on N-methyl-D-aspartate (NMDA)-activated ion current was studied in mouse hippocampal neurones in culture by use of whole-cell patch-clamp recording.Suramin and reactive blue 2 inhibited steady-state current activated by 25 μM NMDA with IC50 values of 68 and 11 μM, respectively.Reactive blue 2 produced a gradual decline of NMDA-activated current to a steady-state, but this slow onset was not an indication of use-dependence, as it could be eliminated by exposure to reactive blue 2 before NMDA application. In addition, NMDA-activated current recovered completely from inhibition by reactive blue 2 in the absence of agonist.The slow onset of inhibition by reactive blue 2 was not apparently due to an action at an intracellular site, as inclusion of 250 μM reactive blue 2 in the recording pipette did not alter inhibition by 25 μM reactive blue 2 applied externally.Reactive blue 2 and suramin inhibited NMDA-gated channels in a voltage-independent manner.Reactive blue 2, 25 μM, decreased the maximal response to NMDA from 1441 to 598 pA without changing its EC50. In contrast, 75 μM suramin increased the EC50 for NMDA from 13 to 35 μM, and decreased the maximal response to NMDA from 1822 to 1498 pA. Schild analysis of suramin inhibition of NMDA-activated current yielded a nonlinear plot.Both agents decreased the maximal response to glycine without altering its EC50.Suramin and reactive blue 2 appear to inhibit NMDA receptor-channels in a manner that is noncompetitive with respect to both NMDA and glycine. However, inhibition by suramin differed from that by reactive blue 2, in that suramin significantly increased the EC50 of NMDA. PMID:9641559

  4. Use of ultrasound-activated resorbable poly-D-L-lactide pins (SonicPins) and foil panels (Resorb-X) for horizontal bone augmentation of the maxillary and mandibular alveolar ridges.

    PubMed

    Burger, Brenton W

    2010-07-01

    Horizontal bone augmentation of the maxillary and mandibular alveolar ridges has been conventionally performed using mini titanium alloy screws. The titanium alloy screws are used to fixate corticocancellous block grafts to the recipient site or for tenting the mucoperiosteum to retain particulate bone grafts. Nonresorbable guided tissue regenerative membranes reinforced with titanium have also been developed to use with particulate bone grafts to augment alveolar ridge defects. This report demonstrates the use of resorbable ultrasound-activated pins and resorbable foil panels developed by KLS Martin for augmenting the alveolar ridges with particulate bone grafts.

  5. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    SciTech Connect

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  6. The Impact of NMDA Receptor Blockade on Human Working Memory-Related Prefrontal Function and Connectivity

    PubMed Central

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-01-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments. PMID:23856634

  7. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.

    PubMed

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-12-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments.

  8. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling.

    PubMed

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-09-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory-inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis.

  9. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus.

    PubMed

    Kervern, Myriam; Silvestre de Ferron, Benoît; Alaux-Cantin, Stéphanie; Fedorenko, Olena; Antol, Johann; Naassila, Mickael; Pierrefiche, Olivier

    2015-08-01

    Irreversible cognitive deficits induced by ethanol exposure during fetal life have been ascribed to a lower NMDA-dependent synaptic long-term potentiation (LTP) in the hippocampus. Whether NMDA-dependent long-term depression (LTD) may also play a critical role in those deficits remains unknown. Here, we show that in vitro LTD induced with paired-pulse low frequency stimulation is enhanced in CA1 hippocampus field of young adult rats exposed to ethanol during brain development. Furthermore, single pulse low frequency stimulation, ineffective at this age (LFS600), induced LTD after ethanol exposure accompanied with a stronger response than controls during LFS600, thus revealing an aberrant form of activity-dependent plasticity at this age. Blocking NMDA receptor or GluN2B containing NMDA receptor prevented both the stronger response during LFS600 and LTD whereas Zinc, an antagonist of GluN2A containing NMDA receptor, was ineffective on both responses. In addition, LFS600-induced LTD was revealed in controls only with a reduced-Mg(2+) medium. In whole dissected hippocampus CA1 field, perinatal ethanol exposure increased GluN2B subunit expression in the synaptic compartment whereas GluN2A was unaltered. Using pharmacological tools, we suggest that LFS600 LTD was of synaptic origin. Altogether, we describe a new mechanism by which ethanol exposure during fetal life induces a long-term alteration of synaptic plasticity involving NMDA receptors, leading to an aberrant LTD. We suggest this effect of ethanol may reflect a delayed maturation of the synapse and that aberrant LTD may also participates to long-lasting cognitive deficits in fetal alcohol spectrum disorder.

  10. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy.

    PubMed

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A; Zhang, Peng; Dubel, Steve J; Perez-Reyes, Edward; Snutch, Terrance P; Stornetta, Ruth L; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P; Zhu, J Julius

    2015-07-15

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.

  11. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

    PubMed Central

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A.; Zhang, Peng; Dubel, Steve J.; Perez-Reyes, Edward; Snutch, Terrance P.; Stornetta, Ruth L.; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M.; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P.; Zhu, J. Julius

    2015-01-01

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  12. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress.

    PubMed

    Zhu, Xinjian; Dong, Jingde; Shen, Kai; Bai, Ying; Zhang, Yuan; Lv, Xuan; Chao, Jie; Yao, Honghong

    2015-05-01

    The N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of several neurological diseases, including epilepsy. The present study investigated the effect of NMDA receptor NR2B subunits on pentylenetetrazole (PTZ)-kindling-induced pathological and biochemical events in mice. Our results showed that PTZ-kindling up-regulates the expression of NMDA receptor NR2B subunits in the hippocampus and that kindled mice were characterized by significant astrocytosis and neuron loss in the hippocampus. Oxidative stress, including excessive malondialdehyde (MDA) production and decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were detected in the hippocampus after the mice were fully kindled. Additionally, expression of brain-derived neurotrophic factor (BDNF) in the hippocampus was found to be up-regulated in PTZ-kindled mice. However, selectively blocking NMDA receptor NR2B subunits by ifenprodil significantly suppressed PTZ-kindling-induced hippocampal astrocytosis, oxidative stress and neuron loss. Furthermore, blocking NMDA receptor NR2B subunits also abolished PTZ-kindling-induced BDNF expression. These results indicate that NMDA receptor NR2B subunits contribute to epilepsy-associated pathological and biochemical events, including hippocampal astrocytosis, oxidative stress and neuron loss, and these events might be correlated with up-regulation of BDNF expression.

  13. Augmentation of cognitive behavioral therapy with pharmacotherapy.

    PubMed

    Ganasen, K A; Ipser, J C; Stein, D J

    2010-09-01

    There has long been interest in combining pharmacotherapy with psychotherapy, including cognitive behavioral therapy (CBT). More recently, basic research on fear extinction has led to interest in augmentation of CBT with the N-methyl Daspartate (NMDA) glutamate receptor partial agonist D-cycloserine (DCS) for anxiety disorders. In this article, the literature on clinical trials that have combined pharmacotherapy and CBT is briefly reviewed, focusing particularly on the anxiety disorders. The literature on CBT and DCS is then systematically reviewed. A series of randomized placebo-controlled trials on panic disorder, obsessive-compulsive disorder, social anxiety disorder, and specific phobia suggest that low dose DCS before therapy sessions may be more effective compared with CBT alone in certain anxiety disorders. The strong translational foundation of this work is compelling, and the positive preliminary data gathered so far encourage further work. Issues for future research include delineating optimal dosing, and demonstrating effectiveness in real-world settings.

  14. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    PubMed

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti

  15. A kinetic model of NMDA ion channel under varying noise

    NASA Astrophysics Data System (ADS)

    Wang, Rubin; Chen, Hao; Zhang, Zhikang

    2004-05-01

    It is well known that when transmitters are applied to the postsynaptic membrane, the resulting depolarization is noisy that is due to the random opening and closing of the ion channels activated by the transmitters[1]. In other words, the energy of noise is associated with changes in ion channels. On the base of these ideas, we explore a model of relationship between NMDA (n-methyl-D-aspartate) ion channels and LTP (long-term synaptic potentiation). We have proved that NMDA ion channel and calcium-dependent protein kinases, which are the triggers for the inducement of LTP, could be regarded as "molecular machines". In this system all of these molecules require energy and the energy of the system is supplied from the random motion of water molecules generated through heat energy of ATP hydrolysis[2]. So the appropriate framework to describe them comes from bioenergetics. Models of LTP previously reported are all on the macroscopic level [3-7]. Instead, we research a model at the molecular level by applying energy parameters [8].

  16. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors.

    PubMed

    Provencio, Jose Javier; Swank, Valerie; Lu, Haiyan; Brunet, Sylvain; Baltan, Selva; Khapre, Rohini V; Seerapu, Himabindu; Kokiko-Cochran, Olga N; Lamb, Bruce T; Ransohoff, Richard M

    2016-05-01

    Cognitive deficits after aneurysmal subarachnoid hemorrhage (SAH) are common and disabling. Patients who experience delayed deterioration associated with vasospasm are likely to have cognitive deficits, particularly problems with executive function, verbal and spatial memory. Here, we report neurophysiological and pathological mechanisms underlying behavioral deficits in a murine model of SAH. On tests of spatial memory, animals with SAH performed worse than sham animals in the first week and one month after SAH suggesting a prolonged injury. Between three and six days after experimental hemorrhage, mice demonstrated loss of late long-term potentiation (L-LTP) due to dysfunction of the NMDA receptor. Suppression of innate immune cell activation prevents delayed vasospasm after murine SAH. We therefore explored the role of neutrophil-mediated innate inflammation on memory deficits after SAH. Depletion of neutrophils three days after SAH mitigates tissue inflammation, reverses cerebral vasoconstriction in the middle cerebral artery, and rescues L-LTP dysfunction at day 6. Spatial memory deficits in both the short and long-term are improved and associated with a shift of NMDA receptor subunit composition toward a memory sparing phenotype. This work supports further investigating suppression of innate immunity after SAH as a target for preventative therapies in SAH.

  17. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function.

    PubMed

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-08-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.

  18. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  19. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    SciTech Connect

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  20. Spatial learning and goldfish telencephalon NMDA receptors.

    PubMed

    Gómez, Yolanda; Vargas, Juan Pedro; Portavella, Manuel; López, Juan Carlos

    2006-05-01

    Recent results have demonstrated that the mammalian hippocampus and the dorso-lateral telencephalon of ray-finned fishes share functional similarities in relation to spatial memory systems. In the present study, we investigated whether the physiological mechanisms of this hippocampus-dependent spatial memory system were also similar in mammals and ray-finned fishes, and therefore possibly conserved through evolution in vertebrates. In Experiment 1, we studied the effects of the intracranial administration of the noncompetitive NMDA receptor antagonist MK-801 during the acquisition of a spatial task. The results indicated dose-dependent drug-induced impairment of spatial memory. Experiment 2 evaluated if the MK-801 produced disruption of retrieval of a learned spatial response. Data showed that the administration of MK-801 did not impair the retrieval of the information previously stored. The last experiment analyzed the involvement of the telencephalic NMDA receptors in a spatial and in a cue task. Results showed a clear impairment in spatial learning but not in cue learning when NMDA receptors were blocked. As a whole, these results indicate that physiological mechanisms of this hippocampus-dependent system could be a general feature in vertebrate, and therefore phylogenetically conserved.

  1. Anti-NMDA Receptor Encephalitis in a Pregnant Woman.

    PubMed

    Kim, Jiyoung; Park, Seung Ha; Jung, Yu Ri; Park, Soon Won; Jung, Dae Soo

    2015-06-01

    Anti N-methyl-D-aspartate (NMDA) receptor encephalitis is one of the most common types of autoimmune synaptic encephalitis. Anti-NMDA receptor encephalitis commonly occurs in young women with ovarian teratoma. It has variable clinical manifestations and treatment responses. Sometimes it is misdiagnosed as a psychiatric disorder or viral encephalitis. To the best of our knowledge, anti-NMDA receptor encephalitis is a rare condition in pregnant women. We report a case of anti-NMDA receptor encephalitis in a pregnant woman who presented with abnormal behavior, epileptic seizure, and hypoventilation.

  2. NMDA receptor modulators: an updated patent review (2013 – 2014)

    PubMed Central

    Strong, Katie L; Jing, Yao; Prosser, Anthony R; Traynelis, Stephen F; Liotta, Dennis C

    2016-01-01

    Introduction The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are able to regulate the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA inter-subunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. Areas covered This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. Expert Opinion The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics. PMID:25351527

  3. Augmented Reality in astrophysics

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-09-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss possible future trends for Augmented Reality applications in astrophysics, and explore the current limitations associated with the technology. This Augmented Article, the first of its kind, is designed to allow the reader to directly experiment with this technology.

  4. Contribution of NMDA receptor-mediated component to the EPSP in mouse Schaffer collateral synapses under single pulse stimulation protocol.

    PubMed

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2008-11-13

    The degree to which NMDA receptors contribute to hippocampal CA(1) stratum radiatum excitatory postsynaptic potentials (EPSP) is a matter of debate. This experiment was designed to resolve the issue by documenting and positively identifying the elements of the NMDA dependent component in the extracellularly recorded stratum radiatum CA(1) field potential under low stimulation conditions and in the presence of physiologic levels of Mg(2+). We show that EPSP generation consists of activation of both AMPA and NMDA receptor channels, which mediate distinct components of the recorded field potential. We propose that the EPSP is a combination of two waves rather than one, which sometimes has been attributed to the exclusive activation of AMPA channels. Our data suggest that the three recorded peaks signify different events. The first peak reflects the presynaptic volley while the other two represent the actual EPSP. The first peak of the EPSP is determined mainly by flow of ions through AMPA channels. The second peak most likely is determined by the concurrence of two phenomena: ionic flow through NMDA channels and the source corresponding to the sink generated at the cell bodies in the pyramidal layer. The NMDA dependent component was recorded when Mg(2+) was present in physiological concentrations. The presynaptic volley and second peak do not saturate over a 10-fold increase of the stimulation charge and their amplitudes are highly correlated. The first peak amplitude rapidly saturates. The sensitivity of the recorded signals is different, the first peak being the most sensitive (1.25-0.26 mV/nC). Isolation of NMDA dependent components under physiological conditions when using a single pulse low stimulation protocol would allow more precise investigations of the NMDA dependent forms of synaptic plasticity.

  5. Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acid-induced striatal toxicity: involvement of pre- and post-synaptic mechanisms and lack of direct NMDA blocking activity.

    PubMed

    Popoli, Patrizia; Pintor, Annita; Tebano, Maria Teresa; Frank, Claudio; Pepponi, Rita; Nazzicone, Valeria; Grieco, Rosa; Pèzzola, Antonella; Reggio, Rosaria; Minghetti, Luisa; De Berardinis, Maria Anna; Martire, Alberto; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Massotti, Marino

    2004-06-01

    The aim of this work was to investigate the potential neuroprotective effects of the metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) towards quinolinic acid (QA)-induced striatal excitoxicity. Intrastriatal MPEP (5 nmol/0.5 micro L) significantly attenuated the body weight loss, the electroencephalographic alterations, the impairment in spatial memory and the striatal damage induced by bilateral striatal injection of QA (210 nmol/0.7 micro L). In a second set of experiments, we aimed to elucidate the mechanisms underlying the neuroprotective effects of MPEP. In microdialysis studies in naive rats MPEP (80-250 micro m through the dialysis probe) significantly reduced the increase in glutamate levels induced by 5 mm QA. In primary cultures of striatal neurons MPEP (50 micro m) reduced the toxicity induced by direct application of glutamate [measured as release of lactate dehydrogenase [LDH]). Finally, we found that 50 micro m MPEP was unable to directly block NMDA-induced effects (namely field potential reduction in corticostriatal slices, as well as LDH release and intracellular calcium increase in striatal neurons). We conclude that: (i) MPEP has neuroprotective effects towards QA-induced striatal excitotoxicity; (ii) both pre- and post-synaptic mechanisms are involved; (iii) the neuroprotective effects of MPEP do not appear to involve a direct blockade of NMDA receptors.

  6. Differential role of insular cortex muscarinic and NMDA receptors in one-trial appetitive taste learning.

    PubMed

    Parkes, Shauna L; De la Cruz, Vanesa; Bermúdez-Rattoni, Federico; Coutureau, Etienne; Ferreira, Guillaume

    2014-12-01

    Our current understanding of the neurobiology of taste learning and memory has been greatly facilitated by the use of a reliable behavioural model, conditioned taste aversion (CTA). This model has revealed that the insular cortex (IC), specifically muscarinic and N-methyl-d-aspartate (NMDA) receptor activation in the IC, is critical for the formation of aversive taste memories. In contrast, current models of appetitive taste learning are less adequate, relying on the use of neophobic tastes (attenuation of neophobia) or on the integration of appetitive and aversive taste memories (latent inhibition of CTA). While these models have implicated IC muscarinic receptors, the involvement of NMDA receptors in the IC remains unclear. Here, we examined the role of both muscarinic and NMDA receptors in appetitive taste learning using a simple paradigm that is independent of neophobic and aversive components. First, we demonstrated that a single exposure to a novel taste, saccharin 0.1%, is sufficient to promote an appetitive taste memory as revealed by an increase in saccharin consumption during the second presentation. This increase was blocked by bilateral infusion in the IC of the muscarinic receptor antagonist, scopolamine. In contrast, infusion of the NMDA receptor antagonist, AP5, did not block appetitive taste learning but did abolish CTA. Therefore, common and distinct molecular substrates within the IC mediate appetitive versus aversive learning about the same taste.

  7. Preclinical anticonvulsant and neuroprotective profile of 8319, a non-competitive NMDA antagonist

    SciTech Connect

    Fielding, S.; Wilker, J.C.; Chernack, J.; Ramirez, V.; Wilmot, C.A.; Martin, L.L.; Payack, J.F.; Cornfeldt, M.L.; Rudolphi, K.A.; Rush, D.K. )

    1990-01-01

    8319, ((+-)-2-Amino-N-ethyl-alpha- (3-methyl-2-thienyl) benzeneethanamine 2HCl), is a novel compound with the profile of a non-competitive NMDA antagonist. The compound displaced (3H) TCP with high affinity (IC50 = 43 nM), but was inactive at the NMDA, benzodiazepine and GABA sites; in vivo, 8319 showed good efficacy as an anticonvulsant and potential neuroprotective agent. It blocked seizures induced by NMDLA, supramaximal electroshock, pentylenetetrazol (PTZ), picrotoxin, and thiosemicarbazide with ED50's of 1-20 mg/kg ip. As a neuroprotective agent, 8319 (30-100 mg/kg sc) prevented the death of dorsal hippocampal pyramidal cells induced by direct injection of 20 nmol NMDA. At 15 mg/kg ip, the compound was also effective against hippocampal neuronal necrosis induced via bilateral occlusion of the carotid arteries in gerbils. In summary, 8319 is a noncompetitive NMDA antagonist with good anticonvulsant activity and may possess neuroprotective properties useful in the treatment of brain ischemia.

  8. Beneficial effects of the NMDA antagonist ketamine on decision processes in visual search.

    PubMed

    Shen, Kelly; Kalwarowsky, Sarah; Clarence, Wendy; Brunamonti, Emiliano; Paré, Martin

    2010-07-21

    The ability of sensory-motor circuits to integrate sensory evidence over time is thought to underlie the process of decision-making in perceptual discrimination. Recent work has suggested that the NMDA receptor contributes to mediating neural activity integration. To test this hypothesis, we trained three female rhesus monkeys (Macaca mulatta) to perform a visual search task, in which they had to make a saccadic eye movement to the location of a target stimulus presented among distracter stimuli of lower luminance. We manipulated NMDA-receptor function by administering an intramuscular injection of the noncompetitive NMDA antagonist ketamine and assessed visual search performance before and after manipulation. Ketamine was found to lengthen response latency in a dose-dependent fashion. Surprisingly, it was also observed that response accuracy was significantly improved when lower doses were administered. These findings suggest that NMDA receptors play a crucial role in the process of decision-making in perceptual discrimination. They also further support the idea that multiple neural representations compete with one another through mutual inhibition, which may explain the speed-accuracy trade-off rule that shapes discrimination behavior: lengthening integration time helps resolve small differences between choice alternatives, thereby improving accuracy.

  9. NMDA-induced accumulation of Shank at the postsynaptic density is mediated by CaMKII

    SciTech Connect

    Tao-Cheng, Jung-Hwa; Yang, Yijung; Bayer, K. Ulrich; Reese, Thomas S.; Dosemeci, Ayse

    2014-07-18

    Highlights: • NMDA-induces accumulation of Shank at the postsynaptic density. • Shank accumulation is preferential to the distal region of the postsynaptic density. • Shank accumulation is mediated by CaMKII. - Abstract: Shank is a specialized scaffold protein present in high abundance at the postsynaptic density (PSD). Using pre-embedding immunogold electron microscopy on cultured hippocampal neurons, we had previously demonstrated further accumulation of Shank at the PSD under excitatory conditions. Here, using the same experimental protocol, we demonstrate that a cell permeable CaMKII inhibitor, tatCN21, blocks NMDA-induced accumulation of Shank at the PSD. Furthermore we show that NMDA application changes the distribution pattern of Shank at the PSD, promoting a 7–10 nm shift in the median distance of Shank labels away from the postsynaptic membrane. Inhibition of CaMKII with tatCN21 also blocks this shift in the distribution of Shank. Altogether these results imply that upon activation of NMDA receptors, CaMKII mediates accumulation of Shank, preferentially at the distal regions of the PSD complex extending toward the cytoplasm.

  10. BDNF prevents NMDA-induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A2A receptor is involved.

    PubMed

    Martire, Alberto; Pepponi, Rita; Domenici, Maria Rosaria; Ferrante, Antonella; Chiodi, Valentina; Popoli, Patrizia

    2013-04-01

    NMDA receptor-mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain-derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2 ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA-induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild-type mice and age-matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild-type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2 AR blockade. The protective effect of BDNF against NMDA-induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2 AR ligands in HD.

  11. Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase.

    PubMed

    Inhorn, L; Fleming, J W; Klingberg, D; Gabig, T G; Boswell, H S

    1988-04-01

    Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3-independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the "differentiation" agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G-proteins appear to play a secondary role.

  12. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  13. Modulation of cholestasis-induced antinociception in rats by two NMDA receptor antagonists: MK-801 and magnesium sulfate.

    PubMed

    Hasanein, Parisa; Parviz, Mohsen; Keshavarz, Mansoor; Javanmardi, Kazem; Allahtavakoli, Mohammad; Ghaseminejad, Majid

    2007-01-12

    Acute cholestasis is associated with increased activity of the endogenous opioid system that results to changes including analgesia. N-methyl-d-aspartate (NMDA) receptors are involved in the nociceptive pathway and play a major role in the development of morphine induced analgesia. The magnesium acts as a non-competitive NMDA receptor antagonist by blocking the NMDA receptor channel. Considering the reported antinociceptive effect of magnesium sulfate as a NMDA receptor antagonist and the existence of close functional links between NMDA receptor antagonists and magnesium with the opioid system, we studied the effect of acute and chronic administration of MK-801 as a NMDA antagonist and magnesium sulfate on modulation of nociception in an experimental model of elevated endogenous opioid tone, acute cholestasis, using the tail-flick paradigm. Cholestasis was induced by ligation of the main bile duct using two ligatures and then transsection of the duct at the midpoint between them. A significant increase (P<0.001) in nociception threshold was observed in bile duct ligated rats compared to unoperated and sham-operated animals. In acute treatment, MK-801 (0.1 mg/kg, b.i.d), but not magnesium (150 mg/kg magnesium sulfate, i.e. 30 mg/kg of Mg(+2), i.p., b.i.d.) increased antinociception in cholestatic rats compared to saline treated cholestatics (P<0.05). In chronic treatment, administration of MK-801 or magnesium sulfate for 7 consecutive days, increased tail-flick latency (P<0.05, P<0.01) in cholestatic animals compared to saline treated cholestatics. These data showed that NMDA receptor pathway is involved in modulation of cholestasis-induced antinociception in rats and that repeated dosages of magnesium sulfate similar to MK-801 is able to modulate nociception in cholestasis.

  14. Changes in NMDA receptor-induced cyclic nucleotide synthesis regulate the age-dependent increase in PDE4A expression in primary cortical cultures

    PubMed Central

    Hajjhussein, Hassan; Suvarna, Neesha U.; Gremillion, Carmen; Judson Chandler, L.; O’Donnell, James M.

    2007-01-01

    NMDA receptor-induced cAMP and cGMP are selectively hydrolyzed by PDE4 and PDE2, respectively, in rat primary cerebral cortical and hippocampal cultures. Because cAMP levels regulate the expression of PDE4 in rat primary cortical cultures, we examined the manner in which NMDA receptor activity regulates the age-dependent increase in the expression of PDE4A observed in vivo and in vitro. Inhibiting the activity of NR2B subunit with ifenprodil blocked NMDA receptor-induced cGMP synthesis and increased NMDA receptor-induced cAMP levels in a manner that reduced PDE4 activity. Therefore, NR1/NR2B receptor-induced cGMP signaling is involved in an acute cross-talk regulation of NR1/NR2A receptor-induced cAMP levels, mediated by PDE4. Chronic inhibition of NMDA receptor activity with MK-801 reduced PDE4A1 and PDE4A5 expression and activity in a time-dependent manner; this effect was reversed by adding the PKA activator dbr-cAMP. Inhibiting GABA receptors with bicuculline increased NMDA receptor-induced cAMP synthesis and PDE4A expression in cultures treated between DIV 16 and DIV 21 but not in cultures treated between DIV 8 and DIV 13. This effect was due to a high tone of NMDA receptor-induced cGMP in younger cultures, which negatively regulated the expression of PDE4A by a PKG-mediated process. The present results are consistent with behavioral data showing that both PDE4 and PDE2 are involved in NMDA receptor-mediated memory processes. PMID:17407767

  15. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    PubMed Central

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  16. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling

    PubMed Central

    Vullhorst, Detlef; Mitchell, Robert M.; Keating, Carolyn; Roychowdhury, Swagata; Karavanova, Irina; Tao-Cheng, Jung-Hwa; Buonanno, Andres

    2015-01-01

    The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. PMID:26027736

  17. Genetic Demonstration of a Role for Stathmin in Adult Hippocampal Neurogenesis, Spinogenesis, and NMDA Receptor-Dependent Memory

    PubMed Central

    Martel, Guillaume; Uchida, Shusaku; Hevi, Charles; Chévere-Torres, Itzamarie; Fuentes, Ileana; Park, Young Jin; Hafeez, Hannah; Yamagata, Hirotaka; Watanabe, Yoshifumi

    2016-01-01

    Neurogenesis and memory formation are essential features of the dentate gyrus (DG) area of the hippocampus, but to what extent the mechanisms responsible for both processes overlap remains poorly understood. Stathmin protein, whose tubulin-binding and microtubule-destabilizing activity is negatively regulated by its phosphorylation, is prominently expressed in the DG. We show here that stathmin is involved in neurogenesis, spinogenesis, and memory formation in the DG. tTA/tetO-regulated bitransgenic mice, expressing the unphosphorylatable constitutively active Stathmin4A mutant (Stat4A), exhibit impaired adult hippocampal neurogenesis and reduced spine density in the DG granule neurons. Although Stat4A mice display deficient NMDA receptor-dependent memory in contextual discrimination learning, which is dependent on hippocampal neurogenesis, their NMDA receptor-independent memory is normal. Confirming NMDA receptor involvement in the memory deficits, Stat4A mutant mice have a decrease in the level of synaptic NMDA receptors and a reduction in learning-dependent CREB-mediated gene transcription. The deficits in neurogenesis, spinogenesis, and memory in Stat4A mice are not present in mice in which tTA/tetO-dependent transgene transcription is blocked by doxycycline through their life. The memory deficits are also rescued within 3 d by intrahippocampal infusion of doxycycline, further indicating a role for stathmin expressed in the DG in contextual memory. Our findings therefore point to stathmin and microtubules as a mechanistic link between neurogenesis, spinogenesis, and NMDA receptor-dependent memory formation in the DG. SIGNIFICANCE STATEMENT In the present study, we aimed to clarify the role of stathmin in neuronal and behavioral functions. We characterized the neurogenic, behavioral, and molecular consequences of the gain-of-function stathmin mutation using a bitransgenic mouse expressing a constitutively active form of stathmin. We found that stathmin plays an

  18. Extrasynaptic glutamate NMDA receptors: key players in striatal function.

    PubMed

    Garcia-Munoz, Marianela; Lopez-Huerta, Violeta G; Carrillo-Reid, Luis; Arbuthnott, Gordon W

    2015-02-01

    N-methyl-D-aspartate receptors (NMDAR) are crucial for the function of excitatory neurotransmission and are present at the synapse and on the extrasynaptic membrane. The major nucleus of the basal ganglia, striatum, receives a large glutamatergic excitatory input carrying information about movements and associated sensory stimulation for its proper function. Such bombardment of glutamate synaptic release results in a large extracellular concentration of glutamate that can overcome the neuronal and glial uptake homeostatic systems therefore allowing the stimulation of extrasynaptic glutamate receptors. Here we have studied the participation of their extrasynaptic type in cortically evoked responses or in the presence of NMDARs stimulation. We report that extrasynaptic NMDAR blocker memantine, reduced in a dose-dependent manner cortically induced NMDA excitatory currents in striatal neurons (recorded in zero-Mg(++) plus DNQX 10 μM). Moreover, memantine (2-4 μM) significantly reduced the NMDAR-dependent membrane potential oscillations called up and down states. Recordings of neuronal striatal networks with a fluorescent calcium indicator or with multielectrode arrays (MEA) also showed that memantine reduced in a dose-dependent manner, NMDA-induced excitatory currents and network behavior. We used multielectrode arrays (MEA) to grow segregated cortical and striatal neurons. Once synaptic contacts were developed (>21DIV) recordings of extracellular activity confirmed the cortical drive of spontaneous synchronous discharges in both compartments. After severing connections between compartments, active striatal neurons in the presence of memantine (1 μM) and CNQX (10 μM) were predominantly fast spiking interneurons (FSI). The significance of extrasynaptic receptors in the regulation of striatal function and neuronal network activity is evident.

  19. HIV-1 envelope protein gp120 potentiates NMDA-evoked noradrenaline release by a direct action at rat hippocampal and cortical noradrenergic nerve endings.

    PubMed

    Pittaluga, A; Raiteri, M

    1994-11-01

    Exposure of rat or human neocortical or hippocampal tissue to glutamate receptor agonists elicits as Ca(2+)-dependent, exocytotic-like release of previously accumulated [3H]noradrenaline through activation of both N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors colocalized on the noradrenergic axon terminals. Here we show that the NMDA (100 microM)-evoked release of [3H]noradrenaline from superfused thin layers of isolated rat hippocampal or cortical nerve endings was potentiated when the human immunodeficiency virus type 1 coat protein gp120 was added to the superfusion medium concomitantly with NMDA. The effect of gp120 (10 pM to 3 nM) on the 100 microM NMDA-evoked release of [3H]noradrenaline was concentration-dependent; the maximal effect (approximately 140% potentiation) was reached at 100 pM of gp120. The protein was inactive on its own. The [3H]noradrenaline release evoked by NMDA (100 microM)+gp120 (100 pM) was prevented by classical NMDA receptor antagonists, as well as by 10 microM memantine. Neither the release evoked by NMDA nor that elicited by NMDA+gp120 was sensitive to the nitric oxide synthase inhibitor NG-nitro-L-arginine, suggesting no involvement of nitric oxide. The [3H]noradrenaline release elicited by 100 microM AMPA was unaffected by gp120. The protein potentiated the release evoked by 100 microM glutamate; the effect of 100 pM gp120 was quantitatively identical to that of 1 microM glycine, with no apparent additivity between gp120 and glycine. The antagonism by 1 microM 7-chloro-kynurenic acid of the NMDA-induced [3H]noradrenaline release was reversed by glycine or gp120.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The NMDA receptor complex: a long and winding road to therapeutics.

    PubMed

    Wood, Paul L

    2005-03-01

    Advances in our basic understanding of inhibitory and excitatory amino acid neurotransmission have provided the foundation for directed drug discovery programs to modulate inhibitory GABAergic and excitatory N-methyl-D-aspartate (NMDA) receptor-mediated synapses. Gamma-Amino butyric acid (GABA(A)) and NMDA receptors are complex ion channels formed by multiple protein subunits that act as binding sites for transmitter amino acids and as allosteric regulatory binding sites to regulate ion channel activity. In the case of the NMDA receptor complex, one such allosteric site binds the obligatory glycine and/or d-serine co-agonist. Historical data from preclinical and clinical studies of GABAergic agents have clearly demonstrated that direct receptor modulators lack sufficient therapeutic indices to warrant clinical utility. However, pharmacological modulation of allosteric sites of the GABA multimeric receptor has resulted in the clinical development of safe and efficacious agents, exemplified by the benzodiazepines. Research has also revealed a similar outcome for the NMDA receptor, with allosteric modulators demonstrating improved safety profiles in the modulation of excitatory amino acid (EAA) transmission compared with direct NMDA receptor antagonists. First-generation EAA drugs were low affinity channel blockers of the NMDA multimeric receptor complex and included the anesthetic agent ketamine and the Alzheimer's drug memantine. As predicted by preclinical studies, direct NMDA receptor antagonists (eg, selfotel (Novartis AG) and high-affinity channel blockers (eg, dizocilpine) failed in the clinic as a result of narrow therapeutic indices. More recent efforts have focused on glycine/d-serine co-agonist function. These approaches include partial glycine agonists, in their agonist dose-range, for cognitive improvement and for treating schizophrenia. Such partial glycine agonists are also being advanced for the treatment of neuropathic pain in the antagonist dose

  1. Gambierol Inhibition of Voltage-Gated Potassium Channels Augments Spontaneous Ca2+ Oscillations in Cerebrocortical Neurons

    PubMed Central

    Cao, Zhengyu; Cui, Yanjun; Busse, Eric; Mehrotra, Suneet; Rainier, Jon D.

    2014-01-01

    Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebrocortical neurons. We found that gambierol produced both a concentration-dependent augmentation of spontaneous Ca2+ oscillations, and an inhibition of Kv channel function with similar potencies. In addition, an array of selective as well as universal Kv channel inhibitors mimicked gambierol in augmenting spontaneous Ca2+ oscillations in cerebrocortical neurons. These data are consistent with a gambierol blockade of Kv channels underlying the observed increase in spontaneous Ca2+ oscillation frequency. We also found that gambierol produced a robust stimulation of phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). Gambierol-stimulated ERK1/2 activation was dependent on both inotropic [N-methyl-d-aspartate (NMDA)] and type I metabotropic glutamate receptors (mGluRs) inasmuch as MK-801 [NMDA receptor inhibitor; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], S-(4)-CGP [S-(4)-carboxyphenylglycine], and MTEP [type I mGluR inhibitors; 3-((2-methyl-4-thiazolyl)ethynyl) pyridine] attenuated the response. In addition, 2-aminoethoxydiphenylborane, an inositol 1,4,5-trisphosphate receptor inhibitor, and U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C inhibitor, both suppressed gambierol-induced ERK1/2 activation, further confirming the role of type I mGluR-mediated signaling in the observed ERK1/2 activation. Finally, we found that gambierol produced a concentration-dependent stimulation of neurite outgrowth that was mimicked by 4-aminopyridine, a universal potassium

  2. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    PubMed

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  3. NMDA antagonists increase recovery of evoked potentials from slices of rat olfactory cortex after anoxia.

    PubMed Central

    Yassin, M.; Scholfield, C. N.

    1994-01-01

    1. The role of glutamate in producing tissue damage during cerebral anoxia was investigated in brain slices using antagonists to the NMDA and AMPA receptor types. 2. Tissue function was assessed by field recordings of the synaptically evoked potentials elicited by stimulating the main afferent input to the olfactory cortex, the lateral olfactory tract. Anoxia was produced by bathing the slice in glucose-free solution equilibrated with 95% N2/5% CO2. 3. The amount of recovery of the evoked potential was inversely dependent on the period of anoxia and temperature: at 24 degrees C, 15 min of anoxia followed by reoxygenation produced a 14.6 +/- 4.1% recovery whereas there was no recovery at 35 degrees C. 4. Dizocilpine and ketamine had no effect on synaptic transmission in oxygenated media but following anoxia they produced an increased recovery of the responses: from 14.6 +/- 4.1% to 48.3 +/- 7.8% for dizocilpine (10 microM) and 21.6 +/- 7.7% to 87.2 +/- 7.1% for ketamine (200 microM); the tissue endurance to anoxia was increased by around 5 min. 5. Blockade of the AMPA receptors did not influence recovery in spite of the depressed synaptic transmission. A similar synaptic attenuation produced by lignocaine provided some increase in post-anoxic recovery. 6. The NMDA receptor antagonist, AP5, antagonized NMDA at 50 microM by 3.7 fold and at 200 microM by 15 fold but only 200 microM increased post-anoxic recovery. This suggests that a substantial degree of NMDA antagonist is required before anoxic tissue damage due to NMDA receptor activation can be nullified. The antagonist to the glycine binding site, 7-chlorokynurenic acid also increased recovery.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7913373

  4. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  5. The NMDA receptor as a target for cognitive enhancement

    PubMed Central

    Collingridge, Graham L.; Volianskis, Arturas; Bannister, Neil; France, Grace; Hanna, Lydia; Mercier, Marion; Tidball, Patrick; Fang, Guangyu; Irvine, Mark W.; Costa, Blaise M.; Monaghan, Daniel T.; Bortolotto, Zuner A.; Molnár, Elek; Lodge, David; Jane, David E.

    2015-01-01

    NMDA receptors (NMDAR) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. PMID:22796429

  6. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  7. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function

    PubMed Central

    Szklarczyk, Arek; Ewaleifoh, Osefame; Beique, Jean-Claude; Wang, Yue; Knorr, David; Haughey, Norman; Malpica, Tanya; Mattson, Mark P.; Huganir, Richard; Conant, Katherine

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of ∼65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.—Szklarczyk, A., Ewaleifoh, O., Beique, J.-C., Wang, Y., Knorr, D., Haughey, N., Malpica, T., Mattson, M. P., Huganir, R., Conant, K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. PMID:18644839

  8. Recombinant interleukin-2 significantly augments activity of rituximab in human tumor xenograft models of B-cell non-Hodgkin lymphoma.

    PubMed

    Lopes de Menezes, Daniel E; Denis-Mize, Kimberly; Tang, Yan; Ye, Helen; Kunich, John C; Garrett, Evelyn N; Peng, Jing; Cousens, Lawrence S; Gelb, Arnold B; Heise, Carla; Wilson, Susan E; Jallal, Bahija; Aukerman, Sharon L

    2007-01-01

    Recombinant interleukin-2 (rIL-2) is a pleiotropic cytokine that activates select immune effector cell responses associated with antitumor activity, including antibody-dependent cellular cytotoxicity (ADCC). Rituximab is an anti-CD20 monoclonal antibody that activates ADCC in non-Hodgkin lymphoma (NHL). The ability of rIL-2 to augment rituximab-dependent tumor responses was investigated. The efficacy of rIL-2 in combination with rituximab was evaluated in 2 NHL tumor xenograft models: the CD20hi, rituximab-sensitive, low-grade Daudi model and the CD20lo, aggressive, rituximab-resistant Namalwa model. Combination of rIL-2 plus rituximab was synergistic in a rituximab-sensitive Daudi tumor model, as evidenced by significant tumor regressions and increased time to tumor progression, compared with rIL-2 and rituximab single agents. In contrast, rituximab-resistant Namalwa tumors were responsive to single-agent rIL-2 and showed an increased response when combined with rituximab. Using in vitro killing assays, rIL-2 was shown to enhance activity of rituximab by activating ADCC and lymphokine-activated killer activity. Additionally, the activity of rIL-2 plus rituximab F(ab')2 was similar to that of rIL-2 alone, indicating a critical role for immunoglobulin G1 Fc-FcgammaR-effector responses in mediating ADCC. Antiproliferative and apoptotic tumor responses, along with an influx of immune effector cells, were observed by immunohistochemistry. Collectively, the data suggest that rIL-2 mediates potent tumoricidal activity against NHL tumors, in part, through activation and trafficking of monocytes and natural killer cells to tumors. These data support the mechanistic and therapeutic rationale for combination of rIL-2 with rituximab in NHL clinical trials and for single-agent rIL-2 in rituximab-resistant NHL patients.

  9. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

    PubMed Central

    Sonekatsu, Mayumi; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Background Glia–neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. Results IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S–containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Conclusion Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia

  10. Equating of Augmented Subscores

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Haberman, Shelby J.

    2011-01-01

    Recently, there has been an increasing level of interest in subscores for their potential diagnostic value. Haberman (2008b) suggested reporting an augmented subscore that is a linear combination of a subscore and the total score. Sinharay and Haberman (2008) and Sinharay (2010) showed that augmented subscores often lead to more accurate…

  11. Confronting an Augmented Reality

    ERIC Educational Resources Information Center

    Munnerley, Danny; Bacon, Matt; Wilson, Anna; Steele, James; Hedberg, John; Fitzgerald, Robert

    2012-01-01

    How can educators make use of augmented reality technologies and practices to enhance learning and why would we want to embrace such technologies anyway? How can an augmented reality help a learner confront, interpret and ultimately comprehend reality itself ? In this article, we seek to initiate a discussion that focuses on these questions, and…

  12. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  13. Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation

    PubMed Central

    Sun, Xu-Ying; Tuo, Qing-Zhang; Liuyang, Zhen-Yu; Xie, Ao-Ji; Feng, Xiao-Long; Yan, Xiong; Qiu, Mei; Li, Shen; Wang, Xiu-Lian; Cao, Fu-Yuan; Wang, Xiao-Chuan; Wang, Jian-Zhi; Liu, Rong

    2016-01-01

    Intracellular accumulation of the hyperphosphorylated tau is a pathological hallmark in the brain of Alzheimer disease. Activation of extrasynaptic NMDA receptors (E-NMDARs) induces excitatory toxicity that is involved in Alzheimer's neurodegeneration. However, the intrinsic link between E-NMDARs and the tau-induced neuronal damage remains elusive. In the present study, we showed in cultured primary cortical neurons that activation of E-NMDA receptors but not synaptic NMDA receptors dramatically increased tau mRNA and protein levels, with a simultaneous neuronal degeneration and decreased neuronal survival. Memantine, a selective antagonist of E-NMDARs, reversed E-NMDARs-induced tau overexpression. Activation of E-NMDARs in wild-type mouse brains resulted in neuron loss in hippocampus, whereas tau deletion in neuronal cultures and in the mouse brains rescued the E-NMDARs-induced neuronal death and degeneration. The E-NMDARs-induced tau overexpression was correlated with a reduced ERK phosphorylation, whereas the increased MEK activity, decreased binding and activity of ERK phosphatase to ERK, and increased ERK phosphorylation were observed in tau knockout mice. On the contrary, addition of tau proteins promoted ERK dephosphorylation in vitro. Taking together, these results indicate that tau overexpression mediates the excitatory toxicity induced by E-NMDAR activation through inhibiting ERK phosphorylation. PMID:27809304

  14. Role for NGF in augmented sympathetic nerve response to activation of mechanically and metabolically sensitive muscle afferents in rats with femoral artery occlusion.

    PubMed

    Lu, Jian; Xing, Jihong; Li, Jianhua

    2012-10-15

    Arterial blood pressure and heart rate responses to static contraction of the hindlimb muscles are greater in rats whose femoral arteries were previously ligated than in control rats. Also, the prior findings demonstrate that nerve growth factor (NGF) is increased in sensory neurons-dorsal root ganglion (DRG) neurons of occluded rats. However, the role for endogenous NGF in engagement of the augmented sympathetic and pressor responses to stimulation of mechanically and/or metabolically sensitive muscle afferent nerves during static contraction after femoral artery ligation has not been specifically determined. In the present study, both afferent nerves and either of them were activated by muscle contraction, passive tendon stretch, and arterial injection of lactic acid into the hindlimb muscles. Data showed that femoral occlusion-augmented blood pressure response to contraction was significantly attenuated by a prior administration of the NGF antibody (NGF-Ab) into the hindlimb muscles. The effects of NGF neutralization were not seen when the sympathetic nerve and pressor responses were evoked by stimulation of mechanically sensitive muscle afferent nerves with tendon stretch in occluded rats. In addition, chemically sensitive muscle afferent nerves were stimulated by lactic acid injected into arterial blood supply of the hindlimb muscles after the prior NGF-Ab, demonstrating that the reflex muscle responses to lactic acid were significantly attenuated. The results of this study further showed that NGF-Ab attenuated an increase in acid-sensing ion channel subtype 3 (ASIC3) of DRG in occluded rats. Moreover, immunohistochemistry was employed to examine the number of C-fiber and A-fiber DRG neurons. The data showed that distribution of DRG neurons with different thin fiber phenotypes was not notably altered when NGF was infused into the hindlimb muscles. However, NGF increased expression of ASIC3 in DRG neurons with C-fiber but not A-fiber. Overall, these data

  15. NMDA and PACAP Receptor Signaling Interact to Mediate Retinal-Induced SCN Cellular Rhythmicity in the Absence of Light

    PubMed Central

    Webb, Ian C.; Coolen, Lique M.; Lehman, Michael N.

    2013-01-01

    The “core” region of the suprachiasmatic nucleus (SCN), a central clock responsible for coordinating circadian rhythms, shows a daily rhythm in phosphorylation of extracellular regulated kinase (pERK). This cellular rhythm persists under constant darkness and, despite the absence of light, is dependent upon inputs from the eye. The neural signals driving this rhythmicity remain unknown and here the roles of glutamate and PACAP are examined. First, rhythmic phosphorylation of the NR1 NMDA receptor subunit (pNR1, a marker for receptor activation) was shown to coincide with SCN core pERK, with a peak at circadian time (CT) 16. Enucleation and intraocular TTX administration attenuated the peak in the pERK and pNR1 rhythms, demonstrating that activation of the NMDA receptor and ERK in the SCN core at CT16 are dependent on retinal inputs. In contrast, ERK and NR1 phosphorylation in the SCN shell region were unaffected by these treatments. Intraventricular administration of the NMDA receptor antagonist MK-801 also attenuated the peak in SCN core pERK, indicating that ERK phosphorylation in this region requires NMDA receptor activation. As PACAP is implicated in photic entrainment and is known to modulate glutamate signaling, the effects of a PAC1 receptor antagonist (PACAP 6-38) on SCN core pERK and pNR1 also were examined. PACAP 6-38 administration attenuated SCN core pERK and pNR1, suggesting that PACAP induces pERK directly, and indirectly via a modulation of NMDA receptor signaling. Together, these data indicate that, in the absence of light, retinal-mediated NMDA and PAC1 receptor activation interact to induce cellular rhythms in the SCN core. These results highlight a novel function for glutamate and PACAP release in the hamster SCN apart from their well-known roles in the induction of photic circadian clock resetting. PMID:24098484

  16. Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model.

    PubMed

    Hu, Rui; Wei, Pan; Jin, Lu; Zheng, Teng; Chen, Wen-Yu; Liu, Xiao-Ya; Shi, Xiao-Dong; Hao, Jing-Ru; Sun, Nan; Gao, Can

    2017-03-30

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, which affects more and more people. But there is still no effective treatment for preventing or reversing the progression of the disease. Soluble amyloid-beta (Aβ) oligomers, also known as Aβ-derived diffusible ligands (ADDLs) play an important role in AD. Synaptic activity and cognition critically depend on the function of glutamate receptors. Targeting N-methyl-D-aspartic acid (NMDA) receptors trafficking and its regulation is a new strategy for AD early treatment. EphB2 is a key regulator of synaptic localization of NMDA receptors. Aβ oligomers could bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. Here we identified that overexpression of EphB2 with lentiviral vectors in dorsal hippocampus improved impaired memory deficits and anxiety or depression-like behaviors in APPswe/PS1-dE9 (APP/PS1) transgenic mice. Phosphorylation and surface expression of GluN2B-containing NMDA receptors were also improved. Overexpression of EphB2 also rescued the ADDLs-induced depletion of the expression of EphB2 and GluN2B-containing NMDA receptors trafficking in cultured hippocampal neurons. These results suggest that improving the decreased expression of EphB2 and subsequent GluN2B-containing NMDA receptors trafficking in hippocampus may be a promising strategy for AD treatment.

  17. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2008-07-01

    Nitrogen pressure exposure in rats results in decreased dopamine (DA) release at the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, demonstrating the narcotic potency of nitrogen. This effect is attributed to decreased excitatory and increased inhibitory inputs to dopaminergic neurons, involving a change in NMDA and GABA(A) receptor function. We investigated whether repetitive exposures to nitrogen modify the excitatory and inhibitory control of the dopaminergic nigro-striatal pathway. We used voltammetry to measure dopamine levels in freely-moving rats, implanted with dopamine-sensitive electrodes in the striatum. NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) were administered through a guide-cannula into the SNc, and their effects on striatal dopamine levels were measured under normobaric conditions, before and after five repetitive exposures to 1 MPa nitrogen. NMDA-mediated dopamine release was greater following repetitive exposures, AP7-mediated inhibition of glutamatergic input was blocked, suggesting that NMDA receptor sensitivity was increased and glutamate release reduced. Muscimol did not modify dopamine levels following repetitive exposures, whereas the effect of gabazine was greater after exposures than before. This suggested that interneuronal GABA(A) receptors were desensitized, leading to an increased GABAergic input at dopaminergic cells. Thus, repetitive nitrogen exposure induced persistent changes in glutamatergic and GABAergic control of dopaminergic neurons, resulting in decreased activity of the nigrostriatal pathway.

  18. 2-amino-nonyl-6-methoxyl-tetralin muriate activity against Candida albicans augments endogenous reactive oxygen species production --a microarray analysis study.

    PubMed

    Liang, Rong Mei; Yong, Xiao Lan; Jiang, Yun Ping; Tan, Yong Hong; Dai, Bao Di; Wang, Shi Hua; Hu, Ting Ting; Chen, Xi; Li, Nan; Dong, Zhao Hui; Huang, Xiao Chun; Chen, Jun; Cao, Yong Bing; Jiang, Yuan Ying

    2011-04-01

    Candida infections have become an increasingly significant problem, mainly because of the widespread nature of Candida and drug resistance. There is an urgent need to develop new classes of drugs for the treatment of opportunistic Candida infections, especially in medically complex patients. Previous studies have confirmed that 2-amino-nonyl-6-methoxyl-tetralin muriate (10b) possesses powerful antifungal activity in vitro against Candia albicans. To clarify the underlying action mechanism, an oligonucleotide microarray study was performed in C. albicans SC5314 without and with 10b treatment. The analytical results showed that energy metabolism-related genes, including glycolysis-related genes (PFK1, CDC19 and HXK2), fermentation-related genes (PDC11, ALD5 and ADH1) and respiratory electron transport chain-related genes (CBP3, COR1 and QCR8), were downregulated significantly. Functional analysis revealed that 10b treatment increased the generation of endogenous reactive oxygen species, and decreased mitochondrial membrane potential, ubiquinone-cytochrome c reductase (complex III) activity and intracellular ATP levels in C. albicans SC5314. Also, addition of the antioxidant ascorbic acid reduced the antifungal activity of 10b significantly. These results suggest that mitochondrial aerobic respiration shift and endogenous reactive oxygen species augmentation might contribute to the antifungal activity of 10b against C. albicans. This information may prove to be useful for the development of new strategies to treat Candida infections.

  19. Sleep-Dependent Declarative Memory Consolidation—Unaffected after Blocking NMDA or AMPA Receptors but Enhanced by NMDA Coagonist D-Cycloserine

    PubMed Central

    Feld, Gordon B; Lange, Tanja; Gais, Steffen; Born, Jan

    2013-01-01

    Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors. PMID:23887151

  20. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  1. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis.

    PubMed

    Jafri, Azliana Jusnida Ahmad; Arfuzir, Natasha Najwa Nor; Lambuk, Lidawani; Iezhitsa, Igor; Agarwal, Renu; Agarwal, Puneet; Razali, Norhafiza; Krasilnikova, Anna; Kharitonova, Maria; Demidov, Vasily; Serebryansky, Evgeny; Skalny, Anatoly; Spasov, Alexander; Yusof, Ahmad Pauzi Md; Ismail, Nafeeza Mohd

    2017-01-01

    Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL(-1)). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL(-1)) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0

  2. Convergent Transcription of Interferon-stimulated Genes by TNF-α and IFN-α Augments Antiviral Activity against HCV and HEV.

    PubMed

    Wang, Wenshi; Xu, Lei; Brandsma, Johannes H; Wang, Yijin; Hakim, Mohamad S; Zhou, Xinying; Yin, Yuebang; Fuhler, Gwenny M; van der Laan, Luc J W; van der Woude, C Janneke; Sprengers, Dave; Metselaar, Herold J; Smits, Ron; Poot, Raymond A; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-05-06

    IFN-α has been used for decades to treat chronic hepatitis B and C, and as an off-label treatment for some cases of hepatitis E virus (HEV) infection. TNF-α is another important cytokine involved in inflammatory disease, which can interact with interferon signaling. Because interferon-stimulated genes (ISGs) are the ultimate antiviral effectors of the interferon signaling, this study aimed to understand the regulation of ISG transcription and the antiviral activity by IFN-α and TNF-α. In this study, treatment of TNF-α inhibited replication of HCV by 71 ± 2.4% and HEV by 41 ± 4.9%. Interestingly, TNF-α induced the expression of a panel of antiviral ISGs (2-11 fold). Blocking the TNF-α signaling by Humira abrogated ISG induction and its antiviral activity. Chip-seq data analysis and mutagenesis assay further revealed that the NF-κB protein complex, a key downstream element of TNF-α signaling, directly binds to the ISRE motif in the ISG promoters and thereby drives their transcription. This process is independent of interferons and JAK-STAT cascade. Importantly, when combined with IFN-α, TNF-α works cooperatively on ISG induction, explaining their additive antiviral effects. Thus, our study reveals a novel mechanism of convergent transcription of ISGs by TNF-α and IFN-α, which augments their antiviral activity against HCV and HEV.

  3. Requirement for hippocampal CA3 NMDA receptors in associative memory recall.

    PubMed

    Nakazawa, Kazu; Quirk, Michael C; Chitwood, Raymond A; Watanabe, Masahiko; Yeckel, Mark F; Sun, Linus D; Kato, Akira; Carr, Candice A; Johnston, Daniel; Wilson, Matthew A; Tonegawa, Susumu

    2002-07-12

    Pattern completion, the ability to retrieve complete memories on the basis of incomplete sets of cues, is a crucial function of biological memory systems. The extensive recurrent connectivity of the CA3 area of hippocampus has led to suggestions that it might provide this function. We have tested this hypothesis by generating and analyzing a genetically engineered mouse strain in which the N-methyl-D-asparate (NMDA) receptor gene is ablated specifically in the CA3 pyramidal cells of adult mice. The mutant mice normally acquired and retrieved spatial reference memory in the Morris water maze, but they were impaired in retrieving this memory when presented with a fraction of the original cues. Similarly, hippocampal CA1 pyramidal cells in mutant mice displayed normal place-related activity in a full-cue environment but showed a reduction in activity upon partial cue removal. These results provide direct evidence for CA3 NMDA receptor involvement in associative memory recall.

  4. The participation of NMDA receptors, PKC, and MAPK in Lymnaea memory extinction.

    PubMed

    Rosenegger, David; Lukowiak, Ken

    2013-02-01

    The aerial respiratory behavior of Lymnaea can be operantly conditioned to form a long-term memory (LTM) that will persist for >24h. LTM formation is dependent on altered gene activity and new protein synthesis, with the N-methyl-D-aspartate (NMDA) receptors, mitogen activated protein kinase (MAPK), and protein kinase C (PKC) pathways playing a critical role. LTM can also undergo extinction, whereby the original memory is temporarily masked by a new memory. Here we investigate if the formation of an extinction memory uses similar molecular pathways to those required for LTM formation. We find that the formation of the extinction memory can be blocked by inhibitors of NMDA receptors, PKC, and MAPK suggesting that extinction memory formation uses similar mechanisms to that of 'normal' memory formation.

  5. Control Augmented Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Lust, Robert V.; Schmit, Lucien A.

    1988-01-01

    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.

  6. Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro

    PubMed Central

    Corasaniti, M T; Maiuolo, J; Maida, S; Fratto, V; Navarra, M; Russo, R; Amantea, D; Morrone, L A; Bagetta, G

    2007-01-01

    Background and purpose: The effects of bergamot essential oil (BEO; Citrus bergamia, Risso) on excitotoxic neuronal damage was investigated in vitro. Experimental approach: The study was performed in human SH-SY5Y neuroblastoma cells exposed to N-methyl-D-aspartate (NMDA). Cell viability was measured by dye exclusion. Reactive oxygen species (ROS) and caspase-3 activity were measured fluorimetrically. Calpain I activity and the activation (phosphorylation) of Akt and glycogen synthase kinase-3β (GSK-3β) were assayed by Western blotting. Key results: NMDA induced concentration-dependent, receptor-mediated, death of SH-SY5Y cells, ranging from 11 to 25% (0.25–5 mM). Cell death induced by 1 mM NMDA (21%) was preceded by a significant accumulation of intracellular ROS and by a rapid activation of the calcium-activated protease calpain I. In addition, NMDA caused a rapid deactivation of Akt kinase and this preceded the detrimental activation of the downstream kinase, GSK-3β. BEO (0.0005–0.01%) concentration dependently reduced death of SH-SY5Y cells caused by 1 mM NMDA. In addition to preventing ROS accumulation and activation of calpain, BEO (0.01%) counteracted the deactivation of Akt and the consequent activation of GSK-3β, induced by NMDA. Results obtained by using specific fractions of BEO, suggested that monoterpene hydrocarbons were responsible for neuroprotection afforded by BEO against NMDA-induced cell death. Conclusions and Implications: Our data demonstrate that BEO reduces neuronal damage caused in vitro by excitotoxic stimuli and that this neuroprotection was associated with prevention of injury-induced engagement of critical death pathways. PMID:17401440

  7. NMDA Receptor Function During Senescence: Implication on Cognitive Performance

    PubMed Central

    Kumar, Ashok

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function. PMID:26732087

  8. A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression.

    PubMed

    Jurado, Sandra; Biou, Virginie; Malenka, Robert C

    2010-09-01

    AKAP79/150 is a protein scaffold that is thought to position specific kinases (protein kinase A and C) and phosphatases (calcineurin) in appropriate synaptic domains so that their activities can regulate excitatory synaptic strength. Using a viral-mediated molecular replacement strategy in rat hippocampal slices, we found that AKAP is required for NMDA receptor-dependent long-term depression solely because of its interaction with calcineurin.

  9. EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex.

    PubMed

    Kharazia, V N; Phend, K D; Rustioni, A; Weinberg, R J

    1996-05-24

    Electrophysiology and light microscopy suggest that a single excitatory synapse may use both amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Using immunogold electron microscopy, we here provide direct evidence for colocalization at individual synapses in sensorimotor cortex of adult rats. Colocalization was most commonly observed on dendritic spines; subunits of the two classes of receptors seemed to be independently distributed within the synaptic active zone.

  10. Retinal NMDA receptor function and expression are altered in a mouse lacking d-amino acid oxidase

    PubMed Central

    Morgans, Catherine W.; Tekmen, Merve; Sullivan, Steven J.; Esguerra, Manuel; Konno, Ryuichi; Miller, Robert F.

    2013-01-01

    d-serine is present in the vertebrate retina and serves as a coagonist for the N-methyl-d-aspartate (NMDA) receptors of ganglion cells. Although the enzyme d-amino acid oxidase (DAO) has been implicated as a pathway for d-serine degradation, its role in the retina has not been established. In this study, we investigated the role of DAO in regulating d-serine levels using a mutant mouse line deficient in DAO (ddY/DAO−) and compared these results with their wild-type counterparts (ddY/DAO+). Our results show that DAO is functionally present in the mouse retina and normally serves to reduce the background levels of d-serine. The enzymatic activity of DAO was restricted to the inner plexiform layer as determined by histochemical analysis. Using capillary electrophoresis, we showed that mutant mice had much higher levels of d-serine. Whole cell recordings from identified retinal ganglion cells demonstrated that DAO-deficient animals had light-evoked synaptic activity strongly biased toward a high NMDA-to-AMPA receptor ratio. In contrast, recordings from wild-type ganglion cells showed a more balanced ratio between the two receptor subclasses. Immunostaining for AMPA and NMDA receptors was carried out to compare the two receptor ratios by quantitative immunofluorescence. These studies revealed that the mutant mouse had a significantly higher representation of NMDA receptors compared with the wild-type controls. We conclude that 1) DAO is an important regulatory enzyme and normally functions to reduce d-serine levels in the retina, and 2) d-serine levels play a role in the expression of NMDA receptors and the NMDA-to-AMPA receptor ratio. PMID:24068757

  11. Differential modulation of GABAA and NMDA receptors by α7-nicotinic receptor desensitization in cultured rat hippocampal neurons

    PubMed Central

    Shen, Lei; Cui, Wen-yu; Chen, Ru-zhu; Wang, Hai

    2016-01-01

    Aim: To explore the modulatory effect of desensitized α7-containing nicotinic receptors (α7-nAChRs) on excitatory and inhibitory amino acid receptors in cultured hippocampal neurons and to identify the mechanism underlying this effect. Methods: Whole-cell patch-clamp recordings were performed on cultured rat hippocampal neurons to measure α7-nAChR currents and to determine the role of desensitized α7-nAChRs on brain amino acid receptor activity. Results: Pulse and perfusion applications of the α7-nAChR agonist choline were applied to induce different types of α7-nAChR desensitization in cultured hippocampal neurons. After a brief choline pulse, α7-nAChR was desensitized as a result of receptor activation, which reduced the response of the A type γ-aminobutyric acid (GABAA) receptor to its agonist, muscimol, and enhanced the response of the NMDA receptor to its agonist NMDA. By contrast, the responses of glycine or AMPA receptors to their agonists, glycine or AMPA, respectively, were not affected. Pretreatment with the α7-nAChR antagonist methyllycaconitine (MLA, 10 nmol/L) blocked the choline-induced negative modulation of the GABAA receptor and the positive modulation of the NMDA receptor. The regulation of the GABAA and NMDA receptors was confirmed using another type of α7-nAChR desensitization, which was produced by a low concentration of choline perfusion. The negative modulation of the GABAA receptor was characterized by choline-duration dependency and intracellular calcium dependency, but the positive modulation of the NMDA receptor was not associated with cytoplasmic calcium. Conclusion: Brain GABAA and NMDA receptors are modulated negatively and positively, respectively, by desensitized α7-nAChR as a result of choline pretreatment in cultured hippocampal neurons. PMID:26806304

  12. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  13. Media-Augmented Exercise Machines

    NASA Astrophysics Data System (ADS)

    Krueger, T.

    2002-01-01

    Cardio-vascular exercise has been used to mitigate the muscle and cardiac atrophy associated with adaptation to micro-gravity environments. Several hours per day may be required. In confined spaces and long duration missions this kind of exercise is inevitably repetitive and rapidly becomes uninteresting. At the same time, there are pressures to accomplish as much as possible given the cost- per-hour for humans occupying orbiting or interplanetary. Media augmentation provides a the means to overlap activities in time by supplementing the exercise with social, recreational, training or collaborative activities and thereby reducing time pressures. In addition, the machine functions as an interface to a wide range of digital environments allowing for spatial variety in an otherwise confined environment. We hypothesize that the adoption of media augmented exercise machines will have a positive effect on psycho-social well-being on long duration missions. By organizing and supplementing exercise machines, data acquisition hardware, computers and displays into an interacting system this proposal increases functionality with limited additional mass. This paper reviews preliminary work on a project to augment exercise equipment in a manner that addresses these issues and at the same time opens possibilities for additional benefits. A testbed augmented exercise machine uses a specialty built cycle trainer as both input to a virtual environment and as an output device from it using spatialized sound, and visual displays, vibration transducers and variable resistance. The resulting interactivity increases a sense of engagement in the exercise, provides a rich experience of the digital environments. Activities in the virtual environment and accompanying physiological and psychological indicators may be correlated to track and evaluate the health of the crew.

  14. Breast augmentation surgery

    MedlinePlus

    ... the shape of your breasts. Talk with a plastic surgeon if you are considering breast augmentation. Discuss ... mammograms or breast x-rays before surgery. The plastic surgeon will do a routine breast exam. Several ...

  15. Augmentation of suppressed antibody responses in mice during experimental Chagas' disease by T helper cells activated in a time-dependent mode of immunization.

    PubMed

    Choromanski, L; Kuhn, R E

    1990-01-01

    Mice infected with the protozoan parasite Trypanosoma cruzi, the causative agent of human Chagas' disease, develop immunosuppressed responses to heterologous antigens. Experiments were performed using infected mice in the acute stage of infection to assess immunoregulatory activities during induction of direct plaque-forming cells (DPFC) to sheep erythrocytes (SRBC), hapten-conjugated SRBC (TNP-SRBC), and horse erythrocytes (TNP-HRBC). Studies in vivo demonstrated that anti-SRBC responses were best enhanced when T. cruzi-infected mice were injected with primed T cells derived from normal or infected mice immunized four days previously. The presence of enhancing capacities for DPFC responses by T cells from T. cruzi-infected mice were also supported by experiments examining the hapten-carrier effect. Preimmunization of infected mice with SRBC or HRBC four days before injection of hapten-homologous (TNP-SRBC or TNP-HRBC) carrier resulted in markedly augmented anti-hapten antibody responses. These results show that functional help provided by T cells activated during priming and exposed to a challenge dose of antigen (SRBC) in a time-dependent mode can overcome the effect of immunosuppression in T. cruzi-infected mice.

  16. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Wiersma, Valerie R; de Bruyn, Marco; Shi, Ce; Gooden, Marloes J M; Wouters, Maartje C A; Samplonius, Douwe F; Hendriks, Djoke; Nijman, Hans W; Wei, Yunwei; Zhou, Jin; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes.

  17. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes.

    PubMed

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-09-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.

  18. Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of guinea pig ileum.

    PubMed

    Guo, Shuai; Chen, Yafei; Pang, Chunli; Wang, Xuzhao; Qi, Jinlong; Mo, Li; Zhang, Hailin; An, Hailong; Zhan, Yong

    2017-01-25

    Calcium-activated chloride channels (CaCCs) play important roles in many physiological processes, and the molecular basis of CaCCs has been identified as TMEM16A in many cell types. It is well established that TMEM16A is a drug target in many diseases, including cystic fibrosis, hypertension, asthma, and various tumors. Therefore, identifying potent and specific modulators of the TMEM16A channel is crucial. In this study, we identified the first natural activator of TMEM16A from traditional Chinese medicine and explored its mechanism. Our data showed that Ginsenoside Rb1 (GRb1) can activate TMEM16A directly from the intracellular side in a dose-dependent manner at an EC50 of 38.4 ± 2.14 μM. GRb1 specifically activated TMEM16A/B, but not the other previously proposed CaCC mediators such as CFTR and bestrophin. Moreover, GRb1 promoted proliferation of CHO cells stably expressing TMEM16A, in a concentration-dependent manner. Finally, we showed that GRb1 increased the amplitude and frequency of contractions in an isolated guinea pig ileum assay in vivo. In summary, GRb1 can be considered a lead compound for the development of novel drugs for the treatment of diseases caused by TMEM16A dysfunction.

  19. Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine

    PubMed Central

    Kargieman, Lucila; Santana, Noemí; Mengod, Guadalupe; Celada, Pau; Artigas, Francesc

    2007-01-01

    NMDA receptor (NMDA-R) antagonists are extensively used as schizophrenia models because of their ability to evoke positive and negative symptoms as well as cognitive deficits similar to those of the illness. Cognitive deficits in schizophrenia are associated with prefrontal cortex (PFC) abnormalities. These deficits are of particular interest because an early improvement in cognitive performance predicts a better long-term clinical outcome. Here, we examined the effect of the noncompetitive NMDA-R antagonist phencyclidine (PCP) on PFC function to understand the cellular and network elements involved in its schizomimetic actions. PCP induces a marked disruption of the activity of the PFC in the rat, increasing and decreasing the activity of 45% and 33% of the pyramidal neurons recorded, respectively (22% of the neurons were unaffected). Concurrently, PCP markedly reduced cortical synchrony in the delta frequency range (0.3–4 Hz) as assessed by recording local field potentials. The subsequent administration of the antipsychotic drugs haloperidol and clozapine reversed PCP effects on pyramidal cell firing and cortical synchronization. PCP increased c-fos expression in PFC pyramidal neurons, an effect prevented by the administration of clozapine. PCP also enhanced c-fos expression in the centromedial and mediodorsal (but not reticular) nuclei of the thalamus, suggesting the participation of enhanced thalamocortical excitatory inputs. These results shed light on the involvement of PFC in the schizomimetic action of NMDA-R antagonists and show that antipsychotic drugs may partly exert their therapeutic effect by normalizing a disrupted PFC activity, an effect that may add to subcortical dopamine receptor blockade. PMID:17785415

  20. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    that an MHD accelerator can be an effective augmentation system for increasing engine exhaust velocity. More specifically, the experiment is intended to show that electromagnetic effects are effective at producing flow acceleration whereas electrothermal effects do not cause unacceptable heating of the working fluid. The MHD accelerator was designed as an externally diagonalized segmented Faraday channel, which will be inserted into an existing 2-tesla electromagnet. This allows the external power to be connected through two terminals thereby minimizing the complexity and cost associated with powering each segment independently. The design of the accelerator and other components in the flow path has been completed and fabrication activities are underway. This paper provides a full description of MAPX including performance analysis, design, and test plans, and current status.

  1. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen

    PubMed Central

    Dutta, Noton K.; He, Rongjun; Pinn, Michael L.; He, Yantao; Burrows, Francis; Zhang, Zhong-Yin; Karakousis, Petros C.

    2016-01-01

    Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. PMID:27478867

  2. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.

    PubMed

    Hall, Christopher J; Boyle, Rachel H; Astin, Jonathan W; Flores, Maria Vega; Oehlers, Stefan H; Sanderson, Leslie E; Ellett, Felix; Lieschke, Graham J; Crosier, Kathryn E; Crosier, Philip S

    2013-08-06

    Evidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid β-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function.

  3. The Development of Mobile Augmented Reality

    DTIC Science & Technology

    2012-01-01

    This chapter provides a high-level overview of fifteen years of augmented reality research that was sponsored by the U.S. Office of Naval Research...years by a number of university and industrial research laboratories. It laid the groundwork for the development of many commercial mobile augmented ... reality (AR) applications that are currently available for smartphones and tablets. Furthermore, it helped shape a number of ongoing research activities in mobile AR.

  4. High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina.

    PubMed

    Sakamoto, Kenji; Mizuta, Aya; Fujimura, Kyosuke; Kurauchi, Yuki; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2015-08-01

    High-mobility group Box-1 (HMGB1) is known to be released from injured cells and to induce an inflammatory response. Although HMGB1 was reported to mediate ischemia-reperfusion injury of the brain, its role in glutamate excitotoxicity of the retina remains controversial. Here, the authors demonstrated the evidence that HMGB1 is involved in the retinal damage induced by NMDA. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal injection of NMDA (200 nmol/eye) or HMGB1 protein derived from bovines (5-15 μg/eye). Intravitreal anti-HMGB1 IgY (5 μg/eye) was simultaneously administered with NMDA or HMGB1. Seven days later, animals were killed and 5-μm retinal sections through the optic nerve head were obtained. These specimens were subjected to morphometry. Intravitreal NMDA and HMGB1 protein evoked cell loss in the ganglion cell layer 7 days later. Intravitreal anti-HMGB1 IgY reduced these damages. Anti-HMGB1 IgY reduced the number of 8-hydroxy-deoxyguanosine (8-OHdG)-positive cells induced by intravitreal NMDA. Toll-like receptor 2/4 antagonist peptide, receptor for advanced glycation end-products (RAGE) antagonist peptide, and FPS-ZM1 significantly reduced the retinal damage induced by HMGB1 protein. The results in the present study suggest that HMGB1 is at least in part involved in NMDA-induced retinal injury, and probably induces cell death of retinal ganglion cells with increase of oxidative stress, via activation of toll-like receptor 2/4 and RAGE in the rat retina.

  5. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington's disease mice.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Armida, Monica; Chiodi, Valentina; Pézzola, Antonella; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Popoli, Patrizia

    2010-04-06

    The effect of chronic treatment with the selective adenosine A(2A) receptor agonist CGS 21680 on N-Methyl-d-Aspartate (NMDA) receptor function and expression has been studied in the striatum and cortex of R6/2 mice, a genetic mouse model of Huntington's disease (HD). Starting from 8weeks of age, R6/2 and wild type (WT) mice were treated daily with CGS 21680 (0.5mg/kg i.p.) for 3weeks and the expression levels of NMDA receptor subunits were then evaluated. In addition, to study CGS 21680-induced changes in NMDA receptor function, NMDA-induced toxicity in corticostriatal slices from both R6/2 and WT mice was investigated. We found that CGS 21680 increased NR2A subunit expression and the NR2A/NR2B ratio in the cortex of R6/2 mice, having no effect in WT mice. In the striatum, CGS 21680 reduced NR1 expression in both R6/2 and WT mice while the effect on NR2A and NR2/NR2B expression was genotype-dependent, reducing and increasing their expression in WT and R6/2 mice, respectively. On the contrary, NMDA-induced toxicity in corticostriatal slices was not modified by the treatment in WT or HD mice. These results demonstrate that in vivo activation of A(2A) receptors modulates the subunit composition of NMDA receptors in the brain of HD mice.

  6. Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia

    PubMed Central

    Quillinan, Nidia; Grewal, Himmat; Deng, Guiying; Shimizu, Kaori; Yonchek, Joan C; Strnad, Frank; Traystman, Richard J; Herson, Paco S

    2014-01-01

    Motor deficits are present in cardiac arrest survivors and injury to cerebellar Purkinje cells (PCs) likely contribute to impairments in motor coordination and post-hypoxic myoclonus. NMDA receptor mediated excitotoxicity is a well-established mechanism of cell death in several brain regions, but the role of NMDA receptors in PC injury remains understudied. Emerging data in cortical and hippocampal neurons indicates that the GluN2A-containing NMDA receptors signal to improve cell survival and GluN2B-containing receptors contribute to neuronal injury. This study compared neuronal injury in the hippocampal CA1 region to that in PCs and investigated the role of NMDA receptors in PC injury in our mouse model of cardiac arrest and cardiopulmonary resuscitation (CA/CPR). Analysis of cell density demonstrated a 24% loss of PCs within 24 hours after 8 min CA/CPR and injury stabilized to 33% by 7 days. The subunit promiscuous NMDA receptor antagonist MK-801 protected both CA1 neurons and PCs from ischemic injury following CA/CPR, demonstrating a role for NMDA receptor activation in injury to both brain regions. In contrast, the GluN2B antagonist, Co 101244, had no effect on Purkinje cell loss while protecting against injury in the CA1 region. These data indicate that ischemic injury to cerebellar PCs progresses via different cell death mechanisms compared to hippocampal CA1 neurons. PMID:25450957

  7. Signaling lymphocyte-activation molecule SLAMF1 augments mycobacteria BCG-induced inflammatory response and facilitates bacterial clearance.

    PubMed

    Song, Tengfei; Dong, Chunsheng; Xiong, Sidong

    2015-09-01

    Tuberculosis, which is caused by intracellular mycobacterium Mycobacterium tuberculosis (Mtb), remains one of the most serious global public health concerns. The mechanisms by which innate immunity regulates the inflammatory responses and affects mycobacterial infection remain unclear. In this study, signaling lymphocyte-activation molecule family 1 (SLAMF1) was significantly upregulated in Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected RAW264.7 cells. Overexpression of SLAMF1 significantly increased the production of inflammatory factors TNF-α and IL-1β, as well as chemokine MCP-1, both in vitro and in vivo upon mycobacteria BCG infection. By contrast, knockdown of SLAMF1 significantly decreased the production of TNF-α, IL-1β, and MCP-1. Western blot analysis indicated that the NF-κB signaling pathway may contribute to the elevated inflammatory response promoted by SLAMF1, as evidenced by higher levels of phosphorylated p65 and IκBα detected with SLAMF1 overexpression. Furthermore, SLAMF1 upregulation facilitated bacterial clearance in infected RAW264.7 cells and in the lungs of infected mice. In conclusion, we demonstrated that BCG infection significantly upregulated SLAMF1, which enhanced inflammatory response by activating the NF-κB signaling pathway and facilitated bacterial clearance in BCG-infected RAW264.7 cells and mice.

  8. Oxygen plasma surface modification augments poly(L-lactide-co-glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages.

    PubMed

    Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta

    2015-12-01

    Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response.

  9. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    PubMed

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.

  10. Presynaptic NMDA receptors – dynamics and distribution in developing axons in vitro and in vivo

    PubMed Central

    Gill, Ishwar; Droubi, Sammy; Giovedi, Silvia; Fedder, Karlie N.; Bury, Luke A. D.; Bosco, Federica; Sceniak, Michael P.; Benfenati, Fabio; Sabo, Shasta L.

    2015-01-01

    ABSTRACT During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons – including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development. PMID:25526735

  11. GluN2A Subunit-Containing NMDA Receptors Are the Preferential Neuronal Targets of Homocysteine

    PubMed Central

    Sibarov, Dmitry A.; Abushik, Polina A.; Giniatullin, Rashid; Antonov, Sergei M.

    2016-01-01

    Homocysteine (HCY) is an endogenous redox active amino acid, best known as contributor to various neurodegenerative disorders. Although it is known that HCY can activate NMDA receptors (NMDARs), the mechanisms of its action on receptors composed of different NMDA receptor subunits remains almost unknown. In this study, using imaging and patch clamp technique in cultured cortical neurons and heterologous expression in HEK293T cells we tested the agonist activity of HCY on NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors) and GluN1 and GluN2B subunits (GluN1/2B receptors). We demonstrate that the time courses of Ca2+ transients and membrane currents activated by HCY and NMDA in cortical neurons are drastically different. Application of HCY to cortical neurons induced responses, which in contrast to currents induced by NMDA (both in the presence of glycine) considerably decreased to steady state of small amplitude. In contrast to NMDA, HCY-activated currents at steady state were resistant to the selective GluN2B subunit inhibitor ifenprodil. In calcium-free external solution the decrease of NMDA evoked currents was abolished, suggesting the Ca2+-dependent NMDAR desensitization. Under these conditions HCY evoked currents still declined almost to the baseline suggesting Ca2+-independent desensitization. In HEK293T cells HCY activated NMDARs of GluN1/2A and GluN1/2B subunit compositions with EC50s of 9.7 ± 1.8 and 61.8 ± 8.9 μM, respectively. Recombinant GluN1/2A receptors, however, did not desensitize by HCY, whereas GluN1/2B receptors were almost fully desensitized by HCY. Thus, HCY is a high affinity agonist of NMDARs preferring the GluN1/2A subunit composition. Our data suggest that HCY induced native NMDAR currents in neurons are mainly mediated by the “synaptic type” GluN1/2A NMDARs. This implies that in hyperhomocysteinemia, a disorder with enlarged level of HCY in plasma, HCY may persistently contribute to post-synaptic responses mediated

  12. Protons trap NR1/NR2B NMDA receptors in a nonconducting state.

    PubMed

    Banke, Tue G; Dravid, Shashank M; Traynelis, Stephen F

    2005-01-05

    NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission, as well as synaptic plasticity. Given that overstimulation of NMDA receptors can cause cell death, it is not surprising that these channels are under tight control by a series of inhibitory extracellular ions, including zinc, magnesium, and H+. We studied the inhibition by extracellular protons of recombinant NMDA receptor NR1/NR2B single-channel and macroscopic responses in transiently transfected human embryonic kidney HEK 293 cells using patch-clamp techniques. We report that proton inhibition proceeds identically in the absence or presence of agonist, which rules out the possibility that protonation inhibits receptors by altering coagonist binding. The response of macroscopic currents in excised patches to rapid jumps in pH was used to estimate the microscopic association and dissociation rates for protons, which were 1.4 x 10(9) m(-1) sec(-1) and 110-196 sec(-1), respectively (K(d) corresponds to pH 7.2). Protons reduce the open probability without altering the time course of desensitization or deactivation. Protons appear to slow at least one time constant describing the intra-activation shut-time histogram and modestly reduce channel open time, which we interpret to reflect a reduction in the overall channel activation rate and possible proton-induced termination of openings. This is consistent with a modest proton-dependent slowing of the macroscopic response rise time. From these data, we propose a physical model of proton inhibition that can describe macroscopic and single-channel properties of NMDA receptor function over a range of pH values.

  13. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils

    PubMed Central

    Thomsen, Kim; Christophersen, Lars; Jensen, Peter Østrup; Bjarnsholt, Thomas; Moser, Claus; Høiby, Niels

    2016-01-01

    ABSTRACT Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa strains, including clinical isolates from non-chronically infected CF patients. Thus, oral prophylaxis with anti-Pseudomonas aeruginosa IgY may boost the innate immunity against Pseudomonas aeruginosa in the CF setting by facilitating a rapid and prompt bacterial clearance by PMNs. PMID:26901841

  14. Augmented motor activity and reduced striatal preprodynorphin mRNA induction in response to acute amphetamine administration in metabotropic glutamate receptor 1 knockout mice.

    PubMed

    Mao, L; Conquet, F; Wang, J Q

    2001-01-01

    Metabotropic glutamate receptor 1 (mGluR1) is a G-protein-coupled receptor and is expressed in the medium spiny projection neurons of mouse striatum. To define the role of mGluR1 in actions of psychostimulant, we compared both motor behavior and striatal neuropeptide mRNA expression between mGluR1 mutant and wild-type control mice after a single injection of amphetamine. We found that acute amphetamine injection increased motor activity in both mutant and control mice in a dose-dependent manner (1, 4, and 12 mg/kg, i.p.). However, the overall motor responses of mGluR1 -/- mice to all three doses of amphetamine were significantly greater than those of wild-type +/+ mice. Amphetamine also induced a dose-dependent elevation of preprodynorphin mRNA in the dorsal and ventral striatum of mutant and wild-type mice as revealed by quantitative in situ hybridization. In contrast to behavioral responses, the induction of dynorphin mRNA in both the dorsal and ventral striatum of mutant mice was significantly less than that of wild-type mice in response to the two higher doses of amphetamine. In addition, amphetamine elevated basal levels of substance P mRNA in the dorsal and ventral striatum of mGluR1 mutant mice to a similar level as that of wild-type mice. There were no differences in basal levels and distribution patterns of the two mRNAs between the two genotypes of mice treated with saline. These results demonstrate a clear augmented behavioral response of mGluR1 knockout mice to acute amphetamine exposure that is closely correlated with reduced dynorphin mRNA induction in the same mice. It appears that an intact mGluR1 is specifically critical for full dynorphin induction, and impaired mobilization of inhibitory dynorphin system as a result of lacking mGluR1 may contribute to an augmentation of motor stimulation in response to acute administration of psychostimulant.

  15. NMDA neurotransmission as a critical mediator of borderline personality disorder

    PubMed Central

    Grosjean, Bernadette; Tsai, Guochuan E.

    2007-01-01

    Studies of the neurobehavioural components of borderline personality disorder (BPD) have shown that symptoms and behaviours of BPD are partly associated with disruptions in basic neurocognitive processes, in particular, in the executive neurocognition and memory systems. A growing body of data indicates that the glutamatergic system, in particular, the N-methyl-D-aspartate (NMDA) subtype receptor, plays a major role in neuronal plasticity, cognition and memory and may underlie the pathophysiology of multiple psychiatric disorders. In this paper, we review the literature regarding BPD and its cognitive deficits and the current data on glutamatergic and NMDA neurotransmission. We propose that multiple cognitive dysfunctions and symptoms presented by BPD patients, like dissociation, psychosis and impaired nociception, may result from the dysregulation of the NMDA neurotransmission. This impairment may be the result of a combination of biological vulnerability and environmental influences mediated by the NMDA neurotransmission. PMID:17353939

  16. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    PubMed

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  17. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis

    PubMed Central

    Fukata, Masayuki; Shang, Limin; Santaolalla, Rebeca; Sotolongo, John; Pastorini, Cristhine; España, Cecilia; Ungaro, Ryan; Harpaz, Noam; Cooper, Harry S.; Elson, Greg; Kosco-Vilbois, Marie; Zaias, Julia; Perez, Maria T.; Mayer, Lloyd; Vamadevan, Arunan S.; Lira, Sergio A.; Abreu, Maria T.

    2010-01-01

    Chronic intestinal inflammation culminates in cancer and a link to TLR4 has been suggested by our observation that TLR4 deficiency prevents colitis-associated neoplasia. In the current study, we address the effect of the aberrant activation of epithelial TLR4 on induction of colitis and colitis-associated tumor development. We take a translational approach to address the consequences of increased TLR signaling in the intestinal mucosa. Mice transgenic for a constitutively-active TLR4 under the intestine-specific villin promoter (villin-TLR4 mice) were treated with DSS for acute colitis and azoxymethane-dextran sulfate sodium. TLR4 expression was analyzed by immunohistochemistry in colonic tissue from patients with ulcerative colitis and ulcerative colitis associated cancer. The effect of an antagonist TLR4 Ab was tested in prevention of colitis-associated neoplasia in the AOM-DSS model. Villin-TLR4 mice were highly susceptible to both acute colitis and colitis-associated neoplasia. Villin-TLR4 mice had increased epithelial expression of COX-2 and mucosal PGE2 production at baseline. Increased severity of colitis in villin-TLR4 mice was characterized by enhanced expression of inflammatory mediators and increased neutrophilic infiltration. In human UC samples, TLR4 expression was upregulated in almost all CAC and progressively increases with grade of dysplasia. As a proof of principle, a TLR4/MD-2 antagonist antibody inhibited colitis-associated neoplasia in the mouse model. Our results show that regulation of TLR's can affect the outcome of both acute colitis and its consequences—cancer. Targeting TLR4 and other TLR's may ultimately play a role in prevention or treatment of colitis-associated cancer. PMID:21674704

  18. Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference Learning in the Neonate Rat

    PubMed Central

    Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning. PMID:22496886

  19. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    PubMed

    Lethbridge, Rebecca; Hou, Qinlong; Harley, Carolyn W; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  20. Spinal NMDA NR1 Subunit Expression Following Transient TNBS Colitis

    PubMed Central

    Zhou, QiQi; Price, Donald D.; Caudle, Robert M.; Verne, G. Nicholas

    2009-01-01

    Background: N-methyl-D-aspartic acid (NMDA) receptors play an important role in the development of hypersensitivity to visceral and somatic stimuli following inflammation or tissue injury. Our objective was to investigate the role of NMDA NR1 receptors in the spinal cord (T10-L1; L4-S1) of a subset of rats that remain hypersensitive following histological resolution of TNBS-induced colitis compared to saline treated rats and rats that had recovered both behaviorally and histologically. We hypothesized that NMDA NR1 subunit expression mediates hypersensitivity following transient TNBS colitis. Methods: Male Sprague-Dawley rats (150g-250g) received 20mg/rat intracolonic trinitrobenzene sulfonic acid (TNBS) in 50% ethanol or saline. Animals underwent nociceptive visceral/somatic pain testing 16 weeks after resolution of TNBS colitis. Animals were sacrificed and their spinal cord (T10-L1; L4-S1) was retrieved and 2-dimensional polyacrylamide gel electrophoresis and immunohistocytochemistry techniques were used to investigate spinal-NMDA receptor expression. Results: NR1001 was the only NMDA NR1 receptor subunit that was expressed in recovered and control rats, whereas hypersensitive animals expressed NR1011 and NR1111 as well as NR1001 subunits. Immunohistochemistry analysis demonstrated increased expression of NMDA NR1-N1, C1, and C2-plus expression in lamina I & II of the spinal cord (T10-L1; L4-S1) in hypersensitive rats but not in recovered/control rats. Conclusions: Selective increases in the expression of the NMDA NR1 splice variants occur in hypersensitive rats following resolution of TNBS colitis. This suggests that the NMDA NR1 receptor play an important role in the development of neuronal plasticity and central sensitization. The recombination of NR1 splice variants may serve as a key functional protein that maintains hypersensitivity following resolution of TNBS colitis. PMID:19406112

  1. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells

    PubMed Central

    Hurton, Lenka V.; Singh, Harjeet; Najjar, Amer M.; Switzer, Kirsten C.; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.

    2016-01-01

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials. PMID:27849617

  2. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells.

    PubMed

    Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2016-11-29

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR(+) T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19(+) leukemia. Long-lived T cells were CD45RO(neg)CCR7(+)CD95(+), phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR(+) T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.

  3. Hypoxia augments the calcium-activated chloride current carried by anoctamin-1 in cardiac vascular endothelial cells of neonatal mice

    PubMed Central

    Wu, Ming-Ming; Lou, Jie; Song, Bin-Lin; Gong, Yuan-Feng; Li, Yan-Chao; Yu, Chang-Jiang; Wang, Qiu-Shi; Ma, Tian-Xing; Ma, Ke; Hartzell, H Criss; Duan, Dayue Darrel; Zhao, Dan; Zhang, Zhi-Ren

    2014-01-01

    BACKGROUND AND PURPOSE The molecular identity of calcium-activated chloride channels (CaCCs) in vascular endothelial cells remains unknown. This study sought to identify whether anoctamin-1 (Ano1, also known as TMEM16A) functions as a CaCC and whether hypoxia alters the biophysical properties of Ano1 in mouse cardiac vascular endothelial cells (CVECs). EXPERIMENTAL APPROACH Western blot, quantitative real-time PCR, confocal imaging analysis and patch-clamp analysis combined with pharmacological approaches were used to determine whether Ano1 was expressed and functioned as CaCC in CVECs. KEY RESULTS Ano1 was expressed in CVECs. The biophysical properties of the current generated in the CVECs, including the Ca2+ and voltage dependence, outward rectification, anion selectivity and the pharmacological profile, are similar to those described for CaCCs. The density of ICl(Ca) detected in CVECs was significantly inhibited by T16Ainh-A01, an Ano1 inhibitor, and a pore-targeting, specific anti-Ano1 antibody, and was markedly decreased in Ano1 gene knockdown CVECs. The density of ICl(Ca) was significantly potentiated in CVECs exposed to hypoxia, and this hypoxia-induced increase in the density of ICl(Ca) was inhibited by T16Ainh-A01 or anti-Ano1 antibody. Hypoxia also increased the current density of ICl(Ca) in Ano1 gene knockdown CVECs. CONCLUSIONS AND IMPLICATIONS Ano1 formed CaCC in CVECs of neonatal mice. Hypoxia enhances Ano1-mediated ICl(Ca) density via increasing its expression, altering the ratio of its splicing variants, sensitivity to membrane voltage and to Ca2+. Ano1 may play a role in the pathophysiological processes during ischaemia in heart, and therefore, Ano1 might be a potential therapeutic target to prevent ischaemic damage. PMID:24758567

  4. Augmenting computer networks

    NASA Technical Reports Server (NTRS)

    Bokhari, S. H.; Raza, A. D.

    1984-01-01

    Three methods of augmenting computer networks by adding at most one link per processor are discussed: (1) A tree of N nodes may be augmented such that the resulting graph has diameter no greater than 4log sub 2((N+2)/3)-2. Thi O(N(3)) algorithm can be applied to any spanning tree of a connected graph to reduce the diameter of that graph to O(log N); (2) Given a binary tree T and a chain C of N nodes each, C may be augmented to produce C so that T is a subgraph of C. This algorithm is O(N) and may be used to produce augmented chains or rings that have diameter no greater than 2log sub 2((N+2)/3) and are planar; (3) Any rectangular two-dimensional 4 (8) nearest neighbor array of size N = 2(k) may be augmented so that it can emulate a single step shuffle-exchange network of size N/2 in 3(t) time steps.

  5. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    SciTech Connect

    Dekundy, Andrzej . E-mail: andrzej.dekundy@merz.de; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-03-15

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  6. Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity.

    PubMed

    Pinto, Mauro Cunha Xavier; Lima, Isabel Vieira de Assis; da Costa, Flávia Lage Pessoa; Rosa, Daniela Valadão; Mendes-Goulart, Vânia Aparecida; Resende, Rodrigo Ribeiro; Romano-Silva, Marco Aurélio; de Oliveira, Antônio Carlos Pinheiro; Gomez, Marcus Vinícius; Gomez, Renato Santiago

    2015-02-01

    Brain preconditioning is a protective mechanism, which can be activated by sub-lethal stimulation of the NMDA receptors (NMDAR) and be used to achieve neuroprotection against stroke and neurodegenerative diseases models. Inhibitors of glycine transporters type 1 modulate glutamatergic neurotransmission through NMDAR, suggesting an alternative therapeutic strategy of brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by NFPS, a GlyT1 inhibitor, against NMDA-induced excitotoxicity in mice hippocampus, as well as to study its neurochemical mechanisms. C57BL/6 mice (male, 10-weeks-old) were preconditioned by intraperitoneal injection of NFPS at doses of 1.25, 2.5 or 5.0 mg/kg, 24 h before intrahippocampal injection of NMDA. Neuronal death was evaluated by fluoro jade C staining and neurochemical parameters were evaluated by gas chromatography-mass spectrometry, scintillation spectrometry and western blot. We observed that NFPS preconditioning reduced neuronal death in CA1 region of hippocampus submitted to NMDA-induced excitotoxicity. The amino acids (glycine and glutamate) uptake and content were increased in hippocampus of animals treated with NFPS 5.0 mg/kg, which were associated to an increased expression of type-2 glycine transporter (GlyT2) and glutamate transporters (EAAT1, EAAT2 and EAAT3). The expression of GlyT1 was reduced in animals treated with NFPS. Interestingly, the preconditioning reduced expression of GluN2B subunits of NMDAR, whereas did not change the expression of GluN1 or GluN2A in all tested doses. Our study suggests that NFPS preconditioning induces resistance against excitotoxicity, which is associated with neurochemical changes and reduction of GluN2B-containing NMDAR expression.

  7. The role of NMDA receptors of the medial septum and dorsal hippocampus on memory acquisition.

    PubMed

    Khakpai, Fatemeh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2016-04-01

    The glutamatergic neurons in the medial septal/diagonal band of broca (MS/DB) affect the hippocampal functions by modulating the septo-hippocampal neurons. Our study investigated the possible role of NMDA receptors of the medial septum nucleus (MS) and dorsal hippocampus (CA1) on memory acquisition in male Wistar rats. Animals were bilaterally implanted with chronic cannulae in the MS and CA1. Rats were trained in a step-through type inhibitory avoidance task, and tested 24h after training to measure step-through latency as memory retrieval. Our results indicated that pre-training intra-MS or intra-CA1 infusions of NMDA (0.125 μg/rat) and D-AP7 (0.012 μg/rat) increased and decreased memory acquisition, respectively when compared to saline control group. Also, pre-training intra-CA1 and intra-MS injection of an effect dose of D-AP7 (0.012 μg/rat) along with an effect dose of NMDA (0.125 μg/rat) impaired memory acquisition. Interestingly, pre-training intra-CA1/MS infusion of D-AP7 (0.012 μg/rat) diminished memory response produced by pre-training injection of NMDA (0.125 μg/rat) in the MS/CA1, respectively (cross injection or bilateral injection). Also, all above doses of drugs did not alter locomotor activity. These results suggest that the glutamatergic pathway between the MS and CA1 regions is involved in memory acquisition process.

  8. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex.

    PubMed

    López-Avila, Alberto; Coffeen, Ulises; Ortega-Legaspi, J Manuel; del Angel, Rosendo; Pellicer, Francisco

    2004-09-01

    The anterior cingulate cortex (ACC) plays a key role in pain processing. It has been reported that increased activity of glutamatergic projections into the ACC intensifies nociception; whereas dopaminergic projections inhibit it. The aim of this study was to evaluate the role of dopaminergic and NMDA systems of the ACC in the modulation of long-term nociception elicited by sciatic denervation in the rat. Score, onset and incidence of long-term nociception were measured by the autotomy behavior. The effects of a single microinjection into the ACC of different doses of dopamine (100 nM, 100 microM and 100 mM), a NMDA receptor antagonist (MK801 200 nM and 9.34 mM) and amantadine, a dopamine agonist and NMDA receptor antagonist (10, 100 and 1000 microM) were tested on long-term nociception. Dopamine diminished autotomy behavior in an inverse dose-dependent manner, with dopamine 100 nM as most effective concentration. MK801 and amantadine elicited a significant reduction on autotomy score. Prior injections of D1 and D2 receptor antagonists blocked the antinociceptive effects of amantadine on long-term nociceptive behavior. The present study suggests an interaction between dopaminergic and glutamatergic systems within the ACC in the genesis and maintenance of long-term nociception.

  9. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    PubMed

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway.

  10. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D.

    PubMed

    Wang, Zhongjuan; Guo, Linghua; Song, Yuan; Zhang, Yinsheng; Lin, Dandan; Hu, Bo; Mei, Yu; Sandikin, Dedy; Liu, Haiyan

    2017-04-01

    The capacity of natural killer (NK) cells to kill tumor cells without specific antigen recognition provides an advantage over T cells and makes them potential effectors for tumor immunotherapy. However, the efficacy of NK cell adoptive therapy can be limited by the immunosuppressive tumor microenvironment. Transforming growth factor-β (TGF-β) is a potent immunosuppressive cytokine that can suppress NK cell function. To convert the suppressive signal induced by TGF-β to an activating signal, we genetically modified NK-92 cells to express a chimeric receptor with TGF-β type II receptor extracellular and transmembrane domains and the intracellular domain of NK cell-activating receptor NKG2D (TN chimeric receptor). NK-92 cells expressing TN receptors were resistant to TGF-β-induced suppressive signaling and did not down-regulate NKG2D. These modified NK-92 cells had higher killing capacity and interferon γ (IFN-γ) production against tumor cells compared with the control cells and their cytotoxicity could be further enhanced by TGF-β. More interestingly, the NK-92 cells expressing TN receptors were better chemo-attracted to the tumor cells expressing TGF-β. The presence of these modified NK-92 cells significantly inhibited the differentiation of human naïve CD4(+) T cells to regulatory T cells. NK-92-TN cells could also inhibit tumor growth in vivo in a hepatocellular carcinoma xenograft tumor model. Therefore, TN chimeric receptors can be a novel strategy to augment anti-tumor efficacy in NK cell adoptive therapy.

  11. Plasminogen Activator Inhibitor-1 Deficiency Augments Visceral Mesothelial Organization, Intrapleural Coagulation, and Lung Restriction in Mice with Carbon Black/Bleomycin–Induced Pleural Injury

    PubMed Central

    Jeffers, Ann; Alvarez, Alexia; Owens, Shuzi; Koenig, Kathleen; Quaid, Brandon; Komissarov, Andrey A.; Florova, Galina; Kothari, Hema; Pendurthi, Usha; Mohan Rao, L. Vijaya; Idell, Steven

    2014-01-01

    Local derangements of fibrin turnover and plasminogen activator inhibitor (PAI)-1 have been implicated in the pathogenesis of pleural injury. However, their role in the control of pleural organization has been unclear. We found that a C57Bl/6j mouse model of carbon black/bleomycin (CBB) injury demonstrates pleural organization resulting in pleural rind formation (14 d). In transgenic mice overexpressing human PAI-1, intrapleural fibrin deposition was increased, but visceral pleural thickness, lung volumes, and compliance were comparable to wild type. CBB injury in PAI-1−/− mice significantly increased visceral pleural thickness (P < 0.001), elastance (P < 0.05), and total lung resistance (P < 0.05), while decreasing lung compliance (P < 0.01) and lung volumes (P < 0.05). Collagen, α-smooth muscle actin, and tissue factor were increased in the thickened visceral pleura of PAI-1−/− mice. Colocalization of α-smooth muscle actin and calretinin within pleural mesothelial cells was increased in CBB-injured PAI-1−/− mice. Thrombin, factor Xa, plasmin, and urokinase induced mesothelial–mesenchymal transition, tissue factor expression, and activity in primary human pleural mesothelial cells. In PAI-1−/− mice, D-dimer and thrombin–antithrombin complex concentrations were increased in pleural lavage fluids. The results demonstrate that PAI-1 regulates CBB-induced pleural injury severity via unrestricted fibrinolysis and cross-talk with coagulation proteases. Whereas overexpression of PAI-1 augments intrapleural fibrin deposition, PAI-1 deficiency promotes profibrogenic alterations of the mesothelium that exacerbate pleural organization and lung restriction. PMID:24024554

  12. Isobolographic analysis demonstrates additive effect of cisplatin and HDIs combined treatment augmenting their anti-cancer activity in lung cancer cell lines

    PubMed Central

    Gumbarewicz, Ewelina; Luszczki, Jarogniew J; Wawruszak, Anna; Dmoszynska-Graniczka, Magdalena; Grabarska, Aneta J; Jarząb, Agata M; Polberg, Krzysztof; Stepulak, Andrzej

    2016-01-01

    Histone deacetylase inhibitors (HDIs) are a new class of drugs which affect the activity of HDACs resulting in changed of acetylation in many proteins. HDIs can induce differentiation, cell growth arrest, apoptosis, inhibit proliferation and angiogenesis in cancer, whereas normal cells are comparatively resistant to the action of HDIs. The aim of this study was to investigate the combined effect of a well-known cytostatic agent-cisplatin (CDDP) and a histone deacetylase inhibitors-either suberoylanilide hydroxamic acid (SAHA, vorinostat) or valproic acid (VPA), on the proliferation of lung cancer cells, as well as induction of apoptosis and inhibition of the cell cycle progression. The anti-proliferative activity of VPA or SAHA used alone, or in combination with CDDP were determined by means of MTT test. The type of pharmacologic interactions between HDAC inhibitors and CDDP was assessed using isobolographic analysis. We observed additive interactions for the CCDP with SAHA, as well as for the CDDP with VPA combinations with respect to their anti-proliferative effects on three different lung cancer cell lines (A549, NCI-H1563 and NCI-H2170). Such additive effects were observed regardless of the histologic type (adenocarcinoma or squamous cell carcinoma) and sensitivity for the drugs applied. Combination treatment also augmented the induction of apoptosis and cell cycle perturbation mediated by CDDP alone, thereby enhancing anti-cancer effect of tested drugs. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of lung cancer. PMID:28042503

  13. Potent in vitro and in vivo activity of an Fc-engineered humanized anti-HM1.24 antibody against multiple myeloma via augmented effector function.

    PubMed

    Tai, Yu-Tzu; Horton, Holly M; Kong, Sun-Young; Pong, Erik; Chen, Hsing; Cemerski, Saso; Bernett, Matthew J; Nguyen, Duc-Hanh T; Karki, Sher; Chu, Seung Y; Lazar, Greg A; Munshi, Nikhil C; Desjarlais, John R; Anderson, Kenneth C; Muchhal, Umesh S

    2012-03-01

    HM1.24, an immunologic target for multiple myeloma (MM) cells, has not been effectively targeted with therapeutic monoclonal antibodies (mAbs). In this study, we investigated in vitro and in vivo anti-MM activities of XmAb5592, a humanized anti-HM1.24 mAb with Fc-domain engineered to significantly enhance FcγR binding and associated immune effector functions. XmAb5592 increased antibody-dependent cellular cytotoxicity (ADCC) several fold relative to the anti-HM1.24 IgG1 analog against both MM cell lines and primary patient myeloma cells. XmAb5592 also augmented antibody dependent cellular phagocytosis (ADCP) by macrophages. Natural killer (NK) cells became more activated by XmAb5592 than the IgG1 analog, evidenced by increased cell surface expression of granzyme B-dependent CD107a and MM cell lysis, even in the presence of bone marrow stromal cells. XmAb5592 potently inhibited tumor growth in mice bearing human MM xenografts via FcγR-dependent mechanisms, and was significantly more effective than the IgG1 analog. Lenalidomide synergistically enhanced in vitro ADCC against MM cells and in vivo tumor inhibition induced by XmAb5592. A single dose of 20 mg/kg XmAb5592 effectively depleted both blood and bone marrow plasma cells in cynomolgus monkeys. These results support clinical development of XmAb5592, both as a monotherapy and in combination with lenalidomide, to improve patient outcome of MM.

  14. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action

    PubMed Central

    Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca2+ increase, but does not require PKA and extracellular Ca2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects. PMID:23284812

  15. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.

    PubMed

    Ferreira, Joana S; Schmidt, Jeannette; Rio, Pedro; Águas, Rodolfo; Rooyakkers, Amanda; Li, Ka Wan; Smit, August B; Craig, Ann Marie; Carvalho, Ana Luisa

    2015-06-03

    NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex, GluN1 is combined primarily with GluN2A and GluN2B, which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B, the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components, in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis, revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.

  16. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex

    PubMed Central

    Lalo, U.; Palygin, O.; Verkhratsky, A.; Grant, S. G. N.; Pankratov, Y.

    2016-01-01

    Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity. PMID:27640997

  17. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  18. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  19. Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.

    PubMed

    Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger

    2016-03-17

    Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.

  20. Computer Augmented Video Education.

    ERIC Educational Resources Information Center

    Sousa, M. B.

    1979-01-01

    Describes project CAVE (Computer Augmented Video Education), an ongoing effort at the U.S. Naval Academy to present lecture material on videocassette tape, reinforced by drill and practice through an interactive computer system supported by a 12 channel closed circuit television distribution and production facility. (RAO)

  1. Chin augmentation - slideshow

    MedlinePlus

    ... anatomy URL of this page: //medlineplus.gov/ency/presentations/100009.htm Chin augmentation - series—Normal anatomy To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 5 Go to slide 2 ...

  2. Augmentative & Alternative Communication

    ERIC Educational Resources Information Center

    Murphy, Patti

    2007-01-01

    There is no definitive recipe for augmentative and alternative communication (AAC) success, but its universal ingredients can be found at home. The main ones are: (1) Understanding that all children need to express themselves, however outgoing or shy they may be; (2) Willingness to embrace the technology that may help your child regardless of your…

  3. Augmented Thermal Bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1996-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.

  4. Augmented thermal bus

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S. (Inventor)

    1993-01-01

    The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.

  5. Augmented Reality Binoculars.

    PubMed

    Oskiper, Taragay; Sizintsev, Mikhail; Branzoi, Vlad; Samarasekera, Supun; Kumar, Rakesh

    2015-05-01

    In this paper we present an augmented reality binocular system to allow long range high precision augmentation of live telescopic imagery with aerial and terrain based synthetic objects, vehicles, people and effects. The inserted objects must appear stable in the display and must not jitter and drift as the user pans around and examines the scene with the binoculars. The design of the system is based on using two different cameras with wide field of view and narrow field of view lenses enclosed in a binocular shaped shell. Using the wide field of view gives us context and enables us to recover the 3D location and orientation of the binoculars much more robustly, whereas the narrow field of view is used for the actual augmentation as well as to increase precision in tracking. We present our navigation algorithm that uses the two cameras in combination with an inertial measurement unit and global positioning system in an extended Kalman filter and provides jitter free, robust and real-time pose estimation for precise augmentation. We have demonstrated successful use of our system as part of information sharing example as well as a live simulated training system for observer training, in which fixed and rotary wing aircrafts, ground vehicles, and weapon effects are combined with real world scenes.

  6. Blockade of NR2B-Containing NMDA Receptors Prevents BDNF Enhancement of Glutamatergic Transmission in Hippocampal Neurons

    PubMed Central

    Crozier, Robert A.; Black, Ira B.; Plummer, Mark R.

    1999-01-01

    Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission. PMID:10492007

  7. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.

    PubMed

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.

  8. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons.

    PubMed

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L; Anggono, Victor; Gether, Ulrik; Huganir, Richard L; Madsen, Kenneth L

    2013-08-27

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity.

  9. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    PubMed

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  10. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD.

    PubMed

    He, Qionger; Titley, Heather; Grasselli, Giorgio; Piochon, Claire; Hansel, Christian

    2013-03-01

    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-(D)-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX). The remaining (D)-2-amino-5-phosphonovaleric acid ((D)-APV)-sensitive current was reduced by ethanol at concentrations as low as 10 mM. At a concentration of 50 mM ethanol, the blockade of (D)-APV-sensitive CF-excitatory postsynaptic currents was significantly stronger. Ethanol also altered the waveform of CF-evoked complex spikes by reducing the afterdepolarization. This effect was not seen when NMDA receptors were blocked by (D)-APV before ethanol wash-in. In contrast to CF synaptic transmission, parallel fiber (PF) synaptic inputs were not affected by ethanol. Finally, ethanol (10 mM) impaired long-term depression (LTD) at PF to Purkinje cell synapses as induced under control conditions by paired PF and CF activity. However, LTD induced by pairing PF stimulation with depolarizing voltage steps (substituting for CF activation) was not blocked by ethanol. These observations suggest that the sensitivity of cerebellar circuit function and plasticity to low concentrations of ethanol may be caused by an ethanol-mediated impairment of NMDA receptor signaling at CF synapses onto cerebellar Purkinje cells.

  11. NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test.

    PubMed

    Zhang, Lin; Xu, Tianyuan; Wang, Shuang; Yu, Lanqing; Liu, Dexiang; Zhan, Renzhi; Yu, Shu Yan

    2013-01-10

    The antidepressant-like effect of curcumin, a major active component of Curcuma longa, has been previously demonstrated in the forced swimming test. However, the mechanism of this beneficial effect on immobility scores, which is used to evaluate antidepressants, remains largely uncharacterized. The present study attempts to investigate the effects of curcumin on depressive-like behavior with a focus upon the possible contribution of N-methyl-D-aspartate (NMDA) subtype glutamate receptors in this antidepressant-like effect of curcumin. Male mice were pretreated with specific receptor antagonists to different NMDA receptor subtypes such as CPP, NVP-AAM077 and Ro25-6981 as well as to a partial NMDA receptor agonist, D-cycloserine (DCS), prior to administration of curcumin to observe the effects on depressive behavior as measured by immobility scores in the forced swim test. We found that pre-treatment of mice with CPP, a broad-spectrum competitive NMDA receptor antagonist, blocked the anti-immobility effect of curcumin, suggesting the involvement of the glutamate-NMDA receptors. While pretreatment with NVP-AAM077 (the GluN2A-preferring antagonist) did not affect the anti-immobility effect of curcumin, Ro25-6981 (the GluN2B-preferring antagonist) was found to prevent the effect of curcumin in the forced swimming test. Furthermore, pre-treatment with a sub-effective dose of DCS potentiated the anti-immobility effect of a sub-effective dose of curcumin in the forced swimming test. Taken together, these results suggest that curcumin shows antidepressant-like effects in mice and the activation of GluN2B-containing NMDARs is likely to play a predominate role in this beneficial effect. Therefore, the antidepressant-like effect of curcumin in the forced swim test may be mediated, at least in part, by the glutamatergic system.

  12. Structural insights into competitive antagonism in NMDA receptors

    PubMed Central

    Jespersen, Annie; Tajima, Nami; Fernandez-Cuervo, Gabriela; Garnier-Amblard, Ethel C.; Furukawa, Hiro

    2014-01-01

    Summary There has been a great level of enthusiasm to down-regulate overactive N-methyl-d-aspartate (NMDA) receptors to protect neurons from excitotoxicity. NMDA receptors play pivotal roles in basic brain development and functions as well as in neurological disorders and diseases. However, mechanistic understanding of antagonism in NMDA receptors is limited due to complete lack of antagonist-bound structures for the l-glutamate-binding GluN2 subunits. Here we report the crystal structures of GluN1/GluN2A NMDA receptor ligand-binding domain (LBD) heterodimers in complex with GluN1- and GluN2-targeting antagonists. The crystal structures reveal that the antagonists, D-(−)-2-Amino-5-phosphonopentanoic acid (d-AP5) and 1-(Phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), have discrete binding modes and mechanisms for opening of the bilobed architecture of GluN2A LBD compared to the agonist-bound form. The current study shows distinct ways by which the conformations of NMDA receptor LBDs may be controlled and coupled to receptor inhibition and provides possible strategies to develop therapeutic compounds with higher subtype-specificity. PMID:24462099

  13. Cortical hypometabolism demonstrated by PET in relapsing NMDA receptor encephalitis.

    PubMed

    Pillai, Sekhar C; Gill, Deepak; Webster, Richard; Howman-Giles, Robert; Dale, Russell C

    2010-09-01

    N-methyl-d-aspartate (NMDA) receptor encephalitis is a newly defined type of autoimmune encephalitis. Two girls (age 3 years, case 1, and 7 years, case 2) with relapsing NMDA receptor encephalitis each had the classic clinical features of encephalopathy, movement disorders, psychiatric symptoms, seizures, insomnia, and mild autonomic dysfunction. Both patients had persistent neuropsychiatric disability, despite immune therapies. Positron emission tomography (PET) scans were performed during clinical relapse at 6 weeks (case 1) and 5 months (case 2). In both cases, the scans demonstrated reduced fluorodeoxyglucose metabolism in the cerebral cortex, with the temporal regions being most affected. PET imaging was more sensitive than magnetic resonance imaging in these patients. In contrast, the one previous report of acute NMDA receptor encephalitis indicated cortical hypermetabolism. Thus, NMDA receptor encephalitis may be associated with variable PET findings, possibly dependent upon the timing of the study, or other factors. Future studies should investigate whether cortical hypometabolism is associated with a relapsing course, and whether it is predictive of a poorer outcome in NMDA receptor encephalitis.

  14. NMDA receptor is involved in neuroinflammation in intracerebroventricular colchicine-injected rats.

    PubMed

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa

    2016-07-01

    The neurodegeneration in intracerebroventricular (icv) colchicine injected (ICIR) rats is linked with neuroinflammation. Glutamate excitotoxicity through NMDA receptors is involved with the neuroinflammation in some animal models of Alzheimer Disease (AD), but it has not been explored in ICIR rats. The aim of this study was to investigate the role of NMDA receptors (by blocking it's activity with memantine) in colchicine-induced neuroinflammation and neurodegeneration and impacts on peripheral immune parameters in ICIR rats. Levels of inflammatory markers (IL-1β, TNFα, ROS, nitrite) in the hippocampus and serum, histopathology of the hippocampus and select peripheral immune parameters were measured 14 and 21-days after icv colchicine injection in rats. These parameters were also measured in rats that received daily per os administration of memantine (20 mg/kg) in both study durations. Neuroinflammation in the hippocampus of ICIR rats was associated with neurodegeneration (chromatolysis, plaque formation), along with changes in inflammatory markers in the serum and alterations in peripheral immune parameters (phagocytic activity of WBC and splenic PMN, cytotoxic activity/leukocyte adhesion inhibition by splenic MNC). Administration of memantine to ICIR rats resulted in mitigation of colchicine-induced inflammation in the hippocampus, inflammatory markers in the serum and neurodegeneration and also led to recovery of the measured immune endpoints; most of these effects were greater with the longer duration of study. Phagocytic activity of WBC and splenic PMN cells appeared to correlate with levels of the measured central inflammatory markers. It appears from the results that neuroinflammation might be linked with the NMDA receptor activity in ICIR rats and that this receptor is involved in the process of progressive neuroinflammation and neurodegeneration in the hippocampus of ICIR and potentially in immunomodulation in these same hosts.

  15. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice.

    PubMed

    Walker, Adam K; Budac, David P; Bisulco, Stephanie; Lee, Anna W; Smith, Robin A; Beenders, Brent; Kelley, Keith W; Dantzer, Robert

    2013-08-01

    We have previously demonstrated that lipopolysaccharide (LPS) induces depressive-like behavior by activating indoleamine 2,3 dioxygenase (IDO; O'Connor et al, 2009c). IDO degrades tryptophan along the kynurenine pathway. Using mass-spectrometry (LC-MS) analysis of kynurenine metabolites in the brain of mice injected at the periphery with 1 mg/kg LPS, we show that LPS activates the kynurenine 3-monooxygenase pathway that ultimately degrades kynurenine into quinolinic acid. As quinolinic acid acts as an N-methyl-D-aspartate (NMDA) receptor agonist, we used the NMDA receptor antagonist ketamine to assess the role of NMDA receptor activation in LPS-induced depressive-like behavior. Here, we report that a low dose of ketamine (6 mg/kg, intraperitoneally) immediately before administration of LPS (0.83 mg/kg, intraperitoneally) in C57Bl/6 J mice abrogated the development of LPS-induced depressive-like behavior, without altering LPS-induced sickness measured by body weight loss, decreased motor activity, and reduced food intake. Depressive-like behavior was measured 24 h after LPS by decreased sucrose preference and increased immobility in the forced swim test (FST). Ketamine had no effect on LPS-induced cytokine expression in the liver and brain, IDO activation, and brain-derived neurotrophic factor (BDNF) transcripts. The ability of ketamine to abrogate LPS-induced depressive-like behavior independently of a possible interference with LPS-induced inflammatory signaling was confirmed when ketamine was administered 10 h after LPS instead of immediately before LPS. In contrast, ketamine had no effect when administered 24 h before LPS. To confirm that NMDA receptor antagonism by ketamine mediates the antidepressant-like activity of this compound in LPS-treated mice, mice were pretreated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione (NBQX) to block enhanced AMPA

  16. The novel induction of retinal ganglion cell apoptosis in porcine organ culture by NMDA - an opportunity for the replacement of animals in experiments.

    PubMed

    Kuehn, Sandra; Hurst, Jose; Jashari, Adelina; Ahrens, Kathrin; Tsai, Teresa; Wunderlich, Ilan M; Dick, H Burkhard; Joachim, Stephanie C; Schnichels, Sven

    2016-12-01

    Some of the advantages of retina organ culture models include their efficient and easy handling and the ability to standardise relevant parameters. Additionally, when porcine eyes are obtained from the food industry, no animals are killed solely for research purposes. To induce retinal degeneration, a commonly used toxic substance, N-methyl-D-aspartate (NMDA), was applied to the cultures. To this end, organotypic cultures of porcine retinas were cultured and treated with different doses of NMDA (0 [control], 50, 100 and 200μM) on day 2 for 48 hours. On day 7, the retinas were cryo-conserved for histological, Western blot and quantitative rt-PCR (qrt-PCR) analyses. NMDA treatment was found to significantly increase retinal ganglion cell (RGC) apoptosis in all the treated groups, without a profound RGC loss. In addition, the intrinsic apoptotic pathway was activated in the 50μM and 100μM NMDA groups, whereas induced nitric oxide synthase (iNOS) expression was increased in the 200μM group. A slight microglial response was detectable, especially in the 100μM group. NMDA treatment induced apoptosis, oxidative stress and a slight microglia activation. All these effects mimic a chronic slow progressive disease that especially affects RGCs, such as glaucoma. A particular advantage of this model is that mediators that can interact in the very early stages of the onset of RGC death, can be easily detected and potential therapies can be tested.

  17. Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors

    PubMed Central

    Maya-López, Marisol; Colín-González, Ana Laura; Aguilera, Gabriela; de Lima, María Eduarda; Colpo-Ceolin, Ana; Rangel-López, Edgar; Villeda-Hernández, Juana; Rembao-Bojórquez, Daniel; Túnez, Isaac; Luna-López, Armando; Lazzarini-Lechuga, Roberto; González-Puertos, Viridiana Yazmín; Posadas-Rodríguez, Pedro; Silva-Palacios, Alejandro; Königsberg, Mina; Santamaría, Abel

    2017-01-01

    The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity. Actually, CBr agonists can be neuroprotective. The synthetic CBr agonist WIN55,212-2 acts mainly on CB1 receptor. In turn, the mitochondrial toxin 3-nitropropionic acid (3-NP) produces striatal alterations in rats similar to those observed in the brain of Huntington’s disease patients. Herein, the effects of WIN55,212-2 were tested on different endpoints of the 3-NP-induced toxicity in rat brain synaptosomes and striatal tissue. Motor activity was also evaluated. The 3-NP (1 mM)-induced mitochondrial dysfunction and lipid peroxidation was attenuated by WIN55,212-2 (1 µM) in synaptosomal fractions. The intrastriatal bilateral injection of 3-NP (500 nmol/µL) to rats increased lipid peroxidation and locomotor activity, augmented the rate of cell damage, and decreased the striatal density of neuronal cells. These alterations were accompanied by transcriptional changes in the NMDA (NR1 subunit) content. The administration of WIN55212-2 (1 mg/kg, i.p.) to rats for six consecutive days, before the 3-NP injection, exerted preventive effects on all alterations elicited by the toxin. The prevention of the 3-NP-induced NR1 transcriptional alterations by the CBr agonist together with the increase of CB1 content suggest an early reduction of the excitotoxic process via CBr activation. Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies. PMID:28337258

  18. Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors.

    PubMed

    Maya-López, Marisol; Colín-González, Ana Laura; Aguilera, Gabriela; de Lima, María Eduarda; Colpo-Ceolin, Ana; Rangel-López, Edgar; Villeda-Hernández, Juana; Rembao-Bojórquez, Daniel; Túnez, Isaac; Luna-López, Armando; Lazzarini-Lechuga, Roberto; González-Puertos, Viridiana Yazmín; Posadas-Rodríguez, Pedro; Silva-Palacios, Alejandro; Königsberg, Mina; Santamaría, Abel

    2017-01-01

    The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity. Actually, CBr agonists can be neuroprotective. The synthetic CBr agonist WIN55,212-2 acts mainly on CB1 receptor. In turn, the mitochondrial toxin 3-nitropropionic acid (3-NP) produces striatal alterations in rats similar to those observed in the brain of Huntington's disease patients. Herein, the effects of WIN55,212-2 were tested on different endpoints of the 3-NP-induced toxicity in rat brain synaptosomes and striatal tissue. Motor activity was also evaluated. The 3-NP (1 mM)-induced mitochondrial dysfunction and lipid peroxidation was attenuated by WIN55,212-2 (1 µM) in synaptosomal fractions. The intrastriatal bilateral injection of 3-NP (500 nmol/µL) to rats increased lipid peroxidation and locomotor activity, augmented the rate of cell damage, and decreased the striatal density of neuronal cells. These alterations were accompanied by transcriptional changes in the NMDA (NR1 subunit) content. The administration of WIN55212-2 (1 mg/kg, i.p.) to rats for six consecutive days, before the 3-NP injection, exerted preventive effects on all alterations elicited by the toxin. The prevention of the 3-NP-induced NR1 transcriptional alterations by the CBr agonist together with the increase of CB1 content suggest an early reduction of the excitotoxic process via CBr activation. Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies.

  19. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    SciTech Connect

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr. )

    1991-04-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.

  20. Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats.

    PubMed

    Sengupta, Trina; Jaryal, Ashok Kumar; Mallick, Hruda Nanda

    2016-10-01

    Glutamate when microinjected at the medial preoptic area (mPOA) influences brain temperature (Tbr) and body temperature (Tb) in rats. Glutamate and its various receptors are present at the mPOA. The aim of this study was to identify the contribution of each of the ionotropic glutamatergic receptors at the mPOA on changes in Tbr and Tb in freely moving rats. Adult male Wistar rats (n=40) were implanted with bilateral guide cannula with indwelling styli above the mPOA. A telemetric transmitter was implanted at the peritoneum to record Tb and locomotor activity (LMA). A precalibrated thermocouple wire implanted near the hypothalamus was used to assess Tbr. Specific agonist for each ionotropic glutamate receptor was microinjected into the mPOA and its effects on temperature and LMA were measured in the rats. The rats were also microinjected with the respective ionotropic receptor antagonists, 15min prior to the microinjection of each agonist. Amongst amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA) and kainic acid, AMPA increased Tb and LMA when injected at the mPOA. Specific antagonists for AMPA receptors was able to attenuate this increase (p<0.005). Pharmacological blockade of NMDA was able to lower Tbr only. Microinjection of kainic acid and its antagonist had no effect on the variables. The finding of the study suggests that activation of the AMPA receptors at the mPOA, leads to the rise in body temperature.

  1. 5-HT(1A) and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning.

    PubMed

    Elvander-Tottie, Elin; Eriksson, Therese M; Sandin, Johan; Ogren, Sven Ove

    2009-12-01

    Cholinergic and GABAergic neurons in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) projecting to the hippocampus, constitute the septohippocampal projection, which is important for hippocampal-dependent learning and memory. There is also evidence for an extrinsic as well as an intrinsic glutamatergic network within the MS/vDB. GABAergic and cholinergic septohippocampal neurons express the serotonergic 5-HT(1A) receptor and most likely also glutamatergic NMDA receptors. The aim of the present study was to examine whether septal 5-HT(1A) receptors are important for hippocampal-dependent long-term memory and whether these receptors interact with glutamatergic NMDA receptor transmission in a manner important for hippocampal-dependent spatial memory. Intraseptal infusion of the 5-HT(1A) receptor agonist (R)-8-OH-DPAT (1 or 4 microg/rat) did not affect spatial learning in the water maze task but impaired emotional memory in the passive avoidance task at the higher dose tested (4 microg/rat). While intraseptal administration of (R)-8-OH-DPAT (4 microg) combined with a subthreshold dose of the NMDA receptor antagonist D-AP5 (1 microg) only marginally affected spatial acquisition, it produced a profound impairment in spatial memory. In conclusion, septal 5-HT(1A) receptors appears to play a more prominent role in emotional than in spatial memory. Importantly, septal 5-HT(1A) and NMDA receptors appear to interact in a manner, which is particularly critical for the expression or retrieval of hippocampal-dependent long-term spatial memory. It is proposed that NMDA receptor hypofunction in the septal area may unmask a negative effect of 5-HT(1A) receptor activation on memory, which may be clinically relevant.

  2. Batten augmented triangular beam

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.; Hedgepeth, John M.

    1986-01-01

    The BAT (Batten-Augmented Triangular) BEAM is characterized by battens which are buckled in the deployed state, thus preloading the truss. The preload distribution is determined, and the effects of various external loading conditions are investigated. The conceptual design of a deployer is described and loads are predicted. The influence of joint imperfections on effective member stiffness is investigated. The beam is assessed structurally.

  3. Neuroprotective effects of creatine administration against NMDA and malonate toxicity.

    PubMed

    Malcon, C; Kaddurah-Daouk, R; Beal, M F

    2000-03-31

    We examined whether creatine administration could exert neuroprotective effects against excitotoxicity mediated by N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid. Oral administration of 1% creatine significantly attenuated striatal excitotoxic lesions produced by NMDA, but had no effect on lesions produced by AMPA or kainic acid. Both creatine and nicotinamide can exert significant protective effects against malonate-induced striatal lesions. We, therefore, examined whether nicotinamide could exert additive neuroprotective effects with creatine against malonate-induced lesions. Nicotinamide with creatine produced significantly better neuroprotection than creatine alone against malonate-induced lesions. Creatine can, therefore, produce significant neuroprotective effects against NMDA mediated excitotoxic lesions in vivo and the combination of nicotinamide with creatine exerts additive neuroprotective effects.

  4. Simple Implant Augmentation Rhinoplasty

    PubMed Central

    Nguyen, Anh H.; Bartlett, Erica L.; Kania, Katarzyna; Bae, Sang Mo

    2015-01-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  5. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  6. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels

    PubMed Central

    Martina, Marzia; Gorfinkel, Yelena; Halman, Samantha; Lowe, John A; Periyalwar, Pranav; Schmidt, Christopher J; Bergeron, Richard

    2004-01-01

    Long-term potentiation (LTP) in the hippocampal CA1 region requires the activation of NMDA receptors (NMDARs). NMDAR activation in turn requires membrane depolarization as well as the binding of glutamate and its coagonist glycine. Previous pharmacological studies suggest that the glycine transporter type 1 (GlyT1) maintains subsaturating concentrations of glycine at synaptic NMDARs. Antagonists of GlyT1 increase levels of glycine in the synaptic cleft and, like direct glycine site agonists, can augment NMDAR currents and NMDAR-mediated functions such as LTP. In addition, stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. We have used a new potent GlyT1 antagonist, CP-802,079, with whole-cell patch-clamp recordings in acute rat hippocampal slices to determine the effect of GlyT1 blockade on LTP. Reverse microdialysis experiments in the hippocampus of awake, freely moving rats, showed that this drug elevated only the extracellular concentration of glycine. We found that CP-802,079, sarcosine and glycine significantly increased the amplitude of the NMDAR currents and LTP. In contrast, application of higher concentrations of CP-802,079 and glycine slightly reduced NMDAR currents and did not increase LTP. Overall, these data suggest that the level of glycine present in the synaptic cleft tightly regulates the NMDAR activity. This level is kept below the ‘set point’ of the NMDAR internalization priming mechanism by the presence of GlyT1-dependent uptake. PMID:15064326

  7. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  8. 17beta-estradiol at physiological concentrations augments Ca(2+) -activated K+ currents via estrogen receptor beta in the gonadotropin-releasing hormone neuronal cell line GT1-7.

    PubMed

    Nishimura, Ichiro; Ui-Tei, Kumiko; Saigo, Kaoru; Ishii, Hirotaka; Sakuma, Yasuo; Kato, Masakatsu

    2008-02-01

    Estrogens play essential roles in the neuroendocrine control of reproduction. In the present study, we focused on the effects of 17beta-estradiol (E2) on the K(+) currents that regulate neuronal cell excitability and carried out perforated patch-clamp experiments with the GnRH-secreting neuronal cell line GT1-7. We revealed that a 3-d incubation with E2 at physiological concentrations (100 pm to 1 nm) augmented Ca(2+)-activated K(+) [K(Ca)] currents without influencing Ca(2+)-insensitive voltage-gated K(+) currents in GT1-7 cells. Acute application of E2 (1 nm) had no effect on the either type of K(+) current. The augmentation was completely blocked by an estrogen receptor (ER) antagonist, ICI-182,780. An ERbeta-selective agonist, 2,3-bis(4-hydroxyphenyl)-propionitrile, augmented the K(Ca) currents, although an ERalpha-selective agonist, 4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-phenol, had no effect. Knockdown of ERbeta by means of RNA interference blocked the effect of E2 on the K(Ca) currents. Furthermore, semiquantitative RT-PCR analysis revealed that the levels of BK channel subunit mRNAs for alpha and beta4 were significantly increased by incubating cells with 300 pm E2 for 3 d. In conclusion, E2 at physiological concentrations augments K(Ca) currents through ERbeta in the GT1-7 GnRH neuronal cell line and increases the expression of the BK channel subunit mRNAs, alpha and beta4.

  9. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus.

    PubMed

    Zhang, Xi; Zhang, Quanguang; Tu, Jingyi; Zhu, Ying; Yang, Fang; Liu, Bin; Brann, Darrell; Wang, Ruimin

    2015-03-01

    Ischemic postconditioning (Post C), which involves administration of a brief ischemia after the initial ischemic event, has been demonstrated to be strongly neuroprotective against global cerebral ischemia (GCI) and to improve cognitive outcome. To enhance understanding of the underlying mechanisms, the current study examined the role of NMDA receptors in mediating the beneficial effects of Post C (3 min ischemia) administered 2 days after GCI in adult male rats. The results revealed that Post C was strongly neuroprotective against GCI, and that this effect was blocked by administration of the NMDA receptor antagonist MK-801. Further work revealed that the NR2A-type NMDA receptors mediate the Post C beneficial effects as administration of a NR2A-preferring antagonist (NVP-A) blocked Post C neuroprotection and cognitive enhancement, while administration of a NR2B-preferring antagonist (Ro25) was without effect. Post C significantly up-regulated NR2A levels and phosphorylation of NR2A in the hippocampal CA1 region after Post C. Post C also increased Ca(2+) influx and activation/phosphorylation of CamKIIα at Thr(286), effects that were NR2A mediated as they were blocked by NVP-A. Phosphorylation of ERK and CREB was also increased by Post C, as were two downstream CREB-dependent prosurvival factors, brain derived neurotropic factor (BDNF) and Bcl2, effects that were blocked by the NR2A antagonist, NVP-A. Taken as a whole, the current study provides evidence that NR2A-activation and downstream prosurvival signaling is a critical mediator of Post C-induced neuroprotection and cognitive enhancement following GCI.

  10. (+)-Pentazocine Reduces NMDA-Induced Murine Retinal Ganglion Cell Death Through a σR1-Dependent Mechanism

    PubMed Central

    Zhao, Jing; Mysona, Barbara A.; Qureshi, Azam; Kim, Lily; Fields, Taylor; Gonsalvez, Graydon B.; Smith, Sylvia B.; Bollinger, Kathryn E.

    2016-01-01

    Purpose To evaluate, in vivo, the effects of the sigma-1 receptor (σR1) agonist, (+)-pentazocine, on N-methyl-D-aspartate (NMDA)-mediated retinal excitotoxicity. Methods Intravitreal NMDA injections were performed in C57BL/6J mice (wild type [WT]) and σR1−/− (σR1 knockout [KO]) mice. Fellow eyes were injected with phosphate-buffered saline (PBS). An experimental cohort of WT and σR1 KO mice was administered (+)-pentazocine by intraperitoneal injection, and untreated animals served as controls. Retinas derived from mice were flat-mounted and labeled for retinal ganglion cells (RGCs). The number of RGCs was compared between NMDA and PBS-injected eyes for all groups. Apoptosis was assessed using TUNEL assay. Levels of extracellular-signal–regulated kinases (ERK1/2) were analyzed by Western blot. Results N-methyl-D-aspartate induced a significant increase in TUNEL-positive nuclei and a dose-dependent loss of RGCs. Mice deficient in σR1 showed greater RGC loss (≈80%) than WT animals (≈50%). (+)-Pentazocine treatment promoted neuronal survival, and this effect was prevented by deletion of σR1. (+)-Pentazocine treatment resulted in enhanced activation of ERK at the 6-hour time point following NMDA injection. The (+)-pentazocine–induced ERK activation was diminished in σR1 KO mice. Conclusions Targeting σR1 activation prevented RGC death while enhancing activation of the mitogen-activated protein kinase (MAPK), ERK1/2. Sigma-1 receptor is a promising therapeutic target for retinal neurodegenerative diseases. PMID:26868747

  11. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Szewczyk, Bernadeta; Wlaź, Aleksandra; Kasperek, Regina; Wróbel, Andrzej; Nowak, Gabriel

    2011-11-01

    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and D: -cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and D: -cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or D: -cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and D: -cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by D: -serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway.

  12. Mutually Augmented Cognition

    NASA Astrophysics Data System (ADS)

    Friesdorf, Florian; Pangercic, Dejan; Bubb, Heiner; Beetz, Michael

    In mac, an ergonomic dialog-system and algorithms will be developed that enable human experts and companions to be integrated into knowledge gathering and decision making processes of highly complex cognitive systems (e.g. Assistive Household as manifested further in the paper). In this event we propose to join algorithms and methodologies coming from Ergonomics and Artificial Intelligence that: a) make cognitive systems more congenial for non-expert humans, b) facilitate their comprehension by utilizing a high-level expandable control code for human experts and c) augment representation of such cognitive system into “deep representation” obtained through an interaction with human companions.

  13. The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea

    PubMed Central

    2010-01-01

    Background Memory is the ability to store, retain, and later retrieve information that has been learned. Intermediate term memory (ITM) that persists for up to 3 h requires new protein synthesis. Long term memory (LTM) that persists for at least 24 h requires: DNA transcription, RNA translation, and the trafficking of newly synthesized proteins. It has been shown in a number of different model systems that NMDA receptors, protein kinase C (PKC) and mitogen activated protein kinase (MAPK) are all involved in the memory formation process. Results Here we show that snails trained in control conditions are capable of forming, depending on the training procedure used, either ITM or LTM. However, blockage of NMDA receptors (MK 801), inhibition of PKC (GF109203X hydrochloride) and MAPK activity (UO126) prevent the formation of both ITM and LTM. Conclusions The injection of either U0126 or GF109203X, which inhibit MAPK and PKC activity respectively, 1 hour prior to training results in the inhibition of both ITM and LTM formation. We further found that NMDA receptor activity was necessary in order for both ITM and LTM formation. PMID:20807415

  14. Thinking outside the synapse: glycine at extrasynaptic NMDA receptors.

    PubMed

    Gray, John A; Nicoll, Roger A

    2012-08-03

    In this issue, Papouin et al. show that glycine is the endogenous coagonist for extrasynaptic NMDA receptors (NMDARs), unlike at synapses where the coagonist is d-serine. By enzymatically degrading endogenous glycine, they begin to address the enigmatic physiological and pathological roles for extrasynaptic NMDARs.

  15. Specific Roles of NMDA Receptor Subunits in Mental Disorders

    PubMed Central

    Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K.

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed. PMID:25817860

  16. [Anti-NMDA receptor encephalitis: two paediatric cases].

    PubMed

    González-Toro, M Cristina; Jadraque-Rodríguez, Rocío; Sempere-Pérez, Ángela; Martínez-Pastor, Pedro; Jover-Cerdá, Jenaro; Gómez-Gosálvez, Francisco

    2013-12-01

    Introduccion. La encefalitis asociada a anticuerpos antirreceptores de N-metil-D-aspartato (NMDA) es una patologia neurologica autoinmune documentada en la poblacion pediatrica de manera creciente en los ultimos años. Se presentan dos casos de nuestra experiencia con clinica similar. Casos clinicos. Caso 1: niña de 5 años que inicia un cuadro de convulsiones y alteracion de conciencia, asociando trastornos del movimiento y regresion de habilidades previamente adquiridas que evoluciona a autismo. Caso 2: niña de 13 años que presenta hemiparesia izquierda, movimientos anomalos, trastorno de conducta y disautonomia. En ambos casos se obtienen anticuerpos antirreceptores de NMDA positivos en el liquido cefalorraquideo y se diagnostican de encefalitis antirreceptor de NMDA. En el primer caso se inicia el tratamiento con perfusion intravenosa de corticoides e inmunoglobulinas y es necesario asociar rituximab. En el segundo, corticoides e inmunoglobulinas. La evolucion fue favorable en ambas pacientes, con una leve alteracion del lenguaje como secuela en el primer caso y una recaida en el segundo caso, con resolucion completa. Conclusion. La encefalitis antirreceptor de NMDA es un trastorno tratable y es importante el diagnostico y tratamiento precoz, ya que mejora el pronostico y disminuye las recaidas.

  17. [Two cases of anti-NMDA receptor encephalitis].

    PubMed

    Nakamura, Kazue; Takahashi, Tsutomu; Matsuoka, Tadasu; Kido, Mikio; Uehara, Takashi; Suzuki, Michio

    2011-01-01

    Anti-NMDA receptor encephalitis, reported by Dalmau et al., is a paraneoplastic encephalitis frequently associated with ovarian teratoma. After the manifestation of schizophrenia-like psychotic symptoms in the initial stage, serious neurological symptoms such as convulsions and central hypoventilation develop. We report two cases of 17-year-old girls with anti-NMDA receptor encephalitis who exhibited different clinical courses. Case 1 showed a typical course of anti-NMDA receptor encephalitis associated with sustained consciousness disturbance requiring long-term artificial respiration. Case 2 underwent surgery for an ovarian teratoma in the early stages of the disorder, did not show convulsions or central hypoventilation, and recovered without any sequelae. Early resection of the ovarian teratoma and the immune suppression therapy may have contributed to the rapid recovery and favorable outcome in case 2. Psychiatrists are the first to see a majority of patients with anti-NMDA receptor encephalitis because of psychiatric symptoms and behavioral changes observed in the initial stage. For successful treatment, psychiatrists need to cooperate with neurologists and gynecologists early in the course of this disorder. Psychiatrists' knowledge of the symptoms and clinical course of this form of encephalitis is essential for early detection and adequate treatment, which may be life-saving and contribute to good functional outcomes.

  18. [Anti-NMDA-receptor encephalitis. An interdisciplinary clinical picture].

    PubMed

    Prüss, H; Dalmau, J; Arolt, V; Wandinger, K-P

    2010-04-01

    Anti-NMDA-receptor encephalitis is a severe and considerably underdiagnosed form of encephalitis with characteristic clinical features including psychiatric symptoms, decreased levels of consciousness, hypoventilation, epileptic seizures, autonomic dysfunction and dyskinesias. Most patients are primarily seen by psychiatrists, often on the assumption of a drug-induced psychosis. Anti-NMDA-receptor encephalitis had initially been described in young women with ovarian teratoma, but is also common in women without tumour, in men and in children. The diagnosis is based on the characteristic clinical picture, supporting findings of brain MRI, electroencephalogram and cerebrospinal fluid (CSF), and the presence of highly specific autoantibodies directed against the NR1 subunit of NMDA-type glutamate receptors in the serum or CSF. In particular, anti-NMDA-receptor encephalitis must be excluded in patients with 'encephalitis of unknown cause'. In principle, the prognosis is favourable and recovery from symptoms can be expected even after prolonged intensive care treatment and mechanical ventilation. However, improvement correlates with prompt identification of the disorder, early immunotherapy and - in the case of a malignancy - with complete tumour removal. Patient care requires an interdisciplinary approach including neurologists, psychiatrists, paediatricians, oncologists and gynaecologists.

  19. GABAA overactivation potentiates the effects of NMDA blockade during the brain growth spurt in eliciting locomotor hyperactivity in juvenile mice.

    PubMed

    Oliveira-Pinto, Juliana; Paes-Branco, Danielle; Cristina-Rodrigues, Fabiana; Krahe, Thomas E; Manhães, Alex C; Abreu-Villaça, Yael; Filgueiras, Cláudio C

    2015-01-01

    Both NMDA receptor blockade and GABAA receptor overactivation during the brain growth spurt may contribute to the hyperactivity phenotype reminiscent of attention-deficit/hyperactivity disorder. Here, we evaluated the effects of exposure to MK801 (a NMDA antagonist) and/or to muscimol (a GABAA agonist) during the brain growth spurt on locomotor activity of juvenile Swiss mice. This study was carried out in two separate experiments. In the first experiment, pups received a single i.p. injection of either saline solution (SAL), MK801 (MK, 0.1, 0.3 or 0.5 mg/kg) or muscimol (MU, 0.02, 0.1 or 0.5 mg/kg) at the second postnatal day (PND2), and PNDs 4, 6 and 8. In the second experiment, we investigated the effects of a combined injection of MK (0.1 mg/kg) and MU (doses: 0.02, 0.1 or 0.5 mg/kg) following the same injection schedule of the first experiment. In both experiments, locomotor activity was assessed for 15 min at PND25. While MK promoted a dose-dependent increase in locomotor activity, exposure to MU failed to elicit significant effects. The combined exposure to the highest dose of MU and the lowest dose of MK induced marked hyperactivity. Moreover, the combination of the low dose of MK and the high dose of MU resulted in a reduced activity in the center of the open field, suggesting an increased anxiety-like behavior. These findings suggest that, during the brain growth spurt, the blockade of NMDA receptors induces juvenile locomotor hyperactivity whereas hyperactivation of GABAA receptors does not. However, GABAA overactivation during this period potentiates the effects of NMDA blockade in inducing locomotor hyperactivity.

  20. Hearing Loss: Hearing Augmentation.

    PubMed

    Atcherson, Samuel R; Moreland, Christopher; Zazove, Philip; McKee, Michael M

    2015-07-01

    Etiologies of hearing loss vary. When hearing loss is diagnosed, referral to an otology subspecialist, audiology subspecialist, or hearing aid dispenser to discuss treatment options is appropriate. Conventional hearing aids provide increased sound pressure in the ear canal for detection of sounds that might otherwise be soft or inaudible. Hearing aids can be used for sensorineural, conductive, or mixed hearing loss by patients with a wide range of hearing loss severity. The most common type of hearing loss is high-frequency, which affects audibility and perception of speech consonants, but not vowels. As the severity of hearing loss increases, the benefit of hearing aids for speech perception decreases. Implantable devices such as cochlear implants, middle ear implants, and bone-anchored implants can benefit specific patient groups. Hearing assistive technology devices provide auditory, visual, or tactile information to augment hearing and increase environmental awareness of sounds. Hearing assistive devices include wireless assistive listening device systems, closed captioning, hearing aid-compatible telephones, and other devices. For some patients, financial barriers and health insurance issues limit acquisition of hearing aids, implantable devices, and hearing assistive devices. Physicians should be aware that for some patients and families, hearing augmentation may not be desired for cultural reasons.