Science.gov

Sample records for activation cell migration

  1. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. Stem Cells 2016;34:948-959. PMID:26727165

  2. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    PubMed

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  3. Cell migration.

    PubMed

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2012-10-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  4. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  5. ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration.

    PubMed

    Yuan, Liangping; Santi, Mariarita; Rushing, Elisabeth J; Cornelison, Robert; MacDonald, Tobey J

    2010-10-01

    We previously identified that overexpression of the platelet-derived growth factor receptor (PDGFR) is associated with metastatic medulloblastoma (MB) and showed that PDGF treatment increases ERK activity and promotes MB cell migration. In this study, we investigated whether ERK regulates Rac1/Pak1 signaling and is critically linked to MB cell migration. Herein we demonstrate that PDGF-BB treatment of MB cells induces concomitant activation of PDGFRβ, MEK1/ERK, Rac1 and Pak1, but suppresses Rho activity, which together significantly promotes cell migration. Conversely, cells transfected with either PDGFRβ or Pak1 siRNA or treated with an inhibitor of Rac1 (NSC23766) or N-myristoyltransferase-1 (Tris-dipalladium) are unable to activate Rac1 or Pak1 in response to PDGF, and consequently, are unable to undergo PDGF-mediated cell migration. Furthermore, we also demonstrate that either chemical inhibition of MEK/ERK (U0126) or stable downregulation of PDGFRβ by shRNA similarly results in the loss of PDGF-induced ERK phosphorylation and abolishes Rac1/Pak1 activation and cell migration in response to PDGF. However, specific depletion of Pak1 by siRNA has no effect on PDGF-induced ERK phosphorylation, indicating that in MB cells ERK signaling is Pak1-independent, but PDGF-induced migration is dependent on ERK-mediated activation of Pak1. Finally, using tissue microarrays, we detect phosphorylated Pak1 in 53% of medulloblastomas and show that immunopositivity is associated with unfavorable outcome. We conclude that Rac1/Pak1 signaling is critical to MB cell migration and is functionally dependent on PDGFRβ/ERK activity. PMID:20526801

  6. ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration

    PubMed Central

    Yuan, Liangping; Santi, Mariarita; Rushing, Elisabeth J.; Cornelison, Robert

    2010-01-01

    We previously identified that overexpression of the platelet-derived growth factor receptor (PDGFR) is associated with metastatic medulloblastoma (MB) and showed that PDGF treatment increases ERK activity and promotes MB cell migration. In this study, we investigated whether ERK regulates Rac1/Pak1 signaling and is critically linked to MB cell migration. Herein we demonstrate that PDGF-BB treatment of MB cells induces concomitant activation of PDGFRβ, MEK1/ERK, Rac1 and Pak1, but suppresses Rho activity, which together significantly promotes cell migration. Conversely, cells transfected with either PDGFRβ or Pak1 siRNA or treated with an inhibitor of Rac1 (NSC23766) or N-myristoyltransferase-1 (Tris-dipalladium) are unable to activate Rac1 or Pak1 in response to PDGF, and consequently, are unable to undergo PDGF-mediated cell migration. Furthermore, we also demonstrate that either chemical inhibition of MEK/ ERK (U0126) or stable downregulation of PDGFRβ by shRNA similarly results in the loss of PDGF-induced ERK phosphorylation and abolishes Rac1/Pak1 activation and cell migration in response to PDGF. However, specific depletion of Pak1 by siRNA has no effect on PDGF-induced ERK phosphorylation, indicating that in MB cells ERK signaling is Pak1-independent, but PDGF-induced migration is dependent on ERK-mediated activation of Pak1. Finally, using tissue microarrays, we detect phosphorylated Pak1 in 53% of medulloblastomas and show that immunopositivity is associated with unfavorable outcome. We conclude that Rac1/Pak1 signaling is critical to MB cell migration and is functionally dependent on PDGFRβ/ERK activity. PMID:20526801

  7. Activation of Rac1 by RhoG regulates cell migration.

    PubMed

    Katoh, Hironori; Hiramoto, Kiyo; Negishi, Manabu

    2006-01-01

    Cell migration is essential for normal development and many pathological processes. Rho-family small GTPases play important roles in this event. In particular, Rac regulates lamellipodia formation at the leading edge during migration. The small GTPase RhoG activates Rac through its effector ELMO and the ELMO-binding protein Dock180, which functions as a Rac-specific guanine nucleotide exchange factor. Here we investigated the role of RhoG in cell migration. RNA interference-mediated knockdown of RhoG in HeLa cells reduced cell migration in Transwell and scratch-wound migration assays. In RhoG-knockdown cells, activation of Rac1 and formation of lamellipodia at the leading edge in response to wounding were attenuated. By contrast, expression of active RhoG promoted cell migration through ELMO and Dock180. However, the interaction of Dock180 with Crk was dispensable for the activation of Rac1 and promotion of cell migration by RhoG. Taken together, these results suggest that RhoG contributes to the regulation of Rac activity in migrating cells. PMID:16339170

  8. Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3.

    PubMed

    Yao, Xiaoli; Liu, Hua; Zhang, Xinghua; Zhang, Liang; Li, Xiang; Wang, Changhua; Sun, Shengrong

    2015-01-01

    High levels of cell surface glucose regulated protein 78 (sGRP78) have been implicated in cancer growth, survival, metastasis, and chemotherapy resistance. However, the underlying mechanism remains largely unknown. Here we report that the level of sGRP78 expression in human breast tumors gradually increases during cancer progression. Overexpression of GRP78 significantly enhanced its membrane distribution in human MCF-7 breast cancer cells, but had no effect on endoplasmic reticulum (ER) stress. High levels of sGRP78 facilitated cell proliferation and migration, as well as suppressed cell apoptosis. Neutralization of sGRP78 by a specific antibody against GRP78 alleviated sGRP78-induced cell growth and migration. Importantly, high phosphorylation levels of the signal transducer and activator of transcription 3 (STAT3) were found in human breast tumors that express sGRP78 and MCF-7 cells infected with adenovirus encoding human GRP78. Pretreatment with a GRP78 antibody suppressed STAT3 phosphorylation. Furthermore, genetic and pharmacological inhibition of STAT3 reversed the impacts of GRP78 on cell proliferation, apoptosis, and migration. These findings indicate that STAT3 mediates sGRP78-promoted breast cancer cell growth and migration. PMID:25973748

  9. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.

    PubMed

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M; Meyer, Tobias; Heo, Won Do

    2016-09-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration. PMID:27555588

  10. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    SciTech Connect

    Arulanandam, Rozanne; Geletu, Mulu; Feracci, Helene; Raptis, Leda

    2010-03-10

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.

  11. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  12. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

    PubMed

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  13. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    PubMed Central

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  14. Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

    PubMed

    Crottès, David; Félix, Romain; Meley, Daniel; Chadet, Stéphanie; Herr, Florence; Audiger, Cindy; Soriani, Olivier; Vandier, Christophe; Roger, Sébastien; Angoulvant, Denis; Velge-Roussel, Florence

    2016-04-01

    Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization. PMID:27020659

  15. Piperine impairs the migration and T cell-activating function of dendritic cells.

    PubMed

    Rodgers, Gemma; Doucette, Carolyn D; Soutar, David A; Liwski, Robert S; Hoskin, David W

    2016-02-01

    Piperine, a major alkaloid found in the fruits of black and long pepper plants, has anti-inflammatory properties; however, piperine's effect on dendritic cell (DC) migration and T cell-activating function has not been investigated. Bone marrow-derived mouse DCs that were matured in the presence of 100 μM piperine showed reduced in vitro migration in response to CCL21, as well as reduced in vivo migration to lymph nodes. In addition, piperine-treated DCs had reduced CCR7 expression and elevated CCR5 expression, as well as reduced expression of CD40 and class II major histocompatibility complex molecules and decreased nuclear accumulation of RelB. DC production of interleukin (IL)-6, tumor necrosis factor α, and monocyte chemoattractant protein-1 in response to lipopolysaccharide stimulation was also reduced following piperine treatment. Exposure to piperine during maturation therefore caused DCs to retain an immature phenotype, which was associated with a reduced capacity to promote T cell activation since co-culture of ovalbumin (OVA323-339)-specific T cells with OVA323-339-pulsed DCs that were previously matured in the presence of piperine showed reduced interferon-γ and IL-2 expression. OVA323-339-specific T cell proliferation was also reduced in vivo in the presence of piperine-treated DCs. Inhibition of DC migration and function by piperine may therefore be a useful strategy to down-regulate potentially harmful DC-driven T cell responses to self-antigens and transplantation antigens. PMID:26640239

  16. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    NASA Astrophysics Data System (ADS)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  17. Distinct Migration and Contact Dynamics of Resting and IL-2-Activated Human Natural Killer Cells

    PubMed Central

    Olofsson, Per E.; Forslund, Elin; Vanherberghen, Bruno; Chechet, Ksenia; Mickelin, Oscar; Ahlin, Alexander Rivera; Everhorn, Tobias; Önfelt, Björn

    2013-01-01

    Natural killer (NK) cells serve as one of the first lines of defense against viral infections and transformed cells. NK cell cytotoxicity is not dependent on antigen presentation by target cells, but is dependent on integration of activating and inhibitory signals triggered by receptor–ligand interactions formed at a tight intercellular contact between the NK and target cell, i.e., the immune synapse. We have studied the single-cell migration behavior and target-cell contact dynamics of resting and interleukin (IL)-2-activated human peripheral blood NK cells. Small populations of NK cells and target cells were confined in microwells and imaged by fluorescence microscopy for >8 h. Only the IL-2-activated population of NK cells showed efficient cytotoxicity against the human embryonic kidney 293T target cells. We found that although the average migration speeds were comparable, activated NK cells showed significantly more dynamic migration behavior, with more frequent transitions between periods of low and high motility. Resting NK cells formed fewer and weaker contacts with target cells, which manifested as shorter conjugation times and in many cases a complete lack of post-conjugation attachment to target cells. Activated NK cells were approximately twice as big as the resting cells, displayed a more migratory phenotype, and were more likely to employ “motile scanning” of the target-cell surface during conjugation. Taken together, our experiments quantify, at the single-cell level, how activation by IL-2 leads to altered NK cell cytotoxicity, migration behavior, and contact dynamics. PMID:24639676

  18. FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion

    PubMed Central

    Zhang, Haijun; Pan, Yunqian; Zheng, Li; Choe, Chungyoul; Lindgren, Bruce; Jensen, Eric D.; Westendorf, Jennifer J.; Cheng, Liang; Huang, Haojie

    2011-01-01

    Prostate cancer (PCa) patients with regional lymph node involvement at radical prostatectomy often experience disease progression to other organs, with the bone as the predominant site. The transcription factor Runx2 plays an important role in bone formation and PCa cell migration, invasion and metastasis. Here we demonstrated that the forkhead protein FOXO1, a key downstream effector of the tumor suppressor PTEN, inhibits the transcriptional activity of Runx2 in PCa cells. This inhibition was enhanced by PTEN but diminished by active Akt. FOXO1 bound to Runx2 in vitro and in vivo and suppressed Runx2’s activity independent of its transcriptional function. FOXO1 inhibited Runx2-promoted migration of PCa cells while silencing of endogenous FOXO1 enhanced PCa cell migration in a Runx2-dependent manner. Forced expression of FOXO1 also inhibited Runx2-promoted PCa cell invasion. Finally, we found that expression of PTEN and the level of FOXO1 in the nucleus is inversely correlated with expression of Runx2 in a cohort of PCa specimens from patients with lymph node and bone metastasis. These data reveal FOXO1 as a critical negative regulator of Runx2 in PCa cells. Inactivation of FOXO1 due to frequent loss of PTEN in PCa cells may leave the oncogenic activities of Runx2 unchecked, thereby driving promiscuous expression of Runx2 target genes involved in cell migration and invasion and favoring PCa progression. PMID:21505104

  19. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses

    PubMed Central

    Harada, Yosuke; Tanaka, Yoshihiko; Terasawa, Masao; Pieczyk, Markus; Habiro, Katsuyoshi; Katakai, Tomoya; Hanawa-Suetsugu, Kyoko; Kukimoto-Niino, Mutsuko; Nishizaki, Tomoko; Shirouzu, Mikako; Duan, Xuefeng; Uruno, Takehito; Nishikimi, Akihiko; Sanematsu, Fumiyuki; Yokoyama, Shigeyuki; Stein, Jens V.; Kinashi, Tatsuo

    2012-01-01

    To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially. PMID:22461490

  20. [Downregulation of proteinase activated receptor 4 inhibits migration of SW620 human colorectal cancer cells].

    PubMed

    Chen, Lihong; Li, Chunchun; Xie, Yuqiong; Ye, Jingjia; Cao, Jiang

    2016-05-01

    Objective To establish the human colorectal cancer cell model SW620/PAR4D with inducible suppression of proteinase activated receptor 4 (PAR4) expression, and investigate the role PAR4 plays in the proliferation and migration of cancer cells. Methods A human colorectal cancer cell line with tetracycline-inducible expression regulatory system, namely SW620/Tet-on, was established; inducible expression lentiviral vector with artificial microRNA targeting PAR4, pLVX-Tight-Puro-PAR4-miR, was constructed and transfected into SW620/Tet-on to make an inducible PAR4-suppressed cell model SW620/PAR4D. Western blotting was used to confirm the suppression of PAR4 expression after the doxycycline (DOX) treatment. CCK-8 assay was used to evaluate the impact of suppressed PAR4 expression on cell proliferation, and wound-healing assay was used to analyze the migration of the cells. Results The SW620/PAR4D cell model was established successfully. Suppression of PAR4 expression by DOX treatment had no significant impact on the growth/proliferation of SW620/PAR4D cells, but markedly inhibited the cell migration. Conclusion Suppression of PAR4 expression has no significant effect on the proliferation of SW620 cells, but can inhibit the migration of the cells. PMID:27126938

  1. CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation

    PubMed Central

    Zhen, Jiaojiao; Ai, Zhilong

    2016-01-01

    Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration. PMID:26910892

  2. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5

    PubMed Central

    Yan, Yi; Tsukamoto, Osamu; Nakano, Atsushi; Kato, Hisakazu; Kioka, Hidetaka; Ito, Noriaki; Higo, Shuichiro; Yamazaki, Satoru; Shintani, Yasunori; Matsuoka, Ken; Liao, Yulin; Asanuma, Hiroshi; Asakura, Masanori; Takafuji, Kazuaki; Minamino, Tetsuo; Asano, Yoshihiro; Kitakaze, Masafumi; Takashima, Seiji

    2015-01-01

    Augmented AMP-activated protein kinase (AMPK) activity inhibits cell migration, possibly contributing to the clinical benefits of chemical AMPK activators in preventing atherosclerosis, vascular remodelling and cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we identify PDZ and LIM domain 5 (Pdlim5) as a novel AMPK substrate and show that it plays a critical role in the inhibition of cell migration. AMPK directly phosphorylates Pdlim5 at Ser177. Exogenous expression of phosphomimetic S177D-Pdlim5 inhibits cell migration and attenuates lamellipodia formation. Consistent with this observation, S177D-Pdlim5 suppresses Rac1 activity at the cell periphery and displaces the Arp2/3 complex from the leading edge. Notably, S177D-Pdlim5, but not WT-Pdlim5, attenuates the association with Rac1-specific guanine nucleotide exchange factors at the cell periphery. Taken together, our findings indicate that phosphorylation of Pdlim5 on Ser177 by AMPK mediates inhibition of cell migration by suppressing the Rac1-Arp2/3 signalling pathway. PMID:25635515

  3. Nox4 and Duox1/2 Mediate Redox Activation of Mesenchymal Cell Migration by PDGF

    PubMed Central

    Sukhova, Anna A.; Sagaradze, George D.; Albert, Eugene A.; Ageeva, Ludmila V.; Sharonov, George V.; Tkachuk, Vsevolod A.

    2016-01-01

    Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt. PMID:27110716

  4. Nox4 and Duox1/2 Mediate Redox Activation of Mesenchymal Cell Migration by PDGF.

    PubMed

    Tyurin-Kuzmin, Pyotr A; Zhdanovskaya, Nadezhda D; Sukhova, Anna A; Sagaradze, George D; Albert, Eugene A; Ageeva, Ludmila V; Sharonov, George V; Vorotnikov, Alexander V; Tkachuk, Vsevolod A

    2016-01-01

    Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt. PMID:27110716

  5. Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment.

    PubMed

    Ward, Rebecca; Sims, Andrew H; Lee, Alexander; Lo, Christina; Wynne, Luke; Yusuf, Humza; Gregson, Hannah; Lisanti, Michael P; Sotgia, Federica; Landberg, Göran; Lamb, Rebecca

    2015-06-10

    Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer. PMID:26008983

  6. Imaging of cell migration

    PubMed Central

    Dormann, Dirk; Weijer, Cornelis J

    2006-01-01

    Cell migration is an essential process during many phases of development and adult life. Cells can either migrate as individuals or move in the context of tissues. Movement is controlled by internal and external signals, which activate complex signal transduction cascades resulting in highly dynamic and localised remodelling of the cytoskeleton, cell–cell and cell–substrate interactions. To understand these processes, it will be necessary to identify the critical structural cytoskeletal components, their spatio-temporal dynamics as well as those of the signalling pathways that control them. Imaging plays an increasingly important and powerful role in the analysis of these spatio-temporal dynamics. We will highlight a variety of imaging techniques and their use in the investigation of various aspects of cell motility, and illustrate their role in the characterisation of chemotaxis in Dictyostelium and cell movement during gastrulation in chick embryos in more detail. PMID:16900100

  7. Redundant canonical and noncanonical Caenorhabditis elegans p21-activated kinase signaling governs distal tip cell migrations.

    PubMed

    Peters, Eldon C; Gossett, Andrea J; Goldstein, Bob; Der, Channing J; Reiner, David J

    2013-02-01

    p21-activated kinases (Paks) are prominent mediators of Rac/Cdc42-dependent and -independent signaling and regulate signal transduction and cytoskeletal-based cell movements. We used the reproducible migrations of the Caenorhabditis elegans gonadal distal tip cells to show that two of the three nematode Pak proteins, MAX-2 and PAK-1, function redundantly in regulation of cell migration but are regulated by very different mechanisms. First, we suggest that MAX-2 requires CED-10/Rac function and thus functions canonically. Second, PIX-1 and GIT-1 function in the same role as PAK-1, and PAK-1 interaction with PIX-1 is required for PAK-1 activity; thus, PAK-1 functions noncanonically. The human Pak-Pix-Git complex is central to noncanonical Pak signaling and requires only modest Rac/CDC-42 input. Unlike the human complex, our results suggest that the C. elegans Pak-Pix-Git complex requires PAK-1 kinase domain activity. This study delineates signaling network relationships in this cell migration model, thus providing potential further mechanistic insights and an assessment of total Pak contribution to cell migration events. PMID:23390595

  8. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells.

    PubMed

    van Alphen, Lieke B; Bleumink-Pluym, Nancy M C; Rochat, Klazina D; van Balkom, Bas W M; Wösten, Marc M S M; van Putten, Jos P M

    2008-01-01

    The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency. PMID:18052944

  9. Evodiamine Attenuates PDGF-BB-Induced Migration of Rat Vascular Smooth Muscle Cells through Activating PPARγ

    PubMed Central

    Ge, Xie; Chen, Siyu; Liu, Mei; Liang, Tingming; Liu, Chang

    2015-01-01

    The uncontrolled migration of vascular smooth muscle cells (VSMCs) into the intima is a critical process in the development of atherosclerosis. Evodiamine, an indole alkaloid extracted from the Chinese medicine evodia, has been shown to inhibit tumor cell invasion and protect the cardiovascular system, but its effects on VSMCs remain unknown. In the present study, we investigated the inhibitory effects of evodiamine on the platelet-derived growth factor-BB (PDGF-BB)-induced VSMC migration using wound healing and transwell assays, and assessed its role in decreasing the protein levels of matrix metalloproteinases and cell adhesion molecules. More importantly, we found that evodiamine activated the expression and nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ). Inhibition of PPARγ activity by using its antagonist T0070907 and its specific siRNA oligonucleotides significantly attenuated the inhibitory effects of evodiamine on VSMC migration. Taken together, our results indicate a promising anti-atherogenic effect of evodiamine through attenuation of VSMC migration by activating PPARγ. PMID:26703570

  10. Aquaporins and cell migration.

    PubMed

    Papadopoulos, M C; Saadoun, S; Verkman, A S

    2008-07-01

    Aquaporin (AQP) water channels are expressed primarily in cell plasma membranes. In this paper, we review recent evidence that AQPs facilitate cell migration. AQP-dependent cell migration has been found in a variety of cell types in vitro and in mice in vivo. AQP1 deletion reduces endothelial cell migration, limiting tumor angiogenesis and growth. AQP4 deletion slows the migration of reactive astrocytes, impairing glial scarring after brain stab injury. AQP1-expressing tumor cells have enhanced metastatic potential and local infiltration. Impaired cell migration has also been seen in AQP1-deficient proximal tubule epithelial cells, and AQP3-deficient corneal epithelial cells, enterocytes, and skin keratinocytes. The mechanisms by which AQPs enhance cell migration are under investigation. We propose that, as a consequence of actin polymerization/depolymerization and transmembrane ionic fluxes, the cytoplasm adjacent to the leading edge of migrating cells undergoes rapid changes in osmolality. AQPs could thus facilitate osmotic water flow across the plasma membrane in cell protrusions that form during migration. AQP-dependent cell migration has potentially broad implications in angiogenesis, tumor metastasis, wound healing, glial scarring, and other events requiring rapid, directed cell movement. AQP inhibitors may thus have therapeutic potential in modulating these events, such as slowing tumor growth and spread, and reducing glial scarring after injury to allow neuronal regeneration. PMID:17968585

  11. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1

    SciTech Connect

    Beaulieu, Lea M.; Church, Frank C. . E-mail: fchurch@email.unc.edu

    2007-02-15

    Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions related to inflammation, proliferation, and apoptosis through various mechanisms. Using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1-50 {mu}g/ml) increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive APC derivatives. Using a modified 'checkerboard' analysis, APC was shown to only affect migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231 cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to the cell surface and activating specific signaling pathways through EPCR and PAR-1.

  12. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway

    PubMed Central

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V.; Cubano, Luis A.; Inyushin, Mikhail; Skatchkov, Serguei N.; Eaton, Misty J.; Harrison, Jeffrey K.; Kucheryavykh, Lilia Y.

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  13. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway.

    PubMed

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V; Cubano, Luis A; Inyushin, Mikhail; Skatchkov, Serguei N; Eaton, Misty J; Harrison, Jeffrey K; Kucheryavykh, Lilia Y

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  14. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation.

    PubMed Central

    Bacher, M; Metz, C N; Calandra, T; Mayer, K; Chesney, J; Lohoff, M; Gemsa, D; Donnelly, T; Bucala, R

    1996-01-01

    The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755565

  15. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis

    PubMed Central

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-01-01

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment. PMID:26576741

  16. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration

    PubMed Central

    O’Neill, Patrick R.; Kalyanaraman, Vani; Gautam, N.

    2016-01-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  17. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.

    PubMed

    O'Neill, Patrick R; Kalyanaraman, Vani; Gautam, N

    2016-05-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  18. Tetraspanins in Cell Migration

    PubMed Central

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  19. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP).

    PubMed

    Tsygankova, Oxana M; Wang, Hongbin; Meinkoth, Judy L

    2013-08-23

    The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells. PMID:23864657

  20. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion.

    PubMed

    Díaz, Jorge; Mendoza, Pablo; Ortiz, Rina; Díaz, Natalia; Leyton, Lisette; Stupack, Dwayne; Quest, Andrew F G; Torres, Vicente A

    2014-06-01

    Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast cancer cells decreased Rab5-GTP levels. Accordingly, shRNA-mediated downregulation of Rab5 decreased CAV1-mediated Rac1 activation, cell migration and invasion in B16-F10 and HT-29(US) cells. Expression of CAV1 was accompanied by increased recruitment of Tiam1, a Rac1 guanine nucleotide exchange factor (GEF), to Rab5-positive early endosomes. Using the inhibitor NSC23766, Tiam1 was shown to be required for Rac1 activation and cell migration induced by CAV1 and Rab5. Mechanistically, we provide evidence implicating p85α (also known as PIK3R1), a Rab5 GTPase-activating protein (GAP), in CAV1-dependent effects, by showing that CAV1 recruits p85α, precluding p85α-mediated Rab5 inactivation and increasing cell migration. In summary, these studies identify a novel CAV1-Rab5-Rac1 signaling axis, whereby CAV1 prevents Rab5 inactivation, leading to increased Rac1 activity and enhanced tumor cell migration and invasion. PMID:24659799

  1. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration

    PubMed Central

    2013-01-01

    Background Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. Methods Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. Results The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 μg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by

  2. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    SciTech Connect

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong; Song, Guanbin; Sung, Kuo-Li Paul

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  3. TNF-a stimulation enhances ROS-dependent cell migration via NF-?B activation in liver cells.

    PubMed

    Kastl, Lena; Sauer, Sven; Beissbarth, Tim; Becker, Michael; Krammer, Peter; Gülow, Karsten

    2014-10-01

    Development of hepatocellular carcinoma (HCC) is accompanied by a continuous increase in generation of reactive oxygen species (ROS). TNF-a was used in murine hepatocytes as stimulus to identify the primary source of ROS generation. Using specific inhibitors targeting the different complexes of the respiratory chain we detected the mitochondria as main producer of ROS. TNF-a altered mitochondrial integrity by mimicking a mild uncoupling effect in liver cells. siRNA mediated downregulation of essential assembly factors for complex I and complex III led to an inhibition of ROS production. Therefore, ROS is generated by the mitochondrial respiratory chain upon TNF-a stimulation. ROS activated NF-?B and subsequently enhanced migration of liver cells. Thus, we identified complex I and complex III of the respiratory chain as point of ROS release after TNF-a treatment in hepatocytes which enhances cell migration by activating NF-?B signaling. PMID:26461342

  4. Geometric friction directs cell migration.

    PubMed

    Le Berre, M; Liu, Yan-Jun; Hu, J; Maiuri, Paolo; Bénichou, O; Voituriez, R; Chen, Y; Piel, M

    2013-11-01

    In the absence of environmental cues, a migrating cell performs an isotropic random motion. Recently, the breaking of this isotropy has been observed when cells move in the presence of asymmetric adhesive patterns. However, up to now the mechanisms at work to direct cell migration in such environments remain unknown. Here, we show that a nonadhesive surface with asymmetric microgeometry consisting of dense arrays of tilted micropillars can direct cell motion. Our analysis reveals that most features of cell trajectories, including the bias, can be reproduced by a simple model of active Brownian particle in a ratchet potential, which we suggest originates from a generic elastic interaction of the cell body with the environment. The observed guiding effect, independent of adhesion, is therefore robust and could be used to direct cell migration both in vitro and in vivo. PMID:24266490

  5. hTERT promotes cell adhesion and migration independent of telomerase activity

    PubMed Central

    Liu, Haiying; Liu, Qianqian; Ge, Yuanlong; Zhao, Qi; Zheng, Xiaohui; Zhao, Yong

    2016-01-01

    hTERT, a catalytic component of human telomerase, is undetectable in normal somatic cells but up-regulated in cancer and stem cells where telomere length is maintained by telomerase. Accumulated evidence indicates that hTERT may have noncanonical functions beyond telomerase by regulating the expression of particular genes. However, comprehensive identification of the genes regulated by hTERT is unavailable. In this report, we expressed WT hTERT and hTERTmut which displays dysfunctional catalytic activity, in human U2OS cancer cells and VA-13 immortalized fibroblast cells, both of which lack endogenous hTERT and hTR expression. Changes in gene expression induced by hTERT and hTERT-mut expression were determined by genome-wide RNA-seq and verified by qPCR. Our results showed that hTERT affects different genes in two cell lines, implying that the regulation of gene expression by hTERT is indirect and cell type dependent. Moreover, functional analysis identifies cell adhesion-related genes that have been changed by hTERT in both cell lines. Adhesion experiments revealed that hTERT expression significantly increases cell adhesion. Monolayer wound healing and transwell assays demonstrated increased cell migration upon hTERT expression. These results provide new evidence to support a noncanonical function for hTERT in promoting tumorigenesis. PMID:26971878

  6. hTERT promotes cell adhesion and migration independent of telomerase activity.

    PubMed

    Liu, Haiying; Liu, Qianqian; Ge, Yuanlong; Zhao, Qi; Zheng, Xiaohui; Zhao, Yong

    2016-01-01

    hTERT, a catalytic component of human telomerase, is undetectable in normal somatic cells but up-regulated in cancer and stem cells where telomere length is maintained by telomerase. Accumulated evidence indicates that hTERT may have noncanonical functions beyond telomerase by regulating the expression of particular genes. However, comprehensive identification of the genes regulated by hTERT is unavailable. In this report, we expressed WT hTERT and hTERTmut which displays dysfunctional catalytic activity, in human U2OS cancer cells and VA-13 immortalized fibroblast cells, both of which lack endogenous hTERT and hTR expression. Changes in gene expression induced by hTERT and hTERT-mut expression were determined by genome-wide RNA-seq and verified by qPCR. Our results showed that hTERT affects different genes in two cell lines, implying that the regulation of gene expression by hTERT is indirect and cell type dependent. Moreover, functional analysis identifies cell adhesion-related genes that have been changed by hTERT in both cell lines. Adhesion experiments revealed that hTERT expression significantly increases cell adhesion. Monolayer wound healing and transwell assays demonstrated increased cell migration upon hTERT expression. These results provide new evidence to support a noncanonical function for hTERT in promoting tumorigenesis. PMID:26971878

  7. Tyrosine Phosphorylation of SGEF Regulates RhoG Activity and Cell Migration

    PubMed Central

    Okuyama, Yusuke; Umeda, Kentaro; Negishi, Manabu; Katoh, Hironori

    2016-01-01

    SGEF and Ephexin4 are members of the Ephexin subfamily of RhoGEFs that specifically activate the small GTPase RhoG. It is reported that Ephexin1 and Ephexin5, two well-characterized Ephexin subfamily RhoGEFs, are tyrosine-phosphorylated by Src, and that their phosphorylation affect their activities and functions. In this study, we show that SGEF, but not Ephexin4, is tyrosine-phosphorylated by Src. Tyrosine phosphorylation of SGEF suppresses its interaction with RhoG, the elevation of RhoG activity, and SGEF-mediated promotion of cell migration. We identified tyrosine 530 (Y530), which is located within the Dbl homology domain, as a major phosphorylation site of SGEF by Src, and Y530F mutation blocked the inhibitory effect of Src on SGEF. Taken together, these results suggest that the activity of SGEF is negatively regulated by tyrosine phosphorylation of the DH domain. PMID:27437949

  8. Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells.

    PubMed

    Zimmerman, Matthew C; Takapoo, Maysam; Jagadeesha, Dammanahalli K; Stanic, Bojana; Banfi, Botond; Bhalla, Ramesh C; Miller, Francis J

    2011-09-01

    Redox-dependent migration and proliferation of vascular smooth muscle cells (SMCs) are central events in the development of vascular proliferative diseases; however, the underlying intracellular signaling mechanisms are not fully understood. We tested the hypothesis that activation of Nox1 NADPH oxidase modulates intracellular calcium ([Ca(2+)](i)) levels. Using cultured SMCs from wild-type and Nox1 null mice, we confirmed that thrombin-dependent generation of reactive oxygen species requires Nox1. Thrombin rapidly increased [Ca(2+)](i), as measured by fura-2 fluorescence ratio imaging, in wild-type but not Nox1 null SMCs. The increase in [Ca(2+)](i) in wild-type SMCs was inhibited by antisense to Nox1 and restored by expression of Nox1 in Nox1 null SMCs. Investigation into potential mechanisms by which Nox1 modulates [Ca(2+)](i) showed that thrombin-induced inositol triphosphate generation and thapsigargin-induced intracellular calcium mobilization were similar in wild-type and Nox1 null SMCs. To examine the effects of Nox1 on Ca(2+) entry, cells were either bathed in Ca(2+)-free medium or exposed to dihydropyridines to block L-type Ca(2+) channel activity. Treatment with nifedipine or removal of extracellular Ca(2+) reduced the thrombin-mediated increase of [Ca(2+)](i) in wild-type SMCs, whereas the response in Nox1 null SMCs was unchanged. Sodium vanadate, an inhibitor of protein tyrosine phosphatases, restored the thrombin-induced increase of [Ca(2+)](i) in Nox1 null SMCs. Migration of SMCs was impaired with deficiency of Nox1 and restored with expression of Nox1 or the addition of sodium vanadate. In summary, we conclude that Nox1 NADPH oxidase modulates Ca(2+) mobilization in SMCs, in part through regulation of Ca(2+) influx, to thereby promote cell migration. PMID:21810651

  9. Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells

    PubMed Central

    Gaetano, Cristoforo G.; Samadi, Nasser; Tomsig, Jose L.; Macdonald, Timothy L.; Lynch, Kevin R.; Brindley, David N.

    2009-01-01

    Increased expression of autotaxin is linked to several malignancies including glioblastoma, breast, renal, ovarian, lung and thyroid cancers. Autotaxin promotes metastasis as well as cell growth, survival, and migration of cancer cells. These actions could depend on the non-catalytic effects of autotaxin on cell adhesion, or the catalytic activity of autotaxin, which converts lysophosphatidylcholine into lysophosphatidate in the extracellular environment. Both lysophosphatidylcholine and lysophosphatidate have been reported to stimulate migration through their respective G-protein coupled receptors. The present study determines the roles of autotaxin, lysophosphatidylcholine and lysophosphatidate in controlling the migration two cancer cell lines MDA-MB-231 breast cancer cells, which produce little autotaxin and MDA-MB-435 melanoma cells that secrete significant levels of autotaxin. Lysophosphatidylcholine alone was unable to stimulate the migration of either cell type unless autotaxin was present. Knocking down autotaxin secretion, or inhibiting its catalytic activity, blocked cell migration by preventing lysophosphatidate production and the subsequent activation of LPA1/3 receptors. We conclude that inhibiting autotaxin production or activity of could provide a beneficial adjuvant to chemotherapy for preventing metastasis in patients with high autotaxin expression in their tumors. PMID:19204929

  10. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    SciTech Connect

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  11. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration

    PubMed Central

    Kobayashi, Miho; Nishita, Michiru; Mishima, Toshiaki; Ohashi, Kazumasa; Mizuno, Kensaku

    2006-01-01

    Vascular endothelial growth factor-A (VEGF-A) induces actin reorganization and migration of endothelial cells through a p38 mitogen-activated protein kinase (MAPK) pathway. LIM-kinase 1 (LIMK1) induces actin remodeling by phosphorylating and inactivating cofilin, an actin-depolymerizing factor. In this study, we demonstrate that activation of LIMK1 by MAPKAPK-2 (MK2; a downstream kinase of p38 MAPK) represents a novel signaling pathway in VEGF-A-induced cell migration. VEGF-A induced LIMK1 activation and cofilin phosphorylation, and this was inhibited by the p38 MAPK inhibitor SB203580. Although p38 phosphorylated LIMK1 at Ser-310, it failed to activate LIMK1 directly; however, MK2 activated LIMK1 by phosphorylation at Ser-323. Expression of a Ser-323-non-phosphorylatable mutant of LIMK1 suppressed VEGF-A-induced stress fiber formation and cell migration; however, expression of a Ser-323-phosphorylation-mimic mutant enhanced these processes. Knockdown of MK2 by siRNA suppressed VEGF-A-induced LIMK1 activation, stress fiber formation, and cell migration. Expression of kinase-dead LIMK1 suppressed VEGF-A-induced tubule formation. These findings suggest that MK2-mediated LIMK1 phosphorylation/activation plays an essential role in VEGF-A-induced actin reorganization, migration, and tubule formation of endothelial cells. PMID:16456544

  12. Piperlongumine inhibits migration of glioblastoma cells via activation of ROS-dependent p38 and JNK signaling pathways.

    PubMed

    Liu, Qian Rong; Liu, Ju Mei; Chen, Yong; Xie, Xiao Qiang; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Yu, Shang Bin; Chen, Xiao Qian

    2014-01-01

    Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU(+)-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA), reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC). Pharmacological administration of specific p38 (SB203580) or JNK (SP600125) inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NF κ B activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM) in the brain by suppressing tumor invasion and metastasis. PMID:24967005

  13. PBX3 promotes migration and invasion of colorectal cancer cells via activation of MAPK/ERK signaling pathway

    PubMed Central

    Han, Hai-Bo; Gu, Jin; Ji, Deng-Bo; Li, Zhao-Wei; Zhang, Yuan; Zhao, Wei; Wang, Li-Min; Zhang, Zhi-Qian

    2014-01-01

    AIM: To investigate the role of pre-B-cell leukemia homeobox (PBX)3 in migration and invasion of colorectal cancer (CRC) cells. METHODS: We detected PBX3 expression in five cell lines and surgical specimens from 111 patients with CRC using real-time reverse transcription-polymerase chain reaction. We forced expression of PBX3 in low metastatic HT-29 and SW480 cells and knocked down expression of PBX3 in highly metastatic LOVO and HCT-8 cells. Wound healing and Boyden chamber assays were used to detect cell migration and invasion after altered expression of PBX3. Western blot was performed to detect the change of signaling molecule ERK1/2 following PBX3 overexpression. RESULTS: High level of PBX3 expression was correlated with the invasive potential of CRC cells, and significantly associated with lymph node invasion (P = 0.02), distant metastasis (P = 0.04), advanced TNM stage (P = 0.03) and poor overall survival of patients (P < 0.05). Ectopic expression of PBX3 in low metastatic cells was shown to promote migration and invasion, while inhibited PBX3 expression in highly metastatic cells suppressed migration and invasion. Furthermore, upregulation of phosphorylated extracellular signal-regulated kinase (ERK)1/2 was found to be one of the targeted molecules responsible for PBX3-induced CRC cell migration and invasion. CONCLUSION: PBX3 induces invasion and metastasis of CRC cells partially through activation of the MAPK/ERK signaling pathway. PMID:25561793

  14. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    SciTech Connect

    Chen, Chao; Wu, Chao-Qun; Zhang, Zong-Qi; Yao, Ding-Kang; Zhu, Liang

    2011-07-15

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  15. Endothelial cell activation promotes foam cell formation by monocytes following transendothelial migration in an in vitro model

    PubMed Central

    Westhorpe, Clare L. V.; Dufour, Eric M.; Maisa, Anna; Jaworowski, Anthony; Crowe, Suzanne M.; Muller, William A.

    2012-01-01

    Foam cells are a pathological feature present at all stages of atherosclerosis. Foam cells develop from monocytes that enter the nascent atheroma and subsequently ingest modified low density lipoproteins (LDL). The regulation of this process has previously been studied in vitro using cultured macrophages fed modified LDL. We used our existing in vitro model of transendothelial migration (TEM) to study this process in a more physiologically relevant setting. In our model, monocytes undergo TEM across a primary endothelial monolayer into an underlying three-dimensional collagen matrix in the presence of 20% human serum. Foam cells were detected by Oil Red O staining for intracellular lipid droplets. We demonstrate that sub-endothelial monocytes can develop into foam cells within 48 hours of TEM across TNF-α activated endothelium, in the absence of additional lipids. Our data indicate a role for both monocyte-endothelial interactions and soluble factors in the regulation of foam cell development, including oxidation of LDL in situ from lipid present in culture medium following TNF-α stimulation of the endothelial cells. Our study provides a simple model for investigating foam cell development in vitro that mimics cell migration in vivo, and demonstrates the critical role of inflammation in regulating early atherogenic events. PMID:22609311

  16. Smad4 inhibits cell migration via suppression of JNK activity in human pancreatic carcinoma PANC-1 cells

    PubMed Central

    ZHANG, XUEYING; CAO, JUNXIA; PEI, YUJUN; ZHANG, JIYAN; WANG, QINGYANG

    2016-01-01

    Smad4 is a common Smad and is a key downstream regulator of the transforming growth factor-β signaling pathway, in which Smad4 often acts as a potent tumor suppressor and functions in a highly context-dependent manner, particularly in pancreatic cancer. However, little is known regarding whether Smad4 regulates other signaling pathways involved in pancreatic cancer. The present study demonstrated that Smad4 downregulates c-Jun N-terminal kinase (JNK) activity using a Smad4 loss-of-function or gain-of-function analysis. Additionally, stable overexpression of Smad4 clearly affected the migration of human pancreatic epithelioid carcinoma PANC-1 cells, but did not affect cell growth. In addition, the present study revealed that upregulation of mitogen-activated protein kinase phosphatase-1 is required for the reduction of JNK activity by Smad4, leading to a decrease in vascular endothelial growth factor expression and inhibiting cell migration. Overall, the present findings indicate that Smad4 may suppress JNK activation and inhibit the tumor characteristics of pancreatic cancer cells. PMID:27123137

  17. Memory T Cell Migration

    PubMed Central

    Zhang, Qianqian; Lakkis, Fadi G.

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection. PMID:26483794

  18. Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells.

    PubMed

    Castillo-Sanchez, Rocio; Villegas-Comonfort, Socrates; Galindo-Hernandez, Octavio; Gomez, Rocio; Salazar, Eduardo Perez

    2013-08-01

    Benzo-[a]-pyrene (B[a]P) is a family member of polycyclic aromatic hydrocarbons and a widespread environmental pollutant. It is a mammary carcinogen in rodents and contributes to the development of human breast cancer. However, the signal transduction pathways induced by B[a]P and its role in breast cancer progression have not been studied in detail. Here, we demonstrate that B[a]P induces cell migration through a lipoxygenase- and Src-dependent pathway, as well as the activation of focal adhesion kinase, Src, and the extracellular signal-regulated kinase 2 in MDA-MB-231 breast cancer cells. However, B[a]P is not able to promote migration in the mammary nontumorigenic epithelial cells MCF12A. Moreover, B[a]P promotes an increase of αvβ3 integrin-cell surface levels and an increase of metalloproteinase (MMP)-2 and MMP-9 secretions. In summary, our findings demonstrate that B[a]P induces the activation of signal transduction pathways and biological processes involved in the invasion/metastasis process in MDA-MB-231 breast cancer cells. PMID:23955088

  19. Characterization of Collective Cell Migration Dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Yue, Haicen; Rappel, Wouter-Jan; Losert, Wolfgang

    2015-03-01

    During cancer progression, tumor cells invade the surrounding tissue and migrate throughout the body, forming clinically dangerous secondary tumors. This metastatic process begins when cells leave the primary tumor, either as individual cells or collectively migrating groups. Here we present data on the migration dynamics of epithelial sheets composed of many cells. Using quantitative image analysis techniques, we are able to extract motion information from time-lapse images of cell lines with varying malignancy. Adapting metrics originally used to study fluid flows we are able to characterize the migration dynamics of these cell lines. By describing the migration dynamics in great detail, we are able to make a clear comparison of our results to a simulation of collective cell migration. Specifically, we explore whether leader cells are required to describe our expanding sheets of cells and whether the answer depends on individual cell activity.

  20. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    SciTech Connect

    He Yingbo; Chang Guodong; Zhan Shunli; Song Xiaomin; Wang Xiaofeng; Luo Yongzhang

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, which implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.

  1. Mycoplasma hyorhinis Activates the NLRP3 Inflammasome and Promotes Migration and Invasion of Gastric Cancer Cells

    PubMed Central

    Yao, Xiaomin; Xing, Yue; Wang, Xun; Zhong, Jin; Meng, Guangxun

    2013-01-01

    Background Mycoplasma hyorhinis (M.hyorhinis, M.hy) is associated with development of gastric and prostate cancers. The NLRP3 inflammasome, a protein complex controlling maturation of important pro-inflammatory cytokines interleukin (IL)-1β and IL-18, is also involved in tumorigenesis and metastasis of various cancers. Methodology/Principal Findings To clarify whether M.hy promoted tumor development via inflammasome activation, we analyzed monocytes for IL-1β and IL-18 production upon M.hy challenge. When exposed to M.hy, human monocytes exhibited rapid and robust IL-1β and IL-18 secretion. We further identified that lipid-associated membrane protein (LAMP) from M.hy was responsible for IL-1β induction. Applying competitive inhibitors, gene specific shRNA and gene targeted mice, we verified that M.hy induced IL-1β secretion was NLRP3-dependent in vitro and in vivo. Cathepsin B activity, K+ efflux, Ca2+ influx and ROS production were all required for the NLRP3 inflammasome activation by M.hy. Importantly, it is IL-1β but not IL-18 produced from macrophages challenged with M.hy promoted gastric cancer cell migration and invasion. Conclusions Our data suggest that activation of the NLRP3 inflammasome by M.hy may be associated with its promotion of gastric cancer metastasis, and anti-M.hy therapy or limiting NLRP3 signaling could be effective approach for control of gastric cancer progress. PMID:24223129

  2. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    PubMed Central

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury. PMID:22345572

  3. Galectin-3 Enhances Migration of Minature Pig Bone Marrow Mesenchymal Stem Cells Through Inhibition of RhoA-GTP Activity

    PubMed Central

    Gao, Qian; Xia, Ying; Liu, Lan; Huang, Lei; Liu, Yang; Zhang, Xue; Xu, Kui; Wei, Jingliang; Hu, Yanqing; Mu, Yulian; Li, Kui

    2016-01-01

    Bone marrow mesenchymal stem cells (BM-MSCs) are used in tissue engineering because of their migration characters. However, BM-MSCs have limitations in terms of reaching injuries and self-renewal. Therefore, enhancement of BM-MSC migration is important for therapeutic applications. Here, we assessed whether galectin-3 (Gal-3) increases the migration of minature pig BM-MSCs. Gal-3 was knocked down by short hairpin RNA (shRNA) or overexpressed using a lentiviral vector in Wuzhishan minature pig BM-MSCs. Proliferation and migration assays showed that knockdown of Gal-3 impaired BM-MSC proliferation and migration, whereas Gal-3 overexpression promoted these behaviors. RhoA-GTP activity was upregulated in Gal-3 shRNA-transfected BM-MSCs, while Rac-1- and Cdc42-GTP showed no changes. Western blotting indicated downregulation of p-AKT (ser473) and p-Erk1/2 after serum starvation for 12 h in Gal-3-knockdown BM-MSCs. p-AKT (ser473) expression was upregulated after serum starvation for 6 h, and p-Erk1/2 expression was unchanged in Gal-3-overexpressing BM-MSCs. Treatment with C3 transferase or Y27632 enhanced migration, whereas Gal-3 knockdown impaired migration in treated cells. These results demonstrate that Gal-3 may enhance BM-MSC migration, mainly through inhibiting RhoA-GTP activity, increasing p-AKT (ser473) expression, and regulating p-Erk1/2 levels. Our study suggests a novel function of Gal-3 in regulating minature pig BM-MSC migration, which may be beneficial for therapeutic applications. PMID:27215170

  4. Galectin-3 Enhances Migration of Minature Pig Bone Marrow Mesenchymal Stem Cells Through Inhibition of RhoA-GTP Activity.

    PubMed

    Gao, Qian; Xia, Ying; Liu, Lan; Huang, Lei; Liu, Yang; Zhang, Xue; Xu, Kui; Wei, Jingliang; Hu, Yanqing; Mu, Yulian; Li, Kui

    2016-01-01

    Bone marrow mesenchymal stem cells (BM-MSCs) are used in tissue engineering because of their migration characters. However, BM-MSCs have limitations in terms of reaching injuries and self-renewal. Therefore, enhancement of BM-MSC migration is important for therapeutic applications. Here, we assessed whether galectin-3 (Gal-3) increases the migration of minature pig BM-MSCs. Gal-3 was knocked down by short hairpin RNA (shRNA) or overexpressed using a lentiviral vector in Wuzhishan minature pig BM-MSCs. Proliferation and migration assays showed that knockdown of Gal-3 impaired BM-MSC proliferation and migration, whereas Gal-3 overexpression promoted these behaviors. RhoA-GTP activity was upregulated in Gal-3 shRNA-transfected BM-MSCs, while Rac-1- and Cdc42-GTP showed no changes. Western blotting indicated downregulation of p-AKT (ser473) and p-Erk1/2 after serum starvation for 12 h in Gal-3-knockdown BM-MSCs. p-AKT (ser473) expression was upregulated after serum starvation for 6 h, and p-Erk1/2 expression was unchanged in Gal-3-overexpressing BM-MSCs. Treatment with C3 transferase or Y27632 enhanced migration, whereas Gal-3 knockdown impaired migration in treated cells. These results demonstrate that Gal-3 may enhance BM-MSC migration, mainly through inhibiting RhoA-GTP activity, increasing p-AKT (ser473) expression, and regulating p-Erk1/2 levels. Our study suggests a novel function of Gal-3 in regulating minature pig BM-MSC migration, which may be beneficial for therapeutic applications. PMID:27215170

  5. The role of Rac1 in the regulation of NF-kB activity, cell proliferation, and cell migration in non-small cell lung carcinoma

    PubMed Central

    Gastonguay, Adam; Berg, Tracy; Hauser, Andrew D.; Schuld, Nathan; Lorimer, Ellen; Williams, Carol L.

    2012-01-01

    The small GTPase Rac1 regulates many cellular processes, including cytoskeletal reorganization, cell migration, proliferation, and survival. Additionally, Rac1 plays a major role in activating NF-κB-mediated transcription. Both Rac1 and NF-κB regulate many properties of the malignant phenotype, including anchorage-independent proliferation and survival, metastasis, and angiogenesis. Despite these findings, the roles of Rac1and NF-κB in non-small cell lung carcinoma, a leading cause of cancer deaths, have not been thoroughly investigated. Here, we compared the effects of Rac1 siRNA to that of the Rac1 inhibitor NSC23766 on multiple features of the NSCLC malignant phenotype, including NF-κB activity. We show that the siRNA-mediated silencing of Rac1 in lung cancer cells results in decreased cell proliferation and migration. The decrease in proliferation was observed in both anchorage-dependent and anchorage-independent assays. Furthermore, cells with decreased Rac1 expression have a slowed progression through the G1 phase of the cell cycle. These effects induced by Rac1 siRNA correlated with a decrease in NF-κB transcriptional activity. Additionally, inhibition of NF-κB signaling with BAY 11–7082 inhibited proliferation; indicating that the loss of cell proliferation and migration induced by the silencing of Rac1 expression may be attributed in part to loss of NF-κB activity. Interestingly, treatment with the Rac1 inhibitor NSC23766 strongly inhibits cell proliferation, cell cycle progression, and NF-κB activity in lung cancer cells, to an even greater extent than the inhibition induced by Rac1 siRNA. These findings indicate that Rac1 plays an important role in lung cancer cell proliferation and migration, most likely through its ability to promote NF-κB activity, and highlight Rac1 pathways as therapeutic targets for the treatment of lung cancer. PMID:22549160

  6. Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration.

    PubMed

    Shiozaki, Kazuhiro; Takahashi, Kohta; Hosono, Masahiro; Yamaguchi, Kazunori; Hata, Keiko; Shiozaki, Momo; Bassi, Rosaria; Prinetti, Alessandro; Sonnino, Sandro; Nitta, Kazuo; Miyagi, Taeko

    2015-05-01

    The plasma membrane-associated sialidase NEU3 plays crucial roles in regulation of transmembrane signaling, and its aberrant up-regulation in various cancers contributes to malignancy. However, it remains uncertain how NEU3 is naturally activated and locates to plasma membranes, because of its Triton X-100 requirement for the sialidase activity in vitro and its often changing subcellular location. Among phospholipids examined, we demonstrate that phosphatidic acid (PA) elevates its sialidase activity 4 to 5 times at 50 μM in vitro at neutral pH and promotes translocation to the cell surface and cell migration through Ras-signaling in HeLa and COS-1 cells. NEU3 was found to interact selectively with PA as assessed by phospholipid array, liposome coprecipitation, and ELISA assays and to colocalize with phospholipase D (PLD) 1 in response to epidermal growth factor (EGF) or serum stimulation. Studies using tagged NEU3 fragments with point mutations identified PA- and calmodulin (CaM)-binding sites around the N terminus and confirmed its participation in translocation and catalytic activity. EGF induced PLD1 activation concomitantly with enhanced NEU3 translocation to the cell surface, as assessed by confocal microscopy. These results suggest that interactions of NEU3 with PA produced by PLD1 are important for regulation of transmembrane signaling, this aberrant acceleration probably promoting malignancy in cancers. PMID:25678627

  7. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Methods Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. Results CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. Conclusions CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2. PMID:23855590

  8. Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE₂-mediated activation of β-catenin signaling.

    PubMed

    Singh, Tripti; Katiyar, Santosh K

    2013-01-01

    Lung cancer remains a leading cause of death due to its metastasis to distant organs. We have examined the effect of honokiol, a bioactive constituent from the Magnolia plant, on human non-small cell lung cancer (NSCLC) cell migration and the molecular mechanisms underlying this effect. Using an in vitro cell migration assay, we found that treatment of A549, H1299, H460 and H226 NSCLC cells with honokiol resulted in inhibition of migration of these cells in a dose-dependent manner, which was associated with a reduction in the levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Celecoxib, a COX-2 inhibitor, also inhibited cell migration. Honokiol inhibited PGE2-enhanced migration of NSCLC cells, inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in A549 and H1299 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited migration of NSCLC cells. PGE2 has been shown to activate β-catenin signaling, which contributes to cancer cell migration. Therefore, we checked the effect of honokiol on β-catenin signaling. It was observed that treatment of NSCLC cells with honokiol degraded cytosolic β-catenin, reduced nuclear accumulation of β-catenin and down-regulated matrix metalloproteinase (MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis. Honokiol enhanced: (i) the levels of casein kinase-1α, glycogen synthase kinase-3β, and (ii) phosphorylation of β-catenin on critical residues Ser(45), Ser(33/37) and Thr(41). These events play important roles in degradation or inactivation of β-catenin. Treatment of celecoxib also reduced nuclear accumulation of β-catenin in NSCLC cells. FH535, an inhibitor of Wnt/β-catenin pathway, inhibited PGE2-enhanced cell migration of A549 and H1299 cells. These results indicate that honokiol inhibits non-small cell lung cancer cells migration by targeting PGE2-mediated activation of

  9. Inhibition of LN-308 glioma cell proliferation and migration by retinoic acid amide through activation of Akt pathway

    PubMed Central

    Zhu, Jun; Lu, Xiang-Dong; Si, Feng; Song, Chun-Yu; Meng, Qing-Hai

    2015-01-01

    The present study was performed to investigate the effect of retinoic acid amide (RAA) on the expression of integrin α3β1, rate of cell proliferation and migration in p53-deficient glioma cell line, LN-308. The results revealed promotion of integrin α3 expression, reduction in proliferation and migration in RAA treated cells compared to the control LN-308 glioma cells. Promotion of RAA induced integrin α3β1 expression led to the enhancement in cyclin-dependent kinase nuclear localization and activation of Akt pathway. In addition, RAA treatment inhibited the expression of nuclear factor-κB, Bcl-2 and epidermal growth factor receptor (EGFR). These factors are responsible for promoting the rate of cell proliferation and survival in the carcinoma cells. Thus RAA treatment inhibits rate of LN-308 glioma cell proliferation and migration through increase in integrin α3β1 expression and activation of Akt pathway. Therefore, RAA can be of therapeutic importance for the treatment of glioma. PMID:26823704

  10. Protocatechuic Acid from Alpinia oxyphylla Induces Schwann Cell Migration via ERK1/2, JNK and p38 Activation.

    PubMed

    Ju, Da-Tong; Kuo, Wei-Wen; Ho, Tsung-Jung; Paul, Catherine Reena; Kuo, Chia-Hua; Viswanadha, Vijaya Padma; Lin, Chien-Chung; Chen, Yueh-Sheng; Chang, Yung-Ming; Huang, Chih-Yang

    2015-01-01

    Alpinia oxyphylla MIQ (Alpinate Oxyphyllae Fructus, AOF) is an important traditional Chinese medicinal herb whose fruits is widely used to prepare tonics and is used as an aphrodisiac, anti salivary, anti diuretic and nerve-protective agent. Protocatechuic acid (PCA), a simple phenolic compound was isolated from the kernels of AOF. This study investigated the role of PCA in promoting neural regeneration and the underlying molecular mechanisms. Nerve regeneration is a complex physiological response that takes place after injury. Schwann cells play a crucial role in the endogenous repair of peripheral nerves due to their ability to proliferate and migrate. The role of PCA in Schwann cell migration was determined by assessing the induced migration potential of RSC96 Schwann cells. PCA induced changes in the expression of proteins of three MAPK pathways, as determined using Western blot analysis. In order to determine the roles of MAPK (ERK1/2, JNK, and p38) pathways in PCA-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production, the expression of several MAPK-associated proteins was analyzed after siRNA-mediated inhibition assays. Treatment with PCA-induced ERK1/2, JNK, and p38 phosphorylation that activated the downstream expression of PAs and MMPs. PCA-stimulated ERK1/2, JNK and p38 phosphorylation was attenuated by individual pretreatment with siRNAs or MAPK inhibitors (U0126, SP600125, and SB203580), resulting in the inhibition of migration and the uPA-related signal pathway. Taken together, our data suggest that PCA extract regulate the MAPK (ERK1/2, JNK, and p38)/PA (uPA, tPA)/MMP (MMP2, MMP9) mediated regeneration and migration signaling pathways in Schwann cells. Therefore, PCA plays a major role in Schwann cell migration and the regeneration of damaged peripheral nerve. PMID:26119854

  11. Collective cell migration in development

    PubMed Central

    Scarpa, Elena

    2016-01-01

    During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298

  12. Ulbactins F and G, Polycyclic Thiazoline Derivatives with Tumor Cell Migration Inhibitory Activity from Brevibacillus sp.

    PubMed

    Igarashi, Yasuhiro; Asano, Daisuke; Sawamura, Masashi; In, Yasuko; Ishida, Toshimasa; Imoto, Masaya

    2016-04-01

    Two new structurally unique compounds bearing a nitrogen- and sulfur-containing tricyclic ring system, ulbactin F (1) and its diastereomeric isomer ulbactin G (2), were isolated from the culture extract of a sponge-derived Brevibacillus sp. The structures and absolute configurations of 1 and 2 were determined by NMR analysis and X-ray crystallographic analysis. These compounds inhibit the migration of tumor cells in the submicromolar to micromolar range. PMID:26998643

  13. Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP-9 activity and colon cancer cell migration.

    PubMed

    Lima, A I G; Mota, J; Monteiro, S A V S; Ferreira, R M S B

    2016-04-15

    MMP-9 activity is strongly related to cancer growth and metastization. This study aimed at assessing the inhibitory potential of the major seed protein fractions from eight selected legume species towards MMP-9 activity in colon carcinoma cells. Albumin and globulin fractions were screened for MMP-9 inhibitors, using a fluorometric assay and gelatin zymography. Their effect on HT29 cell proliferation and cell migration was tested, as well as on the corresponding intrinsic cellular MMP-9 activities. Seed proteins include potent inhibitors of MMP-9, particularly low molecular mass proteins. Their effectiveness differs greatly among species, with a positive correlation detected between their inhibitory activity and the reduction in cell migration. Lupin seeds contain the most efficient MMP-9 inhibitors of all legume seeds analyzed, inhibiting both gelatinases and HT29 migration and growth, while pea seeds showed no effect. Results reveal legume protein MMPIs as novel metalloproteinase inhibitors with possible pharmacological interest. This may be important for selecting leguminous species with potential use in anti-cancer diets. PMID:26616921

  14. The anti-inflammatory drug nimesulide inhibits neutrophil adherence to and migration across monolayers of cytokine-activated endothelial cells.

    PubMed

    Dapino, P; Ottonello, L; Dallegri, F

    1994-01-01

    Neutrophil migration through the microvascular endothelium represents a fundamental event for the cell accumulation at sites of tissue injury. Owing to their capacity to modify the structural and functional characteristics of endothelial cells, inflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF alpha) play a pivotal role in directing circulating neutrophils away from the bloodstream to the interstitial tissue. In order to study neutrophil transendothelial migration, human umbilical vein endothelial cells were grown to confluence on the polycarbonate filter of two-compartment migration chambers. Pretreatment of the endothelial cell monolayers with TNF alpha for 4 h resulted in rapid migration of approximately 50% of subsequently added neutrophils across the layers. In contrast, < 10% of added neutrophils penetrated untreated endothelial monolayers. Using TNF alpha-treated endothelium, neutrophil transmigration was inhibited by the methane sulfonanilide anti-inflammatory drug nimesulide. Moreover, neutrophil adherence to TNF alpha-treated endothelial monolayers, cultured in microtiter wells, was markedly reduced by nimesulide. A linear correlation between the drug-dependent inhibition of neutrophil transmigration and neutrophil adherence was found. Finally, nimesulide did not interfere with the TNF alpha ability to convert resting endothelium into a pro-adhesive and pro-locomotory cell layer. The data suggest that nimesulide reduces neutrophil transendothelial migration primarily by limiting the cell anchorage to the TNF alpha-activated endothelium. Therefore, the drug has the potential to down-regulate neutrophil extravasation and, in turn, the burden of neutrophil oxidants and proteases leading to tissue injury at sites of inflammation. PMID:7824814

  15. Multiscale Cues Drive Collective Cell Migration

    PubMed Central

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  16. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  17. Multiscale Cues Drive Collective Cell Migration.

    PubMed

    Nam, Ki-Hwan; Kim, Peter; Wood, David K; Kwon, Sunghoon; Provenzano, Paolo P; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  18. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells.

    PubMed

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-08-15

    Thyroid hormone (3,5,3'-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  19. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells

    PubMed Central

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J.; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-01-01

    Thyroid hormone (3,5,3′-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  20. Desmethylanhydroicaritin isolated from Sophora flavescens, shows antitumor activities in U87MG cells via inhibiting the proliferation, migration and invasion.

    PubMed

    Kang, Chang-Won; Kim, Nan-Hee; Jung, Huyn Ah; Choi, Hyung-Wook; Kang, Min-Jae; Choi, Jae-Sue; Kim, Gun-Do

    2016-04-01

    This study is the first report of the antitumor activities of desmethylanhydroicaritin (DMAI) isolated from Sophora flavescens on U87MG cells. Human glioblastoma is one of the most aggressive malignant type of brain tumors and highly diffuses to around normal brain tissues. DMAI showed anti-proliferation effects on U87MG cells at the concentration of 30μM, however did not affect to HEK-293 cells. DMAI induced anti-proliferation effects via ERK/MAPK, PI3K/Akt/mTOR signal pathway and G2/M phase cell cycle arrest. DMAI led to morphological change and inhibition of filapodia formation through regulation of Rac 1 and Cdc 42. In addition, migration and invasion of U87MG cells were inhibited by DMAI via down-regulation of matrix metalloproteinase (MMP) -2 and MMP -9 expressions and activities. Our results suggest that DMAI has a potential as a therapeutic agent against glioblastoma cells. PMID:26991848

  1. Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima.

    PubMed

    Liang, Ming; Wang, Yun; Liang, Anlin; Mitch, William E; Roy-Chaudhury, Prabir; Han, Guofeng; Cheng, Jizhong

    2015-09-01

    A major factor contributing to failure of arteriovenous fistulas (AVFs) is migration of smooth muscle cells into the forming neointima. To identify the source of smooth muscle cells in neointima, we created end-to-end AVFs by anastomosing the common carotid artery to the jugular vein and studied neural crest-derived smooth muscle cells from the carotid artery, which are Wnt1-positive during development. In Wnt1-cre-GFP mice, smooth muscle cells in the carotid artery but not the jugular vein are labeled with GFP. About half of the cells were GFP-positive in the neointima, indicating their migration from the carotid artery to the jugular vein in AVFs created in these mice. As fibroblast-specific protein-1 (FSP-1) regulates smooth muscle cell migration, we examined FSP-1 in failed AVFs and polytetrafluoroethylene grafts from patients with end-stage kidney disease or from AVFs in mice with chronic kidney disease. In smooth muscle cells of AVFs or polytetrafluoroethylene grafts, FSP-1 and activation of Notch1 are present. In smooth muscle cells, Notch1 increased RBP-Jκ transcription factor activity and RBP-Jκ stimulated FSP-1 expression. Conditional knockout of RBP-Jκ in smooth muscle cells or general knockout of FSP-1 suppressed neointima formation in AVFs in mice. Thus, the artery of AVFs is the major source of smooth muscle cells during neointima formation. Knockout of RBP-Jκ or FSP-1 ameliorates neointima formation and might improve AVF patency during long-term follow-up. PMID:25786100

  2. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation

    PubMed Central

    Lee, Kyung Hun; Koh, Minsoo; Moon, Aree

    2016-01-01

    Hyperactive Ras promotes proliferation and malignant phenotypic conversion of cells in cancer. Ras protein must be associated with cellular membranes for its oncogenic activities through post-translational modifications, including farnesylation. Farnesyltransferase (FTase) is essential for H-Ras membrane targeting, and H-Ras, but not N-Ras, has been demonstrated to cause an invasive phenotype in MCF10A breast epithelial cells. In the present study, it was observed that an FTase inhibitor (FTI), FTI-277, blocked epidermal growth factor (EGF)-induced H-Ras activation, but not N-Ras activation in MDA-MB-231 cells, which express wild-type H-Ras and N-Ras. FTI-277 exerted a more potent inhibitory effect on the proliferation of H-Ras-MCF10A cells and Hs578T breast cancer cells expressing an active mutant of H-Ras than that of MDA-MB-231 cells. The invasive/migratory phenotypes of the H-Ras-MCF10A and Hs578T cells were effectively inhibited by FTI-277 treatment. By contrast, FTI-277 did not affect the invasive/migratory phenotypes of MDA-MB-231 cells. However, the EGF-induced invasion of MDA-MB-231 cells was decreased by FTI-277, implicating that FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Taken together, the results of the present study suggest that FTase inhibition by FTI-277 may be an effective strategy for targeting H-Ras-mediated proliferation, migration and invasion of breast cells. PMID:27602167

  3. Network formation through active migration of human vascular endothelial cells in a multilayered skeletal myoblast sheet.

    PubMed

    Nagamori, Eiji; Ngo, Trung Xuan; Takezawa, Yasunori; Saito, Atsuhiro; Sawa, Yoshiki; Shimizu, Tatsuya; Okano, Teruo; Taya, Masahito; Kino-oka, Masahiro

    2013-01-01

    Autologous transplantation of myoblast sheet has attracted attention as a new technique for curing myocardial infarction. Myoblast sheet has the ability to secret cytokines that improve heart function via the facilitation of angiogenesis on affected part. To mimic the in vivo angiogenesis in the myoblast sheet after transplantation, a five-layered cell sheet of human skeletal muscle myoblasts (HSMMs) was overlaid on human umbilical vein endothelial cells (HUVECs) which enables evaluation of dynamic HUVEC behavior. HUVECs existing initially at the bottom of the sheet changed to be a stretched shape and migrated upward compared with the surrounding HSMMs in the sheet. Prolonged incubation resulted in network formation of HUVECs in the middle of the sheet, although non-networked HUVECs continued to migrate to the top of the sheet, which meant the spatial habitation of HUVECs in the cell sheet. Image processing was performed to determine the variation in the extent of network formation at different HUVEC densities. It was found that the extent of formed network depended on the frequency of encounters among HUVECs in the middle of the sheet. The present system, which can evaluate network formation, is considered to be a promising in vitro angiogenesis model. PMID:23117213

  4. DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior

    PubMed Central

    Ioannou, Maria S.; Bell, Emily S.; Girard, Martine; Chaineau, Mathilde; Hamlin, Jason N.R.; Daubaras, Mark; Monast, Anie; Park, Morag; Hodgson, Louis

    2015-01-01

    The small guanosine triphosphatase Rab13 functions in exocytic vesicle trafficking in epithelial cells. Alterations in Rab13 activity have been observed in human cancers, yet the mechanism of Rab13 activation and its role in cancer progression remain unclear. In this paper, we identify the DENN domain protein DENND2B as the guanine nucleotide exchange factor for Rab13 and develop a novel Förster resonance energy transfer–based Rab biosensor to reveal activation of Rab13 by DENND2B at the leading edge of migrating cells. DENND2B interacts with the Rab13 effector MICAL-L2 at the cell periphery, and this interaction is required for the dynamic remodeling of the cell’s leading edge. Disruption of Rab13-mediated trafficking dramatically limits the invasive behavior of epithelial cells in vitro and the growth and migration of highly invasive cancer cells in vivo. Thus, blocking Rab13 activation by DENND2B may provide a novel target to limit the spread of epithelial cancers. PMID:25713415

  5. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects. PMID:25870264

  6. Characterization of the activities of actin-affecting drugs on tumor cell migration

    SciTech Connect

    Hayot, Caroline; Debeir, Olivier; Ham, Philippe van; Damme, Marc van; Kiss, Robert; Decaestecker, Christine . E-mail: cdecaes@ulb.ac.be

    2006-02-15

    Metastases kill 90% of cancer patients. It is thus a major challenge in cancer therapy to inhibit the spreading of tumor cells from primary tumor sites to those particular organs where metastases are likely to occur. Whereas the actin cytoskeleton is a key component involved in cell migration, agents targeting actin dynamics have been relatively poorly investigated. Consequently, valuable in vitro pharmacological tools are needed to selectively identify this type of agent. In response to the absence of any standardized process, the present work aims to develop a multi-assay strategy for screening actin-affecting drugs with anti-migratory potentials. To validate our approach, we used two cancer cell lines (MCF7 and A549) and three actin-affecting drugs (cytochalasin D, latrunculin A, and jasplakinolide). We quantified the effects of these drugs on the kinetics of actin polymerization in tubes (by means of spectrofluorimetry) and on the dynamics of actin cytoskeletons within whole cells (by means of fluorescence microscopy). Using quantitative videomicroscopy, we investigated the actual effects of the drugs on cell motility. Finally, the combined drug effects on cell motility and cell growth were evaluated by means of a scratch-wound assay. While our results showed concordant drug-induced effects on actin polymerization occurring in vitro in test tubes and within whole cells, the whole cell assay appeared more sensitive than the tube assay. The inhibition of actin polymerization induced by cytochalasin D was paralleled by a decrease in cell motility for both cell types. In the case of jasplakinolide, which induces actin polymerization, while it significantly enhanced the locomotion of the A549 cells, it significantly inhibited that of the MCF-7 ones. All these effects were confirmed by means of the scratch-wound assay except of the jasplakinolide-induced effects on MCF-7 cell motility. These later seemed compensated by an additional effect occurring during wound

  7. Sodium Tanshinone IIA Silate Inhibits High Glucose-Induced Vascular Smooth Muscle Cell Proliferation and Migration through Activation of AMP-Activated Protein Kinase

    PubMed Central

    Wu, Wen-yu; Yan, Hong; Wang, Xin-bo; Gui, Yu-zhou; Gao, Fei; Tang, Xi-lan; Qin, Yin-lin; Su, Mei; Chen, Tao; Wang, Yi-ping

    2014-01-01

    The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS) has an inhibitory effect on vascular smooth muscle cell (VSMC) proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK) at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG) versus normal glucose conditions (5.5 mM glucose, NG), and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC), a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis. PMID:24739942

  8. Migration of eosinophils across endothelial cell monolayers: interactions among IL-5, endothelial-activating cytokines, and C-C chemokines.

    PubMed

    Shahabuddin, S; Ponath, P; Schleimer, R P

    2000-04-01

    Eosinophils are the predominant cell type recruited in inflammatory reactions in response to allergen challenge. The mechanisms of selective eosinophil recruitment in allergic reactions are not fully elucidated. In this study, the ability of several C-C chemokines to induce transendothelial migration (TEM) of eosinophils in vitro was assessed. Eotaxin, eotaxin-2, monocyte chemotactic protein (MCP)-4, and RANTES induced eosinophil TEM across unstimulated human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner with the following rank order of potency: eotaxin approximately eotaxin-2 > MCP-4 approximately RANTES. The maximal response induced by eotaxin or eotaxin-2 exceeded that of RANTES or MCP-4. Preincubation of eosinophils with anti-CCR3 Ab (7B11) completely blocked eosinophil TEM induced by eotaxin, MCP-4, and RANTES. Activation of endothelial cells with IL-1beta or TNF-alpha induced concentration-dependent migration of eosinophils, which was enhanced synergistically in the presence of eotaxin and RANTES. Anti-CCR3 also inhibited eotaxin-induced eosinophil TEM across TNF-alpha-stimulated HUVEC. The ability of eosinophil-active cytokines to potentiate eosinophil TEM was assessed by investigating eotaxin or RANTES-induced eosinophil TEM across resting and IL-1beta-stimulated HUVEC in the presence or absence of IL-5. The results showed synergy between IL-5 and the chemokines but not between IL-5 and the endothelial activator IL-1beta. Our data suggest that eotaxin, eotaxin-2, MCP-4, and RANTES induce eosinophil TEM via CCR3 with varied potency and efficacy. Activation of HUVEC by IL-1beta or TNF-alpha or priming of eosinophils by IL-5 both promote CCR3-dependent migration of eosinophils from the vasculature in conjunction with CCR3-active chemokines. PMID:10725746

  9. Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells.

    PubMed

    Sánchez-Bailón, María Pilar; Calcabrini, Annarica; Gómez-Domínguez, Daniel; Morte, Beatriz; Martín-Forero, Esther; Gómez-López, Gonzalo; Molinari, Agnese; Wagner, Kay-Uwe; Martín-Pérez, Jorge

    2012-06-01

    SFKs are frequently deregulated in cancer where they control cellular proliferation, migration, survival and metastasis. Here we study the role of SFKs catalytic activity in triple-negative/basal-like and metastatic human breast cancer MDA-MB-231 cells employing three well-established inhibitors: Dasatinib, PP2 and SU6656. These compounds inhibited migration and invasion. Concomitantly, they reduced Fak, paxillin, p130CAS, caveolin-1 phosphorylation and altered cytoskeletal structures. They also inhibited cell proliferation, but in different manners. Dasatinib and PP2 increased p27(Kip1) expression and reduced c-Myc levels, restraining G1–S transition. In contrast, SU6656 did not modify p27(Kip1) expression, slightly altered c-Myc levels and generated polyploid multinucleated cells, indicating inhibition of cytokinesis. These later effects were also observed in SYF fibroblasts, suggesting a SFKs-independent action. ZM447439, an Aurora B kinase inhibitor, produced similar cell cycle and morphological alterations in MDA-MB-231 cells, indicating that SU6656 blocked Aurora B kinase. This was confirmed by inhibition of histone H3 phosphorylation, the canonical Aurora B kinase substrate. Furthermore, hierarchical clustering analysis of gene expression profiles showed that SU6656 defined a set of genes that differed from Dasatinib and PP2. Additionally, Gene Set Enrichment Analyses revealed that SU6656 significantly reduces the Src pathway. Together, these results show the importance of SFKs catalytic activity for MDA-MB-231 proliferation, migration and invasiveness. They also illustrate that SU6656 acts as dual SFKs and Aurora B kinase inhibitor, suggesting its possible use as a therapeutic agent in breast cancer. PMID:22570868

  10. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity

    PubMed Central

    Chen, Lihua; DeWispelaere, Allison; Dastvan, Frank; Osborne, William R. A.; Blechner, Christine; Windhorst, Sabine; Daum, Guenter

    2016-01-01

    Smooth muscle alpha-actin (SMA) is a marker for the contractile, non-proliferative phenotype of adult smooth muscle cells (SMCs). Upon arterial injury, expression of SMA and other structural proteins decreases and SMCs acquire a pro-migratory and proliferative phenotype. To what extent SMA regulates migration and proliferation of SMCs is unclear and putative signaling pathways involved remain to be elucidated. Here, we used lentiviral-mediated gene transfer and siRNA technology to manipulate expression of SMA in carotid mouse SMCs and studied effects of SMA. Overexpression of SMA results in decreased proliferation and migration and blunts serum-induced activation of the small GTPase Rac, but not RhoA. All inhibitory effects of SMA are rescued by expression of a constitutively active Rac1 mutant (V12rac1). Moreover, reduction of SMA expression by siRNA technology results in an increased activation of Rac. Taken together, this study identifies Rac1 as a downstream target for SMA to inhibit SMC proliferation and migration. PMID:27176050

  11. PRKX, a phylogenetically and functionally distinct cAMP-dependent protein kinase, activates renal epithelial cell migration and morphogenesis

    PubMed Central

    Li, Xiaohong; Li, Hsi-Ping; Amsler, Kurt; Hyink, Deborah; Wilson, Patricia D.; Burrow, Christopher R.

    2002-01-01

    The human protein kinase X gene (PRKX) is a member of an ancient family of cAMP-dependent serine/threonine kinases here shown to be phylogenetically distinct from the classical PKA, PKB/Akt, PKC, SGK, and PKG gene families. Renal expression of the PRKX gene is developmentally regulated and restricted to the ureteric bud epithelium of the fetal metanephric kidney. Aberrant adult kidney expression of PRKX was found in autosomal dominant polycystic kidney disease. PRKX kinase expression markedly activated migration of cultured renal epithelial cells in the presence of cAMP; this effect was blocked by cell treatment with the PKA inhibitor H89 and was not observed in PKA-transfected cells. In addition, expression of PRKX kinase activated branching morphogenesis of Madin–Darby canine kidney cells in collagen gels even in the absence of cAMP and/or hepatocyte growth factor, an effect not seen with either PKA expression or expression of a mutant, kinase-inactivated PRKX. These results suggest that the PRKX kinase may regulate epithelial morphogenesis during mammalian kidney development. Because another member of the PRKX gene family (the Dictyostelium discoideum gene KAPC-DICDI) also plays a role in cellular migration, these studies suggest that regulation of morphogenesis may be a distinctive property of these genes that has been conserved in evolution that is not shared with PKA family genes. PMID:12082174

  12. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells

    PubMed Central

    Senoo, Hiroshi; Cai, Huaqing; Wang, Yu; Sesaki, Hiromi; Iijima, Miho

    2016-01-01

    Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization. PMID:27009206

  13. The novel RacE-binding protein GflB sharpens Ras activity at the leading edge of migrating cells.

    PubMed

    Senoo, Hiroshi; Cai, Huaqing; Wang, Yu; Sesaki, Hiromi; Iijima, Miho

    2016-05-15

    Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization. PMID:27009206

  14. Identification of ganglioside GM2 activator playing a role in cancer cell migration through proteomic analysis of breast cancer secretomes.

    PubMed

    Shin, Jihye; Kim, Gamin; Lee, Jong Won; Lee, Ji Eun; Kim, Yoo Seok; Yu, Jong-Han; Lee, Seung-Taek; Ahn, Sei Hyun; Kim, Hoguen; Lee, Cheolju

    2016-06-01

    Cancer cell secretomes are considered a potential source for the discovery of cancer markers. In this study, the secretomes of four breast cancer (BC) cell lines (Hs578T, MCF-7, MDA-MB-231, and SK-BR-3) were profiled with liquid chromatography-tandem mass spectrometry analysis. A total of 1410 proteins were identified with less than 1% false discovery rate, of which approximately 55% (796 proteins) were predicted to be secreted from cells. To find BC-specific proteins among the secreted proteins, data of immunohistochemical staining compiled in the Human Protein Atlas were investigated by comparing the data of BC tissues with those of normal tissues. By applying various criteria, including higher expression level in BC tissues, higher predicted potential of secretion, and sufficient number of tandem mass spectra, 12 biomarker candidate proteins including ganglioside GM2 activator (GM2A) were selected for confirmation. Western blot analysis and ELISA for plasma samples of healthy controls and BC patients revealed elevation of GM2A in BC patients, especially those who were estrogen receptor-negative. Additionally, siRNA-mediated knockdown of GM2A in BC cells decreased migration in vitro, whereas the overexpression of GM2A led to an increase in cell migration. Although GM2A as a diagnostic and prognostic marker in BC should be carefully verified further, this study has established the potential role of GM2A in BC progression. PMID:27002480

  15. Human hemokinin-1 promotes migration of melanoma cells and increases MMP-2 and MT1-MMP expression by activating tumor cell NK1 receptors.

    PubMed

    Zhang, Yixin; Li, Xiaofang; Li, Jingyi; Hu, Hui; Miao, Xiaokang; Song, Xiaoyun; Yang, Wenle; Zeng, Qian; Mou, Lingyun; Wang, Rui

    2016-09-01

    Receptors and their regulatory peptides are aberrantly expressed in tumors, suggesting a potential tumor therapy target. Human hemokinin-1 (hHK-1) is a tachykinin peptide ligand of the neurokinin-1 (NK1) receptor which is overexpressed in melanoma and other tumor tissues. Here, we investigated the role of hHK-1 and the NK1 receptor in melanoma cell migration. NK1 receptor expression was associated with melanoma metastatic potential. Treatment with hHK-1 significantly enhanced A375 and B16F10 melanoma cell migration and an NK1 receptor antagonist L732138 blocked this effect. MMP-2 and MT1-MMP expression were up-regulated in hHK-1-treated melanoma cells and cell signaling data suggested that hHK-1 induced phosphorylation of ERK1/2, JNK and p38 by way of PKC or PKA. Kinase activation led to increased MMP-2 and MT1-MMP expression and melanoma cell migration induced by hHK-1. Thus, hHK-1 and the NK1 receptor are critical to melanoma cell migration and each may be a promising chemotherapeutic target. PMID:27458061

  16. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  17. Cell and tissue mechanics in cell migration

    PubMed Central

    Lange, Janina R.; Fabry, Ben

    2013-01-01

    Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies. PMID:23664834

  18. Cell and tissue mechanics in cell migration.

    PubMed

    Lange, Janina R; Fabry, Ben

    2013-10-01

    Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies. PMID:23664834

  19. Thymidine 5'-O-monophosphorothioate induces HeLa cell migration by activation of the P2Y6 receptor.

    PubMed

    Gendaszewska-Darmach, Edyta; Szustak, Marcin

    2016-06-01

    ATP, ADP, UTP, and UDP acting as ligands of specific P2Y receptors activate intracellular signaling cascades to regulate a variety of cellular processes, including proliferation, migration, differentiation, and cell death. Contrary to a widely held opinion, we show here that nucleoside 5'-O-monophosphorothioate analogs, containing a sulfur atom in a place of one nonbridging oxygen atom in a phosphate group, act as ligands for selected P2Y subtypes. We pay particular attention to the unique activity of thymidine 5'-O-monophosphorothioate (TMPS) which acts as a specific partial agonist of the P2Y6 receptor (P2Y6R). We also collected evidence for the involvement of the P2Y6 receptor in human epithelial adenocarcinoma cell line (HeLa) cell migration induced by thymidine 5'-O-monophosphorothioate analog. The stimulatory effect of TMPS was abolished by siRNA-mediated P2Y6 knockdown and diisothiocyanate derivative MRS 2578, a selective antagonist of the P2Y6R. Our results indicate for the first time that increased stability of thymidine 5'-O-monophosphorothioate as well as its affinity toward the P2Y6R may be responsible for some long-term effects mediated by this receptor. PMID:26746211

  20. Cdc42 and p190RhoGAP activation by CCN2 regulates cell spreading and polarity and induces actin disassembly in migrating keratinocytes.

    PubMed

    Kiwanuka, Elizabeth; Lee, Cameron Cy; Hackl, Florian; Caterson, Edward J; Junker, Johan Pe; Gerdin, Bengt; Eriksson, Elof

    2016-06-01

    Cell migration requires spatiotemporal integration of signals that regulate cytoskeletal dynamics. In response to a migration-promoting agent, cells begin to polarise and extend protrusions in the direction of migration. These cytoskeletal rearrangements are orchestrated by a variety of proteins, including focal adhesion kinase (FAK) and the Rho family of GTPases. CCN2, also known as connective tissue growth factor, has emerged as a regulator of cell migration but the mechanism by which CCN2 regulates keratinocyte function is not well understood. In this article, we sought to elucidate the basic mechanism of CCN2-induced cell migration in human keratinocytes. Immunohistochemical staining was used to demonstrate that treatment with CCN2 induces a migratory phenotype through actin disassembly, spreading of lamellipodia and re-orientation of the Golgi. In vitro assays were used to show that CCN2-induced cell migration is dependent on FAK, RhoA and Cdc42, but independent of Rac1. CCN2-treated keratinocytes displayed increased Cdc42 activity and decreased RhoA activity up to 12 hours post-treatment, with upregulation of p190RhoGAP. An improved understanding of how CCN2 regulates cell migration may establish the foundation for future therapeutics in fibrotic and neoplastic diseases. PMID:25185742

  1. Lamellipodial tension, not integrin/ligand binding, is the crucial factor to realise integrin activation and cell migration.

    PubMed

    Schulte, Carsten; Ferraris, Gian Maria Sarra; Oldani, Amanda; Galluzzi, Massimiliano; Podestà, Alessandro; Puricelli, Luca; de Lorenzi, Valentina; Lenardi, Cristina; Milani, Paolo; Sidenius, Nicolai

    2016-01-01

    The molecular clutch (MC) model proposes that actomyosin-driven force transmission permits integrin-dependent cell migration. To investigate the MC, we introduced diverse talin (TLN) and integrin variants into Flp-In™ T-Rex™ HEK293 cells stably expressing uPAR. Vitronectin variants served as substrate providing uPAR-mediated cell adhesion and optionally integrin binding. This particular system allowed us to selectively analyse key MC proteins and interactions, effectively from the extracellular matrix substrate to intracellular f-actin, and to therewith study mechanobiological aspects of MC engagement also uncoupled from integrin/ligand binding. With this experimental approach, we found that for the initial PIP2-dependent membrane/TLN/f-actin linkage and persistent lamellipodia formation the C-terminal TLN actin binding site (ABS) is dispensable. The establishment of an adequate MC-mediated lamellipodial tension instead depends predominantly on the coupling of this C-terminal TLN ABS to the actomyosin-driven retrograde actin flow force. This lamellipodial tension is crucial for full integrin activation eventually determining integrin-dependent cell migration. In the integrin/ligand-independent condition the frictional membrane resistance participates to these processes. Integrin/ligand binding can also contribute but is not necessarily required. PMID:26616200

  2. MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation

    PubMed Central

    Pon, Julia R.; Wong, Jackson; Saberi, Saeed; Alder, Olivia; Moksa, Michelle; Grace Cheng, S. -W.; Morin, Gregg B.; Hoodless, Pamela A.; Hirst, Martin; Marra, Marco A.

    2015-01-01

    Myocyte enhancer factor 2B (MEF2B) is a transcription factor with mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL). To provide insight into the regulatory network of MEF2B, in this study, we analyse global gene expression and DNA-binding patterns. We find that candidate MEF2B direct target genes include RHOB, RHOD, CDH13, ITGA5 and CAV1, and that indirect target genes of MEF2B include MYC, TGFB1, CARD11, MEF2C, NDRG1 and FN1. MEF2B overexpression increases HEK293A cell migration and epithelial–mesenchymal transition, and decreases DLBCL cell chemotaxis. K4E, Y69H and D83V MEF2B mutations decrease the capacity of MEF2B to activate transcription and decrease its' effects on cell migration. The K4E and D83V mutations decrease MEF2B DNA binding. In conclusion, our map of the MEF2B regulome connects MEF2B to drivers of oncogenesis. PMID:26245647

  3. MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.

    PubMed

    Pon, Julia R; Wong, Jackson; Saberi, Saeed; Alder, Olivia; Moksa, Michelle; Grace Cheng, S-W; Morin, Gregg B; Hoodless, Pamela A; Hirst, Martin; Marra, Marco A

    2015-01-01

    Myocyte enhancer factor 2B (MEF2B) is a transcription factor with mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL). To provide insight into the regulatory network of MEF2B, in this study, we analyse global gene expression and DNA-binding patterns. We find that candidate MEF2B direct target genes include RHOB, RHOD, CDH13, ITGA5 and CAV1, and that indirect target genes of MEF2B include MYC, TGFB1, CARD11, MEF2C, NDRG1 and FN1. MEF2B overexpression increases HEK293A cell migration and epithelial-mesenchymal transition, and decreases DLBCL cell chemotaxis. K4E, Y69H and D83V MEF2B mutations decrease the capacity of MEF2B to activate transcription and decrease its' effects on cell migration. The K4E and D83V mutations decrease MEF2B DNA binding. In conclusion, our map of the MEF2B regulome connects MEF2B to drivers of oncogenesis. PMID:26245647

  4. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  5. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents.

    PubMed

    Guo, Rui; Pan, Fuqiang; Tian, Yanping; Li, Hongli; Li, Shirong; Cao, Chuan

    2016-06-01

    ClC-3, a member of the ClC chloride (Cl(-)) channel family, has recently been proposed as the primary Cl(-) channel involved in cell volume regulation. Changes in cell volume influence excitability, contraction, migration, pathogen-host interactions, cell proliferation, and cell death processes. In this study, expression and function of ClC-3 channels were investigated during epidermal stem cell (ESC) migration. We observed differential expression of CLC-3 regulates migration of ESCs. Further, whole-cell patch-clamp recordings and image analysis demonstrated ClC-3 expression affected volume-activated Cl(-) current (I Cl,Vol) within ESCs. Live cell imaging systems, designed to observe cellular responses to overexpression and suppression of ClC-3 in real time, indicated ClC-3 may regulate ESC migratory dynamics. We employed IMARIS software to analyze the velocity and distance of ESC migration in vitro to demonstrate the function of ClC-3 channel in ESCs. As our data suggest volume-activated Cl(-) channels play a vital role in migration of ESCs, which contribute to skin repair by migrating from neighboring unwounded epidermis infundibulum, hair follicle or sebaceous glands, ClC-3 may represent a new and valuable target for stem cell therapies. PMID:26769712

  6. Meloxicam suppresses hepatocellular carcinoma cell proliferation and migration by targeting COX-2/PGE2-regulated activation of the β-catenin signaling pathway.

    PubMed

    Li, Tao; Zhong, Jingtao; Dong, Xiaofeng; Xiu, Peng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Sun, Xueying; Li, Jie

    2016-06-01

    Recurrence and metastasis are the two leading causes of poor prognosis of hepatocellular carcinoma (HCC) patients. Cyclooxygenase (COX)-2 is overexpressed in many types of cancers including HCC and promotes its metastasis. Meloxicam is a selective COX-2 inhibitor that has been reported to exert an anti-proliferation and invasion/migration response in various tumors. In this study, we examined the role of meloxicam on HCC cell proliferation and migration and explored the molecular mechanisms underlying this effect. We found that meloxicam inhibited HCC cell proliferation and had a cell cycle arrest effect in human HCC cells. Furthermore, meloxicam suppressed the ability of HCC cells expressing higher levels of COX-2 and prostaglandin E2 (PGE2) to migration via potentiating expression of E-cadherin and alleviating expression of matrix metalloproteinase (MMP)-2 and -9. COX-2/PGE2 has been considered to activate the β-catenin signaling pathway which promotes cancer cell migration. We found that treatment with PGE2 significantly enhanced nuclear accumulation of β-catenin and the activation of GSK3β which could be reversed by meloxicam in HCC cells. We also observed that HCC cell migration and upregulation of the level of MMP-2/9 and downregulation of E-cadherin induced by PGE2 were suppressed by FH535, an inhibitor of β-catenin. Taken together, these findings provide a new treatment strategy against HCC proliferation and migration. PMID:27109804

  7. Activated T Cell Trans-Endothelial Migration Relies on Myosin-IIA Contractility for Squeezing the Cell Nucleus through Endothelial Cell Barriers

    PubMed Central

    Jacobelli, Jordan; Estin Matthews, Miriam; Chen, Stephanie; Krummel, Matthew F.

    2013-01-01

    Following activation, T cells are released from lymph nodes to traffic via the blood to effector sites. The re-entry of these activated T cells into tissues represents a critical step for them to carry out local effector functions. Here we have assessed defects in effector T cells that are acutely depleted in Myosin-IIA (MyoIIA) and show a T cell intrinsic requirement for this motor to facilitate the diapedesis step of extravasation. We show that MyoIIA accumulates at the rear of T cells undergoing trans-endothelial migration. T cells can extend protrusions and project a substantial portion of their cytoplasm through the endothelial wall in the absence of MyoIIA. However, this motor protein plays a crucial role in allowing T cells to complete the movement of their relatively rigid nucleus through the endothelial junctions. In vivo, this defect manifests as poor entry into lymph nodes, tumors and into the spinal cord, during tissue-specific autoimmunity, but not the spleen. This suggests that therapeutic targeting of this molecule may allow for differential attenuation of tissue-specific inflammatory responses. PMID:24069389

  8. Frizzled2 mediates the migration and invasion of human oral squamous cell carcinoma cells through the regulation of the signal transducer and activator of transcription-3 signaling pathway.

    PubMed

    Zhang, Enjiao; Li, Zhenning; Xu, Zhongfei; Duan, Weiyi; Sun, Changfu; Lu, Li

    2015-12-01

    Frizzled2 (Fzd2) is a receptor for wingless-type MMTV integration site family members (Wnts), the aberrant overexpression of which has been noted to contribute to cancer metastasis. The present study was performed to characterize the role of Fzd2 in the migration and invasion of oral squamous cell carcinomas (OSCC) in vitro. Using TSCCa cells (a tongue SCC cell line) for loss- or gain-of-function of Fzd2, we found that a forced overexpression of Fzd2 promoted TSCCa cell migration and invasion, decreased the expression of epithelial‑cadherin (E-cadherin, an epithelial marker) and increased that of vimentin, Snail Slug, matrix metalloproteinases (MMPs)-2/-9/-13 and a-disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS5). By contrast, RNA interference (RNAi)-mediated knockdown of Fzd2 had opposite effects on OSCC cells. In addition, we found that the phosphorylation of signal transducer and activator of transcription-3 (STAT3) was enhanced by Fzd2 overexpression, but suppressed by Fzd2 depletion, and that STAT3‑specific shRNA attenuated Fzd2 overexpression‑induced cell invasion. In summary, the present study demonstrated that Fzd2 contributes to the migration and invasion of OSCC cells, at least partly through regulation of the STAT3 pathway. These results suggest Fzd2 as a novel therapeutic target for OSCC. PMID:26398330

  9. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.

    PubMed

    Pang, M-F; Georgoudaki, A-M; Lambut, L; Johansson, J; Tabor, V; Hagikura, K; Jin, Y; Jansson, M; Alexander, J S; Nelson, C M; Jakobsson, L; Betsholtz, C; Sund, M; Karlsson, M C I; Fuxe, J

    2016-02-11

    Tumor cells frequently disseminate through the lymphatic system during metastatic spread of breast cancer and many other types of cancer. Yet it is not clear how tumor cells make their way into the lymphatic system and how they choose between lymphatic and blood vessels for migration. Here we report that mammary tumor cells undergoing epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β1) become activated for targeted migration through the lymphatic system, similar to dendritic cells (DCs) during inflammation. EMT cells preferentially migrated toward lymphatic vessels compared with blood vessels, both in vivo and in 3D cultures. A mechanism of this targeted migration was traced to the capacity of TGF-β1 to promote CCR7/CCL21-mediated crosstalk between tumor cells and lymphatic endothelial cells. On one hand, TGF-β1 promoted CCR7 expression in EMT cells through p38 MAP kinase-mediated activation of the JunB transcription factor. Blockade of CCR7, or treatment with a p38 MAP kinase inhibitor, reduced lymphatic dissemination of EMT cells in syngeneic mice. On the other hand, TGF-β1 promoted CCL21 expression in lymphatic endothelial cells. CCL21 acted in a paracrine fashion to mediate chemotactic migration of EMT cells toward lymphatic endothelial cells. The results identify TGF-β1-induced EMT as a mechanism, which activates tumor cells for targeted, DC-like migration through the lymphatic system. Furthermore, it suggests that p38 MAP kinase inhibition may be a useful strategy to inhibit EMT and lymphogenic spread of tumor cells. PMID:25961925

  10. Loss of p27 upregulates MnSOD in a STAT3-dependent manner, disrupts intracellular redox activity and enhances cell migration

    PubMed Central

    Zhang, Dongyun; Wang, Yulei; Liang, Yuguang; Zhang, Min; Wei, Jinlong; Zheng, Xiao; Li, Fei; Meng, Yan; Zhu, Nina Wu; Li, Jingxia; Wu, Xue-Ru; Huang, Chuanshu

    2014-01-01

    ABSTRACT Cell migration is a dynamic process that is central to a variety of physiological functions as well as disease pathogenesis. The modulation of cell migration by p27 (officially known as CDKN1B) has been reported, but the exact mechanism(s) whereby p27 interacts with downstream effectors that control cell migration have not been elucidated. By systematically comparing p27+/+ mouse embryonic fibroblasts (MEFs) with genetically ablated p27−/− MEFs using wound-healing, transwell and time-lapse microscopic analyses, we provide direct evidence that p27 inhibits both directional and random cell migration. Identical results were obtained with normal and cancer epithelial cells using complementary knockdown and overexpression approaches. Additional studies revealed that overexpression of manganese superoxide dismutase (MnSOD, officially known as SOD2) and reduced intracellular oxidation played a key role in increased cell migration in p27-deficient cells. Furthermore, we identified signal transducer and activator of transcription 3 (STAT3) as the transcription factor responsible for p27-regulated MnSOD expression, which was further mediated by ERK- and ATF1-dependent transactivation of the cAMP response element (CRE) within the Stat3 promoter. Collectively, our data strongly indicate that p27 plays a crucial negative role in cell migration by inhibiting MnSOD expression in a STAT3-dependent manner. PMID:24727615

  11. Benzo(a)pyrene inhibits migration and invasion of extravillous trophoblast HTR-8/SVneo cells via activation of the ERK and JNK pathway.

    PubMed

    Liu, Liyuan; Wang, Yingxiong; Shen, Cha; He, Junlin; Liu, Xueqing; Ding, Yubin; Gao, Rufei; Chen, Xuemei

    2016-07-01

    Benzo(a)pyrene (BaP) is a persistent organic pollutant (POP) that is a serious threat to human health. Numerous studies have shown that BaP causes adverse effects in pregnancy, but the mechanism remains unclear. The moderate invasion of trophoblast cells into the endometrium is an important factor during successful embryo implantation. The aim of this study was to investigate the effect and mechanism of BaP on the invasion and migration of trophoblast cells. HTR-8/SVneo cells were treated with different concentrations (1, 5, 10, 25, 50 and 100 μM) of BaP. The invasion and migration of HTR-8/SVneo cells were observed after BaP treatment. The protein levels related to migration and invasion was detected by Western blot. The results confirmed that BaP inhibits the migration and invasion of extravillous trophoblast HTR-8/SVneo cells. Further investigations indicated that the protein levels of MMP-2, MMP-9 and E-cadherin in HTR-8/SVneo cells were changed by BaP treatment. Moreover, the data demonstrated that BaP activated the MAPK signaling pathway. Pretreatment with specific inhibitors of MAPK rescued BaP-induced change in the migration and invasion of HTR-8/SVneo cells. Taken together, our results indicated that BaP inhibits invasion and the migration of HTR-8/SVneo cells, which might cause a failure in early pregnancy. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26359795

  12. Cell Migration in Confined Environments

    PubMed Central

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration. PMID:24560508

  13. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells.

    PubMed

    Charles, Ricardo; Namkung, Yoon; Cotton, Mathieu; Laporte, Stéphane A; Claing, Audrey

    2016-02-19

    Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage β-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of β-arrestin proteins, we overexpressed β-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, β-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to β-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration. PMID:26703465

  14. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  15. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists

    PubMed Central

    Shey, Muki S.; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S.

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues. PMID:27171482

  16. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    SciTech Connect

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui; Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I; Chen, Wei-Jan; Lin, Kwang-Huei

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  17. Filamin A interacts with the coactivator MKL1 to promote the activity of the transcription factor SRF and cell migration.

    PubMed

    Kircher, Philipp; Hermanns, Constanze; Nossek, Maximilian; Drexler, Maria Katharina; Grosse, Robert; Fischer, Maximilian; Sarikas, Antonio; Penkava, Josef; Lewis, Thera; Prywes, Ron; Gudermann, Thomas; Muehlich, Susanne

    2015-11-10

    Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor (SRF) that promotes the expression of genes associated with cell proliferation, motility, adhesion, and differentiation-processes that also involve dynamic cytoskeletal changes in the cell. MKL1 is inactive when bound to monomeric globular actin (G-actin), but signals that activate the small guanosine triphosphatase RhoA cause actin polymerization and MKL1 dissociation from G-actin. We found a new mechanism of MKL1 activation that is mediated through its binding to filamin A (FLNA), a protein that binds filamentous actin (F-actin). The interaction of FLNA and MKL1 was required for the expression of MKL1 target genes in primary fibroblasts, melanoma, mammary and hepatocellular carcinoma cells. We identified the regions of interaction between MKL1 and FLNA, and cells expressing an MKL1 mutant that was unable to bind FLNA exhibited impaired cell migration and reduced expression of MKL1-SRF target genes. Induction and repression of MKL1-SRF target genes correlated with increased or decreased MKL1-FLNA interaction, respectively. Lysophosphatidic acid-induced RhoA activation in primary human fibroblasts promoted the association of endogenous MKL1 with FLNA, whereas exposure to an actin polymerization inhibitor dissociated MKL1 from FLNA and decreased MKL1-SRF target gene expression in melanoma cells. Thus, FLNA functions as a positive cellular transducer linking actin polymerization to MKL1-SRF activity, counteracting the known repressive complex of MKL1 and monomeric G-actin. PMID:26554816

  18. A Discrete Cell Migration Model

    SciTech Connect

    Nutaro, James J; Kruse, Kara L; Ward, Richard C; O'Quinn, Elizabeth; Woerner, Matthew M; Beckerman, Barbara G

    2007-01-01

    Migration of vascular smooth muscle cells is a fundamental process in the development of intimal hyperplasia, a precursor to development of cardiovascular disease and a potential response to injury of an arterial wall. Boyden chamber experiments are used to quantify the motion of cell populations in response to a chemoattractant gradient (i.e., cell chemotaxis). We are developing a mathematical model of cell migration within the Boyden chamber, while simultaneously conducting experiments to obtain parameter values for the migration process. In the future, the model and parameters will be used as building blocks for a detailed model of the process that causes intimal hyperplasia. The cell migration model presented in this paper is based on the notion of a cell as a moving sensor that responds to an evolving chemoattractant gradient. We compare the results of our three-dimensional hybrid model with results from a one-dimensional continuum model. Some preliminary experimental data that is being used to refine the model is also presented.

  19. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    SciTech Connect

    Semino, Carlos E. . E-mail: semino@mit.edu; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-02-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.

  20. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  1. Concentrated growth factor promotes Schwann cell migration partly through the integrin β1-mediated activation of the focal adhesion kinase pathway.

    PubMed

    Qin, Jie; Wang, Lin; Zheng, Ling; Zhou, Xiaoyan; Zhang, Yidi; Yang, Tingting; Zhou, Yanmin

    2016-05-01

    Nerve injury is a serious complication associated with dental implant surgery. Following nerve injury, the migration of Schwann cells (SCs) supports nerve regeneration. Concentrated growth factor (CGF) belongs to a new generation of biomaterials that contain fibrin matrix, as well as a number of growth factors that affect the migration of various types of cells, including endothelial cells and cancer cells. To the very best of our knowledge, there are no available studies to date on the promoting effect of CGF on the migration of SCs. Thus, the aim of the present study was to characterize the structure of CGF and growth factor release, examine the effects of CGF on the migration of SCs, and to examine the role of integrin β1 and the focal adhesion kinase (FAK) pathway in the CGF-induced migration of SCs. For this purpose, CGF was prepared by centrifuging rat venous blood, which produced a fiber-like matrix capable of releasing transforming growth factor-β1 (TGF-β1) over a sustained period of time (at least 13 days). The soluble component of CGF was used to produce conditioned media to treat the SC cells in culture. The results demonstrated that CGF promoted the migration of SCs and increased the expression of integrin β1. These effects appeared to involve FAK phosphorylation, which occurred downstream of integrin β1 activation. The short-interfering RNA (siRNA)-mediated downregulation of integrin β1 expression did not block the ability of CGF to promote the migration of SCs. These data suggest that CGF promotes the migration of SCs partly through the integrin β1-mediated activation of the FAK pathway. PMID:26986804

  2. Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential.

    PubMed

    Alasmael, Noura; Mohan, Rati; Meira, Lisiane B; Swales, Karen E; Plant, Nick J

    2016-01-28

    Breast cancer is the commonest form of cancer in women, but successful treatment is confounded by the heterogeneous nature of breast tumours: Effective treatments exist for hormone-sensitive tumours, but triple-negative breast cancer results in poor survival. An area of increasing interest is metabolic reprogramming, whereby drug-induced alterations in the metabolic landscape of a tumour slow tumour growth and/or increase sensitivity to existing therapeutics. Nuclear receptors are transcription factors central to the expression of metabolic and transport proteins, and thus represent potential targets for metabolic reprogramming. We show that activation of the nuclear receptor FXR, either by its endogenous ligand CDCA or the synthetic GW4064, leads to cell death in four breast cancer cell lines with distinct phenotypes: MCF-10A (normal), MCF-7 (receptor positive), MDA-MB-231 and MDA-MB-468 (triple negative). Furthermore, we show that the mechanism of cell death is predominantly through the intrinsic apoptotic pathway. Finally, we demonstrate that FXR agonists do not stimulate migration in breast cancer cell lines, an important potential adverse effect. Together, our data support the continued examination of FXR agonists as a novel class of therapeutics for the treatment of breast cancer. PMID:26545738

  3. EGF-stimulated activation of Rab35 regulates RUSC2-GIT2 complex formation to stabilize GIT2 during directional lung cancer cell migration.

    PubMed

    Duan, Biao; Cui, Jie; Sun, Shixiu; Zheng, Jianchao; Zhang, Yujie; Ye, Bixing; Chen, Yan; Deng, Wenjie; Du, Jun; Zhu, Yichao; Chen, Yongchang; Gu, Luo

    2016-08-28

    Non-small cell lung cancer (NSCLC) remains one of the most metastasizing tumors, and directional cell migration is critical for targeting tumor metastasis. GIT2 has been known to bind to Paxillin to control cell polarization and directional migration. However, the molecular mechanisms underlying roles of GIT2 in controlling cell polarization and directional migration remain elusive. Here we demonstrated GIT2 control cell polarization and direction dependent on the regulation of Golgi through RUSC2. RUSC2 interacts with SHD of GIT2 in various lung cancer cells, and stabilizes GIT2 (Mazaki et al., 2006; Yu et al., 2009) by decreasing degradation and increasing its phosphorylation. Silencing of RUSC2 showed reduced stability of GIT2, defective Golgi reorientation toward the wound edge and decreased directional migration. Moreover, short-term EGF stimulation can increase the interaction between RUSC2 and GIT2, prolonged stimulation leads to a decrease of their interaction through activating Rab35. Silencing of Rab35 also reduced stability and phosphorylation of GIT2 and decreased cell migration. Taken together, our study indicated that RUSC2 participates in EGFR signaling and regulates lung cancer progression, and may be a new therapeutic target against lung cancer metastasis. PMID:27238570

  4. Endothelial cells enhance migration of meniscus cells

    PubMed Central

    Yuan, Xiaoning; Eng, George M.; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Objective To study the interactions between vascular endothelial cells and meniscal fibrochondrocytes from the inner avascular and outer vascular regions of the meniscus, and identify angiogenic factors that enhance cell migration and integrative repair. Methods Bovine meniscal fibrochondrocytes (bMFCs) from the inner and outer regions of meniscus were cultured for seven days with and without human umbilical vein endothelial cells (HUVECs) in a micropatterned three-dimensional hydrogel system for cell migration. Angiogenic factors secreted by HUVECs were probed for their role in paracrine mechanisms governing bMFC migration, and applied to a full-thickness defect model of meniscal repair in explants from the inner and outer regions over four weeks. Results Endothelial cells enhanced migration of inner and outer bMFCs in the micropatterned system via endothelin-1 (ET-1) signaling. Supplementation of ET-1 significantly enhanced integration strength of full-thickness defects in inner and outer explants, and cell migration at the macro-scale, compared to controls without ET-1 treatment. Conclusion We report for the first time that bMFCs from both the avascular and vascular regions respond to the presence of endothelial cells with increased migration. Paracrine signaling by endothelial cells regulates the bMFCs differentially by region, but we identify ET-1 as an angiogenic factor that stimulates migration of inner and outer cells at the micro-scale, and integrative repair of inner and outer explants at the macro-scale. These findings reveal the regional interactions between vasculature and MFCs, and suggest ET-1 as a potential new treatment modality for avascular meniscal injuries, in order to prevent the development of osteoarthritis. PMID:25307081

  5. Vector-encoded Helicobacter pylori neutrophil-activating protein promotes maturation of dendritic cells with Th1 polarization and improved migration.

    PubMed

    Ramachandran, Mohanraj; Jin, Chuan; Yu, Di; Eriksson, Fredrik; Essand, Magnus

    2014-09-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is a major virulence factor involved in H. pylori infection. Both HP-NAP protein and oncolytic viruses encoding HP-NAP have been suggested as immunotherapeutic anticancer agents and adjuvants for vaccination but with little known about its mode of action to activate adaptive immunity. Dendritic cells (DCs) are key players in bridging innate and adaptive immune responses, and in this study we aim to evaluate the effect of HP-NAP on DC maturation, migration, and induction of adaptive immune response. Maturation markers CD83, CD80, CD86, HLA-DR, CD40, and CCR7 were upregulated on human DCs after treatment with supernatants from HP-NAP adenovirus-infected cells. HP-NAP-activated DCs had a Th1 cytokine secretion profile, with high IL-12 and relatively low IL-10 secretion, and migrated toward CCL19. Ag-specific T cells were efficiently expanded by Ag-presenting HP-NAP-activated DCs, which is an important property of functionally mature DCs. Furthermore, intradermal injections of HP-NAP-encoding adenovirus in C57BL/6 mice enhanced resident DC migration to draining lymph nodes, which was verified by imaging lymph nodes by two-photon microscopy and by phenotyping migrating cells by flow cytometry. In conclusion, therapeutic effects of HP-NAP are mediated by maturation of DCs and subsequent activation of Ag-specific T cells in addition to provoking innate immunity. PMID:25049358

  6. Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells

    PubMed Central

    2014-01-01

    Background Cyclic RGD peptidomimetics containing a bifunctional diketopiperazine scaffold are a novel class of high-affinity ligands for the integrins αVβ3 and αVβ5. Since integrins are a promising target for the modulation of normal and pathological angiogenesis, the present study aimed at characterizing the ability of the RGD peptidomimetic cyclo[DKP-RGD] 1 proliferation, migration and network formation in human umbilical vein endothelial cells (HUVEC). Methods Cell viability was assessed by flow cytometry and annexin V (ANX)/propidium iodide (PI) staining. Cell proliferation was evaluated by the ELISA measurement of bromodeoxyuridine (BrdU) incorporation. Network formation by HUVEC cultured in Matrigel-coated plates was evaluated by optical microscopy and image analysis. Integrin subunit mRNA expression was assessed by real time-PCR and Akt phosphorylation by western blot analysis. Results Cyclo[DKP-RGD] 1 does not affect cell viability and proliferation either in resting conditions or in the presence of the pro-angiogenic growth factors VEGF, EGF, FGF, and IGF-I. Addition of cyclo[DKP-RGD] 1 however significantly decreased network formation induced by pro-angiogenic growth factors or by IL-8. Cyclo[DKP-RGD] 1 did not affect mRNA levels of αV, β3 or β5 integrin subunits, however it significantly reduced the phosphorylation of Akt. Conclusions Cyclo[DKP-RGD] 1 can be a potential modulator of angiogenesis induced by different growth factors, possibly devoid of the adverse effects of cytotoxic RGD peptidomimetic analogues. PMID:25053992

  7. T cell migration, search strategies and mechanisms.

    PubMed

    Krummel, Matthew F; Bartumeus, Frederic; Gérard, Audrey

    2016-03-01

    T cell migration is essential for T cell responses; it allows for the detection of cognate antigen at the surface of antigen-presenting cells and for interactions with other cells involved in the immune response. Although appearing random, growing evidence suggests that T cell motility patterns are strategic and governed by mechanisms that are optimized for both the activation stage of the cell and for environment-specific cues. In this Opinion article, we discuss how the combined effects of T cell-intrinsic and -extrinsic forces influence T cell motility patterns in the context of highly complex tissues that are filled with other cells involved in parallel motility. In particular, we examine how insights from 'search theory' can be used to describe T cell movement across an 'exploitation-exploration trade-off' in the context of activation versus effector function and lymph nodes versus peripheral tissues. PMID:26852928

  8. HEMA inhibits migration of dental pulp stem cells

    PubMed Central

    Williams, Drake W.; Wu, Hongkun; Oh, Ju-Eun; Fakhar, Camron; Kang, Mo K.; Shin, Ki-Hyuk; Park, No-Hee; Kim, Reuben H.

    2013-01-01

    Objectives Cell migration is an important step in pulpal wound healing. Although components in the resin-based dental materials are known to have adverse effects on pulp wound healing including proliferation and mineralization, their effects on cell migration have been scarcely examined. Here, we investigated effects of 2-Hydroxyethyl methacrylate (HEMA) on migration of dental pulp stem cells (DPSC) in vitro. Methods Cell viability was assessed using MTT assay, and cell migration was evaluated using wound scratch assay and transwell migration assay at non-cytotoxic doses. Western blotting was used to examine pathways associated with migration such as focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), and glycogen synthase kinase 3 (GSK3). Results There were no drastic changes in the cell viability below 3mM HEMA. When DPSC were treated with HEMA at 0.5, 1.0, and 2.5mM, cell migration was diminished. HEMA-treated DPSC exhibited the loss of phosphorylated focal adhesion kinase (FAK) in a dose-dependent manner. The HEMA-mediated inhibition of cell migration was associated with phosphorylation of p38 but not GSK3, ERK or JNK pathways. When we inhibited the p38 signaling pathway using a p38 inhibitor, migration of DPSC was suppressed. Conclusion HEMA inhibits migration of dental pulp cells in vitro, suggesting that poor pulpal wound healing under resin-based dental materials may be due, in part, to inhibition of cell migration by HEMA. PMID:23953290

  9. Involvement of nitric oxide synthase in matrix metalloproteinase-9- and/or urokinase plasminogen activator receptor-mediated glioma cell migration

    PubMed Central

    2013-01-01

    Background Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9β1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. Methods MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. Results Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions

  10. Novel Role for γ-Catenin in the Regulation of Cancer Cell Migration via the Induction of Hepatocyte Growth Factor Activator Inhibitor Type 1 (HAI-1)*

    PubMed Central

    Sechler, Marybeth; Borowicz, Stanley; Van Scoyk, Michelle; Avasarala, Sreedevi; Zerayesus, Sereke; Edwards, Michael G.; Kumar Karuppusamy Rathinam, Manoj; Zhao, Xiangmin; Wu, Pei-Ying; Tang, Ke; Bikkavilli, Rama Kamesh; Winn, Robert A.

    2015-01-01

    γ-catenin (Plakoglobin), a well-described structural protein functioning at the adherens junctions and desmosomes, was shown to be either lost or weakly expressed in non-small cell lung cancer (NSCLC) cells and tumor tissues. However, the tumor suppressive affects of γ-catenin were not fully understood. In this study, we have identified a novel role for the affects of γ-catenin on non-small cell lung cancer (NSCLC) cell migration. Expression of γ-catenin in NSCLC cells resulted in reduced cell migration as determined by both scratch assays and trans-well cell migration assays. Moreover, the affects of γ-catenin on cell migration were observed to be p53-dependent. Mechanistically, the anti-migratory effects seen via γ-catenin were driven by the expression of hepatocyte growth factor activator inhibitor Type I (HAI-1 or SPINT-1), an upstream inhibitor of the c-MET signaling pathway. Furthermore, the re-expression of γ-catenin sensitized NSCLC cells to c-MET inhibitor-mediated growth inhibition. Taken together, we identify γ-catenin as a novel regulator of HAI-1, which is a critical regulator of HGF/c-MET signaling. Therefore, targeting γ-catenin-mediated HAI-1 expression might be a useful strategy to sensitize NSCLC to c-MET inhibitors. PMID:25925948

  11. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    PubMed Central

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  12. PIKfyve, MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through activation of Rac1.

    PubMed

    Oppelt, Angela; Haugsten, Ellen M; Zech, Tobias; Danielsen, Håvard E; Sveen, Anita; Lobert, Viola H; Skotheim, Rolf I; Wesche, Jørgen

    2014-08-01

    Previously, we have shown that the phosphoinositide metabolizing enzymes PIKfyve (phosphoinositide 5-kinase, FYVE finger containing) and MTMR3 (myotubularin-related protein 3), together with their lipid product PtdIns5P, are important for migration of normal human fibroblasts. As these proteins are a kinase and a phosphatase respectively, and thereby considered druggable, we wanted to test their involvement in cancer cell migration and invasion. First, we showed that PIKfyve and MTMR3 are expressed in most cancer cells. Next, we demonstrated that depletion of PIKfyve or MTMR3 resulted in decreased velocity in three different cancer cell lines by using new software for cell tracking. Inhibition of the enzymatic activity of PIKfyve by the inhibitor YM201636 also led to a strong reduction in cell velocity. Mechanistically, we show that PIKfyve and MTMR3 regulate the activation of the Rho family GTPase Rac1. Further experiments also implicated PtdIns5P in the activation of Rac1. The results suggest a model for the activation of Rac1 in cell migration where PIKfyve and MTMR3 produce PtdIns5P on cellular membranes which may then serve to recruit effectors to activate Rac1. Finally, in an invasion assay, we demonstrate that both PIKfyve and MTMR3 are implicated in invasive behaviour of cancer cells. Thus PIKfyve and MTMR3 could represent novel therapeutic targets in metastatic cancer. PMID:24840251

  13. Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan.

    PubMed

    Zhan, Yifan; Chow, Kevin V; Soo, Priscilla; Xu, Zhen; Brady, Jamie L; Lawlor, Kate E; Masters, Seth L; O'keeffe, Meredith; Shortman, Ken; Zhang, Jian-Guo; Lew, Andrew M

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play an important role in immunity to certain pathogens and immunopathology in some autoimmune diseases. They are thought to have a longer lifespan than conventional DCs (cDCs), largely based on a slower rate of BrdU labeling by splenic pDCs. Here we demonstrated that pDC expansion and therefore BrdU labeling by pDCs occurs in bone marrow (BM). The rate of labeling was similar between BM pDCs and spleen cDCs. Therefore, slower BrdU labeling of spleen pDCs likely reflects the "migration time" (∼2 days) for BrdU labeled pDCs to traffic to the spleen, not necessarily reflecting longer life span. Tracking the decay of differentiated DCs showed that splenic pDCs and cDCs decayed at a similar rate. We suggest that spleen pDCs have a shorter in vivo lifespan than estimated utilizing some of the previous approaches. Nevertheless, pDC lifespan varies between mouse strains. pDCs from lupus-prone NZB mice survived longer than C57BL/6 pDCs. We also demonstrated that activation either positively or negatively impacted on the survival of pDCs via different cell-death mechanisms. Thus, pDCs are also short-lived. However, the pDC lifespan is regulated by genetic and environmental factors that may have pathological consequence. PMID:27112985

  14. Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan

    PubMed Central

    Zhan, Yifan; Chow, Kevin V.; Soo, Priscilla; Xu, Zhen; Brady, Jamie L.; Lawlor, Kate E.; Masters, Seth L.; O’keeffe, Meredith; Shortman, Ken; Zhang, Jian-Guo; Lew, Andrew M.

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play an important role in immunity to certain pathogens and immunopathology in some autoimmune diseases. They are thought to have a longer lifespan than conventional DCs (cDCs), largely based on a slower rate of BrdU labeling by splenic pDCs. Here we demonstrated that pDC expansion and therefore BrdU labeling by pDCs occurs in bone marrow (BM). The rate of labeling was similar between BM pDCs and spleen cDCs. Therefore, slower BrdU labeling of spleen pDCs likely reflects the “migration time” (∼2 days) for BrdU labeled pDCs to traffic to the spleen, not necessarily reflecting longer life span. Tracking the decay of differentiated DCs showed that splenic pDCs and cDCs decayed at a similar rate. We suggest that spleen pDCs have a shorter in vivo lifespan than estimated utilizing some of the previous approaches. Nevertheless, pDC lifespan varies between mouse strains. pDCs from lupus-prone NZB mice survived longer than C57BL/6 pDCs. We also demonstrated that activation either positively or negatively impacted on the survival of pDCs via different cell-death mechanisms. Thus, pDCs are also short-lived. However, the pDC lifespan is regulated by genetic and environmental factors that may have pathological consequence. PMID:27112985

  15. Quantifying Collective Cell Migration during Cancer Progression

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Stuelten, Christina; Nordstrom, Kerstin; Parent, Carole; Losert, Wolfgang

    2014-03-01

    As tumors become more malignant, cells invade the surrounding tissue and migrate throughout the body to form secondary, metastatic tumors. This metastatic process is initiated when cells leave the primary tumor, either individually or as groups of collectively migrating cells. The mechanisms regulating how groups of cells collectively migrate are not well characterized. Here we study the migration dynamics of epithelial sheets composed of many cells using quantitative image analysis techniques. By extracting motion information from time-lapse images of cell lines of varying malignancy, we are able to measure how migration dynamics change during cancer progression. We further investigate the role that cell-cell adhesion plays in these collective dynamics by analyzing the migration of cell lines with varying levels of E-cadherin (a cell-cell adhesion protein) expression.

  16. Egr-1 Activation by Cancer-Derived Extracellular Vesicles Promotes Endothelial Cell Migration via ERK1/2 and JNK Signaling Pathways

    PubMed Central

    Yoon, Yae Jin; Kim, Dae-Kyum; Yoon, Chang Min; Park, Jaesung; Kim, Yoon-Keun; Roh, Tae-Young; Gho, Yong Song

    2014-01-01

    Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs), also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1) activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference–mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases. PMID:25502753

  17. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    SciTech Connect

    Tamminen, Jenni A.; Yin, Miao; Rönty, Mikko; Sutinen, Eva; Pasternack, Arja; Ritvos, Olli; Myllärniemi, Marjukka; Koli, Katri

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  18. Cadmium migration in aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1976-01-01

    The effects of temperature, the nature of separator material, charge and discharge, carbonate contamination, and the mode of storage are studied with respect to the migration of active material from the negative toward the positive plate. A theoretical model is proposed which takes into account the solubility of cadmium in various concentrations of hydroxide and carbonate at different temperatures, the generation of the cadmiate ion, Cd(OH)3(-), during discharge, the migration of the cadmiate ion and particulate Cd(OH)2 due to electrophoretic effects and the movement of electrolyte in and out of the negative plate and, finally, the recrystallization of cadmiate ion in the separator as Cd(OH)2. Application of the theoretical model to observations of cadmium migration in cycled cells is also discussed.

  19. Factors controlling cardiac neural crest cell migration

    PubMed Central

    Hutson, Mary R

    2010-01-01

    Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continues migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration and condensation of these cells. This Review elucidates what is currently known about these factors. PMID:20890117

  20. Nuclear envelope-localized EGF family protein amphiregulin activates breast cancer cell migration in an EGF-like domain independent manner

    SciTech Connect

    Tanaka, Hisae; Nishioka, Yu; Yokoyama, Yuhki; Higashiyama, Shigeki; Matsuura, Nariaki; Matsuura, Shuji; Hieda, Miki

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Nuclear envelope-localized proAREG activates cancer cell migration via its cytoplasmic domain. Black-Right-Pointing-Pointer The induction of cell migration does not require the EGF-like domain or EGR function. Black-Right-Pointing-Pointer Nuclear envelope-localized proAREG suppresses breast cancer cell growth without EGFR function. Black-Right-Pointing-Pointer This study revealed a novel function mediated by the intracellular domain of proAREG. -- Abstract: Amphiregulin (AREG), an EGF family protein, is synthesized as a type I transmembrane precursor (proAREG) and expressed on the cell surface with an extracellular EGF-like domain and an intracellular short cytoplasmic tail. The ectodomain shedding yields a soluble EGF receptor ligand (soluble AREG) which binds to EGF receptor (EGFR) and concomitantly induces migration of unshed proAREG from the plasma membrane to the nuclear envelope (NE). AREG is known to play a potential role in breast cancer and has been intensively investigated as an EGF receptor ligand, while the function of the NE-localized proAREG remains unknown. In this study we used a truncated mutant that mimics NE-localized proAREG without shedding stimuli to discriminate between the functions of NE-localized and plasma membrane-localized proAREG and demonstrate that NE-localized proAREG activates breast cancer cell migration, but suppresses cell growth. Moreover, the present study shows that induction of cell migration by NE-localized proAREG does not require the extracellular growth factor domain or EGF receptor function. Collectively these data demonstrate a novel function mediated by the intracellular domain of proAREG and suggest a significant role for NE-localized proAREG in driving human breast cancer progression.

  1. Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation

    PubMed Central

    Zhao, Ying; Zhang, Chenxu; Wei, Xuge; Li, Pei; Cui, Ying; Qin, Yuanhua; Wei, Xiaoqing; Jin, Minli; Kohama, Kazuhiro; Gao, Ying

    2015-01-01

    Accumulating evidence indicates that heat shock protein (HSP) 60 is strongly associated with the pathology of atherosclerosis (AS). However, the precise mechanisms by which HSP60 promotes atherosclerosis remain unclear. In the present study, we found that HSP60 mRNA and protein expression levels in the thoracic aorta are enhanced not only in a mouse model of AS but also in high-fat diet (HFD) mice. HSP60 expression and secretion was activated by platelet-derived growth factor-BB (PDGF-BB) and interleukin (IL)-8 in both human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). HSP60 was found to induce VSMC migration, and exposure to HSP60 activated ERK MAPK signaling. U0126, an inhibitor of ERK, reduced VSMC migration. The HSP60-stimulated VSMCs were found to express TLR4 mRNA but not TLR2 mRNA. Knockdown of TLR4 by siRNA reduced HSP60-induced VSMC migration and HSP60-induced ERK activation. Finally, HSP60 induced IL-8 secretion in VSMCs. Together these results suggest that HSP60 is involved in the stimulation of VSMC migration, via TLR4 and ERK MAPK activation. Meanwhile, activation of HSP60 is one of the most powerful methods of sending a ‘danger signal’ to the immune system to generate IL-8, which assists in the management of an infection or disease. PMID:26477505

  2. Transplantation stimulates interstitial cell migration in hydra

    SciTech Connect

    Fujisawa, T.; David, C.N.; Bosch, T.C. )

    1990-04-01

    Migration of interstitial cells and nerve cell precursors was analyzed in Hydra magnipapillata and Hydra vulgaris (formerly Hydra attenuata). Axial grafts were made between ({sup 3}H)thymidine-labeled donor and unlabeled host tissue. Migration of labeled cells into the unlabeled half was followed for 4 days. The results indicate that the rate of migration was initially high and then slowed on Days 2-4. Regrafting fresh donor tissue on Days 2-4 maintained high levels of migration. Thus, migration appears to be stimulated by the grafting procedure itself.

  3. (24S)-ergostane-3β,5α,6β-triol from Hedyotis chrysotricha with inhibitory activity on migration of SK-HEP-1 human hepatocarcinoma cells.

    PubMed

    Ye, Miao; Su, Jing-Jing; Liu, Shu-Ting; Cao, Lei; Xiong, Juan; Zhao, Yun; Fan, Hui; Yang, Guo-Xun; Xia, Gang; Hu, Jin-Feng

    2013-01-01

    The methanol extract of the whole plant of Hedyotis chrysotricha demonstrated cytotoxicity against SK-HEP-1 human hepatocarcinoma cells in a primary screening for novel antitumour agents. Bioassay-guided fractionation and purification led to an active principle (24S)-ergostane-3β,5α,6β-triol (1) along with four inactive compounds (2-5). The in vitro transwell migration assay showed that compound 1 remarkably reduced the migration of SK-HEP-1 cells by 78.9% at a dose of 30 µM, without any apoptotic effect on this cell line. Moreover, all the isolated compounds were further evaluated for their cytotoxicities against another four human cancer cell lines (MCF-7, NUGC3, SH-SY5Y and PC-3). PMID:22889249

  4. Collective cell migration of primary zebrafish keratocytes.

    PubMed

    Rapanan, Jose L; Cooper, Kimbal E; Leyva, Kathryn J; Hull, Elizabeth E

    2014-08-01

    Fish keratocytes are an established model in single cell motility but little is known about their collective migration. Initially, sheets migrate from the scale at ~145 μm/h but over the course of 24h the rate of leading edge advance decreases to ~23 μm/h. During this period, leader cells retain their ability to migrate rapidly when released from the sheet and follower cell area increases. After the addition of RGD peptide, leader cell lamellae are lost, altering migratory forces within the sheet, resulting in rapid retraction. Leader and follower cell states interconvert within minutes with changes in cell-cell adhesions. Leader cells migrate as single cells when they detach from the leading edge and single cells appear to become leader cells if they rejoin the sheet. Follower cells rapidly establish leader cell morphology during closing of holes formed during sheet expansion and revert to follower cell morphology after hole-closure. Inhibition of Rho associated kinase releases leader cells and halts advancement of the leading edge suggesting an important role for the intercellular actomyosin cable at the leading edge. In addition, the presence of the stationary scale orients direction of sheet migration which is characterized by a more uniform advance of the leading edge than in some cell line systems. These data establish fish keratocyte explant cultures as a collective cell migration system and suggest that cell-cell interactions determine the role of keratocytes within the migrating sheet. PMID:24973510

  5. Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase Plasminogen Activator and Matrix Metalloproteinase-9/2.

    PubMed

    Pagliara, Valentina; Adornetto, Annagrazia; Mammì, Maria; Masullo, Mariorosario; Sarnataro, Daniela; Pietropaolo, Concetta; Arcone, Rosaria

    2014-11-01

    Protease Nexin-1 (PN-1) or Serpine2 is a physiological regulator of extracellular proteases as thrombin and urokinase (uPA) in the brain. Besides, PN-1 is also implicated in some human cancers and further identified as a substrate for Matrix Metalloproteinase (MMP)-9, a key enzyme in tumor invasiveness. Our aim was to study the role of PN-1 in the migration and invasive potential of glioma cells, using the rat C6 glioma cell line as stable clones transfected with pAVU6+27 vector expressing PN-1 short-hairpin RNA. We find that PN-1 knockdown enhanced the in vitro migration and invasiveness of C6 cells which also showed a strong gelatinolytic activity by in situ zymography. PN-1 silencing did not alter prothrombin whereas increased uPA, MMP-9 and MMP-2 expression levels and gelatinolytic activity in a conditioned medium from stable C6 cells. Selective inhibitors for MMP-9 (Inhibitor I), MMP-2 (Inhibitor III) or exogenous recombinant PN-1 added to the culture medium of C6 silenced cells restored either the migration and invasive ability or gelatinolytic activity thus validating the specificity of PN-1 silencing strategy. Phosphorylation levels of extracellular signal-related kinases (Erk1/2 and p38 MAPK) involved in MMP-9 and MMP-2 signaling were increased in PN-1 silenced cells. This study shows that PN-1 affects glioma cell migration and invasiveness through the regulation of uPA and MMP-9/2 expression levels which contribute to the degradation of extracellular matrix during tumor invasion. PMID:25072751

  6. Novel functions of core cell cycle regulators in neuronal migration.

    PubMed

    Godin, Juliette D; Nguyen, Laurent

    2014-01-01

    The cerebral cortex is one of the most intricate regions of the brain, which required elaborated cell migration patterns for its development. Experimental observations show that projection neurons migrate radially within the cortical wall, whereas interneurons migrate along multiple tangential paths to reach the developing cortex. Tight regulation of the cell migration processes ensures proper positioning and functional integration of neurons to specific cerebral cortical circuits. Disruption of neuronal migration often lead to cortical dysfunction and/or malformation associated with neurological disorders. Unveiling the molecular control of neuronal migration is thus fundamental to understand the physiological or pathological development of the cerebral cortex. Generation of functional cortical neurons is a complex and stratified process that relies on decision of neural progenitors to leave the cell cycle and generate neurons that migrate and differentiate to reach their final position in the cortical wall. Although accumulating work shed some light on the molecular control of neuronal migration, we currently do not have a comprehensive understanding of how cell cycle exit and migration/differentiation are coordinated at the molecular level. The current chapter tends to lift the veil on this issue by discussing how core cell cycle regulators, and in particular p27(Kip1) acts as a multifunctional protein to control critical steps of neuronal migration through activities that go far beyond cell cycle regulation. PMID:24243100

  7. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation

    SciTech Connect

    Brand, Stephan . E-mail: stephan.brand@med.uni-muenchen.de; Dambacher, Julia; Beigel, Florian; Olszak, Torsten; Diebold, Joachim; Otte, Jan-Michel; Goeke, Burkhard; Eichhorst, Soeren T.

    2005-10-15

    Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting in increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.

  8. Efficient cell migration requires global chromatin condensation

    PubMed Central

    Gerlitz, Gabi; Bustin, Michael

    2010-01-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes. PMID:20530575

  9. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.

    PubMed

    Arosarena, Oneida A; Dela Cadena, Raul A; Denny, Michael F; Bryant, Evan; Barr, Eric W; Thorpe, Ryan; Safadi, Fayez F

    2016-08-01

    Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc. PMID:26636434

  10. Role of mTOR signaling in intestinal cell migration

    PubMed Central

    Rhoads, J. Marc; Niu, Xiaomei; Odle, Jack; Graves, Lee M.

    2006-01-01

    An early signaling event activated by amino acids and growth factors in many cell types is the phosphorylation of the mammalian target of rapamycin (mTOR; FRAP), which is functionally linked to ribosomal protein s6 kinase (p70s6k), a kinase that plays a critical regulatory role in the translation of mRNAs and protein synthesis. We previously showed that intestinal cell migration, the initial event in epithelial restitution, is enhanced by l-arginine (ARG). In this study, we used amino acids as prototypic activators of mTOR and ARG, IGF-1, or serum as recognized stimulators of intestinal cell migration. We found that 1) protein synthesis is required for intestinal cell migration, 2) mTOR/p70s6k pathway inhibitors (rapamycin, wortmannin, and intracellular Ca2+ chelation) inhibit cell migration, 3) ARG activates migration and mTOR/p70s6k (but not ERK-2) in migrating enterocytes, and 4) immunocytochemistry reveals abundant p70s6k staining in cytoplasm, whereas phosphop70s6k is virtually all intranuclear in resting cells but redistributes to the periphery on activation by ARG. We conclude that mTOR/p70s6k signaling is essential to intestinal cell migration, is activated by ARG, involves both nuclear and cytoplasmic events, and may play a role in intestinal repair. PMID:16710051

  11. Mesenchymal Stem Cells Migration Homing and Tracking

    PubMed Central

    Verfaillie, Catherine M.

    2013-01-01

    In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo. PMID:24194766

  12. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  13. Violacein induces p44/42 mitogen-activated protein kinase-mediated solid tumor cell death and inhibits tumor cell migration

    PubMed Central

    MEHTA, TORAL; VERCRUYSSE, KOEN; JOHNSON, TERRANCE; EJIOFOR, ANTHONY OKECHUKWU; MYLES, ELBERT; QUICK, QUINCY ANTOINE

    2015-01-01

    Microbial secondary metabolites have emerged as alternative novel drugs for the treatment of human cancers. Violacein, a purple pigment produced by Chromobacterium violaceum, was investigated in the present study for its anti-tumor properties in tumor cell lines. Clinically applicable concentrations of violacein were demonstrated to inhibit the proliferative capacity of tumor cell lines according to a crystal violet proliferation assay. The underlying mechanism was the promotion of apoptotic cell death, as indicated by poly(ADP ribose) polymerase cleavage and p44/42 mitogen-activated protein kinase signaling determined by western blot analysis. Collectively, this provided mechanistic evidence that violacein elicits extracellular-signal regulated kinase-induced apoptosis via the intrinsic pathway. The anti-malignant properties of violacein in the present study were further demonstrated by its inhibitory effects on brain tumor cell migration, specifically glioblastomas, one of the most invasive and therapeutically resistant neoplasms in the clinic. Additionally, solid tumors examined in the present study displayed differential cellular responses and sensitivities to violacein as observed by morphologically induced cellular changes that contributed to its anti-migratory properties. In conclusion, violacein is a novel natural product with the potential to kill several types of human tumor cell lines, as well as prevent disease recurrence by antagonizing cellular processes that contribute to metastatic invasion. PMID:25816226

  14. Small molecule inhibitors of the Pyk2 and FAK kinases modulate chemoattractant-induced migration, adhesion and Akt activation in follicular and marginal zone B cells.

    PubMed

    Tse, Kathy W K; Lin, Kevin B L; Dang-Lawson, May; Guzman-Perez, Angel; Aspnes, Gary E; Buckbinder, Leonard; Gold, Michael R

    2012-01-01

    B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells. PMID:22507871

  15. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  16. Effect of Static Magnetic Field on Cell Migration

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuichiro; Kawasumi, Masashi; Saito, Masao

    The effect of magnetic field on cell has long been investigated, but there are few quantitative investigations of the migration of cells. Cell-migration is important as one of the fundamental activities of the cell. This study proposes a method to evaluate quantitatively the cell-diffusion constant and the effect of static magnetic field on cell migration. The cell-lines are neuroblastoma (NG108-15), fibroblastoma (NIH/3T3) and osteoblastoma (MC3T3-E1). The static magnetic field of 30 mT or 120 mT is impressed by a permanent magnet in vertical or horizontal direction to the dish. It is shown that the cell-diffusion constant can represent the cell migration as the cell activity. It is found that the cell migration is enhanced by exposure to the magnetic field, depending on the kind of cell. It is conjectured that the effect of static magnetic field affects the cell migration, which is at the downstream of the information transmission.

  17. Vitamin D Binding Protein-Macrophage Activating Factor Directly Inhibits Proliferation, Migration, and uPAR Expression of Prostate Cancer Cells

    PubMed Central

    Bielenberg, Diane R.; Dridi, Sami; Wu, Jason; Jiang, Weihua; Huang, Bin; Pirie-Shepherd, Steven; Fannon, Michael

    2010-01-01

    Background Vitamin D binding protein-macrophage activating factor (DBP-maf) is a potent inhibitor of tumor growth. Its activity, however, has been attributed to indirect mechanisms such as boosting the immune response by activating macrophages and inhibiting the blood vessel growth necessary for the growth of tumors. Methods and Findings In this study we show for the first time that DBP-maf exhibits a direct and potent effect on prostate tumor cells in the absence of macrophages. DBP-maf demonstrated inhibitory activity in proliferation studies of both LNCaP and PC3 prostate cancer cell lines as well as metastatic clones of these cells. Flow cytometry studies with annexin V and propidium iodide showed that this inhibitory activity is not due to apoptosis or cell death. DBP-maf also had the ability to inhibit migration of prostate cancer cells in vitro. Finally, DBP-maf was shown to cause a reduction in urokinase plasminogen activator receptor (uPAR) expression in prostate tumor cells. There is evidence that activation of this receptor correlates with tumor metastasis. Conclusions These studies show strong inhibitory activity of DBP-maf on prostate tumor cells independent of its macrophage activation. PMID:20976141

  18. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  19. RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes.

    PubMed

    Wurtzel, Jeremy G T; Lee, Seunghyung; Singhal, Sharad S; Awasthi, Sanjay; Ginsberg, Mark H; Goldfinger, Lawrence E

    2015-11-27

    R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration. PMID:26498519

  20. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  1. Role of plasminogen activator inhibitor in the reciprocal regulation of bovine aortic endothelial and smooth muscle cell migration by TGF-beta 1.

    PubMed Central

    Petzelbauer, E.; Springhorn, J. P.; Tucker, A. M.; Madri, J. A.

    1996-01-01

    Vascular endothelial and smooth muscle cells exhibit reciprocal migratory responses after transforming growth factor (TGF)-beta 1 treatment. Endothelial cells exhibit a decreased migratory rate and smooth muscle cells exhibit an increased migratory rate. Previous studies have demonstrated increases in extracellular matrix and integrin synthesis and expression in response to TGF-beta 1. In this report, we illustrate the roles of plasminogen activator inhibitor in modulating the migratory rates in these two cell types. Endothelial cells appear to require a proteolytic phenotype for rapid migration, whereas vascular smooth muscle cells appear to require an anti-proteolytic phenotype. Modulation of proteinase/anti-proteinase activity ratios was accomplished via TGF-beta 1 induction, addition of exogenous plasminogen activator inhibitor, addition of anti-catalytic antibodies directed against urokinase plasminogen activator, overexpression of plasminogen activator inhibitor utilizing stable transfectants, and the use of vitronectin as a substratum. The reciprocal migratory behaviors exhibited by these two vascular cell types in response to TGF-beta 1 is discussed in the context that these two vascular cell types utilize distinct adhesive and signaling pathways in their interactions with extracellular matrix components and responsiveness to proteolytic activity. Images Figure 1 Figure 2 Figure 3 PMID:8780396

  2. Integrin α(V)β(3)-targeted magnetic nanohybrids with enhanced antitumor efficacy, cell cycle arrest ability, and encouraging anti-cell-migration activity.

    PubMed

    Ding, Guo-Bin; Wang, Yan; Guo, Yi; Xu, Li

    2014-10-01

    Organic/inorganic nanohybrids, which integrate advantages of the biocompatibility of organic polymers and diversified functionalities of inorganic nanoparticles, have been extensively investigated in recent years. Herein, we report the construction of arginine-glycine-aspartic acid-cysteine (RGDC) tetrapeptide functionalized and 10-hydroxycamptothecin (HCPT)-encapsulated magnetic nanohybrids (RFHEMNs) for integrin αVβ3-targeted drug delivery. The obtained RFHEMNs were near-spherical in shape with a homogeneous size about 50 nm, and exhibited a superparamagnetic behavior. In vitro drug release study showed a sustained and pH-dependent release profile. Cell viability tests revealed that RFHEMNs displayed a significant enhancement of cytotoxicity against αVβ3-overexpressing A549 cells, as compared to free HCPT and nontargeting micelles. Flow cytometry analysis indicated that this cytotoxic effect was associated with dose-dependent S phase arrest. Finally, RFHEMNs exerted encouraging anti-cell-migration activity as determined by an in vitro wound-healing assay and a transwell assay. Overall, we envision that this tumor-targeting nanoscale drug delivery system may be of great application potential in chemotherapy of primary tumor and their metastases. PMID:25207865

  3. Actin depolymerization mediated loss of SNTA1 phosphorylation and Rac1 activity has implications on ROS production, cell migration and apoptosis.

    PubMed

    Bhat, Sehar Saleem; Parray, Arif Ali; Mushtaq, Umar; Fazili, Khalid Majid; Khanday, Firdous Ahmad

    2016-06-01

    Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis. PMID:27048259

  4. Licochalcone A Suppresses Migration and Invasion of Human Hepatocellular Carcinoma Cells through Downregulation of MKK4/JNK via NF-κB Mediated Urokinase Plasminogen Activator Expression

    PubMed Central

    Tsai, Jen-Pi; Hsiao, Pei-Ching; Yang, Shun-Fa; Hsieh, Shu-Ching; Bau, Da-Tian; Ling, Chu-Liang; Pai, Chun-Li; Hsieh, Yi-Hsien

    2014-01-01

    Hepatocellular cell carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide and in Taiwan. Chemoprevention of cancer with dietary bioactive compounds could potentially reverse, suppress, or prevent cancer progression. Licochalcone A (LicA) is a characteristic chalcone of licorice, which is the root of Glycyrrhiza inflate. It had been reported that LicA has anti-inflammatory, anti-microbial, and anti-tumor properties. However, the effects of LicA on the migration and invasion of human HCC cells have not yet been reported. In the present study, it was found that LicA inhibits the migratory and invasion ability of SK-Hep-1 and HA22T/VGH cells in a dose-dependent manner, as assessed by the cell migration and Matrigel cell invasion assay. Using casein zymography, Western blotting, reverse transcriptase polymerase chain reaction, and an immunofluorescence assay, it was found that LicA induces a dose-dependent inhibition of uPA activity and expression, as well as reduces mRNA levels in SK-Hep-1 and HA22T/VGH cells. LicA was also found to inhibit the expression of phosphor-JNK and phosphor-MKK4 in SK-Hep-1 cells. Furthermore, LicA significantly decreased uPA levels in SP600125-treated or si-MKK4-transfected cells alongside a marked reduction in cell migration and invasion, which supports the notion that an inhibition of MKK4/JNK results in anti-metastatic effects. Moreover, LicA inhibited the expression of nuclear NF-κB, as well as the binding ability of NF-κB to the uPA promoter. These findings further our understanding of the role of LicA in suppressing tumor metastasis and its underlying molecular mechanisms, as well as suggest that LicA may be a promising anti-metastatic agent. PMID:24466137

  5. Fascin1 promotes cell migration of mature dendritic cells.

    PubMed

    Yamakita, Yoshihiko; Matsumura, Fumio; Lipscomb, Michael W; Chou, Po-chien; Werlen, Guy; Burkhardt, Janis K; Yamashiro, Shigeko

    2011-03-01

    Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes. PMID:21263068

  6. Protein Tyrosine Phosphatase-PEST and β8 Integrin Regulate Spatiotemporal Patterns of RhoGDI1 Activation in Migrating Cells

    PubMed Central

    Lee, Hye Shin; Cheerathodi, Mujeeburahiman; Chaki, Sankar P.; Reyes, Steve B.; Zheng, Yanhua; Lu, Zhimin; Paidassi, Helena; DerMardirossian, Celine; Lacy-Hulbert, Adam; Rivera, Gonzalo M.

    2015-01-01

    Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells. PMID:25666508

  7. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  8. T Cell Migration in Rheumatoid Arthritis

    PubMed Central

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L.; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies. PMID:26284069

  9. T Cell Migration in Rheumatoid Arthritis.

    PubMed

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies. PMID:26284069

  10. Identification of a second active site in laminin for promotion of cell adhesion and migration and inhibition of in vivo melanoma lung colonization.

    PubMed

    Kleinman, H K; Graf, J; Iwamoto, Y; Sasaki, M; Schasteen, C S; Yamada, Y; Martin, G R; Robey, F A

    1989-07-01

    Previously we reported that a pentapeptide (Tyr-Ile-Gly-Ser-Arg or YIGSR) from domain III of the B1 chain of laminin is a cell attachment site with the ability to stimulate cell adhesion and migration and to block experimental metastases. Here we report studies on the activities of synthetic peptides that cover domain III and report a second biologically active peptide PDSGR from this domain with activities similar to YIGSR. We also show that cyclic YIGSR is more potent in these assays than the linear peptide as expected since this sequence on laminin is bracketed by cysteines. Due to their proximity and similar spectrum of activities, it is possible that these sequences act in concert in the native laminin molecule. PMID:2735766

  11. MicroRNA‑335 inhibits bladder cancer cell growth and migration by targeting mitogen‑activated protein kinase 1.

    PubMed

    Wang, Xiaolin; Wu, Guang; Cao, Guangxin; Chen, Xiaohong; Huang, Jian; Jiang, Xiaohui; Hou, Jianquan

    2016-08-01

    The abnormal expression of microRNAs (miRs) as oncogenes or tumor‑suppressor genes has been widely investigated in various tumor types. However, the roles of miR‑335 in bladder cancer cells have remained elusive. The aim of the present study was to assess the expression of miR‑335 in bladder cancer as well as the effects of miR‑335 on bladder cancer cell proliferation, metastasis and apoptosis. PCR and western blot analyses revealed that miR‑335 was significantly downregulated in bladder cancer tissues, and low levels of miR‑335 were associated with more aggressive phenotypes of bladder cancer. Overexpression of miR‑335 in T24 cells inhibited cell proliferation and induced apoptosis as indicated by an MTT assay and flow cytometric analysis, respectively. Furthermore, overexpression of miR‑335 significantly suppressed cell migration, as indicated by a Transwell assay. The expression of mitogen‑activated protein kinase (MAPK)1 was decreased after overexpression of miR‑335, indicating that MAPK1 may be a target gene of miR‑335. In addition, silencing of MAPK1 inhibited the proliferation and migration of bladder cancer cells. In conclusion, the results of the present study demonstrated that miR‑335 was significantly downregulated in bladder cancer, and may act as a tumor suppressor through repression of MAPK1. PMID:27356628

  12. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    PubMed Central

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  13. Cell migration in the normal and pathological postnatal mammalian brain

    PubMed Central

    Canoll, Peter; Goldman, James E.

    2009-01-01

    In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus of the hippocampus (DG) are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, protein involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration towards altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via

  14. The thioredoxin system in breast cancer cell invasion and migration

    PubMed Central

    Bhatia, Maneet; McGrath, Kelly L.; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M.; Clarke, Frank M.; Tonissen, Kathryn F.

    2015-01-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  15. The thioredoxin system in breast cancer cell invasion and migration.

    PubMed

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  16. The crucial role of IL-22 and its receptor in thymus and activation regulated chemokine production and T-cell migration by house dust mite extract.

    PubMed

    Jang, Mirim; Kim, Hyemin; Kim, Yejin; Choi, Jiyea; Jeon, Jane; Hwang, Youngil; Kang, Jae Seung; Lee, Wang Jae

    2016-08-01

    House dust mite (HDM) is known as one of the factors that causes atopic dermatitis (AD). Interleukin (IL)-22 and thymus and activation regulated chemokine (TARC) are related to skin inflammatory disease and highly expressed in AD lesions. However, the effects of HDM on IL-22 production in T cells and on TARC production and IL-22Rα receptor expression in keratinocytes are unknown. To identify the role of HDM in keratinocytes and T cells, we investigated IL-22Rα expression and TARC production in the human keratinocyte cell line HaCaT and IL-22 production in T cells treated with HDM extract as well as their roles in HDM-induced skin inflammation. HDM extract not only increased IL-22Rα expression and TARC production in HaCaT but also enhanced IL-22, tumor necrosis factor (TNF)-α and interferon (IFN)-γ production in T cells. The HDM extract-induced IL-22 from T cells significantly increased the production of IL-1α, IL-6 and TARC in HaCaT cells. In addition, we found that TARC produced in HDM extract-treated HaCaT induced T-cell recruitment. These results suggest that there is a direct involvement of HDM extract-induced IL-22 in TARC production and T-cell migration. Taken together, TARC production in HaCaT through the interaction between IL-22 and IL-22Rα facilitates T-cell migration. These data show one of the reasons for inflammation in the skin lesions of AD patients. PMID:26914146

  17. Emergence of oligarchy in collective cell migration

    NASA Astrophysics Data System (ADS)

    Schumacher, Linus; Maini, Philip; Baker, Ruth

    Identifying the principles of collective cell migration has the potential to help prevent birth defects, improve regenerative therapies and develop model systems for cancer metastasis. In collaboration with experimental biologists, we use computational simulations of a hybrid model, comprising individual-based stochastic cell movement coupled to a reaction-diffusion equation for a chemoattractant, to explore the role of cell specialisation in the guidance of collective cell migration. In the neural crest, an important migratory cell population in vertebrate embryo development, we present evidence that just a few cells are guiding group migration in a cell-induced chemoattractant gradient that determines the switch between ``leader'' and ``follower'' behaviour in individual cells. This leads us to more generally consider under what conditions cell specialisation might become advantageous for collective migration. Alternatively, individual cell responses to locally different microenvironmental conditions could create the (artefactual) appearance of heterogeneity in a population of otherwise identical cellular agents. We explore these questions using a self-propelled particle model as a minimal description for collective cell migration in two and three dimensions.

  18. In vitro Cell Migration and Invasion Assays

    PubMed Central

    Justus, Calvin R.; Leffler, Nancy; Ruiz-Echevarria, Maria; Yang, Li V.

    2014-01-01

    Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are very useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology and developmental biology. Here we use tumor cell migration and invasion as an example and describe two related assays to illustrate the commonly used, easily accessible methods to measure these processes. The first method is the cell culture wound closure assay in which a scratch is generated on a confluent cell monolayer. The speed of wound closure and cell migration can be quantified by taking snapshot pictures with a regular inverted microscope at several time intervals. More detailed cell migratory behavior can be documented using the time-lapse microscopy system. The second method described in this paper is the transwell cell migration and invasion assay that measures the capacity of cell motility and invasiveness toward a chemo-attractant gradient. It is our goal to describe these methods in a highly accessible manner so that the procedures can be successfully performed in research laboratories even just with basic cell biology setup. PMID:24962652

  19. Entropy measures of collective cell migration

    NASA Astrophysics Data System (ADS)

    Whitby, Ariadne; Parrinello, Simona; Faisal, Aldo

    2015-03-01

    Collective cell migration is a critical process during tissue formation and repair. To this end there is a need to develop tools to quantitatively measure the dynamics of collective cell migration obtained from microscopy data. Drawing on statistical physics we use entropy of velocity fields derived from dense optic flow to quantitatively measure collective migration. Using peripheral nerve repair after injury as experimental system, we study how Schwann cells, guided by fibroblasts, migrate in cord-like structures across the cut, paving a highway for neurons. This process of emergence of organised behaviour is key for successful repair, yet the emergence of leader cells and transition from a random to ordered state is not understood. We find fibroblasts induce correlated directionality in migrating Schwann cells as measured by a decrease in the entropy of motion vector. We show our method is robust with respect to image resolution in time and space, giving a principled assessment of how various molecular mechanisms affect macroscopic features of collective cell migration. Finally, the generality of our method allows us to process both simulated cell movement and microscopic data, enabling principled fitting and comparison of in silico to in vitro. ICCS, Imperial College London & MRC Clinical Sciences Centre.

  20. FZD6, targeted by miR-21, represses gastric cancer cell proliferation and migration via activating non-canonical wnt pathway

    PubMed Central

    Yan, Jin; Liu, Tingyu; Zhou, Xiaoying; Dang, Yini; Yin, Chengqiang; Zhang, Guoxin

    2016-01-01

    FZD6 plays crucial roles in human tumorigenesis. However, its mechanism in regulating cancers has not been fully elucidated. In the study, we found that FZD6 repressed gastric cancer cell proliferation and migration via activating non-canonical wnt pathway. In addition, non-canonical wnt pathway ameliorated expression of canonical wnt pathway. We also demonstrated that the FZD6 was involved in miR-21-dependent effects in the canonical and non-canonical wnt pathways in gastric cancer. These findings provide a better understanding of the development and progression of gastric cancer and may be an important implication for future therapy. PMID:27347343

  1. Downregulation of microRNA-122 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by activating epithelial–mesenchymal transition

    PubMed Central

    Wang, Nanyao; Wang, Qiong; Shen, Dong; Sun, Xia; Cao, Xiangming; Wu, Dan

    2016-01-01

    Objective To investigate the effects of microRNA-122 (miR-122) on proliferation, migration, and invasion in human hepatocellular carcinoma (HCC) cells by activating epithelial–mesenchymal transition (EMT) pathways. Methods miR-122 mimics, miR-122 inhibitors, relevant control oligonucleotides, and Wnt1 were transfected into HepG2 and huh7 cell lines which were then divided into six groups: miR-122 group, anti-miR-122 group, miR-negative control (NC) group, anti-miR-NC group, miR-122 + Wnt1 group, and miR-122 + vector group. The miR-122 expressions and mRNA expressions of Wnt1 and EMT-related genes (E-cadherin, vimentin, β-cadherin, and N-cadherin) were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression levels of Wnt1, E-cadherin, vimentin, β-cadherin, and N-cadherin were measured by Western blot. Cell proliferation, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, wound-healing assay, and Transwell assay, respectively. Results Dual luciferase reporter gene results showed that Wnt1 is a direct target gene of miR-122 in both HepG2 and huh7 cell lines. Compared to miR-NC, anti-miR-NC, and miR-122 + Wnt1 groups, miR-122 expression was markedly higher in the miR-122 group and miR-122 + vector group, but was sharply decreased in anti-miR-122 group (both P<0.05), and the mRNA and protein levels of Wnt1, vimentin, β-cadherin, and N-cadherin decreased significantly; also E-cadherin increased, and cell proliferation, migration, and invasion decreased in the miR-122 group and miR-122 + vector group (all P<0.05), but the situation was totally reversed in the anti-miR-122 group (all P<0.05). Conclusion Downregulation of miR-122 promoted proliferation, migration, and invasion of human HCC cells by targeting Wnt1 and regulating Wnt/β-catenin pathway which activated the EMT pathways. PMID:27103830

  2. CD81 is essential for the formation of membrane protrusions and regulates Rac1-activation in adhesion-dependent immune cell migration.

    PubMed

    Quast, Thomas; Eppler, Felix; Semmling, Verena; Schild, Cora; Homsi, Yahya; Levy, Shoshana; Lang, Thorsten; Kurts, Christian; Kolanus, Waldemar

    2011-08-18

    CD81 (TAPA-1) is a member of the widely expressed and evolutionary conserved tetraspanin family that forms complexes with a variety of other cell surface receptors and facilitates hepatitis C virus entry. Here, we show that CD81 is specifically required for the formation of lamellipodia in migrating dendritic cells (DCs). Mouse CD81(-/-) DCs, or murine and human CD81 RNA interference knockdown DCs lacked the ability to form actin protrusions, thereby impairing their motility dramatically. Moreover, we observed a selective loss of Rac1 activity in the absence of CD81, the latter of which is exclusively required for integrin-dependent migration on 2-dimensional substrates. Neither integrin affinity for substrate nor the size of basal integrin clusters was affected by CD81 deficiency in adherent DCs. However, the use of total internal reflection fluorescence microscopy revealed an accumulation of integrin clusters above the basal layer in CD81 knockdown cells. Furthermore, β1- or β2-integrins, actin, and Rac are strongly colocalized at the leading edge of DCs, but the very fronts of these cells protrude CD81-containing membranes that project outward from the actin-integrin area. Taken together, these data suggest a thus far unappreciated role for CD81 in the mobilization of preformed integrin clusters into the leading edge of migratory DCs on 2-dimensional surfaces. PMID:21677313

  3. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style.

    PubMed

    Margheri, Francesca; Luciani, Cristina; Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Del Rosso, Mario

    2014-03-30

    The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to malignant cells. These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the "path generating" mesenchymal to the "path finding" amoeboid one, thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 activation. While the mesenchymal movement was reduced upon silencing of uPAR expression, the amoeboid one was almost completely abolished, in parallel with a deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-actin co-localization under both mesenchymal and amoeboid conditions. Such co-localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the mesenchymal and amoeboid style of movement by an inward-oriented activity based on its property to promote integrin-actin interactions and the following cytoskeleton assembly. PMID:24681666

  4. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style

    PubMed Central

    Taddei, Maria Letizia; Giannoni, Elisa; Laurenzana, Anna; Biagioni, Alessio; Chillà, Anastasia; Chiarugi, Paola; Fibbi, Gabriella; Rosso1, Mario Del

    2014-01-01

    The receptor for the urokinase plasminogen activator (uPAR) is up-regulated in malignant tumors. Historically the function of uPAR in cancer cell invasion is strictly related to its property to promote uPA-dependent proteolysis of extracellular matrix and to open a path to malignant cells. These features are typical of mesenchymal motility. Here we show that the full-length form of uPAR is required when prostate and melanoma cancer cells convert their migration style from the “path generating” mesenchymal to the “path finding” amoeboid one, thus conferring a plasticity to tumor cell invasiveness across three-dimensional matrices. Indeed, in response to a protease inhibitors-rich milieu, prostate and melanoma cells activated an amoeboid invasion program connoted by retraction of cell protrusions, RhoA-mediated rounding of the cell body, formation of a cortical ring of actin and a reduction of Rac-1 activation. While the mesenchymal movement was reduced upon silencing of uPAR expression, the amoeboid one was almost completely abolished, in parallel with a deregulation of small Rho-GTPases activity. In melanoma and prostate cancer cells we have shown uPAR colocalization with β1/β3 integrins and actin cytoskeleton, as well integrins-actin co-localization under both mesenchymal and amoeboid conditions. Such co-localizations were lost upon treatment of cells with a peptide that inhibits uPAR-integrin interactions. Similarly to uPAR silencing, the peptide reduced mesenchymal invasion and almost abolished the amoeboid one. These results indicate that full-length uPAR bridges the mesenchymal and amoeboid style of movement by an inward-oriented activity based on its property to promote integrin-actin interactions and the following cytoskeleton assembly. PMID:24681666

  5. CRK proteins selectively regulate T cell migration into inflamed tissues

    PubMed Central

    Huang, Yanping; Clarke, Fiona; Karimi, Mobin; Roy, Nathan H.; Williamson, Edward K.; Okumura, Mariko; Mochizuki, Kazuhiro; Chen, Emily J.H.; Park, Tae-Ju; Debes, Gudrun F.; Zhang, Yi; Curran, Tom; Kambayashi, Taku; Burkhardt, Janis K.

    2015-01-01

    Effector T cell migration into inflamed sites greatly exacerbates tissue destruction and disease severity in inflammatory diseases, including graft-versus-host disease (GVHD). T cell migration into such sites depends heavily on regulated adhesion and migration, but the signaling pathways that coordinate these functions downstream of chemokine receptors are largely unknown. Using conditional knockout mice, we found that T cells lacking the adaptor proteins CRK and CRK-like (CRKL) exhibit reduced integrin-dependent adhesion, chemotaxis, and diapedesis. Moreover, these two closely related proteins exhibited substantial functional redundancy, as ectopic expression of either protein rescued defects in T cells lacking both CRK and CRKL. We determined that CRK proteins coordinate with the RAP guanine nucleotide exchange factor C3G and the adhesion docking molecule CASL to activate the integrin regulatory GTPase RAP1. CRK proteins were required for effector T cell trafficking into sites of inflammation, but not for migration to lymphoid organs. In a murine bone marrow transplantation model, the differential migration of CRK/CRKL-deficient T cells resulted in efficient graft-versus-leukemia responses with minimal GVHD. Together, the results from our studies show that CRK family proteins selectively regulate T cell adhesion and migration at effector sites and suggest that these proteins have potential as therapeutic targets for preventing GVHD. PMID:25621495

  6. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis

    PubMed Central

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-01-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal

  7. ASIC proteins regulate smooth muscle cell migration.

    PubMed

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration. PMID:17936312

  8. Glabridin inhibits migration and invasion by transcriptional inhibition of matrix metalloproteinase 9 through modulation of NF-κB and AP-1 activity in human liver cancer cells

    PubMed Central

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Yang, Shun-Fa; Chen, Mu-Kuan; Chiou, Hui-Ling

    2014-01-01

    BACKGROUND AND PURPOSE High mortality and morbidity rates for hepatocellular carcinoma in Taiwan primarily result from uncontrolled tumour metastasis. Glabridin, a prenylated isoflavonoid of licorice (Glycyrrhiza glabra) roots, is associated with a wide range of biological properties, such as regulation of energy metabolism, oestrogenic, neuroprotective, anti-osteoporotic and skin whitening. However, the effect of glabridin on the metastasis of tumour cells has not been clarified. EXPERIMENTAL APPROACH A wound healing model and Boyden chamber assays in vitro were used to determine the effects of glabridin on the migration and invasion of human hepatocellular carcinoma (HHC) cells. Western blot analysis, gelatin zymography, real-time PCR and promoter assays were used to evaluate the inhibitory effects of glabridin on matrix metalloproteinase 9 (MMP9) expression in these cells. KEY RESULTS Glabridin significantly inhibited migration/invasion capacities of HCC cells, Huh7 and Sk-Hep-1, cell lines that have low cytotoxicity in vitro, even at high concentrations. Western blot analysis and gelatin zymography showed that glabridin inhibited the expression, activities and protein levels of MMP9 and the phosphorylation of ERK1/2 and JNK1/2. These inhibitory effects were associated with an up-regulation of tissue inhibitor of metalloproteinase-1 and a down-regulation of the transcription factors NF-κB and activator protein 1 signalling pathways. Finally, the administration of glabridin effectively suppressed the tumour formation in the hepatoma xenograft model in vivo. CONCLUSION AND IMPLICATIONS Glabridin inhibited the invasion of human HCC cells and may have potential as a chemopreventive agent against liver cancer metastasis. PMID:24641665

  9. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    PubMed

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  10. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration

    PubMed Central

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  11. Ion channels and transporters in tumour cell migration and invasion

    PubMed Central

    Schwab, Albrecht; Stock, Christian

    2014-01-01

    Cell migration is a central component of the metastatic cascade requiring a concerted action of ion channels and transporters (migration-associated transportome), cytoskeletal elements and signalling cascades. Ion transport proteins and aquaporins contribute to tumour cell migration and invasion among other things by inducing local volume changes and/or by modulating Ca2+ and H+ signalling. Targeting cell migration therapeutically bears great clinical potential, because it is a prerequisite for metastasis. Ion transport proteins appear to be attractive candidate target proteins for this purpose because they are easily accessible as membrane proteins and often overexpressed or activated in cancer. Importantly, a number of clinically widely used drugs are available whose anticipated efficacy as anti-tumour drugs, however, has now only begun to be evaluated. PMID:24493750

  12. Directing cell migration using micropatterned and dynamically adhesive polymer brushes.

    PubMed

    Costa, Patricia; Gautrot, Julien E; Connelly, John T

    2014-06-01

    Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine-glycine-aspartic acid (RGD) motif, was achieved using thiol-yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration. PMID:24508539

  13. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets.

    PubMed

    Sordi, Valeria; Malosio, Maria Luisa; Marchesi, Federica; Mercalli, Alessia; Melzi, Raffaella; Giordano, Tiziana; Belmonte, Nathalie; Ferrari, Giuliana; Leone, Biagio Eugenio; Bertuzzi, Federico; Zerbini, Gianpaolo; Allavena, Paola; Bonifacio, Ezio; Piemonti, Lorenzo

    2005-07-15

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are stromal cells with the ability to proliferate and differentiate into many tissues. Although they represent powerful tools for several therapeutic settings, mechanisms regulating their migration to peripheral tissues are still unknown. Here, we report chemokine receptor expression on human BM-MSCs and their role in mediating migration to tissues. A minority of BM-MSCs (2% to 25%) expressed a restricted set of chemokine receptors (CXC receptor 4 [CXCR4], CX3C receptor 1 [CX3CR1], CXCR6, CC chemokine receptor 1 [CCR1], CCR7) and, accordingly, showed appreciable chemotactic migration in response to the chemokines CXC ligand 12 (CXCL12), CX3CL1, CXCL16, CC chemokine ligand 3 (CCL3), and CCL19. Using human pancreatic islets as an in vitro model of peripheral tissue, we showed that islet supernatants released factors able to attract BM-MSCs in vitro, and this attraction was principally mediated by CX3CL1 and CXCL12. Moreover, cells with features of BM-MSCs were detected within the pancreatic islets of mice injected with green fluorescent protein (GFP)-positive BM. A population of bona fide MSCs that also expressed CXCR4, CXCR6, CCR1, and CCR7 could be isolated from normal adult human pancreas. This study defines the chemokine receptor repertoire of human BM-MSCs that determines their migratory activity. Modulation of homing capacity may be instrumental for harnessing the therapeutic potential of BM-MSCs. PMID:15784733

  14. Angiotensin II-Induced Migration of Vascular Smooth Muscle Cells Is Mediated by p38 Mitogen-Activated Protein Kinase-Activated c-Src Through Spleen Tyrosine Kinase and Epidermal Growth Factor Receptor Transactivation

    PubMed Central

    Mugabe, Benon E.; Yaghini, Fariborz A.; Song, Chi Young; Buharalioglu, Cuneyt K.; Waters, Christopher M.

    2010-01-01

    Angiotensin II (Ang II) stimulates protein synthesis by activating spleen tyrosine kinase (Syk) and DNA synthesis through epidermal growth factor receptor (EGFR) transactivation in vascular smooth muscle cells (VSMCs). This study was conducted to determine whether Syk mediates Ang II-induced migration of aortic VSMCs using a scratch wound approach. Treatment with Ang II (200 nM) for 24 h increased VSMC migration by 1.56 ± 0.14-fold. Ang II-induced VSMC migration and Syk phosphorylation as determined by Western blot analysis were minimized by the Syk inhibitor piceatannol (10 μM) and by transfecting VSMCs with dominant-negative but not wild-type Syk plasmid. Ang II-induced VSMC migration and Syk phosphorylation were attenuated by inhibitors of c-Src [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2)], p38 mitogen-activated protein kinase (MAPK) [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole (SB202190)], and extracellular signal-regulated kinase (ERK) 1/2 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126)]. SB202190 attenuated p38 MAPK and c-Src but not ERK1/2 phosphorylation, indicating that p38 MAPK acts upstream of c-Src and Syk. The c-Src inhibitor PP2 attenuated Syk and ERK1/2 phosphorylation, suggesting that c-Src acts upstream of Syk and ERK1/2. Ang II- and epidermal growth factor (EGF)-induced VSMC migration and EGFR phosphorylation were inhibited by the EGFR blocker 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) (2 μM). Neither the Syk inhibitor piceatannol nor the dominant-negative Syk mutant altered EGF-induced cell migration or Ang II- and EGF-induced EGFR phosphorylation. The c-Src inhibitor PP2 diminished EGF-induced VSMC migration and EGFR, ERK1/2, and p38 MAPK phosphorylation. The ERK1/2 inhibitor U0126 (10 μM) attenuated EGF-induced cell migration and ERK1/2 but not EGFR phosphorylation. These data suggest that Ang II stimulates VSMC migration via p38 MAPK-activated c-Src through

  15. Angiotensin II-induced migration of vascular smooth muscle cells is mediated by p38 mitogen-activated protein kinase-activated c-Src through spleen tyrosine kinase and epidermal growth factor receptor transactivation.

    PubMed

    Mugabe, Benon E; Yaghini, Fariborz A; Song, Chi Young; Buharalioglu, Cuneyt K; Waters, Christopher M; Malik, Kafait U

    2010-01-01

    Angiotensin II (Ang II) stimulates protein synthesis by activating spleen tyrosine kinase (Syk) and DNA synthesis through epidermal growth factor receptor (EGFR) transactivation in vascular smooth muscle cells (VSMCs). This study was conducted to determine whether Syk mediates Ang II-induced migration of aortic VSMCs using a scratch wound approach. Treatment with Ang II (200 nM) for 24 h increased VSMC migration by 1.56 +/- 0.14-fold. Ang II-induced VSMC migration and Syk phosphorylation as determined by Western blot analysis were minimized by the Syk inhibitor piceatannol (10 microM) and by transfecting VSMCs with dominant-negative but not wild-type Syk plasmid. Ang II-induced VSMC migration and Syk phosphorylation were attenuated by inhibitors of c-Src [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2)], p38 mitogen-activated protein kinase (MAPK) [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole (SB202190)], and extracellular signal-regulated kinase (ERK) 1/2 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) butadiene (U0126)]. SB202190 attenuated p38 MAPK and c-Src but not ERK1/2 phosphorylation, indicating that p38 MAPK acts upstream of c-Src and Syk. The c-Src inhibitor PP2 attenuated Syk and ERK1/2 phosphorylation, suggesting that c-Src acts upstream of Syk and ERK1/2. Ang II- and epidermal growth factor (EGF)-induced VSMC migration and EGFR phosphorylation were inhibited by the EGFR blocker 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) (2 microM). Neither the Syk inhibitor piceatannol nor the dominant-negative Syk mutant altered EGF-induced cell migration or Ang II- and EGF-induced EGFR phosphorylation. The c-Src inhibitor PP2 diminished EGF-induced VSMC migration and EGFR, ERK1/2, and p38 MAPK phosphorylation. The ERK1/2 inhibitor U0126 (10 microM) attenuated EGF-induced cell migration and ERK1/2 but not EGFR phosphorylation. These data suggest that Ang II stimulates VSMC migration via p38 MAPK-activated c

  16. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  17. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Zhai, Zanjing; Qu, Xinhua; Li, Haowei; Ouyang, Zhengxiao; Yan, Wei; Liu, Guangwang; Liu, Xuqiang; Fan, Qiming; Tang, Tingting; Dai, Kerong; Qin, An

    2015-02-01

    Breast cancer is one of the most common types of cancer worldwide. The majority of patients with cancer succumb to the disease as a result of distant metastases (for example, in the bones), which cause severe complications. Despite advancements in breast cancer treatment, chemotherapeutic outcomes remain far from satisfactory, prompting a search for effective natural agents with few side‑effects. Andrographolide (AP), a natural diterpenoid lactone isolated from Andrographis paniculata, inhibits cancer cell growth. The current study aimed to examine the effect of AP on breast cancer cell proliferation, survival and progression in vitro and also its inhibitory activity on breast cancer bone metastasis in vivo. To achieve this, CCK8, flow cytometry, migration, invasion, western blot, PCR and luciferase reporter assay analyses were performed in vitro as well as establishing intratibial xenograft model of breast cancer bone metastasis in vivo. The results demonstrated that AP inhibits the migration and invasion of the MBA‑MD‑231 aggressive breast cancer cell line at non‑lethal concentrations, in addition to suppressing proliferation and inducing apoptosis at high concentrations in vitro. In vivo, AP significantly inhibited the growth of tumors planted in bone and attenuated cancer‑induced osteolysis. Tartrate‑resistant acid phosphatase staining revealed osteoclast activation in tumor‑bearing mice and AP was observed to attenuate this activation. The anti‑tumor activity of AP in vitro and in vivo correlates with the downregulation of the nuclear factor κB signaling pathway and the inhibition of matrix metalloproteinase‑9 expression levels. These results indicate that AP may be an effective anti‑tumor agent for the treatment of breast cancer bone metastasis. PMID:25374279

  18. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    SciTech Connect

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  19. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling

    PubMed Central

    Avanzato, D.; Genova, T.; Fiorio Pla, A.; Bernardini, M.; Bianco, S.; Bussolati, B.; Mancardi, D.; Giraudo, E.; Maione, F.; Cassoni, P.; Castellano, I.; Munaron, L.

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1–10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  20. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling.

    PubMed

    Avanzato, D; Genova, T; Fiorio Pla, A; Bernardini, M; Bianco, S; Bussolati, B; Mancardi, D; Giraudo, E; Maione, F; Cassoni, P; Castellano, I; Munaron, L

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1-10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  1. LMO7 Mediates Cell-Specific Activation of the Rho-Myocardin-Related Transcription Factor-Serum Response Factor Pathway and Plays an Important Role in Breast Cancer Cell Migration

    PubMed Central

    Hu, Qiande; Guo, Chun; Li, Yali; Aronow, Bruce J.; Zhang, Jinsong

    2011-01-01

    Serum response factor (SRF) is a ubiquitously expressed transcription factor that regulates cell-specific functions such as muscle development and breast cancer metastasis. The myocardin-related transcription factors (MRTFs), which are transcriptional coactivators mediating cell-specific functions of SRF, are also ubiquitously expressed. How MRTFs and SRF drive cell-specific transcription is still not fully understood. Here we show that LIM domain only 7 (LMO7) is a cell-specific regulator of MRTFs and plays an important role in breast cancer cell migration. LMO7 activates MRTFs by relieving actin-mediated inhibition in a manner that requires, and is synergistic with, Rho GTPase. Whereas Rho is required for LMO7 to activate full-length MRTFs that have three RPEL actin-binding motifs, the disruption of individual actin-RPEL interactions is sufficient to eliminate the Rho dependency and to allow the strong Rho-independent function of LMO7. Mechanistically, we show that LMO7 colocalizes with F-actin and reduces the G-actin/F-actin ratio via a Rho-independent mechanism. The knockdown of LMO7 in HeLa and MDA-MB-231 cells compromises both basal and Rho-stimulated MRTF activities and impairs the migration of MDA-MB-231 breast cancer cells. We also show that LMO7 is upregulated in the stroma of invasive breast carcinoma in a manner that correlates with the increased expression of SRF target genes that regulate muscle and actin cytoskeleton functions. Together, this study reveals a novel cell-specific mechanism regulating Rho-MRTF-SRF signaling and breast cancer cell migration and identifies a role for actin-RPEL interactions in integrating Rho and cell-specific signals to achieve both the synergistic and Rho-dependent activation of MRTFs. PMID:21670154

  2. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells.

    PubMed

    Hong, Gwan Ui; Kim, Nam Goo; Jeoung, Dooil; Ro, Jai Youl

    2013-07-15

    This study investigated whether anti-CD40 Ab and 8-oxo-dG attenuate mast cell migration and EAE development. Anti-CD40 Ab and 8-oxo-dG reduced EAE scores, mast cell numbers, expression of adhesion molecules, OX40L and Act1, levels of TNF-α, LTs, expression of cytokines, and co-localization of Treg cells and mast cells, all of which are increased in EAE-brain tissues. Each treatment enhanced Treg cells, expression of OX40, and cytokines related to suppressive function of Treg cells in EAE brain tissues. Act-BMMCs with Treg cells reduced expression of OX40L and CCL2/CCR2, VCAM-1, PECAM-1, [Ca²⁺]i levels, release of mediators, various signaling molecules, Act1 related to IL-17a signals versus those in act-BMMCs without Treg cells. The data suggest that IL-10- and IL-35-producing Foxp3⁺-Treg cells, enhanced by anti-CD40 Ab or 8-oxo-dG, suppress migration of mast cells through down-regulating the expression of adhesion molecules, and suppress mast cell activation through cell-to-cell cross-talk via OX40/OX40L in EAE development. PMID:23622820

  3. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β-catenin signaling

    PubMed Central

    KUNDU, JUTHIKA; WAHAB, S.M. RIAJUL; KUNDU, JOYDEB KUMAR; CHOI, YOON-LA; ERKIN, OZGUR CEM; LEE, HUN SEOK; PARK, SANG GYU; SHIN, YOUNG KEE

    2012-01-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β-catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β-catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β-catenin-mediated signaling pathways. PMID:22710759

  4. Glaucine inhibits breast cancer cell migration and invasion by inhibiting MMP-9 gene expression through the suppression of NF-κB activation.

    PubMed

    Kang, Hyereen; Jang, Sung-Wuk; Pak, Jhang Ho; Shim, Sungbo

    2015-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a central role in the invasion and metastasis of various types of cancer cells. Here, we demonstrate that glaucine, an alkaloid isolated from the plant Corydalis turtschaninovii tuber (Papaveraceae), can inhibit the migration and invasion of human breast cancer cells. We further show that glaucine significantly blocks phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 expression and activity in a dose-dependent manner. Results from reporter gene and electrophoretic mobility shift assays revealed that glaucine inhibits MMP-9 expression by suppressing activation of the nuclear transcription factor nuclear factor-κB (NF-κB). Moreover, glaucine attenuates PMA-induced IκBα degradation and nuclear translocation of NF-κB. Finally, we also found that glaucine inhibits invasion and MMP-9 expression in the highly metastatic MDA-MB-231 breast cancer cell line. Taken together, our findings indicate that the MMP-9 inhibitory activity of glaucine and its abilities to attenuate IκBα and NF-κB activities may be therapeutically useful as a novel means of controlling breast cancer growth and invasiveness. PMID:25670016

  5. Engineered Models of Confined Cell Migration.

    PubMed

    Paul, Colin D; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2016-07-11

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  6. Collective cell migration: guidance principles and hierarchies.

    PubMed

    Haeger, Anna; Wolf, Katarina; Zegers, Mirjam M; Friedl, Peter

    2015-09-01

    Collective cell migration results from the establishment and maintenance of collective polarization, mechanocoupling, and cytoskeletal kinetics. The guidance of collective cell migration depends on a reciprocal process between cell-intrinsic multicellular organization with leader-follower cell behavior and results in mechanosensory integration of extracellular guidance cues. Important guidance mechanisms include chemotaxis, haptotaxis, durotaxis, and strain-induced mechanosensing to move cell groups along interfaces and paths of least resistance. Additional guidance mechanisms steering cell groups during specialized conditions comprise electrotaxis and passive drift. To form higher-order cell and tissue structures during morphogenesis and cancer invasion, these guidance principles act in parallel and are integrated for collective adaptation to and shaping of varying tissue environments. We review mechanochemical and electrical inputs and multiparameter signal integration underlying collective guidance, decision making, and outcome. PMID:26137890

  7. The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration

    NASA Astrophysics Data System (ADS)

    Choudhury, Rajarshi; Roy, Sreerupa Ghose; Tsai, Yihsuan S.; Tripathy, Ashutosh; Graves, Lee M.; Wang, Zefeng

    2014-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk (extracellular signal-regulated protein kinase) pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq, we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk-regulated cell proliferation.

  8. Hes1 promotes cell proliferation and migration by activating Bmi-1 and PTEN/Akt/GSK3β pathway in human colon cancer.

    PubMed

    Gao, Fei; Huang, Wei; Zhang, YuQin; Tang, ShaoHui; Zheng, Lin; Ma, Feng; Wang, YiMing; Tang, Hui; Li, Xin

    2015-11-17

    Hes1 is a transcription factor that influences cell proliferation and differentiation. However, the effect of Hes1 on invasiveness and the underlying mechanism remain unknown. In the current study, we found that Hes1 suppressed cell apoptosis, promoted cell growth, induced EMT phenotype and cytoskeleton reconstruction, and enhanced the metastatic potential of colon cancer cells in vitro and in vivo. Furthermore, we indicated that Bmi-1 mediated Hes1-induced cell proliferation and migration, downregulated PTEN and activated the Akt/GSK3β pathway, consequently induced EMT and cytoskeleton reconstruction, ultimately leading to enhanced invasiveness of cancer cells. In addition, we also found that both Hes1 and Bmi-1 could directly regulate PTEN by associating at the PTEN locus, and played important roles in regulating PTEN/Akt/GSK3β pathway. Our results provide functional and mechanistic links between Hes1 and Bmi-1/PTEN/Akt/GSK3β signaling in the development and progression of colon cancer. PMID:26452029

  9. Hes1 promotes cell proliferation and migration by activating Bmi-1 and PTEN/Akt/GSK3β pathway in human colon cancer

    PubMed Central

    Gao, Fei; Huang, Wei; Zhang, YuQin; Tang, ShaoHui; Zheng, Lin; Ma, Feng; Wang, YiMing; Tang, Hui; Li, Xin

    2015-01-01

    Hes1 is a transcription factor that influences cell proliferation and differentiation. However, the effect of Hes1 on invasiveness and the underlying mechanism remain unknown. In the current study, we found that Hes1 suppressed cell apoptosis, promoted cell growth, induced EMT phenotype and cytoskeleton reconstruction, and enhanced the metastatic potential of colon cancer cells in vitro and in vivo. Furthermore, we indicated that Bmi-1 mediated Hes1-induced cell proliferation and migration, downregulated PTEN and activated the Akt/GSK3β pathway, consequently induced EMT and cytoskeleton reconstruction, ultimately leading to enhanced invasiveness of cancer cells. In addition, we also found that both Hes1 and Bmi-1 could directly regulate PTEN by associating at the PTEN locus, and played important roles in regulating PTEN/Akt/GSK3β pathway. Our results provide functional and mechanistic links between Hes1 and Bmi-1/PTEN/Akt/GSK3β signaling in the development and progression of colon cancer. PMID:26452029

  10. Bergamottin isolated from Citrus bergamia exerts in vitro and in vivo antitumor activity in lung adenocarcinoma through the induction of apoptosis, cell cycle arrest, mitochondrial membrane potential loss and inhibition of cell migration and invasion.

    PubMed

    Wu, Hui-Juan; Wu, Hong-Bo; Zhao, Yan-Qiu; Chen, Li-Juan; Zou, Hong-Zhi

    2016-07-01

    The objective of the present study was to investigate the in vitro and in vivo anticancer properties of bergamottin, a natural furanocoumarin, against human non-small cell lung carcinoma (NSCLC) A549 cells. We also studied its effect on cell proliferation, cell cycle arrest, cell invasion, cell migration as well as cell apoptosis. Antiproliferative activity of bergamottin was estimated by the MTT assay. Phase contrast and fluorescence microscopy as well as flow cytometry using Annexin V-FITC assay were used to study induction of apoptosis by bergamottin in these cells. The effects of bergamottin on cell cycle phase distribution as well as on mitochondrial membrane potential were also demonstrated using flow cytometry. In vitro wound healing assay was used to study the effect of bergamottin on cell migration. The effects of bergamottin on tumor progression were also observed using a nude mouse model. The mice were divided into 4 groups and treated with bergamottin injected intraperitoneally. Bergamottin induced dose-dependent as well as time-dependent cytotoxic effects as well as inhibition of colony formation in the A549 cancer cells. Bergamottin also suppressed cancer cell invasion as well as cancer cell migration. Phase contrast microscopy and fluorescence microscopy revealed that bergamottin induced cell shrinkage, chromatin condensation and the cells became rounded and detached from each other. Bergamottin also induced a potent cell cycle arrest at the G2/M phase of the cell cycle. Experiments in mice showed that 25, 50 and 100 mg/kg bergamottin injection reduced the tumor weight from 1.61 g in the phosphate-buffered saline (PBS)-treated group (control) to 1.21, 0.42 and 0.15 g in the bergamottin-treated groups, respectively. The results of the present study revealed that bergamottin was able to inhibit lung cancer cell growth both in a cell model and a xenograft mouse model by inducing apoptosis, mitochondrial membrane potential loss, G2/M cell cycle

  11. Primordial Germ Cell Specification and Migration

    PubMed Central

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  12. Protrusive waves guide 3D cell migration along nanofibers

    PubMed Central

    Guetta-Terrier, Charlotte; Monzo, Pascale; Zhu, Jie; Long, Hongyan; Venkatraman, Lakshmi; Zhou, Yue; Wang, PeiPei; Chew, Sing Yian; Mogilner, Alexander

    2015-01-01

    In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions. PMID:26553933

  13. Cellular Polarization and Contractility in Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Utuje, Kazage J. Christophe; Notbohm, Jacob; Banerjee, Shiladitya; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P.; Fredberg, Jeffrey J.; Marchetti, M. Cristina

    Collective cell migration drives many biological processes such as metastasis, morphogenesis and wound healing. These coordinated motions are driven by active forces. The physical nature of these forces and the mechanisms by which they generate collective cell migration are still not fully understood. We have developed a minimum physical model of a cell monolayer as an elastic continuum whose deformation field is coupled to two internal degrees of freedom: the concentration of a chemical signal, controlling cell Contractility, and the polarization field controlling the direction of local cell motion. By combining theory with experiments, we show that these two internal variables account for the sloshing waves and the systematic deviations of the direction of cell polarization from that of local cell velocity observed in confined cell monolayers. KJCU and MCM were supported by the Simons Foundation.

  14. Active migration and passive transport of malaria parasites.

    PubMed

    Douglas, Ross G; Amino, Rogerio; Sinnis, Photini; Frischknecht, Freddy

    2015-08-01

    Malaria parasites undergo a complex life cycle between their hosts and vectors. During this cycle the parasites invade different types of cells, migrate across barriers, and transfer from one host to another. Recent literature hints at a misunderstanding of the difference between active, parasite-driven migration and passive, circulation-driven movement of the parasite or parasite-infected cells in the various bodily fluids of mosquito and mammalian hosts. Because both active migration and passive transport could be targeted in different ways to interfere with the parasite, a distinction between the two ways the parasite uses to get from one location to another is essential. We discuss the two types of motion needed for parasite dissemination and elaborate on how they could be targeted by future vaccines or drugs. PMID:26001482

  15. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    PubMed Central

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  16. Modeling traction forces in collective cell migration

    NASA Astrophysics Data System (ADS)

    Zimmermann, Juliane; Basan, Markus; Hayes, Ryan L.; Rappel, Wouter-Jan; Levine, Herbert

    2015-03-01

    Collective cell migration is an important process in embryonic development, wound healing, and cancer metastasis. We have developed a particle-based simulation for collective cell migration that describes flow patterns and finger formation at the tissue edge observed in wound healing experiments. We can apply methods for calculating intercellular stress to our simulation model, and have thereby provided evidence for the validity of a stress reconstitution method from traction forces used in experiments. To accurately capture experimentally measured traction forces and stresses in the tissue, which are mostly tensile, we have to include intracellular acto-myosin contraction into our simulation. We can then reproduce the experimentally observed behavior of cells moving around a circular obstacle, and suggest underlying mechanisms for cell-cell alignment and generation of traction force patterns.

  17. Anticancer effect of arsenite on cell migration, cell cycle and apoptosis in human pancreatic cancer cells

    PubMed Central

    HORIBE, YOHEI; ADACHI, SEIJI; YASUDA, ICHIRO; YAMAUCHI, TAKAHIRO; KAWAGUCHI, JUNJI; KOZAWA, OSAMU; SHIMIZU, MASAHITO; MORIWAKI, HISATAKA

    2016-01-01

    The standard treatment for advanced pancreatic cancer is chemotherapy, but its clinical outcome remains unsatisfactory. Therefore, the development of novel treatments for this malignancy is urgently required. In the present study, the anticancer effect of arsenite on platelet-derived growth factor (PDGF)-BB-induced migration, cell cycle and apoptosis was investigated in pancreatic cancer cells (AsPC-1 and BxPC-3), and compared with the effect on normal pancreatic epithelial (PE) cells. In the cell migration assay, arsenite clearly inhibited PDGF-BB-induced cell migration in AsPC-1 cells, but not in BxPC-3 or PE cells. Arsenite also caused cell apoptosis in AsPC-1 cells, but not in BxPC-3 or PE cells. In AsPC-1 cells, the levels of cyclin D1 and phosphorylated retinoblastoma protein decreased following treatment with arsenite, but this was not observed in BxPC-3 cells. To further examine the differences between these two cell lines, the effect of arsenite on upstream p44/p42 mitogen-activated protein kinase (MAPK) and Akt was investigated. PDGF-BB caused phosphorylation of p44/p42 MAPK and Akt in both cell lines. Pretreatment with arsenite significantly suppressed PDGF-BB-induced phosphorylation of Akt, but not of p44/p42 MAPK in AsPC-1 cells. By contrast, arsenite did not affect these molecules in BxPC-3 cells. Since the inhibition of the Akt signaling pathway markedly reduced PDGF-BB-induced migration in AsPC-1 cells, the present results strongly suggest that arsenite inhibits PDGF-BB-induced migration by suppressing the Akt signaling pathway in AsPC-1 cells. Therefore, arsenite may be a useful tool for the treatment of patients with certain types of pancreatic cancer, without causing adverse effects on normal pancreatic cells. PMID:27347121

  18. Codonolactone, a sesquiterpene lactone isolated from Chloranthus henryi Hemsl, inhibits breast cancer cell invasion, migration and metastasis by downregulating the transcriptional activity of Runx2.

    PubMed

    Wang, Wei; Chen, Bin; Zou, Ruolan; Tu, Xiuying; Tan, Songlin; Lu, Hong; Liu, Zhaojie; Fu, Jianjiang

    2014-11-01

    Metastasis is the most insidious aspect of breast cancer, but effective strategies to control this malignant process are still lacking. In previous studies, we screened over 200 extracts from plants of genus Chloranthaceae by bioactivity-guided fractionation, and found that Codonolactone (CLT) exhibited potential antimetastatic properties in breast cancer cells. This sesquiterpene lactone was isolated from Chloranthus henryi Hemsl, and is also found in other medical herbs, such as Codonopsis pilosula, Atractylodes macrocephala Koidz and others. Here, we report that CLT inhibited the ability of invasion and migration in metastatic breast cancer cells. Furthermore, CLT exhibited significant suppression on formation of lung metastatic foci of breast cancer in vivo. We next investigated the mechanism of CLT-induced metastasis inhibitory effects in breast cancer cells. A significant inhibition on activity and expression of MMP-9 and MMP-13 was observed. Moreover, data from western blotting, Runx2 transcription factor assay and chromatin immunoprecipitation assay showed that binding ability of Runx2 to sequences of the mmp-13 promoter was inhibited by CLT. Collectively, these findings suggested that the antimetastatic properties of CLT in breast cancer were due to the inhibition of MMPs, which might be associated with a downregulation of Runx2 transcriptional activity. PMID:25190326

  19. DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma

    SciTech Connect

    Kim, Tai Young; Lee, Jung Weon; Kim, Hwang-Phill; Jong, Hyun-Soon; Kim, Tae-You; Jung, Mira; Bang, Yung-Jue; E-mail: bangyj@plaza.snu.ac.kr

    2007-03-30

    DLC-1 (deleted in liver cancer-1) is a tumor suppressor gene for hepatocellular carcinoma and other cancers. To characterize its functions, we constructed recombinant adenovirus encoding the wild-type DLC-1 and examined its effects on behaviors of a hepatocellular carcinoma cell line (SNU-368), which does not express DLC-1. Here, we found that restoration of DLC-1 expression in the SNU-368 cells caused an inhibition of cell proliferation with an increase of a subG1 population. Furthermore, DLC-1 overexpression induced disassembly of stress fibers and extensive membrane protrusions around cells on laminin-1. DLC-1 overexpression also inhibited cell migration and dephosphorylated focal adhesion proteins such as focal adhesion kinase (FAK), Cas (p130Cas; Crk-associated substrate), and paxillin. These observations suggest that DLC-1 plays important roles in signal transduction pathway regulating cell proliferation, cell morphology, and cell migration by affecting Rho family GTPases and focal adhesion proteins.

  20. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  1. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  2. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  3. Adhesion and migration of avian neural crest cells on fibronectin require the cooperating activities of multiple integrins of the (beta)1 and (beta)3 families.

    PubMed

    Testaz, S; Delannet, M; Duband, J

    1999-12-01

    Based on genetic, functional and histological studies, the extracellular matrix molecule fibronectin has been proposed to play a key role in the migration of neural crest cells in the vertebrate embryo. In the present study, we have analyzed in vitro the repertoire and function of integrin receptors involved in the adhesive and locomotory responses of avian truncal neural crest cells to fibronectin. Immunoprecipitation experiments showed that neural crest cells express multiple integrins, namely (alpha)3(beta)1, (alpha)4(beta)1, (alpha)5(beta)1, (alpha)8(beta)1, (alpha)v(beta)1, (alpha)v(beta)3 and a (beta)8 integrin, as potential fibronectin receptors, and flow cytometry analyses revealed no major heterogeneity among the cell population for expression of integrin subunits. In addition, the integrin repertoire expressed by neural crest cells was found not to change dramatically during migration. At the cellular level, only (alpha)v(beta)1 and (alpha)v(beta)3 were concentrated in focal adhesion sites in connection with the actin microfilaments, whereas the other integrins were predominantly diffuse over the cell surface. In inhibition assays with function-perturbing antibodies, it appeared that complete abolition of cell spreading and migration could be achieved only by blocking multiple integrins of the (beta)1 and (beta)3 families, suggesting possible functional compensations between different integrins. In addition, these studies provided evidence for functional partitioning of integrins in cell adhesion and migration. While spreading was essentially mediated by (alpha)v(beta)1 and (alpha)8(beta)1, migration involved primarily (alpha)4(beta)1, (alpha)v(beta)3 and (alpha)8(beta)1 and, more indirectly, (alpha)3(beta)1. (alpha)5(beta)1 and the (beta)8 integrin were not found to play any major role in either adhesion or migration. Finally, consistent with the results of inhibition experiments, recruitment of (alpha)4(beta)1 and (alpha)v(beta)3, individually or in

  4. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels.

    PubMed

    Giménez-Bastida, Juan Antonio; González-Sarrías, Antonio; Vallejo, Fernando; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2016-01-01

    Epidemiological, clinical and preclinical studies have reported the protection offered by citrus consumption, mainly orange, against cardiovascular diseases, which is primarily mediated by the antiatherogenic and vasculoprotective effects of the flavanone hesperetin-7-O-rutinoside (hesperidin). However, flavanone aglycones or glycosides are not present in the bloodstream but their derived phase-II metabolites could be the actual bioactive molecules. To date, only a few studies have explored the effects of circulating hesperetin-derived metabolites (glucuronides and sulfates) on endothelial cells. Herein, we describe for the first time the effects of hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3'-O-sulfate, hesperetin 7-O-sulfate and hesperetin on human aortic endothelial cell (HAEC) migration upon pro-inflammatory stimuli as an essential step to angiogenesis. Hesperetin and its derived metabolites, at physiologically relevant concentrations (1-10 μM), significantly attenuated cell migration in the presence of the pro-inflammatory cytokine TNF-α (50 ng mL(-1)), which was accompanied and perhaps mediated by a significant decrease in the levels of the thrombogenic plasminogen activator inhibitor-1 (PAI-1). However, hesperetin metabolites did not counteract the TNF-α-induced production of pro-inflammatory interleukin-6 (IL-6) and IL-8. We also study here for the first time, the metabolism of hesperetin and its derived metabolites by HAEC with and without a pro-inflammatory stimulus. All these results reinforce the concept according to which circulating phase-II hesperetin metabolites are critical molecules contributing to the cardioprotective effects upon consumption of citrus fruits such as orange. PMID:26456097

  5. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells.

    PubMed

    Taliaferro-Smith, LaTonia; Oberlick, Elaine; Liu, Tongrui; McGlothen, Tanisha; Alcaide, Tiffanie; Tobin, Rachel; Donnelly, Siobhan; Commander, Rachel; Kline, Erik; Nagaraju, Ganji Purnachandra; Havel, Lauren; Marcus, Adam; Nahta, Rita; O'Regan, Ruth

    2015-03-10

    Triple negative breast cancer (TNBC) is a highly metastatic disease that currently lacks effective prevention and treatment strategies. The insulin-like growth factor 1 receptor (IGF1R) and focal adhesion kinase (FAK) signaling pathways function in numerous developmental processes, and alterations in both are linked with a number of common pathological diseases. Overexpression of IGF1R and FAK are closely associated with metastatic breast tumors. The present study investigated the interrelationship between IGF1R and FAK signaling in regulating the malignant properties of TNBC cells. Using small hairpin RNA (shRNA)-mediated IGF1R silencing methods, we showed that IGF1R is essential for sustaining mesenchymal morphologies of TNBC cells and modulates the expression of EMT-related markers. We further showed that IGF1R overexpression promotes migratory and invasive behaviors of TNBC cell lines. Most importantly, IGF1R-driven migration and invasion is predominantly mediated by FAK activation and can be suppressed using pharmacological inhibitors of FAK. Our findings in TNBC cells demonstrate a novel role of the IGF1R/FAK signaling pathway in regulating critical processes involved in the metastatic cascade. These results may improve the current understanding of the basic molecular mechanisms of TNBC metastasis and provide a strong rationale for co-targeting of IGF1R and FAK as therapy for mesenchymal TNBCs. PMID:25749031

  6. An mDia1-INF2 formin activation cascade facilitated by IQGAP1 regulates stable microtubules in migrating cells

    PubMed Central

    Bartolini, Francesca; Andres-Delgado, Laura; Qu, Xiaoyi; Nik, Sara; Ramalingam, Nagendran; Kremer, Lenor; Alonso, Miguel A.; Gundersen, Gregg G.

    2016-01-01

    Multiple formins regulate microtubule (MT) arrays, but whether they function individually or in a common pathway is unknown. Lysophosphatidic acid (LPA) stimulates the formation of stabilized detyrosinated MTs (Glu MTs) in NIH3T3 fibroblasts through RhoA and the formin mDia1. Here we show that another formin, INF2, is necessary for mDia1-mediated induction of Glu MTs and regulation of MT dynamics and that mDia1 can be bypassed by activating INF2. INF2 localized to MTs after LPA treatment in an mDia1-dependent manner, suggesting that mDia1 regulates INF2. Mutants of either formin that disrupt their interaction failed to rescue MT stability in cells depleted of the respective formin, and the mDia1-interacting protein IQGAP1 regulated INF2’s localization to MTs and the induction of Glu MTs by either formin. The N-terminus of IQGAP1 associated with the C-terminus of INF2 directly, suggesting the possibility of a tripartite complex stimulated by LPA. Supporting this, the interaction of mDia1 and INF2 was induced by LPA and dependent on IQGAP1. Our data highlight a unique mechanism of formin action in which mDia1 and INF2 function in series to stabilize MTs and point to IQGAP1 as a scaffold that facilitates the activation of one formin by another. PMID:27030671

  7. An mDia1-INF2 formin activation cascade facilitated by IQGAP1 regulates stable microtubules in migrating cells.

    PubMed

    Bartolini, Francesca; Andres-Delgado, Laura; Qu, Xiaoyi; Nik, Sara; Ramalingam, Nagendran; Kremer, Lenor; Alonso, Miguel A; Gundersen, Gregg G

    2016-06-01

    Multiple formins regulate microtubule (MT) arrays, but whether they function individually or in a common pathway is unknown. Lysophosphatidic acid (LPA) stimulates the formation of stabilized detyrosinated MTs (Glu MTs) in NIH3T3 fibroblasts through RhoA and the formin mDia1. Here we show that another formin, INF2, is necessary for mDia1-mediated induction of Glu MTs and regulation of MT dynamics and that mDia1 can be bypassed by activating INF2. INF2 localized to MTs after LPA treatment in an mDia1-dependent manner, suggesting that mDia1 regulates INF2. Mutants of either formin that disrupt their interaction failed to rescue MT stability in cells depleted of the respective formin, and the mDia1-interacting protein IQGAP1 regulated INF2's localization to MTs and the induction of Glu MTs by either formin. The N-terminus of IQGAP1 associated with the C-terminus of INF2 directly, suggesting the possibility of a tripartite complex stimulated by LPA. Supporting this, the interaction of mDia1 and INF2 was induced by LPA and dependent on IQGAP1. Our data highlight a unique mechanism of formin action in which mDia1 and INF2 function in series to stabilize MTs and point to IQGAP1 as a scaffold that facilitates the activation of one formin by another. PMID:27030671

  8. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  9. Uridine adenosine tetraphosphate (Up{sub 4}A) is a strong inductor of smooth muscle cell migration via activation of the P2Y{sub 2} receptor and cross-communication to the PDGF receptor

    SciTech Connect

    Wiedon, Annette; Toelle, Markus; Bastine, Joschika; Schuchardt, Mirjam; Huang, Tao; Jankowski, Vera; Jankowski, Joachim; Zidek, Walter; Giet, Markus van der

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Up{sub 4}A induces VSMC migration. Black-Right-Pointing-Pointer VSMC migration towards Up{sub 4}A involves P2Y{sub 2} activation. Black-Right-Pointing-Pointer Up{sub 4}A-induced VSMC migration is OPN-dependent. Black-Right-Pointing-Pointer Activation of ERK1/2 pathway is necessary for VSMC migration towards Up{sub 4}A. Black-Right-Pointing-Pointer Up{sub 4}A-directed VSMC migration cross-communicates with the PDGFR. -- Abstract: The recently discovered dinucleotide uridine adenosine tetraphosphate (Up{sub 4}A) was found in human plasma and characterized as endothelium-derived vasoconstrictive factor (EDCF). A further study revealed a positive correlation between Up{sub 4}A and vascular smooth muscle cell (VSMC) proliferation. Due to the dominant role of migration in the formation of atherosclerotic lesions our aim was to investigate the migration stimulating potential of Up{sub 4}A. Indeed, we found a strong chemoattractant effect of Up{sub 4}A on VSMC by using a modified Boyden chamber. This migration dramatically depends on osteopontin secretion (OPN) revealed by the reduction of the migration signal down to 23% during simultaneous incubation with an OPN-blocking antibody. Due to inhibitory patterns using specific and unspecific purinoreceptor inhibitors, Up{sub 4}A mediates it's migratory signal mainly via the P2Y{sub 2}. The signaling behind the receptor was investigated with luminex technique and revealed an activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway. By use of the specific PDGF receptor (PDGFR) inhibitor AG1296 and siRNA technique against PDGFR-{beta} we found a strongly reduced migration signal after Up{sub 4}A stimulation in the PDGFR-{beta} knockdown cells compared to control cells. In this study, we present substantiate data that Up{sub 4}A exhibits migration stimulating potential probably involving the signaling cascade of MEK1 and ERK1/2 as well as the matrix protein OPN. We

  10. SIRT1 regulates lamellipodium extension and migration of melanoma cells.

    PubMed

    Kunimoto, Risa; Jimbow, Kowichi; Tanimura, Akihiko; Sato, Masahiro; Horimoto, Kouhei; Hayashi, Takashi; Hisahara, Shin; Sugino, Toshiya; Hirobe, Tomohisa; Yamashita, Toshiharu; Horio, Yoshiyuki

    2014-06-01

    Melanoma is highly metastatic, but the mechanism of melanoma cell migration is still unclear. We found that melanoma cells expressed the nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 in the cytoplasm. Cell membrane extension and migration of melanoma cells were inhibited by SIRT1 inhibitors or SIRT1 knockdown, whereas SIRT1 activators enhanced elongation of protrusion and cellular motility. In B16F1 cells, growth factor stimulation induced lamellipodium extension, a characteristic feature at the leading edge of migrating cells, and SIRT1 was found in the lamellipodium. SIRT1 inhibitor nicotinamide (NAM) or SIRT1 small interfering RNAs suppressed the lamellipodium extension by serum or platelet-derived growth factor (PDGF). The lamellipodium formation by dominant-active Rac1 was also inhibited by NAM, a SIRT1 inhibitor. NAM inhibited the accumulation of phosphorylated Akt at the submembrane by serum or PDGF. Using fluorescence resonance energy transfer, we found that NAM impaired PDGF-dependent increase in the phosphatidylinositol-3,4,5-trisphosphate level at the leading edge. NAM inhibited the abdominal metastasis of transplanted B16F1 melanoma cells in C57BL6/J mice and improved survival. Finally, SIRT1-knockdown B16F1 cells showed significantly reduced metastasis in transplanted mice compared with that in control B16F1 cells. These results indicate that SIRT1 inhibition is a strategy to suppress metastasis of melanoma cells. PMID:24480879

  11. Physical forces during collective cell migration

    NASA Astrophysics Data System (ADS)

    Trepat, Xavier; Wasserman, Michael R.; Angelini, Thomas E.; Millet, Emil; Weitz, David A.; Butler, James P.; Fredberg, Jeffrey J.

    2009-06-01

    Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions, and to drive these motions cells exert traction forces on their surroundings. Current understanding emphasizes that these traction forces arise mainly in `leader cells' at the front edge of the advancing cell sheet. Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails. Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

  12. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  13. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways.

    PubMed

    Lin, Jen-Jie; Su, Jui-Hsin; Tsai, Chi-Chu; Chen, Yi-Jen; Liao, Ming-Hui; Wu, Yu-Jen

    2014-09-01

    Cancer metastasis is one of the major causes of death in cancer. An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral Sinularia flexibilis has been examined for potential anti-cell migration and invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their corresponding effects, remain poorly understood. In this study, we investigated anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways. PMID:25222667

  14. 11-epi-Sinulariolide Acetate Reduces Cell Migration and Invasion of Human Hepatocellular Carcinoma by Reducing the Activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR Signaling Pathways

    PubMed Central

    Lin, Jen-Jie; Su, Jui-Hsin; Tsai, Chi-Chu; Chen, Yi-Jen; Liao, Ming-Hui; Wu, Yu-Jen

    2014-01-01

    Cancer metastasis is one of the major causes of death in cancer. An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral Sinularia flexibilis has been examined for potential anti-cell migration and invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their corresponding effects, remain poorly understood. In this study, we investigated anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways. PMID:25222667

  15. Flow and Diffusion in Channel-Guided Cell Migration

    PubMed Central

    Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O.

    2014-01-01

    Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport

  16. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  17. Cell migration in the rat embryonic neocortex.

    PubMed

    Bayer, S A; Altman, J; Russo, R J; Dai, X F; Simmons, J A

    1991-05-15

    Three-dimensional reconstructions of the normal rat embryonic (E) neocortex on days E15, E17, E19, and E21, using Skandha (software designed by J. Prothero, University of Washington, Seattle), show that the neocortical ventricular zone shrinks rapidly in the medial direction during cortical morphogenesis. [3H]thymidine autoradiography indicates that the shrinkage of the ventricular zone occurs before neurons in lateral and ventrolateral parts of layers IV-II are generated. Consequently, most of these neurons originate 400-1000 microns medial to their settling sites in the cortical plate. Embryos killed at daily intervals up to E21 after a single injection of [3H]thymidine on either E17 or E18 revealed the presence of a prominent migratory path, the lateral cortical stream, used by neurons migrating to the lateral and ventrolateral cortical plate; neurons migrating to the dorsal cortical plate follow a direct radial path. Arrival times of neurons in the cortical plate depend on the migratory path and are proportional to the overall distance travelled. Neurons that migrate only radially arrive in the dorsal cortical plate in two days (shortest route). Neurons that migrate laterally arrive in the lateral cortical plate in 3 days (longer route) and in the ventrolateral cortical plate in 4 days (longest route). [3H]thymidine autoradiography also shows that cells generated in the neocortical ventricular zone migrate in the lateral cortical stream for 5 or more days and accumulate in a reservoir. Cells leave the reservoir to enter the piriform cortex and destinations (as yet undetermined) in the basal telencephalon. The lateral cortical stream is found wherever the neocortical primordium surrounds the basal ganglia and is absent behind the basal ganglia. A computer analysis of nuclear orientation in anterior and posterior parts of the intermediate zone in the dorsal neocortex between days E17 and E22 shows that horizontally oriented nuclei are more common anteriorly where

  18. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways

    PubMed Central

    CUI, JINJIN; ZHANG, FENGYUN; WANG, YONGSHUN; LIU, JINGJIN; MING, XING; HOU, JINGBO; LV, BO; FANG, SHAOHONG; YU, BO

    2016-01-01

    Macrophage migration inhibitory factor (MIF) has pleiotropic immune functions in a number of inflammatory diseases. Recent evidence from expression and functional studies has indicated that MIF is involved in various aspects of cardiovascular disease. In this study, we aimed to determine whether MIF supports in vitro c-kit+CD45− cardiac stem cell (CSC) survival, proliferation and differentiation into endothelial cells, as well as the possible mechanisms involved. We observed MIF receptor (CD74) expression in mouse CSCs (mCSCs) using PCR and immunofluorescence staining, and MIF secretion by mCSCs using PCR and ELISA in vitro. Increasing amounts of exogenous MIF did not affect CD74 expression, but promoted mCSC survival, proliferation and endothelial differentiation. By contrast, treatment with an MIF inhibitor (ISO-1) or siRNA targeting CD74 (CD74-siRNA) suppressed the biological changes induced by MIF in the mCSCs. Increasing amounts of MIF increased the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which are known to support cell survival, proliferation and differentiation. These effects of MIF on the mCSCs were abolished by LY294002 [a phosphoinositide 3-kinase (PI3K) inhibitor] and MK-2206 (an Akt inhibitor). Moreover, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation increased following treatment with MIF. The AMPK inhibitor, compound C, partly blocked the pro-proliferative effects of MIF on the mCSCs. In conclusion, our results suggest that MIF promotes mCSC survival, proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK signaling pathways. Thus, MIF may prove to be a potential therapeutic factor in the treatment of heart failure and myocardial infarction by activating CSCs. PMID:27035848

  19. Collective Epithelial Migration and Cell Rearrangements Drive Mammary Branching Morphogenesis

    PubMed Central

    Ewald, Andrew J.; Brenot, Audrey; Duong, Myhanh; Chan, Bianca S.; Werb, Zena

    2009-01-01

    Summary Epithelial organs are built through the movement of groups of interconnected cells. We observed cells in elongating mammary ducts reorganize into a multilayered epithelium, migrate collectively, and rearrange dynamically, all without forming leading cellular extensions. Duct initiation required proliferation, Rac, and myosin light-chain kinase, whereas repolarization to a bilayer depended on Rho kinase. We observed that branching morphogenesis results from the active motility of both luminal and myoepithelial cells. Luminal epithelial cells advanced collectively, whereas myoepithelial cells appeared to restrain elongating ducts. Significantly, we observed that normal epithelium and neoplastic hyperplasias are organized similarly during morphogenesis, suggesting common mechanisms of epithelial growth. PMID:18410732

  20. A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling

    PubMed Central

    Bai, Zhiqiang; Qin, Di; Yan, Qin; Zhu, Jianzhong; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun

    2015-01-01

    Kaposi's sarcoma (KS) is a highly disseminated angiogenic tumor of endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced tumor dissemination and metastasis remain unknown. Here, we found that ectopic expression of miR-K12-3 (miR-K3) promoted endothelial cell migration and invasion. Bioinformatics and luciferase reporter analyses showed that miR-K3 directly targeted G protein-coupled receptor (GPCR) kinase 2 (GRK2, official gene symbol ADRBK1). Importantly, overexpression of GRK2 reversed miR-K3 induction of cell migration and invasion. Furthermore, the chemokine receptor CXCR2, which was negatively regulated by GRK2, was upregulated in miR-K3-transduced endothelial cells. Knock down of CXCR2 abolished miR-K3-induced cell migration and invasion. Moreover, miR-K3 downregulation of GRK2 relieved its direct inhibitory effect on AKT. Both CXCR2 induction and the release of AKT from GRK2 were required for miR-K3 maximum activation of AKT and induction of cell migration and invasion. Finally, deletion of miR-K3 from the KSHV genome abrogated its effect on the GRK2/CXCR2/AKT pathway and KSHV-induced migration and invasion. Our data provide the first-line evidence that, by repressing GRK2, miR-K3 facilitates cell migration and invasion via activation of CXCR2/AKT signaling, which likely contribute to the dissemination of KSHV-induced tumors. PMID:26402907

  1. Macrophage Migration Inhibitory Factor Inhibits the Migration of Cartilage End Plate-Derived Stem Cells by Reacting with CD74

    PubMed Central

    Xiong, Cheng-jie; Huang, Bo; Zhou, Yue; Cun, Yan-ping; Liu, Lan-tao; Wang, Jian; Li, Chang-qing; Pan, Yong; Wang, Hai

    2012-01-01

    Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that regulates inflammatory reactions and the pathophysiology of many inflammatory diseases. Intervertebral disc (IVD) degeneration is characterized by an inflammatory reaction, but the potential role of MIF in IVD degeneration has not been determined. Recent studies have shown that MIF and its receptor, CD74, are involved in regulating the migration of human mesenchymal stem cells (MSCs); Thus, MIF might impair the ability of mesenchymal stem cells (MSCs) to home to injured tissues. Our previous studies indicated that cartilage endplate (CEP)-derived stem cells (CESCs) as a type of MSCs exist in human degenerate IVDs. Here, we investigate the role of MIF in regulating the migration of CESCs. Methods and Findings CESCs were isolated and identified. We have shown that MIF was distributed in human degenerate IVD tissues and was subject to regulation by the pro-inflammatory cytokine TNF-α. Furthermore, in vitro cell migration assays revealed that nucleus pulposus (NP) cells inhibited the migration of CESCs in a number-dependent manner, and ELISA assays revealed that the amount of MIF in conditioned medium (CM) was significantly increased as a function of increasing cell number. Additionally, recombinant human MIF (r-MIF) inhibited the migration of CESCs in a dose-dependent manner. CESCs migration was restored when an antagonist of MIF, (S, R)-3(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), was added. Finally, a CD74 activating antibody (CD74Ab) was used to examine the effect of CD74 on CESCs motility and inhibited the migration of CESCs in a dose-dependent manner. Conclusions We have identified and characterized a novel regulatory mechanism governing cell migration during IVD degeneration. The results will benefit understanding of another possible mechanism for IVD degeneration, and might provide a new method to repair degenerate IVD by enhancing CESCs

  2. Indolo-pyrido-isoquinolin based alkaloid inhibits growth, invasion and migration of breast cancer cells via activation of p53-miR34a axis.

    PubMed

    Avtanski, Dimiter B; Nagalingam, Arumugam; Tomaszewski, Joseph E; Risbood, Prabhakar; Difillippantonio, Michael J; Saxena, Neeraj K; Malhotra, Sanjay V; Sharma, Dipali

    2016-08-01

    The tumor suppressor p53 plays a critical role in suppressing cancer growth and progression and is an attractive target for the development of new targeted therapies. We synthesized several indolo-pyrido-isoquinolin based alkaloids to activate p53 function and examined their therapeutic efficacy using NCI-60 screening. Here, we provide molecular evidence that one of these compounds, 11-methoxy-2,3,4,13-tetrahydro-1H-indolo[2',3':3,4]pyrido[1,2-b]isoquinolin-6-ylium-bromide (termed P18 or NSC-768219) inhibits growth and clonogenic potential of cancer cells. P18 treatment results in downregulation of mesenchymal markers and concurrent upregulation of epithelial markers as well as inhibition of migration and invasion. Experimental epithelial-mesenchymal-transition (EMT) induced by exposure to TGFβ/TNFα is also completely reversed by P18. Importantly, P18 also inhibits mammosphere-formation along with a reduction in the expression of stemness factors, Oct4, Nanog and Sox2. We show that P18 induces expression, phosphorylation and accumulation of p53 in cancer cells. P18-mediated induction of p53 leads to increased nuclear localization and elevated expression of p53 target genes. Using isogenic cancer cells differing only in p53 status, we show that p53 plays an important role in P18-mediated alteration of mesenchymal and epithelial genes, inhibition of migration and invasion of cancer cells. Furthermore, P18 increases miR-34a expression in p53-dependent manner and miR-34a is integral for P18-mediated inhibition of growth, invasion and mammosphere-formation. miR-34a mimics potentiate P18 efficacy while miR-34a antagomirs antagonize P18. Collectively, these data provide evidence that P18 may represent a promising therapeutic strategy for the inhibition of growth and progression of breast cancer and p53-miR-34a axis is important for P18 function. PMID:27259808

  3. [Research progress of tumor cell migration strategy and the migration transition mechanism].

    PubMed

    Wang, Hongbing; Tan, Qiaoyan; Yang, Ben Yanzi; Zou, Xiaobing; Yang, Li

    2011-12-01

    Tumor cells exhibit two main different migration strategies when invading in 3D environment, i. e. mesenchymal migration and amoeboid migration. This review summarizes the internal reasons and characteristics on various modes of migration adaptation to the microenvironment, and the molecular mechanisms in particular environment where they are mutually interchangeable. A study of the mechanisms that may possibly trigger mesenchymal-amoeboid transition/amoeboid-mesenchymal transition help us to understand the change and the plasticity in the migration strategies of tumor cells. These are important for the development of a cancer treatment, which would efficiently suppress tumor cell invasiveness. PMID:22295724

  4. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  5. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB.

    PubMed

    Suboj, Priya; Babykutty, Suboj; Valiyaparambil Gopi, Deepak Roshan; Nair, Rakesh S; Srinivas, Priya; Gopala, Srinivas

    2012-04-11

    Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study we analyzed molecular mechanisms involved in the antimigratory and antiangiogenic activity of this hydroxy anthraquinone in colon cancer cell, WiDr. Our results show that a relatively non toxic concentration of AE suppressed the phorbol-12-myristyl-13-acetate (PMA) induced migration and invasion of tumor cells. On analysis for the molecules involved in the migration/invasion, we found AE downregulated mRNA expression and promoter/gelatinolytic activity of Matrix Metalloproteinase (MMP)-2/9, as well as the RhoB expression at gene and protein level. It was also a strong inhibitor of Vascular Endothelial Growth Factor (VEGF) expression, promoter activity and endothelial cell migration/invasion and in vitro angiogenesis. AE suppressed the nuclear translocation and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression. Taken together these data indicate that AE target multiple molecules responsible for cellular invasion, migration and angiogenesis. Inhibitory effect on angiogenic and metastatic regulatory processes make AE a sensible candidate as a specific blocker of tumor associated events. PMID:22227305

  6. Endothelial cell migration during murine yolk sac vascular remodeling occurs by means of a Rac1 and FAK activation pathway in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanism(s) controlling cell migration during vascular morphogenesis in vivo remain largely undefined. To address this within a physiological context, we used retinaldehyde dehydrogenase-2 (Raldh2) null mouse embryos and demonstrate that retinoic acid (RA) deficiency results in abnorm...

  7. A Dynamic Model of Chemoattractant-Induced Cell Migration

    PubMed Central

    Yang, Hao; Gou, Xue; Wang, Yong; Fahmy, Tarek M.; Leung, Anskar Y.-H.; Lu, Jian; Sun, Dong

    2015-01-01

    Cell migration refers to a directional cell movement in response to chemoattractant stimulation. In this work, we developed a cell-migration model by mimicking in vivo migration using optically manipulated chemoattractant-loaded microsources. The model facilitates a quantitative characterization of the relationship among the protrusion force, cell motility, and chemoattractant gradient for the first time (to our knowledge). We verified the correctness of the model using migrating leukemia cancer Jurkat cells. The results show that one can achieve the ideal migrating capacity by choosing the appropriate chemoattractant gradient and concentration at the leading edge of the cell. PMID:25863056

  8. A lateral signalling pathway coordinates shape volatility during cell migration

    PubMed Central

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  9. A lateral signalling pathway coordinates shape volatility during cell migration.

    PubMed

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K; Musiol, Martin; Won, Amy; Yip, Christopher M; Plotnikov, Sergey V; Wrana, Jeffrey L

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1-Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  10. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    SciTech Connect

    Jiang, Jianxin; Yu, Chao; Chen, Meiyuan; Tian, She; Sun, Chengyi

    2015-09-04

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling.

  11. T-cell Migration, Search Strategies and Mechanisms

    PubMed Central

    Krummel, Matthew F; Bartumeus, Frederic; Gérard, Audrey

    2016-01-01

    T cell migration is essential for T cell responses, allowing for detection of cognate antigen at the surface of an Antigen-Presenting Cell (APC) and for interactions with other cells involved in the immune response. Although appearing random, growing evidence supports that T cell motility patterns are strategic and governed by mechanisms that are optimized for both activation-stage and environment-specific attributes. In this Opinion Article, we will discuss how to understand the combined effects of T cell- intrinsic and -extrinsic forces upon these motility patterns when viewed in highly complex tissues filled with other cells involved in parallel motility. In particular, we will examine how insights from ‘search theory’ describe T cell movement across exploitation-exploration gradients, in the context of activation versus effector function and in the context of lymph nodes versus peripheral tissues. PMID:26852928

  12. Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling

    SciTech Connect

    Seomun, Young; Joo, Choun-Ki

    2008-07-18

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.

  13. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration.

    PubMed

    Hong, Jing-Fang; Song, Ying-Fang; Liu, Zheng; Zheng, Zhao-Cong; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle‑associated proteins and autophagy‑linked LC3B‑II proteins. The results demonstrated that taraxerol acetate induced dose‑ and time‑dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate‑treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub‑G1 cell cycle arrest with a corresponding decrease in the number of S‑phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate‑buffered saline (PBS)‑treated group (control) to 0.81 and 0.42

  14. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration

    PubMed Central

    HONG, JING-FANG; SONG, YING-FANG; LIU, ZHENG; ZHENG, ZHAO-CONG; CHEN, HONG-JIE; WANG, SHOU-SEN

    2016-01-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle-associated proteins and autophagy-linked LC3B-II proteins. The results demonstrated that taraxerol acetate induced dose- and time-dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate-treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub-G1 cell cycle arrest with a corresponding decrease in the number of S-phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate-buffered saline (PBS)-treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0

  15. Migration of cells in a social context.

    PubMed

    Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032

  16. Dynamic contact guidance of migrating cells

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Sun, Xiaoyu; Guven, Can; Driscoll, Meghan; Fourkas, John

    2014-03-01

    We investigate the effects of nanotopographical surfaces on the cell migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Amoeboid motion exhibits significant contact guidance along surfaces with nanoscale ridges or grooves. We show quantitatively that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Using principal component analysis, we characterize the dynamics of the cell shape modulated by the coupling between the cell membrane and ridges. We show that motion parallel to the ridges is enhanced, while the turning, at the largest spatial scales, is suppressed. Since protrusion dynamics are principally governed by actin dynamics, we imaged the actin polymerization of cells on ridges. We found that actin polymerization occurs preferentially along nanoridges in a ``monorail'' like fashion. The ridges then provide us with a tool to study actin dynamics in an effectively reduced dimensional system.

  17. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.

    PubMed

    Okeyo, Kennedy Omondi; Adachi, Taiji; Sunaga, Junko; Hojo, Masaki

    2009-11-13

    Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility. PMID:19665125

  18. The front and rear of collective cell migration.

    PubMed

    Mayor, Roberto; Etienne-Manneville, Sandrine

    2016-02-01

    Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement. PMID:26726037

  19. Nerve growth factor-induced migration of endothelial cells.

    PubMed

    Dollé, Jean-Pierre; Rezvan, Amir; Allen, Fred D; Lazarovici, Philip; Lelkes, Peter I

    2005-12-01

    Nerve growth factor (NGF) is a well known neurotropic and neurotrophic agonist in the nervous system, which recently was shown to also induce angiogenic effects in endothelial cells (ECs). To measure NGF effects on the migration of cultured ECs, an important step in neoangiogenesis, we optimized an omnidirectional migration assay using human aortic endothelial cells (HAECs) and validated the assay with human recombinant basic fibroblast growth factor (rhbFGF) and human recombinant vascular endothelial growth factor (rhVEGF). The potencies of nerve growth factor purified from various species (viper, mouse, and recombinant human) to stimulate HAEC migration was similar to that of VEGF and basic fibroblast growth factor (bFGF) (EC50 of approximately 0.5 ng/ml). Recombinant human bFGF was significantly more efficacious than either viper NGF or rhVEGF, both of which stimulated HAEC migration by approximately 30% over basal spontaneous migration. NGF-mediated stimulation of HAEC migration was completely blocked by the NGF/TrkA receptor antagonist K252a [(8R*,9S*,11S*)-(/)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,-8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(c,d,e)trindene-1-one] (30 nM) but not by the VEGF/Flk receptor antagonist SU-5416 [3-[(2,4-dimethylpyrrol-5-yl) methylidenyl]-indolin-2-one] (250 nM), indicating a direct effect of NGF via TrkA receptor activation on HAEC migration. Viper NGF stimulation of HAEC migration was additively increased by either rhVEGF or rhbFGF, suggesting a potentiating interaction between their tyrosine kinase receptor signaling pathways. Viper NGF represents a novel pharmacological tool to investigate possible TrkA receptor subtypes in endothelial cells. The ability of NGF to stimulate migration of HAEC cells in vitro implies that this factor may play an important role in the cardiovascular system besides its well known effects in the nervous system. PMID:16123305

  20. Migrastatin Analogues Inhibit Canine Mammary Cancer Cell Migration and Invasion

    PubMed Central

    Majchrzak, Kinga; Lo Re, Daniele; Gajewska, Małgorzata; Bulkowska, Małgorzata; Homa, Agata; Pawłowski, Karol; Motyl, Tomasz; Murphy, Paul V.; Król, Magdalena

    2013-01-01

    Background Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. Results Our results showed that two of six fully synthetic analogues of migrastatin: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. Conclusion Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in

  1. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    PubMed

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC. PMID:27083564

  2. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  3. Flow-driven cell migration under external electric fields

    PubMed Central

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  4. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  5. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    SciTech Connect

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol; Kwon, Jungkee; Hwang, Jae-Won; Bae, Cheol-Hyeon; Seo, Young-Kwon; Lee, Jeong-Chae

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  6. Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration.

    PubMed

    Yeh, Poh-Shiow; Wang, Weu; Chang, Ya-An; Lin, Chien-Ju; Wang, Jhi-Joung; Chen, Ruei-Ming

    2016-01-01

    autophagy of neuroblastoma cells and consequent apoptosis through activating the PI3K/Akt/mTOR and ERS/ROS/ERK1/2 signaling pathways and suppressing cell migration. Thus, honokiol has potential for treating neuroblastomas. PMID:26454217

  7. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    PubMed

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies. PMID:27344026

  8. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    SciTech Connect

    Luftman, Kevin; Hasan, Nazarul; Day, Paul; Hardee, Deborah; Hu Chuan

    2009-02-27

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of {beta}1 integrin at the cell surface but had no effect on total cellular {beta}1 integrin, indicating that VAMP3 is required for trafficking of {beta}1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  9. Actein Inhibits Cell Proliferation and Migration in Human Osteosarcoma

    PubMed Central

    Chen, Zhi; Wu, Jingdong; Guo, Qinghao

    2016-01-01

    Background Osteosarcoma is one of the most common malignant bone cancers worldwide. Although the traditional chemotherapies have made some progression in the past decades, the mortality of osteosarcoma in children and adolescent is very high. Herein, the role of actein in osteosarcoma was explored. Material/Methods Cell viability assay was performed in osteosarcoma cell lines 143B and U2OS. Colony formation analysis was included when cells were treated with different doses of actin. Cell cycle assay was conducted to further examine the role of actein. Cell apoptotic rate and the relative activities of caspase-3, caspase-8, and caspase-9 were detected in 143B and U2OS osteosarcoma cells. Moreover, transwell assays were used to explore the effects of actein on cell metastasis. Results Actein significantly inhibited osteosarcoma cell viability in a time- and dose-dependent manner. Actein also dramatically suppressed the colony formation ability in osteosarcoma143B and U2OS cells. It was revealed that osteosarcoma cells were arrested in G0/G1 phase in the cell cycle progression and induced to apoptosis by administration of actein. The activities of pro-apoptotic factors such as caspase-3 and caspase-9 were significantly increased by actein. Furthermore, administration of actein decreased cell migrated and invasive abilities in both 143B and U2OS cell lines. Conclusions Actein inhibits tumor growth by inducing cell apoptosis in osteosarcoma. The inhibitive roles of actein in cell proliferation, migration and invasion suggest that actein may serve as a potential therapeutic agent in the treatment of osteosarcoma. PMID:27173526

  10. Cloning and sequence of a cDNA coding for the human beta-migrating endothelial-cell-type plasminogen activator inhibitor.

    PubMed Central

    Ny, T; Sawdey, M; Lawrence, D; Millan, J L; Loskutoff, D J

    1986-01-01

    A lambda gt11 expression library containing cDNA inserts prepared from human placental mRNA was screened immunologically using an antibody probe developed against the beta-migrating plasminogen activator inhibitor (beta-PAI) purified from cultured bovine aortic endothelial cells. Thirty-four positive clones were isolated after screening 7 X 10(5) phages. Three clones (lambda 1.2, lambda 3, and lambda 9.2) were randomly picked and further characterized. These contained inserts 1.9, 3.0, and 1.9 kilobases (kb) long, respectively. Escherichia coli lysogenic for lambda 9.2, but not for lambda gt11, produced a fusion protein of 180 kDa that was recognized by affinity-purified antibodies against the bovine aortic endothelial cell beta-PAI and had beta-PAI activity when analyzed by reverse fibrin autography. The largest cDNA insert was sequenced and shown to be 2944 base pairs (bp) long. It has a large 3' untranslated region [1788 bp, excluding the poly(A) tail] and contains the entire coding region of the mature protein but lacks the initiation codon and part of the signal peptide coding region at the 5' terminus. The two clones carrying the 1.9-kb cDNA inserts were partially sequenced and shown to be identical to the 3.0-kb cDNA except that they were truncated, lacking much of the 3' untranslated region. Blot hybridization analysis of electrophoretically fractionated RNA from the human fibrosarcoma cell line HT-1080 was performed using the 3.0-kb cDNA as hybridization probe. Two distinct transcripts, 2.2 and 3.0 kb, were detected, suggesting that the 1.9-kb cDNA may have been copied from the shorter RNA transcript. The amino acid sequence deduced from the cDNA was aligned with the NH2-terminal sequence of the human beta-PAI. Based on this alignment, the mature human beta-PAI is 379 amino acids long and contains an NH2-terminal valine. The deduced amino acid sequence has extensive (30%) homology with alpha 1-antitrypsin and antithrombin III, indicating that the beta

  11. Osteoblast differentiation and migration are regulated by dynamin GTPase activity.

    PubMed

    Eleniste, Pierre P; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W; Bruzzaniti, Angela

    2014-01-01

    Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation. PMID:24387844

  12. Osteoblast differentiation and migration are regulated by Dynamin GTPase activity

    PubMed Central

    Eleniste, Pierre P.; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W.; Bruzzaniti, Angela

    2013-01-01

    Bone formation is controlled by osteoblasts but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0–21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation. PMID:24387844

  13. Emerging modes of collective cell migration induced by geometrical constraints

    PubMed Central

    Vedula, Sri Ram Krishna; Leong, Man Chun; Lai, Tan Lei; Hersen, Pascal; Kabla, Alexandre J.; Lim, Chwee Teck; Ladoux, Benoît

    2012-01-01

    The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell–cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell–cell junctions abolishes directed collective migration and passive cell–cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell–cell junctions can feed back to regulate the organization of migrating tissues. PMID:22814373

  14. Chemokine-guided cell migration and motility in zebrafish development

    PubMed Central

    Bussmann, Jeroen; Raz, Erez

    2015-01-01

    Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration. PMID:25762592

  15. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  16. Differential migration and proliferation of geometrical ensembles of cell clusters

    SciTech Connect

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  17. RhoA activation promotes transendothelial migration of monocytes via ROCK.

    PubMed

    Honing, Henk; van den Berg, Timo K; van der Pol, Susanne M A; Dijkstra, Christine D; van der Kammen, Rob A; Collard, John G; de Vries, Helga E

    2004-03-01

    Monocyte infiltration into inflamed tissue requires the initial arrest of the cells on the endothelium followed by firm adhesion and their subsequent migration. Migration of monocytes and other leukocytes is believed to involve a coordinated remodeling of the actin cytoskeleton. The small GTPases RhoA, Rac1, and Cdc42 are critical regulators of actin reorganization. In this study, we have investigated the role of Rho-like GTPases RhoA, Rac1, and Cdc42 in the adhesion and migration of monocytes across brain endothelial cells by expressing their constitutively active or dominant-negative constructs in NR8383 rat monocytic cells. Monocytes expressing the active form of Cdc42 show a reduced migration, whereas Rac1 expression did not affect adhesion or migration. In contrast, expression of the active form of RhoA in monocytes leads to a dramatic increase in their adhesion and migration across endothelial cells. The effect of RhoA was found to be mediated by its down-stream effector Rho kinase (ROCK), as pretreatment with the selective ROCK inhibitor Y-27632 prevented this enhanced adhesion and migration. These results demonstrate that RhoA activation in monocytes is sufficient to enhance adhesion and migration across monolayers of endothelial cells. PMID:14634067

  18. Water permeation drives tumor cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-04-24

    Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  19. Water Permeation Drives Tumor Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    SUMMARY Cell migration is a critical process for diverse (patho) physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach (“Osmotic Engine Model”) and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  20. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration

    PubMed Central

    LI, BIN; CHEN, DAOMEI; LI, WANYI; XIAO, DAN

    2016-01-01

    While the anti-tumor actions of ginsenosides from Panax notoginseng are well-studied, the anti-proliferative activity of 20(S)-protopanaxadiol saponins (PDS) in Sanchi ginseng on human ovarian cancer has not been reported, nor has its effect on migration of SKOV3 cells been investigated. In the present study, a wound-healing assay indicated that PDS inhibited the migration of SKOV3 cells, and a Matrigel™ tube formation assay demonstrated the presence of inhibitory tube-structures following treatment with PDS. To date, there are no previous reports on the regulation of osteopontin (OPN), a glycophosphoprotein cytokine frequently expressed in ovarian carcinoma effusions by PDS. A reduction in the expression of OPN following PDS-treatment was observed using immunohistochemical and western blot experiments. These results suggest that PDS may be useful in the search for a potential ovarian cancer treatment. PMID:26998063

  1. Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells.

    PubMed

    Rivera, Io-Guané; Ordoñez, Marta; Presa, Natalia; Gangoiti, Patricia; Gomez-Larrauri, Ana; Trueba, Miguel; Fox, Todd; Kester, Mark; Gomez-Muñoz, Antonio

    2016-02-15

    Pancreatic cancer is an aggressive and devastating disease characterized by invasiveness, rapid progression and profound resistance to treatment. Despite years of intense investigation, the prognosis of this type of cancer is poor and there is no efficacious treatment to overcome the disease. Using human PANC-1 and MIA PaCa-2 cells, we demonstrate that the bioactive sphingolipid ceramide 1-phosphate (C1P) increases pancreatic cancer cell migration and invasion. Treatment of these cells with selective inhibitors of phosphatidylinositol 3-kinase (PI3K), Akt1, or mammalian target of rapamycin 1 (mTOR1), or with specific siRNAs to silence the genes encoding these kinases, resulted in potent inhibition of C1P-induced cell migration and invasion. Likewise, the extracellularly regulated kinases 1 and 2 (ERK1-2), and the small GTPase RhoA, which regulates cytoskeleton reorganization, were also found to be implicated in C1P-stimulated ROCK1-dependent cancer cell migration and invasion. In addition, pre-treatment of the cancer cells with pertussis toxin abrogated C1P-induced cell migration, suggesting the intervention of a Gi protein-coupled receptor in this process. Pancreatic cancer cells engineered to overexpress ceramide kinase (CerK), the enzyme responsible for C1P biosynthesis in mammalian cells, showed enhanced spontaneous cell migration that was potently blocked by treatment with the selective CerK inhibitor NVP-231, or by treatment with specific CerK siRNA. Moreover, overexpression of CerK with concomitant elevations in C1P enhanced migration of pancreatic cancer cells. Collectively, these data demonstrate that C1P is a key regulator of pancreatic cancer cell motility, and suggest that targeting CerK expression/activity and C1P may be relevant factors for controlling pancreatic cancer cell dissemination. PMID:26707801

  2. How inhibitory cues can both constrain and promote cell migration.

    PubMed

    Bronner, Marianne E

    2016-06-01

    Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration. PMID:27269064

  3. SENP1 regulates cell migration and invasion in neuroblastoma.

    PubMed

    Xiang-Ming, Yan; Zhi-Qiang, Xu; Ting, Zhang; Jian, Wang; Jian, Pan; Li-Qun, Yuan; Ming-Cui, Fu; Hong-Liang, Xia; Xu, Cao; Yun, Zhou

    2016-05-01

    Neuroblastoma (NB) is an embryonic solid tumor derived from precursor cells of the sympathetic nervous system, and accounts for 11% of childhood cancers and around 15% of cancer deaths in children. SUMOylation and deSUMOylation are dynamic mechanisms regulating a spectrum of protein activities. The SUMO proteases (SENP) remove SUMO conjugate from proteins, and their expression is deregulated in diverse cancers. However, nothing is known about the role of SENPs in NBL. In the present study, we found that SENP1 expression was significantly high in metastatic NB tissues compared with primary NB tissues. Overexpression of SENP1 promoted NB cells migration and invasion. Inhibition of SENP1 could significantly suppress NB cell migration and invasion. Moreover, we found that SENP1 could regulate the expression of CDH1, MMP9, and MMP2. In summary, the data presented here indicate a significant role of SENP1 in the regulation of cell migration and invasion in NB and suppress SENP1 expression as promising candidates for novel treatment strategies of NB. PMID:25816890

  4. The NANIVID: a new device for cancer cell migration studies

    NASA Astrophysics Data System (ADS)

    Raja, Waseem K.; Cady, Nathaniel C.; Castracane, James; Gligorijevic, Bojana; van Rheenen, Jacobus W.; Condeelis, John S.

    2008-02-01

    Cancerous tumors are dynamic microenvironments that require unique analytical tools for their study. Better understanding of tumor microenvironments may reveal mechanisms behind tumor progression and generate new strategies for diagnostic marker development, which can be used routinely in histopathological analysis. Previous studies have shown that cell invasion and intravasation are related to metastatic potential and have linked these activities to gene expression patterns seen in migratory and invasive tumor cells in vivo. Existing analytical methods for tumor microenvironments include collection of tumor cells through a catheter needle loaded with a chemical or protein attractant (chemoattractant). This method has some limitations and restrictions, including time constraints of cell collection, long term anesthetization, and in vivo imaging inside the catheter. In this study, a novel implantable device was designed to replace the catheter-based method. The 1.5mm x 0.5mm x 0.24mm device is designed to controllably release chemoattractants for stimulation of tumor cell migration and subsequent cell capture. Devices were fabricated using standard microfabrication techniques and have been shown to mediate controlled release of bovine serum albumin (BSA) and epidermal growth factor (EGF). Optically transparent indium tin oxide (ITO) electrodes have been incorporated into the device for impedance-based measurement of cell density and have been shown to be compatible with in vivo multi-photon imaging of cell migration.

  5. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target. PMID:26432005

  6. Insights into the Cell Shape Dynamics of Migrating Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Driscoll, Meghan; Homan, Tess; McCann, Colin; Parent, Carole; Fourkas, John; Losert, Wolfgang

    2010-03-01

    Dynamic cell shape is a highly visible manifestation of the interaction between the internal biochemical state of a cell and its external environment. We analyzed the dynamic cell shape of migrating cells using the model system Dictyostelium discoideum. Applying a snake algorithm to experimental movies, we extracted cell boundaries in each frame and followed local boundary motion over long time intervals. Using a local motion measure that corresponds to protrusive/retractive activity, we found that protrusions are intermittent and zig-zag, whereas retractions are more sustained and straight. Correlations of this local motion measure reveal that protrusions appear more localized than retractions. Using a local shape measure, curvature, we also found that small peaks in boundary curvature tend to originate at the front of cells and propagate backwards. We will review the possible cytoskeletal origin of these mechanical waves.

  7. Cell crawling mediates collective cell migration to close undamaged epithelial gaps.

    PubMed

    Anon, Ester; Serra-Picamal, Xavier; Hersen, Pascal; Gauthier, Nils C; Sheetz, Michael P; Trepat, Xavier; Ladoux, Benoît

    2012-07-01

    Fundamental biological processes such as morphogenesis and wound healing involve the closure of epithelial gaps. Epithelial gap closure is commonly attributed either to the purse-string contraction of an intercellular actomyosin cable or to active cell migration, but the relative contribution of these two mechanisms remains unknown. Here we present a model experiment to systematically study epithelial closure in the absence of cell injury. We developed a pillar stencil approach to create well-defined gaps in terms of size and shape within an epithelial cell monolayer. Upon pillar removal, cells actively respond to the newly accessible free space by extending lamellipodia and migrating into the gap. The decrease of gap area over time is strikingly linear and shows two different regimes depending on the size of the gap. In large gaps, closure is dominated by lamellipodium-mediated cell migration. By contrast, closure of gaps smaller than 20 μm was affected by cell density and progressed independently of Rac, myosin light chain kinase, and Rho kinase, suggesting a passive physical mechanism. By changing the shape of the gap, we observed that low-curvature areas favored the appearance of lamellipodia, promoting faster closure. Altogether, our results reveal that the closure of epithelial gaps in the absence of cell injury is governed by the collective migration of cells through the activation of lamellipodium protrusion. PMID:22711834

  8. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    PubMed Central

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  9. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.

    PubMed

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  10. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice

    PubMed Central

    Fujita, Kosuke; Kuge, Katsunori; Ozawa, Noriyasu; Sahara, Shunya; Zaiki, Kaori; Nakaoji, Koichi; Hamada, Kazuhiko; Takenaka, Yukiko; Tanahashi, Takao; Tamai, Katsuto; Kaneda, Yasufumi; Maeda, Akito

    2015-01-01

    Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on

  11. Effects of eugenol on polymorphonuclear cell migration and chemiluminescence.

    PubMed

    Fotos, P G; Woolverton, C J; Van Dyke, K; Powell, R L

    1987-03-01

    In this study, the effects of eugenol on human polymorphonuclear (PMN) cell migration and chemiluminescence were examined in vitro. Utilizing zymosan-activated serum or crude Bacteroides sonicate fractions as chemotractants, we found that eugenol inhibits PMN migration at 6.6 X 10(-2) to 6.6 X 10(-5) mol/L (P less than 0.05). Also, similar effects were observed in PMNs pre-incubated in eugenol. Regardless of concentration, eugenol was not found to induce chemotaxis of PMNs. An examination of PMN membrane activation through chemiluminescence gave results consistent with the chemotaxis data, demonstrating a decrease in light emission at concentrations as low as 6.6 X 10(-6) mol/L (P less than 0.05). In view of these data, the potential effect of eugenol on in vivo (sulcular or periapical) PMN function deserves further study. PMID:3475310

  12. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  13. Systems microscopy approaches to understand cancer cell migration and metastasis

    PubMed Central

    Le Dévédec, Sylvia E.; Yan, Kuan; de Bont, Hans; Ghotra, Veerander; Truong, Hoa; Danen, Erik H.; Verbeek, Fons

    2010-01-01

    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration. PMID:20556632

  14. Control of glioma cell migration and invasiveness by GDF-15

    PubMed Central

    Codó, Paula; Weller, Michael; Kaulich, Kerstin; Schraivogel, Daniel; Silginer, Manuela; Reifenberger, Guido; Meister, Gunter; Roth, Patrick

    2016-01-01

    Growth and differentiation factor (GDF)-15 is a member of the transforming growth factor (TGF)-β family of proteins. GDF-15 levels are increased in the blood and cerebrospinal fluid of glioblastoma patients. Using a TCGA database interrogation, we demonstrate that high GDF-15 expression levels are associated with poor survival of glioblastoma patients. To elucidate the role of GDF-15 in glioblastoma in detail, we confirmed that glioma cells express GDF-15 mRNA and protein in vitro. To allow for a detailed functional characterization, GDF-15 expression was silenced using RNA interference in LNT-229 and LN-308 glioma cells. Depletion of GDF-15 had no effect on cell viability. In contrast, GDF-15-deficient cells displayed reduced migration and invasion, in the absence of changes in Smad2 or Smad1/5/8 phosphorylation. Conversely, exogenous GDF-15 stimulated migration and invasiveness. Large-scale expression profiling revealed that GDF-15 gene silencing resulted in minor changes in the miRNA profile whereas several genes, including members of the plasminogen activator/inhibitor complex, were deregulated at the mRNA level. One of the newly identified genes induced by GDF-15 gene silencing was the serpin peptidase inhibitor, clade E nexin group 1 (serpine1) which is induced by TGF-β and known to inhibit migration and invasiveness. However, serpine1 down-regulation alone did not mediate GDF-15-induced promotion of migration and invasiveness. Our findings highlight the complex contributions of GDF-15 to the invasive phenotype of glioma cells and suggest anti-GDF-15 approaches as a promising therapeutic strategy. PMID:26741507

  15. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    SciTech Connect

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  16. Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation.

    PubMed

    Gout, Stéphanie; Morin, Chantale; Houle, François; Huot, Jacques

    2006-09-15

    E-selectin-mediated adhesion of colon cancer cells to endothelial cells is a key event in metastasis. However, the signaling mechanisms that confer metastatic advantages to cancer cells adhering to E-selectin are ill defined. By using affinity column chromatography and pull-down assays on purified membrane extracts of HT29 and LoVo cells coupled to mass spectrometry analysis, we obtained the first evidence indicating that E-selectin binds to death receptor-3 (DR3) expressed by the cancer cells. Thereafter, we accumulated several results, suggesting that DR3 is an E-selectin receptor on colon cancer cells and that its activation by E-selectin triggers the activation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and confers migration and survival advantages. First, by Western blotting, we found that the E-selectin-binding protein, identified as DR3, is recognized by two anti-DR3 antibodies. Second, the neutralization of DR3 with an antibody and its knockdown by small interfering RNA decrease the adhesion of colon cancer cells to E-selectin and E-selectin-expressing human umbilical vein endothelial cells. Third, inhibiting DR3 and knocking down its expression impair transendothelial migration of HT29 cells and block the activation of p38 and ERK by E-selectin. Fourth, high molecular weight isoforms of DR3 are expressed in samples of primary human colon carcinoma but not in samples from normal colon tissue. Intriguingly, DR3 is a death receptor but its activation by E-selectin does not induce apoptosis in colon cancer cells, except when ERK is inhibited. Our findings identify novel signaling and functional roles of DR3 activated in response to E-selectin and highlight the potential link between DR3 and metastasis. PMID:16982754

  17. TIMP3 regulates osteosarcoma cell migration, invasion, and chemotherapeutic resistances.

    PubMed

    Han, Xiu-Guo; Li, Yan; Mo, Hui-Min; Li, Kang; Lin, Du; Zhao, Chang-Qing; Zhao, Jie; Tang, Ting-Ting

    2016-07-01

    Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs) to limit degradation of the extracellular matrix. Low levels of TIMP3 have been demonstrated in cancer tissues at advanced clinical stages, with positive distant metastasis and chemotherapeutic resistance. We examined the role of TIMP3 in osteosarcoma (OS) cell invasiveness and chemoresistance. TIMP3 was overexpressed or knocked down in the human OS cell lines Saos2 and MG63. Cell migration and invasion capacities were then evaluated using Transwell assays, and resistance to cisplatin was assessed by CCK-8 assay and flow cytometry. Real-time PCR and western blotting were used to investigate activation of signaling pathways downstream of TIMP3. Overexpression of TIMP3 inhibited the migration and invasion of Saos2 and MG63 cells, while knockdown of TIMP3 had the opposite effect. Cell survival after exposure to cisplatin was inhibited by TIMP3 overexpression in both Saos2 and MG63 cells. Consistently, downregulation of TIMP3 gene expression significantly decreased the sensitivity of OS cells to cisplatin treatment. MMP1, MMP2, Bcl-2, and Akt1 were all downregulated following TIMP3 overexpression, while Bax and cleaved caspase-3 were upregulated. TIMP3 knockdown had opposite effects on the regulation of these genes. Taken together, our findings suggest TIMP3 as a new target for inhibition of OS progression and chemotherapeutic resistance. PMID:26749283

  18. Novel interactions between erythroblast macrophage protein and cell migration.

    PubMed

    Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani

    2016-09-01

    Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis. PMID:27519940

  19. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. PMID:26195589

  20. Inhibition of fatty acid synthase suppresses U-2 OS cell invasion and migration via downregulating the activity of HER2/PI3K/AKT signaling pathway in vitro

    SciTech Connect

    Wang, Tao Fang; Wang, Heng; Peng, Ai Fen; Luo, Qing Feng; Liu, Zhi Li; Zhou, Rong Ping; Gao, Song; Zhou, Yang; Chen, Wen Zhao

    2013-10-18

    Highlights: •We investigate the relationship between FASN and HER2 or p-HER2 by IHC in OS tissues. •We construct FASN-specific RNAi plasmid. •Inhibiting FASN down-regulates HER2/PI3K/AKT cell signaling in U-2 OS. •Inhibiting FASN blocks U-2 OS cell invasion and migration. -- Abstract: FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management.

  1. Curcumin suppresses migration and invasion of human endometrial carcinoma cells

    PubMed Central

    CHEN, QIAN; GAO, QING; CHEN, KUNLUN; WANG, YIDONG; CHEN, LIJUAN; LI, XU

    2015-01-01

    Curcumin, a widely used Chinese herbal medicine, has historically been used in anti-cancer therapies. However, the anti-metastatic effect and molecular mechanism of curcumin in endometrial carcinoma (EC) are still poorly understood. The purpose of this study was to detect the anti-metastatic effects of curcumin and the associated mechanism(s) in EC. Based on assays carried out in EC cell lines, it was observed that curcumin inhibited EC cell migration and invasion in vitro. Furthermore, following treatment with curcumin for 24 h, there was a decrease in the expression levels of matrix metalloproteinase (MMP)-2 and -9 as well as proteinase activity in EC cells. Moreover, curcumin treatment significantly decreased the levels of the phosphorylated form of extracellular signal-regulated kinase (ERK) 1/2. MEK1 overexpression partially blocked the anti-metastatic effects of curcumin. Combined treatment with ERK inhibitor U0126 and curcumin resulted in a synergistic reduction in MMP-2/-9 expression; the invasive capabilities of HEC-1B cells were also inhibited. In conclusion, curcumin inhibits tumor cell migration and invasion by reducing the expression and activity of MMP-2/9 via the suppression of the ERK signaling pathway, suggesting that curcumin is a potential therapeutic agent for EC. PMID:26622667

  2. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes.

    PubMed

    Moreira, Marcela L; Costa-Pereira, Christiane; Alves, Marina Luiza Rodrigues; Marteleto, Bruno H; Ribeiro, Vitor M; Peruhype-Magalhães, Vanessa; Giunchetti, Rodolfo C; Martins-Filho, Olindo A; Araújo, Márcio S S

    2016-04-15

    Visceral leishmaniasis (VL) is transmitted by phlebotomine sandfly vectors and domestic dogs serve as a reservoir. The elimination of seropositive dogs has been a recommended strategy for managing the disease in Brazil. A protective canine vaccine would be an important tool for controlling the disease, reducing the parasites available to sandfly vectors and, consequently, reducing the number of human VL cases. Leishmune(®) is an anti-canine Leishmaniosis (VL Canine) vaccine produced by Zoetis (Pfizer, Brazil) that was commercially available in Brazil until 2014. The main goal of the present study was to investigate the protective immunological events induced by vaccination with Leishmune(®) in the time frame of one year. Healthy, non-vaccinated dogs and dogs of 1, 6 and 10 months post-vaccination were evaluated. Results showed that Leishmune(®) induced an increase in phagocytic activity of neutrophils and monocytes and also increased NO production. Immunological events were correlated with functional responses, as high levels of IgG and an increase of the receptor Fcγ were detected. Vaccination induced an increased expression of TLR (2, 4, 5, 9), integrin (CD29, CD49f), activation (MHCII) and co-stimulatory (CD80, CD81) molecules by neutrophils and monocytes. Vaccination led to decrease of IL-4 and an increase of IL-8 production by monocytes and higher IFN-γ and IL-17 production by T-cells. The results suggested that Leishmune(®) was able to induce a long-lasting change in immune response, mediated by supportive immunological events that may be participating in protective immunity against CL. PMID:26995719

  3. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    PubMed

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. PMID:27210753

  4. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    PubMed Central

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  5. GABA(A) Receptor Pi (GABRP) Stimulates Basal-like Breast Cancer Cell Migration through Activation of Extracellular-regulated Kinase 1/2 (ERK1/2)*

    PubMed Central

    Sizemore, Gina M.; Sizemore, Steven T.; Seachrist, Darcie D.; Keri, Ruth A.

    2014-01-01

    Breast cancer is a heterogeneous disease comprised of distinct subtypes predictive of patient outcome. Tumors of the basal-like subtype have a poor prognosis due to inherent aggressiveness and the lack of targeted therapeutics. Basal-like tumors typically lack estrogen receptor-α, progesterone receptor and HER2/ERBB2, or in other words they are triple negative (TN). Continued evaluation of basal-like breast cancer (BLBC) biology is essential to identify novel therapeutic targets. Expression of the pi subunit of the GABA(A) receptor (GABRP) is associated with the BLBC/TN subtype, and herein, we reveal its expression also correlates with metastases to the brain and poorer patient outcome. GABRP expression in breast cancer cell lines also demonstrates a significant correlation with the basal-like subtype suggesting that GABRP functions in the initiation and/or progression of basal-like tumors. To address this postulate, we stably silenced GABRP in two BLBC cell lines, HCC1187 and HCC70 cells. Decreased GABRP reduces in vitro tumorigenic potential and migration concurrent with alterations in the cytoskeleton, specifically diminished cellular protrusions and expression of the BLBC-associated cytokeratins, KRT5, KRT6B, KRT14, and KRT17. Silencing GABRP also decreases phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) in both cell lines and selective inhibition of ERK1/2 similarly decreases the basal-like cytokeratins as well as migration. Combined, these data reveal a GABRP-ERK1/2-cytokeratin axis that maintains the migratory phenotype of basal-like breast cancer. GABRP is a component of a cell surface receptor, thus, these findings suggest that targeting this new signaling axis may have therapeutic potential in BLBC. PMID:25012653

  6. Cell migration or cytokinesis and proliferation? – Revisiting the “go or grow” hypothesis in cancer cells in vitro

    SciTech Connect

    Garay, Tamás; Juhász, Éva; Molnár, Eszter; Eisenbauer, Maria; Czirók, András; Dekan, Barbara; László, Viktória; Hoda, Mir Alireza; Döme, Balázs; Tímár, József; Klepetko, Walter; Berger, Walter; Hegedűs, Balázs

    2013-12-10

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. - Highlights: • We investigated the “go or grow” hypothesis in human cancer cells in vitro. • Proliferation and migration positively correlate in melanoma and lung cancer cells. • Duration of cytokinesis and migration shows inverse correlation. • Increased FAK activation is present in highly motile melanoma cells.

  7. Physical role for the nucleus in cell migration

    NASA Astrophysics Data System (ADS)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  8. Physical role for the nucleus in cell migration.

    PubMed

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration. PMID:27406341

  9. Time-lapse cinematography of the capillary tube cell migration inhibition test.

    PubMed

    Bray, M A

    1980-01-01

    The kinetics of human and guinea pig cell migration inhibition have been studied using time-lapse cinematography of cells migrating from capillary tubes. Guinea pig and human cells exhibit markedly different kinetics in the absence of inhibitors. Specific antigen causes a dose-related inhibition of migration for up to 60 h using guinea pig cells and a peak of inhibition after 18 h using the human leucocyte system. The timing of measurement of maximum activity more critical for the latter test. The kinetics of lymphokine generation have been examined and the migration inhibitory activity of the plant mitogen (PHA), a Kurloff cell product and a continuous cell line supernatant have been compared with the inhibitory profiles of lymphokine preparations and specific antigen. PMID:7350125

  10. 3D cancer cell migration in a confined matrix

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  11. Influence of bacterial endotoxin on radiation-induced activation of human endothelial cells in vitro and in vivo: interleukin-10 protects against transendothelial migration.

    PubMed

    Lindner, H; Holler, E; Gerbitz, A; Johnson, J P; Bornkamm, G W; Eissner, G

    1997-11-15

    To extend previous studies on the anti-inflammatory role of interleukin (IL)-10 in vivo, mice pretreated with IL-10 were subjected to ionizing radiation (IR), lipopolysaccharide (LPS), or both and assessed for the expression of the intercellular adhesion molecule 1 (ICAM-1) in immunohistochemical analyses. IL-10 was able to almost fully protect LPS+IR-treated animals against ICAM-1 up-regulation. Because LPS and IR also increased adhesion of peripheral blood mononuclear cells, transendothelial migration assays were performed to investigate the functional significance of these findings. IR was found to induce transendothelial migration, and this effect could be enhanced by cotreatment with LPS, in the same fashion as peripheral blood mononuclear cell adhesion. Also in this system, IL-10 proved to act as a potent LPS antagonist. Finally, in vivo immunohistochemical analyses revealed an infiltration of CD3+ T lymphocytes into organs that were the target of transplant-related complications after LPS+IR treatment. This infiltration could also be completely reversed by IL-10 pretreatment. PMID:9371683

  12. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    PubMed Central

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago

    2013-01-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns. PMID:23735560

  13. Screening of genes involved in cell migration in Dictyostelium.

    PubMed

    Nagasaki, Akira; Uyeda, Taro Q P

    2008-03-10

    A single cell of wild-type Dictyostelium discoideum forms a visible colony on a plastic dish in several days, but due to enhanced cell migration, amiB-null mutant cells scatter over a large area and do not form noticeable colonies. Here, with an aim to identify genes involved in cell migration, we isolated suppresser mutants of amiB-null mutants that restore the ability to form colonies. From REMI (restriction enzyme-mediated integration)-mutagenized pool of double-mutants, we identified 18 responsible genes from them. These genes can be categorized into several biological processes. One cell line, Sab16 (Suppressor of amiB) was chosen for further analysis, which had a disrupted phospholipase D pldB gene. To confirm the role of pldB gene in cell migration, we knocked out the pldB gene and over-expressed gfp-pldB in wild-type cells. GFP-PLDB localized to plasma membrane and on vesicles, and in migrating cells, at the protruding regions of pseudopodia. Migration speed of vegetative pldB-null cells was reduced to 73% of that of the wild-type. These results suggest that PLDB plays an important role in migration in Dictyostelium cells, and that our screening system is useful for the identification of genes involved in cell migration. PMID:18164290

  14. At the leading edge of three-dimensional cell migration

    PubMed Central

    Petrie, Ryan J.; Yamada, Kenneth M.

    2012-01-01

    Summary Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of the extracellular matrix, and they can be distinguished by the structure of the leading edge and the degree of matrix adhesion. How are these distinct modes of cell motility in 3D environments related to each other and regulated? Recent studies show that the same type of cell migrating in 3D extracellular matrix can switch between different leading edge structures. This mode-switching behavior, or plasticity, by a single cell suggests that the apparent diversity of motility mechanisms is integrated by a common intracellular signaling pathway that governs the mode of cell migration. In this Commentary, we propose that the mode of 3D cell migration is governed by a signaling axis involving cell–matrix adhesions, RhoA signaling and actomyosin contractility, and that this might represent a universal mechanism that controls 3D cell migration. PMID:23378019

  15. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    PubMed

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis. PMID:26883442

  16. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration.

    PubMed

    Hedges, J C; Dechert, M A; Yamboliev, I A; Martin, J L; Hickey, E; Weber, L A; Gerthoffer, W T

    1999-08-20

    Smooth muscle cells are exposed to growth factors and cytokines that contribute to pathological states including airway hyperresponsiveness, atherosclerosis, angiogenesis, smooth muscle hypertrophy, and hyperplasia. A common feature of several of these conditions is migration of smooth muscle beyond the initial boundary of the organ. Signal transduction pathways activated by extracellular signals that instigate migration are mostly undefined in smooth muscles. We measured migration of cultured tracheal myocytes in response to platelet-derived growth factor, interleukin-1beta, and transforming growth factor-beta. Cellular migration was blocked by SB203580, an inhibitor of p38(MAPK). Time course experiments demonstrated increased phosphorylation of p38(MAPK). Activation of p38(MAPK) resulted in the phosphorylation of HSP27 (heat shock protein 27), which may modulate F-actin polymerization. Inhibition of p38(MAPK) activity inhibited phosphorylation of HSP27. Adenovirus-mediated expression of activated mutant MAPK kinase 6b(E), an upstream activator for p38(MAPK), increased cell migration, whereas overexpression of p38alpha MAPK dominant negative mutant and an HSP27 phosphorylation mutant blocked cell migration completely. The results indicate that activation of the p38(MAPK) pathway by growth factors and proinflammatory cytokines regulates smooth muscle cell migration and may contribute to pathological states involving smooth muscle dysfunction. PMID:10446196

  17. Rho Mediates the Shear-Enhancement of Endothelial Cell Migration and Traction Force Generation

    PubMed Central

    Shiu, Yan-Ting; Li, Song; Marganski, William A.; Usami, Shunichi; Schwartz, Martin A.; Wang, Yu-Li; Dembo, Micah; Chien, Shu

    2004-01-01

    The migration of vascular endothelial cells in vivo occurs in a fluid dynamic environment due to blood flow, but the role of hemodynamic forces in cell migration is not yet completely understood. Here we investigated the effect of shear stress, the frictional drag of blood flowing over the cell surface, on the migration speed of individual endothelial cells on fibronectin-coated surfaces, as well as the biochemical and biophysical bases underlying this shear effect. Under static conditions, cell migration speed had a bell-shaped relationship with fibronectin concentration. Shear stress significantly increased the migration speed at all fibronectin concentrations tested and shifted the bell-shaped curve upwards. Shear stress also induced the activation of Rho GTPase and increased the traction force exerted by endothelial cells on the underlying substrate, both at the leading edge and the rear, suggesting that shear stress enhances both the frontal forward-pulling force and tail retraction. The inhibition of a Rho-associated kinase, p160ROCK, decreased the traction force and migration speed under both static and shear conditions and eliminated the shear-enhancement of migration speed. Our results indicate that shear stress enhances the migration speed of endothelial cells by modulating the biophysical force of tractions through the biochemical pathway of Rho-p160ROCK. PMID:15041692

  18. Glycation of extracellular matrix proteins impairs migration of immune cells.

    PubMed

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells. PMID:24635174

  19. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK

    SciTech Connect

    Song, Mi-Kyung; Park, Yong-Keun; Ryu, Jae-Chun

    2013-11-15

    Growing evidence indicates that changes in microRNA (miRNA) expression in cancer induced by chemical carcinogens play an important role in cancer development and progression by regulating related genes. However, the mechanisms underlying miRNA involvement in hepatocarcinogenesis induced by polycyclic aromatic hydrocarbons (PAHs) remain unclear. Thus, the identification of aberrant miRNA expression during PAH-induced cancer cell migration will lead to a better understanding of the substantial role of miRNAs in cancer progression. In the present study, miRNA expression profiling showed significant upregulation of miR-181a, -181b, and -181d in human hepatocellular carcinoma cells (HepG2 line) exposed to benzo[a]anthracene (BA) and benzo[k]fluoranthene (BF). MAPK phosphatase-5 (MKP-5), a validated miR-181 target that deactivates MAPKs, was markedly suppressed while phosphorylation of p38 MAPK was increased after BA and BF exposure. The migration of HepG2 cells, observed using the scratch wound-healing assay, also increased in a dose-dependent manner. Depletion of miR-181 family members by miRNA inhibitors enhanced the expression of MKP-5 and suppressed the phosphorylation of p38 MAPK. Furthermore, the depletion of the miR-181 family inhibited cancer cell migration. Based on these results, we conclude that the miR-181 family plays a critical role in PAH-induced hepatocarcinogenesis by targeting MKP-5, resulting in the regulation of p38 MAPK activation. - Highlights: • We found significant upregulation of miR-181 family in HCC exposed to BA and BF. • We identified the MKP-5 as a putative target of miR-181 family. • MKP-5 was suppressed while p-P38 was increased after BA and BF exposure. • The migration of HepG2 cells increased in a dose-dependent manner.

  20. Modulating the dysregulated migration of pulmonary arterial hypertensive smooth muscle cells with motif mimicking cell permeable peptides

    PubMed Central

    Wilson, Jamie L.; Rupasinghe, Chamila; Usheva, Anny; Warburton, Rod; Kaplan, Chloe; Taylor, Linda; Hill, Nicholas; Mierke, Dale F.; Polgar, Peter

    2016-01-01

    Migration of vascular smooth muscle cells is a key element in remodeling during pulmonary arterial hypertension (PAH). We are observing key alterations in the migratory characteristics of human pulmonary artery smooth muscle cells (HPASMC) isolated from transplanted lungs of subjects with PAH. Using wound migration and barrier removal assays, we demonstrate that the PAH cells migrate under quiescent growth conditions and in the absence of pro-migratory factors such as platelet derived growth factor (PDGF). Under the same conditions, in the absence of PDGF, non-PAH HPASMC show negligible migration. The dysregulated migration initiates, in part, through phosphorylation events signaled through the unstimulated PDGF receptor via focal adhesion kinase (FAK) whose total basal expression and phosphorylation at tyrosine 391 is markedly increased in the PAH cells and is inhibited by a motif mimicking cell-permeable peptide (MMCPP) targeting the Tyr751 region of the PDGF receptor and by imatinib. However, exposure of the PAH cells to PDGF further promotes migration. Inhibition of p21 activated kinases (PAK), LIM kinases (LIMK), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) reduces both the dysregulated and the PDGF-stimulated migration. Immunofluorescence microscopy confirms these observations showing activated JNK and p38 MAPK at the edge of the wound but not in the rest of the culture in the PAH cells. The upstream inhibitors FAK (PF-573228) and imatinib block this activation of JNK and p38 at the edge of the site of injury and correspondingly inhibit migration. MMCPP which inhibit the activation of downstream effectors of migration, cofilin and caldesmon, also limit the dysregulated migration. These results highlight key pathways which point to potential targets for future therapies of pulmonary hypertension with MMCPP.

  1. Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism

    PubMed Central

    Rhoads, J M; Chen, W; Gookin, J; Wu, G Y; Fu, Q; Blikslager, A T; Rippe, R A; Argenzio, R A; Cance, W G; Weaver, E M; Romer, L H

    2004-01-01

    Background: l-Arginine is a nutritional supplement that may be useful for promoting intestinal repair. Arginine is metabolised by the oxidative deiminase pathway to form nitric oxide (NO) and by the arginase pathway to yield ornithine and polyamines. Aims: To determine if arginine stimulates restitution via activation of NO synthesis and/or polyamine synthesis. Methods: We determined the effects of arginine on cultured intestinal cell migration, NO production, polyamine levels, and activation of focal adhesion kinase, a key mediator of cell migration. Results: Arginine increased the rate of cell migration in a dose dependent biphasic manner, and was additive with bovine serum concentrate (BSC). Arginine and an NO donor activated focal adhesion kinase (a tyrosine kinase which localises to cell matrix contacts and mediates β1 integrin signalling) after wounding. Arginine stimulated cell migration was dependent on focal adhesion kinase (FAK) signalling, as demonstrated using adenovirus mediated transfection with a kinase negative mutant of FAK. Arginine stimulated migration was dependent on NO production and was blocked by NO synthase inhibitors. Arginine dependent migration required synthesis of polyamines but elevating extracellular arginine concentration above 0.4 mM did not enhance cellular polyamine levels. Conclusions: These results showed that l-arginine stimulates cell migration through NO and FAK dependent pathways and that combination therapy with arginine and BSC may enhance intestinal restitution via separate and convergent pathways. PMID:15016745

  2. Dynamic Modeling of Cell Migration and Spreading Behaviors on Fibronectin Coated Planar Substrates and Micropatterned Geometries

    PubMed Central

    Kim, Min-Cheol; Neal, Devin M.; Kamm, Roger D.; Asada, H. Harry

    2013-01-01

    An integrative cell migration model incorporating focal adhesion (FA) dynamics, cytoskeleton and nucleus remodeling, actin motor activity, and lamellipodia protrusion is developed for predicting cell spreading and migration behaviors. This work is motivated by two experimental works: (1) cell migration on 2-D substrates under various fibronectin concentrations and (2) cell spreading on 2-D micropatterned geometries. These works suggest (1) cell migration speed takes a maximum at a particular ligand density (∼1140 molecules/µm2) and (2) that strong traction forces at the corners of the patterns may exist due to combined effects exerted by actin stress fibers (SFs). The integrative model of this paper successfully reproduced these experimental results and indicates the mechanism of cell migration and spreading. In this paper, the mechanical structure of the cell is modeled as having two elastic membranes: an outer cell membrane and an inner nuclear membrane. The two elastic membranes are connected by SFs, which are extended from focal adhesions on the cortical surface to the nuclear membrane. In addition, the model also includes ventral SFs bridging two focal adhesions on the cell surface. The cell deforms and gains traction as transmembrane integrins distributed over the outer cell membrane bond to ligands on the ECM surface, activate SFs, and form focal adhesions. The relationship between the cell migration speed and fibronectin concentration agrees with existing experimental data for Chinese hamster ovary (CHO) cell migrations on fibronectin coated surfaces. In addition, the integrated model is validated by showing persistent high stress concentrations at sharp geometrically patterned edges. This model will be used as a predictive model to assist in design and data processing of upcoming microfluidic cell migration assays. PMID:23468612

  3. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo

    PubMed Central

    Law, Ah-Lai; Vehlow, Anne; Kotini, Maria; Dodgson, Lauren; Soong, Daniel; Theveneau, Eric; Bodo, Cristian; Taylor, Eleanor; Navarro, Christel; Perera, Upamali; Michael, Magdalene; Dunn, Graham A.; Bennett, Daimark; Mayor, Roberto

    2013-01-01

    Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo. PMID:24247431

  4. The interplay of cell–cell and cell–substrate adhesion in collective cell migration

    PubMed Central

    Wang, Chenlu; Chowdhury, Sagar; Driscoll, Meghan; Parent, Carole A.; Gupta, S. K.; Losert, Wolfgang

    2014-01-01

    Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but significantly changes their ability to adhere to other cells. Analysis of the dynamics of cell shapes reveals that cells that are adherent to a surface may coordinate their motion with neighbouring cells through protrusion waves that travel across cell–cell contacts. However, while shape waves exist if cells are detached from surfaces, they do not couple cell to cell. In addition, our investigation of actin polymerization indicates that loss of cell-surface adhesion changes actin polymerization at cell–cell contacts. To further investigate cell–cell/cell–substrate interactions, we used optical micromanipulation to form cell–substrate contact at controlled locations. We find that both cell-shape dynamics and cytoskeletal activity respond rapidly to the formation of cell–substrate contact. PMID:25165597

  5. Regulation of C6 glioma cell migration by thymol

    PubMed Central

    LEE, KANG PA; KIM, JAI-EUN; PARK, WON-HWAN; HONG, HEEOK

    2016-01-01

    Tumor cell motility exhibits a crucial role in tumor development. Therefore, the present study aimed to investigate whether thymol could reduce C6 glioma cell migration. Cell viability was determined using the EZ-Cytox Cell Viability kit. The scratch wound healing and Boyden chamber assays were performed to test C6 glioma cell migration in the presence of fetal bovine serum (FBS). Additionally, the study investigated whether signaling proteins relevant to C6 glioma cell migration, i.e., extracellular signal-regulated kinases (ERK)1/2, protein kinase Cα (PKCα), matrix metallopeptidase (MMP)9 and MMP2, were affected by thymol treatment. Up to 30 µM, thymol did not alter cell viability, whereas 100 µM thymol induced the death of ~20% of the cells. Furthermore, thymol (30 µM) significantly reduced FBS-induced migration. In the FBS-stimulated C6 glioma cells, thymol (30 µM) suppressed PKCα and ERK1/2 phosphorylation. MMP9 and MMP2 production was also significantly reduced by treatment with 30 µM thymol in the C6 glioma cells. Taken together, these results indicate that thymol attenuates C6 glioma cell migration. Additionally, the study suggests that the effect of thymol on the FBS-induced migration of C6 glioma cells affects PKCα and ERK1/2 signaling, and suppresses MMP9 and MMP2 production. PMID:27073528

  6. Dioscorea nipponica Makino inhibits migration and invasion of human oral cancer HSC-3 cells by transcriptional inhibition of matrix metalloproteinase-2 through modulation of CREB and AP-1 activity.

    PubMed

    Chien, Ming-Hsien; Ying, Tsung-Ho; Hsieh, Yih-Shou; Chang, Yu-Chao; Yeh, Chia-Ming; Ko, Jiunn-Liang; Lee, Wen-Sen; Chang, Jer-Hua; Yang, Shun-Fa

    2012-03-01

    Oral cancer mortality has increased during the last decade due to the difficulties in treating related metastasis. Dioscorea nipponica Makino, a popular folk medicine, exerts anti-obesity and anti-inflammation properties. However, the effect of this folk medicine on metastasis of oral cancer has yet to be fully elucidated. The present study demonstrates that D. nipponica extracts (DNE), at a range of concentrations (0-50 μg/mL), concentration-dependently inhibited migration/invasion capacities of human oral cancer cells, HSC-3, without cytotoxic effects. The anti-migration effect of DNE was also observed in two other OSCC cell lines, Ca9-22 and Cal-27. Zymography, real time PCR, and Western blotting analyses revealed that DNE inhibited matrix metalloproteinase-2 (MMP-2) enzyme activity, and RNA and protein expression. The inhibitory effects of DNE on MMP-2 proceeded by up-regulating tissue inhibitor of metalloproteinase-2 (TIMP-2), as well as suppressing nuclear translocation and DNA binding activity of cAMP response element-binding (CREB) and activating protein-1 (AP-1) on the MMP-2 promoter in HSC-3 cells. In conclusion, DNE inhibited the invasion of oral cancer cells and may have potential use as a chemopreventive agent against oral cancer metastasis. PMID:22210353

  7. Antcin K, an Active Triterpenoid from the Fruiting Bodies of Basswood-Cultivated Antrodia cinnamomea, Inhibits Metastasis via Suppression of Integrin-Mediated Adhesion, Migration, and Invasion in Human Hepatoma Cells.

    PubMed

    Huang, Ya-Ling; Chu, Yung-Lin; Ho, Chi-Tang; Chung, Jing-Gung; Lai, Chiao-I; Su, Yu-Cheng; Kuo, Yueh-Hsiung; Sheen, Lee-Yan

    2015-05-13

    Previous research demonstrated that the ethyl acetate extract from Antrodia cinnamomea suppresses the invasive potential of human breast and hepatoma cells, but the effective compounds are not identified. The main bioactive compounds of A. cinnamomea are ergostane-type triterpenoids, and the content of antcin K is the highest. The objective of this study was to evaluate the antimetastatic activity and mechanisms of antcin K purified from the fruiting body of basswood-cultivated A. cinnamomea on human liver cancer Hep 3B cells. The results showed that adhesion, migration, and invasion of Hep 3B cells were effectively inhibited by antcin K within 24 h of treatment. Antcin K not only reduced the protein expression and activity of MMP-2 and MMP-9 but also down-regulated vimentin and up-regulated E-cadherin in Hep 3B cells. In depth investigation for the molecular mechanism revealed that antcin K could reduce the protein expression of integrin β1, β3, α5, and αv and suppress phosphorylation of FAK, Src, PI3K, AKT, MEK, ERK, and JNK. These results suggested that antcin K was able to inhibit the metastasis of human hepatoma cells through suppression of integrin-mediated adhesion, migration, and invasion. Coupled with these findings, antcin K has a good potential to reduce the risk of liver cancer metastasis. PMID:25911944

  8. Retrograde Flow and Myosin II Activity within the Leading Cell Edge Deliver F-Actin to the Lamella to Seed the Formation of Graded Polarity Actomyosin II Filament Bundles in Migrating Fibroblasts

    PubMed Central

    Anderson, Tom W.; Vaughan, Andrew N.

    2008-01-01

    In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles. PMID:18799629

  9. Dock4 is regulated by RhoG and promotes Rac-dependent cell migration.

    PubMed

    Hiramoto, Kiyo; Negishi, Manabu; Katoh, Hironori

    2006-12-10

    Cell migration is essential for normal development and many pathological processes including tumor metastasis. Rho family GTPases play important roles in this event. In particular, Rac is required for lamellipodia formation at the leading edge during migration. Dock4 is a member of the Dock180 family proteins, and Dock4 mutations are present in a subset of human cancer cell lines. However, the function and the regulatory mechanism of Dock4 remain unclear. Here we show that Dock4 is regulated by the small GTPase RhoG and its effector ELMO and promotes cell migration by activating Rac1. Dock4 formed a complex with ELMO, and expression of active RhoG induced translocation of the Dock4-ELMO complex from the cytoplasm to the plasma membrane and enhanced the Dock4- and ELMO-dependent Rac1 activation and cell migration. On the other hand, RNA interference-mediated knockdown of Dock4 in NIH3T3 cells reduced cell migration. Taken together, these results suggest that Dock4 plays an important role in the regulation of cell migration through activation of Rac1, and that RhoG is a key upstream regulator for Dock4. PMID:17027967

  10. Modeling cell migration on filamentous tracks in 3D

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    2014-03-01

    Cell motility is integral to a number of physiological processes ranging from wound healing to immune response to cancer metastasis. Many studies of cell migration, both experimental and theoretical, have addressed various aspects of it in two dimensions, including protrusion and retraction at the level of single cells. However, the in vivo environment for a crawling cell is typically a three-dimensional environment, consisting of the extracellular matrix (ECM) and surrounding cells. Recent experiments demonstrate that some cells crawling along fibers of the ECM mimic the geometry of the fibers to become long and thin, as opposed to fan-like in two dimensions, and can remodel the ECM. Inspired by these experiments, a model cell consisting of beads and springs that moves along a tense semiflexible filamentous track is constructed and studied, paying particular attention to the mechanical feedback between the model cell and the track, as mediated by the active myosin-driven contractility and the catch/slip bond behavior of the focal adhesions, as the model cell crawls. This simple construction can then be scaled up to a model cell moving along a three-dimensional filamentous network, with a prescribed microenvironment, in order to make predictions for proposed experiments.

  11. Systematic Analysis of the Transcriptional Switch Inducing Migration of Border Cells

    PubMed Central

    Borghese, Lodovica; Fletcher, Georgina; Mathieu, Juliette; Atzberger, Ann; Eades, William C.; Cagan, Ross L.; Rørth, Pernille

    2010-01-01

    Summary Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of “muscle-specific” genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells. PMID:16580994

  12. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells

    PubMed Central

    Zhang, Yong-Hui; Cheng, Feng; Du, Xue-Ting; Gao, Jin-Lai; Xiao, Xiao-Lin; Li, Na; Li, Shan-Liang; Dong, De-Li

    2016-01-01

    GDF11/BMP11, a member of TGF-β superfamily, was reported to rejuvenate heart, skeletal muscle and blood vessel architecture in aged mice. However, the rejuvenative effects of GDF11 were questioned recently. Here, we investigated the effects of GDF11 on smad and non-smad signals in human umbilical vein endothelial cells (HUVECs) and the effects of GDF11 on proliferation and migration of HUVECs and primary rat aortic endothelial cells (RAECs). GDF11 factor purchased from two different companies (PeproTech and R&D Systems) was comparatively studied. Western blot was used to detect the protein expressions. The cell viability and migration were examined by using MTT and wound healing assays. Results showed that GDF11 activated both smad1/5/8 and smad2/3 signals in HUVECs. GDF11 increased protein expression of NADPH oxidase 4(NOX4) in HUVECs. GDF11 showed no significant effect on the protein level of p38, p-p38, ERK, p-ERK, Akt, p-Akt (Ser473) and p-Akt(Thr308), but increased the protein level of p-JNK and p-AMPK in HUVECs, and these increases were inhibited by antioxidant mitoTEMPO treatment. GDF11 slightly increased cell viability after short-term treatment and slightly decreased cell viability after long-term treatment. GDF11 showed no significant effect on cell proliferation and migration. These data indicated that the notion of GDF11 as a rejuvenation-related factor for endothelial cells needs to be cautious. PMID:26919250

  13. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo.

    PubMed

    Omelchenko, Tatiana; Rabadan, M Angeles; Hernández-Martínez, Rocío; Grego-Bessa, Joaquim; Anderson, Kathryn V; Hall, Alan

    2014-12-15

    Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified β-Pix. Genetic deletion of β-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that β-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development. PMID:25512563

  14. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo

    PubMed Central

    Rabadan, M. Angeles; Hernández-Martínez, Rocío; Grego-Bessa, Joaquim; Anderson, Kathryn V.

    2014-01-01

    Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified β-Pix. Genetic deletion of β-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that β-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development. PMID:25512563

  15. Single cell migration dynamics mediated by geometric confinement.

    PubMed

    Zhang, Hua; Hou, Ruixia; Xiao, Peng; Xing, Rubo; Chen, Tao; Han, Yanchun; Ren, Penggang; Fu, Jun

    2016-09-01

    The migration dynamics of cells plays a key role in tissue engineering and regenerative medicine. Previous studies mostly focus on regulating stem cell fate and phenotype by biophysical cues. In contrast, less is known about how the geometric cues mediate the migration dynamics of cells. Here, we fabricate graphene oxide (GO) microstripes on cell non-adhesive PEG substrate by using micromolding in capillary (MIMIC) method. Such micropatterns with alternating cell adhesion and cell resistance enable an effective control of selective adhesion and migration of single cells. The sharp contrast in cell adhesion minimizes the invasion of cells into the PEG patterns, and thereby strongly confines the cells on GO microstripes. As a result, the cells are forced to adapt highly polarized, elongated, and oriented geometry to fit the patterns. A series of pattern widths have been fabricated to modulate the extent of cell deformation and polarization. Under strong confinement, the cytoskeleton contractility, intracellular traction, and actin filament elongation are highly promoted, which result in enhanced cell migration along the patterns. This work provides an important insight into developing combinatorial graphene-based patterns for the control of cell migration dynamics, which is of great significance for tissue engineering and regenerative medicine. PMID:27137805

  16. Glass-like dynamics in collective cell migration

    NASA Astrophysics Data System (ADS)

    Angelini, Thomas; Weitz, David

    2011-03-01

    The collective movement of tissue cells is essential to fundamental biological processes in both health and disease, and occurs throughout embryonic development, during wound healing, and in cancerous tumor invasion. Most knowledge of cell migration, however, comes from single cell studies. Single cells migrate by executing cyclic processes of extension, adhesion, and retraction, during which the cell body fluctuates dramatically and the cell changes direction erratically. These sub-cellular motions must be coupled between neighbors in confluent layers, yet the influence of this coupling on collective migration is not known. In this talk we present a study of motion in confluent epithelial cell sheets. We measure collective migration and sub-cellular motions, covering a broad range of length-scales, time-scales, and cell densities. We find that that collective cell migration exhibits many behaviors characteristic of classical supercooled particulate fluids, including growing dynamic heterogeneities in the migration velocity field, non-Arrhenius relaxation behavior, and peaks in the density of states analogous to the Boson peak. These results provide a suggestive analogy between collective cell motion and the dynamics of supercooled fluids approaching a glass transition.

  17. Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis

    PubMed Central

    Wang, Haizhen; Gao, Xueliang; Yang, Jenny J.; Liu, Zhi-Ren

    2012-01-01

    Summary p68 RNA helicase is a prototypical RNA helicase. Here we present evidence to show that, by interacting with Ca-calmodulin (CaM), p68 plays a role in cancer metastasis and cell migration. A peptide fragment that spans the IQ motif of p68 strongly inhibits cancer metastasis in two different animal models. The peptide interrupts p68 and CaM interaction and inhibits cell migration. Our results demonstrate that the p68-CaM interaction is essential for the formation of lamellipodia and filopodia in migrating cells. p68 interacts with microtubules in the presence of CaM. Our experiments show that interaction with microtubules stimulates p68 ATPase activity. Further, microtubule gliding assays demonstrate that p68, in the presence of CaM, can function as a microtubule motor. This motor activity may allow p68 to transport CaM to the leading edge of migrating cells. PMID:23322042

  18. I'm coming to GEF you: Regulation of RhoGEFs during cell migration.

    PubMed

    Goicoechea, Silvia M; Awadia, Sahezeel; Garcia-Mata, Rafael

    2014-01-01

    Cell migration is a highly regulated multistep process that requires the coordinated regulation of cell adhesion, protrusion, and contraction. These processes require numerous protein-protein interactions and the activation of specific signaling pathways. The Rho family of GTPases plays a key role in virtually every aspect of the cell migration cycle. The activation of Rho GTPases is mediated by a large and diverse family of proteins; the guanine nucleotide exchange factors (RhoGEFs). GEFs work immediately upstream of Rho proteins to provide a direct link between Rho activation and cell-surface receptors for various cytokines, growth factors, adhesion molecules, and G protein-coupled receptors. The regulated targeting and activation of RhoGEFs is essential to coordinate the migratory process. In this review, we summarize the recent advances in our understanding of the role of RhoGEFs in the regulation of cell migration. PMID:25482524

  19. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing

    SciTech Connect

    Zhang, Yong; Yu, Guoyu; Xiang, Yang; Wu, Jianbo; Jiang, Ping; Lee, Wenhui; Zhang, Yun

    2010-07-30

    Research highlights: {yields} Bm-TFF2 binds to epithelial cells and induces cell migration and wound healing. {yields} Bm-TFF2 suppresses cell apoptosis. {yields} Bm-TFF2 has no effect on cell proliferation. -- Abstract: Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100 nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  20. Balanced cortical stiffness is important for efficient migration of Dictyostelium cells in confined environments.

    PubMed

    Roth, Heike; Samereier, Matthias; Trommler, Gudrun; Noegel, Angelika A; Schleicher, Michael; Müller-Taubenberger, Annette

    2015-11-27

    Dictyostelium discoideum cells resemble in many aspects human leukocytes and serve as a model to study actin cytoskeleton dynamics and cell migration of highly motile cells. Dictyostelium cells deficient in the actin-binding protein filamin (ddFLN) showed a surprisingly subtle change in phenotype with no or only minor effects in single cell motility. These findings were in contrast to the strong actin-crosslinking activities measured for filamin in vitro. In the present study, we set out to revisit the role of ddFLN in cell migration. For this purpose, we examined migration of wild-type, ddFLN-null and ddFLN-overexpressing cells under different conditions. In addition to cyclic-AMP chemotaxis assays using micropipettes, we explored cell migration under more confined conditions: an under-agarose 2D assay and a 3D assay employing a collagen matrix that was adapted from assays for leukocytes. Using 3D migration conditions, cells deficient in ddFLN displayed only a minor impairment of motility, similar to the results obtained for migration in 2D. However, cells overexpressing ddFLN showed a remarkable decrease in the speed of migration in particular in 3D environments. We suggest that these results are in line with an increased stiffening of the cortex due to the crosslinking activity of overexpressed ddFLN. Our conclusion is that the absolute level of ddFLN is critical for efficient migration. Furthermore, our results show that under conditions of increased mechanical stress, Dictyostelium cells, like leukocytes, switch to a bleb-based mode of movement. PMID:26482849

  1. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    SciTech Connect

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous {beta}-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in {sup 35}SO{sub 4}-labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed.

  2. Bioengineering paradigms for cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Gu, Zhizhan; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-10-01

    Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The classical understanding of the molecular mechanisms of cell migration has been based on in vitro studies on two-dimensional substrates. More recently, mounting evidence from intravital studies has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, including narrow, pre-existing microtracks created by anatomical structures. It is becoming apparent that unraveling the mechanisms of confined cell migration in this context requires a multi-disciplinary approach through integration of in vivo and in vitro studies, along with sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an approach that has led to discovery of a new model for cell migration in confined microenvironments (i.e., the Osmotic Engine Model). PMID:24973724

  3. Bioengineering Paradigms for Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Gu, Zhizhan; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The classical understanding of the molecular mechanisms of cell migration has been based on in vitro studies on two-dimensional substrates. More recently, mounting evidence from intravital studies has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, including narrow, pre-existing microtracks created by anatomical structures. It is becoming apparent that unraveling the mechanisms of confined cell migration in this context requires a multi-disciplinary approach through integration of in vivo and in vitro studies, along with sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an approach that has led to discovery of a new model for cell migration in confined microenvironments (i.e., the Osmotic Engine Model). PMID:24973724

  4. Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo

    PubMed Central

    Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B

    2015-01-01

    Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756

  5. Interleukin-8 stimulates the migration of human colonic epithelial cells in vitro.

    PubMed

    Wilson, A J; Byron, K; Gibson, P R

    1999-09-01

    The migration of colonic epithelial cells (restitution) is an important event in the repair of mucosal injuries. Interleukin-8 (IL-8) is a physiological initiator of the chemotactic migration of leucocytes. This study aimed to determine whether IL-8 had a similar effect on migration in an in vitro model of wounded colonic epithelium. Cell migration over 24 h was assessed in circular wounds made in confluent monolayers of the human colon cancer cell line LIM1215. This migration was stimulated in a concentration-dependent manner by IL-8, with maximal effects of approx. 1.75-fold above basal migration. The motogenic effect of IL-8 was mediated independently of effects on cell proliferation. In contrast, it was partially dependent upon gene transcription and protein synthesis and involved the activation of pertussis-toxin-sensitive G-proteins. The short-chain fatty acids, acetate, propionate, butyrate and valerate, the activator of protein kinase C (phorbol-12-myristate-13-acetate) and tumour necrosis factor-alpha (TNF-alpha) all stimulated the secretion of IL-8. However, only the motogenic effect of TNF-alpha was dependent upon IL-8. In conclusion, IL-8 stimulated cell migration in an in vitro model of colonic epithelium, whereas the motogenic effect of at least one physiologically relevant factor was dependent upon an increase in its endogenous levels. If IL-8 stimulates colonic epithelial restitution in vivo, this would have ramifications for the control of repair processes following wounding of the colonic mucosa. PMID:10464065

  6. Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Fernández-Luna, José L; Flahaut, Emmanuel; Rodríguez-Fernández, Lidia; Villegas, Juan C; González, Jesús; Fanarraga, Mónica L

    2015-08-01

    Inhibiting cancer cell migration and infiltration to other tissues makes the difference between life and death. Multiwalled carbon nanotubes (MWCNTs) display intrinsic biomimetic properties with microtubules, severely interfering with the function of these protein filaments during cell proliferation, triggering cell death. Here it is shown MWCNTs disrupt the centrosomal microtubule cytoskeletal organization triggering potent antimigratory effects in different cancer cells. PMID:26097131

  7. Live Imaging of Border Cell Migration in Drosophila.

    PubMed

    Dai, Wei; Montell, Denise J

    2016-01-01

    Border cells are a cluster of cells that migrate from the anterior tip of the Drosophila egg chamber to the border of the oocyte in stage 9. They serve as a useful model to study collective cell migration in a native tissue environment. Here we describe a protocol for preparing ex vivo egg chamber cultures from transgenic flies expressing fluorescent proteins in the border cells, and using confocal microscopy to take a multi-positional time-lapse movie. We include an image analysis method for tracking border cell cluster dynamics as well as tracking individual cell movements. PMID:27271901

  8. MNT inhibits the migration of human hepatocellular carcinoma SMMC7721 cells

    SciTech Connect

    Wu, Jian; Zhou, Qi; Wang, Yafeng; Zhou, Xiangbing; Li, Jiaping

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer MNT is a member of the Myc/Max/Mad network that plays a role in cell proliferation. Black-Right-Pointing-Pointer Our study further emphasized the role of MNT in migration inhibition of SMMC7721 cells. Black-Right-Pointing-Pointer MNT might be a promising target for HCC chemotherapy. -- Abstract: Max binding protein (MNT) is a member of the Myc/Max/Mad network that plays a role in cell proliferation, differentiation and apoptosis. We previously observed that MNT was differentially expressed in hepatocellular carcinoma (HCC) and interacted with Nck1 by 2-DE. Nck family adaptor proteins function to couple tyrosine phosphorylation signals, regulate actin cytoskeletal reorganization and lead to cell motility. In order to investigate the regulatory role of MNT in HCC migration, we used transient transfection with a MNT expressing vector to overexpress MNT protein in SMMC7721 cells, and MNT siRNA to knockdown MNT expression. Rho Family Small GTPase activation assay, Western blots and transwell assay were used to determine the migration potential of cells. We found that knockdown of MNT expression might promote SMMC7721 cell migration, while the overexpressed MNT could significantly inhibit cell migration. It further emphasized the role of MNT in inhibition of cell migration that might be a promising target for HCC chemotherapy.

  9. Collective dynamics of cell migration and cell rearrangements

    NASA Astrophysics Data System (ADS)

    Kabla, Alexandre

    Understanding multicellular processes such as embryo development or cancer metastasis requires to decipher the contributions of local cell autonomous behaviours and long range interactions with the tissue environment. A key question in this context concerns the emergence of large scale coordination in cell behaviours, a requirement for collective cell migration or convergent extension. I will present a few examples where physical and mechanical aspects play a significant role in driving tissue scale dynamics.

  1. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  2. Selective inhibition of EGFR downstream signaling reverses the irradiation-enhanced migration of HNSCC cells

    PubMed Central

    Schuettler, Dominik; Piontek, Guido; Wirth, Markus; Haller, Bernhard; Reiter, Rudolf; Brockhoff, Gero; Pickhard, Anja

    2015-01-01

    Irradiation, which is one of the standard therapies used to treat squamous cell carcinoma of the head and neck (HNSCC), has been linked to enhanced tumor migration in carcinomas. In this study, we demonstrated that irradiation induced the phosphorylation of AKT, p38 MAPK and ERK. The combined activation of these pathways caused inactivation of GSK3β kinase, resulting in enhanced tumor cell migration. Here, we describe that the exclusive and specific inhibition of just one of the aforementioned key signaling molecules is sufficient to restore GSK3β activity and to reduce radiation-induced migration in HNSCC. These data indicate that pharmacological inhibition of pathways targeting GSK3β could decrease radiation-induced cell migration in HNSCC and thus potentially reduce metastasis and locoregional recurrence in patients. PMID:26609474

  3. Effects of osthole on migration and invasion in breast cancer cells.

    PubMed

    Yang, Dapeng; Gu, Tianwei; Wang, Ting; Tang, Qingjiu; Ma, Changyan

    2010-01-01

    Osthole, a natural coumarin derivative, is extracted from the fruit of Cnidium monnieri Cusson. Breast cancer is one of the most commonly diagnosed cancers and the leading cause of death in women. Recent studies have shown that Osthole has anti-tumor activity. However, the effects of Osthole on the migration and invasion of cancer cells have not yet been reported. Here, we found that Osthole is effective in inhibiting the migration and invasion of breast cancer cells by wound healing and transwell assays. Luciferase and zymography assays revealed that Osthole effectively inhibits matrix metalloproteinase-2 promoter and enzyme activity, which might be one of the causes that lead to the inhibition of migration and invasion by Osthole. This is the first report on the inhibitory function of Osthole in migration and invasion in breast cancer cells. Our findings indicate a need for further evaluation of Osthole in breast cancer chemotherapy and chemoprevention. PMID:20622464

  4. Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin.

    PubMed

    Tello Velasquez, J; Nazareth, L; Quinn, R J; Ekberg, J A K; St John, J A

    2016-06-01

    Transplantation of peripheral glia is being trialled for neural repair therapies, and identification of compounds that enhance the activity of glia is therefore of therapeutic interest. We have previously shown that curcumin potently stimulates the activity of olfactory glia. We have now examined the effect of curcumin on Schwann cell (SC) activities including proliferation, migration and the expression of protein markers. SCs were treated with control media and with different concentrations of curcumin (0.02-20μM). Cell proliferation was determined by MTS assay and migration changes were determined by single live cell migration tracking. We found that small doses of curcumin (40nM) dramatically increased the proliferation and migration in SCs within just one day. When compared with olfactory glia, curcumin stimulated SC proliferation more rapidly and at lower concentrations. Curcumin significantly increased the migration of SCs, and also increased the dynamic activity of lamellipodial waves which are essential for SC migration. Expression of the activated form of the MAP kinase p38 (p-p38) was significantly decreased in curcumin-treated SCs. These results show that curcumin's effects on SCs differ remarkably to its effects on olfactory glia, suggesting that subtypes of closely related glia can be differentially stimulated by curcumin. Overall these results demonstrate that the therapeutically beneficial activities of glia can be differentially enhanced by curcumin which could be used to improve outcomes of neural repair therapies. PMID:26955781

  5. Paxillin binding to the alpha 4 integrin subunit stimulates LFA-1 (integrin alpha L beta 2)-dependent T cell migration by augmenting the activation of focal adhesion kinase/proline-rich tyrosine kinase-2.

    PubMed

    Rose, David M; Liu, Shouchun; Woodside, Darren G; Han, Jaewon; Schlaepfer, David D; Ginsberg, Mark H

    2003-06-15

    Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1). PMID:12794117

  6. Displacement measurement of the depth migration of transparent cells

    SciTech Connect

    Yoshida, Makoto; Ishimaru, Ichirou; Ishizaki, Katsumi; Yasokawa, Toshiki; Kuriyama, Shigeki; Masaki, Tsutomu; Nakai, Seiji; Takegawa, Kaoru; Tanaka, Naoyuki

    2006-12-11

    This letter reports a method for displacement measurement of the depth migration of transparent cells. This proposed optical spatial filtering method allows visualization of the transparent cells and determination of depth migration as a horizontal displacement positive or negative first order diffracted light on the detector surface. When the sample is displaced upward or downward from the focal plane, first and negative first order diffracted light form images at a different point as a light circle. The coordinates of these two light circles on the detector surface change places when the displacement of depth migration moves to the opposite direction.

  7. Lateral migration of fault activity in Weihe basin

    NASA Astrophysics Data System (ADS)

    Feng, Xi-Jie; Dai, Wang-Qiang

    2004-03-01

    Lateral migration of fault activity in Weihe basin is a popular phenomenon and its characteristics are also typical. Taking the activity migrations of Wangshun Mountain piedmont fault toward Lishan piedmont fault and Weinan platform front fault, Dabaopi-Niujiaojian fault toward Shenyusi-Xiaojiazhai fault, among a serial of NE-trending faults from Baoji city to Jingyang County as examples, their migration time and process are analyzed and discussed in the present paper. It is useful for further understanding the structure development and physiognomy evolution history of Weihe basin.

  8. Kv1.3 potassium channel mediates macrophage migration in atherosclerosis by regulating ERK activity.

    PubMed

    Kan, Xiao-Hong; Gao, Hai-Qing; Ma, Zhi-Yong; Liu, Lin; Ling, Ming-Ying; Wang, Yuan-Yuan

    2016-02-01

    Ion channels expressed in macrophages have been tightly related to atherosclerosis by coupling cellular function. How the voltage-gated potassium channels (Kv) affect macrophage migration remain unknown. The aim of our study is to investigate whether Kv1.3-ERK signaling pathway plays an important role in the process. We explored the expression of Kv1.3 in coronary atherosclerotic heart disease and found Kv1.3 channel was increased in acute coronary syndrome patients. Treatment of RAW264.7 cells with Kv1.3 small interfering RNA, suppressed cell migration. The expression of phosphorylated ERK1/2 also decreased after knockdown of Kv1.3. On the other hand, overexpression of Kv1.3 channel promoted cell migration and ERK1/2 phosphorylation. U-0126, the mitogen-activated protein kinase inhibitors, could reverse macrophage migration induced by Kv1.3 channel overexpression. Downregulation of Kv1.3 channel by siRNA could not further inhibit cell migration when cells were treated with U-0126. It means that ERK is downstream signal of Kv1.3 channel. We concluded that Kv1.3 may stimulate macrophage migration through the activation of ERK. PMID:26748289

  9. Computational methods for analysis of dynamic events in cell migration.

    PubMed

    Castañeda, V; Cerda, M; Santibáñez, F; Jara, J; Pulgar, E; Palma, K; Lemus, C G; Osorio-Reich, M; Concha, M L; Härtel, S

    2014-02-01

    Cell migration is a complex biological process that involves changes in shape and organization at the sub-cellular, cellular, and supra-cellular levels. Individual and collective cell migration can be assessed in vitro and in vivo starting from the flagellar driven movement of single sperm cells or bacteria, bacterial gliding and swarming, and amoeboid movement to the orchestrated movement of collective cell migration. One key technology to access migration phenomena is the combination of optical microscopy with image processing algorithms. This approach resolves simple motion estimation (e.g. preferred direction of migrating cells or path characteristics), but can also reveal more complex descriptors (e.g. protrusions or cellular deformations). In order to ensure an accurate quantification, the phenomena under study, their complexity, and the required level of description need to be addressed by an adequate experimental setup and processing pipeline. Here, we review typical workflows for processing starting with image acquisition, restoration (noise and artifact removal, signal enhancement), registration, analysis (object detection, segmentation and characterization) and interpretation (high level understanding). Image processing approaches for quantitative description of cell migration in 2- and 3-dimensional image series, including registration, segmentation, shape and topology description, tracking and motion fields are presented. We discuss advantages, limitations and suitability for different approaches and levels of description. PMID:24467201

  10. Gradient biomaterials and their influences on cell migration

    PubMed Central

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  11. A Sensitized PiggyBac-Based Screen for Regulators of Border Cell Migration in Drosophila

    PubMed Central

    Mathieu, Juliette; Sung, Hsin-Ho; Pugieux, Céline; Soetaert, Jan; Rorth, Pernille

    2007-01-01

    Migration of border cells during Drosophila melanogaster oogenesis is a good model system for investigating the genetic requirements for cell migration in vivo. We present a sensitized loss-of-function screen used to identify new genes required in border cells for their migration. Chromosomes bearing FRTs on all four major autosomal arms were mutagenized by insertions of the transposable element PiggyBac, allowing multiple parallel clonal screens and easy identification of the mutated gene. For border cells, we analyzed homozygous mutant clones positively marked with lacZ and sensitized by expression of dominant-negative PVR, the guidance receptor. We identified new alleles of genes already known to be required for border cell migration, including aop/yan, DIAP1, and taiman as well as a conserved Slbo-regulated enhancer downstream of shg/DE–cadherin. Mutations in genes not previously described to be required in border cells were also uncovered: hrp48, vir, rme-8, kismet, and puckered. puckered was unique in that the migration defects were observed only when PVR signaling was reduced. We present evidence that an excess of JNK signaling is deleterious for migration in the absence of PVR activity at least in part through Fos transcriptional activity and possibly through antagonistic effects on DIAP1. PMID:17483425

  12. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  13. Improvement of Human Keratinocyte Migration by a Redox Active Bioelectric Dressing

    PubMed Central

    Banerjee, Jaideep; Das Ghatak, Piya; Roy, Sashwati; Khanna, Savita; Sequin, Emily K.; Bellman, Karen; Dickinson, Bryan C.; Suri, Prerna; Subramaniam, Vish V.; Chang, Christopher J.; Sen, Chandan K.

    2014-01-01

    Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization. PMID:24595050

  14. miR-965 controls cell proliferation and migration during tissue morphogenesis in the Drosophila abdomen.

    PubMed

    Verma, Pushpa; Cohen, Stephen M

    2015-01-01

    Formation of the Drosophila adult abdomen involves a process of tissue replacement in which larval epidermal cells are replaced by adult cells. The progenitors of the adult epidermis are specified during embryogenesis and, unlike the imaginal discs that make up the thoracic and head segments, they remain quiescent during larval development. During pupal development, the abdominal histoblast cells proliferate and migrate to replace the larval epidermis. Here, we provide evidence that the microRNA, miR-965, acts via string and wingless to control histoblast proliferation and migration. Ecdysone signaling downregulates miR-965 at the onset of pupariation, linking activation of the histoblast nests to the hormonal control of metamorphosis. Replacement of the larval epidermis by adult epidermal progenitors involves regulation of both cell-intrinsic events and cell communication. By regulating both cell proliferation and cell migration, miR-965 contributes to the robustness of this morphogenetic system. PMID:26226636

  15. Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells.

    PubMed

    Seol, Ho Jun; Chang, Jong Hee; Yamamoto, Junkoh; Romagnuolo, Rocco; Suh, Youngchul; Weeks, Adrienne; Agnihotri, Sameer; Smith, Christian A; Rutka, James T

    2012-09-01

    The malignant glioma is the most common primary human brain tumor, and its migration and invasiveness away from the primary tumor mass are considered a leading cause of tumor recurrence and treatment failure. Recently, gene expression profiling revealed that the transmembrane glycoprotein CD99 is more highly expressed in malignant glioma than in normal brain. Although its function is not completely understood, CD99 is implicated in cell adhesion and migration in a variety of different cell types. CD99 has wild-type and splice variant isoforms. Previous studies have shown that wild-type CD99 may be an oncosuppressor in some tumors, distinct from the role of the splice variant isoform. In this study, our data reveal that only wild-type CD99 is expressed in human glioma cells and tissues. Using a tissue microarray, we validated that gliomas demonstrate higher expression of CD99 compared with nonneoplastic brain. To assess the role of CD99 in glioma migration and invasion, we inhibited CD99 expression by siRNA and demonstrated decreased glioma migration and invasion. In contrast, when CD99 was overexpressed in glioma cells, we observed enhancement of cell migration and invasiveness. An orthotopic brain tumor model demonstrates that CD99 overexpression significantly increases invasiveness and decreases survival rate. Interestingly, Rac activity was decreased and Rho activity was increased in CD99 overexpressing glioma cells, and the proportion of amoeboid cells to mesenchymal cells was significantly increased. Taken together, our findings suggest that CD99 may play an important role in the migration and invasion of human gliomas independent of Akt, ERK, or JNK signaling pathways. Moreover, CD99 might be involved in amoeboid-mesenchymal transition in glioma migration. CD99 may be an important future target to inhibit migration and invasion, especially in CD99-expressing gliomas. PMID:23486730

  16. Modelling Rho GTPase biochemistry to predict collective cell migration

    NASA Astrophysics Data System (ADS)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  17. The role of chromatin structure in cell migration

    PubMed Central

    Gerlitz, Gabi; Bustin, Michael

    2010-01-01

    Chromatin dynamics play a major role in regulating genetic processes. Now, accumulating data suggest that chromatin structure may also affect the mechanical properties of the nucleus and cell migration. Global chromatin organization seems to modulate the shape, the size and the stiffness of the nucleus. Directed-cell migration, which often requires nuclear reshaping to allow cellular passage through narrow openings, is dependent not only on changes in cytoskeletal elements, but also on the global chromatin condensation. Conceivably, during cell migration a physical link between the chromatin and the cytoskeleton facilitates coordinated structural changes in these two components. Thus, in addition to regulating genetic processes, we suggest that alterations in chromatin structure may facilitate cellular reorganizations necessary for efficient migration. PMID:20951589

  18. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells

    PubMed Central

    Kuo, Jean-Cheng

    2013-01-01

    Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA-related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration-related human diseases. PMID:23551528

  19. Laser-photophoretic migration and fractionation of human blood cells.

    PubMed

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis. PMID:23622969

  20. Cell migration in confinement: a micro-channel-based assay.

    PubMed

    Heuzé, Mélina L; Collin, Olivier; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2011-01-01

    This chapter describes a method to study cells migrating in micro-channels, a confining environment of well-defined geometry. This assay is a complement to more complex 3D migration systems and provides several advantages even if it does not recapitulate the full complexity of 3D migration. Important parameters such as degree of adhesion, degree of confinement, mechanical properties, and geometry can be varied independently of each other. The device is fully compatible with almost any type of light microscopy and the simple geometry makes automated analysis very easy to perform, which allows screening strategy. The chapters is divided into five parts describing the design of different types of migration chambers, the fabrication of a mold by photolithography, the assembly of the chamber, the loading of cells, and finally the imaging on live or fixed cells. PMID:21748692

  1. Distinct Roles of Frontal and Rear Cell-Substrate Adhesions in Fibroblast MigrationV⃞

    PubMed Central

    Munevar, Steven; Wang, Yu-li; Dembo, Micah

    2001-01-01

    Cell migration involves complex physical and chemical interactions with the substrate. To probe the mechanical interactions under different regions of migrating 3T3 fibroblasts, we have disrupted cell-substrate adhesions by local application of the GRGDTP peptide, while imaging stress distribution on the substrate with traction force microscopy. Both spontaneous and GRGDTP-induced detachment of the trailing edge caused extensive cell shortening, without changing the overall level of traction forces or the direction of migration. In contrast, disruption of frontal adhesions caused dramatic, global loss of traction forces before any significant shortening of the cell. Although traction forces and cell migration recovered within 10–20 min of transient frontal treatment, persistent treatment with GRGDTP caused the cell to develop traction forces elsewhere and reorient toward a new direction. We conclude that contractile forces of a fibroblast are transmitted to the substrate through two distinct types of adhesions. Leading edge adhesions are unique in their ability to transmit active propulsive forces. Their functions cannot be transferred directly to existing adhesions upon detachment. Trailing end adhesions create passive resistance during cell migration and readily redistribute their loads upon detachment. Our results indicate the distinct nature of mechanical interactions at the leading versus trailing edges, which together generate the mechanical interactions for fibroblast migration. PMID:11739792

  2. Mechanics in Mechanosensitivity of Cell Adhesion and its Roles in Cell Migration

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; He, Shijie; Ji, Baohua

    2012-12-01

    Cells sense and respond to external stimuli and properties of their environment through focal adhesion complexes (FACs) to regulate a broad range of physiological and pathological processes, including cell migration. Currently, the basic principles in mechanics of the mechanosensitivity of cell adhesion and migration have not been fully understood. In this paper, an FEM-based mechano-chemical coupling model is proposed for studying the cell migration behaviors in which the dynamics of stability of FACs and the effect of cell shape on cell traction force distribution are considered. We find that the driving force of cell migration is produced by the competition of stability of cell adhesion between the cell front and cell rear, which consequently controls the speed of cell migration. We show that the rigidity gradient of matrix can bias this competition which allows cell to exhibit a durotaxis behavior, i.e. the larger the gradient, the higher the cell speed.

  3. CXCR7 Mediates Neural Progenitor Cells Migration to CXCL12 Independent of CXCR4

    PubMed Central

    Chen, Qiang; Zhang, Min; Li, Yuju; Xu, Dongsheng; Wang, Yi; Song, Aihong; Zhu, Bing; Huang, Yunlong; Zheng, Jialin C.

    2016-01-01

    Neural progenitor cell (NPC) migration is an essential process for brain development, adult neurogenesis, and neuroregeneration after brain injury. Stromal cell-derived factor-1 (SDF-1, CXCL12) and its traditional receptor CXCR4 are well known to regulate NPC migration. However, the discovery of CXCR7, a newly identified CXCL12 receptor, adds to the dynamics of the existing CXCL12/CXCR4 pair. Antagonists for either CXCR4 or CXCR7 blocked CXCL12-mediated NPC migration in a transwell chemotaxis assay, suggesting that both receptors are required for CXCL12 action. We derived NPC cultures from Cxcr4 knockout (KO) mice and used transwell and stripe assays to determine the cell migration. NPCs derived from Cxcr4 KO mice polarized and migrated in response to CXCL12 gradient, suggesting that CXCR7 could serve as an independent migration receptor. Furthermore, Cxcr4 KO NPCs transplanted into the adult mouse striatum migrated in response to the adjacent injection of CXCL12, an effect that was blocked by a CXCR7 antagonist, suggesting that CXCR7 also mediates NPC migration in vivo. Molecular mechanism studies revealed that CXCR7 interact with Rac1 in the leading edge of the polarized NPCs in the absence of CXCR4. Both CXCR7 and Rac1 are required for extracellular signal-regulated kinases (ERK) 1/2 activation and subsequent NPC migration, indicating that CXCR7 could serve as a functional receptor in CXCL12-mediated NPC migration independent of CXCR4. Together these results reveal an essential role of CXCR7 for CXCL12-mediated NPC migration that will be important to understand neurogenesis during development and in adulthood. PMID:25833331

  4. Facile preparation of a photoactivatable surface on a 96-well plate: a versatile and multiplex cell migration assay platform.

    PubMed

    Kamimura, Masao; Scheideler, Olivia; Shimizu, Yoshihisa; Yamamoto, Shota; Yamaguchi, Kazuo; Nakanishi, Jun

    2015-06-01

    Cell migration is an essential cellular activity in various physiological and pathological processes, such as wound healing and cancer metastasis. Therefore, in vitro cell migration assays are important not only for fundamental biological studies but also for evaluating potential drugs that control cell migration activity in medical applications. In this regard, robust control over cell migrating microenvironments is critical for reliable and quantitative analysis as cell migration is highly dependent upon the microenvironments. Here, we developed a facile method for making a commercial glass-bottom 96-well plate photoactivatable for cell adhesion, aiming to develop a versatile and multiplex cell migration assay platform. Cationic poly-d-lysine was adsorbed to the anionic glass surface via electrostatic interactions and, subsequently, functionalized with poly(ethylene glycol) (PEG) bearing a photocleavable reactive group. The initial PEGylated surface is non-cell-adhesive. However, upon near-ultraviolet (UV) irradiation, the photorelease of PEG switches the surface from non-biofouling to cell-adhesive. With this platform, we assayed cell migration in the following procedure: (1) create cell-attaching regions of precise geometries by controlled photoirradiation, (2) seed cells to allow them to attach selectively to the irradiated regions, (3) expose UV light to the remaining PEGylated regions to extend the cell-adhesive area, (4) analyse cell migration using microscopy. Surface modification of the glass surface was characterized by ζ-potential and contact angle measurements. The PEGylated surface showed cell-resistivity and became cell-adhesive upon releasing PEG by near-UV irradiation. The method was applied for parallelly evaluating the effect of model drugs on the migration of epithelial MDCK cells in the multiplexed platform. The dose-response relationship for cytochalasin D treatment on cell migration behavior was successfully evaluated with high

  5. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    PubMed

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs. PMID:27287800

  6. Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    PubMed Central

    Sliogeryte, Kristina; Thorpe, Stephen D.; Lee, David A.; Botto, Lorenzo; Knight, Martin M.

    2014-01-01

    This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness. PMID:25471686

  7. Heterogeneous CD8+ T cell migration in the lymph node in the absence of inflammation revealed by quantitative migration analysis.

    PubMed

    Banigan, Edward J; Harris, Tajie H; Christian, David A; Hunter, Christopher A; Liu, Andrea J

    2015-02-01

    The three-dimensional positions of immune cells can be tracked in live tissues precisely as a function of time using two-photon microscopy. However, standard methods of analysis used in the field and experimental artifacts can bias interpretations and obscure important aspects of cell migration such as directional migration and non-Brownian walk statistics. Therefore, methods were developed for minimizing drift artifacts, identifying directional and anisotropic (asymmetric) migration, and classifying cell migration statistics. These methods were applied to describe the migration statistics of CD8+ T cells in uninflamed lymph nodes. Contrary to current models, CD8+ T cell statistics are not well described by a straightforward persistent random walk model. Instead, a model in which one population of cells moves via Brownian-like motion and another population follows variable persistent random walks with noise reproduces multiple statistical measures of CD8+ T cell migration in the lymph node in the absence of inflammation. PMID:25692801

  8. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge

    PubMed Central

    Kriebel, Paul W.; Barr, Valarie A.; Rericha, Erin C.; Zhang, Guofeng; Parent, Carole A.

    2008-01-01

    Chemoattractant signaling induces the polarization and directed movement of cells secondary to the activation of multiple effector pathways. In addition, chemotactic signals can be amplified and relayed to proximal cells via the synthesis and secretion of additional chemoattractant. The mechanisms underlying such remarkable features remain ill defined. We show that the asymmetrical distribution of adenylyl cyclase (ACA) at the back of Dictyostelium discoideum cells, an essential determinant of their ability to migrate in a head-to-tail fashion, requires vesicular trafficking. This trafficking results in a local accumulation of ACA-containing intracellular vesicles and involves intact actin, microtubule networks, and de novo protein synthesis. We also show that migrating cells leave behind ACA-containing vesicles, likely secreted as multivesicular bodies and presumably involved in the formation of head-to-tail arrays of migrating cells. We propose that similar compartmentalization and shedding mechanisms exist in mammalian cells during embryogenesis, wound healing, neuron growth, and metastasis. PMID:19047467

  9. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish

    PubMed Central

    Matsui, Takaaki; Ishikawa, Hiroshi; Bessho, Yasumasa

    2015-01-01

    Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration. PMID:26000276

  10. The sweet spot: how GAGs help chemokines guide migrating cells.

    PubMed

    Monneau, Yoan; Arenzana-Seisdedos, Fernando; Lortat-Jacob, Hugues

    2016-06-01

    Glycosaminoglycans are polysaccharides that occur both at the cell surface and within extracellular matrices. Through their ability to bind to a large array of proteins, almost 500 of which have been identified to date, including most chemokines, these molecules regulate key biologic processes at the cell-tissue interface. To do so, glycosaminoglycans can provide scaffolds to ensure that proteins mediating specific functions will be presented at the correct site and time and can also directly contribute to biologic activities or signaling processes. The binding of chemokines to glycosaminoglycans, which, at the biochemical level, has been mostly studied using heparin, has traditionally been thought of as a mechanism for maintaining haptotactic gradients within tissues along which cells can migrate directionally. Many aspects of chemokine-glycosaminoglycan interactions, however, also suggest that the formation of these complexes could serve additional purposes that go well beyond a simple immobilization process. In addition, progress in glycobiology has revealed that glycosaminoglycan structures, in term of length, sulfation, and epimerization pattern, are specific for cell, tissue, and developmental stage. Glycosaminoglycan regulation and glycosaminoglycan diversity, which cannot be replicated using heparin, thus suggests that these molecules may fine-tune the immune response by selectively recruiting specific chemokines to cell surfaces. In this context, the aim of the present text is to review the chemokine-glycosaminoglycan complexes described to date and provide a critical analysis of the tools, molecules, and strategies that can be used to structurally and functionally investigate the formation of these complexes. PMID:26701132

  11. Serotonin induces the migration of PC12 cells via the serotonin receptor 6/cAMP/ERK pathway

    PubMed Central

    KOIZUMI, KEITA; NAKAJIMA, HIDEO

    2014-01-01

    Serotonin (5-HT) functions as a chemoattractant that modulates neural migration during prenatal and early postnatal development. However, its molecular mechanism remains to be elucidated. The effect of 5-HT on neural cell migration was examined using PC12 neuron-like cell line. Transwell migration assay was used to determine the effect of 5-HT on PC12 cell migration. The results demonstrated that 5-HT and nerve growth factor (NGF) induced PC12 cell migration in a dose-dependent manner. Additionally, 5-HT receptor antagonists suggest that 5-HT-induced migration was mediated by serotonin receptor 6 (5-HT6), a Gs-protein coupled receptor that elevates the intercellular cAMP level. By contrast, antagonists of serotonin receptor 3 (5-HT3) did not show any effects on PC12 cell migration. Clozapine, an inhibitor of cAMP accumulation mediated by 5-HT6, significantly reduced the effect of 5-HT on the PC12 cell migration. An inhibitor of extracellular signal-regulated kinase (ERK) also suppressed migration. These results suggest that 5-HT induces PC12 cell migration by activating cAMP/ERK signaling pathways, which is mediated by 5-HT6 receptor. PMID:24649064

  12. Chemokine-Mediated Migration of Mesencephalic Neural Crest Cells

    PubMed Central

    Rezzoug, Francine; Seelan, Ratnam S.; Bhattacherjee, Vasker; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, “transwell” assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo “bead implantation” assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo. PMID:22015108

  13. Mathematical Modeling of Eukaryotic Cell Migration: Insights Beyond Experiments

    PubMed Central

    Danuser, Gaudenz; Allard, Jun; Mogilner, Alex

    2014-01-01

    A migrating cell is a molecular machine made of tens of thousands of short-lived and interacting parts. Understanding migration means understanding the self-organization of these parts into a system of functional units. This task is one of tackling complexity: First, the system integrates numerous chemical and mechanical component processes. Second, these processes are connected in feedback interactions and over a large range of spatial and temporal scales. Third, many processes are stochastic, which leads to heterogeneous migration behaviors. Early on in the research of cell migration it became evident that this complexity exceeds human intuition. Thus, the cell migration community has led the charge to build mathematical models that could integrate the diverse experimental observations and measurements in consistent frameworks, first in conceptual and more recently in molecularly explicit models. The main goal of this review is to sift through a series of important conceptual and explicit mathematical models of cell migration and to evaluate their contribution to the field in their ability to integrate critical experimental data. PMID:23909278

  14. Microtubule-organizing centers and cell migration: effect of inhibition of migration and microtubule disruption in endothelial cells.

    PubMed

    Gotlieb, A I; Subrahmanyan, L; Kalnins, V I

    1983-05-01

    We have previously shown that microtubule-organizing centers (MTOC's) become preferentially oriented towards the leading edge of migrating endothelial cells (EC's) at the margin of an experimentally induced wound made in a confluent EC monolayer. To learn more about the mechanism responsible for the reorientation of MTOC's and to determine whether a similar reorientation takes place when cell migration is inhibited, we incubated the wounded cultures with colcemid (C) and cytochalasin B (CB), which disrupt microtubules (MT's) and microfilaments (MF's), respectively. The results obtained showed that the MTOC reorientation can occur independent of cell migration since MTOC's reoriented preferentially toward the wound edge in the CB-treated cultures, even though forward migration of the EC was inhibited. In addition, the MTOC reorientation is inhibited by C, indicating that it requires an intact system of MT's and/or other intracellular structures whose distribution is dependent on that of MT's. PMID:6341378

  15. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  16. Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease.

    PubMed

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2013-06-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton's tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL)-6- or stroma-dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. Am. J. Hematol. 88:463-471, 2013. © 2013 Wiley Periodicals, Inc. PMID:23456977

  17. Estradiol attenuates directed migration of vascular smooth muscle cells in vitro.

    PubMed Central

    Kolodgie, F. D.; Jacob, A.; Wilson, P. S.; Carlson, G. C.; Farb, A.; Verma, A.; Virmani, R.

    1996-01-01

    Although the cardiovascular benefits of the hormone estrogen are at least, in part, mediated by its antiproliferative effect on vascular smooth muscle, its action on the migration of these cells is unknown. To explore this relationship, female rat aortic smooth muscle cells were grown in hormone-free medium, and the effect of various concentrations of beta-estradiol on directed cellular migration was measured in vitro using a microwell Boyden chamber apparatus. Migration of smooth muscle cells to the known chemoattractants platelet-derived growth factor, insulin-like growth factor-1, and fibronectin (all at peak doses for migratory activity) was attenuated by beta-estradiol (0.5 to 10 ng/ml) in a concentration-dependent manner relative to control cells treated with vehicle (0.01% ethanol). This response was insensitive to pretreatment with indomethacin and was stereospecific (17 alpha-estradiol lacked response). Like beta-estradiol, the synthetic estrogen diethylstilbestrol attenuated directed smooth muscle cell migration whereas the male hormone testosterone was ineffective. Additional studies showed that beta-estradiol-mediated suppression of migration was inhibited by the anti-estrogen ICI 164,384 and the gene transcription inhibitor actinomycin D. These are the first results demonstrating a reduction in directed smooth muscle cell migration by beta-estradiol. The mechanism of this estrogen-mediated response appears to involve conventional estrogen receptors. PMID:8774151

  18. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration.

    PubMed

    Shen, Yang; Gao, Min; Ma, Yunlong; Yu, Hongchi; Cui, Fu-zhai; Gregersen, Hans; Yu, Qingsong; Wang, Guixue; Liu, Xiaoheng

    2015-02-01

    The migration of vascular endothelial cells (ECs) is essential for reendothelialization after implantation of cardiovascular biomaterials. Reendothelialization is largely determined by surface properties of implants. In this study, surfaces modified with various chemical functional groups (CH3, NH2, COOH, OH) prepared by self-assembled monolayers (SAMs) were used as model system. Expressions and distributions of critical proteins in the integrin-induced signaling pathway were examined to explore the mechanisms of surface chemistry regulating EC migration. The results showed that SAMs modulated cell migration were in the order CH3>NH2>OH>COOH, determined by differences in the expressions of focal adhesion components and Rho GTPases. Multiple integrin subunits showed difference in a surface chemistry-dependent manner, which induced a stepwise activation of signaling cascades associated with EC migration. This work provides a broad overview of surface chemistry regulated endothelial cell migration and establishes association among the surface chemistry, cell migration behavior and associated integrin signaling events. Understanding the relationship between these factors will help us to understand the surface/interface behavior between biomaterials and cells, reveal molecular mechanism of cells sensing surface characterization, and guide surface modification of cardiovascular implanted materials. PMID:25575348

  19. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex.

    PubMed

    Crandall, James E; McCarthy, Deirdre M; Araki, Kiyomi Y; Sims, John R; Ren, Jia-Qian; Bhide, Pradeep G

    2007-04-01

    GABA neurons of the cerebral cortex and other telencephalic structures are produced in the basal forebrain and migrate to their final destinations during the embryonic period. The embryonic basal forebrain is enriched in dopamine and its receptors, creating a favorable environment for dopamine to influence GABA neuron migration. However, whether dopamine receptor activation can influence GABA neuron migration is not known. We show that dopamine D1 receptor activation promotes and D2 receptor activation decreases GABA neuron migration from the medial and caudal ganglionic eminences to the cerebral cortex in slice preparations of embryonic mouse forebrain. Slice preparations from D1 or D2 receptor knock-out mouse embryos confirm the findings. In addition, D1 receptor electroporation into cells of the basal forebrain and pharmacological activation of the receptor promote migration of the electroporated cells to the cerebral cortex. Analysis of GABA neuron numbers in the cerebral wall of the dopamine receptor knock-out mouse embryos further confirmed the effects of dopamine receptor activation on GABA neuron migration. Finally, dopamine receptor activation mobilizes striatal neuronal cytoskeleton in a manner consistent with the effects on neuronal migration. These data show that impairing the physiological balance between D1 and D2 receptors can alter GABA neuron migration from the basal forebrain to the cerebral cortex. The intimate relationship between dopamine and GABA neuron development revealed here may offer novel insights into developmental disorders such as schizophrenia, attention deficit or autism, and fetal cocaine exposure, all of which are associated with dopamine and GABA imbalance. PMID:17409246

  20. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    SciTech Connect

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  1. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis

    SciTech Connect

    Song, Lingqin; Liu, Di; Zhao, Yang; He, Jianjun; Kang, Huafeng; Dai, Zhijun; Wang, Xijing; Zhang, Shuqun; Zan, Ying

    2015-08-28

    Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial–mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1 breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation. - Highlights: • Sinomenine reduced invasion and migration of MDA-MB-231 and 4T1 breast cancer cells.

  2. Colorectal cancer cell-derived interleukin-6 enhances the phagocytic capacity and migration of THP-1 cells.

    PubMed

    Yeh, Kun-Yun; Wu, Tsung-Han; Wu, Tai-Ling

    2016-03-01

    Macrophages perform a versatile range of functions in response to environmental stimuli. In the present study, we evaluated whether interleukin-6 (IL-6), a cytokine released from colorectal cancer (CRC) cells and associated with CRC pathogenesis and metastasis, modulates the phagocytic capacity and migratory ability of macrophages, using a monocyte-macrophage THP-1 cell model and human peripheral monocytes. We found that CRC cells enhanced the phagocytic capacity and migration of THP-1 cells and human peripheral monocytes. CRC cell culture supernatants and recombinant IL-6 neutralized with anti-IL-6 and anti-gp130 antibodies considerably decreased IL-6-mediated phagocytosis by and migration of THP-1 cells and human peripheral monocytes, via the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Our data suggest that CRC cells secreting IL-6 via STAT3 phosphorylation can enhance the phagocytic capacity and migration of macrophages in the tumor microenvironment. PMID:26775116

  3. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.

    PubMed

    Barber, Melissa; Pierani, Alessandra

    2016-08-01

    Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016. PMID:26581033

  4. Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage-gated Ca++ influx

    PubMed Central

    Paez, Pablo M.; Fulton, Daniel J.; Spreuer, Vilma; Handley, Vance; Campagnoni, Celia W.; Macklin, Wendy B.; Colwell, Christopher; Campagnoni, Anthony T.

    2009-01-01

    Migration of OL progenitor cells (OPCs) from proliferative zones to their final location in the brain is an essential step in nervous system development. Golli proteins, products of the myelin basic protein gene, can modulate voltage-gated Ca++ uptake in OPCs during process extension and retraction. Given the importance of process extension/retraction on movement, the consequences of golli expression on OPC migration were examined in vivo and in vitro using time-lapse imaging of isolated OPCs and acute brain slice preparations from golli KO and golli overexpressing mice (JOE). The results indicated that golli stimulated migration, and this enhanced motility was associated with increases in the activity of voltage operated Ca++ channels (VOCCs). Activation of VOCCs by high K+ resulted in a significant increase in the migration speed of JOE OPCs vs control cells and golli-mediated modulation of OPC migration disappeared in the presence of VOCC antagonists. During migration, OPCs generated Ca++ oscillations that were dependent on voltage-calcium influx and both the amplitude and frequency of these Ca++ transients correlated positively with the rate of cell movement under a variety of pharmacological treatments. The Ca++ transient amplitude and the rate of cell movement were significantly lower in KO cells and significantly higher in JOE cells suggesting that the presence of golli promotes OPC migration by increasing the size of voltage-mediated Ca++ oscillations. These data define a new molecule that regulates Ca++ homeostasis in OPCs, and are the first to demonstrate that voltage-gated Ca++ channels can regulate an OPC function, such as migration. PMID:19458236

  5. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration

    PubMed Central

    Piater, Birgit; Doerner, Achim; Guenther, Ralf; Kolmar, Harald; Hock, Bjoern

    2015-01-01

    The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF). Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2’-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX). CLN64 and a previously described single-stranded DNA (ssDNA) aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding. PMID:26658271

  6. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    SciTech Connect

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  7. Microbial desalination cell with capacitive adsorption for ion migration control.

    PubMed

    Forrestal, Casey; Xu, Pei; Jenkins, Peter E; Ren, Zhiyong

    2012-09-01

    A new microbial desalination cell with capacitive adsorption capability (cMDC) was developed to solve the ion migration problem facing current MDC systems. Traditional MDCs remove salts by transferring ions to the anode and cathode chambers, which may prohibit wastewater beneficial reuse due to increased salinity. The cMDC uses adsorptive activated carbon cloth (ACC) as the electrodes and utilizes the formed capacitive double layers for electrochemical ion adsorption. The cMDC removed an average of 69.4% of the salt from the desalination chamber through electrode adsorption during one batch cycle, and it did not add salts to the anode or cathode chamber. It was estimated that 61-82.2mg of total dissolved solids (TDS) was adsorbed to 1g of ACC electrode. The cMDC provides a new approach for salt management, organic removal, and energy production. Further studies will be conducted to optimize reactor configuration and achieve in situ electrode regeneration. PMID:22784594

  8. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  9. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    PubMed

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  10. Tumor suppressor p53 and its homologue p73alpha affect cell migration.

    PubMed

    Sablina, Anna A; Chumakov, Peter M; Kopnin, Boris P

    2003-07-25

    The p53 tumor suppressor plays a central role in the negative control of growth and survival of abnormal cells. Previously we demonstrated that in addition to these functions, p53 expression affects cell morphology and lamellar activity of the cell edge (Alexandrova, A., Ivanov, A., Chumakov, P. M., Kopnin, P. B., and Vasiliev, J. M. (2000) Oncogene 19, 5826-5830). In the present work we studied the effects of p53 and its homologue p73alpha on cell migration. We found that loss of p53 function correlated with decreased cell migration that was analyzed by in vitro wound closure test and Boyden chamber assay. The decreased motility of p53-deficient cells was observed in different cell contexts: human foreskin fibroblasts (BJ), human colon and lung carcinoma cell lines (HCT116 and H1299, respectively), as well as mouse normal fibroblasts from lung and spleen, peritoneal macrophages, and keratinocytes. On the other hand, overexpression of the p53 family member p73alpha stimulated cell migration. Changes in cell migration correlated directly with transcription activation induced by p53 or p73alpha. Noteworthy, p53 modulated cell motility in the absence of stress. The effect of p53 and p73alpha on cell migration was mediated through the activity of the phosphatidylinositol 3-kinase/Rac1 pathway. This p53/p73 function was mainly associated with some modulation of intracellular signaling rather than with stimulation of production of secreted motogenic factors. The identified novel activity of the p53 family members might be involved in regulation of embryogenesis, wound healing, or inflammatory response. PMID:12750388

  11. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    PubMed Central

    2011-01-01

    Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis. PMID:22074556

  12. Reactive oxygen species and hydrogen peroxide generation in cell migration

    PubMed Central

    Rudzka, Dominika A; Cameron, Jenifer M; Olson, Michael F

    2015-01-01

    Directional cell migration is a complex process that requires spatially and temporally co-ordinated regulation of actin cytoskeleton dynamics. In response to external cues, signals are transduced to elicit cytoskeletal responses. It has emerged that reactive oxygen species, including hydrogen peroxide, are important second messengers in pathways that influence the actin cytoskeleton, although the identities of key proteins regulated by hydrogen peroxide are largely unknown. We recently showed that oxidation of cofilin1 is elevated in migrating cells relative to stationary cells, and that the effect of this post-translational modification is to reduce cofilin1-actin binding and to inhibit filamentous-actin severing by cofilin1. These studies revealed that cofilin1 regulation by hydrogen peroxide contributes to directional cell migration, and established a template for discovering additional proteins that are regulated in an analogous manner. PMID:27066166

  13. Junctional communication is induced in migrating capillary endothelial cells.

    PubMed

    Pepper, M S; Spray, D C; Chanson, M; Montesano, R; Orci, L; Meda, P

    1989-12-01

    Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to five cells (basal level). Basal levels of communication were also observed in sparse and preconfluent cultures, but were reduced in postconfluent monolayers. 30 min after wounding, coupling was markedly reduced between cells lining the wound. Communication at the wound was partially reestablished by 2 h, exceeded basal levels after 6 h and reached a maximum after 24 h, at which stage approximately 90% of the cells were coupled in groups of six to seven cells. When the wound had closed (after 8 d), the increase in communication was no longer observed. Induction of wound-associated communication was unaffected by exposure of the cells to the DNA synthesis inhibitor mitomycin C, but was prevented by the protein synthesis inhibitor, cycloheximide. The induction of wound-associated communication was also inhibited when migration was prevented by placing the cells immediately after wounding at 22 degrees C or after exposure to cytochalasin D, suggesting that the increase in communication is dependent on cells migrating into the wound area. In contrast, migration was not prevented when coupling was blocked by exposure of the cells to retinoic acid, although this agent did disrupt the characteristic sheet-like pattern of migration typically seen during endothelial repair. These results suggest that junctional communication may play an important role in wound repair, possibly by coordinating capillary endothelial cell migration. PMID:2592412

  14. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  15. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGESBeta

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  16. The Essential Role of Giα2 in Prostate Cancer Cell Migration

    PubMed Central

    Zhong, Miao; Clarke, Shineka; Vo, BaoHan; Khan, Shafiq A.

    2012-01-01

    Cell- and receptor-specific regulation of cell migration by Gi/oα-proteins remains unknown in prostate cancer cells. In the present study, oxytocin (OXT) receptor (OXTR) was detected at the protein level in total cell lysates from C81 (an androgen-independent subline of LNCaP), DU145 and PC3 prostate cancer cells, but not in immortalized normal prostate luminal epithelial cells (RWPE1), and OXT induced migration of PC3 cells. This effect of OXT has been shown to be mediated by Gi/oα-dependent signaling. Accordingly, OXT inhibited forskolin-induced luciferase activity in PC3 cells that were transfected with a luciferase reporter for cAMP activity. Although mRNAs for all three Giα isoforms were present in PC3 cells, Giα2 was the most abundant isoform that was detected at the protein level. Pertussis toxin (PTx) inhibited the OXT-induced migration of PC3 cells. Ectopic expression of the PTx-resistant Giα2-C352G, but not wild type Giα2, abolished this effect of PTx on OXT-induced cell migration. The Giα2-targeting siRNA was shown to specifically reduce Giα2 mRNA and protein in prostate cancer cells. The Giα2-targeting siRNA eliminated OXT-induced migration of PC3 cells. These data suggest that Giα2 plays an important role in the effects of OXT on PC3 cell migration. The Giα2-targeting siRNA also inhibited EGF-induced migration of PC3 and DU145 cells. Expression of the siRNA-resistant Giα2, but not wild type Giα2, restored the effects of EGF in PC3 cells transfected with the Giα2-targeting siRNA. In conclusion, Giα2 plays an essential role in OXT and EGF signaling to induce prostate cancer cell migration. PMID:22936789

  17. Phase-field model for collective cell migration

    NASA Astrophysics Data System (ADS)

    Najem, Sara; Grant, Martin

    2016-05-01

    We construct a phase-field model for collective cell migration based on a Ginzburg-Landau free-energy formulation. We model adhesion, surface tension, repulsion, coattraction, and polarization, enabling us to follow the cells' morphologies and the effect of their membranes fluctuations on collective motion. We were able to measure the tissue surface tension as a function of the individual cell cortical tension and adhesion and identify a density threshold for cell-sheet formation.

  18. Evaluation of in vivo labelled dendritic cell migration in cancer patients

    PubMed Central

    Ridolfi, Ruggero; Riccobon, Angela; Galassi, Riccardo; Giorgetti, Gianluigi; Petrini, Massimiliano; Fiammenghi, Laura; Stefanelli, Monica; Ridolfi, Laura; Moretti, Andrea; Migliori, Giuseppe; Fiorentini, Giuseppe

    2004-01-01

    Background Dendritic Cell (DC) vaccination is a very promising therapeutic strategy in cancer patients. The immunizing ability of DC is critically influenced by their migration activity to lymphatic tissues, where they have the task of priming naïve T-cells. In the present study in vivo DC migration was investigated within the context of a clinical trial of antitumor vaccination. In particular, we compared the migration activity of mature Dendritic Cells (mDC) with that of immature Dendritic Cells (iDC) and also assessed intradermal versus subcutaneous administration. Methods DC were labelled with 99mTc-HMPAO or 111In-Oxine, and the presence of labelled DC in regional lymph nodes was evaluated at pre-set times up to a maximum of 72 h after inoculation. Determinations were carried out in 8 patients (7 melanoma and 1 renal cell carcinoma). Results It was verified that intradermal administration resulted in about a threefold higher migration to lymph nodes than subcutaneous administration, while mDC showed, on average, a six-to eightfold higher migration than iDC. The first DC were detected in lymph nodes 20–60 min after inoculation and the maximum concentration was reached after 48–72 h. Conclusions These data obtained in vivo provide preliminary basic information on DC with respect to their antitumor immunization activity. Further research is needed to optimize the therapeutic potential of vaccination with DC. PMID:15285807

  19. An Excitable Signal Integrator Couples to an Idling Cytoskeletal Oscillator to Drive Cell Migration

    PubMed Central

    Huang, Chuan-Hsiang; Tang, Ming; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.

    2013-01-01

    It is generally believed that cytoskeletal activities drive random cell migration while signal transduction events initiated by receptors regulate the cytoskeleton to guide cells. However, we find that the cytoskeletal network, involving Scar/Wave, Arp 2/3, and actin binding proteins, is only capable of generating rapid oscillations and undulations of the cell boundary. The signal transduction network, comprising multiple pathways that include Ras GTPases, PI3K, and Rac GTPases, is required to generate the sustained protrusions of migrating cells. The signal transduction network is excitable, displaying wave propagation, refractoriness, and maximal response to suprathreshold stimuli, even in the absence of the cytoskeleton. We suggest that cell motility results from coupling of “pacemaker” signal transduction and “idling motor” cytoskeletal networks, and various guidance cues that modulate the threshold for triggering signal transduction events are integrated to control the mode and direction of migration. PMID:24142103

  20. Rectified directional sensing in long-range cell migration

    PubMed Central

    Nakajima, Akihiko; Ishihara, Shuji; Imoto, Daisuke; Sawai, Satoshi

    2014-01-01

    How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This ‘rectification’ of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition. PMID:25373620

  1. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF.

    PubMed

    Tarcic, Gabi; Avraham, Roi; Pines, Gur; Amit, Ido; Shay, Tal; Lu, Yiling; Zwang, Yaara; Katz, Menachem; Ben-Chetrit, Nir; Jacob-Hirsch, Jasmine; Virgilio, Laura; Rechavi, Gideon; Mavrothalassitis, George; Mills, Gordon B; Domany, Eytan; Yarden, Yosef

    2012-04-01

    The signaling pathways that commit cells to migration are incompletely understood. We employed human mammary cells and two stimuli: epidermal growth factor (EGF), which induced cellular migration, and serum factors, which stimulated cell growth. In addition to strong activation of ERK by EGF, and AKT by serum, early transcription remarkably differed: while EGF induced early growth response-1 (EGR1), and this was required for migration, serum induced c-Fos and FosB to enhance proliferation. We demonstrate that induction of EGR1 involves ERK-mediated down-regulation of microRNA-191 and phosphorylation of the ETS2 repressor factor (ERF) repressor, which subsequently leaves the nucleus. Unexpectedly, knockdown of ERF inhibited migration, which implies migratory roles for exported ERF molecules. On the other hand, chromatin immunoprecipitation identified a subset of direct EGR1 targets, including EGR1 autostimulation and SERPINB2, whose transcription is essential for EGF-induced cell migration. In summary, EGR1 and the EGF-ERK-ERF axis emerge from our study as major drivers of growth factor-induced mammary cell migration. PMID:22198386

  2. Identification of Novel Regulators of the JAK/STAT Signaling Pathway that Control Border Cell Migration in the Drosophila Ovary.

    PubMed

    Saadin, Afsoon; Starz-Gaiano, Michelle

    2016-01-01

    The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway is an essential regulator of cell migration both in mammals and fruit flies. Cell migration is required for normal embryonic development and immune response but can also lead to detrimental outcomes, such as tumor metastasis. A cluster of cells termed "border cells" in the Drosophila ovary provides an excellent example of a collective cell migration, in which two different cell types coordinate their movements. Border cells arise within the follicular epithelium and are required to invade the neighboring cells and migrate to the oocyte to contribute to a fertilizable egg. Multiple components of the STAT signaling pathway are required during border cell specification and migration; however, the functions and identities of other potential regulators of the pathway during these processes are not yet known. To find new components of the pathway that govern cell invasiveness, we knocked down 48 predicted STAT modulators using RNAi expression in follicle cells, and assayed defective cell movement. We have shown that seven of these regulators are involved in either border cell specification or migration. Examination of the epistatic relationship between candidate genes and Stat92E reveals that the products of two genes, Protein tyrosine phosphatase 61F (Ptp61F) and brahma (brm), interact with Stat92E during both border cell specification and migration. PMID:27175018

  3. Distinct predictive performance of Rac1 and Cdc42 in cell migration

    PubMed Central

    Yamao, Masataka; Naoki, Honda; Kunida, Katsuyuki; Aoki, Kazuhiro; Matsuda, Michiyuki; Ishii, Shin

    2015-01-01

    We propose a new computation-based approach for elucidating how signaling molecules are decoded in cell migration. In this approach, we performed FRET time-lapse imaging of Rac1 and Cdc42, members of Rho GTPases which are responsible for cell motility, and quantitatively identified the response functions that describe the conversion from the molecular activities to the morphological changes. Based on the identified response functions, we clarified the profiles of how the morphology spatiotemporally changes in response to local and transient activation of Rac1 and Cdc42, and found that Rac1 and Cdc42 activation triggers laterally propagating membrane protrusion. The response functions were also endowed with property of differentiator, which is beneficial for maintaining sensitivity under adaptation to the mean level of input. Using the response function, we could predict the morphological change from molecular activity, and its predictive performance provides a new quantitative measure of how much the Rho GTPases participate in the cell migration. Interestingly, we discovered distinct predictive performance of Rac1 and Cdc42 depending on the migration modes, indicating that Rac1 and Cdc42 contribute to persistent and random migration, respectively. Thus, our proposed predictive approach enabled us to uncover the hidden information processing rules of Rho GTPases in the cell migration. PMID:26634649