Science.gov

Sample records for activation cytokine expression

  1. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    SciTech Connect

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  2. Cholesterol Crystals Induce Inflammatory Cytokines Expression in nARPE-19 Cells by Activating the NF-κB Pathway

    PubMed Central

    Hu, Yijun; Lin, Haijiang; Dib, Bernard; Atik, Alp; Bouzika, Peggy; Lin, Christopher; Yan, Yueran; Tang, Shibo; Miller, Joan W.; Vavvas, Demetrios G.

    2015-01-01

    Purpose To investigate the expression of inflammatory cytokines in ARPE-19 cells after stimulation with cholesterol crystals. Methods APRE-19 cells were cultured, primed with IL-1α, and treated with cholesterol crystals under different concentrations. Inflammatory cytokines (mature-IL-1β, IL-6, and IL-8) in supernatant and inflammatory cytokines (pro-IL-1β, IL-18) in cell lysate were detected by western blot. The NF-κB pathway inhibitor BAY 11-7082 was used to determine the pathway of cytokine expression. Results Cholesterol crystals did not induce the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome, but did increase pro-IL-1β expression in ARPE-19 cells. Cholesterol crystals increased pro-IL-1β expression by activating the NF-κB pathway. Cholesterol crystal activation of the NF-κB pathway also leads to increased IL-6 and IL-8 expression. Conclusion Cholesterol crystals can induce inflammatory cytokine expression in ARPE-19 cells by activating the NF-κB pathway. PMID:25091484

  3. Differential Regulation of Proinflammatory Cytokine Expression by Mitogen-Activated Protein Kinases in Macrophages in Response to Intestinal Parasite Infection

    PubMed Central

    Lim, Mei Xing; Png, Chin Wen; Tay, Crispina Yan Bing; Teo, Joshua Ding Wei; Jiao, Huipeng; Lehming, Norbert

    2014-01-01

    Blastocystis is a common enteric protistan parasite that can cause acute, as well as chronic, infection and is associated with irritable bowel syndrome (IBS). However, the pathogenic status of Blastocystis infection remains unclear. In this study, we found that Blastocystis antigens induced abundant expression of proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), in mouse intestinal explants, in mouse colitis colon, and in macrophages. Further investigation utilizing RAW264.7 murine macrophages showed that Blastocystis treatment in RAW264.7 macrophages induced the activation of ERK, JNK, and p38, the three major groups of mammalian mitogen-activated protein (MAP) kinases that play essential roles in the expression of proinflammatory cytokines. ERK inhibition in macrophages significantly suppressed both mRNA and protein expression of IL-6 and TNF-α and mRNA expression of IL-1β. On the other hand, JNK inhibition resulted in reductions in both c-Jun and ERK activation and significant suppression of all three proinflammatory cytokines at both the mRNA and protein levels. Inhibition of p38 suppressed only IL-6 protein expression with no effect on the expression of IL-1β and TNF-α. Furthermore, we found that serine proteases produced by Blastocystis play an important role in the induction of ERK activation and proinflammatory cytokine expression by macrophages. Our study thus demonstrated for the first time that Blastocystis could induce the expression of various proinflammatory cytokines via the activation of MAP kinases and that infection with Blastocystis may contribute to the pathogenesis of inflammatory intestinal diseases through the activation of inflammatory pathways in host immune cells, such as macrophages. PMID:25156742

  4. Activation of cytokine production by secreted phospholipase A2 in human lung macrophages expressing the M-type receptor.

    PubMed

    Granata, Francescopaolo; Petraroli, Angelica; Boilard, Eric; Bezzine, Sofiane; Bollinger, James; Del Vecchio, Luigi; Gelb, Michael H; Lambeau, Gerard; Marone, Gianni; Triggiani, Massimo

    2005-01-01

    Secreted phospholipases A(2) (sPLA(2)) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA(2)s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA(2)s induced TNF-alpha and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA(2)s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA(2) (bromophenacyl bromide-inactivated human sPLA(2) and the H48Q mutant of the porcine sPLA(2)) were as effective as the catalytically active sPLA(2)s in inducing cytokine production. HLM expressed the M-type receptor for sPLA(2)s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA(2) activity as well as binding to the M-type receptor, suppressed sPLA(2)-induced cytokine production. Incubation of HLM with the sPLA(2)s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA(2)s. In conclusion, two distinct sPLA(2)s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.

  5. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.

    PubMed

    Ichiyama, Kenji; Chen, Tingting; Wang, Xiaohu; Yan, Xiaowei; Kim, Byung-Seok; Tanaka, Shinya; Ndiaye-Lobry, Delphine; Deng, Yuhua; Zou, Yanli; Zheng, Pan; Tian, Qiang; Aifantis, Iannis; Wei, Lai; Dong, Chen

    2015-04-21

    Epigenetic regulation of lineage-specific genes is important for the differentiation and function of T cells. Ten-eleven translocation (Tet) proteins catalyze 5-methylcytosine (5 mC) conversion to 5-hydroxymethylcytosine (5 hmC) to mediate DNA demethylation. However, the roles of Tet proteins in the immune response are unknown. Here, we characterized the genome-wide distribution of 5 hmC in CD4(+) T cells and found that 5 hmC marks putative regulatory elements in signature genes associated with effector cell differentiation. Moreover, Tet2 protein was recruited to 5 hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of Tet2 in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the control of cytokine gene expression in autoimmune disease. Collectively, our findings suggest that Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.

  6. Nuclear Factor of Activated T Cells and Cytokines Gene Expression of the T Cells in AIDS Patients with Immune Reconstitution Inflammatory Syndrome during Highly Active Antiretroviral Therapy

    PubMed Central

    Chen, Heling; Xie, Yirui; Su, Junwei; Huang, Ying; Xu, Lijun; Yin, Michael; Zhou, Qihui

    2017-01-01

    Background. The etiology of immune reconstitution inflammatory syndrome (IRIS) in AIDS patients after the initiation of HAART remains unknown. Several researches indicated that the development of IRIS is associated with the production and variation of cytokines, whose gene expression are closely related to the Ca2+/CN-nuclear factor of activated T cells (NFAT) pathway. Methods. We studied the expression of NFAT isoforms and their major target cytokines genes in peripheral blood CD3+ T cells of subjects through fluorescence quantitative PCR and explored the expression changes of these genes before and after HAART. Results. After the initiation of HARRT, NFAT1, IL-6, and IL-8 gene expression showed a reversal trend in the CD3+ T cells of the IRIS group and changed from low expression before HARRT to high expression after HARRT. In particular, the relative gene expression of NFAT1 was markedly higher compared with the other three isoforms. The IRIS group also showed higher NFAT4, NFAT2, NFAT1, IL-1β, IL-10, IL-2, IL-18, and TNF-α gene expression than the non-IRIS group. Conclusion. This study suggested that high expression levels of IL-2, IL-6, IL-8, TNF-α, IL-1β, IL-10, IL-12, and IL-18 can predict the risk of IRIS. The increased expression of NFAT1 and NFAT4 may promote the expression of cytokines, such as IL-6, IL-8, and TNF-α, which may promote the occurrence of IRIS. PMID:28316373

  7. Decreased Gaq expression in T cells correlates with enhanced cytokine production and disease activity in systemic lupus erythematosus

    PubMed Central

    Luo, Jiao; Yu, Bing; Qian, Hongyan; Duan, Lihua; Shi, Guixiu

    2016-01-01

    Aberrant T cell immune responses appear central to the development of systemic lupus erythematosus (SLE). We previously reported that Gαq, the alpha subunit of Gq, regulates T and B cell immune responses, promoting autoimmunity. To address whether Gαq contributes to the pathogenesis of SLE, Gαq mRNA expression was studied using real time-PCR in PBMCs and T cells from SLE patients as well as age- and sex-matched healthy controls. Our results showed that Gαq mRNA expression was decreased in PBMCs and T cells from SLE patients compared to healthy individuals. Correlation analyses showed that Gαq expression in T cells from SLE patients was associated with disease severity (as per SLE Disease Activity Index), the presence of lupus nephritis, and expression of Th1, Th2 and Th17 cytokines. In keeping with clinical results, T-helper cell subsets (Th1, Th2 and Th17) were over-represented in Gαq knockout mice. In addition, Gαq expression in SLE T cells was negatively correlated with the expression of Bcl-2, an anti-apoptotic gene, and positively correlated with the expression of Bax, a pro-apoptotic gene. These data suggest that reduced Gαq levels in T cells may promote enhanced and prolonged T cell activation, contributing to the clinical manifestations of SLE. PMID:27965465

  8. Surface protein Esp enhances pro-inflammatory cytokine expression through NF-κB activation during enterococcal infection.

    PubMed

    Zou, Jun; Shankar, Nathan

    2016-01-01

    Enterococcal surface protein (Esp) is encoded on a pathogenicity island in Enterococcus faecalis and E. faecium and is involved in biofilm formation and binding to epithelial cells. In this study, using Esp-expressing E. faecalis MMH594 and its isogenic Esp-deficient strain, as well as purified Esp, we show that Esp is sufficient for activation of NF-κB and the subsequent production of pro-inflammatory cytokines IL-1β and TNF-α in macrophages in vitro. In a mouse peritonitis model, we also show that mice infected with Esp-expressing E. faecalis showed comparatively higher levels of cytokines TNF-α, IL-1β and IL-6 in peritoneal fluid, and IL-6 in serum. Moreover, neutrophil infiltration and tissue damage in the liver was higher in the mice infected with the Esp-expressing strain compared with mice infected with the Esp-deficient mutant. These results add Esp to the growing list of enterococcal virulence factors that can modulate inflammation during infection and has implications for enterococcal pathogenesis.

  9. Ghrelin Induces Leptin Resistance by Activation of Suppressor of Cytokine Signaling 3 Expression in Male Rats: Implications in Satiety Regulation

    PubMed Central

    Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin; Zhou, ShiYi; Lu, Yuanxu; Song, Il

    2014-01-01

    The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) –bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior. PMID:25060362

  10. Ghrelin induces leptin resistance by activation of suppressor of cytokine signaling 3 expression in male rats: implications in satiety regulation.

    PubMed

    Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin; Zhou, ShiYi; Lu, Yuanxu; Song, Il; Owyang, Chung

    2014-10-01

    The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) -bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior.

  11. Cold weather exercise and airway cytokine expression.

    PubMed

    Davis, Michael S; Malayer, Jerry R; Vandeventer, Lori; Royer, Christopher M; McKenzie, Erica C; Williamson, Katherine K

    2005-06-01

    Athletes who perform repeated exercise while breathing cold air have a high prevalence of asthmalike chronic airway disease, but the mechanism linking such activity to airway inflammation is unknown. We used a novel animal model (exercising horses) to test the hypothesis that exercise-induced chronic airway disease is caused by exposure of intrapulmonary airways to unconditioned air, resulting in the upregulation of cytokine expression. Bronchoalveolar lavage fluid (BALF) was obtained from eight horses 5 h after submaximal exercise while they breathed room temperature or subfreezing air in a random crossover design. BALF total and differential nucleated cell counts were determined, and relative cytokine mRNA expression in BALF nucleated cells was quantified by real-time RT-PCR using primer and probe sequences specific for equine targets. There were no significant changes in total or differential cell concentrations between BALF recovered after warm and cold air exercise, although there was a strong trend toward increased concentrations of airway epithelial cells after cold air exercise (P = 0.0625). T(H)2 cytokines IL-4, IL-5, and IL-10 were preferentially upregulated after cold air exercise 12-, 9-, and 10-fold, respectively, compared with warm air exercise. Other cytokines (IL-2 and IL-6) were upregulated to a lesser extent (6- and 3-fold, respectively) or not at all (IL-1, IL-8, IFN-gamma, and TNF-alpha). These results suggest that cold weather exercise can lead to asthmalike airway disease through the local induction of cytokines typical of the T(H)2 phenotype.

  12. Local expression of antiinflammatory cytokines in cancer.

    PubMed Central

    Yamamura, M; Modlin, R L; Ohmen, J D; Moy, R L

    1993-01-01

    To characterize the nature of the local cytokine response to cancer, we chose to investigate cytokine patterns in biopsy specimens of basal cell carcinoma (BCC). We hypothesized that a distinct pattern of local cytokine production may be characteristic of BCC, a neoplasia of epidermis, in comparison to the pattern of seborrheic keratosis (SK), a benign growth of epidermis. We analyzed cytokine mRNAs in BCC versus SK by performing polymerase chain reaction on mRNA derived from biopsy specimens. The mRNAs encoding cytokines for IL-4, IL-5, IL-10, and granulocyte macrophage colony-stimulating factor were strongly expressed in BCC lesions and weakly expressed in SK lesions. Conversely, IL-2, IFN-gamma, and lymphotoxin mRNAs were strongly expressed in SK lesions and weakly expressed in BCC lesions. The response to malignancy, BCC, was typified by cytokines characteristic of murine TH2 cells. This cytokine pattern favors humoral immunity with concomitant immunosuppression of cell-mediated immune responses. In comparison, the response to the benign growth, SK, was typified by cytokines characteristic of murine TH1 cells that favor cell-mediated immune reactions. The findings of a distinct cytokine pattern in skin cancer provide a framework to develop strategies for immunologic intervention. Images PMID:8450029

  13. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue.

    PubMed

    Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H

    2015-10-01

    Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation.

  14. Serum Cytokines Th1, Th2, and Th17 Expression Profiling in Active Lupus Nephritis-IV: From a Southern Chinese Han Population

    PubMed Central

    Wang, Yin; Hu, Weiping; Wang, Ning; Sun, Qingyi; Liu, Qingyan; Liu, Xiaocong; Hou, Xianghua; Cheng, Ao

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by aberrant T cell immune response. Diffuse proliferative lupus nephritis (LN-IV) is the most common, severe, and active form of lupus nephritis. In this study, we investigated the production of Th1, Th2, and Th17 cytokines in prediction of active form of LN-IV. ProcartaPlex multiplex immunoassays panels were used for detection of serum Th1, Th2, and Th17 cytokines profiling. Th1 and Th17 cytokines (IL-18, IFN-γ, IL-12p70, IL-6, and IL-17A) were considerably expressed in the serum of lupus nephritis IV patients in comparison to the healthy control. However, only IL18 and IL6 were higher in class IV versus class III lupus nephritis. Importantly, the ratios of Th1/Th2 (IL-18/IL-4) and Th17/Th2 (IL-17A/IL-4) were significantly elevated in LN-IV when compared with LN-III, LN-V, and healthy controls. Consistently, the serum cytokines IL-18, IL-17A, and IFN-γ were markedly expressed in LN-IV patient glomeruli and interstitial tissue compared to other classes of LN by IHC. ROC further suggests that IL-18 was a potential marker for LN-IV. The data from our study suggests that the early detection and quantification of these cytokines may help in prediction of active form of LN-IV. PMID:27738386

  15. Plasma from hemorrhaged mice activates CREB and increases cytokine expression in lung mononuclear cells through a xanthine oxidase-dependent mechanism.

    PubMed

    Shenkar, R; Abraham, E

    1996-02-01

    Hemorrhage rapidly increases plasma xanthine oxidase levels as well as the expression of proinflammatory and immunoregulatory cytokines in the lungs. To determine the role of circulating xanthine oxidase (XO), as well as other plasma factors, in affecting pulmonary cytokine expression, we conducted studies in which plasma from hemorrhaged mice was transferred into unhemorrhaged recipient mice. Administration of posthemorrhage plasma to recipient mice increased the levels of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta 1 (TGF-beta 1) in lung mononuclear cells. No enhancement of mRNA levels for these cytokines was found in the lungs of mice given allopurinol-treated posthemorrhage plasma or fed a tungsten-enriched, XO-depleting diet prior to transfer of posthemorrhage plasma. Among the nuclear transcriptional regulatory factors examined, only the cyclic AMP response-element binding protein (CREB) was activated in nuclear extracts from lung mononuclear cells of mice that were given posthemorrhage plasma. No activation of nuclear factor-kappa B (NF-kappa B), nuclear factor interleukin 6 (NF-IL6), activating protein-1 (AP-1), or serum protein-1 (SP-1) was found. These results suggest that the mechanism for hemorrhage-induced increases in pulmonary cytokine expression is by activation of the enhancer CREB through a tissue XO-dependent pathway initiated by plasma-borne mediators.

  16. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs.

    PubMed

    Hu, C H; Xiao, K; Luan, Z S; Song, J

    2013-03-01

    Although weaning stress has been reported to impair intestinal barrier function, the mechanisms have not yet been elucidated. In the present study, the intestinal morphology and permeability and mRNA expressions of tight junction proteins and cytokines in the intestine of piglets during the 2 wk after weaning were assessed. The phosphorylated (activated) ratios of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular regulated kinases (ERK1/2) were determined to investigate whether mitogen-activated protein kinase (MAPK) signaling pathways are involved in the early weaning process. A shorter villus and deeper crypt were observed on d 3 and 7 postweaning. Although damaged intestinal morphology recovered to preweaning values on d 14 postweaning, the intestinal mucosal barrier, which was reflected by transepithelial electrical resistance (TER) and paracellular flux of dextran (4 kDa) in the Ussing chamber and tight junction protein expression, was not recovered. Compared with the preweaning stage (d 0), jejunal TER and mRNA expressions of occludin and claudin-1 on d 3, 7, and 14 postweaning and Zonula occludens-1 (ZO-1) mRNA on d 3 and 7 postweaning were reduced, and paracellular flux of dextran on d 3, 7, and 14 postweaning was increased. An increase (P < 0.05) of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA on d 3 and d 7 postweaning and an increase (P < 0.05) of interferon-γ (IFN-γ) mRNA on d 3 postweaning were observed compared with d 0. No significant increase of transforming growth factor β1 (TGF-β1) and interleukin-10 (IL-10) mRNA after weaning was observed. The phosphorylated (activated) ratios of JNK and p38 on d 3 and 7 postweaning and the phosphorylated ratio of ERK1/2 on d 3 postweaning were increased (P < 0.05) compared with d 0. The results indicated that early weaning induced sustained impairment in the intestinal barrier, decreased mRNA expression of tight junction proteins, and upregulated the expression of proinflammatory

  17. High levels of acetoacetate and glucose increase expression of cytokines in bovine hepatocytes, through activation of the NF-κB signalling pathway.

    PubMed

    Li, Yu; Ding, Hongyan; Wang, Xichun; Liu, Lei; Huang, Dan; Zhang, Renhe; Guo, Lihui; Wang, Zhe; Li, Xiaobing; Liu, Guowen; Wu, Jinjie; Li, Xinwei

    2016-02-01

    Elevated levels of blood interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) increase insulin resistance and result in inflammation. It is not clear whether elevated blood level of acetoacetate (ACAC) and decreased blood level of glucose, which are the predominant characteristics of clinical biochemistry in ketotic dairy cows, increase proinflammatory cytokines and subsequent inflammation. The objective of this study was to test the hypothesis that ACAC and glucose activate the NF-κB signalling pathway to regulate cytokines expression in bovine hepatocytes. Bovine hepatocytes were cultured with ACAC (0-4.8 mm) and glucose (0-5.55 mm) with or without NF-κB inhibitor PDTC for 24 h. The secretion and mRNA levels of cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The NF-κB signalling pathway activation was evaluated by western blotting. Results showed that the secretion and expression of IL-1β, IL-6 and TNF-α increased in an ACAC dose-dependent manner. Additionally, there was an increase in the secretion and mRNA expression of these three cytokines in glucose treatment group, which increased significantly when the glucose concentrations exceed 3.33 mm. Furthermore, both ACAC and glucose upregulated NF-κB p65 protein expression and IκBα phosphorylation levels. However, these effects were reduced by PDTC. These results demonstrate that elevated levels of ACAC and glucose increase the synthesis and expression of proinflammatory factors by activating NF-κB signalling pathway in hepatocytes, which may contribute to inflammation injury in ketotic dairy cows.

  18. ICAM-1-induced expression of proinflammatory cytokines in astrocytes: involvement of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways.

    PubMed

    Lee, S J; Drabik, K; Van Wagoner, N J; Lee, S; Choi, C; Dong, Y; Benveniste, E N

    2000-10-15

    ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.

  19. Cytokine-mediated induction of endothelial adhesion molecule and histocompatibility leukocyte antigen expression by cytomegalovirus-activated T cells.

    PubMed Central

    Waldman, W. J.; Knight, D. A.

    1996-01-01

    Cytomegalovirus (CMV) has been associated with allograft rejection and transplantation-associated arteriosclerosis. CMV infects endothelium, the interface between allograft tissue and the host immune system; however, mechanisms by which such interaction might exacerbate the rejection process remain unresolved. Here we test the hypothesis that host immune activity, triggered by CMV-infected graft endothelial cells (ECs), can result in the production of cytokines capable of enhancing the alloimmunogenicity of nearby uninfected endothelia. To model these phenomena in vitro, confluent monolayers of ECs derived from human umbilical vein or adult gonadal vein were incubated 5 days beneath trans-well culture inserts containing CMV-seropositive or CMV-seronegative donor-derived CD3+ or CD4+ T cells alone or in combination with CMV-infected or uninfected allogeneic ECs. The extent of T cell proliferation was determined by [3H]thymidine labeling of trans-well contents after transfer to microtiter plates. Endothelial responses to soluble factors elaborated by CMV-activated T cells were determined by immunohistochemical staining and immunofluorescence flow cytometric analysis of underlying EC monolayers. Results of experiments with CMV-seropositive donor-derived CD4+ T cells demonstrated enhancement of ICAM-1 and histocompatibility leukocyte antigen class I, as well as induction of histocompatibility leukocyte antigen DR on ECs incubated beneath T cell/EC/CMV trans-well co-cultures. Total (CD3+) T cells co-cultured with EC/CMV induced VCAM-1 as well. Furthermore, [3H]thymidine incorporation by these T cells indicated a strong proliferative response. Endothelial responses to T cells alone or in combination with uninfected ECs were minimal, and T cells cultured under these conditions showed little proliferative activity. Similarly, little or no endothelial responses were apparent in monolayers beneath trans-wells containing T cells isolated from CMV-seronegative individuals

  20. Effects of Glycated Whey Protein Concentrate on Pro-inflammatory Cytokine Expression and Phagocytic Activity in RAW264.7 Macrophages.

    PubMed

    Chun, Su-Hyun; Lee, Hyun Ah; Lee, Keon Bong; Kim, Sae Hun; Park, Kun-Young; Lee, Kwang-Won

    2016-01-01

    The aim of this study was to determine the stimulatory effects of Maillard reaction, a non-enzymatic browning reaction on the expression of pro-inflammatory cytokines and phagocytic activity induced by whey protein concentrate (WPC). Glycated WPC (G-WPC) was prepared by a reaction between WPC and the lactose it contained. The fluorescence intensity of G-WPC dramatically increased after one day, and high molecular weight complexes formed via the Maillard reaction were also observed in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles. G-WPC demonstrated immunomodulatory effects, including stimulation of increased nitric oxide production and cytokine expressions (i.e., tumor necrosis factor-α, interleukin (IL)-1β, and IL-6), compared to WPC. Furthermore, the phagocytic activity of RAW264.7 cells was significantly increased upon treatment with G-WPC, compared to WPC. Therefore, we suggest that G-WPC can be utilized as an improved dietary source for providing immune modulating activity.

  1. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    PubMed

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  2. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  3. Observing Anti-inflammatory and Anti-nociceptive Activities of Glycyrrhizin Through Regulating COX-2 and Pro-inflammatory Cytokines Expressions in Mice.

    PubMed

    Wang, Hong-Ling; Li, Yu-Xiang; Niu, Ya-Ting; Zheng, Jie; Wu, Jing; Shi, Guang-Jiang; Ma, Lin; Niu, Yang; Sun, Tao; Yu, Jian-Qiang

    2015-12-01

    The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive activities of glycyrrhizin (GL) in mice and to explore the possible related mechanisms. Xylene-induced ear edema, carrageenan-induced paw edema and acetic acid-induced vascular permeability test were used to investigate the anti-inflammatory activities of GL in mice. Anti-nociceptive effects of GL were assessed by using acetic acid-induced writhing, hot plate test and formalin test, as well as evaluation of spontaneous locomotor activity and motor performance. The mRNA expression of pro-inflammatory cytokines (such as TNF-α, IL-6 and iNOS) and the protein expression of cyclooxygenase-2 (COX-2) were explored by using real-time fluorogenic PCR and Western blot, respectively. The results showed that GL significantly reduced xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced vascular permeation. Additionally, GL significantly inhibited the nociceptions induced by acetic acid and formalin. However, the nociceptions could not be decreased by GL in the hot plate test, and GL did not affect spontaneous locomotor activity and motor performance. The expression levels of TNF-α, IL-6, iNOS and COX-2 were significantly downregulated by GL. In conclusion, GL exerts significant anti-inflammatory and analgesic activities by attenuating the expression levels of TNF-α, IL-6, iNOS and COX-2.

  4. The proinflammatory cytokines interleukin-1α and tumor necrosis factor α promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes.

    PubMed

    Caglič, Dejan; Repnik, Urška; Jedeszko, Christopher; Kosec, Gregor; Miniejew, Catherine; Kindermann, Maik; Vasiljeva, Olga; Turk, Vito; Wendt, K Ulrich; Sloane, Bonnie F; Goldring, Mary B; Turk, Boris

    2013-02-01

    Osteoarthritis and rheumatoid arthritis are destructive joint diseases that involve the loss of articular cartilage. Degradation of cartilage extracellular matrix is believed to occur due to imbalance between the catabolic and anabolic processes of resident chondrocytes. Previous work has suggested that various lysosomal cysteine cathepsins participate in cartilage degeneration; however, their exact roles in disease development and progression have not been elucidated. In order to study degradation processes under conditions resembling the in vivo milieu of the cartilage, we cultivated chondrocytes on a type II collagen-containing matrix. Stimulation of the cultivated chondrocytes with interleukin-1α and/or tumor necrosis factor α resulted in a time-dependent increase in cathepsin S expression and induced its secretion into the conditioned media. Using a novel bioluminescent activity-based probe, we were able to demonstrate a significant increase in proteolytic activity of cathepsin S in the conditioned media of proinflammatory cytokine-stimulated chondrocytes. For the first time, cathepsin S was demonstrated to be secreted from chondrocytes upon stimulation with the proinflammatory cytokines, and displayed proteolytic activity in culture supernatants. Its stability at neutral pH and potent proteolytic activity on extracellular matrix components mean that cathepsin S may contribute significantly to cartilage degradation and may thus be considered a potential drug target in joint diseases.

  5. Transcription Factors Regulating Inflammatory Cytokine Production Are Differentially Expressed in Peripheral Blood Mononuclear Cells of Behçet Disease Depending on Disease Activity

    PubMed Central

    Woo, Min-Yeong; Yun, Su Jin; Lee, Mi Jin; Kim, Kyongmin

    2017-01-01

    Background Behçet disease (BD) is a relapsing inflammatory disease with increased production of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs); however, the underlying molecular mechanisms are not well known. Objective To analyze whether the differential expression of transcription factors is involved in the increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production by PBMCs of BD patients compared to healthy controls (HCs). Methods Expression of transcription factors was examined by real-time reverse transcriptase-polymerase chain reaction and western blotting. Cytokine production by CD11b+ cells transfected with siRNAs against transcription factors was measured by enzyme-linked immunosorbent assay. Results In the absence of lipopolysaccharide stimulation, the transcript level of CCAAT-enhancer-binding proteins (C/EBP) β was increased in PBMCs from patients with active BD compared to that in PBMCs from patients with stable BD. The C/EBPδ transcript level was higher in PBMCs from patients with active BD than in those from HCs. The activating transcription factor 3 (ATF3) transcript level was increased in PBMCs from patients with stable BD compared to that in PBMCs from HCs. siRNAs targeting C/EBPβ and C/EBPδ significantly reduced the production of IL-6 and TNF-α in lipopolysaccharide-stimulated CD11b+ cells from patients with BD as well as from HCs. Conclusion We found differential expression of C/EBPβ, C/EBPδ, and ATF3 in PBMCs from patients with BD depending on disease activity, indicating the involvement of these molecules in BD pathogenesis.

  6. Pseuderanthemum palatiferum leaf extract inhibits the proinflammatory cytokines, TNF-α and IL-6 expression in LPS-activated macrophages.

    PubMed

    Sittisart, Patcharawan; Chitsomboon, Benjamart; Kaminski, Norbert E

    2016-11-01

    The anti-inflammatory potential and underlying mechanisms of an ethanol extract of Pseuderanthemum palatiferum (EEP) leaves was investigated using LPS-activated macrophages. Our results show EEP produced a concentration-dependent suppression of TNF-α and IL-6 secretion by LPS-activated mouse peritoneal macrophages. EEP also suppressed LPS-induced TNF-α and IL-6 protein and mRNA levels in mouse-derived myeloid cell line RAW264.7. To further elucidate the molecular mechanisms responsible for impaired TNF-α and IL-6 regulation by EEP, the activation of transcription factors, NF-κB, C/EBP, and AP-1, was monitored using electrophoretic mobility shift assays. EEP suppressed LPS-induced NF-κB DNA binding activity within both the TNF-α and IL-6 promoters in RAW264.7 cells with impairment being more pronounced in the IL-6 promoter. In addition, EEP exhibited a concentration-dependent suppression of C/EBP and AP-1 DNA binding activity within the IL-6 promoter. Concordantly, IL-6 luciferase promoter reporter activity was also suppressed by EEP in transiently transfected RAW264.7 cells, upon LPS activation. EEP analysis by GC-MS and HPLC DAD-MSD revealed the presence of β-sitosterol and various polyphenols, respectively, which are known to possess anti-inflammatory activity. Collectively, these results suggest that the anti-inflammatory effects of EEP are mediated, at least in part, by modulating TNF-α and IL-6 expression through impairment of NF-κB, C/EBP, and AP-1 activity.

  7. Comparison of interferon-γ-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-22-expressing granulocytes and proinflammatory cytokines during latent and active tuberculosis infection.

    PubMed

    Cowan, J; Pandey, S; Filion, L G; Angel, J B; Kumar, A; Cameron, D W

    2012-02-01

    In this study, we investigated the role and expression of T helper type 17 (Th17) cells and Th17 cytokines in human tuberculosis. We show that the basal proportion of interferon (IFN)-γ-, interleukin (IL)-17- and IL-22-expressing CD4(+) T cells and IL-22-expressing granulocytes in peripheral blood were significantly lower in latently infected healthy individuals and active tuberculosis patients compared to healthy controls. In contrast, CD4(+) T cells expressing IL-17, IL-22 and IFN-γ were increased significantly following mycobacterial antigens stimulation in both latent and actively infected patients. Interestingly, proinflammatory IFN-γ and tumour necrosis factor (TNF)-α were increased following antigen stimulation in latent infection. Similarly, IL-1β, IL-4, IL-8, IL-22 and TNF-α were increased in the serum of latently infected individuals, whereas IL-6 and TNF-α were increased significantly in actively infected patients. Overall, we observed differential induction of IL-17-, IL-22- and IFN-γ-expressing CD4(+) T cells, IL-22-expressing granulocytes and proinflammatory cytokines in circulation and following antigenic stimulation in latent and active tuberculosis.

  8. Cytokine gene expression and NF-kappaB activation following infection of intestinal epithelial cells with Eimeria bovis or Eimeria alabamensis in vitro.

    PubMed

    Alcala-Canto, Y; Ibarra-Velarde, F

    2008-03-01

    In cattle, Eimeria produces clinical disease with different degrees of severity, depending on the dominant species. Eimeria bovis triggers severe intestinal damage, while E. alabamensis causes minimal damage. Cytokines and other factors derived from epithelial cells play important roles in inflammatory and immune responses in intestinal tissue. This study aimed to obtain a detailed view of IFN-gamma and IL-4 mRNA expression as well as of activation of NF-kappaB p50 and p65 subunits induced by E. bovis or E. alabamensis in intestinal epithelial cells by means of a RT-PCR assay and a NF-kappaB p50/p65 ELISA-based kit, respectively. Our results demonstrate that infection by both Eimeria species enhances IL-4 mRNA expression in intestinal cells. However, IL-4 was expressed more intensely in cells incubated with E. bovis whereas IFN-gamma levels were higher and detected at an earlier time in cells infected with E. alabamensis. NF-kappaB was activated in infected cells irrespective of species, yet the activity of the p50 subunit was significantly higher in cells incubated with E. bovis. Our results suggest that the intensity of host-cell responses triggered by these two Eimeria species could be considered as potential determinants of pathogenicity.

  9. Suppressor of cytokine signaling 2 (SOCS2) negatively regulates the expression of antimicrobial peptides by affecting the Stat transcriptional activity in shrimp Marsupenaeus japonicus.

    PubMed

    Sun, Jie-Jie; Lan, Jiang-Feng; Xu, Ji-Dong; Niu, Guo-Juan; Wang, Jin-Xing

    2016-09-01

    The suppressor of cytokine signaling (SOCS) family is a kind of negative regulators in the Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway in mammals and Drosophila. In kuruma shrimp, Marsupenaeus japonicus, SOCS2 is identified and its expression can be stimulated by peptidoglycan and polycytidylic acid. However, if SOCS2 participates in regulating Jak/Stat pathway in shrimp still needs further study. In this study, SOCS2 with Src homology 2 domain and SOCS box was identified in kuruma shrimp, M. japonicus. SOCS2 existed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine, the expression of SOCS2 was upregulated significantly in the hemocytes and intestine of shrimp challenged with Vibrio anguillarum at 6 h. To analyze SOCS2 function in shrimp immunity, bacterial clearance and survival rate were analyzed after knockdown of SOCS2 in shrimp challenged with V. anguillarum. Results showed that bacterial clearance increased, and the survival rate improved significantly comparing with controls. The SOCS2 was expressed in Escherichia coli and the recombinant SOCS2 was injected into shrimp, and Stat phosphorylation and translocation were analyzed. The result showed that "overexpression" of SOCS2 declined Stat phosphorylation level and inhibited Stat translocation into the nucleus. After knockdown of SOCS2 in shrimp prior to V. anguillarum infection, the expression level of antimicrobial peptides, including anti-lipopolysaccharide factors C1, C2 and D1, and Crustin I was upregulated significantly, and the expression of the AMPs was declined after recombinant SOCS2 injection. The SOCS2 expression was also decreased in Stat-knockdown shrimp challenged by V. anguillarum at 6 and 12 h. Therefore, SOCS2 negatively regulates the AMP expression by inhibiting Stat phosphorylation and translocation into nucleus in shrimp, meanwhile, SOCS2 expression was also regulated by Jak/Stat pathway.

  10. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  11. Suppression of cytokine-mediated complement factor gene expression through selective activation of the Ah receptor with 3',4'-dimethoxy-α-naphthoflavone.

    PubMed

    Murray, Iain A; Flaveny, Colin A; Chiaro, Christopher R; Sharma, Arun K; Tanos, Rachel S; Schroeder, Jennifer C; Amin, Shantu G; Bisson, William H; Kolluri, Siva K; Perdew, Gary H

    2011-03-01

    We have characterized previously a class of aryl hydrocarbon receptor (AHR) ligand termed selective AHR modulators (SAhRMs). SAhRMs exhibit anti-inflammatory properties, including suppression of cytokine-mediated acute phase genes (e.g., Saa1), through dissociation of non-dioxin-response element (DRE) AHR activity from DRE-dependent xenobiotic gene expression. The partial AHR agonist α-naphthoflavone (αNF) mediates the suppressive, non-DRE dependent effects on SAA1 expression and partial DRE-mediated CYP1A1 induction. These observations suggest that αNF may be structurally modified to a derivative exhibiting only SAhRM activity. A screen of αNF derivatives identifies 3',4'-dimethoxy-αNF (DiMNF) as a candidate SAhRM. Competitive ligand binding validates DiMNF as an AHR ligand, and DRE-dependent reporter assays with quantitative mRNA analysis of AHR target genes reveal minimal agonist activity associated with AHR binding. Consistent with loss of agonist activity, DiMNF fails to promote AHR binding to DRE probes as determined through electromobility shift assay. Importantly, mRNA analysis indicates that DiMNF retains the suppressive capacity of αNF regarding cytokine-mediated SAA1 expression in Huh7 cells. Interestingly, predictive docking modeling suggests that DiMNF adopts a unique orientation within the AHR ligand binding pocket relative to αNF and may facilitate the rational design of additional SAhRMs. Microarray studies with a non-DRE binding but otherwise functional AHR mutant identified complement factor C3 as a potential SAhRM target. We confirmed this observation in Huh7 cells using 10 μM DiMNF, which significantly repressed C3 mRNA and protein. These data expand the classes of AHR ligands exerting DRE-independent anti-inflammatory SAhRM activity, suggesting SAhRMs may have application in the amelioration of inflammatory disorders.

  12. Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells.

    PubMed

    Shen, Ye; Xie, Chen; Gu, Yangshun; Li, Xiuyi; Tong, Jianping

    2016-04-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the aged people. The latest systemic review of epidemiological investigations revealed that excessive light exposure increases the risk of AMD. With the drastically increasing use of high-energy light-emitting diodes (LEDs) light in our domestic environment nowadays, it is supposed to pose a potential oxidative threat to ocular health. Retinal pigment epithelium (RPE) is the major ocular source of pathological cytokines, which regulate local inflammation and angiogenesis. We hypothesized that high-energy LED light might disrupt the pathological cytokine expression of retinal pigment epithelium (RPE), contributing to the pathogenesis of AMD. Primary human RPE cells were isolated from eyecups of normal eye donors and seeded into plate wells for growing to confluence. Two widely used multichromatic white light-emitting diodes (LEDs) with correlated color temperatures (CCTs) of 2954 and 7378 K were used in this experiment. The confluent primary RPE cells were under white LEDs light exposure until 24 h. VEGF-A, IL-6, IL-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Activation of mitogen-activated protein kinases (MAPKs), Akt, Janus kinase (JAK)2 and Nuclear factor (NF)-κB signal pathways after LEDs illumination were evaluated by western blotting analysis. The level of reactive oxygen species (ROS) using chloromethyl- 2',7'-dichlorodihydrofluorescein diacetate. Inhibitors of relevant signal pathways and anti-oxidants were added to the primary RPE cells before LEDs illumination to evaluate their biological functions. We found that 7378 K light, but not 2954 K upregulated the VEGF-A, IL-6, IL-8 and downregulated MCP-1 proteins and mRNAs levels in a time-dependent manner. In parallel, initial activation of MAPKs and NF-κB signal pathways were also observed after 7378 K light exposure. Mechanistically, antioxidants for eliminating reactive oxygen

  13. Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation.

    PubMed

    Kim, Young Il; Park, Seung-Won; Kang, In Jung; Shin, Min Kyung; Lee, Mu-Hyoung

    2015-10-01

    Activins are dimeric growth and differentiation factors that belong to the transforming growth factor (TGF)-β superfamily of structurally related signaling proteins. In the present study, we examined the mechanisms through which activin regulates the lipopolysaccharide (LPS)-induced transcription of Toll-like receptors (TLRs), cytokines and inducible nitric oxide synthase (iNOS) in human melanocytes, as well as the involvement of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. Cell proliferation was analyzed by cell viability assay, mRNA expression was detected by RT-qPCR, and protein expression was measured by western blot analysis. LPS increased the mRNA expression of TLRs (TLR1-10) and cytokines [interleukin (IL)-1β, IL-6, IL-8 and TNF-α], as well as the mRNA and protein expression of iNOS. Activin decreased the LPS-induced TLR and cytokine mRNA expression, as well as the LPS-induced iNOS mRNA and protein expression. In addition, activin suppressed NF-κB p65 activation and blocked inhibitor of NF-κB (IκBα) degradation in LPS-stimulated melanocytes, and reduced LPS-induced p38 MAPK and MEK/ERK activation. On the whole, our results demonstrated that activin inhibited TLR and cytokine expression in LPS-activated normal human melanocytes and suppressed LPS-induced iNOS gene expression. Moreover, the anti-inflammatory effects of activin were shown to be mediated through the suppression of NF-κB and MAPK signaling, resulting in reduced TLR and iNOS expression, and in the inhibition of inflammatory cytokine expression.

  14. Mitogen-activated protein kinases and phosphatidylinositol 3-kinase are involved in Prevotella intermedia-induced proinflammatory cytokines expression in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; Zhang, Ming; He, Jian-Jun; Wu, Jun-Zheng

    2009-08-28

    Chronic periodontitis is an inflammatory disease affecting periodontal connective tissues and alveolar bone. Proinflammatory mediators induced by periodontal pathogens play vital roles in the initiation and progression of the disease. In this study, we examined whether Prevotella intermedia induces proinflammatory cytokines expression in human periodontal ligament cells (hPDLs). The mRNA expression and protein production were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbant assay (ELISA) respectively. P. intermedia treatment dose- and time-dependently increased IL-6, IL-8 and M-CSF, but not IL-1beta and TNF-alpha mRNA expression and protein secretion. Preincubation of hPDLs with extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 kinase and phosphatidylinositol 3-kinase (PI3K) inhibitors PD98059, SP600125, SB203580 and LY294002 resulted in significant reduction in P. intermedia-induced IL-6, IL-8 and M-CSF expression. Blocking the synthesis of prostaglandin E(2) (PGE(2)) by indomethacin also abolished the stimulatory effects of P. intermedia on cytokines expression. Our results indicate that P. intermedia induces proinflammatory cytokines through MAPKs and PI3K signaling pathways, and PGE(2) is involved in the P. intermedia-induced proinflammatory cytokines upregulation.

  15. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins.

    PubMed

    Ledesma-Soto, Yadira; Callejas, Blanca E; Terrazas, César A; Reyes, Jose L; Espinoza-Jiménez, Arlett; González, Marisol I; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R; Terrazas, Luis I

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins.

  16. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins

    PubMed Central

    Ledesma-Soto, Yadira; Callejas, Blanca E.; Terrazas, César A.; Reyes, Jose L.; Espinoza-Jiménez, Arlett; González, Marisol I.; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E.; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R.; Terrazas, Luis I.

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins. PMID:26090422

  17. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    SciTech Connect

    Liu, Yanzhen; Mei, Chenfang; Liu, Hao; Wang, Hongsheng; Zeng, Guoqu; Lin, Jianhui; Xu, Meiying

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  18. Simultaneous analysis of T helper subsets (Th1, Th2, Th9, Th17, Th22, Tfh, Tr1 and Tregs) markers expression in periapical lesions reveals multiple cytokine clusters accountable for lesions activity and inactivity status

    PubMed Central

    ARAUJO-PIRES, Ana Claudia; FRANCISCONI, Carolina Favaro; BIGUETTI, Claudia Cristina; CAVALLA, Franco; ARANHA, Andreza Maria Fabio; LETRA, Ariadne; TROMBONE, Ana Paula Favaro; FAVERI, Marcelo; SILVA, Renato Menezes; GARLET, Gustavo Pompermaier

    2014-01-01

    Previous studies demonstrate that the balance between pro- and anti-inflammatory mediators determines the stable or progressive nature of periapical granulomas by modulating the balance of the osteoclastogenic factor RANKL and its antagonist OPG. However, the cytokine networks operating in the development of periapical lesions are quite more complex than what the simple pro- versus anti-inflammatory mediators' paradigm suggests. Here we simultaneously investigated the patterns of Th1, Th2, Th9, Th17, Th22, Thf, Tr1 and Tregs cytokines/markers expression in human periapical granulomas. Methods The expression of TNF-α, IFN-γ, IL-17A, IL23, IL21, IL-33, IL-10, IL-4, IL-9, IL-22, FOXp3 markers (via RealTimePCR array) was accessed in active/progressive (N=40) versus inactive/stable (N=70) periapical granulomas (as determined by RANKL/OPG expression ratio), and also to compare these samples with a panel of control specimens (N=26). A cluster analysis of 13 cytokine levels was performed to examine possible clustering between the cytokines in a total of 110 granulomas. Results The expression of all target cytokines was higher in the granulomas than in control samples. TNF-α, IFN-γ, IL-17A and IL-21 mRNA levels were significantly higher in active granulomas, while in inactive lesions the expression levels of IL-4, IL-9, IL-10, IL-22 and FOXp3 were higher than in active granulomas. Five clusters were identified in inactive lesion groups, being the variance in the expression levels of IL-17, IL-10, FOXp3, IFN-γ, IL-9, IL-33 and IL-4 statistically significant (KW p<0.05). Three clusters were identified in active lesions, being the variance in the expression levels of IL-22, IL-10, IFN-γ, IL-17, IL-33, FOXp3, IL-21 and RANKL statistically significant (KW p<0.05). Conclusion There is a clear dichotomy in the profile of cytokine expression in inactive and active periapical lesions. While the widespread cytokine expression seems to be a feature of chronic lesions

  19. Local and Systemic Cytokine Expression in Patients with Postherpetic Neuralgia

    PubMed Central

    Üçeyler, Nurcan; Valet, Michael; Kafke, Waldemar; Tölle, Thomas R.; Sommer, Claudia

    2014-01-01

    Background Postherpetic neuralgia (PHN) is the painful complication of a varicella zoster virus reactivation. We investigated the systemic and local gene expression of pro- and anti-inflammatory cytokine expression in patients with PHN. Methods Thirteen patients with PHN at the torso (Th4-S1) were recruited. Skin punch biopsies were obtained from the painful and the contralateral painless body area for intraepidermal nerve fiber density (IENFD) and cytokine profiling. Additionally, blood was withdrawn for systemic cytokine expression and compared to blood values of healthy controls. We analyzed the gene expression of selected pro- and anti-inflammatory cytokines (tumor necrosis factor-alpha [TNF] and interleukins [IL]-1β, IL-2, and IL-8). Results IENFD was lower in affected skin compared to unaffected skin (p<0.05), while local gene expression of pro- and anti-inflammatory cytokines did not differ except for two patients who had 7fold higher IL-6 and 10fold higher IL-10 gene expression in the affected skin compared to the contralateral unaffected skin sample. Also, the systemic expression of cytokines in patients with PHN and in healthy controls was similar. Conclusion While the systemic and local expression of the investigated pro- and anti-inflammatory cytokines was not different from controls, this may have been influenced by study limitations like the low number of patients and different disease durations. Furthermore, other cytokines or pain mediators need to be considered. PMID:25127283

  20. Rhesus macaque θ-defensin RTD-1 inhibits proinflammatory cytokine secretion and gene expression by inhibiting the activation of NF-κB and MAPK pathways

    PubMed Central

    Tongaonkar, Prasad; Trinh, Katie K.; Schaal, Justin B.; Tran, Dat; Gulko, Percio S.; Ouellette, André J.; Selsted, Michael E.

    2015-01-01

    θ-Defensins are pleiotropic, macrocyclic peptides that are expressed uniquely in Old World monkeys. The peptides are potent, broad-spectrum microbicides that also modulate inflammatory responses in vitro and in animal models of viral infection and polymicrobial sepsis. θ-Defensins suppress proinflammatory cytokine secretion by leukocytes stimulated with diverse Toll-like receptor (TLR) ligands. Studies were performed to delineate anti-inflammatory mechanisms of rhesus θ-defensin 1 (RTD-1), the most abundant θ-defensin isoform in macaque granulocytes. RTD-1 reduced the secretion of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-8 in lipopolysaccharide (LPS)-stimulated human blood monocytes and THP-1 macrophages, and this was accompanied by inhibition of nuclear factor κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) pathways. Peptide inhibition of NF-κB activation occurred following stimulation of extracellular (TLRs 1/2 and 4) and intracellular (TLR9) receptors. Although RTD-1 did not inhibit MAPK in unstimulated cells, it induced phosphorylation of Akt in otherwise untreated monocytes and THP-1 cells. In the latter, this occurred within 10 min of RTD-1 treatment and produced a sustained elevation of phosphorylated Akt (pAkt) for at least 4 h. pAkt is a negative regulator of MAPK and NF-κB activation. RTD-1 inhibited IκBα degradation and p38 MAPK phosphorylation, and stimulated Akt phosphorylation in LPS-treated human primary monocytes and THP-1 macrophages. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) blocked RTD-1-stimulated Akt phosphorylation and reversed the suppression of NF-κB activation by the peptide. These studies indicate that the anti-inflammatory properties of θ-defensins are mediated by activation of the PI3K/Akt pathway and suppression of proinflammatory signals in immune-stimulated cells. PMID:26269197

  1. Combined Therapy with Cytokine-Induced Killer Cells and Oncolytic Adenovirus Expressing IL-12 Induce Enhanced Antitumor Activity in Liver Tumor Model

    PubMed Central

    Shan, Juanjuan; Shen, Junjie; Liu, Limei; Xu, Yanmin; Xia, Feng; Bie, Ping; Zhang, Xia; Cui, Youhong; Bian, Xiu-wu; Qian, Cheng

    2012-01-01

    Both adoptive immunotherapy and gene therapy hold a great promise for treatment of malignancies. However, these strategies exhibit limited anti-tumor activity, when they are used alone. In this study, we explore whether combination of cytokine-induced killer (CIK) adoptive immunotherapy with oncolytic adenovirus-mediated transfer of human interleukin-12 (hIL-12) gene induce the enhanced antitumor potency. Our results showed that oncolytic adenovirus carrying hIL-12 (AdCN205-IL12) could produce high levels of hIL-12 in liver cancer cells, as compared with replication-defective adenovirus expressing hIL-12 (Ad-IL12). AdCN205-IL12 could specifically induce cytotoxocity to liver cancer cells. Combination of CIK cells with AdCN205-IL12 could induce higher antitumor activity to liver cancer cells in vitro than that induced by either CIK or AdCN205-IL12 alone, or combination of CIK and control vector AdCN205-GFP. Furthermore, treatment of the established liver tumors with the combined therapy of CIK cells and AdCN205-IL12 resulted in tumor regression and long-term survival. High level expression of hIL-12 in tumor tissues could increase traffic of CIK cells to tumor tissues and enhance their antitumor activities. Our study provides a novel strategy for the therapy of cancer by the combination of CIK adoptive immunotherapy with oncolytic adenovirus-mediated transfer of immune stimulatory molecule hIL-12. PMID:23028626

  2. Etomidate Mitigates Lipopolysaccharide-Induced CD14 and TREM-1 Expression, NF-κB Activation, and Pro-inflammatory Cytokine Production in Rat Macrophages.

    PubMed

    Liu, Ming; Zhang, Yu; Xiong, Jun-Yu; Wang, Yan; Lv, Shen

    2016-02-01

    This study was aimed at investigating the effect of etomidate on the viability of rat macrophages and the function of lipopolysaccharide (LPS)-stimulated macrophages as well as the potential mechanisms. Rat macrophages were isolated and treated with different doses of etomidate for 24 h, and their viability was determined by the CCK-8 assay. Furthermore, macrophages were treated with, or without, 1 μg/ml of LPS, and/or 2.5 or 5 μM etomidate in the presence or absence of a TREM-1 inhibitor (LP17, 100 ng/ml), and the levels of TNF-α, IL-6, CD14, and TREM-1 in the different groups of cells were determined by quantitative RT-PCR, ELISA, and Western blot assays. The levels of NF-κB activation in the different groups of cells were analyzed by an electrophoretic mobility shift assay (EMSA). Etomidate at 31.25 μM or a low dose did not affect the viability of rat macrophages, while etomidate at higher doses reduced the viability of macrophages in vitro. Treatment with 2.5 or 5 μM etomidate or with LP17 alone did not affect the levels of TNF-α, IL-6, CD-14, and TREM-1 in macrophages. Treatment with etomidate significantly mitigated LPS-stimulated TNF-α, IL-6, CD-14, and TREM-1 expression (p < 0.05 for all) and inhibited LPS-induced NF-κB activation in macrophages in vitro. However, treatment with both etomidate and LP17 did not enhance the inhibitory effects in macrophages. Hence, etomidate mitigates LPS-up-regulated pro-inflammatory cytokine production and inhibits LPS-enhanced CD14 and TREM-1 expression and NF-κB activation in macrophages.

  3. Cytokine expression in feline osteoclastic resorptive lesions.

    PubMed

    DeLaurier, A; Allen, S; deFlandre, C; Horton, M A; Price, J S

    2002-01-01

    Feline osteoclastic resorptive lesions (FORL) of the teeth are common in cats, and lead to pain, destruction of the periodontal ligament, and tooth loss. The expression of interleukin (IL)-1 beta and IL-6 mRNA was higher in teeth with FORL than in normal teeth (P<0.01 and P<0.001, respectively), but no such differences were found between pathological and normal gingival tissue samples. There were no differences between teeth affected with FORL and normal teeth in respect of the expression of receptor activator of NF kappa B ligand (RANKL) mRNA or osteoprotegerin (OPG) mRNA. However, OPG mRNA expression was higher in gingival tissue associated with teeth affected with FORL than in normal gingival tissue (P<0.05), whereas the reverse was true of RANKL mRNA expression (P<0.05). OPG mRNA expression was significantly higher in teeth than in femoral and alveolar bone (P<0.001). RANKL and OPG mRNAs were detected in all tissues examined. The data suggest that the elevated expression of IL-l beta and IL-6 mRNA plays a role in the mediation of osteoclast activity in advanced FORL. In contrast, OPG and RANKL do not appear to regulate osteoclasts in advanced disease. The results also suggest that OPG and RANKL mRNA play a role in mediating inflammatory responses in gingival cells, and that OPG has an inhibiting effect on tooth resorption.

  4. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression.

    PubMed

    Escobar, Thelma M; Kanellopoulou, Chrysi; Kugler, David G; Kilaru, Gokhul; Nguyen, Cuong K; Nagarajan, Vijayaraj; Bhairavabhotla, Ravikiran K; Northrup, Daniel; Zahr, Rami; Burr, Patrick; Liu, Xiuhuai; Zhao, Keji; Sher, Alan; Jankovic, Dragana; Zhu, Jinfang; Muljo, Stefan A

    2014-06-19

    Specification of the T helper 17 (Th17) cell lineage requires a well-defined set of transcription factors, but how these integrate with posttranscriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient Th17 and T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9, and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2.

  5. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve Polycomb-mediated repression

    PubMed Central

    Escobar, Thelma M.; Kanellopoulou, Chrysi; Kugler, David G.; Kilaru, Gokhul; Nguyen, Cuong K.; Nagarajan, Vijayaraj; Bhairavabhotla, Ravikiran K.; Northrup, Daniel; Zahr, Rami; Burr, Patrick; Liu, Xiuhuai; Zhao, Keji; Sher, Alan; Jankovic, Dragana; Zhu, Jinfang; Muljo, Stefan A.

    2014-01-01

    Specification of the T helper 17 (Th17) cell lineage requires a well defined set of transcription factors, but how these integrate with post-transcriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient-Th17 and -T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9 and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2. PMID:24856900

  6. Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314.

    PubMed

    Kircheis, Ralf; Halanek, Nicole; Koller, Iris; Jost, Wolfgang; Schuster, Manfred; Gorr, Gilbert; Hajszan, Klaus; Nechansky, Andreas

    2012-01-01

    A major limitation to the application of therapeutic monoclonal antibodies (mAbs) is their reduced in vivo efficacy compared with the high efficacy measured in vitro. Effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) are dramatically reduced in vivo by the presence of high amounts of endogenous IgG in the serum. Recent studies have shown that modification of the glycosylation moieties attached to the Fc part of the mAb can enhance binding affinity to FcγRIIIα receptors on natural killer cells and thus may counteract the reduced in vivo efficacy. In the present study, a humanized IgG1/κ monoclonal antibody recognizing the tumor-associated carbohydrate antigen Lewis Y was stably produced in a moss expression system that allows glyco-engineering. The glyco-modified mAb (designated MB314) showed a highly homogeneous N-glycosylation pattern lacking core-fucose. A side-by-side comparison to its parental counterpart produced in conventional mammalian cell-culture (MB311, formerly known as IGN311) by fluorescence-activated cell sorting analysis confirmed that the target specificity of MB314 is similar to that of MB311. In contrast, ADCC effector function of MB314 was increased up to 40-fold whereas complement dependent cytotoxicity activity was decreased 5-fold. Notably, a release of immunostimulatory cytokines, including interferon γ, monocyte chemotactic protein-1 (MCP-1), interleukin-6 and tumor necrosis factor (TNF) was particularly induced with the glyco-modified antibody. TNF release was associated with CD14 (+) cells, indicating activation of monocytes.

  7. The influence of traditional herbal formulas on cytokine activity.

    PubMed

    Burns, J J; Zhao, Lijun; Taylor, Ethan Will; Spelman, Kevin

    2010-11-28

    Many of the botanical "immunomodulators", a class of herbal medicines widely recognized in traditional medical systems such as Chinese Medicine (TCM) and Ayurvedic Medicine, alter immune function and may offer clinically relevant therapeutics or leads to therapeutics. Many of these traditional remedies are prepared from combinations of medicinal plants which may influence numerous molecular pathways. These effects may differ from the sum of effects from the individual plants and therefore, research demonstrating the effects of the formula is crucial for insights into the effects of traditional remedies. In this review we surveyed the primary literature for research that focused on combinations of medicinal plants and effects on cytokine activity. The results demonstrate that many extracts of herb mixtures have effects on at least one cytokine. The most commonly studies cytokines were IL-4, IL-6, IL-10, TNF and IFN-γ. The majority of the formulas researched derived from TCM. The following formulas had activity on at least three cytokines; Chizukit N, CKBM, Daeganghwal-tang, Food Allergy Formula, Gamcho-Sasim-Tang, Hachimi-jio-gan, Herbkines, Hochuekki, Immune System Formula, Jeo-Dang-Tang, Juzen-taiho-to, Kakkon-to, Kan jang, Mao-Bushi-Saishin-to, MSSM-002, Ninjin-youei-to, PG201, Protec, Qing-huo-bai-du-yin, Qingfu Guanjieshu, Sambucol Active Defense, Seng-fu-tang, Shin-Xiao-Xiang, Tien Hsien, Thuja formula, Unkei-to, Vigconic, Wheeze-relief-formula, Xia-Bai-San, Yangyuk-Sanhwa-Tang, Yi-fey Ruenn-hou, and Yuldahansotang. Of the western based combinations, formulas with Echinacea spp. were common and showed multiple activities. Numerous formulas demonstrated activity on both gene and protein expression. The research demonstrates that the reviewed botanical formulas modulate cytokine activity, although the bulk of the research is in vitro. Therapeutic success using these formulas may be partially due to their effects on cytokines. Further study of phytotherapy on

  8. Tet2: breaking down barriers to T cell cytokine expression.

    PubMed

    Zhong, Chao; Zhu, Jinfang

    2015-04-21

    It has been unclear whether alteration in DNA methylation at cytokine genes during T helper (Th) cell differentiation is a cause or consequence of gene expression. In this issue of Immunity, Ichiyama et al. (2015) show that oxidation of 5-methylcytosine by the methylcytosine dioxygenase Tet2 regulates cytokine production in Th cells.

  9. Osthole ameliorates acute myocardial infarction in rats by decreasing the expression of inflammatory-related cytokines, diminishing MMP-2 expression and activating p-ERK.

    PubMed

    Duan, Juan; Yang, Yu; Liu, Hong; Dou, Peng-Cheng; Tan, Sheng-Yu

    2016-01-01

    Osthole, the active constituent of Cnidium monnieri extracts, has been shown to have a diverse range of pharmacological properties. In the present study, we aimed to evaluate the cardioprotective effects of osthole in a rat model of acute myocardial infarction (AMI). The rats with AMI were treated with 1, 3 and 10 mg/kg of osthole or the vehicle for 4 weeks. The infarct size of the rats with AMI was measured, and casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) activities in the rats with AMI were analyzed using commercially available kits. The nuclear factor-κB (NF-κB), tumor necrosis factor‑α (TNF-α), interleukin (IL)-1β and IL-6 levels in whole blood from rats with AMI were also detected using commercially available kits. The levels of Toll-like receptors 2/4 (TLR2/4) and nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2) were also detected by RT-qPCR. Moreover, the protein expression levels of endothelial nitric oxide synthase (eNOS) and mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38, cyclooxygenase-2 (COX-2), as well as matrix metalloproteinase-2 (MMP-2) were all assayed by western blot analysis. Our results revealed that osthole markedly reduced the infarct size, and the levels of CK, CK-MB, LDH and cTnT in the rats with AMI, and that these cardioprotective effects may be associated with the inhibition of inflammatory reactions, the reduction in MMP-2 activity and the activation of MAPK cascades.

  10. Persistent activation of nuclear factor-kappa B and expression of pro-inflammatory cytokines in bone marrow cells after exposure of mice to protons

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Reungpatthanaphong, Paiboon; Honikel, Louise; Whorton, Elbert

    Protons are the most abundant component of solar particle events (SPEs) in space. Information is limited on early-and late-occurring in vivo biological effects of exposure to protons at doses and dose rates that are similar to what astronauts encounter in space. We conducted a study series to fill this knowledge gap. We focused on the biological effects of 100 MeV/n protons, which are one of the most abundant types of protons induced during SPEs. We gave BALB/cJ mice a whole-body exposure to 0.5 or 1.0 Gy of 100 MeV/n protons, delivered at 0.5 or 1.0 cGy/min. These doses and dose rates of protons were selected because they are comparable to those of SPEs taking place in space. For each dose and dose rate of 100 MeV/n protons, mice exposed to 0 Gy of protons served as sham controls. Mice included in this study were also part of a study series conducted to examine the extent and the mechanisms involved in in vivo induction of genomic instability (expressed as late-occurring chromosome instability) by 100 MeV/n protons. Bone marrow (BM) cells were collected from groups of mice for analyses at different times post-exposure, i.e. early time-points (1.5, 3, and 24 hr) and late time-points (1 and 6 months). At each harvest time, there were five mice per treatment group. Several endpoints were used to investigate the biological effects of 100 MeV/n protons in BM cells from irradiated and sham control mice. The scope of this study was to determine the dose-rate effects of 0.5 Gy of 100 MeV/n protons in BM cells on the kinetics of nuclear factor-kappa B (NF-kappa B) activation and the expression of selected NF-kappa B target proteins known to be involved in inflammatory response, i.e. pro-inflammatory cytokines (TNF-alpha, IL-1 beta, and IL-6). Significantly high levels (p values ranging from p¡0.01 and p¡0.05) of activated NF-kappa B were observed in BM cells collected from irradiated mice, relative to those obtained from the corresponding sham controls, at all time

  11. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  12. Gallium arsenide selectively up-regulates inflammatory cytokine expression at exposure site.

    PubMed

    Becker, Stephen M; McCoy, Kathleen L

    2003-12-01

    Gallium arsenide (GaAs), a technologically and economically important semiconductor, is widely utilized in both military and commercial applications. This chemical is a potential health hazard as a carcinogen and immunotoxicant. We previously reported that macrophages at the exposure site exhibit characteristics of activation. In vitro culture of macrophages with GaAs fails to recapitulate the in vivo phenotype, suggesting that complete GaAs-mediated activation in vivo may require other cells or components found in the body's microenvironment. Our present study examined the role of cytokines upon GaAs-mediated macrophage activation. Intraperitoneal administration of GaAs elicited rapid specific recruitment of blood monocytes to the exposure site. This recruitment occurred concomitant with up-regulation of 17 chemokine and inflammatory cytokine mRNAs, while transcripts of three inhibitory cytokines diminished. Administration of latex beads caused less cytokine induction than GaAs, indicating that changes in mRNA levels could not be attributed to phagocytosis. Four representative chemokines and cytokines were selected for further analysis. Increased cytokine mRNA expression was paralleled by similar increases in cytokine protein levels, and secreted protein products were detected in peritoneal fluid. Cytokine protein expression was constrained to myeloid cells, and to a lesser extent to B cells. Alterations in patterns of cytokine gene expression elucidate mechanisms for increased cellular activation and antigen processing, and modulation of the inflammatory response. Our findings indicate that in vivo GaAs exposure alters cytokine gene expression, which may lead to an inflammatory reaction and contribute to pathological tissue damage.

  13. Dendritic Cell Activation and Cytokine Production Induced by Group B Neisseria meningitidis: Interleukin-12 Production Depends on Lipopolysaccharide Expression in Intact Bacteria

    PubMed Central

    Dixon, Garth L. J.; Newton, Phillippa J.; Chain, Benjamin M.; Katz, David; Andersen, Svein Rune; Wong, Simon; van der Ley, Peter; Klein, Nigel; Callard, Robin E.

    2001-01-01

    Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of in vitro-generated human DCs to a serogroup B strain of Neisseria meningitidis compared to an isogenic mutant lpxA strain totally deficient in LPS and purified LPS from the same strain. We show that the parent strain, lpxA mutant, and meningococcal LPS all induce DC maturation as measured by increased surface expression of costimulatory molecules and HLA class I and II molecules. Both the parent and lpxA strains induced production of tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), and IL-6 in DCs, although the parent was the more potent stimulus. In contrast, high-level IL-12 production was only seen with the parent strain. Compared to intact bacteria, purified LPS was a very poor inducer of IL-1α, IL-6, and TNF-α production and induced no detectable IL-12. Addition of exogenous LPS to the lpxA strain only partially restored cytokine production and did not restore IL-12 production. These data show that non-LPS components of N. meningitidis induce DC maturation, but that LPS in the context of the intact bacterium is required for high-level cytokine production, especially that of IL-12. These findings may be useful in assessing components of N. meningitidis as potential vaccine candidates. PMID:11401973

  14. Dendritic cell activation and cytokine production induced by group B Neisseria meningitidis: interleukin-12 production depends on lipopolysaccharide expression in intact bacteria.

    PubMed

    Dixon, G L; Newton, P J; Chain, B M; Katz, D; Andersen, S R; Wong, S; van der Ley, P; Klein, N; Callard, R E

    2001-07-01

    Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of in vitro-generated human DCs to a serogroup B strain of Neisseria meningitidis compared to an isogenic mutant lpxA strain totally deficient in LPS and purified LPS from the same strain. We show that the parent strain, lpxA mutant, and meningococcal LPS all induce DC maturation as measured by increased surface expression of costimulatory molecules and HLA class I and II molecules. Both the parent and lpxA strains induced production of tumor necrosis factor alpha (TNF-alpha), interleukin-1alpha (IL-1alpha), and IL-6 in DCs, although the parent was the more potent stimulus. In contrast, high-level IL-12 production was only seen with the parent strain. Compared to intact bacteria, purified LPS was a very poor inducer of IL-1alpha, IL-6, and TNF-alpha production and induced no detectable IL-12. Addition of exogenous LPS to the lpxA strain only partially restored cytokine production and did not restore IL-12 production. These data show that non-LPS components of N. meningitidis induce DC maturation, but that LPS in the context of the intact bacterium is required for high-level cytokine production, especially that of IL-12. These findings may be useful in assessing components of N. meningitidis as potential vaccine candidates.

  15. S100A8 and S100A9 Induce Cytokine Expression and Regulate the NLRP3 Inflammasome via ROS-Dependent Activation of NF-κB1

    PubMed Central

    Simard, Jean-Christophe; Cesaro, Annabelle; Chapeton-Montes, Julie; Tardif, Mélanie; Antoine, Francis; Girard, Denis; Tessier, Philippe A.

    2013-01-01

    S100A8 and S100A9 are cytoplasmic proteins expressed by phagocytes. High concentrations of these proteins have been correlated with various inflammatory conditions, including autoimmune diseases such as rheumatoid arthritis and Crohn’s disease, as well as autoinflammatory diseases. In the present study, we examined the effects of S100A8 and S100A9 on the secretion of cytokines and chemokines from PBMCs. S100A8 and S100A9 induced the secretion of cytokines such as IL-6, IL-8, and IL-1β. This secretion was associated with the activation and translocation of the transcription factor NF-κB. Inhibition studies using antisense RNA and the pharmacological agent BAY-117082 confirmed the involvement of NF-κB in IL-6, IL-8, and IL-1β secretion. S100A8- and S100A9-mediated activation of NF-κB, the NLR family, pyrin domain-containing 3 (NLRP3) protein, and pro-IL-1β expression was dependent on the generation of reactive oxygen species. This effect was synergistically enhanced by ATP, a known inflammasome activator. These results suggest that S100A8 and S100A9 enhance the inflammatory response by inducing cytokine secretion of PBMCs. PMID:23977231

  16. Phagocytic activity and pro-inflammatory cytokines production by the murine macrophage cell line J774A.1 stimulated by a recombinant BCG (rBCG) expressing the MSP1-C of Plasmodium falciparum.

    PubMed

    Rapeah, S; Dhaniah, M; Nurul, A A; Norazmi, M N

    2010-12-01

    Macrophages are involved in innate immunity against malaria due to their ability to phagocytose infected erythrocytes and produce inflammatory cytokines, which are important for controlling parasite growth during malaria infection. In this study, the ability of a recombinant BCG (rBCG) vaccine expressing the 19-kDa C-terminus of merozoite surface protein-1 (MSP1-C) of Plasmodium falciparum, to stimulate the phagocytic activity and secretion of pro-inflammatory cytokines by the macrophage cell line J774A.1 was measured at varying times. The results demonstrate the ability of the rBCG construct to activate the inflammatory action of macrophages, which is important as a first-line of defence in clearing malaria infections.

  17. Cytokine receptor expression in human lymphoid tissue: analysis by fluorescence microscopy.

    PubMed

    Zola, H; Ridings, J; Weedon, H; Fusco, M; Byard, R W; Macardle, P J

    1995-08-01

    A highly-sensitive flourescence method, capable of detecting cytokine receptors present at low concentrations (around 100 molecules per cell) by flow cytometry, was adapted for use on tissue sections. This method was used to examine the expression of several cytokine receptors in lymphoid tissues. IL-2 receptors were distributed broadly, with higher concentrations in T cell areas. IL-1 receptor Type 1 was detected in T cell areas and in the follicular mantle, and was strongly expressed on vascular endothelium. IL-6 receptor was found at very low concentration, both within and outside germinal centres. The gp 130 molecule, which is involved in the functional receptor complex for IL-6 and several other cytokines, was present at higher concentrations, particularly in the germinal centre. Analysis of receptor expression in secondary lymphoid tissue provides evidence bearing on the physiological roles of cytokines, as these tissues contain cells at various stages of physiological activation located in well-defined functional zones.

  18. Delayed cytokine expression in rat brain following experimental contusion.

    PubMed

    Holmin, S; Schalling, M; Höjeberg, B; Nordqvist, A C; Skeftruna, A K; Mathiesen, T

    1997-03-01

    Proinflammatory cytokines mediate brain injury in experimental studies. This study was undertaken to analyze the production of proinflammatory cytokines in experimental contusion. A brain contusion causing delayed edema was mimicked experimentally in rats using a weight-drop model. Intracerebral expression of the cytokines interleukin (IL)-1 beta, tumor necrosis factor-alpha (TNF alpha), IL-6, and interferon-gamma (IFN gamma) was studied by in situ hybridization and immunohistochemistry. The animals were killed at 6 hours or 1, 2, 4, 6, 8, or 16 days postinjury. In the injured area, no messenger (m)RNA expression was seen during the first 2 days after the trauma. On Days 4 to 6 posttrauma, however, strong IL-1 beta, TNF alpha, and IL-6 mRNA expression was detected in mononuclear cells surrounding the contusion. Expression of IFN gamma was not detected. Immunohistochemical double labeling confirmed the in situ hybridization results and demonstrated that mononuclear phagocytes and astrocytes produced IL-1 beta and that mainly astrocytes produced TNF alpha. The findings showed, somewhat unexpectedly, a late peak of intracerebral cytokine production in the injured area and in the contralateral corpus callosum, allowing for both local and global effects on the brain. An unexpected difference in the cellular sources of TNF alpha and IL-1 beta was detected. The cytokine pattern differs from that seen in other central nervous system inflammatory diseases and trauma models, suggesting that the intracerebral immune response is not a uniform event. The dominance of late cytokine production indicates that many cytokine effects are late events in an experimental contusion: Different pathogenic mechanisms may thus be operative at different times after brain injury.

  19. Characterising Cytokine Gene Expression Signatures in Patients with Severe Sepsis

    PubMed Central

    Grealy, Robert; White, Mary; Stordeur, Patrick; Kelleher, Dermot; Doherty, Derek G.; McManus, Ross; Ryan, Thomas

    2013-01-01

    Introduction. Severe sepsis in humans may be related to an underlying profound immune suppressive state. We investigated the link between gene expression of immune regulatory cytokines and the range of illness severity in patients with infection and severe sepsis. Methods. A prospective observational study included 54 ICU patients with severe sepsis, 53 patients with infection without organ failure, and 20 healthy controls. Gene expression in peripheral blood mononuclear cells (PBMC) was measured using real-time polymerase chain reaction. Results. Infection differed from health by decreased expression of the IL2, and IL23 and greater expression of IL10 and IL27. Severe sepsis differed from infection by having decreased IL7, IL23, IFNγ, and TNFα gene expression. An algorithm utilising mRNA copy number for TNFα, IFNγ, IL7, IL10, and IL23 accurately distinguished sepsis from severe sepsis with a receiver operator characteristic value of 0.88. Gene expression was similar with gram-positive and gram-negative infection and was similar following medical and surgical severe sepsis. Severity of organ failure was associated with serum IL6 protein levels but not with any index of cytokine gene expression in PBMCs. Conclusions. Immune regulatory cytokine gene expression in PBMC provides a robust method of modelling patients' response to infection. PMID:23935244

  20. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  1. Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs.

    PubMed Central

    Schett, G; Redlich, K; Xu, Q; Bizan, P; Gröger, M; Tohidast-Akrad, M; Kiener, H; Smolen, J; Steiner, G

    1998-01-01

    Heat shock proteins (hsp) have been repeatedly implicated to participate in the pathogenesis of rheumatoid arthritis (RA). Herein, we investigated the regulation of synovial hsp70 expression by analyzing the DNA-binding activity of heat shock transcription factor 1 (HSF1) as well as inducible hsp70 expression. Experiments were performed both on synovial tissue and on synovial fibroblast-like cells (SFC). Gel mobility shift analysis revealed increased HSF1 activation, and Western blotting and immunohistochemistry revealed increased hsp70 expression in RA synovial tissue, but not in synovial tissue derived from patients with osteoarthritis. Proinflammatory cytokines (TNF-alpha, IL-1alpha, IL-6), but not IFN-gamma or TGF-beta, induced activation of HSF1-DNA binding and hsp70 expression in cultivated SFC. Activation of HSF1 in SFC was accompanied by hyperphosphorylation and nuclear translocation of HSF1. Furthermore, shear stress also induced a complete heat shock response in cultivated synovial cells. In contrast, nonsteroidal antiinflammatory drugs triggered only an incomplete heat shock response, with HSF1 activation but not hsp70 induction, whereas steroids and immunosuppressive drugs did not affect the heat shock response at all. In summary, these data suggest that induction of hsp70 expression in rheumatoid synovial tissue is based on transcriptional activation of HSF1 due to the presence of proinflammatory cytokines (and possibly also shear stress). PMID:9664071

  2. Cytokine expression in Peyer's patches following hemorrhage and resuscitation.

    PubMed

    Shenkar, R; Chang, Y H; Abraham, E

    1994-01-01

    Intestinal dysfunction commonly occurs following hemorrhage and injury and appears to contribute to the development of multiple organ system failure in this setting. In order to examine possible mechanisms leading to intestinal dysfunction following blood loss, we investigated mRNA levels for cytokines with proinflammatory and immunoregulatory properties (interleukin 1 beta (IL-1 beta), IL-6, IL-10, TNF-alpha, TGF-beta, IFN-gamma) as well as mRNA expression for inducible nitric oxide synthase (NOS) over the 3 days following hemorrhage and resuscitation. Significantly increased levels of mRNA for IL-1 beta, IL-10, and IFN-gamma were found among cells isolated from Peyer's patches 3 days following hemorrhage. Amounts of mRNA for inducible NOS were not significantly altered 24 or 72 h after blood loss. In addition to being increased 72 h following hemorrhage, levels of mRNA for IL-10 also were increased 1 and 4 h posthemorrhage. No alterations in cytokine or NOS expression were found 24 h following blood loss. These results demonstrate that significant increases in proinflammatory and immunoregulatory cytokine mRNA levels among cellular populations in Peyer's patches are present at late posthemorrhage time points. These alterations in cytokine expression may contribute to the morphologic, immunologic, and functional changes in the intestines which are present following blood loss and injury.

  3. Plasma cytokine expression in adolescent chronic fatigue syndrome.

    PubMed

    Wyller, Vegard Bruun; Sørensen, Øystein; Sulheim, Dag; Fagermoen, Even; Ueland, Thor; Mollnes, Tom Eirik

    2015-05-01

    there were no associations between symptoms and cytokine expression in the CFS group. Low-grade systemic inflammation does not appear to be a central part of adolescent CFS pathophysiology.

  4. Cytokine mRNA expression in postischemic/reperfused myocardium.

    PubMed Central

    Herskowitz, A.; Choi, S.; Ansari, A. A.; Wesselingh, S.

    1995-01-01

    While the role of cytokines in mediating injury during hind limb skeletal muscle ischemia followed by reperfusion has recently been described, the role of cytokines in myocardial infarction and ischemia/reperfusion have remained relatively unexplored. We hypothesize that cytokines play an important role in the regulation of postischemic myocardial inflammation. This study reports the temporal sequence of proinflammatory cytokine gene expression in postischemic/reperfused myocardium and localizes interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha)-protein by immunostaining. Rats were subjected to either permanent left anterior descending (LAD) occlusion or to 35 minutes of LAD occlusion followed by reperfusion and sacrificed up to 7 days later. Rat-specific oligonucleotide probes were used to semiquantitatively assess the relative expression of mRNA for TNF-alpha, IL-1 beta, IL-2, IL-6, interferon-gamma (IFN-gamma), and transforming growth factor-beta 1 (TGF-beta 1) utilizing the reverse transcriptase-polymerase chain reaction amplification technique. Increased cardiac mRNA levels for all cytokines except IL-6 and IFN-gamma were measurable within 15 to 30 minutes of LAD occlusion and increased levels were generally sustained for 3 hours. During early reperfusion, mRNA levels for IL-6 and TGF-beta 1 were significantly reduced compared with permanent LAD occlusion. In both groups, cytokine mRNA levels all returned to baseline levels at 24 hours, while IL-1 beta, TNF-alpha, and TGF-beta 1 mRNA levels again rose significantly at 7 days only in animals with permanent LAD occlusion. Immunostaining for IL-1 beta and TNF-alpha protein revealed two patterns of reactivity: 1) microvascular staining for both IL-1 beta and TNF-alpha protein only in postischemic reperfused myocardium in early post-reperfusion time points; and 2) staining of infiltrating macrophages in healing infarct zones which was most prominent at 7 days after permanent LAD occlusion

  5. Faithful expression of the human 5q31 cytokine cluster intransgenic mice

    SciTech Connect

    Lacy, Dee A.; Wang, Zhi-En; Symula, Derek J.; McArthur, CliffordJ.; Rubin, Edward M.; Frazer, Kelly A.; Locksley, Richard M.

    1999-12-03

    ILs 4,5, and 13, cardinal cytokines produced by Th2 cells,are coordinately expressed and clustered in the 150-kb syntenic regions on mouse chromosome 11 and human chromosome 5q31. We analyzed two sets of human yeast artificial chromosome transgenic mice that contained the5931cytokines to assess whether conserved sequences required for their coordinate and cell-specific regulation are contained within the cytokine cluster itself. Human Il-4, IL-13, and Il-5 were expressed under Th2, but not Th1, conditions in vitro. Each of these cytokines was produced during infection with Nippostrongylus brasiliensis, a Th2 inducing stimulus, and human Il-4 was generated after activation of NK T cells in vivo.Consistently fewer cells produced the endogenous mouse cytokines in transgenic than in control mice, suggesting competition for stable expression between the mouse and human genes. These data imply the existence of both conserved trans-activating factors and cis-regulatory elements that underlie the coordinate expression and lineage specificity of the type 2 ctyokine genes in lymphocytes.

  6. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    PubMed Central

    González-Polo, Rosa A.; Soler, Germán; Fuentes, José M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity measurement as well as nitric oxide determination to discover whether two specific genes were expressed by cytokine-stimulated dendritic cells. The experiment served as the basis for discussing the importance of differential gene expression inside the eukaryotic cell and the importance of cytokines in the immune system. PMID:17012221

  7. Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis

    PubMed Central

    Fraser, Simon D.; Sadofsky, Laura R.; Kaye, Paul M.; Hart, Simon P.

    2016-01-01

    In sarcoidosis, the proinflammatory cytokines interferon gamma, tumour necrosis factor and interleukin-6 are released by monocyte-derived macrophages and lymphocytes in the lungs and other affected tissues. Regulatory receptors expressed on monocytes and macrophages act to suppress cytokine production, and reduced expression of regulatory receptors may thus promote tissue inflammation. The aim of this study was to characterise the role of regulatory receptors on blood monocytes in patients with sarcoidosis. Cytokine release in response to stimulation of whole blood was measured in healthy controls and Caucasian non-smoking patients with sarcoidosis who were not taking disease modifying therapy. Expression of the regulatory molecules IL-10R, SIRP-α/β, CD47, CD200R, and CD200L was measured by flow cytometry, and functional activity was assessed using blocking antibodies. Stimulated whole blood and monocytes from patients with sarcoidosis produced more TNF and IL-6 compared with healthy controls. 52.9% of sarcoidosis patients had monocytes characterised by low expression of CD200R, compared with 11.7% of controls (p < 0.0001). Patients with low monocyte CD200R expression produced higher levels of proinflammatory cytokines. In functional studies, blocking the CD200 axis increased production of TNF and IL-6. Reduced expression of CD200R on monocytes may be a mechanism contributing to monocyte and macrophage hyper-activation in sarcoidosis. PMID:27929051

  8. Complete artificial saliva alters expression of proinflammatory cytokines in human dermal fibroblasts.

    PubMed

    Malpass, Gloria E; Arimilli, Subhashini; Prasad, Gaddamanugu L; Howlett, Allyn C

    2013-07-01

    Complete artificial saliva (CAS) is a saliva substitute often used as a vehicle for test articles, including smokeless tobacco products. In the course of a study employing normal adult human dermal fibroblasts (HDFa) as a model in vitro, we discovered that CAS as a vehicle introduced a significant change in the expression of proinflammatory cytokines. To determine the effects of CAS on gene expression, real-time quantitative reverse-transcriptase PCR gene array analysis was used. Results indicate that robust changes in the expression of the proinflammatory cytokine interleukin 8 (IL8) and the vascular cell adhesion molecule 1 (VCAM1) occur within 5h of exposure to CAS. To determine whether CAS also alters cytokine release into the culture media, cytometric bead array assays for human inflammatory cytokines were performed. Analysis shows that CAS induced the release of IL8 and IL6. This study focused on determining which components in CAS were responsible for the proinflammatory response in HDFa. The following components were investigated: α-amylase, lysozyme, acid phosphatase, and urea. Results demonstrated that enzymatically active α-amylase induced gene expression for proinflammatory cytokines IL8, IL6, tumor necrosis factor-α, and IL1α and for VCAM1. Therefore, it is important to carefully evaluate the "vehicle effects" of CAS and its components in in vitro toxicology research.

  9. [Cytokines in bone diseases. What is cytokine?].

    PubMed

    Murakami, Yousuke; Kohsaka, Hitoshi

    2010-10-01

    Cytokines have an essential role for cell-cell communication. They can regulate cell proliferation, differentiation, survival, and function. Interaction of cell surface receptor with cytokines is necessary for control of physiological responses. Activation of cytokine receptors transduces specific signal in the receptor-expressing cells, resulting that cytokines can regulate specific cell population. Thus, cytokines contribute directly or indirectly to morphogenesis, host defense and immune response, play critical roles for homeostasis and development.

  10. Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein ß activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suppressors of cytokine signaling 3 (SOCS3) is an important intracellular regulator of TLR4 signaling and has been implicated in several inflammatory diseases. Although SOCS3 seems to contribute to the balance between the pro-inflammatory effects of IL-6 and antiinflammatory signaling of IL-10 by ne...

  11. A striking local esophageal cytokine expression profile in eosinophilic esophagitis1

    PubMed Central

    Blanchard, Carine; Stucke, Emily M.; Rodriguez-Jimenez, Beatriz; Burwinkel, Karen; Collins, Margaret H.; Ahrens, Annette; Alexander, Eileen S.; Butz, Bridget K. Buckmeier; Jameson, Sean C.; Kaul, Ajay; Franciosi, James P.; Kushner, Jonathan P.; Putnam, Philip E.; Abonia, J. Pablo; Rothenberg, Marc E.

    2011-01-01

    Background Eosinophilic esophagitis (EE) is an emerging worldwide disease that mimics gastroesophageal reflux disease. Objective Early studies have suggested that esophageal eosinophilia occurs in association with T helper type 2 allergic responses, yet the local and systemic expression of relevant cytokines has not been well characterized. Methods A human inflammatory cytokine and receptor PCR array containing 84 genes followed by PCR validation and multiplex arrays were used to quantify cytokine mRNA in esophageal biopsies and blood levels. Results Esophageal transcripts of numerous chemokines [e.g. CCL1, CCL23, CCL26 (eotaxin-3), CXCL1, and CXCL2], cytokines (e.g. IL13 and ABCF1), and cytokine receptors (e.g. IL5RA) were induced at least 4-fold in individuals with EE. Analysis of esophageal biopsies (n=288) revealed that eotaxin-3 mRNA level alone had 89% sensitivity for distinguishing EE from non-EE individuals. The presence of allergy was associated with significantly increased esophageal expression of IL4 and IL5 mRNA in active EE patients. We identified 8 cytokines (IL-4, IL-13, IL-5, IL-6, IL-12p70, CD40L, IL-1α, and IL-17) whose blood levels retrospectively distinguished 12 non-EE from 13 EE patients with 100% specificity and 100% sensitivity. When applied to a blinded, prospectively recruited group of 36 patients, the cytokine panel scoring system had a 79% positive predictive value, 68% negative predictive value, 61% sensitivity, and 83% specificity for identifying EE. Conclusion Evidence is presented that IL13 and IL5 associate with eosinophil and eotaxin-3 levels, indicating the key role of adaptive Th2 immunity in regulating eotaxin-3-driven esophageal eosinophilia in the absence of a consistent systemic change in cytokines. PMID:21211656

  12. Expression of class II cytokine genes in children's skin.

    PubMed

    Reemann, Paula; Reimann, Ene; Suutre, Siim; Paavo, Maarjaliis; Loite, Ulvi; Porosaar, Orm; Abram, Kristi; Silm, Helgi; Vasar, Eero; Kõks, Sulev; Kingo, Külli

    2014-07-01

    Immune regulation of the skin plays an important role in susceptibility and development of illnesses. The aim of our study was to localise the interleukin (IL)-10 family of cytokines, in children's skin and to determine possible age-related differences in the expression level. The mRNA expression level of IL10, IL19, IL20, IL22, IL24, IL26, IL28B, IL29 and their receptors IL10RA, IL10RB, IL20RA, IL20RB, IL22RA1, IL22RA2, IL28RA was compared in skin biopsies of children and adults and in childrens' skin cells by quantitative real-time PCR (qRT-PCR). Immunohistochemistry was performed to confirm the qRT-PCR findings. We found age-related differences in the expression of IL10RB, IL20, IL20RA, IL22RA1, IL22RA2, IL26 and IL28RA genes. Cell type-dependent expression of IL10 family cytokines was apparent in the skin. In addition to previously known differences in systemic immunological response of adults and children, the present results reveal differences in immune profile of adult and juvenile skin.

  13. Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells.

    PubMed Central

    Elner, V. M.; Strieter, R. M.; Elner, S. G.; Baggiolini, M.; Lindley, I.; Kunkel, S. L.

    1990-01-01

    The neural-derived retinal pigment epithelium (RPE) underlies the sensory retina and is central to both retinal homeostasis and many common retinal diseases. Retinal pigment epithelium cells are actively phagocytic and share several features with macrophages that have recently been shown to produce a neutrophil chemotactic factor (NCF), also known as interleukin-8, after cytokine stimulation. Because RPE cell responses to cytokines are largely unknown, human RPE cell NCF production was monitored after interleukin-1-beta (IL-1 beta), tumor necrosis factor-alpha, or lipopolysaccharide stimulation. RPE NCF mRNA expression and RPE production of biologically active NCF was time and concentration dependent. Maximal NCF mRNA expression occurred at 20 ng/ml for IL-1 beta. Messenger RNA expression in RPE cells and biologically active NCF in RPE cell supernatants were found 1 hour after stimulation and were maintained for 24 hours. These findings demonstrate that cytokine-stimulated RPE cells may evoke or augment neutrophil-mediated inflammation by synthesizing NCF, a cytokine that may be important in ocular disease mechanisms. Images Figure 1 Figure 3 PMID:2183623

  14. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    PubMed

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P < 0.05), and the expression of 3 cytokines (IL-1γ, IL-6 and IL-7) was higher in the Se-deficient group. In both groups, glutathione peroxidase (GPX), thioredoxin 1 (Txnrd1), selenoprotein P1 (SELP), and selenoprotein synthetase (SPS2) were highly expressed compared to the other selenoproteins in chicken erythrocytes (P < 0.05). These data suggest that GPXs, Txnrd1, SELP, and SPS2 possibly play a more important role than the other selenoproteins. The increase of pro-inflammatory cytokines (IL-1γ, IL-6, and IL-7) suggested that the immune system of chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins

  15. A novel multispecific competitor fragment for quantitative PCR analysis of cytokine gene expression in rats.

    PubMed

    Siegling, A; Lehmann, M; Platzer, C; Emmrich, F; Volk, H D

    1994-12-28

    Competitive polymerase chain reaction (PCR) is a sensitive method for quantification of cytokine mRNA expression. Co-amplification of an internal standard serves as control for comparing the efficiency of PCR in different samples. We have developed a novel control fragment for multiple analyses of rat cytokine gene expression containing primers for IL-1 beta, IL-2, IL-4, IL-5, IL-6, IL-10, TNF-alpha, TGF-beta 1, IFN-gamma and MIP-2. Additional primers were incorporated to analyse the content of T cells (CD3), activated T cells (CD25) and housekeeping genes (beta-actin and HPRT). As an example we demonstrate analysis of IL-2 mRNA expression in small pieces of kidney tissue obtained from rats after kidney allotransplantation. The IL-2 expression decreased tenfold during treatment with an anti-rat CD4 monoclonal antibody as compared to untreated animals.

  16. Effect of Cyperus Rotundus on Cytokine Gene Expression in Experimental Inflammatory Bowel Disease

    PubMed Central

    Johari, Sarika; Joshi, Chaitanya; Gandhi, Tejal

    2016-01-01

    Background: The protective effect of the chloroform extract of Cyperus rotundus (CHCR) is attributed to its anti-inflammatory and antioxidant activities. Cytokines, important regulators of inflammation and repair, play a key role in the pathogenesis of inflammatory bowel disease (IBD). Targeting these cytokines can effectively ameliorate the symptoms of IBD. The aim of the present study was to unravel the molecular mechanism through cytokine regulation in rats in experimental IBD. Methods: Sprague Dawley rats were randomly allocated to 5 groups (n=6). Group I served as the normal control. Group II served as the vehicle control and received 50% ethanol intracolonically on day 11 of the study. Group III served as the model control. Group IV and Group V were given standard drug 5-aminosalicylic acid (100 mg/kg) and CHCR (800 mg/kg), respectively, for 18 days once a day orally. Colitis was induced with dinitrobenzene sulfonic acid (180 mg/kg in 50% ethanol) intracolonically in groups III–V on day 11 of the study. On day 18, the rats were euthanized and colon tissues were removed for IL-4, IL-6, IL-12, and IFN-gamma gene expression studies using quantitative RT-PCR. Results: The expression levels of proinflammatory cytokines IL-4, IL-6, IL-12, and IFN-gamma were upregulated in the model control rats. Pretreatment with 5-aminosalicylic acid (100 mg/kg) and CHCR (800 mg/kg) significantly decreased the fold of the expression of the above cytokines. Conclusion: CHCR acts as a molecular brake and downregulates the expression of proinflammatory cytokine genes; this is beneficial for reducing the severity of the experimental IBD. Thus, Cyperus rotundus is a safe, economical, and effective alternative for the treatment of patients with IBD. PMID:27582588

  17. Proinflammatory cytokines decrease the expression of genes critical for RPE function

    PubMed Central

    Samuel, William; Boyce, Kaifa; Cherukuri, Aswini; Duncan, Todd; Jaworski, Cynthia; Nagineni, Chandrasekharam N.; Redmond, T. Michael

    2016-01-01

    Purpose Proinflammatory cytokines interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β) secreted by infiltrating lymphocytes or macrophages may play a role in triggering RPE dysfunction associated with age-related macular degeneration (AMD). Binding of these proinflammatory cytokines to their specific receptors residing on the RPE cell surface can activate signaling pathways that, in turn, may dysregulate cellular gene expression. The purpose of the present study was to investigate whether IFN-γ, TNF-α, and IL-1β have an adverse effect on the expression of genes essential for RPE function, employing the RPE cell line ARPE-19 as a model system. Methods ARPE-19 cells were cultured for 3–4 months until they exhibited epithelial morphology and expressed mRNAs for visual cycle genes. The differentiated cells were treated with IFN-γ, TNF-α, and/or IL-1β, and gene expression was analyzed with real-time PCR analysis. Western immunoblotting was employed for the detection of proteins. Results Proinflammatory cytokines (IFN-γ + TNF-α + IL-1β) greatly increased the expression of chemokines and cytokines in cultured ARPE-19 cells that exhibited RPE characteristics. However, this response was accompanied by markedly decreased expression of genes important for RPE function, such as CDH1, RPE65, RDH5, RDH10, TYR, and MERTK. This was associated with decreased expression of the genes MITF, TRPM1, and TRPM3, as well as microRNAs miR-204 and miR-211, which are known to regulate RPE-specific gene expression. The decreased expression of the epithelial marker gene CDH1 was associated with increased expression of mesenchymal marker genes (CDH2, VIM, and CCND1) and epithelial–mesenchymal transition (EMT) promoting transcription factor genes (ZEB1 and SNAI1). Conclusions RPE cells exposed to proinflammatory cytokines IFN-γ, TNF-α, and IL-1β showed decreased expression of key genes involved in the visual cycle, epithelial morphology

  18. Inflammatory cytokine expression following the use of bipolar electrocoagulation, ultracision harmonic scalpel and cold knife biopsy.

    PubMed

    Litta, Pietro; Saccardi, Carlo; Gizzo, Salvatore; Conte, Lorena; Ambrosi, Giulia; Sissi, Claudia; Palumbo, Manlio

    2015-08-01

    Electrical surgical devices may determine tissue damage through lateral thermal spread and activation of inflammatory processes. Several tissue effects are associated with the use of different surgical instruments. The aim of the present study was to compare tissue damage following the application of cold knife biopsy, bipolar electrocoagulation and the ultracision harmonic scalpel, through the analysis of inflammatory gene mediator expression. Three fragments of the round ligament (length 0.5 cm) were obtained from 22 females who had undergone total or subtotal laparoscopic hysterectomy using three different modes of resection: Cold knife biopsy, bipolar electrocoagulation and ultracision harmonic scalpel. The tissue fragments were examined by quantitative polymerase chain reaction (qPCR) analysis of selected cytokines. Gene expression analysis demonstrated large standard deviations due to individual variability among patients and indicated variability in the concentrations of cytokines in the three different samples. The quantity of cytokine mRNA in the cold knife biopsy samples was generally greater than those obtained by other techniques. Tumor necrosis factor-α expression was significantly higher in the sample obtained with the ultracision harmonic scalpel and bipolar electrocoagulation (P=0.033) when compared with cold knife biopsy. The inflammatory response was analyzed by the quantification of gene expression through the use of qPCR. The ultracision harmonic scalpel and bipolar electrocoagulation triggered the inflammatory cascade and resulted in an increased production of cytokines compared with cold knife biopsy.

  19. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  20. Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes

    PubMed Central

    Gonzales, Amanda M; Orlando, Robert A

    2008-01-01

    Background Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression. Methods Cytokine (TNF-α, IL-1β, IL-6) and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR) with or without TNFα-stimulation. Cytokine protein and prostaglandin E2 (PGE2) expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1) assessing the activation state of the NF-κB signaling pathway and 2) measuring inflammatory gene expression by qRT-PCR and ELISA. Results Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold) and COX-2 (2.5-fold) mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited NF-κB activation and

  1. Cytokine-mediated PGE2 expression in human colonic fibroblasts.

    PubMed

    Kim, E C; Zhu, Y; Andersen, V; Sciaky, D; Cao, H J; Meekins, H; Smith, T J; Lance, P

    1998-10-01

    We investigated prostanoid biogenesis in human colonic fibroblasts (CCD-18Co and 5 primary fibroblast cultures) and epithelial cell lines (NCM460, T84, HT-29, and LS 174T) and the effect of PGE2 on fibroblast morphology. Cytokine-stimulated PGE2 production was measured. PGH synthase-1 and -2 (PGHS-1 and -2) protein and mRNA expression were evaluated. Basal PGE2 levels were low in all cell types (0.15-6.47 ng/mg protein). Treatment for 24 h with interleukin-1beta (IL-1beta; 10 ng/ml) or tumor necrosis factor-alpha (50 ng/ml), respectively, elicited maximal 25- and 6-fold inductions of PGE2 synthesis in CCD-18Co cultures and similar results in primary fibroblast cultures; maximal inductions with IL-1beta in colonic epithelial cell lines were from zero to fivefold. Treatment of CCD-18Co fibroblasts with IL-1beta caused maximal 21- and 53-fold increases, respectively, in PGHS-2 protein and mRNA levels without altering PGHS-1 expression. PGE2 (0.1 micromol/l) elicited a dramatic shape change in selected fibroblasts. Colonic fibroblasts are potentially important as cytokine targets and a source of and target for colonic prostanoids in vivo.

  2. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages

    PubMed Central

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto

    2016-01-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5. Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. PMID:27183578

  3. Synovial cytokine expression in psoriatic arthritis and associations with lymphoid neogenesis and clinical features

    PubMed Central

    2012-01-01

    expression and CCL20 SF levels strongly correlated with markers of disease activity. This cytokine pattern was not accompanied by gross clinical or biologic differences between LN-positive and -negative patients. Taken together, these results suggest a role of the IL-17/IL-23 cytokine axis in synovial LN in PsA. PMID:22541888

  4. Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression.

    PubMed

    Le Tulzo, Y; Shenkar, R; Kaneko, D; Moine, P; Fantuzzi, G; Dinarello, C A; Abraham, E

    1997-04-01

    The expression of proinflammatory and immunoregulatory cytokines rapidly increases in the lungs after hemorrhage, and such alterations contribute to the frequent development of acute inflammatory lung injury in this setting. Blood loss also produces elevations in catecholamine concentrations in the pulmonary and systemic circulation. In the present experiments, we used alpha- and beta-adrenergic receptor blockade to examine in vivo interactions between hemorrhage-induced adrenergic stimulation and pulmonary cytokine expression. Treatment of mice with the alpha-adrenergic receptor antagonist phentolamine prevented not only the elevation in mRNA levels of IL-1beta, TNF-alpha, and TGF-beta1, the increase in IL-1beta protein, but also the activation of nuclear factor (NF)-KB and cyclic AMP response element binding protein, which occurred in lung cells of untreated animals during the first hour after hemorrhage. In contrast, treatment before hemorrhage with the beta-adrenergic receptor antagonist propranolol was associated with increases in mRNA levels for IL-1beta, TNF-alpha, and TGF-beta1, which were greater than those present in untreated hemorrhaged mice, and did not prevent hemorrhage-associated increases in lung IL-1beta protein. Treatment with propranolol prevented hemorrhage-induced phosphorylation of cyclic AMP response element binding protein, but increased hemorrhage-associated activation of NF-KB. These results demonstrate that hemorrhage initially increases pulmonary cytokine expression through alpha- but not beta-adrenergic stimulation, and suggest that such alpha-adrenergic-mediated effects occur through activation of the transcriptional regulatory factor NF-kappaB.

  5. Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression.

    PubMed Central

    Le Tulzo, Y; Shenkar, R; Kaneko, D; Moine, P; Fantuzzi, G; Dinarello, C A; Abraham, E

    1997-01-01

    The expression of proinflammatory and immunoregulatory cytokines rapidly increases in the lungs after hemorrhage, and such alterations contribute to the frequent development of acute inflammatory lung injury in this setting. Blood loss also produces elevations in catecholamine concentrations in the pulmonary and systemic circulation. In the present experiments, we used alpha- and beta-adrenergic receptor blockade to examine in vivo interactions between hemorrhage-induced adrenergic stimulation and pulmonary cytokine expression. Treatment of mice with the alpha-adrenergic receptor antagonist phentolamine prevented not only the elevation in mRNA levels of IL-1beta, TNF-alpha, and TGF-beta1, the increase in IL-1beta protein, but also the activation of nuclear factor (NF)-KB and cyclic AMP response element binding protein, which occurred in lung cells of untreated animals during the first hour after hemorrhage. In contrast, treatment before hemorrhage with the beta-adrenergic receptor antagonist propranolol was associated with increases in mRNA levels for IL-1beta, TNF-alpha, and TGF-beta1, which were greater than those present in untreated hemorrhaged mice, and did not prevent hemorrhage-associated increases in lung IL-1beta protein. Treatment with propranolol prevented hemorrhage-induced phosphorylation of cyclic AMP response element binding protein, but increased hemorrhage-associated activation of NF-KB. These results demonstrate that hemorrhage initially increases pulmonary cytokine expression through alpha- but not beta-adrenergic stimulation, and suggest that such alpha-adrenergic-mediated effects occur through activation of the transcriptional regulatory factor NF-kappaB. PMID:9119995

  6. Role of the cytokine environment and cytokine receptor expression on the generation of functionally distinct dendritic cells from human monocytes.

    PubMed

    Conti, Lucia; Cardone, Marco; Varano, Barbara; Puddu, Patrizia; Belardelli, Filippo; Gessani, Sandra

    2008-03-01

    Myeloid dendritic cells (DC) and macrophages evolve from a common precursor. However, factors controlling monocyte differentiation toward DC or macrophages are poorly defined. We report that the surface density of the GM-CSF receptor (GM-CSFR) alpha subunit in human peripheral blood monocytes varies among donors. Although no correlation was found between the extent of GM-CSFR and monocyte differentiation into DC driven by GM-CSF and IL-4, GM-CSFR expression strongly influenced the generation of CD1a(+) dendritic-like cells in the absence of IL-4. CD1a(+) cells generated in the presence of GM-CSF express CD40, CD80, MHC class I and II, DC-SIGN, MR, CCR5, and partially retain CD14 expression. Interestingly, they spontaneously induce the expansion of CD4(+) and CD8(+) allogeneic T lymphocytes producing IFN-gamma, and migrate toward CCL4 and CCL19. Upon stimulation with TLR ligands, they acquire the phenotypic features of mature DC. In contrast, the allostimulatory capacity is not further increased upon LPS activation. However, by blocking LPS-induced IL-10, a higher T cell proliferative response and IL-12 production were observed. Interestingly, IL-23 secretion was not affected by endogenous IL-10. These results highlight the importance of GM-CSFR expression in monocytes for cytokine-induced DC generation and point to GM-CSF as a direct player in the generation of functionally distinct DC.

  7. Regulation of proinflammatory cytokines gene expression by nociceptin/orphanin FQ in the spinal cord and the cultured astrocytes.

    PubMed

    Fu, X; Zhu, Z-H; Wang, Y-Q; Wu, G-C

    2007-01-05

    Peripheral inflammation induces central sensitization characterized by the development of allodynia and hyperalgesia to thermal stimuli. Recent evidence suggests that activation of glial cells and a subsequent increase in proinflammatory cytokines contribute to the development of behavioral hypersensitivity after nerve injury or peripheral inflammation. The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous agonist of the N/OFQ peptide receptor (ORL1 receptor), has been demonstrated to play an important role in modulation of nociceptive signals. In the present study, we investigated: (1) astrocyte activation and proinflammatory cytokine expression at the lumbar spinal cord following intraplantar administration of complete Freund's adjuvant (CFA) in rats; (2) the mechanism of N/OFQ on nociception modulation, the relationship between N/OFQ and cytokines in the rat CNS in vivo and in vitro. The results showed: (1) CFA-induced peripheral inflammation evoked robust astrocyte activation and proinflammatory cytokines spinally; (2) down-regulation of cytokine mRNA transcripts by intrathecal administration of N/OFQ, the effects produced by N/OFQ were abolished by combination with ORL1 receptor-specific antagonist [Nphe(1)]N/OFQ(1-13)NH2; (3) ORL1 receptor was expressed on astrocytes of rat spinal cord; (4) cytokine gene expression was inhibited in astrocyte cultures exposed to N/OFQ, the inhibiting effects of N/OFQ were significantly blocked by [Nphe(1)]N/OFQ(1-13)NH2. The present data demonstrated that astrocyte activation and enhanced cytokine expression at the CNS had a role in eliciting behavioral hypersensitivity; the anti-nociception function of N/OFQ might be dependent on cytokines derived from astrocytes, the effects were attributable to the ORL1 receptor pathway.

  8. The Inflammatory Cytokines TWEAK and TNFα Reduce Renal Klotho Expression through NFκB

    PubMed Central

    Moreno, Juan A.; Izquierdo, Maria C.; Sanchez-Niño, Maria D.; Suárez-Alvarez, Beatriz; Lopez-Larrea, Carlos; Jakubowski, Aniela; Blanco, Julia; Ramirez, Rafael; Selgas, Rafael; Ruiz-Ortega, Marta; Egido, Jesus; Sanz, Ana B.

    2011-01-01

    Proinflammatory cytokines contribute to renal injury, but the downstream effectors within kidney cells are not well understood. One candidate effector is Klotho, a protein expressed by renal cells that has antiaging properties; Klotho-deficient mice have an accelerated aging-like phenotype, including vascular injury and renal injury. Whether proinflammatory cytokines, such as TNF and TNF-like weak inducer of apoptosis (TWEAK), modulate Klotho is unknown. In mice, exogenous administration of TWEAK decreased expression of Klotho in the kidney. In the setting of acute kidney injury induced by folic acid, the blockade or absence of TWEAK abrogated the injury-related decrease in renal and plasma Klotho levels. TWEAK, TNFα, and siRNA-mediated knockdown of IκBα all activated NFκB and reduced Klotho expression in the MCT tubular cell line. Furthermore, inhibition of NFκB with parthenolide prevented TWEAK- or TNFα-induced downregulation of Klotho. Inhibition of histone deacetylase reversed TWEAK-induced downregulation of Klotho, and chromatin immunoprecipitation showed that TWEAK promotes RelA binding to the Klotho promoter, inducing its deacetylation. In conclusion, inflammatory cytokines, such as TWEAK and TNFα, downregulate Klotho expression through an NFκB-dependent mechanism. These results may partially explain the relationship between inflammation and diseases characterized by accelerated aging of organs, including CKD. PMID:21719790

  9. Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F.

    PubMed

    Lu, Xiaohui; Huang, Lily Jun-Shen; Lodish, Harvey F

    2008-02-29

    The majority of the BCR-ABL-negative myeloproliferative disorders express the mutant JAK2, JAK2V617F. Previously we showed that constitutive activation of this oncogenic JAK2 mutant in Ba/F3 or 32D cells requires coexpression of a cognate homodimeric cytokine receptor, such as the EpoR. However, overexpression of JAK2V617F in Ba/F3 cells renders them cytokine-independent for growth in the absence of an exogenous cytokine receptor. Here, we demonstrated that JAK2V617F domains required for receptor association are essential for cytokine-independent growth by overexpressed JAK2V617F, suggesting JAK2V617F is binding to an unknown endogenous cytokine receptor(s) for its activation. We further showed that disruption of EpoR dimerization by coexpressing a truncated EpoR disrupted JAK2V617F-mediated transformation, indicating that EpoR dimerization plays an essential role in the activation of JAK2V617F. Interestingly, coexpression of JAK2V617F with EpoR mutants that retain JAK2 binding but are defective in mediating Epo-dependent JAK2 activation due to mutations in a conserved juxtamembrane motif does lead to cytokine-independent activation of JAK2V617F. Overall, these findings confirm that JAK2V617F requires binding to a dimerized cytokine receptor for its activation, and that the key EpoR juxtamembrane regulatory motif essential for Epo-dependent JAK2 activation is not essential for the activation of JAK2V617F. The structure of the activated JAK2V617F is thus likely to be different from that of the activated wild-type JAK2, raising the possibility of developing a specifically targeted therapy for myeloproliferative disorders.

  10. Neutrophil Functions and Cytokines Expression Profile in Buffaloes with Impending Postpartum Reproductive Disorders

    PubMed Central

    Patra, Manas Kumar; Kumar, Harendra; Nandi, Sukdeb

    2013-01-01

    The study was conducted to correlate the periparturient immune status in terms of neutrophil functions and cytokine expression in peripheral blood mononuclear cell culture with impending postpartum reproductive disorders in buffaloes. Forty pregnant buffaloes were observed for occurrence of postpartum reproductive disorders (PRD), i.e., metritis, endometritis and delayed uterine involution etc., during one week prepartum to four weeks postpartum period. A representative number (n = 6) of buffaloes that did not develop any PRD were included in group I (healthy, control), while the animals which experienced PRD were assigned into group II (PRD, n = 8). The blood samples were collected at weekly interval from one week prepartum to four weeks postpartum period considering the day of calving as ‘d 0’. Differential leucocytes counts, superoxide and hydrogen peroxide production activity in isolated neutrophils and the mRNA expression profile of cytokines i.e., IL-2, IL-4 and IFN-γ in PBMC culture were studied in all the samples. A higher total leucocytes, neutrophil and band cells count along with impaired neutrophil functions i.e., lowered level of production of superoxide and hydrogen peroxide before parturition and during early postpartum period were observed in buffaloes developing PRD. Further, a lower expression of IL-2, IFN-γ and IL-4 mRNA in PBMC culture was observed at calving in buffaloes that subsequently developed PRD at later postpartum. Thus, suppression in neutrophil function and cytokine expression at prepartum to early postpartum period predisposes the buffaloes to develop postpartum reproductive disorders. Hence, monitoring of neutrophils function and cytokine expression profile would be effective to predict certain reproductive disorders at late pregnancy or immediately after parturition in buffaloes. In future, this may be a novel approach for determining suitable management and therapeutic decisions for prevention of commonly occurring

  11. Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells.

    PubMed Central

    Filler, S G; Pfunder, A S; Spellberg, B J; Spellberg, J P; Edwards, J E

    1996-01-01

    Endothelial cells have the potential to influence significantly the host immune response to blood-borne microbial pathogens, such as Candida albicans. We investigated the ability (of this organism to stimulate endothelial cell responses relevant to host defense in vitro. Infection with C. albicans induced endothelial cells to express mRNAs encoding E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, interleukin 6, interleukin 8, monocyte chemoattractant protein 1, and inducible cyclooxygenase (cox2). All three leukocyte adhesion molecule proteins were expressed on the surfaces of the endothelial cells after 8 h of exposure to C. albicans. An increase in secretion of all three cytokines was found after 12 h of infection. Cytochalasin D inhibited accumulation of the endothelial cell cytokine and leukocyte adhesion molecule mRNAs in response to C. albicans, suggesting that endothelial cell phagocytosis of the organism is required to induce this response. Live Candida tropicalis, Candida glabrata, a nongerminating strain of C. albicans, and killed C. albicans did not stimulate the expression of any of the cytokine or leukocyte adhesion molecule mRNAs. These findings indicate that a factor associated with live, germinating C. albicans is required for induction of endothelial cell mRNA expression. Furthermore, since endothelial cells phagocytize killed C. albicans, phagocytosis is likely necessary but not sufficient for this organism to stimulate mRNA accumulation. In conclusion, the secretion of proinflammatory cytokines and expression of leukocyte adhesion molecules by endothelial cells in response to C. albicans could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of intravascular infection. PMID:8698486

  12. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages

    PubMed Central

    Ushach, Irina; Burkhardt, Amanda M.; Martinez, Cynthia; Hevezi, Peter A.; Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Valle-Rios, Ricardo; Vazquez, Monica I.; Homey, Bernhard; Zlotnik, Albert

    2014-01-01

    Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses. PMID:25486603

  13. RNA-Seq Reveals Activation of Both Common and Cytokine-Specific Pathways following Neutrophil Priming

    PubMed Central

    Moots, Robert J.; Edwards, Steven W.

    2013-01-01

    Neutrophils are central to the pathology of inflammatory diseases, where they can damage host tissue through release of reactive oxygen metabolites and proteases, and drive inflammation via secretion of cytokines and chemokines. Many cytokines, such as those generated during inflammation, can induce a similar “primed” phenotype in neutrophils, but it is unknown if different cytokines utilise common or cytokine-specific pathways to induce these functional changes. Here, we describe the transcriptomic changes induced in control human neutrophils during priming in vitro with pro-inflammatory cytokines (TNF-α and GM-CSF) using RNA-seq. Priming led to the rapid expression of a common set of transcripts for cytokines, chemokines and cell surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1). However, 580 genes were differentially regulated by TNF-α and GM-CSF treatment, and of these 58 were directly implicated in the control of apoptosis. While these two cytokines both delayed apoptosis, they induced changes in expression of different pro- and anti-apoptotic genes. Bioinformatics analysis predicted that these genes were regulated via differential activation of transcription factors by TNF-α and GM-CSF and these predictions were confirmed using functional assays: inhibition of NF-κB signalling abrogated the protective effect of TNF-α (but not that of GM-CSF) on neutrophil apoptosis, whereas inhibition of JAK/STAT signalling abrogated the anti-apoptotic effect of GM-CSF, but not that of TNF-α (p<0.05). These data provide the first characterisation of the human neutrophil transcriptome following GM-CSF and TNF-α priming, and demonstrate the utility of this approach to define functional changes in neutrophils following cytokine exposure. This may provide an important, new approach to define the molecular properties of neutrophils after in vivo activation during inflammation. PMID:23554905

  14. AP-1 is involved in ICOS gene expression downstream of TCR/CD28 and cytokine receptor signaling.

    PubMed

    Watanabe, Masashi; Nakajima, Shinsuke; Ohnuki, Kazunobu; Ogawa, Shuhei; Yamashita, Masakatsu; Nakayama, Toshinori; Murakami, Yasufumi; Tanabe, Kazunari; Abe, Ryo

    2012-07-01

    It has been proposed that sustained ICOS expression in chronic inflammatory immune conditions, such as autoimmunity and allergy, contributes to symptom exacerbation. Therefore modulation of ICOS gene expression could be a potential therapeutic strategy for such immune diseases. However, the precise molecular mechanisms controlling ICOS gene expression remain poorly understood. In this study, we explored transcription factors involving in ICOS gene expression and examined their roles in a physiological situation. Microarray analysis revealed that one AP-1 molecule, Fos-related antigen-2 (Fra2), was highly correlated with ICOS expression. Ectopic expression of Fra2 and other AP-1 molecules upregulated ICOS expression on T cells. We identified an AP-1-responsive site (AP1-RE) within the ICOS promoter region and demonstrated AP-1 actually binds to AP1-RE upon TCR/CD28 stimulation. Meanwhile, we found several cytokines could upregulate ICOS expression on both naïve and effector T cells in a manner independent of TCR/CD28 stimulation. These cytokine stimuli induced AP-1 binding to AP1-RE. Together, our results indicate AP-1 transcription factors are involved in ICOS gene expression downstream of both TCR/CD28 signaling and cytokine receptor signaling, and suggest AP-1 activation via cytokine receptor signaling may be one of the mechanisms maintaining high level ICOS expression in chronic inflammatory immune responses.

  15. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells

    PubMed Central

    Gautier, Violette; Cayrol, Corinne; Farache, Dorian; Roga, Stéphane; Monsarrat, Bernard; Burlet-Schiltz, Odile; Gonzalez de Peredo, Anne; Girard, Jean-Philippe

    2016-01-01

    IL-33 is a nuclear cytokine from the IL-1 family that plays important roles in health and disease. Extracellular IL-33 activates a growing number of target cells, including group 2 innate lymphoid cells, mast cells and regulatory T cells, but it remains unclear whether intracellular nuclear IL-33 has additional functions in the nucleus. Here, we used a global proteomic approach based on high-resolution mass spectrometry to compare the extracellular and intracellular roles of IL-33 in primary human endothelial cells, a major source of IL-33 protein in human tissues. We found that exogenous extracellular IL-33 cytokine induced expression of a distinct set of proteins associated with inflammatory responses in endothelial cells. In contrast, knockdown of endogenous nuclear IL-33 expression using two independent RNA silencing strategies had no reproducible effect on the endothelial cell proteome. These results suggest that IL-33 acts as a cytokine but not as a nuclear factor regulating gene expression in endothelial cells. PMID:27694941

  16. Elevated cytokine expression of different PEEK wear particles compared to UHMWPE in vivo.

    PubMed

    Lorber, V; Paulus, A C; Buschmann, A; Schmitt, B; Grupp, T M; Jansson, V; Utzschneider, Sandra

    2014-01-01

    Due to their mechanical properties, there has been growing interest in poly-ether-ether-ketone (PEEK) and its composites as bearing material in total and unicompartmental knee arthroplasty. The aim of this study was to analyze the biological activity of wear particles of two different (pitch and PAN) carbon-fiber-reinforced- (CFR-) PEEK varieties in comparison to ultra-high-molecular-weight-polyethylene (UHMWPE) in vivo. The authors hypothesized no difference between the used biomaterials. Wear particle suspensions of the particulate biomaterials were injected into knee joints of Balb/c mice, which were sacrificed after seven days. The cytokine expression (IL-1β, IL-6, TNF-α) was analyzed immunohistochemically in the synovial layer, the adjacent bone marrow and the articular cartilage. Especially in the bone marrow of the two CFR-PEEK varieties there were increased cytokine expressions compared to the control and UHMWPE group. Furthermore, in the articular cartilage the CFR-PEEK pitch group showed an enhanced cytokine expression, which could be a negative predictor for the use in unicondylar knee systems. As these data suggest an increased proinflammatory potential of CFR-PEEK and its composites in vivo, the initial hypothesis had to be refuted. Summarizing these results, CFR-PEEK seems not to be an attractive alternative to UHMWPE as a bearing material, especially in unicompartmental knee arthroplasty.

  17. Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production

    PubMed Central

    Chen, Joseph C.; Erikson, David W.; Piltonen, Terhi T.; Meyer, Michelle R.; Barragan, Fatima; McIntire, Ramsey H.; Tamaresis, John S.; Vo, Kim Chi; Giudice, Linda C.; Irwin, Juan C.

    2013-01-01

    Objective To determine the effects of coculturing endometrial epithelial cells (eEC) with paired endometrial stromal fibroblasts (eSF) on cell-specific gene expression and cytokine secretion patterns. Design In vitro study. Setting University research laboratory. Patient(s) Endometrial biopsies were obtained from premenopausal women. Intervention(s) Polarized eEC and subject-paired eSF were cultured for 12.5 hours alone (monoculture) or combined in a two-chamber coculture system without cell-cell contact. Cells and conditioned media were analyzed for global gene expression and cytokine secretion, respectively. Purified, endometrial tissue-derived eEC and eSF isolated by fluorescent activated cell sorting (FACS) were used as noncultured controls. Main Outcome Measure(s) Cell-specific global gene expression profiling and analysis of secreted cytokines in eEC/eSF cocultures and respective monocultures. Result(s) Transepithelial resistance, diffusible tracer exclusion, expression of tight junction proteins, and apical/basolateral vectorial secretion confirmed eEC structural and functional polarization. Distinct transcriptomes of eEC and eSF were consistent with their respective lineages and their endometrial origin. Coculture of eEC with eSF resulted in altered cell-specific gene expression and cytokine secretion. Conclusion(s) This coculture model provides evidence that interactions between endometrial functionally polarized epithelium and stromal fibroblasts affect cell-specific gene expression and cytokine secretion underscoring their relevance when modeling endometrium in vitro. PMID:23849844

  18. Bilberry-Derived Anthocyanins Modulate Cytokine Expression in the Intestine of Patients with Ulcerative Colitis

    PubMed Central

    Gottier, Claudia; Biedermann, Luc; Zeitz, Jonas; Lang, Silvia; Weber, Achim; Rogler, Gerhard; Scharl, Michael

    2016-01-01

    Background/Aims We previously demonstrated that anthocyanin-rich bilberry extract (ARBE) inhibits IFN-γ-induced signalling and downstream effects in human monocytic cells and ameliorates disease activity in ulcerative colitis (UC) patients. Here, we studied the molecular mechanisms of ARBE-mediated effects in vitro and by analysing colonic tissue and serum samples of UC patients treated with an oral anthocyanin-rich bilberry preparation during an open label clinical trial. Methods Colon specimens obtained during an open pilot study using ARBE for the treatment of mild-to-moderate UC were analyzed by immunohistochemistry. Cytokine levels in patients’ serum were quantified by ELISA. Cell culture experiments were performed using THP-1 monocytic cells. Results ARBE treatment inhibited the expression of IFN-γ-receptor 2 in human THP-1 monocytic cells. Colon biopsies of UC patients who responded to the 6-week long ARBE treatment revealed reduced amounts of the pro-inflammatory cytokines IFN-γ and TNF-α. Levels of phosphorylated (activated) p65-NF-κB were reduced in these patients. Further, patients with successful ARBE treatment featured enhanced levels of Th17-cell specific cytokine IL-22 and immunoregulatory cytokine IL-10 as well as reduced serum levels of TNF-α and MCP-1, but enhanced levels of IL-17A, in contrast to patients that did not reach remission after ARBE treatment. Conclusions Our data suggest a molecular mechanism underlying the anti-inflammatory effects of ARBE treatment in UC patients by modulating T-cell cytokine signalling and inhibiting IFN-γ signal transduction. These data are of particular interest, since ARBE is a promising therapeutic approach for the treatment of IBD. PMID:27152519

  19. Cytokine expression correlates with differential sensory perception between lye and no-lye relaxers.

    PubMed

    Tackey, Robert N; Bryant, Harold; Parks, Felicia M

    2013-01-01

    Differences in perceived sensory scalp discomfort between guanidine carbonate/calcium hydroxide (no-lye) and sodium hydroxide (lye) relaxer technologies have been reported by users for decades. However, the biochemical processes responsible for the perceived differences have not been fully studied. We have used an in vitro three-dimensional skin model with well-developed epidermis to explore the expression of cytokines that may partially explain the biological response resulting in differences in sensory perception. The cytokines selected were prostaglandin E2 (PGE2), interleukin-1a (IL-1a), and IL-1 receptor antagonist (IL-1ra) because they have been shown to participate in irritant-induced discomfort. We show that lye relaxer induced over 350% increase in PGE2 expression over untreated control compared to 200% by no-lye in the early phase (4 h) postexposure epidermal response. Expression of IL-1a in the early phase showed no significant difference between lye and no-lye; however, no-lye induced higher levels (p < 0.0001) in 24 and 48 h. Concomitantly, no-lye induced increased expression of IL-1ra compared to lye at all time points. Given the association of PGE2 with nociceptive activation, these findings suggest that the perceived variation in sensory discomfort reported by consumers between lye and no-lye relaxers may be associated with differences in induced PGE2 expression.

  20. Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig.

    PubMed

    O'Leary, S; Jasper, M J; Warnes, G M; Armstrong, D T; Robertson, S A

    2004-08-01

    In pigs, uterine exposure to the constituents of semen is known to increase litter size but the underlying physiological mechanisms remain undefined. Studies in rodents and humans implicate immune modulating moieties in seminal plasma as likely candidates, acting through enhancing the receptivity of the female tract. In this study, the acute and longer term effects of seminal plasma on cytokine expression and leukocyte abundance in the pig endometrium during early pregnancy have been characterised. The reproductive tracts of gonadotrophin-primed pre-pubertal gilts treated with intrauterine infusions of either pooled seminal plasma or phosphate-buffered saline (PBS) were retrieved at 34 h, or on day 5 and day 9 after treatment. Seminal plasma elicited an endometrial inflammatory infiltrate comprised of predominantly macrophages and major histocompatibility complex class II+-activated macrophages and dendritic cells. The abundance of these cells was greatest at the pre-ovulatory (34 h) time-point and their increase relative to PBS-treated tissues was maintained until day 9 after seminal plasma treatment. Seminal plasma induced the expression of the cytokines, granulocyte macrophage colony-stimulating factor, interleukin-6 and monocyte chemoattractant protein-1, and the eicosanoid-synthesising enzyme cyclo-oxygenase-2. Expression was maximal 34 h after treatment but altered expression patterns as a consequence of seminal plasma induction persisted through early pregnancy. These changes were accompanied by altered dynamics in pre-implantation embryo development with an increase in the number of embryos and in their viability after seminal plasma treatment. Together, these findings implicate factors in seminal plasma in programming the trajectory of uterine cytokine expression and leukocyte trafficking during early pregnancy and in regulating pre-implantation embryo development in the pig.

  1. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model.

    PubMed

    Liu, Yu-Ching; Ho, Heng-Chien; Lee, Miau-Rong; Lai, Kuang-Chi; Yeh, Chung-Min; Lin, Yueh-Min; Ho, Tin-Yun; Hsiang, Chien-Yun; Chung, Jing-Gung

    2012-07-15

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9-18 fold) of induction in the microarray data, and its early induction was observed in a 2h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.

  2. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model

    SciTech Connect

    Liu, Yu-Ching; Ho, Heng-Chien; Lee, Miau-Rong; Lai, Kuang-Chi; Yeh, Chung-Min; Lin, Yueh-Min; Ho, Tin-Yun; Hsiang, Chien-Yun; Chung, Jing-Gung

    2012-07-15

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2 h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.

  3. Effects of endoplasmic reticulum stress on the expression of inflammatory cytokines in patients with ulcerative colitis

    PubMed Central

    Li, Nan; Wang, Xue-Ming; Jiang, Li-Jun; Zhang, Meng; Li, Na; Wei, Zhen-Zhen; Zheng, Nan; Zhao, Ya-Jiao

    2016-01-01

    AIM: To explore the changes of X-box binding protein 1 splicing (XBP1s) and inflammatory cytokine expression in patients with ulcerative colitis (UC) in response to endoplasmic reticulum stress (ERS). METHODS: Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction were performed to detect the forms of XBP1s and the expression of interleukin (IL)-2, interferon (IFN)-γ, and IL-17α. Differences between patients with UC and normal subjects were then determined. RESULTS: Mononuclear cells of the peripheral blood of normal subjects and UC patients with were stimulated with no drugs (control), phytohemagglutinin (PHA), thapsigargin (TG), or both PHA and TG. XBP1s in patients with UC exhibited splicing, which was greater with co-stimulation than single stimulation. Co-stimulation increased the expression level of IL-2, IFN-γ, and IL-17α. CONCLUSION: The T lymphocytes of both normal subjects and patients with UC responded to ERS by activating the XBP1s-mediated signalling pathway, upregulating the expression of inflammatory cytokines, and increasing the occurrence of inflammation. The mononuclear cells in the peripheral blood of patients with UC were more sensitive to ERS than those in the peripheral blood of normal subjects. PMID:26900298

  4. Monocyte activation and cytokine production in Malawian children presenting with P. falciparum malaria.

    PubMed

    Mandala, W L; Msefula, C L; Gondwe, E N; Drayson, M T; Molyneux, M E; MacLennan, C A

    2016-05-01

    Malaria in malaria-naïve adults is associated with an inflammatory response characterized by expression of specific activation markers on innate immune cells. Here, we investigate activation and adhesion marker expression, and cytokine production in monocytes from children presenting with cerebral malaria (CM, n = 36), severe malarial anaemia (SMA, n = 42) or uncomplicated malaria (UM, n = 66), and healthy aparasitemic children (n = 52) in Blantyre, Malawi. In all malaria groups, but particularly in the two severe malaria groups, monocyte expression of CD11b, CD11c, CD18, HLA-DR and CD86, and percentages of TNF-α- and IL-6-producing monocytes were lower than in healthy controls, while expression of CD11a, TLR2 and TLR4 was lower in children with severe malaria compared with controls. These levels mostly normalized during convalescence, but percentages of cytokine-producing monocytes remained suppressed in children with SMA. In all malaria groups, especially the SMA group, a greater proportion of monocytes were loaded with haemozoin than among controls. In a P. falciparum hyperendemic area, monocytes in children with acute symptomatic malaria have reduced expression of adhesion molecules and activation markers and reduced inflammatory cytokine production. This immune suppression could be due to accumulation of haemozoin and/or previous exposure to P. falciparum.

  5. Kinetic and organ-specific patterns of cytokine expression in acute graft-versus-host disease.

    PubMed

    Baker, K S; Allen, R D; Roths, J B; Sidman, C L

    1995-04-01

    Although many cytokines have been previously implicated in graft-versus-host disease (GVHD), no study to date has comprehensively evaluated their expression over time or in different tissues affected by GVHD. Using a semi-quantitative reverse transcriptase-PCR technique and a murine model of acute GVHD, we have evaluated the expression levels of mRNA for a wide range of cytokines in spleen, gut and liver tissues at weekly intervals after bone marrow transfer. The earliest cytokine responses seen were increases in IL-2, IL-10, IFN-gamma, MIP-1 alpha and TNF-alpha in the spleen, suggesting a primarily Th1 pathway. Other cytokines (IL-1 alpha, IL-10 and MIP-1 alpha) were persistently elevated in GVHD mice, but were variable depending on the tissue. These data demonstrate that a wide range of cytokines are involved in the GVHD response and that their kinetic pattern of expression is different in various affected tissues.

  6. Benexate hydrochloride betadex modulates nitric oxide synthesis and cytokine expression in gastric ulcers

    PubMed Central

    Lee, Jae Min; Lim, Ji-Youn; Kim, Yoonjin; Kim, Ye Ji; Choi, Hyuk Soon; Kim, Eun Sun; Keum, Bora; Seo, Yeon Seok; Jeen, Yoon Tae; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang; Sul, Donggeun; Hong, Junghwa; Chun, Hoon Jai

    2016-01-01

    The present study investigated benexate hydrochloride betadex (BHB)-mediated ulcer healing, and changes to microcirculation modulated through nitric oxide synthase (NOS) and anti-inflammatory activity. A rat model of gastric mucosal injury was established through injection of a 60% acetic acid solution into the stomach. Following ulcer induction, the rats were administered BHB orally for 5 days at doses of 0, 100, 300 or 1,000 mg/kg. The highest dose of BHB was also administered with or without L-NG-nitroarginine methyl ester (L-NAME). The area of gastric ulcers was determined by planimetry, and expression of cyclooxygenases (COX), cytokines and NOS in stomach tissues were measured using western blotting. Compared with the control group, gastric ulcer size was significantly decreased in the 1,000 mg/kg BHB-treated group (P<0.05). Administration of BHB led to a significant increase in endothelial (e)NOS expression (P<0.05). Although acetic acid co-treatment with L-NAME induced more severe mucosal damage, BHB decreased COX expression and tumor necrosis factor-α levels when administered with the nitric oxide inhibitor, L-NAME (P<0.05). BHB exhibited protective effects in a rat model of gastric ulcers, which were associated with a decrease in pro-inflammatory cytokine levels and the activation of eNOS. PMID:27446246

  7. A new platform for constructing antibody-cytokine fusion proteins (immunocytokines) with improved biological properties and adaptable cytokine activity.

    PubMed

    Gillies, Stephen D

    2013-10-01

    A novel method for constructing immunocytokines has been developed that utilizes fusion of cytokines to the C-terminus of the Ig light chain, rather than fusing to the heavy chain. Such molecules are expressed well in transfected cells, are very stable in normal buffers and have biological properties that are superior to immunocytokines made by fusion to the heavy chain. These properties include longer circulating half-life, increased uptake following subcutaneous dosing and similar or improved antibody effector activities of antibody-dependent cytotoxic activity and complement-dependent cytotoxicity, respectively. Furthermore, the sequestering effect of this fusion junction allows one to adjust intermediate affinity (βγ) interleukin 2 receptor (IL2R) binding and activation by shortening the N-terminus of IL2 at the fusion point. This appears to limit access of the critical contact residue Asp20 of IL2 to the β-chain of βγ IL2R, while maintaining binding and activation of high-affinity (αβγ) IL2R-expressing cells. Several immunocytokine forms with varying degrees of IL2R specificity have been constructed, and some appear to regain their activity for the βγ IL2R when bound to antigen-coated beads. Such molecules may have reduced toxicity in the circulation and enhanced anti-tumor activity.

  8. Effects of Rilpivirine on Human Adipocyte Differentiation, Gene Expression, and Release of Adipokines and Cytokines

    PubMed Central

    Díaz-Delfín, Julieta; Domingo, Pere; Mateo, Maria Gracia; Gutierrez, Maria del Mar; Domingo, Joan Carles; Giralt, Marta

    2012-01-01

    Rilpivirine is a nonnucleoside reverse transcriptase inhibitor (NNRTI) recently developed as a drug of choice for initial antiretroviral treatment of HIV-1 infection. Disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function are common concerns as secondary effects of antiretroviral treatment. Efavirenz, the most commonly used NNRTI, causes mild dyslipidemic effects in patients and strongly impaired adipocyte differentiation in vitro. In this study, we provide the first demonstration of the effects of rilpivirine on human adipocyte differentiation, gene expression, and release of regulatory proteins (adipokines and cytokines) and compare them with those caused by efavirenz. Rilpivirine caused a repression of adipocyte differentiation that was associated with impaired expression of the master adipogenesis regulators peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT enhancer binding protein alpha (C/EBPα), and sterol regulatory element binding transcription factor 1 (SREBP-1) and their target genes encoding lipoprotein lipase and the adipokines leptin and adiponectin. Rilpivirine also repressed adiponectin release by adipocytes, but only at high concentrations, and did not alter leptin release. Rilpivirine induced the release of proinflammatory cytokines (interleukin-6 and -8, monocyte chemoattractant protein 1 [MCP-1], plasminogen activator inhibitor type 1 [PAI-1]) only at very high concentrations (10 μM). A comparison of the effects of rilpivirine and efavirenz at the same concentration (4 μM) or even at lower concentrations of efavirenz (2 μM) showed that rilpivirine-induced impairment of adipogenesis and induction of proinflammatory cytokine expression and release were systematically milder than those of efavirenz. It is concluded that rilpivirine causes an antiadipogenic and proinflammatory response pattern, but only at high concentrations, whereas efavirenz causes similar effects at lower concentrations

  9. SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation.

    PubMed

    Robson, Matthew J; Turner, Ryan C; Naser, Zachary J; McCurdy, Christopher R; Huber, Jason D; Matsumoto, Rae R

    2013-09-01

    Methamphetamine (METH) abuse is associated with several negative side effects including neurotoxicity in specific brain regions such as the striatum. The precise molecular mechanisms by which METH usage results in neurotoxicity remain to be fully elucidated, with recent evidence implicating the importance of microglial activation and neuroinflammation in damaged brain regions. METH interacts with sigma receptors which are found in glial cells in addition to neurons. Moreover, sigma receptor antagonists have been shown to block METH-induced neurotoxicity in rodents although the cellular mechanisms underlying their neuroprotection remain unknown. The purpose of the current study was to determine if the prototypic sigma receptor antagonist, SN79, mitigates METH-induced microglial activation and associated increases in cytokine expression in a rodent model of METH-induced neurotoxicity. METH increased striatal mRNA and protein levels of cluster of differentiation 68 (CD68), indicative of microglial activation. METH also increased ionized calcium binding adapter molecule 1 (IBA-1) protein expression, further confirming the activation of microglia. Along with microglial activation, METH increased striatal mRNA expression levels of IL-6 family pro-inflammatory cytokines, leukemia inhibitory factor (lif), oncostatin m (osm), and interleukin-6 (il-6). Pretreatment with SN79 reduced METH-induced increases in CD68 and IBA-1 expression, demonstrating its ability to prevent microglial activation. SN79 also attenuated METH-induced mRNA increases in IL-6 pro-inflammatory cytokine family members. The ability of a sigma receptor antagonist to block METH-induced microglial activation and cytokine production provides a novel mechanism through which the neurotoxic effects of METH may be mitigated.

  10. Membrane-attached Cytokines Expressed by mRNA Electroporation Act as Potent T-Cell Adjuvants.

    PubMed

    Weinstein-Marom, Hadas; Pato, Aviad; Levin, Noam; Susid, Keren; Itzhaki, Orit; Besser, Michal J; Peretz, Tamar; Margalit, Alon; Lotem, Michal; Gross, Gideon

    2016-01-01

    Proinflammatory cytokines are widely explored in different adoptive cell therapy protocols for enhancing survival and function of the transferred T cells, but their systemic administration is often associated with severe toxicity which limits their clinical use. To confine cytokine availability to the therapeutic T cells, we expressed 3 key cytokines, IL-2, IL-12, and IL-15, as integral T-cell membrane proteins. To prevent permanent activation of growth signaling pathways, we delivered these genes to T cells through mRNA electroporation. The engineered cytokines could be detected on the surface of mRNA-transfected cells and binding to their cell-surface receptors mainly occurred in cis. The 3 human cytokines supported the ex vivo growth of activated human CD8 and CD4 T cells for at least 6 days posttransfection, comparably to high-dose soluble IL-2. Similarly, membrane IL-2, membrane IL-12, and, to a lesser extent, membrane IL-15, were comparable with their soluble counterparts in supporting proliferation of splenic mouse CD8 T cells. Following electroporation of human CD8 T cells and antimelanoma tumor-infiltrating lymphocytes, membrane cytokines synergized with constitutively active toll-like receptor 4 in inducing interferon-γ secretion. Efficient cooperation with TLR4 was also evident in the upregulation of the activation molecules CD25, CD69, CD137 (4-1BB), and CD134 (OX40). Taken together, membrane cytokines expressed through mRNA transfection emerge as effective tools for enhancing T-cell proliferation and function and may have potential use in adoptive T-cell therapy.

  11. Cytokine dependent and independent iNKT cell activation

    PubMed Central

    Reilly, Emma C.; Wands, Jack R.; Brossay, Laurent

    2010-01-01

    Invariant NKT (iNKT) cells have been extensively studied throughout the last decade due to their ability to polarize and amplify the downstream immune response. Only recently however, have the various mechanisms underlying NKT cell activation begun to unfold. iNKT cells have the ability to respond as innate immune cells with minimal TCR involvement as well as through direct TCR recognition of glycolipid antigens. Additionally, the existence of several subsets of iNKT cells creates the potential for other unique pathways, which are not yet clearly defined. Here we provide an overview of the known mechanisms of invariant NKT cell activation, focusing on cytokine driven pathways and the resulting cytokine responses. PMID:20554220

  12. Expression of Th1- Th2- and Th17-associated cytokines in laryngeal carcinoma

    PubMed Central

    Xu, Xiaoqun; Wang, Rui; Su, Qinghong; Huang, Haiyan; Zhou, Peng; Luan, Junwen; Liu, Jingsheng; Wang, Junfu; Chen, Xuemei

    2016-01-01

    T-helper (Th) 0 cell differentiation into Th1 or Th2 cells is dependent on a number of transcription factors that act at specific time points to regulate gene expression. Th17 cells, a subset of interleukin (IL)-17-producing T cells distinct from Th1 or Th2 cells, are considered to exhibit a critical function in inflammation and autoimmune diseases, as well as cancer development. In the present study, the expression of Th1-, Th2- and Th17-associated cytokines in laryngeal cancer and pericarcinoma tissues obtained from 57 laryngeal carcinoma patients was investigated. The association between Th1, Th2 and Th17 infiltration and tumor development was also evaluated. Reverse transcription-polymerase chain reaction and western blotting results revealed that the mRNA and protein expression of Th2 cytokines was lower, while the expression of Th1 and Th17 cytokines was higher in tumor tissues than in pericarcinoma tissues. Furthermore, the early stage cancer patients exhibited a higher level of interferon-γ, IL-2 and IL-17 mRNA expression than those at advanced stages. Cancer tissues exhibited higher Th17 cytokine expression than pericarcinoma tissues. By contrast, Th1 cytokine expression was increased in pericarcinoma tissues compared with cancer tissues. These results indicate that high expression of Th1- and Th17-associated cytokines in laryngeal carcinoma may contribute to suppression of cancer development and a relatively good prognosis. PMID:27588143

  13. Expression Profile of Intravitreous Cytokines, Chemokines and Growth Factors in Patients with Fuchs Heterochromic Iridocyclitis

    PubMed Central

    Suzuki, Kaori; Suzuki, Yukihiko; Matsumoto, Mitsuo; Nakazawa, Mitsuru

    2010-01-01

    Purpose To report the postoperative courses of 2 patients with Fuchs heterochromic iridocyclitis (FHI) and the concentrations of various cytokines, chemokines and growth factors in vitreous fluid samples to obtain insights into pathobiochemical aspects. Subjects: The patients were a 27- and a 47-year-old woman. Phacoemulsification and aspiration, intraocular lens (IOL) implantation, and pars plana vitrectomy were performed to treat their cataracts and vitreous opacities. During their early postoperative periods, inflammatory cells precipitated on the IOL and intraocular pressure was increased in both patients. Methods At the time of surgery, undiluted vitreous fluid specimens were collected. The concentrations of multiple cytokines, chemokines and growth factors were measured by a bead array immunodetection system. Results The levels of interleukin-1ra, −5, −6, −8, −10 and −13, interferon-inducible 10-kDa protein, monocyte chemoattractant protein 1, macrophage inflammatory protein 1β, and regulated upon activation, normal T-cell expressed and secreted (RANTES) were significantly elevated in vitreous fluid in both patients. Conclusion Although the postoperative course was generally favorable in patients with FHI, steroid instillation was necessary for a few months postoperatively, as precipitates easily formed on the IOL surface and elevated intraocular pressure. The profiles of intravitreal concentrations of cytokines, chemokines and growth factors may characterize postoperative inflammatory reactions. PMID:20737053

  14. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells.

    PubMed

    Jonjić, N; Peri, G; Bernasconi, S; Sciacca, F L; Colotta, F; Pelicci, P; Lanfrancone, L; Mantovani, A

    1992-10-01

    The mesothelium is a flat epithelial lining of serous cavities that could gate the traffic of molecules and cells between the circulation and these body compartments. The present study was designed to elucidate the capacity of mesothelial cells to express adhesion molecules and chemoattractant cytokines, two fundamental mechanisms of regulation of leukocyte recruitment. Cultured human mesothelial cells express appreciable levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and these were increased by in vitro exposure to tumor necrosis factor (TNF), interferon gamma (IFN-gamma), or TNF and IFN-gamma. Interleukin 1 (IL-1) was a less consistent stimulus for adhesion molecule expression in vitro. Unlike endothelial cells, used as a reference cell population, resting or stimulated mesothelial cells did not express E-selectin and ICAM-2, as assessed by flow cytometry. Analysis of VCAM-1 mRNA by reverse transcriptase and polymerase chain reaction using appropriate primers revealed that mesothelial cells expressed both the seven- and the six-Ig domain transcripts, with predominance of the longer species. Monocytes bound appreciably to "resting" and, to a greater extent, to stimulated mesothelial cells. Monocytes exposed to IFN-gamma and lipopolysaccharide, used as prototypic activation signals, showed increased capacity to bind mesothelial cells. Anti-CD18 monoclonal antibody significantly inhibited binding of monocytes to mesothelial cells, and this blocking effect was amplified by anti-very late antigen 4. Mesothelial cells were able to express the chemotactic cytokines IL-8 and monocyte chemotactic protein 1 at the mRNA and protein levels. These results indicate that mesothelial cells can express a set of adhesion molecules (ICAM-1 and VCAM-1) overlapping with, but distinct from, that expressed in vascular endothelium (ICAM-1, ICAM-2, VCAM-1, E-selectin), and that these are functionally relevant for interacting with

  15. Epstein-Barr virus (EBV) can immortalize B-cll cells activated by cytokines.

    PubMed

    Wendel-Hansen, V; Sällström, J; De Campos-Lima, P O; Kjellström, G; Sandlund, A; Siegbahn, A; Carlsson, M; Nilsson, K; Rosén, A

    1994-03-01

    B-type of chronic lymphocytic leukemia (B-CLL) cells are inert to the potent transforming action of Epstein-Barr virus (EBV). The mitogenic action of Staphylococcus aureus Cowan I (SAC), MP6-thioredoxin, and interleukin 2 (IL-2), agents previously shown to induce proliferation in normal as well as in B-CLL cells, lifted this block, and EBV-positive cell lines could be established. It was not possible to establish cell lines of leukemic origin from cultures that were incubated with EBV alone or cytokine mix alone. CLL-cells infected with EBV only, expressed the viral nuclear antigen complex (EBNA), but not the viral latent membrane protein (LMP). They were not activated as measured by cell size and 3H-thymidine incorporation. In contrast, cells incubated with EBV and cytokine mix expressed both EBNA and LMP in parallel with enlargement and increased 3H-thymidine incorporation. These results emphasize that LMP expression is a prerequisite for growth transformation and immortalization and that cytokine activation signals are required for its expression in B-CLLs. Cells incubated with SAC/MP6-thioredoxin/IL-2 did not express any of the viral antigens, but were activated with regard to the mentioned parameters. Nine cell lines were established from six patients. From each of the three patients, we obtained 'twin'-pair lines: one corresponding to the malignant cell and the other to a normal B-lymphoblastoid cell. Thus, malignant and normal B-cell counterparts, from the very same donor, are at hand for comparative studies. The cell lines have been carried out for more than 12 months in culture. We conclude that B-CLL that are refractory to EBV-transformation can be rendered susceptible through in vitro cytokine activation.

  16. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury

    PubMed Central

    Zigmond, Richard E.

    2012-01-01

    Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the “cell body response.” The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons. PMID:22319466

  17. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development.

    PubMed

    Rizzi, Massimo; Perego, Carlo; Aliprandi, Marisa; Richichi, Cristina; Ravizza, Teresa; Colella, Daniele; Velískŏvá, Jana; Moshé, Solomon L; De Simoni, M Grazia; Vezzani, Annamaria

    2003-12-01

    In adult rats, status epilepticus (SE) induces cytokine production by glia especially when seizures are associated with neuronal injury. This suggests that cytokines may play a role in seizure-induced neuronal damage. As SE-induced injury is age-specific, we used rats of different ages (with distinct susceptibilities to seizure-induced neuronal injury) to elucidate the role of cytokines in this process. Thus, we investigated the activation of microglia and astrocytes, induction of cytokines, and hippocampal neuronal injury 4 and 24 h following kainic acid-induced SE in postnatal day (PN) 9, 15, and 21 rats. At PN9, there was little activation of microglia and astrocytes at any time point studied. Interleukin-1beta (IL), tumor necrosis factor-alpha (TNF), and IL-6 or the naturally occurring IL-1 receptor antagonist (Ra) mRNA expression did not increase. No evidence of cell injury has been detected. At PN15, immunostaining of microglia and astrocytes was enhanced, but only IL-1beta mRNA expression was increased. These changes were observed 4 h after SE. Scattered injured neurons in CA3 and subiculum, but not in any other region, were present 24 h following SE. At PN21, immunostaining of microglia and astrocytes and the mRNA expression of all cytokines studied was significantly increased already 4 h after SE. At 24 h, many injured neurons were present in CA1 and CA3 regions and in 40% of rats in other forebrain areas. These data show that (i) the pattern of glia activation and cytokine gene transcription induced by SE is age-dependent and (ii) neuronal injury in the hippocampus occurs only when cytokines are induced and their synthesis precedes the appearance of neuronal damage. Thus, cytokine expression in immature brain is associated specifically with cell injury rather than with seizures per se, suggesting that proinflammatory cytokines may contribute to the occurence of SE-induced hippocampal damage.

  18. Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes.

    PubMed

    Timper, Katharina; Grisouard, Jean; Sauter, Nadine S; Herzog-Radimerski, Tanja; Dembinski, Kaethi; Peterli, Ralph; Frey, Daniel M; Zulewski, Henryk; Keller, Ulrich; Müller, Beat; Christ-Crain, Mirjam

    2013-01-01

    Obesity-related insulin resistance is linked to a chronic state of systemic and adipose tissue-derived inflammation. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone also acting on adipocytes. We investigated whether GIP affects inflammation, lipolysis, and insulin resistance in human adipocytes. Human subcutaneous preadipocyte-derived adipocytes, differentiated in vitro, were treated with human GIP to analyze mRNA expression and protein secretion of cytokines, glycerol, and free fatty acid release and insulin-induced glucose uptake. GIP induced mRNA expression of IL-6, IL-1β, and the IL-1 receptor antagonist IL-1Ra, whereas TNFα, IL-8, and monocyte chemotactic protein (MCP)-1 remained unchanged. Cytokine induction involved PKA and the NF-κB pathway as well as an autocrine IL-1 effect. Furthermore, GIP potentiated IL-6 and IL-1Ra secretion in the presence of LPS, IL-1β, and TNFα. GIP induced lipolysis via activation of hormone-sensitive lipase and was linked to NF-κB activation. Finally, chronic GIP treatment impaired insulin-induced glucose uptake possibly due to the observed impaired translocation of glucose transporter GLUT4. In conclusion, GIP induces an inflammatory and prolipolytic response via the PKA -NF-κB-IL-1 pathway and impairs insulin sensitivity of glucose uptake in human adipocytes.

  19. Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways.

    PubMed

    Hsu, Hsien-Yeh; Hua, Kuo-Feng; Lin, Chun-Cheng; Lin, Chun-Hung; Hsu, Jason; Wong, Chi-Huey

    2004-11-15

    We have demonstrated that an extract of Ganoderma lucidum (Reishi or Ling-Zhi) polysaccharides (EORP) exerts immunomodulating activities by stimulating the expression of inflammatory cytokines from mouse spleen cells. Interestingly, via responding to LPS in genetic variation of murine macrophage HeNC2 and GG2EE cell lines, and using TLR4 Ab blockage in human blood-derived monocytic macrophages, we have found that the TLR4, but not complement receptor type 3, is a putative receptor of EORP, mediating the consequent immunomodulating events associated with IL-1 gene expression. Based on our studies of reactive oxygen species production, polymyxin B inhibition, and protein tyrosine kinase (PTK) activity, we ruled out the possibility of LPS contamination in EORP. We have found that EORP differentially modulates the protein kinase (PK)-mediated signal transduction pathways associated with inflammatory cytokine IL-1. In human macrophages and murine macrophage J774A.1 cells, EORP was found to up-regulate IL-1 secretion and pro-IL-1 (precursor of IL-1) as well as IL-1-converting enzyme expression. Specifically, EORP rapidly stimulates PTK-mediated phosphorylation, followed by induction of PKs and activation of MAPKs: ERK, JNK, and p38. Using PK inhibitors in the kinase activity assays, Western blot analyses and IL-1 ELISA, we have extensively examined and dissected the role of individual PK in the regulation of pro-IL-1/IL-1. Our findings establish that EORP-mediated signaling pathways are involved in the pro-IL-1/IL-1 regulation: PTK/protein kinase C/MEK1/ERK and PTK/Rac1/p21-activated kinase/p38.

  20. Effects of 1 alpha,25-dihydroxyvitamin D3 and cytokines on the expression of MHC antigens, complement receptors and other antigens on human blood monocytes and U937 cells: role in cell differentiation, activation and phagocytosis.

    PubMed Central

    Spittler, A; Willheim, M; Leutmezer, F; Ohler, R; Krugluger, W; Reissner, C; Lucas, T; Brodowicz, T; Roth, E; Boltz-Nitulescu, G

    1997-01-01

    The effect of calcitriol/1 alpha,25-dihydroxyvitamin D3, alone and in combination with cytokines, on the expression of various antigens (Ag) on human peripheral blood monocytes and U937 cells was studied by flow cytometry. Both constitutive and interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6 and tumour necrosis factor-alpha (TNF-alpha)-induced human leucocyte antigen (HLA)-DR, HLA-DP and HLA-DQ Ag expression on monocytes was significantly down-regulated by calcitriol, IL-10 and transforming growth factor-beta (TGF-beta). The effects of calcitriol were concentration dependent and reached maximal inhibitory levels after 3-5 days. Modulation of HLA-DR by calcitriol and IFN-gamma at the protein level correlated with the amount of mRNA specific for the HLA-DR alpha-chain, as judged by Northern blot analysis. The basal as well as IL-4, IL-6, IFN-gamma, TNF-alpha and TGF-beta-driven levels of HLA-ABC Ag were significantly diminished by calcitriol. On U937 cells calcitriol markedly induced CD11a and CD11b expression and weakly up-regulated CD11c whereas on monocytes, constitutive CD11a, CD11b and CD11c expression was significantly down-regulated by calcitriol. The expression of CD14 Ag was strongly induced on U937 cells but only modestly on monocytes. Both the basal level of CD71 and IL-4, IFN-gamma or TNF-alpha-driven expression was diminished on calcitriol-treated U937 cells. In addition, calcitriol suppressed the expression of CD71 Ag on monocytes. The ability of monocytes to phagocytize opsonized Escherichia coli was diminished by calcitriol. Our results demonstrate that calcitriol, alone or in combination with cytokines, modulates expression of MHC, CD11b, CD11c, CD14 and CD71 Ag on both monocytes and U937 cells, and impairs the phagocytic property of monocytes. Images Figure 2 PMID:9135559

  1. Effect of pioglitazone on neuropathic pain and spinal expression of TLR-4 and cytokines

    PubMed Central

    Jia, Hongbin; Xu, Shuangshuang; Liu, Qingzhen; Liu, Jian; Xu, Jianguo; Li, Weiyan; Jin, Yi; Ji, Qing

    2016-01-01

    The molecular mechanisms underlying neuropathic pain have yet to be elucidated. The present study aimed to examine the modulation of neuroimmune activation in the spinal cord by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, pioglitazone (Pio), in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Rats were randomly assigned into four groups: Sham surgery with vehicle, chronic constriction injury with vehicle or Pio (10 mg/kg), and chronic constriction injury with Pio and a PPAR-γ antagonist GW9662 (2 mg/kg). Pio or vehicle was administered 1 h prior to the surgery and continued daily until day 7 post-surgery. Paw pressure threshold was measured prior to surgery and on days 0, 1, 3 and 7 post-surgery. Microglia activation markers macrophage antigen complex-1, the mRNA expression levels of tumor necrosis factor α and interleukin-1β, and the mRNA expression levels of toll like receptor (TLR-4) in the lumbar spinal cord were determined. Administration of Pio resulted in the prominent attenuation of mechanical hyperalgesia. In addition, Pio was able to significantly inhibit neuroimmune activation characterized by glial activation, the production of cytokines and expression levels of TLR-4. Concurrent administration of a PPAR-γ antagonist, GW9662, reversed the effects of Pio. The antihyperalgesic effect of administration of Pio in rats receiving CCI may, in part, be attributed to the inhibition of neuroimmune activation associated with the sustaining of neuropathic pain. PMID:27698768

  2. Decreasing NF-κB Expression Enhances Odontoblastic Differentiation and Collagen Expression in Dental Pulp Stem Cells Exposed to Inflammatory Cytokines

    PubMed Central

    Hozhabri, Neda S. T.; Benson, M. Douglas; Vu, Michael D.; Patel, Rinkesh H.; Martinez, Rebecca M.; Nakhaie, Fatemeh N.; Kim, Harry K. W.; Varanasi, Venu G.

    2015-01-01

    Inflammatory response in the dental pulp can alter the collagen matrix formation by dental pulp stem cells and lead to a delay or poor healing of the pulp. This inflammatory response is mediated by cytokines, including interleukin-1β and tumor necrosis factor-α. In this study, it is hypothesized that suppressing the actions of these inflammatory cytokines by knocking down the activity of transcription factor Nuclear Factor–κB will lead to dental pulp stem cell differentiation into odontoblasts and the production of collagen. Here, the role of Nuclear Factor–κB signaling and its reduction was examined during odontogenic behavior in the presence of these cytokines. The results showed a significant increase in Nuclear Factor–κB gene expression and p65 protein expression by interleukin-1β and tumor necrosis factor-α. Nuclear Factor–κB activation in the presence of these cytokines decreased significantly in a dose-dependent manner by a Nuclear Factor–κB inhibitor (MG132) and p65 siRNA. Down-regulation of Nuclear Factor–κB activity also enhanced the gene expression of the odontoblastic markers (dentin sialophosphoprotein, Nestin, and alkaline phosphatase) and displayed an odontoblastic cell morphology indicating the promotion of odontogenic differentiation of dental pulp stem cells. Finally, dental pulp stem cells exposed to reduced Nuclear Factor–κB activity resulted in a significant increase in collagen (I)-α1 expression in the presence of these cytokines. In conclusion, a decrease in Nuclear Factor-κB in dental pulp stem cells in the presence of inflammatory cytokines enhanced odontoblastic differentiation and collagen matrix formation. PMID:25629155

  3. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Wang, Yuqiong; Jin, Gang; Li, Quanjiang; Wang, Zhiping; Hu, Weimin; Li, Ping; Li, Shude; Wu, Hongyu; Kong, Xiangyu; Gao, Jun; Li, Zhaoshen

    2016-01-01

    Hedgehog(HH) pathway is found to be activated through a manner of canonical, or the non-canonical HH pathways. Distinct hyperplasia stroma around tumor cells is supposed to express pro-inflammatory cytokines abundantly, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), etc. in pancreatic ductal adenocarcinoma (PDAC) tissues. In this study we observed the effects of TNF-α and IL-1β on HH pathway activation in PDAC cells, and explored their activation manners. Our results showed that pro-inflammatory cytokines, TNF-α and IL-1β, could up-regulate the expression of GLI1 gene, increase its nuclear protein expression and promote malignant cell behaviors including migration, invasion, epithelial-mesenchymal transition (EMT) and drug resistance as well. Moreover, GLI1 promoter-reporter assay in combination with blocking either NF-κB or Smoothened (SMO) suggested that TNF-α and IL-1β could transcriptionally up-regulate expression of GLI1 completely via NF-κB, whereas ablation of SMO could not completely attenuate the regulation effects of TNF-α and IL-1β on GLI1 expression. Collectively, our results indicated that TNF-α and IL-1β in hyperplasia stroma can promote the PDAC cell development by activating HH pathway, through both the canonical and non-canonical HH activation ways. PMID:27877222

  4. Moxibustion activates host defense against herpes simplex virus type I through augmentation of cytokine production.

    PubMed

    Takayama, Yuko; Itoi, Manami; Hamahashi, Takashi; Tsukamoto, Noriyuki; Mori, Kazuya; Morishita, Daisuke; Wada, Kumiko; Amagai, Takashi

    2010-09-01

    Moxibustion is a technique used in traditional oriental medicine, the aim of which is to cure and/or prevent illness by activating a person's ability for self-healing. In this study, we assessed how moxibustion would affect the immune system and whether it would augment protective immunity. Mice were treated with moxibustion at Zusanli (ST36) acupoints; we analyzed mortality and cytokine activity in sera after infection with herpes simplex virus type 1 (HSV-1), and cytokine gene expression in the skin and the spleen without a virus challenge. Our study demonstrates that pretreatment of BALB/c mice with moxibustion resulted in a marked increase in the survival rate after infection with lethal doses of HSV-1, and elevated serum levels of IL-1β and IFN-γ on days 1 and 6 post-infection with HSV-1. Semi-quantitative RT-PCR assay showed that moxibustion treatment augmented the expression of IL-1α, IL-1β, IL-6, universal-IFN-α, MIP-1α, and TNF-α mRNA in the skin, and IL-1α, IL-1β, IL-12p40, IL-15, u-IFN-α, MIP-1α, and TNF-α mRNA in the spleen. Moreover, moxibustion induces augmentation of natural killer cell activity. Collectively, our study demonstrates that moxibustion activates protective responses against HSV-1 infection through the activation of cytokine production including IFN, and of NK cells.

  5. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis

    PubMed Central

    Apte, M; Haber, P; Darby, S; Rodgers, S; McCaughan, G; Korsten, M; Pirola, R; Wilson, J

    1999-01-01

    BACKGROUND—The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. 
AIMS—To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor β (TGF-β). 
METHODS—Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-β. 
RESULTS—Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-β showed a dose dependent increase in α smooth muscle actin expression and increased collagen synthesis. In addition, TGF-β increased the expression of PDGF receptors on stellate cells. 
CONCLUSIONS—Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-β by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis. 

 Keywords: pancreatic fibrosis; stellate cell activation; cytokines PMID:10075961

  6. Inflammatory cytokine expression in the quadriceps of rats with posttraumatic knee stiffness: A preliminary study.

    PubMed

    Liu, Kemin; Wang, Fei; Cui, Zhigang; Liu, Sihai; Han, Xinzuo

    2015-06-01

    The primary purpose of this study was to investigate cytokine expression in the quadriceps of rats with posttraumatic knee stiffness (PTKS) and to determine the effect of exercise training on these cytokines at different follow-up time points. The PTKS rats were randomly assigned into two even groups. The treatment group received exercise training, while the control group received no treatment. Quadriceps specimens were harvested randomly from each group at 8, 12, 16, and 20 weeks. RT-qPCR and immunohistochemical analyses were used to assess the protein and mRNA expression levels of the cytokines IL-1, IL-2, TNF-α, COX-1, and COX-2. TNF-α immunostaining did not differ between the treated and control group tissues, whereas weak immunostaining was observed for all other cytokines in the specimens from the treatment group compared with those from the control group at approximately 12 and 20 weeks. The cytokine levels decreased at approximately 8 weeks in the treatment group, whereas these levels remained elevated or plateaued in the control group. These differences were statistically significant (p<0.05). This study demonstrated that the expression of cytokines IL-1, IL-2, COX-1, and COX-2 increased in the quadriceps of rats with PTKS and that exercise training affected the observed profile trends of these cytokines.

  7. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression

    PubMed Central

    Nakatsuji, Teruaki; Chen, Tiffany H.; Two, Aimee M.; Chun, Kimberly A.; Narala, Saisindhu; Geha, Raif S.; Hata, Tissa R.; Gallo, Richard L.

    2016-01-01

    Patients with atopic dermatitis (AD) have an abnormal skin barrier and are frequently colonized by S. aureus. In this study we investigated if S. aureus penetrates the epidermal barrier of subjects with AD and sought to understand the mechanism and functional significance of this entry. S. aureus was observed to be more abundant in the dermis of lesional skin from AD patients. Bacterial entry past the epidermis was observed in cultured human skin equivalents and in mice, but found to be increased in the skin of cathelicidin knockout (Camp−/−) and ovalbumin-sensitized filaggrin mutant (FLGft/ft) mice. S. aureus penetration through the epidermis was dependent on bacterial viability and protease activity as killed bacteria or a protease-null mutant strain of S. aureus was unable to penetrate. Entry of S. aureus directly correlated with increased expression of IL4, IL13, IL22, TSLP and other cytokines associated with AD, and with decreased expression of cathelicidin. These data illustrate how abnormalities of the epidermal barrier in AD can alter the balance of S. aureus entry into the dermis and provides an explanation for how such dermal dysbiosis results in increased inflammatory cytokines and exacerbation of disease. PMID:27381887

  8. Inflammatory cytokines presented from polymer matrices differentially generate and activate DCs in situ

    PubMed Central

    Ali, Omar A.; Tayalia, Prakriti; Shvartsman, Dmitry; Lewin, Sarah; Mooney, David J.

    2014-01-01

    During infection, inflammatory cytokines mobilize and activate dendritic cells (DCs), which are essential for efficacious T cell priming and immune responses that clear the infection. Here we designed macroporous poly(lactide-co-glycolide) (PLG) matrices to release the inflammatory cytokines GM-CSF, Flt3L and CCL20, in order to mimic infection-induced DC recruitment. We then tested the ability of these infection mimics to function as cancer vaccines via induction of specific, anti-tumor T cell responses. All vaccine systems tested were able to confer specific anti-tumor T cell responses and longterm survival in a therapeutic, B16-F10 melanoma model. However, GM-CSF and Flt3L vaccines resulted in similar survival rates, and outperformed CCL20 loaded scaffolds, even though they had differential effects on DC recruitment and generation. GM-CSF signaling was identified as the most potent chemotactic factor for conventional DCs and significantly enhanced surface expression of MHC(II) and CD86(+), which are utilized for priming T cell immunity. In contrast, Flt3L vaccines led to greater numbers of plasmacytoid DCs (pDCs), correlating with increased levels of T cell priming cytokines that amplify T cell responses. These results demonstrate that 3D polymer matrices modified to present inflammatory cytokines may be utilized to effectively mobilize and activate different DC subsets in vivo for immunotherapy. PMID:24688455

  9. Cytokine expression and synovial pathology in the initiation and spontaneous resolution phases of adjuvant arthritis: Interleukin-17 expression is upregulated in early disease

    PubMed Central

    Bush, K A; Walker, J S; Lee, C S; Kirkham, B W

    2001-01-01

    The aim of this study was to understand the immune processes controlling the initiation and spontaneous resolution of adjuvant arthritis (AA). We investigated synovial T-cell recruitment and mRNA expression of IL-17 and other important disease related cytokines, IFN-γ, IL-2, IL-4, TNF and TGF-β in inguinal lymph node (ILN) and synovial membrane (SM). Arthritis severity was assessed by a numerical rating score and rats were sacrificed every 3–4 days postadjuvant induction. Further assessment involved quantitative radiology and histology of the ankle joints on each day, and the ILN and SM were removed for RNA extraction. Cytokine mRNA expression was measured using RT-PCR and densitometry. Paraffin sections of rat ankle joints were stained for T-cells (CD3) by immunohistochemistry. In the ILN, there was an increase in IL-17, TNF and IFN-γ expression in the early stages of disease, with a secondary sustained increase in IFN-γ expression. In the SM, there was expression of T-cell cytokines in early arthritis (day 13), and prolonged TNF and TGF-β expression, which reflected disease progression. IL-4 mRNA expression increased in the later stages of AA. Synovial T-cell numbers transiently increased at day 6, and remained high from days 13–28. Increased pro-inflammatory cytokine expression, including IL-17, in the ILN reflects the initiating events in the early stage of disease. IL-17 may therefore play an important role in the pathogenesis of AA. The increase in IL-4 (an anti-inflammatory cytokine) in the SM in the later stages of AA suggests that IL-4 is involved in the spontaneous resolution of AA. The initial increase in IFN-γ in the ILN may reflect a pro-inflammatory response, while the prolonged secondary increase may indicate activation of regulatory T-cells. PMID:11298138

  10. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis.

    PubMed Central

    Hamid, Q; Boguniewicz, M; Leung, D Y

    1994-01-01

    The mechanisms involved in the initiation and maintenance of skin inflammation in atopic dermatitis (AD) are poorly understood. Recent data suggest that the pattern of cytokines expressed locally plays a critical role in modulating the nature of tissue inflammation. In this study, we used in situ hybridization to investigate the expression of interleukin 4 (IL-4), IL-5, and interferon-gamma (IFN-gamma) messenger RNA (mRNA) in skin biopsies from acute and chronic skin lesions of patients with AD. As compared with normal control skin or uninvolved skin of patients with AD, acute and chronic skin lesions had significantly greater numbers of cells that were positive for mRNA, IL-4 (P < 0.01), and IL-5 (P < 0.01), but not for IFN-gamma mRNA expressing cells. However, as compared with acute AD skin lesions, chronic AD skin lesions had significantly fewer IL-4 mRNA-expressing cells (P < 0.01), but significantly greater IL-5 mRNA (P < 0.01). T cells constituted the majority of IL-5-expressing cells in acute and chronic AD lesions. Chronic lesions also expressed significantly greater numbers of activated EG2+ eosinophils than acute lesions (P < 0.01). These data indicate that although acute and chronic AD lesions are associated with increased activation of IL-4 and IL-5 genes, initiation of acute skin inflammation in AD is associated with a predominance of IL-4 expression whereas maintenance of chronic inflammation is predominantly associated with increased IL-5 expression and eosinophil infiltration. Images PMID:8040343

  11. Neutral buoyancy and sleep-deprived serum factors alter expression of cytokines regulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Gorczynski, Reginald M.; Gorczynski, Christopher P.; Gorczynski, Laura Y.; Hu, Jiang; Lu, Jin; Manuel, Justin; Lee, Lydia

    2005-05-01

    We examined expression of genes associated with cytokine production, and genes implicated in regulating bone metabolism, in bone stromal and osteoblast cells incubated under standard ground conditions and under conditions of neutral buoyancy, and in the presence/absence of serum from normal or sleep-deprived mice. We observed a clear interaction between these two conditions (exposure to neutral buoyancy and serum stimulation) in promoting enhanced osteoclastogenesis. Both conditions independently altered expression of a number of cytokines implicated in the regulation of bone metabolism. However, using stromal cells from IL-1 and TNF α cytokine r KO mice, we concluded that the increased bone loss under microgravity conditions was not primarily cytokine mediated.

  12. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation

    PubMed Central

    Duriez, Marion; Quillay, Héloïse; Madec, Yoann; El Costa, Hicham; Cannou, Claude; Marlin, Romain; de Truchis, Claire; Rahmati, Mona; Barré-Sinoussi, Françoise; Nugeyre, Marie-Thérèse; Menu, Elisabeth

    2014-01-01

    Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis), where maternal and fetal cells are in close contact. Toll-like receptors (TLRs) may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs) and NK cells (dNKs), the major decidual immune cell populations. We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3, and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8, and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10, and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface. PMID:25071732

  13. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Ramesh, Govindarajan T; Chidananda Sharma, S

    2015-05-01

    Acute and chronic alveolar or bronchial inflammation is thought to be central to the pathogenesis of many respiratory disorders. Cytokines and granulocyte macrophage colony-stimulating factors (GM-CSF) play an important role in chronic inflammation. Activator protein-1 (AP-1) the superfamily of transcription factors is involved in proliferation, differentiation, apoptosis, and transformation including inflammation. Understanding the function and regulation of proinflammatory factors involved in inflammation may provide the novel therapeutic strategies in the treatment of inflammatory diseases. Our aim of the present study is to investigate the pro-inflammatory cytokines and pattern of AP-1 factors expressed during activation of lung adenocarcinoma A549 cells by Phorbol-12-myristate-13-acetate (PMA) and to understand the anti-inflammatory effect of apigenin. A549 cells were treated with and without PMA or apigenin, and the cell viability was assessed by MTT assay. Expressions of inflammatory mediators and different AP-1 factors were analyzed by semi-quantitative RT-PCR. IL-6 protein secreted was analyzed by ELISA, and expressions of IL-1β, c-Jun, and c-Fos proteins were analyzed by Western blotting. Activation of A549 cells by PMA, induced the expression of pro-inflammatory cytokine (IL-1β, IL-2, IL-6, IL-8, and TNF-α) mRNAs and secretion of IL-6 and the expression of specific AP-1 factors (c-Jun, c-Fos, and Fra-1). Treatment of cells with apigenin, significantly inhibited PMA-stimulated mRNA expression of above pro-inflammatory cytokines, AP-1 factors, cyclooxygenase-2, and secretion of IL-6 protein. Results suggested that the AP-1 factors may be involved in inflammation and apigenin has anti-inflammatory effect, which may be useful for therapeutic management of lung inflammatory diseases.

  14. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals

    PubMed Central

    Clark, Sarah M.; Pocivavsek, Ana; Nicholson, James D.; Notarangelo, Francesca M.; Langenberg, Patricia; McMahon, Robert P.; Kleinman, Joel E.; Hyde, Thomas M.; Stiller, John; Postolache, Teodor T.; Schwarcz, Robert; Tonelli, Leonardo H.

    2016-01-01

    Background Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. Methods We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. Results We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. Limitations Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. Conclusion Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC. PMID:27070351

  15. Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways.

    PubMed

    Liu, Dali; Yumoto, Hiromichi; Hirota, Katsuhiko; Murakami, Keiji; Takahashi, Kanako; Hirao, Kouji; Matsuo, Takashi; Ohkura, Kazuto; Nagamune, Hideaki; Miyake, Yoichiro

    2008-01-01

    Streptococcus intermedius is a commensal associated with serious, deep-seated purulent infections in major organs, such as the brain and liver. Histone-like DNA binding protein (HLP) is an accessory architectural protein in a variety of bacterial cellular processes. In this study, we investigated the mechanisms of pro-inflammatory cytokine inductions in THP-1 cells by stimulation with recombinant HLP of S. intermedius (rSi-HLP). rSi-HLP stimulation-induced production of pro-inflammatory cytokines (IL-8, IL-1 beta and TNF-alpha) occurred in a time- and dose-dependent manner. In contrast with the heat-stable activity of DNA binding, the induction activity of rSi-HLP was heat-unstable. In subsequent studies, rSi-HLP acted cooperatively with lipoteichoic acid, the synthetic Toll-like receptor 2 agonist, Pam3CSK4, and the cytosolic nucleotide binding oligomerization domain 2 receptor agonist, muramyldipeptide. Furthermore, Western blot and blocking assays with specific inhibitors showed that rSi-HLP stimulation induced the activation of cell signal transduction pathways, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). In addition to its physiological role in bacterial growth through DNA binding, these results indicate that Si-HLP can trigger a cascade of events that induce pro-inflammatory responses via ERK1/2 and JNK signal pathways, and suggest that bacterial HLP may contribute to the activation of host innate immunity during bacterial infection.

  16. In vivo expression of proinflammatory cytokines in HIV encephalitis: an analysis of 11 autopsy cases.

    PubMed

    Xing, Hui Qin; Hayakawa, Hitoshi; Izumo, Kimiko; Kubota, Ryuji; Gelpi, Ellen; Budka, Herbert; Izumo, Shuji

    2009-08-01

    As the pathogenesis of AIDS dementia complex (ADC), cytokines such as TNF-alpha and IL-1beta have been thought to have toxic effects on CNS cells and induce neuronal cell death. However, many of the discussions have been based on the studies done by in vitro experiments. There are only a few reports which demonstrate proinflammatory cytokines directly in vivo in HIV encephalitis (HIVE) brains, and roles of these cytokines with relation to HIV-1 infection are not yet clarified. In the present study, we examined 11 autopsy cases of HIVE using immunohistochemistry, and explored which cell types expressed these cytokines and whether expression of cytokines was related to viral infection. IL-1beta was detected in the frontal white matter of all 11 cases where microglial nodules were observed to varying degrees, whereas TNF-alpha was detected in seven cases. IL-1beta- or TNF-alpha-positive cells were almost restricted to CD68-positive macrophages/microglia and mild expression of these cytokines by astrocytes was observed in two cases with severe HIVE. IL-1beta was detected in some HIVp24-positive multinucleated giant cells. However, we could not detect TNF-alpha expression in the HIVp24-positive cells, which indicates that IL-1beta is induced by HIV-1 infection. In conclusion, a macrophage/microglia lineage is the main cell type to release cytokines in HIVE, and IL-1beta expression by HIV-1-infected cells may be one of the important factors for induction of HIVE. In addition, many non-infected macrophages/microglia as well as some astrocytes express IL-1beta and TNF-alpha, which might contribute to pathogenesis of ADC.

  17. Induction of anti-inflammatory cytokine expression by IPNV in persistent infection.

    PubMed

    Reyes-Cerpa, Sebastián; Reyes-López, Felipe; Toro-Ascuy, Daniela; Montero, Ruth; Maisey, Kevin; Acuña-Castillo, Claudio; Sunyer, J Oriol; Parra, David; Sandino, Ana María; Imarai, Mónica

    2014-12-01

    Infectious Pancreatic Necrosis Virus (IPNV) is the agent of a well-characterized acute disease that produces a systemic infection and high mortality in farmed fish species but also persistent infection in surviving fish after outbreaks. Because viral persistence of susceptible mammal hosts appears to be associated with the modulation of anti-inflammatory cytokine expression, in this study we examined the expression levels of key pro- and anti-inflammatory cytokines in kidney and spleen of trout, as well as humoral immune response (IgM and IgT) during experimental persistent viral infection and in the acute phase of infection as a comparison. IPNV infection in rainbow trout resulted in a distinct profile of cytokine expression depending on the type of infection, acute or persistent. Levels of early pro-inflammatory cytokines, IL-1β and IL-8, did not increase in the head kidney of the fish with persistent asymptomatic infection but increased in some of the symptomatic infected fish. The antiviral cytokine IFNα was not significantly induced in any of the infected fish groups. The level of expression of the Th1-related cytokine IL-12 was significantly higher in trout with persistent asymptomatic infection than in symptomatic fish. This was also accompanied by an increase in IFNγ. The anti-inflammatory cytokines IL-10 and TGF-β1 had distinct expression profiles. While IL-10 expression increased in all infected fish, TGF-β1 was only up-regulated in fish with persistent infection. All infected fish had significantly lower total IgM levels than the non-infected fish whereas IgT levels did not change. Specific and neutralizing antibodies against IPNV were not observed in acute and persistent infection except in the group of fish with the lowest degree of clinical signs. Interestingly, the lack of humoral immune response could be associated with the high expression of anti-inflammatory cytokines, which might inhibit antibody production. The balance between pro

  18. Effects of Japanese mistletoe lectin on cytokine gene expression in human colonic carcinoma cells and in the mouse intestine.

    PubMed

    Monira, Pervin; Koyama, Yu; Fukutomi, Ryuuta; Yasui, Kensuke; Isemura, Mamoru; Yokogoshi, Hidehiko

    2009-10-01

    Mistletoe lectins have various biological activities including anti-cancer and immunomodulatory effects. We previously isolated a lectin (ML-J) from Japanese mistletoe. In the present study, we examined the effects of ML-J on cytokine gene expression in human colon adenocarcinoma Caco-2 cells and in the mouse intestine. The results of reverse transcription-polymerase chain reaction and quantitative real-time polymerase chain reaction indicated that ML-J caused an upregulation of the gene expression of the proinflammatory cytokines interleukin (IL)-8, tumor necrosis factor-alpha (TNF-alpha) and IL-6 in Caco-2 cells and TNF-alpha and IL-6 in the duodenum. This study provides the first example to show that a perorally administered plant lectin affects gene expression in the duodenum.

  19. Enhanced and efficient detection of virus-driven cytokine expression by human NK and T cells.

    PubMed

    Pattacini, Laura; Murnane, Pamela M; Fluharty, Tayler R; Katabira, Elly; De Rosa, Stephen C; Baeten, Jared M; Lund, Jennifer M

    2014-04-01

    Cutting edge immune monitoring techniques increasingly measure multiple functional outputs for various cell types, such as intracellular cytokine staining (ICS) assays that measure cytokines expressed by T cells. To date, however, there is no precise method to measure virus-specific cytokine production by both T cells as well as NK cells in the same well, which is important to a greater extent given recent identification of NK cells expressing a memory phenotype. This study describes an adaptable and efficient ICS assay platform that can be used to detect antigen-driven cytokine production by human T cells and NK cells, termed "viral ICS". Importantly, this assay uses limited amount of cryopreserved PBMCs along with autologous heat-inactivated serum, thereby allowing for this assay to be performed when sample is scarce as well as geographically distant from the laboratory. Compared to a standard ICS assay that detects antigen-specific T cell cytokine expression alone, the viral ICS assay is comparable in terms of both HIV-specific CD4 and CD8T cell cytokine response rates and magnitude of response, with the added advantage of ability to detect virus-specific NK cell responses.

  20. Cytokine treatment of macrophage suppression of T cell activation.

    PubMed

    Silberman, Daniel; Bucknum, Amanda; Kozlowski, Megan; Matlack, Robin; Riggs, James

    2010-01-01

    High Mphi:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNgamma-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mphi expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mphi:T cell ratios found in many tumors.

  1. Proinflammatory Cytokines Increase Vascular Endothelial Growth Factor Expression in Alveolar Epithelial Cells.

    PubMed

    Maloney, James P; Gao, Li

    2015-01-01

    Vascular endothelial growth factor (VEGF) is an endothelial permeability mediator that is highly expressed in lung epithelium. In nonlung cells proinflammatory cytokines have been shown to increase VEGF expression, but their effects on lung epithelium remain unclear. We hypothesized that increases in alveolar epithelial cell VEGF RNA and protein expression occur after exposure to proinflammatory cytokines. We tested this using human alveolar epithelial cells (A549) stimulated with 5 proinflammatory cytokines. VEGF RNA expression was increased 1.4-2.7-fold in response to IL-1, IL-6, IL-8, TNF-α, or TGF-β over 6 hours, with TGF-β having the largest response. TNF-α increased VEGF RNA as early as 1 hour. A mix of IL-1, IL-6, and IL-8 had effects similar to IL-1. TNF-α increased protein expression as early as 4 hours and had a sustained effect at 16 hours, whereas IL-1 did not increase protein expression. Only VEGF165 was present in cultured A549 cells, yet other isoforms were seen in human lung tissue. Increased expression of VEGF in alveolar epithelial cells occurs in response to proinflammatory cytokines. Increased VEGF expression likely contributes to the pathogenesis of inflammatory lung diseases and to the angiogenic phenotype of lung cancer, a disease typically preceded by chronic inflammation.

  2. Regulation of cytokine gene expression by orosomucoid in neonatal swine adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue has been reported to express a1-acid glycoprotein (AGP) mRNA, a protein with inflammatory and immunomodulatory properties. The present study was designed to determine if AGP can regulate pro-inflammatory or anti-inflammatory cytokine expression in neonatal porcine subcutaneous adipos...

  3. A Cytokine Signalling Network for the Regulation of Inducible Nitric Oxide Synthase Expression in Rheumatoid Arthritis

    PubMed Central

    Dey, Poulami; Panga, Venugopal; Raghunathan, Srivatsan

    2016-01-01

    In rheumatoid arthritis (RA), nitric oxide (NO) is implicated in inflammation, angiogenesis and tissue destruction. The enzyme inducible nitric oxide synthase (iNOS) is responsible for the localised over-production of NO in the synovial joints affected by RA. The pro- and anti-inflammatory cytokines stimulate the synovial macrophages and the fibroblast-like synoviocytes to express iNOS. Therefore, the cytokine signalling network underlying the regulation of iNOS is essential to understand the pathophysiology of the disease. By using information from the literature, we have constructed, for the first time, the cytokine signalling network involved in the regulation of iNOS expression. Using the differential expression patterns obtained by re-analysing the microarray data on the RA synovium and the synovial macrophages available in the Gene Expression Omnibus (GEO) database, we aimed to establish the role played by the network genes towards iNOS regulation in the RA synovium. Our analysis reveals that the network genes belonging to interferon (IFN) and interleukin-10 (IL-10) pathways are always up-regulated in the RA synovium whereas the genes which are part of the anti-inflammatory transforming growth factor-beta (TGF-β) signalling pathway are mostly down-regulated. We observed a consistent up-regulation of the transcription factor signal transducers and activators of transcription 1 (STAT1) in the RA synovium and the macrophages. Interestingly, we found a consistent up-regulation of the iNOS interacting protein ras-related C3 botulinum toxin substrate 2 (RAC2) in the RA synovium as well as the macrophages. Importantly, we have constructed a model to explain the impact of IFN and IL-10 pathways on Rac2-iNOS interaction leading to over-production of NO and thereby causing chronic inflammation in the RA synovium. The interplay between STAT1 and RAC2 in the regulation of NO could have implications for the identification of therapeutic targets for RA. PMID:27626941

  4. Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia.

    PubMed

    Carding, S R; Allan, W; McMickle, A; Doherty, P C

    1993-02-01

    The patterns of cytokine mRNA expression in mice with primary or secondary influenza pneumonia have been assessed by in situ hybridization analysis of cells from both the mediastinal lymph node (MLN) and the virus-infected lung. Evidence of substantial transcriptional activity was found in all lymphocyte subsets recovered from both anatomical sites. The kinetics of cytokine mRNA expression after primary infection with an H3N2 virus were in accord with the idea that the initial response occurs in regional lymphoid tissue, with the effector T cells later moving to the lung. This temporal separation was much less apparent for the more rapid secondary response resulting from challenge of H3N2-primed mice with an H1N1 virus. Among the T cell receptor alpha/beta+ subsets, transcripts for interferon (IFN) gamma and tumor necrosis factor beta were most commonly found in the CD8+ population whereas mRNA for interleukin (IL) 4 and IL-10 was much more prevalent in CD4+ T cells. The gamma/delta T cells expressed mRNA for all cytokines tested, with IL-2, IL-4, and IFN-gamma predominating among those recovered from the inflammatory exudate. At particular time points, especially early in the MLN and late in the infected lung, the frequency of mRNA+ lymphocytes was much higher than would be expected from current understanding of the prevalence of virus-specific precursors and effectors. If this response is typical, induction of cytokine gene expression for T cells that are not responding directly to the invading pathogen may be a prominent feature of acute virus infections.

  5. Modulation of cytokines and chemokines expression by NAC in cadmium chloride treated human lung cells.

    PubMed

    Odewumi, Caroline O; Latinwo, Lekan M; Ruden, Michael L; Badisa, Veera L D; Fils-Aime, Sheila; Badisa, Ramesh B

    2016-11-01

    Cadmium (Cd), is one of the most hazardous metals found in the environment. Cd exposure through inhalation has been linked to various diseases in lungs. It was shown that Cd induces proinflammatory cytokines through oxidative stress mechanism. In this report, we studied the immunomodulatory effect of a well known antioxidant, N-acetylcysteine (NAC) on cadmium chloride (CdCl2 ) treated human lung A549 cells through human cytokine array 6. The lung cells were treated with 0 or 75 µM CdCl2 alone, 2.5 mM NAC alone, or co-treated with 2.5 mM NAC and 75 µM CdCl2 for 24 h. The viability of cells was measured by crystal violet dye. The array results were validated by human IL-1alpha enzyme- linked immunosorbent assay (ELISA) kit. The viability of the 75 µM CdCl2 alone treated cells was decreased to 44.5%, while the viability of the co-treated cells with 2.5 mM NAC was increased to 84.1% in comparison with untreated cells. In the cell lysate of CdCl2 alone treated cells, 19 and 8 cytokines were up and down-regulated, while in the medium 15 and 3 cytokines were up and downregulated in comparison with the untreated cells. In the co-treated cells, all these cytokines expression was modulated by the NAC treatment. The IL-1α ELISA result showed the same pattern of cytokine expression as the cytokine array. This study clearly showed the modulatory effect of NAC on cytokines and chemokines expression in CdCl2- treated cells and suggests the use of NAC as protective agent against cadmium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1612-1619, 2016.

  6. Diacerhein downregulate proinflammatory cytokines expression and decrease the autoimmune diabetes frequency in nonobese diabetic (NOD) mice.

    PubMed

    Malaguti, Carina; Vilella, Conceição Aparecida; Vieira, Karla Priscila; Souza, Gustavo H M F; Hyslop, Stephen; Zollner, Ricardo de Lima

    2008-06-01

    NOD mice are used as experimental models as they develop type 1 diabetes mellitus (DM-1) spontaneously, with a strong similarity to the human disease. Diabetes mellitus type 1 is characterized by the destruction of the islet, orchestrated by T lymphocytes that induce cytokine release like IL-1beta, promoting an inflammatory process. Diacerhein has antiinflammatory properties, inhibiting IL-1. However, the mechanisms involved in immune modulation are not completely understood. In the present study, serum and pancreatic islets were isolated to investigate the relationship between IL-1beta, IFN-gamma, IL-12 and TNF-alpha expression and diabetes onset, morphological aspects, and diacerhein dose dependence in animals treated with different doses (5, 10 and 50 mg/kg/day) and the control group (saline solution). The results demonstrated upregulation of mRNA islets and downregulation of the serum concentration of IL-1beta, IL-12 and TNF-alpha in the group treated with 5 and 10 mg/kg/day diacerhein, when compared with the saline group, and increased IFN-gamma serum concentration in the group treated with 50 mg/kg/day. These results suggest that diacerhein in NOD mice, decreases, in a dose-dependent manner, the diabetes frequency downregulating proinflammatory cytokines, such as IL-1beta, TNF-alpha, IFN-gamma and IL-12 at posttranscriptional or posttranslational level. Furthermore, using the HPLC method, diacerhein and rhein (active metabolite) were detected in serum and pancreas of treated mice.

  7. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology.

    PubMed

    Fonken, L K; Xu, X; Weil, Z M; Chen, G; Sun, Q; Rajagopalan, S; Nelson, R J

    2011-10-01

    Particulate matter air pollution is a pervasive global risk factor implicated in the genesis of pulmonary and cardiovascular disease. Although the effects of prolonged exposure to air pollution are well characterized with respect to pulmonary and cardiovascular function, comparatively little is known about the impact of particulate matter on affective and cognitive processes. The central nervous system may be adversely affected by activation of reactive oxygen species and pro-inflammatory pathways that accompany particulate matter pollution. Thus, we investigated whether long-term exposure to ambient fine airborne particulate matter (<2.5 μm (PM(2.5))) affects cognition, affective responses, hippocampal inflammatory cytokines and neuronal morphology. Male mice were exposed to either PM(2.5) or filtered air (FA) for 10 months. PM(2.5) mice displayed more depressive-like responses and impairments in spatial learning and memory as compared with mice exposed to FA. Hippocampal pro-inflammatory cytokine expression was elevated among PM(2.5) mice. Apical dendritic spine density and dendritic branching were decreased in the hippocampal CA1 and CA3 regions, respectively, of PM(2.5) mice. Taken together, these data suggest that long-term exposure to particulate air pollution levels typical of exposure in major cities around the globe can alter affective responses and impair cognition.

  8. Expression Levels of Proinflammatory Cytokines and NLRP3 Inflammasome in an Experimental Model of Oxazolone-induced Colitis.

    PubMed

    Zherebiatiev, Aleksandr; Kamyshnyi, Aleksandr

    2016-02-01

    IL-1β and IL-17A are two cytokines with strong proinflammatory activities and are now known to be involved in a number of chronic inflammatory disorders. High-mobility group box 1 (HMGB1) is a nuclear protein regulating the expression of these proinflammatory cytokines. The NLRP3 inflammasome promotes the maturation of the IL-1β and its activation has been shown as a critical mechanism in the pathogenesis of inflammatory bowel disease (IBD). However, underlying mechanisms to modulate their production in IBD are still unclear. The aim of this study was to investigate the expression levels of mRNA for the NLRP3 inflammasome, HMGB1 and proinflammatory cytokines, IL-1β, IL-17A in the inflamed colon of rats with experimental oxazolone-induced colitis. Experiments were carried out on male wistar rats. IL-1β, IL-17A, HMGB1 and NLRP3 inflammasome mRNA expression were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our results indicated that the expression levels of IL-1β, IL-17A, NLRP3 and HMGB1 were elevated in the inflamed colon of rats with oxazolone-induced colitis.

  9. Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1.

    PubMed

    Denner, Joachim; Eschricht, Magdalena; Lauck, Michael; Semaan, Marwan; Schlaermann, Philipp; Ryu, Hyunmi; Akyüz, Levent

    2013-01-01

    The transmembrane envelope protein gp41 of the human immunodeficiency virus HIV-1 plays an important role during infection allowing fusion of the viral and cellular membrane. In addition, there is increasing evidence that gp41 may contribute to the immunodeficiency induced by HIV-1. Recombinant gp41 and a synthetic peptide corresponding to a highly conserved domain in gp41, the immunosuppressive (isu) domain, have been shown to inhibit mitogen-induced activation of human peripheral blood mononuclear cells (PBMCs) and to increase release of IL-6 and IL-10 from these cells. We recently reported that a single mutation in the isu domain of gp41 abrogated the immunosuppressive properties and that HIV-1 sequences containing such abrogating mutations had never been isolated from infected individuals. Here, we studied the influence of the isu peptide on the release of 66 cytokines and the expression of 27,000 genes in PBMCs. Incubation of PBMCs with isu peptide homopolymers increased the expression of 16 cytokines among them IL-6 and IL-10, and decreased that of IL-2 and CXCL9. Interestingly, the extend of cytokine modulation was donor-dependent. Among the genes up-regulated were IL-6, IL-8, IL-10 but also MMP-1, TREM-1 and IL-1beta. Most importantly, genes involved in innate immunity such as FCN1 and SEPP1 were found down-regulated. Many changes in cytokine expression demonstrated in our experiments were also found in HIV-1 infected individuals. These data indicate that the isu domain of gp41 has a broad impact on gene expression and cytokine release and therefore may be involved in HIV-1 induced immunopathogenesis.

  10. Effect of Malnutrition on the Expression of Cytokines Involved in Th1 Cell Differentiation

    PubMed Central

    González-Torres, Cristina; González-Martínez, Haydeé; Miliar, Angel; Nájera, Oralia; Graniel, Jaime; Firo, Verónica; Alvarez, Catalina; Bonilla, Edmundo; Rodríguez, Leonor

    2013-01-01

    Malnutrition is a common cause of secondary immune deficiency and has been linked to an increased susceptibility to infection in humans. Malnutrition specifically affects T-cell-mediated immune responses. The aim of this study was to assess in lymphocytes from malnourished children the expression levels of IL-12, IL-18 and IL-21, molecules that induce the differentiation of T cells related to the immunological cellular response (Th1 response) and the production of cytokines related to the immunological cellular response (Th1 cytokines). We found that the expression levels of IL-12, IL-18 and IL-21 were significantly diminished in malnourished children compared to well-nourished children and were coincident with lower plasmatic levels of IL-2 and IFN-γ (Th1 cytokines). In this study, we show for the first time that the gene expression and intracellular production of cytokines responsible for Th1 cell differentiation (IL-12, IL-18 and IL-21) are diminished in malnourished children. As expected, this finding was related to lower plasmatic levels of IL-2 and IFN-γ. The decreased expression of Th1 cytokines observed in this study may contribute to the deterioration of the immunological Type 1 (cellular) response. We hypothesize that the decreased production of IL-12, IL-18 and IL-21 in malnourished children contributes to their inability to eradicate infections. PMID:23429441

  11. Effect of malnutrition on the expression of cytokines involved in Th1 cell differentiation.

    PubMed

    González-Torres, Cristina; González-Martínez, Haydeé; Miliar, Angel; Nájera, Oralia; Graniel, Jaime; Firo, Verónica; Alvarez, Catalina; Bonilla, Edmundo; Rodríguez, Leonor

    2013-02-19

    Malnutrition is a common cause of secondary immune deficiency and has been linked to an increased susceptibility to infection in humans. Malnutrition specifically affects T-cell-mediated immune responses. The aim of this study was to assess in lymphocytes from malnourished children the expression levels of IL-12, IL-18 and IL-21, molecules that induce the differentiation of T cells related to the immunological cellular response (Th1 response) and the production of cytokines related to the immunological cellular response (Th1 cytokines). We found that the expression levels of IL-12, IL-18 and IL-21 were significantly diminished in malnourished children compared to well-nourished children and were coincident with lower plasmatic levels of IL-2 and IFN-γ (Th1 cytokines). In this study, we show for the first time that the gene expression and intracellular production of cytokines responsible for Th1 cell differentiation (IL-12, IL-18 and IL-21) are diminished in malnourished children. As expected, this finding was related to lower plasmatic levels of IL-2 and IFN-γ. The decreased expression of Th1 cytokines observed in this study may contribute to the deterioration of the immunological Type 1 (cellular) response. We hypothesize that the decreased production of IL-12, IL-18 and IL-21 in malnourished children contributes to their inability to eradicate infections.

  12. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation.

    PubMed

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-08-18

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines.

  13. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation.

    PubMed

    Nielsen, Carolyn M; Wolf, Asia-Sophia; Goodier, Martin R; Riley, Eleanor M

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose-response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen-antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes.

  14. Increased expression of cytokines, soluble cytokine receptors, soluble apoptosis ligand and apoptosis in dengue.

    PubMed

    Arias, Julia; Valero, Nereida; Mosquera, Jesús; Montiel, Milagros; Reyes, Eduardo; Larreal, Yraima; Alvarez-Mon, Melchor

    2014-03-01

    Several studies have been performed to determine biomarkers that define the risk factors to developing severe forms of dengue. In this study, the levels of TNF-α, IL-6, IL-1, IL-17, soluble interleukin-1 receptor like 1 protein (sST2), soluble TNF-related apoptosis-inducing ligand (sTRAIL), IL-12 and soluble receptors for TNF (sTNF-RI and sTNF-RII) were determined by ELISA in dengue patients and monocyte/macrophage cultures. Dengue was classified as dengue without warning symptoms (DNWS), with warning symptoms (DWWS) and severe dengue (SD). High values of IL-6, sTNFRI, sTNFRII and sST2 were observed in DWWS and/or SD and IL-12 and sTRAIL in DNWS. TNF-α and IL-17 were increased not associated to the disease severity. High production of TNF-α, IL-1β, IL-12, IL-17, sST2 and sTRAIL and apoptosis expression were observed in dengue monocyte/macrophage cultures. This study shows that beneficial or deleterious biomarkers can be present in dengue regardless the disease severity and that monocytes may be in part the source of studied molecules.

  15. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    PubMed

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  16. Semi-quantitative analysis of cytokine expression in asymptomatic canine leishmaniasis.

    PubMed

    Chamizo, Cristina; Moreno, Javier; Alvar, Jorge

    2005-01-10

    The dog is the main reservoir of Leishmania infantum, the parasite responsible for visceral leishmaniasis in Mediterranean countries. The infection in dogs shows different clinical presentations, from subclinical/asymptomatic to a fully developed disease, depending on the host's immune responses. The Th1/Th2 dichotomy is not clear in the different forms of canine leishmaniasis, since the data available from studies of immunity response in canine leishmaniasis are scarce and fragmented. The present work describes the cytokine expression in peripheral blood mononuclear cells (PBMC) obtained from asymptomatic dogs experimentally infected with L. infantum that present a cellular protective immune response. The results obtained from freshly isolated PBMC showed expressions of TNF-alpha, IL-2, IFN-gamma, IL-10 and IL-18 mRNA, similar to those from non-infected dogs. However, there was almost no expression of IL-4 mRNA detected in the asymptomatic infected dogs compared to the control dogs. Unspecific stimulation with ConA promoted the expression in a greater or lower degree of all the cytokines studied. In vitro stimulation of PBMC with soluble leishmanial antigen (SLA) promoted the expression of IL-2, IFN-gamma, TNF-alpha, IL-18, IL-4, IL-6 and IL-10 mRNA, with the two first being specifically induced. Although both Th1 and Th2 cytokines are produced, cell mediated immunity observed in these L. infantum-infected asymptomatic dogs depended on the preferential expression of Th1 cytokines.

  17. Correlation between TLR9 Expression and Cytokine Secretion in the Clinical Diagnosis of Systemic Lupus Erythematosus

    PubMed Central

    Rao, Hui; Zeng, Qinghua; Liang, Yumei; Xiao, Changjuan; Xie, Shuoshan; Xu, Xiangyu

    2015-01-01

    To investigate the correlation between TLR9 and cytokine secretion in SLE diagnosis and treatment. A total of 66 cases (39 SLE and 27 healthy donors) were enrolled in this study. The CD20+ labeled B cells were isolated from SLE patients. TLR9 mRNA expression from SLE tissues and B cells was detected using RT-PCR. The cytokine secretion in B cells were measured using ELISA. Correlation between TLR9 expression and cytokines secretion was analyzed using gene silencing method. Compared with the controls, TLR9 expression was significantly high in SLE patients tissues, as well as in B cells. Expressions of IL-6 and ds-DNA antibody were high in SLE patients serum and were positively correlated with TLR9 level in SLE patients (IL-6, R2 = 0.768; ds-DNA antibody, R2 = 0.730). The IL-6 and ds-DNA expression were significantly decreased by silencing TLR9 compared to the controls. Moreover, silencing TLR9 significantly decreased cytokines secretion including IL-6, IL-10, and IL-1rα, as well as the pathway-associated protein expression, including ICOS and Foxp3. The successful application of TLR9 silencing method in human SLE B cells may loan theatrical basis for the possibility of TLR9 genetic therapy in SLE diagnosis and treatment. PMID:26457008

  18. Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation

    PubMed Central

    Fan, Jun-Bao; Miyauchi-Ishida, Sayuri; Arimoto, Kei-ichiro; Liu, Dan; Yan, Ming; Liu, Chang-Wei; Győrffy, Balázs; Zhang, Dong-Er

    2015-01-01

    Type I IFNs have broad activity in tissue inflammation and malignant progression that depends on the expression of IFN-stimulated genes (ISGs). ISG15, one such ISG, can form covalent conjugates to many cellular proteins, a process termed “protein ISGylation.” Although type I IFNs are involved in multiple inflammatory disorders, the role of protein ISGylation during inflammation has not been evaluated. Here we report that protein ISGylation exacerbates intestinal inflammation and colitis-associated colon cancer in mice. Mechanistically, we demonstrate that protein ISGylation negatively regulates the ubiquitin–proteasome system, leading to increased production of IFN-induced reactive oxygen species (ROS). The increased cellular ROS then enhances LPS-induced activation of p38 MAP kinase and the expression of inflammation-related cytokines in macrophages. Thus our studies reveal a regulatory role for protein ISGylation in colonic inflammation and its related malignant progression, indicating that targeting ubiquitin-activating enzyme E1 homolog has therapeutic potential in treating inflammatory diseases. PMID:26515094

  19. Seasonal differences in cytokine expression in the skin of Shetland ponies suffering from insect bite hypersensitivity.

    PubMed

    Meulenbroeks, C; van der Meide, N M A; Zaiss, D M W; van Oldruitenborgh-Oosterbaan, M M Sloet; van der Lugt, J J; Smak, J; Rutten, V P M G; Willemse, T

    2013-01-15

    Insect bite hypersensitivity (IBH) in horses is a seasonal, IgE-mediated, pruritic skin disorder primarily caused by Culicoides spp. We hypothesize that a mixed Th2/Th1-type immune status, off season, alters into Th2-dominated immune reactivity in the skin of IBH-affected ponies in the IBH season. To study these immune response patterns Culicoides-specific IgE levels, skin histopathology and cytokine and transcription factor mRNA expression (IL4, IL10, IL13, IFNγ, FoxP3 and CD3(ζ)) in lesional and non-lesional skin of ponies affected by IBH in the IBH season were compared with those of the same animals off season and those in skin of healthy ponies in both seasons. The present study revealed a significantly higher histopathology score in lesional skin of affected ponies than in non-lesional skin and skin of healthy ponies in the IBH season. Culicoides obsoletus-specific IgE serum levels of ponies with IBH were significantly higher than those in healthy ponies in both seasons. Interestingly, C. obsoletus-specific IgE serum levels within each group were the same in the IBH season and off season. The expression of IL4, IL13 and IFNγ mRNA in skin biopsies in the IBH season showed a significant increase compared to off season in both skin derived from healthy control ponies (n=14) as well as in lesional and in non-lesional skin from IBH-affected animals (n=17). This apparently general up-regulation of cytokine expression during the IBH season directly correlated with an increased CD3(ζ) mRNA expression in the skin, indicating an overall increased T cell influx during the summer months. The only significant difference observed between lesional skin from IBH-affected animals as compared to skin from healthy control animals in the IBH season was a lower expression of IL13/CD3(ζ) in the affected animals. FoxP3 and IL10 levels were unaffected, except for a lower expression of FoxP3 in healthy control skin in the IBH season as compared to off season, In addition, the

  20. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    PubMed

    Fan, Bin; Dun, Sai-Hong; Gu, Jian-Qiu; Guo, Yang; Ikuyama, Shoichiro

    2015-01-01

    Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton) with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived) microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO), TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1) and perilipin 2 (PLIN2). Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  1. Analysing the effect of novel therapies on cytokine expression in experimental arthritis

    PubMed Central

    Williams, Richard O; Inglis, Julia J; Simelyte, Egle; Criado, Gabriel; Sumariwalla, Percy F

    2005-01-01

    Type II collagen-induced arthritis (CIA) is an animal model of rheumatoid arthritis that has been used extensively to address questions of disease pathogenesis and to validate novel therapeutic targets. Susceptibility to CIA is strongly associated with major histocompatibility complex class II genes, and the development of arthritis is accompanied by a robust T- and B-cell response to type II collagen. The main pathological features of CIA include proliferative synovitis with infiltration of inflammatory cells, pannus formation, cartilage degradation, erosion of bone and fibrosis. Pro-inflammatory cytokines, such as tumour necrosis factor α and interleukin-1β, are expressed in the arthritic joints in both murine CIA and human rheumatoid arthritis, and blockade of these molecules results in amelioration of disease. Hence, there is a great deal of interest in the development of small-molecular-weight inhibitors of pro-inflammatory cytokines. There is also interest in the development and testing of drugs with the capacity to modulate the immune pathways involved in driving the inflammatory response in arthritis. For these reasons, there is a need to monitor the effect of novel treatments on cytokine expression in vivo. In this review, we outline the various techniques used to detect cytokines in experimental arthritis and describe how these techniques have been used to quantify changes in cytokine expression following therapeutic intervention. PMID:16191099

  2. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    PubMed

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.

  3. Differential Cytokine Gene Expression in Granulomas from Lungs and Lymph Nodes of Cattle Experimentally Infected with Aerosolized Mycobacterium bovis

    PubMed Central

    2016-01-01

    The hallmark lesion of tuberculosis in humans and animals is the granuloma. The granuloma represents a distinct host cellular immune response composed of epithelioid macrophages, lymphocytes, and multinucleated giant cells, often surrounding a caseous necrotic core. Within the granuloma, host-pathogen interactions determine disease outcome. Factors within the granulomas such as cytokines and chemokines drive cell recruitment, activity, function and ultimately the success or failure of the host’s ability to control infection. Hence, an understanding of the granuloma-level cytokine response is necessary to understand tuberculosis pathogenesis. In-situ cytokine expression patterns were measured using a novel in situ hybridization assay, known as RNAScope® in granulomas of the lungs, tracheobronchial lymph nodes and caudal mediastinal lymph nodes of cattle experimentally infected with Mycobacterium bovis via aerosol exposure. In spite of microscopic morphological similarities, significant differences were seen between late stage granulomas of the lung compared to those of the tracheobronchial lymph nodes for IL-17A, IFN-γ, TGF-β, IL10 and IL-22 but not for TNF-α. Additionally, significant differences were noted between granulomas from two different thoracic lymph nodes that both receive afferent lymphatics from the lungs (i.e., tracheobronchial and caudal mediastinal lymph nodes) for TNF-α, IL-17A, IFN-γ, TGF-β and IL-10 but not for IL-22. These findings show that granuloma morphology alone is not a reliable indicator of granuloma function as granulomas of similar morphologies can have disparate cytokine expression patterns. Moreover, anatomically distinct lymph nodes (tracheobronchial vs caudal mediastinal) differ in cytokine expression patterns even when both receive afferent lymphatics from a lung containing tuberculoid granulomas. These findings show that selection of tissue and anatomic location are critical factors in assessing host immune response to M

  4. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    SciTech Connect

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi; Shiraishi, Hiroshi; Shimoda, Kouji; Yoshimura, Akihiko

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  5. Human memory, but not naive, CD4+ T cells expressing transcription factor T-bet might drive rapid cytokine production.

    PubMed

    Yu, Si-fei; Zhang, Yan-nan; Yang, Bin-yan; Wu, Chang-you

    2014-12-19

    We found that after stimulation for a few hours, memory but not naive CD4(+) T cells produced a large amount of IFN-γ; however, the mechanism of rapid response of memory CD4(+) T cells remains undefined. We compared the expression of transcription factors in resting or activated naive and memory CD4(+) T cells and found that T-bet, but not pSTAT-1 or pSTAT-4, was highly expressed in resting memory CD4(+) T cells and that phenotypic characteristics of T-bet(+)CD4(+) T cells were CD45RA(low)CD62L(low) CCR7(low). After short-term stimulation, purified memory CD4(+) T cells rapidly produced effector cytokines that were closely associated with the pre-existence of T-bet. By contrast, resting naive CD4(+) T cells did not express T-bet, and they produced cytokines only after sustained stimulation. Our further studies indicated that T-bet was expressed in the nuclei of resting memory CD4(+) T cells, which might have important implications for rapid IFN-γ production. Our results indicate that the pre-existence and nuclear mobilization of T-bet in resting memory CD4(+) T cells might be a possible transcriptional mechanism for rapid production of cytokines by human memory CD4(+) T cells.

  6. Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules.

    PubMed Central

    Modur, V; Feldhaus, M J; Weyrich, A S; Jicha, D L; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1997-01-01

    Oncostatin M is a member of the IL-6 family of cytokines that is primarily known for its effects on cell growth. Endothelial cells have an abundance of receptors for oncostatin M, and may be its primary target. We determined if oncostatin M induces a key endothelial cell function, initiation of the inflammatory response. We found that subcutaneous injection of oncostatin M in mice caused an acute inflammatory reaction. Oncostatin M in vitro stimulated: (a) polymorphonuclear leukocyte (PMN) transmigration through confluent monolayers of primary human endothelial cells; (b) biphasic PMN adhesion through rapid P-selectin expression, and delayed adhesion mediated by E-selectin synthesis; (c) intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 accumulation; and (d) the expression of PMN activators IL-6, epithelial neutrophil activating peptide-78, growth-related cytokine alpha and growth-related cytokine beta without concomitant IL-8 synthesis. The nature of the response to oncostatin M varied with concentration, suggesting high and low affinity oncostatin M receptors independently stimulated specific responses. Immunohistochemistry showed that macrophage-like cells infiltrating human aortic aneurysms expressed oncostatin M, so it is present during a chronic inflammatory reaction. Therefore, oncostatin M, but not other IL-6 family members, fulfills Koch's postulates as an inflammatory mediator. Since its effects on endothelial cells differ significantly from established mediators like TNFalpha, it may uniquely contribute to the inflammatory cycle. PMID:9202068

  7. Albumin induced cytokine expression in porcine adipose tissue explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  8. Transcription Factor HIF-1α Controls Expression of the Cytokine IL-22 in CD4 T Cells.

    PubMed

    Budda, Scott A; Girton, Alanson; Henderson, Jacob G; Zenewicz, Lauren A

    2016-10-01

    IL-22 is expressed by activated lymphocytes and is important in modulation of tissue responses during inflammation. The cytokine induces proliferative and antiapoptotic pathways in epithelial cells allowing enhanced cell survival. This can have positive effects, such as in the maintenance of epithelial barriers in the gastrointestinal tract, but also negative effects, such as contributing to colorectal tumorigenesis. Because IL-22 can be dual-natured, we hypothesized that its biological activity should be tightly regulated to limit IL-22 expression to the sites of inflammation. One such environmental cue could be low oxygen, which often accompanies inflammation. We show that in CD4 T cells IL-22 expression is upregulated in hypoxia. The Il22 promoter contains a putative conserved hypoxic response element suggesting that the transcription factor HIF-1α may influence IL-22 expression. Differentiation in the presence of dimethyloxallyl glycine, a stabilizer of HIF-1α at normoxia, increased IL-22 expression. Using HIF-1α-deficient CD4 T cells, we show that hypoxic IL-22 upregulation is dependent on HIF-1α. These findings have implications on the regulation of Il22 gene expression and the presence of the cytokine in different inflammatory environments.

  9. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  10. Dynamics of Early Synovial Cytokine Expression in Rodent Collagen-Induced Arthritis

    PubMed Central

    Palmblad, Karin; Erlandsson-Harris, Helena; Tracey, Kevin J.; Andersson, Ulf

    2001-01-01

    This study was performed to elucidate pathophysiological events before and during the course of collagen-induced arthritis in Dark Agouti rats, a model for rheumatoid arthritis. Kinetic studies of local cytokine responses were determined using immunohistochemical techniques, quantified by computer-assisted image analysis. We recently reported that the macrophage-pacifying agent CNI-1493 successfully ameliorated collagen-induced arthritis. In the present trial, we investigated the potential of CNI-1493 to down-regulate pro-inflammatory cytokines. Synovial cryosections were analyzed at various time points for the presence of interleukin (IL)-1β, tumor necrosis factor (TNF), and transforming growth factor (TGF)-β. Unexpectedly, an early simultaneous TNF and IL-1β expression was detected in resident cells in the lining layer, preceding disease onset and inflammatory cell infiltration by >1 week. The predominant cytokine synthesis by synovial (ED1+) macrophages coincided with clinical disease. TNF production greatly exceeded that of IL-1β. CNI-1493 treatment did not affect the early disease-preceding TNF and IL-1β synthesis in the lining layer. However, after disease onset, CNI-1493 intervention resulted in a pronounced reduced IL-1β and in particular TNF expression. Furthermore, CNI-1493 significantly up-regulated synthesis of the anti-inflammatory cytokine TGF-β and thereby shifted the balance of pro-inflammatory and anti-inflammatory cytokines in the arthritic joint in a beneficial way. PMID:11159186

  11. Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection.

    PubMed

    Sauder, C; de la Torre, J C

    1999-04-01

    Borna disease virus (BDV) causes central nervous system (CNS) disease in several vertebrate species, which is frequently accompanied by behavioral abnormalities. In the adult rat, intracerebral (i.c.) BDV infection leads to immunomediated meningoencephalitis. In contrast, i.c. infection of neonates causes a persistent infection in the absence of overt signs of brain inflammation. These rats (designated PTI-NB) display distinct behavioral and neurodevelopmental abnormalities. However, the molecular mechanisms for these virally induced CNS disturbances are unknown. Cytokines play an important role in CNS function, both under normal physiological and pathological conditions. Astrocytes and microglia are the primary resident cells of the central nervous system with the capacity to produce cytokines. Strong reactive astrocytosis is observed in the PTI-NB rat brain. We have used a ribonuclease protection assay to investigate the mRNA expression levels of proinflammatory cytokines in different brain regions of PTI-NB and control rats. We show here evidence of a chronic upregulation of proinflammatory cytokines interleukin-6, tumor necrosis factor alpha, interleukins-1alpha, and -1beta in the hippocampus and cerebellum of the PTI-NB rat brain. These brain regions exhibited only a very mild and transient immune infiltration. In contrast, in addition to reactive astrocytes, a strong and sustained microgliosis was observed in the PTI-NB rat brains. Our data suggest that CNS resident cells, namely astrocytes and microglia, are the major source of cytokine expression in the PTI-NB rat brain. The possible implications of these findings are discussed.

  12. Active immunization by a dengue virus-induced cytokine.

    PubMed Central

    Chaturvedi, U C; Mukerjee, R; Dhawan, R

    1994-01-01

    Dengue type 2 virus (DV)-induced cytotoxic factor (CF) is capable of reproducing various pathological lesions in mice that are seen in human dengue. The present study was undertaken to investigate the protective effect of active immunization of mice with CF. Mice were immunized with 5 microgram of CF and prevention of CF-induced increase in capillary permeability and damage to the blood-brain barrier were studied at weekly intervals, up to 48 weeks, by challenging with 3 microgram of CF. Maximum protection against increase in capillary permeability and damage to the blood-brain barrier was observed in week 4 after immunization. A breakthrough in the protection occurred with higher doses of CF in a dose-dependent manner. Challenge with a lethal intracerebral (i.c.) dose of DV showed significantly prolonged mean survival time and delayed onset of symptoms of sickness in the immunized mice compared with the normal mice, but the titre of the virus in the brain was similar in the two groups. On i.p. challenge with the virus the protection against damage to the blood-brain barrier was 86 +/- 7% at week 4 and 17 +/- 4% at week 26 after immunization. Sera obtained from the immunized mice showed the presence of CF-specific antibodies by ELISA, Western blot, and by neutralization of the cytotoxic activity of CF in vitro. The present study describes successful prevention of a cytokine-induced pathology by specific active immunization. PMID:8187327

  13. Vitamin D Antagonises the Suppressive Effect of Inflammatory Cytokines on CTLA-4 Expression and Regulatory Function

    PubMed Central

    Jeffery, Louisa E.; Qureshi, Omar S.; Gardner, David; Hou, Tie Z.; Briggs, Zoe; Soskic, Blagoje; Baker, Jennifer; Raza, Karim; Sansom, David M.

    2015-01-01

    The immune suppressive protein CTLA-4 is constitutively expressed by Tregs and induced in effector T cells upon activation. Its crucial role in adaptive immunity is apparent from the fatal autoimmune pathology seen in CTLA-4 knockout mice. However, little is known regarding factors that regulate CTLA-4 expression and their effect upon its function to remove CD80 and CD86 from antigen presenting cells by transendocytosis. Th17 cells are emerging as significant players in autoimmunity as well as other diseases. Therefore, in this study we have examined the effects of Th17 polarising conditions on CTLA-4 expression and function in human T cells and show that Th17 conditions can suppress the expression of CTLA-4 and its transendocytic function. In contrast to Th17 cells, vitamin D is inversely associated with autoimmune disease. We have previously shown a striking ability of 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) to enhance CTLA-4, however, its effects upon B7 transendocytosis and its activity in the context of inflammation remained unknown. Here we show that induction of CTLA-4 by 1,25(OH)2D3 can actually be enhanced in the presence of Th17 polarising cytokines. Furthermore, its transendocytic function was maintained such that T cells generated in the presence of Th17 conditions and 1,25(OH)2D3 were highly effective at capturing CTLA-4 ligands from antigen presenting cells and suppressing T cell division. Taken together, these data reveal an inhibitory effect of Th17 polarising conditions upon CTLA-4-mediated regulation and show that 1,25(OH)2D3 counteracts this effect. Given the importance of CTLA-4-mediated suppression in the control of autoimmune diseases, our novel data highlight the importance of vitamin D in inflammatory settings. PMID:26134669

  14. Histone deacetylase inhibition enhances antimicrobial peptide but not inflammatory cytokine expression upon bacterial challenge

    PubMed Central

    Fischer, Natalie; Sechet, Emmanuel; Friedman, Robin; Amiot, Aurélien; Sobhani, Iradj; Nigro, Giulia; Sansonetti, Philippe J.; Sperandio, Brice

    2016-01-01

    Antimicrobial peptides (AMP) are defense effectors of the innate immunity playing a crucial role in the intestinal homeostasis with commensals and protection against pathogens. Herein we aimed to investigate AMP gene regulation by deciphering specific characteristics allowing their enhanced expression among innate immune genes, particularly those encoding proinflammatory mediators. Our emphasis was on epigenetic regulation of the gene encoding the AMP β-defensin 2 (HBD2), taken as a model of possibly specific induction, upon challenge with a commensal bacterium, compared with the proinflammatory cytokine IL-8. Using an in vitro model of colonic epithelial cells challenged with Escherichia coli K12, we showed that inhibition of histone deacetylases (HDAC) by trichostatin A dramatically enhanced induction of HBD2 expression, without affecting expression of IL-8. This mechanism was supported by an increased phosphorylation of histone H3 on serine S10, preferentially at the HBD2 promoter. This process occurred through activation of the IκB kinase complex, which also led to activation of NF-κB. Moreover, we demonstrated that NF-κB was modified by acetylation upon HDAC inhibition, partly by the histone acetyltransferase p300, and that both NF-κB and p300 supported enhanced induction of HBD2 expression. Furthermore, we identified additional genes belonging to antimicrobial defense and epithelial restitution pathways that showed a similar pattern of epigenetic control. Finally, we confirmed our finding in human colonic primary cells using an ex vivo organoid model. This work opens the way to use epigenetic pharmacology to achieve induction of epithelial antimicrobial defenses, while limiting the deleterious risk of an inflammatory response. PMID:27162363

  15. Differential regulation of cytokine and cytokine receptor mRNA expression upon infection of bone marrow-derived macrophages with Listeria monocytogenes.

    PubMed Central

    Demuth, A; Goebel, W; Beuscher, H U; Kuhn, M

    1996-01-01

    Cytokine and cytokine receptor mRNA expression was analyzed by PCR-assisted amplification of RNA extracted from bone marrow-derived macrophages (BMM phi) at different time points after infection with Listeria monocytogenes. The mRNAs for the cytokines interleukin-1 alpha (IL-1 alpha), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha) were induced early after infection, whereas IL-6 mRNA appeared later and even nonhemolytic Listeria strains, which are unable to grow inside eukaryotic cells, induced the same cytokine mRNAs at levels similar to those of the wild-type strain. In most cases, the amounts of cytokines determined by various bioassays correlated with the level of mRNA induction. Inhibition of phagocytic uptake of L. monocytogenes by cytochalasin D treatment resulted in adherent bacteria which still induced the proinflammatory cytokines. In BMM phi, the level of IL-1 receptor II mRNA was unaffected, whereas mRNA expression of the two subtypes of tumor necrosis factor receptors (TNF-RI and TNF-RII) was differentially regulated upon infection: transcription of TNF-RI was reduced, and that of TNF-RII mRNA was induced. Similar to the decreased TNF-RI mRNA expression, gamma interferon receptor mRNA was downregulated in L. monocytogenes-infected BMM phi. This dose- and time-dependent induction or downregulation of cytokine receptor mRNA following L. monocytogenes infection of BMM phi was not observed upon infection of established macrophage-like cell lines J774 and P388D1. Induction of IL-6 mRNA as well as IL-1 alpha/beta and TNF-alpha mRNAs upon L. monocytogenes infection of BMM phi occurs independently of autocrine TNF-alpha signaling via TNF-RI or TNF-RII, as shown by infection of TNF-RI- and TNF-RII-deficient macrophages derived from mutant B6 x 129 mice. In contrast to gamma interferon receptor mRNA, both TNF receptor subtype mRNAs were not influenced by L. monocytogenes infection of hybrid (B6 x 129) mouse macrophages. Whereas the proinflammatory

  16. Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells.

    PubMed

    Jian, Congxiang; Li, Chenjun; Ren, Yu; He, Yong; Li, Yunming; Feng, Xiaodan; Zhang, Gang; Tan, Yinghui

    2014-10-01

    Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth supporting tissues. Hypoxia, the mainly changes of the plateau environment, can induce severe periodontitis by animal experiments. There is, however, very little information on hypoxia and lipopolysaccharide (LPS) induced cytokine expression in periodontal ligament (PDL) cells. In this article, we characterized hypoxia or P. gingivalis lipopolysaccharide (Pg LPS) induced tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 expression by human periodontal ligament (hPDL) cells. We found that hypoxia augmented Pg LPS induced TNF-α, IL-1β, and IL-6 expression in hPDL cells. We also demonstrated that nuclear factor kappa B pathway was involved in hypoxia augmenting Pg LPS induced cytokine expression in hPDL cells. Thus, our results suggest that the hypoxic environment may enhance the immune function of hPDL cells that is induced by Pg LPS.

  17. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  18. Cytokines, Chaperones and Neuroinflammatory Responses in Heroin-Related Death: What Can We Learn from Different Patterns of Cellular Expression?

    PubMed Central

    Neri, Margherita; Panata, Laura; Bacci, Mauro; Fiore, Carmela; Riezzo, Irene; Turillazzi, Emanuela; Fineschi, Vittorio

    2013-01-01

    Heroin (3,6-diacetylmorphine) has various effects on the central nervous system with several neuropathological alterations including hypoxic-ischemic brain damage from respiratory depressing effects and neuroinflammatory response. Both of these mechanisms induce the release of cytokines, chemokines and other inflammatory mediators by the activation of many cell types such as leucocytes and endothelial and glial cells, especially microglia, the predominant immunocompetent cell type within the central nervous system. The aim of this study is to clarify the correlation between intravenous heroin administration in heroin related death and the neuroinflammatory response. We selected 45 cases among autopsies executed for heroin-related death (358 total cases); immunohistochemical studies and Western blotting analyses were used to investigate the expression of brain markers such as tumor necrosis factor-α, oxygen-regulated protein 150, (interleukins) IL-1β, IL-6, IL-8, IL-10, IL-15, cyclooxygenase-2, heat shock protein 70, and CD68 (MAC387). Findings demonstrated that morphine induces inflammatory response and cytokine release. In particular, oxygen-regulated protein 150, cyclooxygenase-2, heat shock protein 70, IL-6 and IL-15 cytokines were over-expressed with different patterns of cellular expression. PMID:24084728

  19. Bestatin, an inhibitor for aminopeptidases, modulates the production of cytokines and chemokines by activated monocytes and macrophages.

    PubMed

    Lkhagvaa, Battur; Tani, Kenji; Sato, Keiko; Toyoda, Yuko; Suzuka, Chiyuki; Sone, Saburo

    2008-12-01

    The aim of this study was to clarify the effect of bestatin, an aminopeptidase inhibitor, on the production of cytokines from peripheral blood monocytes and alveolar macrophages (AM). Human monocytes isolated from peripheral blood of healthy volunteers were incubated with or without lipopolysaccharide (LPS) in the presence or absence of bestatin. AM obtained from patients with sarcoidosis were incubated in the presence or absence of bestatin. The concentration of cytokines in the culture supernatant was determined by enzyme-linked immunosorbent assay. The expression of mRNA was determined by reverse transcription polymerase chain reaction. Bestatin suppressed the production and expression of proinflammatory cytokines and chemokines, interleukin (IL)-6, CXCL8/IL-8, CCL3/macrophage inflammatory protein (MIP)-1alpha by LPS-stimulated monocytes. The mean percentage of the inhibition of IL-6, CXCL8/IL-8, CCL3/MIP-1alpha by bestatin at a concentration of 50 microg/mL was 71.2%, 29.7% and 61.0%, respectively. On the other hand, bestatin increased the production and mRNA expression of IL-10 by LPS-stimulated monocytes. The treatment with bestatin significantly inhibited the production of IL-6 and CXCL8/IL-8 by AM from patients with sarcoidosis. The data presented here indicate that bestatin suppresses the production of the pro-inflammatory cytokines and stimulates the anti-inflammatory cytokine by activated human monocytes. This study suggests that bestatin may be useful as an anti-inflammatory agent in various inflammatory diseases.

  20. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice

    PubMed Central

    1995-01-01

    Allergic asthma is characterized by airway hyperresponsiveness and pulmonary eosinophilia, and may be mediated by T helper (Th) lymphocytes expressing a Th2 cytokine pattern. Interleukin (IL) 12 suppresses the expression of Th2 cytokines and their associated responses, including eosinophilia, serum immunoglobulin E, and mucosal mastocytosis. We have previously shown in a murine model that antigen- induced increases in airway hyperresponsiveness and pulmonary eosinophilia are CD4+ T cell dependent. We used this model to determine the ability of IL-12 to prevent antigen-induced increases in airway hyperresponsiveness, bronchoalveolar lavage (BAL) eosinophils, and lung Th2 cytokine expression. Sensitized A/J mice developed airway hyperresponsiveness and increased numbers of BAL eosinophils and other inflammatory cells after single or repeated intratracheal challenges with sheep red blood cell antigen. Pulmonary mRNA and protein levels of the Th2 cytokines IL-4 and IL-5 were increased after antigen challenge. Administration of IL-12 (1 microgram/d x 5 d) at the time of a single antigen challenge abolished the airway hyperresponsiveness and pulmonary eosinophilia and promoted an increase in interferon (IFN) gamma and decreases in IL-4 and IL-5 expression. The effects of IL-12 were partially dependent on IFN-gamma, because concurrent treatment with IL-12 and anti-IFN-gamma monoclonal antibody partially reversed the inhibition of airway hyperresponsiveness and eosinophilia by IL-12. Treatment of mice with IL-12 at the time of a second antigen challenge also prevented airway hyperresponsiveness and significantly reduced numbers of BAL inflammatory cells, reflecting the ability of IL-12 to inhibit responses associated with ongoing antigen-induced pulmonary inflammation. These data show that antigen-induced airway hyperresponsiveness and inflammation can be blocked by IL-12, which suppresses Th2 cytokine expression. Local administration of IL-12 may provide a novel

  1. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs and cytokines expression patterns in jejunum and ileum of broilers

    PubMed Central

    Yajing, Sun; Arain, Muhammad Asif; Weifen, Li; Ping, Li; Bloch, Dost Muhammad; Wenhua, Liu

    2017-01-01

    The present study was designed to evaluate the effects of Saccharomyces boulardii (Sb) and Bacillus subtilis B10 (Bs) on intestinal epithelial Toll like receptors (TLR), and Cytokine expression response to understand the intestinal epithelial innate immune mechanism in broilers. A total of 300 birds (Sanhuang broilers) were allotted into three groups (n = 100) and each divided into five replications (n = 20). Control group (Ctr) birds were fed basal diet, broilers in experimental groups received (1×108cfu/kg feed) Sb and Bs respectively in addition to basal diet for 72 days. The result showed significant increase in mRNA expression level of TLR2, TLR4 and TLR15. Down streaming MyD88, TRAF6, TAB2 and NF-κB mRNA level noted higher, in the jejunum and ileum as compared to control group. Meanwhile, IL-6, TNFα, IL-10, TGF-β expression levels showed high expression in the jejunum of Sb and Bs groups. IL-10 expression level increased in the ileum and IL-6, TNFα, IL-10 and TGF-β expression levels increased in the jejunum of Sb group. Levels of IL-1 β, IL-17, and IL-4, increased merely in Sb group. Ileal cytokines IL-1β, IL-17 and IL-4concentration were noted higher in Sb group, and IL-1β, and IL-4 levels were up-regulated in Bs group. The results indicated that the INF-γ and IL-8 level decreased in Sb and BS groups. Serum IgA and sIgA level increased in both treatment groups. Our findings illustrated that S. boulardii and B. subtilis B10 may have a role to induce mucosal immunity by activating the TLRs and cytokines expressions in broilers. PMID:28319123

  2. Bacteria and Toll-like receptor and cytokine mRNA expression profiles associated with canine arthritis.

    PubMed

    Riggio, Marcello P; Lappin, David F; Bennett, David

    2014-08-15

    The major forms of inflammatory canine arthritis are immune-mediated arthritis (IMA) and septic arthritis (SA), although some cases of cruciate disease (CD) are associated with significant levels of synovitis. In this study, the bacteria associated with canine arthritis were identified and mRNA expression levels of Toll-like receptors (TLRs) and pro-inflammatory cytokines determined. Of the 40 synovial fluid samples analysed, bacteria were isolated from 12 samples by culture (2 CD, 10 SA) and detected in 4 samples (3 CD, 1 SA) using culture-independent methods. Statistically significant increases in TLR2, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-12 mRNA expression were seen in all disease groups compared to normal controls. All disease groups had decreased mRNA expression of other TLRs compared to normal controls, but this did not reach statistical significance. Synovial fluid cell counts revealed that the highest number and proportion of mononuclear cells and neutrophils were found in the IMA and SA samples, respectively. Age had an effect on the TLR and cytokine mRNA expression profiles: TNF-α (p=0.043) and IL-12 (p=0.025) mRNA expression was increased and TLR4 mRNA expression was reduced (p=0.033) in dogs up to 4 years of age compared to older animals. In the 10 SA samples from which bacteria were isolated, statistically significant increases in TLR2, TLR7, TNF-α and IL-6 mRNA expression were observed. It is concluded that canine arthritis is associated with increased mRNA levels of pro-inflammatory cytokines, which could in some cases be mediated by bacteria through activation of TLR2.

  3. Sexual dimorphism on cytokines expression in the temporomandibular joint: the role of gonadal steroid hormones.

    PubMed

    Torres-Chávez, Karla E; Fischer, Luana; Teixeira, Juliana Maia; Fávaro-Moreira, Nadia Cristina; Obando-Pereda, Gustavo Alberto; Parada, Carlos Amílcar; Tambeli, Claudia Herrera

    2011-10-01

    Temporomandibular joint pain-related conditions are generally characterized by local inflammation; however, little studies have focused on the role of gonadal hormones in the expression of inflammatory mediators, such as cytokines. Therefore, we asked whether gonadal steroid hormones affect formalin-induced cytokines expression in the rat temporomcandibular joint. The expression of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and cytokine-induced neutrophil chemoattractant (CINC)-1 was significantly higher in males than in diestrus and proestrus females and was decreased by orchiectomy and restored by testosterone replacement. The expression of IL-6 was significantly higher in diestrus and proestrus females than in males, and was decreased by ovariectomy and restored by estradiol or progesterone administration. We conclude that testosterone increases the expression of TNF-α, IL-1β and CINC-1, and estradiol and progesterone increase the expression of IL-6. New clinical approaches based on inhibition of pro-inflammatory mediators are starting to supplant traditional immunosuppressive therapies and gonadal hormones may influence their effectiveness or clinical dosage.

  4. Expression of cytokine mRNA in lentivirus-induced arthritis.

    PubMed Central

    Lechner, F.; Vogt, H. R.; Seow, H. F.; Bertoni, G.; Cheevers, W. P.; von Bodungen, U.; Zurbriggen, A.; Peterhans, E.

    1997-01-01

    Infection of goats with the lentivirus caprine arthritis encephalitis virus (CAEV) leads to persistent infection and development of chronic arthritis. We analyzed the expression of cytokines and viral RNA in the joints of goats at early time points after experimental infection with CAEV and in those of animals suffering from chronic arthritis as a result of natural infection. In situ hybridization experiments showed that the pattern of cytokine expression in caprine arthritis was similar to that found in rheumatoid arthritis (RA), with a few cells expressing the lymphocyte-derived cytokines interferon (IFN)-gamma and interleukin (IL)-2 and rather more cells expressing monocyte chemoattractant protein (MCP)-1, IL-6, and tumor necrosis factor (TNF)-alpha. IFN-gamma mRNA expression in experimentally infected joints peaked at day 12 and was mostly detected in areas containing viral RNA. At later time points, no IFN-gamma- or virus-expressing cells were found in inflamed joints but both were again detected in goats with severe arthritis. Interestingly, at the clinical stage of arthritis reflecting the chronic stage of infection, the inflammatory lesion was found to be immunologically compartmentalized. Humoral immune responses and cell-mediated immune responses appeared to concurrently occur in distinct areas of the synovial membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9327739

  5. Effect of Crossing C57BL/6 and FVB Mouse Strains on Basal Cytokine Expression

    PubMed Central

    Szade, Agata; Nowak, Witold N.; Szade, Krzysztof; Gese, Anna; Czypicki, Ryszard; Waś, Halina; Dulak, Józef; Józkowicz, Alicja

    2015-01-01

    C57BL/6 is the most often used laboratory mouse strain. However, sometimes it is beneficial to cross the transgenic mice on the C57BL/6 background to the other strain, such as FVB. Although this is a common strategy, the influence of crossing these different strains on homeostatic expression of cytokines is not known. Here we have investigated the differences in the expression of selected cytokines between C57BL/6J and C57BL/6JxFVB mice in serum and skeletal muscle. We have found that only few cytokines were altered by crossing of the strains. Concentrations of IL5, IL7, LIF, MIP-2, and IP-10 were higher in serum of C57BL/6J mice than in C57BL/6JxFVB mice, whereas concentration of G-CSF was lower in C57BL/6J. In the skeletal muscle only the concentration of VEGF was higher in C57BL/6J mice than in C57BL/6JxFVB mice. Concluding, the differences in cytokine expression upon crossing C57BL/6 and FVB strain in basal conditions are not profound. PMID:25834307

  6. Cytokine expression in cord blood cells of children of healthy and allergic mothers.

    PubMed

    Hrdý, J; Zanvit, P; Novotná, O; Kocourková, I; Zižka, J; Prokešová, L

    2010-09-01

    To determine some early signs connected with the increased risk of future allergy development, gene expression and production of selected cytokines were tested in children of allergic mothers and compared with newborns of healthy mothers. Expression of IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ, TNF-α, TGF-β and EGF was tested in cord blood cells using real-time PCR and production of these cytokines was evaluated in cord sera by ELISA. Gene expression of IL-2, IL-4, IL-8, IFN-γ, IL-1β, TNF-α and TGF-β was decreased and that of IL-10, IL-13 and EGF increased in children of allergic mothers in comparison with those of healthy mothers. Significant differences in sera of healthy and allergic groups were only in IL-10 and EGF. Different relationship among serum cytokine levels reflects the fact that the cytokines are not produced only by blood cells. Significantly decreased production of EGF in newborns of allergic mothers could negatively influence maturation of mucosal membranes of these children and support thus their easier allergization. Allergic phenotype pointing to the bias to T(H)2 response and to possibly impaired intestine maturation was apparent already on the level of cord blood and could serve as a predictive sign of increased allergy risk.

  7. Gender-associated differential expression of cytokines in specific areas of the brain during helminth infection.

    PubMed

    López-Griego, Lorena; Nava-Castro, Karen Elizabeth; López-Salazar, Valeria; Hernández-Cervantes, Rosalía; Tiempos Guzmán, Nelly; Muñiz-Hernández, Saé; Hernández-Bello, Romel; Besedovsky, Hugo O; Pavón, Lenin; Becerril Villanueva, Luis Enrique; Morales-Montor, Jorge

    2015-02-01

    Intraperitoneal infection with Taenia crassiceps cysticerci in mice alters several behaviors, including sexual, aggressive, and cognitive function. Cytokines and their receptors are produced in the central nervous system (CNS) by specific neural cell lineages under physiological and pathological conditions, regulating such processes as neurotransmission. This study is aimed to determine the expression patterns of cytokines in various areas of the brain in normal and T. crassiceps-infected mice in both genders and correlate them with the pathology of the CNS and parasite counts. IL-4, IFN-γ, and TNF-α levels in the hippocampus and olfactory bulb increased significantly in infected male mice, but IL-6 was downregulated in these regions in female mice. IL-1β expression in the hippocampus was unaffected by infection in either gender. Our novel findings demonstrate a clear gender-associated pattern of cytokine expression in specific areas of the brain in mammals that parasitic infection can alter. Thus, we hypothesize that intraperitoneal infection is sensed by the CNS of the host, wherein cytokines are important messengers in the host-parasite neuroimmunoendocrine network.

  8. Gender-Associated Differential Expression of Cytokines in Specific Areas of the Brain During Helminth Infection

    PubMed Central

    López-Griego, Lorena; Nava-Castro, Karen Elizabeth; López-Salazar, Valeria; Hernández-Cervantes, Rosalía; Tiempos Guzmán, Nelly; Muñiz-Hernández, Saé; Hernández-Bello, Romel; Besedovsky, Hugo O.; Pavón, Lenin; Becerril Villanueva, Luis Enrique

    2015-01-01

    Intraperitoneal infection with Taenia crassiceps cysticerci in mice alters several behaviors, including sexual, aggressive, and cognitive function. Cytokines and their receptors are produced in the central nervous system (CNS) by specific neural cell lineages under physiological and pathological conditions, regulating such processes as neurotransmission. This study is aimed to determine the expression patterns of cytokines in various areas of the brain in normal and T. crassiceps-infected mice in both genders and correlate them with the pathology of the CNS and parasite counts. IL-4, IFN-γ, and TNF-α levels in the hippocampus and olfactory bulb increased significantly in infected male mice, but IL-6 was downregulated in these regions in female mice. IL-1β expression in the hippocampus was unaffected by infection in either gender. Our novel findings demonstrate a clear gender-associated pattern of cytokine expression in specific areas of the brain in mammals that parasitic infection can alter. Thus, we hypothesize that intraperitoneal infection is sensed by the CNS of the host, wherein cytokines are important messengers in the host–parasite neuroimmunoendocrine network. PMID:25495255

  9. Moraxella catarrhalis induces mast cell activation and nuclear factor kappa B-dependent cytokine synthesis.

    PubMed

    Krishnaswamy, G; Martin, R; Walker, E; Li, C; Hossler, F; Hall, K; Chi, D S

    2003-01-01

    Human mast cells are often found perivascularly and at mucosal sites and may play crucial roles in the inflammatory response. Recent studies have suggested a prominent role for mast cells in host defense. In this study, we analyzed the effects of a common airway pathogen, Moraxella catarrhalis and a commensal bacterium, Neiserria cinerea, on activation of human mast cells. Human mast cell leukemia cells (HMC-1) were activated with either phorbol myristate acetate (PMA) and calcium ionophore or with varying concentrations of heat-killed suspensions of bacteria. Supernatants were assayed for the cytokines interleukin-4 (IL-4), granulocyte macrophage colony stimulating factor (GM-CSF), IL-6, IL-8, IL-13 and monocyte chemotactic protein-1 (MCP-1). Nuclear proteins were isolated and assayed by electrophoretic mobility shift assay (EMSA) for nuclear factor kappaB (NF-kappaB) nuclear binding activity. In some experiments, NF-kappaB inhibitor, Bay-11 was added to determine functional significance. Both M. catarrhalis and N. cinerea induced mast cell activation and selective secretion of two key inflammatory cytokines, IL-6 and MCP-1. This was accompanied by NF-kappaB activation. Neither spun bacterial supernatants nor bacterial lipopolysaccharide induced cytokine secretion, suggesting need for direct bacterial contact with mast cells. Scanning electron microscopy revealed active aggregation of bacteria over mast cell surfaces. The NF-kappaB inhibitor, Bay-11, inhibited expression of MCP-1. These findings suggest the possibility of direct interactions between human mast cells and common bacteria and provide evidence for a novel role for human mast cells in innate immunity.

  10. Activation of platelet-activating factor receptor in SZ95 sebocytes results in inflammatory cytokine and prostaglandin E2 production.

    PubMed

    Zhang, Qiwei; Seltmann, Holger; Zouboulis, Christos C; Travers, Jeffrey B

    2006-10-01

    Platelet-activating factor (PAF) is a group of phosphocholines with various biological effects mediated by the PAF receptor (PAF-R). Activation of the epidermal PAF-R induces the expression of inflammatory mediators, including cyclooxygenase-2 (COX-2) and prostaglandin E(2) (PGE(2)). The upregulation of COX-2 expression has been shown to be involved in sebocyte proliferation, sebaceous gland inflammation and carcinogenesis. The present study was designed to investigate whether PAF-R activation could induce the expression of COX-2 and production of PGE(2), as well as secretion of the inflammatory cytokine, interleukin-8 (IL-8), in the immortalized sebaceous gland cell line SZ95. Using calcium mobilization studies, we first confirmed that PAF can signal through PAF-R in SZ95 sebocytes. We then found that the production of IL-8 was induced following treatment with PAF-R agonist, however blocked by a specific PAF-R antagonist. Induction of COX-2 expression and increased PGE(2) production were observed in SZ95 sebocytes after PAF-R activation. Finally, it was demonstrated that the production of PGE(2), induced by PAF-R activation and mediated by COX-2 expression, was blocked following PAF-R antagonism in SZ95 sebocytes. These studies suggest that SZ95 sebocytes express functional PAF-Rs and PAF-Rs are involved in regulating the expression of inflammatory mediators, including COX-2, PGE(2) and IL-8.

  11. 10e12z CLA alters adipocyte differentiation and adipocyte cytokine expression and induces macrophage proliferation.

    PubMed

    Belda, Benjamin J; Thompson, Jerry T; Eser, Pinar O; Vanden Heuvel, John P

    2012-05-01

    The trans-10, cis-12 (10e12z) conjugated linoleic acid (CLA) isomer of CLA is responsible for loss of lipid storage or adipose tissue in vitro or in vivo. This isomer also induces inflammatory signaling in both mouse and human adipocytes in vitro. However, when these events occur and whether they are significant enough to affect other cell types are unclear. In these experiments, the 3T3-L1 cell line has been used to examine the interaction between inflammatory signaling and decreased differentiation or lipid storage induced by 10e12z CLA. In assays measuring both lipid accumulation and gene expression, differentiating 3T3-L1 cells exhibit concurrent induction of inflammatory signaling, as measured by cyclooxygenase-2 expression, and a decrease in adipocyte marker gene expression. Furthermore, in fully differentiated adipocytes, as identified in microarray assays and confirmed with real-time polymerase chain reaction, 10e12z CLA also significantly affected expression of both matrix metalloprotein-3 (MMP-3), collagen VI α 3 ColVI alpha 3 (VIα3) and the cytokine epiregulin, demonstrating that the effects of 10e12z broadly impact adipocyte function. In agreement with other experimental systems, 10e12z CLA inhibited RAW 264.7 cell proliferation; however, in response to adipocyte-conditioned media, 10e12z-CLA-treated adipocytes induced proliferation of this cell line, suggesting that the effect of 10e12z CLA is context dependent. These results are largely consistent with the known activation of the inflammatory mediator nuclear factor-κB in adipocytes in vitro and in vivo by 10e12z CLA treatment and demonstrate that adipose is an important target tissue of this isomer that impacts other cell types.

  12. Toll-like receptor and pro-inflammatory cytokine expression during prolonged hyperinsulinaemia in horses: implications for laminitis.

    PubMed

    de Laat, M A; Clement, C K; McGowan, C M; Sillence, M N; Pollitt, C C; Lacombe, V A

    2014-01-15

    Equine laminitis, a disease of the lamellar structure of the horse's hoof, can be incited by numerous factors that include inflammatory and metabolic aetiologies. However, the role of inflammation in hyperinsulinaemic laminitis has not been adequately defined. Toll-like receptor (TLR) activation results in up-regulation of inflammatory pathways and the release of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α), and may be a pathogenic factor in laminitis. The aim of this study was to determine whether TLR4 expression and subsequent pro-inflammatory cytokine production is increased in lamellae and skeletal muscle during equine hyperinsulinaemia. Standardbred horses were treated with either a prolonged, euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged, glucose infusion (p-GI), which induced marked and moderate hyperinsulinaemia, respectively. Age-matched control horses were treated simultaneously with a balanced electrolyte solution. Treated horses developed clinical (p-EHC) or subclinical (p-GI) laminitis, whereas controls did not. Skeletal muscle and lamellar protein extracts were analysed by Western blotting for TLR4, IL-6, TNF-α and suppressor of cytokine signalling 3 (SOCS3) expression. Lamellar protein expression of TLR4 and TNF-α, but not IL-6, was increased by the p-EHC, compared to control horses. A significant positive correlation was found between lamellar TLR4 and SOCS3. Skeletal muscle protein expression of TLR4 signalling parameters did not differ between control and p-EHC-treated horses. Similarly, the p-GI did not result in up-regulation of lamellar protein expression of any parameter. The results suggest that insulin-sensitive tissues may not accurately reflect lamellar pathology during hyperinsulinaemia. While TLR4 is present in the lamellae, its activation appears unlikely to contribute significantly to the developmental pathogenesis of hyperinsulinaemic laminitis. However

  13. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    PubMed

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  14. Urotensin II upregulates migration and cytokine gene expression in leukocytes of the African clawed frog, Xenopus laevis.

    PubMed

    Tomiyama, Shiori; Nakamachi, Tomoya; Uchiyama, Minoru; Matsuda, Kouhei; Konno, Norifumi

    2015-05-15

    Urotensin II (UII) exhibits diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response via the UII receptor (UTR) in mammals. However, in amphibians the function of the UII-UTR system remains unknown. In the present study, we investigated the potential immune function of UII using leukocytes isolated from the African clawed frog, Xenopus laevis. Stimulation of male frogs with lipopolysaccharide increased mRNA expression of UII and UTR in leukocytes, suggesting that inflammatory stimuli induce activation of the UII-UTR system. Migration assays showed that both UII and UII-related peptide enhanced migration of leukocytes in a dose-dependent manner, and that UII effect was inhibited by the UTR antagonist urantide. Inhibition of Rho kinase with Y-27632 abolished UII-induced migration, suggesting that it depends on the activation of RhoA/Rho kinase. Treatment of isolated leukocytes with UII increased the expression of several cytokine genes including tumor necrosis factor-α, interleukin-1β, and macrophage migration inhibitory factor, and the effects were abolished by urantide. These results suggest that in amphibian leukocytes the UII-UTR system is involved in the activation of leukocyte migration and cytokine gene expression in response to inflammatory stimuli.

  15. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    PubMed Central

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  16. Maraviroc reduces cytokine expression and secretion in human adipose cells without altering adipogenic differentiation.

    PubMed

    Díaz-Delfín, Julieta; Domingo, Pere; Giralt, Marta; Villarroya, Francesc

    2013-03-01

    Maraviroc (MVC) is a drug approved for use as part of HAART in treatment-experienced HIV-1 patients with CCR5-tropic virus. Despite the current concerns on the alterations in adipose tissue that frequently appear in HIV-infected patients under HAART, there is no information available on the effects of MVC on adipose tissue. Here we studied the effects of MVC during and after the differentiation of human adipocytes in culture, and compared the results with the effects of efavirenz (EFV). We measured the acquisition of adipocyte morphology; the gene expression levels of markers for mitochondrial toxicity, adipogenesis and inflammation; and the release of adipokines and cytokines to the medium. Additionally, we determined the effects of MVC on lipopolysaccharide (LPS)-induced pro-inflammatory cytokine expression in adipocytes. Unlike EFV-treated pre-adipocytes, MVC-treated pre-adipocytes showed no alterations in the capacity to differentiate into adipocytes and accumulated lipids normally. Consistent with this, there were no changes in the mRNA levels of PPARγ or SREBP-1c, two master regulators of adipogenesis. In addition, MVC caused a significant decrease in the gene expression and release of pro-inflammatory cytokines, whereas EFV had the opposite effect. Moreover, MVC lowered inflammation-related gene expression and inhibited the LPS-induced expression of pro-inflammatory genes in differentiated adipocytes. We conclude that MVC does not alter adipocyte differentiation but rather shows anti-inflammatory properties by inhibiting the expression and secretion of pro-inflammatory cytokines. Collectively, our results suggest that MVC may minimize adverse effects on adipose tissue development, metabolism, and inflammation, and thus could be a potentially beneficial component of antiretroviral therapy.

  17. Expression of Neuropeptides and Cytokines in a Rabbit Model of Diabetic Neuroischemic Wound-Healing

    PubMed Central

    Nabzdyk, Leena Pradhan; Kuchibhotla, Sarada; Guthrie, Patrick; Chun, Maggie; Auster, Michael E; Nabzdyk, Christoph; Deso, Steven; Andersen, Nicholas; LoGerfo, Frank W.; Veves, Aristidis

    2013-01-01

    Objective The present study is designed to understand the contribution of peripheral vascular disease and peripheral neuropathy to the wound-healing impairment associated with diabetes. Using a rabbit model of diabetic neuroischemic wound-healing we investigated rate of healing, leukocyte infiltration and expression of cytokines, Interleukin (IL)-8 and IL-6, and, neuropeptides, Substance P (SP) and Neuropeptide Y (NPY). Design of study Diabetes was induced in White New Zealand rabbits by administering alloxan while control rabbits received saline. Ten days later animals in both groups underwent surgery. One ear served as a sham and the other was made ischemic (ligation of central+rostral arteries), or neuroischemic (ischemia+ resection of central+rostral nerves). Four, 6mm punch biopsy wounds were created in both ears and wound-healing was followed for ten days using computerized planimetry. Results Non-diabetic sham and ischemic wounds healed significantly more rapidly than diabetic sham and ischemic wounds. Healing was slowest in neuroischemic wounds, irrespective of diabetic status. A high M1/M2 macrophage ratio and a high pro-inflammatory cytokine expression, both indicators of chronic-proinflammatory state, and low neuropeptide expression were seen in pre-injury diabetic skin. Post-injury, in diabetic wounds M1/M2 ratio remained high, the reactive increase in cytokine expression was low and neuropeptide expression was further decreased in neuroischemic wounds. Conclusion This rabbit model illustrates how a combination of a high M1/M2 ratio, a failure to mount post-injury cytokine response as well as a diminished neuropeptide expression contribute to wound-healing impairment in diabetes. The addition of neuropathy to ischemia leads to equivalently severe impaired wound-healing irrespective of diabetes status, suggesting that in the presence of ischemia, loss of neuropeptide function contributes to the impaired healing associated with diabetes. PMID:23755976

  18. Premalignant Oral Lesion Cells Elicit Increased Cytokine Production and Activation of T-cells

    PubMed Central

    JOHNSON, SARA D.; LEVINGSTON, CORINNE; YOUNG, M. RITA I.

    2016-01-01

    Background Head and neck squamous cell carcinomas (HNSCC) are known to evade the host immune response. How premalignant oral lesions modulate the immune response, however, has yet to be elucidated. Materials and Methods A mouse model of oral carcinogenesis was used to determine how mediators from premalignant oral lesion cells vs. HNSCC cells impact on immune cytokine production and activation. Results Media conditioned by premalignant lesion cells elicited an increased production of T cell-associated cytokines and proinflammatory mediators from cervical lymph node cells compared to media conditioned by HNSCC cells or media alone. In the presence of premalignant lesion cell-conditioned media, CD4+ T cell expression of the IL-2 receptor CD25 and CD8+ T cell expression of the activation marker CD69 was greater, compared to what was induced in HNSCC cell-conditioned media or media alone. Conclusion Premalignant lesion cells promote a proinflammatory environment and induce immune changes before HNSCC tumors are established. PMID:27354582

  19. The Relationship between the Antitumor Effect of the IL-12 Gene Therapy and the Expression of Th1 Cytokines in an HPV16-Positive Murine Tumor Model

    PubMed Central

    García Paz, Flor; Madrid Marina, Vicente; Morales Ortega, Ausencio; Santander González, Abimelec; Peralta Zaragoza, Oscar; Burguete García, Ana; Torres Poveda, Kirvis; Moreno, José; Alcocer González, Juan; Hernandez Marquez, Eva; Bermúdez Morales, Victor

    2014-01-01

    Objective. The goal of the present study was to investigate the effect of IL-12 expressed in plasmid on the Th1 cytokine profile in an experimental HPV16-positive murine tumor model and the association with the IL-12's antitumor effect. Methods. Mice were injected with BMK-16/myc cells to establish HPV16-positive tumor and then pNGVL3-mIL-12 plasmid; pcDNA3 plasmid or PBS was injected directly into tumor site. The antitumor effect of the treatment was evaluated and the cytokines expression profile in each tumor tissue was analyzed. Results. Treatment with pNGVL3-mIL-12 plasmid had a significant antitumor effect, and a Th2-Th3-type cytokines prolife was detected in the murine tumor model with expression of the cytokines IL-10, IL-4, and TGF-β1. However, after the tumor was treated with three intratumoral injections of plasmid containing IL-12 cDNA, it showed a cytokine profile associated with Th1 with expression of IL-2, IL-12, and IFN-γ cytokines and reduced expression of IL-10, IL-4, and TGF-β1. Conclusions. The treatment with the IL-12 gene in the experimental HPV16-positive tumor model promoted the activation of the cellular immune response via expression of a Th1-type cytokine profile and was associated with the inhibition of tumor growth. Thus, IL-12 treatment represents a novel approach for gene therapy against cervical cancer. PMID:24808638

  20. CpG Oligodeoxynucleotides Induce Differential Cytokine and Chemokine Gene Expression Profiles in Dapulian and Landrace Pigs.

    PubMed

    Hu, Jiaqing; Yang, Dandan; Wang, Hui; Li, Chuanhao; Zeng, Yongqing; Chen, Wei

    2016-01-01

    Oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODN) mimic the immunostimulatory activity of microbial DNA by interacting with Toll-like receptor 9 (TLR9) to activate both the innate and adaptive immune responses in different species. However, few studies have been published to compare the effects of CpG ODN on different pig breeds. Therefore, in this study, whole blood gene expression profiles of DPL and Landrace pigs treated with CpG ODN were studied using RNA-seq technology. Five Hundred differentially expressed genes (DEGs) were identified between the two breeds. DPL pigs had significantly higher number of immune-relevant DEGs than the Landrace pigs after CpG ODN treatment. Pathway analysis showed that cytokine-cytokine receptor interaction and chemokine signaling pathway were the major enriched pathways of the immune-relevant DEGs. Further in vitro experiments showed that PBMCs of the DPL pigs had significantly higher levels of TLR9 mRNA than those of the Landrace pigs, both before and after CpG ODN stimulation. Cytokine and chemokine induction in the PBMCs of both breeds were also measured after CpG ODN stimulation. Our data showed that mRNA levels of cytokines (IFNα, IL8, IL12 p40) and chemokines (CXCL9, CXCL13) were significantly higher in the PBMCs of the DPL pigs than those of the Landrace pigs. Taken together, our data provide new information regarding the pig breed difference in response to CpG ODN stimulation and that higher levels of TLR9 mRNA in DPL pigs may be a major contributor for disease resistance.

  1. CpG Oligodeoxynucleotides Induce Differential Cytokine and Chemokine Gene Expression Profiles in Dapulian and Landrace Pigs

    PubMed Central

    Hu, Jiaqing; Yang, Dandan; Wang, Hui; Li, Chuanhao; Zeng, Yongqing; Chen, Wei

    2016-01-01

    Oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODN) mimic the immunostimulatory activity of microbial DNA by interacting with Toll-like receptor 9 (TLR9) to activate both the innate and adaptive immune responses in different species. However, few studies have been published to compare the effects of CpG ODN on different pig breeds. Therefore, in this study, whole blood gene expression profiles of DPL and Landrace pigs treated with CpG ODN were studied using RNA-seq technology. Five Hundred differentially expressed genes (DEGs) were identified between the two breeds. DPL pigs had significantly higher number of immune-relevant DEGs than the Landrace pigs after CpG ODN treatment. Pathway analysis showed that cytokine-cytokine receptor interaction and chemokine signaling pathway were the major enriched pathways of the immune-relevant DEGs. Further in vitro experiments showed that PBMCs of the DPL pigs had significantly higher levels of TLR9 mRNA than those of the Landrace pigs, both before and after CpG ODN stimulation. Cytokine and chemokine induction in the PBMCs of both breeds were also measured after CpG ODN stimulation. Our data showed that mRNA levels of cytokines (IFNα, IL8, IL12 p40) and chemokines (CXCL9, CXCL13) were significantly higher in the PBMCs of the DPL pigs than those of the Landrace pigs. Taken together, our data provide new information regarding the pig breed difference in response to CpG ODN stimulation and that higher levels of TLR9 mRNA in DPL pigs may be a major contributor for disease resistance. PMID:28018321

  2. Regulation of smooth muscle cell scavenger receptor expression in vivo by atherogenic diets and in vitro by cytokines.

    PubMed Central

    Li, H; Freeman, M W; Libby, P

    1995-01-01

    Scavenger receptor (ScR)-mediated uptake of modified lipoproteins may contribute to the transformation of smooth muscle cells into lipid-laden foam cells during atherogenesis. This study examined the in vivo expression of ScRs in aortas, with or without balloon injury, taken from hypercholesterolemic or normocholesterolemic rabbits. Numerous intimal cells in the rabbit aortic lesions expressed ScRs as detected by immunocytochemical staining with a goat anti-rabbit ScR antibody. Single immunostaining for cell identification markers in serial sections, as well as double staining, confirmed the expression of ScRs by both intimal smooth muscle cells and macrophages. To explore potential inducers of ScR expression by smooth muscle cells in vivo, we studied the regulation of ScR expression in vitro by cytokines known to be present in atherosclerotic lesions. Tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma (IFN-gamma) increased ScR mRNA levels, protein expression, and AcLDL degradative activity in cultured rabbit aortic smooth muscle cells. The induction of ScR expression in intimal smooth muscle cells in vivo could be a useful marker of smooth muscle cell activation during atherogenesis and may contribute to foam cell formation by this cell type following balloon injury and/or hypercholesterolemia. Cytokines, such as TNF-alpha or IFN-gamma, may stimulate some of the phenotypic changes that characterize the alteration in gene expression of intimal smooth muscle cells in rabbit atherosclerotic lesions. Images PMID:7814605

  3. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    PubMed

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses.

  4. Common γ-chain cytokine signaling is required for macroautophagy induction during CD4+ T-cell activation

    PubMed Central

    Botbol, Yair; Patel, Bindi; Macian, Fernando

    2015-01-01

    Macroautophagy is a cellular process that mediates degradation in the lysosome of cytoplasmic components including proteins and organelles. Previous studies have shown that macroautophagy is induced in activated T cells to regulate organelle homeostasis and the cell's energy metabolism. However, the signaling pathways that initiate and regulate activation-induced macroautophagy in T cells have not been identified. Here, we show that activation-induced macroautophagy in T cells depends on signaling from common γ-chain cytokines. Consequently, inhibition of signaling through JAK3, induced downstream of cytokine receptors containing the common γ-chain, prevents full induction of macroautophagy in activated T cells. Moreover, we found that common γ-chain cytokines are not only required for macroautophagy upregulation during T cell activation but can themselves induce macroautophagy. Our data also show that macroautophagy induction in T cells is associated with an increase of LC3 expression that is mediated by a post-transcriptional mechanism. Overall, our findings unveiled a new role for common γ-chain cytokines as a molecular link between autophagy induction and T-cell activation. PMID:26391567

  5. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide.

    PubMed

    Cheng, Kai-Yuan; Liu, Yi; Han, Ying-Guang; Li, Jing-Kun; Jia, Jia-Lin; Chen, Bin; Yao, Zhi-Xiao; Nie, Lin; Cheng, Lei

    2017-04-01

    Follistain-like protein 1 (FSTL1), has been recently demonstrated to be involved in the embryo development of nervous system and glioblastoma. However, the role of FSTL1 in neuroinflammation remains unexplored. In this study, the expression of FSTL1 in astrocytes was verified and its role was studied in neuroinflammation induced by in vivo intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) or LPS treatment to astrocytes in vitro. FSTL1 was significantly induced after ICV LPS injection or LPS treatment. FSTL1 suppressed upregulation of pro-inflammatory cytokines in astrocytes after LPS treatment. Moreover, FSTL1 downregulated expression of pro-inflammatory cytokines through suppressing MAPK/p-ERK1/2 pathway in astrocytes. Our results suggest that FSTL1 may play an anti-inflammatory role in neuroinflammation mediated by astrocytes.

  6. Cell cycle progression following naive T cell activation is independent of Jak3/common gamma-chain cytokine signals.

    PubMed

    Shi, Min; Lin, Tsung H; Appell, Kenneth C; Berg, Leslie J

    2009-10-01

    T cell proliferation following activation is an essential aspect of the adaptive immune response. Multiple factors, such as TCR signaling, costimulation, and signals from cytokines, each contribute to determine the magnitude of T cell expansion. In this report, we examine in detail the role of Jak3/common gamma-chain-dependent cytokines in promoting cell cycle progression and proliferation of naive T cells. Using naive CD4+ T cells from Jak3-deficient mice and wild-type CD4+ T cells treated with a small molecule inhibitor of Jak3, we find that these cytokine signals are not required for proliferation; instead, they are important for the survival of activated T cells. In addition, we show that the percentage of cells entering the cell cycle and the percentage of cells in each round of cell division are comparable between Jak3-deficent and wild-type T cells. Furthermore, cell cycle progression and the regulated expression of key cell cycle proteins are independent of Jak3/common gamma-chain cytokine signals. These findings hold true over a wide range of TCR signal strengths. However, when CD28 costimulatory signals, but not TCR signals, are limiting, Jak3-dependent cytokine signals become necessary for the proliferation of naive T cells. Because CD28 signaling has been found to be dispensable for autoreactive T cell responses, these data suggest the potential for interfering with autoimmune T cell responses by inhibition of Jak3 signaling.

  7. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis.

    PubMed Central

    Melby, P C; Andrade-Narvaez, F J; Darnell, B J; Valencia-Pacheco, G; Tryon, V V; Palomo-Cetina, A

    1994-01-01

    The nature of the host cellular immune response largely determines the expression of disease following infection with the intracellular protozoans Leishmania spp. In experimental animals control and resolution of infection are mediated by gamma interferon and tumor necrosis factor alpha (TNF-alpha), whereas disease progression is associated with the production of interleukin 4 (IL-4), IL-5, IL-10, and transforming growth factor beta (TGF-beta). We have analyzed the profile of cytokine gene expression directly in the lesions of 13 patients with localized cutaneous leishmaniasis due to Leishmania mexicana. All but one patient had a single lesion, and the time of evolution ranged from 8 days to 18 months. Cytokine gene expression was quantitated by reverse transcriptase PCR and interpolation from a standard curve. Gamma interferon, TNF-alpha, IL-1 alpha, IL-6, IL-10, and TGF-beta gene expression was present in all samples. IL-3 and IL-4 gene expression was barely detectable in 1 and 3 of 13 samples, respectively. IL-2 and IL-5 mRNAs were not found. A significant increase in the expression of IL-1 alpha, TNF-alpha, IL-10, and TGF-beta was observed in late lesions (> or = 4 months) compared with that in early lesions (< or = 2 months). Because of their inhibitory effects on macrophage function, the expression of IL-10 and TGF-beta may play a role in the immunopathogenesis of chronic cutaneous leishmaniasis. PMID:8112853

  8. Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections.

    PubMed

    Hong, Yeong Ho; Lillehoj, Hyun S; Lee, Sung Hyen; Dalloul, Rami A; Lillehoj, Erik P

    2006-12-15

    The expression levels of mRNA encoding a panel of 28 chicken cytokines and chemokines were quantified in intestinal lymphocytes following Eimeria acervulina and Eimeria tenella primary and secondary infections. Compared with uninfected controls, transcripts of the pro-inflammatory cytokines IFN-alpha, IL-1beta, IL-6, and IL-17 were increased up to 2020-fold following primary infection. By contrast, following secondary infection by either microorganism, pro-inflammatory mRNAs levels were relatively unchanged (< or = 20-fold). Transcripts encoding the Th1 and Th1 regulatory cytokines IFN-gamma, IL-2, IL-10, IL-12, IL-15, IL-16, and IL-18 were uniformly increased 14-2471-fold after E. acervulina primary infection, but either unchanged (IL-15, IL-16, IL-18), increased (IFN-gamma, IL-10, IL-12), or decreased (IL-2) following E. tenella primary infection. Following secondary infections, Th1 cytokine mRNA levels were relatively unchanged, with the exception of IL-12 which was increased 1.5 x 10(5)-fold after E. acervulina and decreased 5.1 x 10(4)-fold after E. tenella infection. Transcripts for the Th2 or Th2 regulatory cytokines IL-3 and GM-CSF were increased up to 327-fold following primary or secondary infection with both parasites, while IL-4 and IL-13 mRNAs were decreased 25- to 2 x 10(5)-fold after primary or secondary infection. The dynamics of chicken chemokine expression revealed modest changes (<100-fold) following primary or secondary infection except for lymphotactin. When lymphocyte subpopulations were similarly analyzed, IFN-gamma, IL-2, IL-3, IL-15, and MIF were most highly increased in TCR2(+) cells following E. acervulina infection, while TCR1(+) cells only expressed high levels of IL-16 following E. tenella infection. In contrast, CD4(+) cells only expressed highest levels of IL-10 after E. acervulina infection, whereas these cells produced abundant transcripts for IFN-gamma, IL-3, IL-15, and MIF after E. tenella infection. We conclude that coccidiosis

  9. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    PubMed Central

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated human umbilical vein endothelial cells (HUVEC) using the PTK inhibitors genistein and herbimycin A, and the protein tyrosine phosphatase (PTP) inhibitor sodium orthovanadate. 2. Maximal E-selectin expression induced by incubation of HUVEC for 4 h with IL-1 alpha (100 u ml-1) and TNF alpha (100 u ml-1) was dose-dependently inhibited by genistein and herbimycin A. Although similar effects were seen on phorbol 12-myristate, 13-acetate (PMA)-induced expression, this was not due to inhibition of protein kinase C (PKC) activity as the selective inhibitors of PKC, bisindolylmaleimide (BIM), Ro31-7549 or Ro31-8220 did not affect IL-1 alpha- or TNF alpha-induced E-selectin expression at concentrations which maximally inhibited PMA-induced expression. 3. Genistein inhibited VCAM-1 expression induced by incubation of HUVEC for 24 h with TNF alpha or IL-1 alpha whereas it did not affect ICAM-1 expression induced by 24 h incubation with either of these cytokines. Herbimycin A inhibited both VCAM-1 and ICAM-1 expression induced by TNF alpha. 4. Basal expression of E-selectin, VCAM-1 and ICAM-1 was dose-dependently enhanced by sodium orthovanadate. In contrast, vanadate differentially affected TNF alpha-induced expression of these molecules with maximal E-selectin and ICAM-1 expression being slightly enhanced and VCAM-1 expression dose-dependently reduced. 5. We also studied the effects of PTK and PTP inhibitors on adhesion of the human pre-myeloid cell line U937 to TNF alpha-stimulated HUVEC

  10. Ubiquitination of the common cytokine receptor {gamma}{sub c} and regulation of expression by an ubiquitination/deubiquitination machinery

    SciTech Connect

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice . E-mail: adautry@pasteur.fr

    2005-08-26

    The common cytokine receptor {gamma}{sub c} is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of {gamma}{sub c} receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that {gamma}{sub c} is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that {gamma}{sub c} is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces {gamma}{sub c} down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on {gamma}{sub c} expression. We show that an increase in DUB-2 expression correlates with an increased {gamma}{sub c} half-life, resulting in the up-regulation of the receptor. Altogether, we show that {gamma}{sub c} is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2.

  11. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    NASA Astrophysics Data System (ADS)

    Pilmane, M.; Salms, G.; Salma, I.; Skagers, A.; Locs, J.; Loca, D.; Berzina-Cimdina, L.

    2011-06-01

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNFα), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  12. ACE expression in monocytes is induced by cytokines, phorbol ester and steroid

    SciTech Connect

    Lazarus, D.; Lanzillo, J.; Fanburg, B. )

    1991-03-15

    Angiotensin converting enzyme (ACE) levels are elevated in the serum and peripheral blood monocytes (PBM) of patients with granulomatous diseases. However, the role of ACE in (Mo) physiology and the regulation of the inflammatory response is not well understood. Since Mo can be stimulated to form giant cells using phorbol esters, glucocorticoids or certain inflammatory cytokines, the authors examined production of ACE protein by normal PBM, a Mo-like cell line, THP-1, and a macrophage-like cell line, U937 following stimulation with these agents. Using a sensitive ELISA assay, they found that in U937 cells, expression of ACE protein increased by 3.4 fold with dexamethasone, 3.7. fold with phorbol 12-myristate acetate (PMA), and 5.8 fold with the two agents combined. The cytokines IL-4 and GM-CSF substantially increased ACE expression, by 7.6 and 7.7 fold respectively, with maximal effect at 0.01 U/ml, while IFN-{gamma} and TNF-{alpha} had little effect. Similar results were found with PBM and THP-1 cells. The combination of dexamethasone and PMA also induced homotypic cluster formation in PBM, suggesting a correlation between cell adhesion and ACE production. The authors conclude that ACE expression in monocytes and macrophages is stimulated by low concentration of glucocorticoids and certain inflammatory cytokines. ACE may participate in the initiation and propagation of granulomatous inflammatory processes.

  13. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-11-01

    Malassezia cells stimulate cytokine production by keratinocytes, although this ability differs among Malassezia species for unknown reasons. The aim of this study was to clarify the factors determining the ability to induce cytokine production by human keratinocytes in response to Malassezia species. M. furfur NBRC 0656, M. sympodialis CBS 7222, M. dermatis JCM 11348, M. globosa CBS 7966, M. restricta CBS 7877, and three strains each of M. globosa, M. restricta, M. dermatis, M. sympodialis, and M. furfur maintained under various culture conditions were used. Normal human epidermal keratinocytes (NHEKs) (1 × 10(5) cells) and the Malassezia species (1 × 10(6) cells) were co-cultured, and IL-1α, IL-6, and IL-8 mRNA levels were determined. Moreover, the hydrophobicity and β-1,3-glucan expression at the surface of Malassezia cells were analyzed. The ability of Malassezia cells to trigger the mRNA expression of proinflammatory cytokines in NHEKs differed with the species and conditions and was dependent upon the hydrophobicity of Malassezia cells not β-1,3-glucan expression.

  14. Platycodin D inhibits interleukin-13-induced the expression of inflammatory cytokines and mucus in nasal epithelial cells.

    PubMed

    Wang, Botao; Gao, Ying; Zheng, Guoxi; Ren, Xiaoyong; Sun, Bin; Zhu, Kang; Luo, Huanan; Wang, Zhenghui; Xu, Min

    2016-12-01

    Allergic rhinitis (AR) is a common chronic inflammatory condition of the nasal mucosal tissue. Platycodin D (PLD), a triterpenoid saponin isolated from the root of Platycodon grandiflorum, has anti-inflammatory effects in a mouse model of allergic asthma. However, the anti-inflammatory effects of PLD in the nasal mucosa have not been deeply investigated. The objective was to investigate the effect of PLD on inflammatory cytokines and mucus production from nasal epithelial cells. Our study showed that PLD inhibited the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and eotaxin in interleukin (IL)-13-stimulated RPMI2650 cells. PLD also suppressed IL-13-induced mucin 5AC (MUC5AC) expression in RPMI2650 cells. Moreover, PLD treatment prevented IL-13-induced p-NF-κB p65 expression in RPMI2650 cells, as well as MAPK signaling pathway activation. Taken together, our results provided evidence that PLD inhibits IL-13-induced the expression of inflammatory cytokines and mucus in nasal epithelial cells by inhibiting the activation of NF-κB and MAPK signaling pathways.

  15. Expression of PD-1/LAG-3 and cytokine production by CD4(+) T cells during infection with Plasmodium parasites.

    PubMed

    Doe, Henrietta T; Kimura, Daisuke; Miyakoda, Mana; Kimura, Kazumi; Akbari, Masoud; Yui, Katsuyuki

    2016-02-01

    CD4(+) T cells play critical roles in protection against the blood stage of malarial infection; however, their uncontrolled activation can be harmful to the host. In this study, in which rodent models of Plasmodium parasites were used, the expression of inhibitory receptors on activated CD4(+) T cells and their cytokine production was compared with their expression in a bacterial and another protozoan infection. CD4(+) T cells from mice infected with P. yoelii 17XL, P yoelii 17XNL, P. chabaudi, P. vinckei and P. berghei expressed the inhibitory receptors, PD-1 and LAG-3, as early as 6 days after infection, whereas those from either Listeria monocytogenes- or Leishmania major-infected mice did not. In response to T-cell receptor stimulation, CD4(+) T cells from mice infected with all the pathogens under study produced high concentrations of IFN-γ. IL-2 production was reduced in mice infected with Plasmodium species, but not in those infected with Listeria or Leishmania. In vitro blockade of the interaction between PD-1 and its ligands resulted in increased IFN-γ production in response to Plasmodium antigens, implying that PD-1 expressed on activated CD4(+) T cells actively inhibits T cell immune responses. Studies using Myd88(-/-), Trif(-/-) and Irf3(-/-) mice showed that induction of these CD4(+) T cells and their ability to produce cytokines is largely independent of TLR signaling. These studies suggest that expression of the inhibitory receptors PD-1 and LAG-3 on CD4(+) T cells and their reduced IL-2 production are common characteristic features of Plasmodium infection.

  16. Rapid glia expression and release of proinflammatory cytokines in experimental Klebsiella pneumoniae meningoencephalitis.

    PubMed

    Wen, Li-Li; Chiu, Chien-Tsai; Huang, Ya-Ni; Chang, Che-Feng; Wang, Jia-Yi

    2007-05-01

    The host immune/inflammatory response following CNS infection by Klebsiella pneumoniae remains poorly understood. Using a rat model of K. pneumoniae meningoencephalitis, we investigated the temporal profiles of brain proinflammatory cytokines and their cellular sources. Leukocyte counts significantly increased in cerebrospinal fluid (CSF) at 2 h after K. pneumoniae inoculation into the rat brain but were still much lower than blood leukocyte counts. However, concentrations of tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6 in CSF were much higher than the simultaneously collected serum levels. The rapid increase in brain expression of these cytokines at the messenger RNA (mRNA) and protein levels occurred earlier than the onset of leukocytosis. Double immunofluorescence staining revealed the presence of TNF-alpha, IL-1beta, and IL-6 in astrocytes and microglia. Exposure of primary culture of glial cells to K. pneumoniae also resulted in time-dependent increases in the concentration of these cytokines in the culture media. Taken together, our results suggest that glial cells are an important early source of proinflammatory cytokines during K. pneumonia infection of CNS.

  17. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation.

    PubMed

    Lu, Xiaohui; Levine, Ross; Tong, Wei; Wernig, Gerlinde; Pikman, Yana; Zarnegar, Sara; Gilliland, D Gary; Lodish, Harvey

    2005-12-27

    A recurrent somatic activating mutation in the nonreceptor tyrosine kinase JAK2 (JAK2V617F) occurs in the majority of patients with the myeloproliferative disorders polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia, and, less commonly, chronic myelomonocytic leukemia. We do not understand the basis for the specificity of the JAK2V617F mutation in clonal disorders of the myeloid, but not lymphoid, lineage, nor has the basis for the pleiotropic phenotype of JAK2V617F-associated myeloproliferative disorders been delineated. However, the presence of the identical mutation in patients with related, but clinicopathologically distinct, myeloid disorders suggests that interactions between the JAK2V617F kinase and other signaling molecules may influence the phenotype of hematopoietic progenitors expressing JAK2V617F. Here, we show that coexpression of the JAK2V617F mutant kinase with a homodimeric Type I cytokine receptor, the erythropoietin receptor (EpoR), the thrombopoietin receptor, or the granulocyte colony-stimulating-factor receptor, is necessary for transformation of hematopoietic cells to growth-factor independence and for hormone-independent activation of JAK-STAT signaling. Furthermore, EpoR mutations that impair erythropoietin-mediated JAK2 or STAT5 activation also impair transformation mediated by the JAK2V617F kinase, indicating that JAK2V617F requires a cytokine receptor scaffold for its transforming and signaling activities. Our results reveal the molecular basis for the prevalence of JAK2V617F in diseases of myeloid lineage cells that express these Type I cytokine receptors but not in lymphoid lineage cells that do not.

  18. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6.

    PubMed

    Barrie, Mahmoud B; Stout, Heather W; Abougergi, Marwan S; Miller, Bonnie C; Thiele, Dwain L

    2004-05-15

    Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.

  19. Cytokine expression in peripheral blood mononuclear cells of dogs with mitral valve disease.

    PubMed

    Mavropoulou, A; Guazzetti, S; Borghetti, P; De Angelis, E; Quintavalla, C

    2016-05-01

    Inflammation plays an important role in the pathogenesis of congestive heart failure (CHF). In humans with CHF, increased production and high plasma concentrations of tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1, IL-8 and transforming growth factor-β (TGF-β) have been associated with disease progression and a negative prognosis. The aim of this study was to investigate whether differences in cytokine blood mRNA expression exist between clinically healthy dogs and dogs with myxomatous mitral valve disease (MMVD); to determine if the expression was related to the severity of MMVD, and to detect any correlations with echocardiographic parameters of cardiac remodelling. Twenty-three dogs with MMVD of varying severity and six clinically healthy dogs were included in the study. Whole blood samples were obtained for measurement of mRNA expression of IL-1α, IL-1β, IL-6, IL-8, TGF-β1, TNF-α by reverse transcriptase-PCR (RT-PCR). There were statistically significant differences between clinically healthy dogs and dogs with MMVD for IL-8 and TGF-β1 gene expression. IL-8 expression increased with increasing MMVD severity and TGF-β1 expression was higher in asymptomatic dogs with echocardiographic signs of cardiac remodelling (American College Veterinary Internal Medicine class B2) than in all other groups. These results could suggest the involvement of these cytokines at different stages of the disease.

  20. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics.

    PubMed

    Ancrile, Brooke B; O'Hayer, Kevin M; Counter, Christopher M

    2008-02-01

    The Ras family of small guanosine triphosphatases normally transmit signals from cell surface receptors to the interior of the cell. Stimulation of cell surface receptors leads to the activation of guanine exchange factors, which, in turn, convert Ras from an inactive GDP-bound state to an active GTP-bound state. However, in one third of human cancers, RAS is mutated and remains in the constitutively active GTP-bound state. In this oncogenic state, RAS activates a constellation of signaling that is known to promote tumorigenesis. One consequence of this oncogenic RAS signal in cancer cells is the upregulation of the cytokines interleukin (IL)-6, IL-8, and chemokine growth-regulated oncogene 1 (GRO-1). We review the evidence supporting a role for these cytokines in oncogenic RAS-driven solid tumors.

  1. Macrolactins from Marine-Derived Bacillus subtilis B5 Bacteria as Inhibitors of Inducible Nitric Oxide and Cytokines Expression

    PubMed Central

    Yan, Xia; Zhou, Yun-Xia; Tang, Xi-Xiang; Liu, Xiu-Xiu; Yi, Zhi-Wei; Fang, Mei-Juan; Wu, Zhen; Jiang, Fu-Quan; Qiu, Ying-Kun

    2016-01-01

    In order to find new natural products with anti-inflammatory activity, chemical investigation of a 3000-meter deep-sea sediment derived bacteria Bacillus subtilis B5 was carried out. A new macrolactin derivative was isolated and identified as 7,13-epoxyl-macrolactin A (1). Owing to the existence of the epoxy ring, 1 exhibited a significant inhibitory effect on the expression of inducible nitric oxide and cytokines, compared with previously isolated known macrolactins (2–5). Real-time Polymerase Chain Reaction (PCR) analysis showed that the new compound significantly inhibited the mRNA expressions of inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Reverse transcription-PCR analysis demonstrated that the new compound reduced the mRNA expression level of IL-1β in a concentration-dependent manner. PMID:27792158

  2. Expression and Functional Role of α7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells.

    PubMed

    Zanetti, Samanta R; Ziblat, Andrea; Torres, Nicolás I; Zwirner, Norberto W; Bouzat, Cecilia

    2016-08-05

    The homomeric α7 nicotinic receptor (nAChR) is one of the most abundant nAChRs in the central nervous system where it contributes to cognition, attention, and working memory. α7 nAChR is also present in lymphocytes, dendritic cells (DCs), and macrophages and it is emerging as an important drug target for intervention in inflammation and sepsis. Natural killer (NK) cells display cytotoxic activity against susceptible target cells and modulate innate and adaptive immune responses through their interaction with DCs. We here show that human NK cells also express α7 nAChR. α7 nAChR mRNA is detected by RT-PCR and cell surface expression of α7 nAChR is detected by confocal microscopy and flow cytometry using α-bungarotoxin, a specific antagonist. Both mRNA and protein levels increase during NK stimulation with cytokines (IL-12, IL-18, and IL-15). Exposure of cytokine-stimulated NK cells to PNU-282987, a specific α7 nAChR agonist, increases intracellular calcium concentration ([Ca(2+)]i) mainly released from intracellular stores, indicating that α7 nAChR is functional. Moreover, its activation by PNU-282987 plus a specific positive allosteric modulator greatly enhances the Ca(2+) responses in NK cells. Stimulation of NK cells with cytokines and PNU-282987 decreases NF-κB levels and nuclear mobilization, down-regulates NKG2D receptors, and decreases NKG2D-dependent cell-mediated cytotoxicity and IFN-γ production. Also, such NK cells are less efficient to trigger DC maturation. Thus, our results demonstrate the anti-inflammatory role of α7 nAChR in NK cells and suggest that modulation of its activity in these cells may constitute a novel target for regulation of the immune response.

  3. Temporal cytokine expression and the target organ attributes unravel novel aspects of autoimmune arthritis

    PubMed Central

    Astry, Brian; Venkatesha, Shivaprasad H.; Moudgil, Kamal D.

    2013-01-01

    Susceptibility to autoimmunity is determined by multiple factors. Defining the contribution of the quantitative versus qualitative aspects of antigen-directed immune responses as well as the factors influencing target organ susceptibility is vital to advancing the understanding of the pathogenesis of autoimmunity. In a series of studies, we have addressed these issues using the adjuvant-induced arthritis (AA) model of human rheumatoid arthritis (RA). Lewis rats are susceptible to AA following immunization with heat-killed Mycobacterium tuberculosis H37Ra, whereas Wistar-Kyoto (WKY) rats of the same MHC (major histocompatibility complex) haplotype are resistant. Comparative studies on these and other susceptible/resistant rodent strains have offered interesting insights into differential cytokine responses in the face of comparable T cell proliferative response to the disease relevant antigens. Study of the cytokine kinetics have also permitted validation of the disease-protective versus disease-aggravating effects of specific cytokines by treatment of rats/mice with those cytokines at different phases of the disease. In regard to the target organ attributes, the migration of arthritogenic leukocytes into the joints; the expression of mediators of inflammation, angiogenesis, and tissue damage; the role of vascular permeability; and the characteristics of vascular endothelial cells have been examined. Further, various inhibitors of angiogenesis are effective in suppressing arthritis. Taken together, the differential cytokine responses and unique attributes of the target organ have revealed novel aspects of disease susceptibility and joint damage in AA. The translation of this basic research in animal models to RA patients would not only advance our understanding of the disease process, but also offer novel avenues for immunomodulation of this disease. PMID:24434324

  4. Cytokine expression provides clues to the pathophysiology of Gulf War illness and myalgic encephalomyelitis.

    PubMed

    Khaiboullina, Svetlana F; DeMeirleir, Kenny L; Rawat, Shanti; Berk, Grady S; Gaynor-Berk, Rory S; Mijatovic, Tatjana; Blatt, Natalia; Rizvanov, Albert A; Young, Sheila G; Lombardi, Vincent C

    2015-03-01

    Gulf War illness (GWI) is a chronic disease of unknown etiology characterized by persistent symptoms such as cognitive impairment, unexplained fatigue, pervasive pain, headaches, and gastrointestinal abnormalities. Current reports suggest that as many as 200,000 veterans who served in the 1990-1991 Persian Gulf War were afflicted. Several potential triggers of GWI have been proposed including chemical exposure, toxins, vaccines, and unknown infectious agents. However, a definitive cause of GWI has not been identified and a specific biological marker that can consistently delineate the disease has not been defined. Myalgic encephalomyelitis (ME) is a disease with similar and overlapping symptomology, and subjects diagnosed with GWI typically fit the diagnostic criteria for ME. For these reasons, GWI is often considered a subgroup of ME. To explore this possibility and identify immune parameters that may help to understand GWI pathophysiology, we measured 77 serum cytokines in subjects with GWI and compared these data to that of subjects with ME as well as healthy controls. Our analysis identified a group of cytokines that identified ME and GWI cases with sensitivities of 92.5% and 64.9%, respectively. The five most significant cytokines in decreasing order of importance were IL-7, IL-4, TNF-α, IL-13, and IL-17F. When delineating GWI and ME cases from healthy controls, the observed specificity was only 33.3%, suggesting that with respect to cytokine expression, GWI cases resemble control subjects to a greater extent than ME cases across a number of parameters. These results imply that serum cytokines are representative of ME pathology to a greater extent than GWI and further suggest that the two diseases have distinct immune profiles despite their overlapping symptomology.

  5. Correlating the kinetics of cytokine-induced E-selectin adhesion and expression on endothelial cells.

    PubMed Central

    Levin, J D; Ting-Beall, H P; Hochmuth, R M

    2001-01-01

    Many human diseases are mediated through the immune system. In chronic inflammatory disorders, the processes ordinarily involved in tissue healing become destructive. Endothelial cells normally recruit leukocytes to inflamed tissue using cytokine-induced adhesion receptors on the surfaces of interacting cells. Leukocyte capture depends on specialized characteristics of these receptors, particularly the binding kinetics. This study is designed to clarify the relationship between cytokine-induced changes in cell properties and binding kinetics. Here, we measure the kinetics of expression and monoclonal antibody binding for E-selectin in interleukin-1alpha-stimulated microvascular endothelium in vitro and incorporate the data into kinetic models. Quantitative flow cytometry is used to determine molecular density (expression), and micropipette assays are used to find the probability of adhesion (function). Within five hours of interleukin-1alpha stimulation, E-selectin density increases from 0 to 742 sites/microm(2), and antibody-E-selectin adhesion probability increases from a baseline of 6.3% to 64%. A kinetic model is applied to find an apparent association rate constant, k(f), of 3.7 x 10(-14) cm(2)/sec for antibody-E-selectin binding. Although the model successfully predicts experimental results, the rate constant is undervalued for a diffusion-limited process, suggesting that functional adhesion may be modified through cytokine-induced changes in microtopology and receptor localization. PMID:11159434

  6. Autoimmune Regulator Expression in DC2.4 Cells Regulates the NF-κB Signaling and Cytokine Expression of the Toll-Like Receptor 3 Pathway

    PubMed Central

    Sun, Jitong; Niu, Kunwei; Fu, Haiying; Li, Haijun; Li, Yi; Yang, Wei

    2016-01-01

    Autoimmune regulator (Aire) mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC). Indendritic cells (DCs), pattern recognition receptors (PRR), such as Toll-like receptors (TLRs), are closely involved in the recognition of various pathogens, activating the intercellular signaling pathway, followed by the activation of transcription factors and the expression of downstream genes, which take part in mediating the immune response and maintaining immune tolerance. In this study, we found that Aire up-regulated TLR3 expression and modulated the downstream cytokine expression and nuclear factor-κB (NF-κB) of the TLR3 signaling pathway. PMID:27916941

  7. Cytokine mRNA Expression in Lesions in Cats with Chronic Gingivostomatitis

    PubMed Central

    Harley, R.; Helps, C. R.; Harbour, D. A.; Gruffydd-Jones, T. J.; Day, M. J.

    1999-01-01

    Semiquantitative reverse transcription-PCR assays were developed to measure feline interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, and IL-12 (p35 & p40); gamma interferon (IFN-γ); and glyceraldehyde-3-phosphate dehydrogenase mRNA concentrations in biopsies of feline oral mucosa. Biopsies were collected from 30 cats with chronic gingivostomatitis (diseased) prior to each cat receiving one of four treatments. In 23 cases replicate biopsies were collected 3 months after treatment commenced. Biopsies were also analyzed from 11 cats without clinical disease (nondiseased). Expression of IL-2, IL-10, IL-12 (p35 and p40), and IFN-γ was detected in most nondiseased biopsies, while IL-6 was detected in a minority, and IL-4 and IL-5 were both undetectable. Compared to nondiseased cats, the diseased population showed a significant increase in the relative mRNA expression of IL-2, IL-4, IL-6, IL-10, IL-12 (p35 and p40), and IFN-γ. In contrast, IL-5 mRNA expression was unchanged and was only detected in one case. No significant relationship was demonstrable between the change in relative expression of specific cytokine mRNA and the change in clinical severity of the local mucosal lesions over the treatment period. The results demonstrate that the normal feline oral mucosa is biased towards a predominantly (Th) type 1 profile of cytokine expression and that during the development of lesions seen in feline chronic gingivostomatitis there is a shift in the cytokine profile from a type 1 to a mixed type 1 and type 2 response. PMID:10391845

  8. Cytokine mRNA expression in lesions in cats with chronic gingivostomatitis.

    PubMed

    Harley, R; Helps, C R; Harbour, D A; Gruffydd-Jones, T J; Day, M J

    1999-07-01

    Semiquantitative reverse transcription-PCR assays were developed to measure feline interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, and IL-12 (p35 & p40); gamma interferon (IFN-gamma); and glyceraldehyde-3-phosphate dehydrogenase mRNA concentrations in biopsies of feline oral mucosa. Biopsies were collected from 30 cats with chronic gingivostomatitis (diseased) prior to each cat receiving one of four treatments. In 23 cases replicate biopsies were collected 3 months after treatment commenced. Biopsies were also analyzed from 11 cats without clinical disease (nondiseased). Expression of IL-2, IL-10, IL-12 (p35 and p40), and IFN-gamma was detected in most nondiseased biopsies, while IL-6 was detected in a minority, and IL-4 and IL-5 were both undetectable. Compared to nondiseased cats, the diseased population showed a significant increase in the relative mRNA expression of IL-2, IL-4, IL-6, IL-10, IL-12 (p35 and p40), and IFN-gamma. In contrast, IL-5 mRNA expression was unchanged and was only detected in one case. No significant relationship was demonstrable between the change in relative expression of specific cytokine mRNA and the change in clinical severity of the local mucosal lesions over the treatment period. The results demonstrate that the normal feline oral mucosa is biased towards a predominantly (Th) type 1 profile of cytokine expression and that during the development of lesions seen in feline chronic gingivostomatitis there is a shift in the cytokine profile from a type 1 to a mixed type 1 and type 2 response.

  9. Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-kappa B/Rel transcription factors.

    PubMed Central

    Roulston, A; Lin, R; Beauparlant, P; Wainberg, M A; Hiscott, J

    1995-01-01

    CD4+ macrophages in tissues such as lung, skin, and lymph nodes, promyelocytic cells in bone marrow, and peripheral blood monocytes serve as important targets and reservoirs for human immunodeficiency virus type 1 (HIV-1) replication. HIV-1-infected myeloid cells are often diminished in their ability to participate in chemotaxis, phagocytosis, and intracellular killing. HIV-1 infection of myeloid cells can lead to the expression of surface receptors associated with cellular activation and/or differentiation that increase the responsiveness of these cells to cytokines secreted by neighboring cells as well as to bacteria or other pathogens. Enhancement of HIV-1 replication is related in part to increased DNA-binding activity of cellular transcription factors such as NF-kappa B. NF-kappa B binds to the HIV-1 enhancer region of the long terminal repeat and contributes to the inducibility of HIV-1 gene expression in response to multiple activating agents. Phosphorylation and degradation of the cytoplasmic inhibitor I kappa B alpha are crucial regulatory events in the activation of NF-kappa B DNA-binding activity. Both N- and C-terminal residues of I kappa B alpha are required for inducer-mediated degradation. Chronic HIV-1 infection of myeloid cells leads to constitutive NF-kappa B DNA-binding activity and provides an intranuclear environment capable of perpetuating HIV-1 replication. Increased intracellular stores of latent NF-kappa B may also result in rapid inducibility of NF-kappa B-dependent cytokine gene expression. In response to secondary pathogenic infections or antigenic challenge, cytokine gene expression is rapidly induced, enhanced, and sustained over prolonged periods in HIV-1-infected myeloid cells compared with uninfected cells. Elevated levels of several inflammatory cytokines have been detected in the sera of HIV-1-infected individuals. Secretion of myeloid cell-derived cytokines may both increase virus production and contribute to AIDS

  10. Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons

    NASA Astrophysics Data System (ADS)

    Jiménez, Viviana Cobos; Booiman, Thijs; de Taeye, Steven W.; van Dort, Karel A.; Rits, Maarten A. N.; Hamann, Jörg; Kootstra, Neeltje A.

    2012-10-01

    HIV-1 replication in macrophages can be regulated by cytokines and infection is restricted in macrophages activated by type I interferons and polarizing cytokines. Here, we observed that the expression levels of the cellular factors Trim5α, CypA, APOBEC3G, SAMHD-1, Trim22, tetherin and TREX-1, and the anti-HIV miRNAs miR-28, miR-150, miR-223 and miR-382 was upregulated by IFN-α and IFN-β in macrophages, which may account for the inhibiting effect on viral replication and the antiviral state of these cells. Expression of these factors was also increased by IFN-γ +/- TNF-α, albeit to a lesser extent; yet, HIV-1 replication in these cells was not restricted at the level of proviral synthesis, indicating that these cellular factors only partially contribute to the observed restriction. IL-4, IL-10 or IL-32 polarization did not affect the expression of cellular factors and miRNAs, suggesting only a limited role for these cellular factors in restricting HIV-1 replication in macrophages.

  11. Post-Transcriptional Control of Cytokine Gene Expression in Health and Disease

    PubMed Central

    2014-01-01

    Post-transcriptional control of cytokine gene expression is essential for rapid and transient response to stimuli and external stress. In health, post-transcriptional control is exerted by a number of trans-acting RNA-binding proteins and cis-acting sequence elements. These elements exist largely in the 3′ untranslated region and comprise microRNA targets and notably AU-rich elements, and exert regulated mRNA decay and translation repression. Defects in this control can lead to increased and sustained production of pro-inflammatory mediators contributing to several chronic inflammatory disease and cancer states. This introduction to the Journal's special issue on the topic summarizes, in a non-comprehensive list, the types of RNA-binding protein and their target cytokines, and potential contributions to disease, and presents the highlights of the individual reviews. PMID:24552151

  12. Endotoxin-induced cytokine and chemokine expression in the HIV-1 transgenic rat

    PubMed Central

    2012-01-01

    Background Repeated exposure to a low dose of a bacterial endotoxin such as lipopolysaccharide (LPS) causes immune cells to become refractory to a subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance (ET). During ET, there is an imbalance in pro- and anti-inflammatory cytokine and chemokine production, leading to a dysregulated immune response. HIV-1 viral proteins are known to have an adverse effect on the immune system. However, the effects of HIV-1 viral proteins during ET have not been investigated. Methods In this study, HIV-1 transgenic (HIV-1Tg) rats and control F344 rats (n = 12 ea) were randomly treated with 2 non-pyrogenic doses of LPS (LL) to induce ET, or saline (SS), followed by a high challenge dose of LPS (LL+L, SS+L) or saline (LL+S, SS+S). The gene expression of 84 cytokines, chemokines, and their receptors in the brain and spleen was examined by relative quantitative PCR using a PCR array, and protein levels in the brain, spleen, and serum of 7 of these 84 genes was determined using an electrochemiluminescent assay. Results In the spleen, there was an increase in key pro-inflammatory (IL1α, IL-1β, IFN-γ) and anti-inflammatory (IL-10) cytokines, and inflammatory chemokines (Ccl2, Ccl7, and Ccl9,) in response to LPS in the SS+L and LL+L (ET) groups of both the HIV-1Tg and F344 rats, but was greater in the HIV-1Tg rats than in the F344. In the ET HIV-1Tg and F344 (LL+L) rats in the spleen, the LPS-induced increase in pro-inflammatory cytokines was diminished and that of the anti-inflammatory cytokine was enhanced compared to the SS+L group rats. In the brain, IL-1β, as well as the Ccl2, Ccl3, and Ccl7 chemokines were increased to a greater extent in the HIV-1Tg rats compared to the F344; whereas Cxcl1, Cxcl10, and Cxcl11 were increased to a greater extent in the F344 rats compared to the HIV-1Tg rats in the LL+L and SS+L groups. Conclusion Our data indicate that the continuous presence of HIV-1 viral proteins can have tissue

  13. Large induction of the chemotactic cytokine RANTES during cutaneous wound repair: a regulatory role for nitric oxide in keratinocyte-derived RANTES expression.

    PubMed Central

    Frank, S; Kämpfer, H; Wetzler, C; Stallmeyer, B; Pfeilschifter, J

    2000-01-01

    We investigated the role of NO on expressional regulation of the chemotactic cytokine RANTES (regulated upon activation, normal T-cell expressed and secreted) during tissue regeneration using an excisional wound-healing model in mice. Wound repair was characterized by a large and sustained induction of RANTES expression, and inhibition of inducible nitric oxide synthase (iNOS) during repair only slightly decreased RANTES expression levels. Immunohistochemical analysis revealed keratinocytes of the wound margins and the hyperproliferative epithelium to be the main RANTES-expressing cell type within the wound. Therefore we analysed the regulation of RANTES expression in vitro in cultured human keratinocytes of the cell line HaCaT. Here we demonstrate that NO very efficiently suppressed interleukin-1beta- and tumour-necrosis-factor-alpha-induced RANTES expression in keratinocytes. Furthermore, down-regulation of cytokine-induced RANTES mRNA in keratinocytes was dependent on endogenously produced NO, as inhibition of the co-induced iNOS by L-N(G)-monomethyl-L-arginine increased cytokine-triggered RANTES expression in the cells. Moreover, we observed strongest RANTES-immunopositive labelling in epithelial areas which were characterized by a NO-mediated low cellularity. Thus our data implicate NO as a negative regulator of RANTES expression during wound repair in vivo, as decreased numbers of keratinocytes observed in the absence of wound-derived NO might compensate for the high levels of RANTES expression which are associated with normal repair. PMID:10727427

  14. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    SciTech Connect

    Meissonnier, Guylaine M.; Pinton, Philippe; Laffitte, Joelle; Cossalter, Anne-Marie; Gong, Yun Yun; Wild, Christopher P.; Bertin, Gerard; Galtier, Pierre; Oswald, Isabelle P.

    2008-09-01

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 {mu}g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-{alpha}, IL-1{beta}, IL-6, IFN-{gamma}) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-{gamma} and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1.

  15. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells.

    PubMed

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2003-06-20

    The presence of neuroantigen-primed T cells recognizing self-myelin antigens within the CNS is necessary for the development of demyelinating autoimmune disease like multiple sclerosis. This study was undertaken to investigate the role of myelin basic protein (MBP)-primed T cells in the expression of proinflammatory cytokines in microglial cells. MBP-primed T cells alone induced specifically the microglial expression of interleukin (IL)-1beta, IL-1alpha tumor necrosis factor alpha, and IL-6, proinflammatory cytokines that are primarily involved in the pathogenesis of MS. This induction was primarily dependent on the contact between MBP-primed T cells and microglia. The activation of microglial NF-kappaB and CCAAT/enhancer-binding protein beta (C/EBPbeta) by MBP-primed T cell contact and inhibition of contact-mediated microglial expression of proinflammatory cytokines by dominant-negative mutants of p65 and C/EBPbeta suggest that MBP-primed T cells induce microglial expression of cytokines through the activation of NF-kappaB and C/EBPbeta. In addition, we show that MBP-primed T cells express very late antigen-4 (VLA-4), and functional blocking antibodies to alpha4 chain of VLA-4 (CD49d) inhibited the ability of MBP-primed T cells to induce microglial proinflammatory cytokines. Interestingly, the blocking of VLA-4 impaired the ability of MBP-primed T cells to induce microglial activation of only C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role of VLA-4 in regulating neuroantigen-primed T cell-induced activation of microglia through C/EBPbeta

  16. Inflammatory cytokines promote growth of intestinal smooth muscle cells by induced expression of PDGF-Rβ.

    PubMed

    Nair, Dileep G; Miller, Kurtis G; Lourenssen, Sandra R; Blennerhassett, Michael G

    2014-03-01

    Thickening of the inflamed intestinal wall involves growth of smooth muscle cells (SMC), which contributes to stricture formation. Earlier, the growth factor platelet-derived growth factor (PDGF)-BB was identified as a key mitogen for SMC from the rat colon (CSMC), and CSMC growth in colitis was associated with both appearance of its receptor, PDGF-Rβ and modulation of phenotype. Here, we examined the role of inflammatory cytokines in inducing and modulating the growth response to PDGF-BB. CSMC were enzymatically isolated from Sprague-Dawley rats, and the effect of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, transforming growth factor (TGF), IL-17A and IL-2 on CSMC growth and responsiveness to PDGF-BB were assessed using proliferation assays, PCR and western blotting. Conditioned medium (CM) was obtained at 48 hrs of trinitrobenzene sulphonic acid-induced colitis. Neither CM alone nor cytokines caused proliferation of early-passage CSMC. However, CM from inflamed, but not control colon significantly promoted the effect of PDGF-BB. IL-1β, TNF-α and IL-17A, but not other cytokines, increased the effect of PDGF-BB because of up-regulation of mRNA and protein for PDGF-Rβ without change in receptor phosphorylation. PDGF-BB was identified in adult rat serum (RS) and RS-induced CSMC proliferation was inhibited by imatinib, suggesting that blood-derived PDGF-BB is a local mitogen in vivo. In freshly isolated CSMC, CM from the inflamed colon as well as IL-1β and TNF-α induced the early expression of PDGF-Rβ, while imatinib blocked subsequent RS-induced cell proliferation. Thus, pro-inflammatory cytokines both initiate and maintain a growth response in CSMC via PDGF-Rβ and serum-derived PDGF-BB, and control of PDGF-Rβ expression may be beneficial in chronic intestinal inflammation.

  17. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes.

    PubMed

    Ye, Jianping

    2015-06-01

    In obesity, chronic inflammation is believed to induce insulin resistance and impairs adipose tissue function. Although this view is supported by a large body of literature, it has been challenged by growing evidence that pro-inflammatory cytokines may favor insulin sensitivity through induction of energy expenditure. In this review article, interleukin 15 (IL-15) is used as a new example to explain the beneficial effects of the proinflammatory cytokines. IL-15 is secreted by multiple types of cells including macrophages, neutrophils and skeletal muscle cells. IL-15 expression is induced in immune cells by endotoxin and in muscle cells by physical exercise. Its transcription is induced by transcription factor NF-κB. IL-15 binds to its receptor that contains three different subunits (α, β and γ) to activate JAK/STAT, PI3K/Akt, IKK/NF-κB and JNK/AP1 pathways in cells. In the regulation of metabolism, IL-15 reduces weight gain without inhibiting food intake in rodents. IL-15 suppresses lipogenesis, stimulates brown fat function, improves insulin sensitivity through weight loss and energy expenditure. In human, circulating IL-15 is negatively associated with body weight. In the immune system, IL-15 stimulates proliferation and differentiation of T cells, NK cells, monocytes and neutrophils. In the anti-obesity effects of IL-15, T cells and NK cells are not required, but leptin receptor is required. In summary, evidence from human and rodents supports that the pro-inflammatory cytokine IL-15 may enhance energy expenditure to protect the body from obesity and type 2 diabetes. The mechanism of IL-15 action remains to be fully uncovered in the regulation of energy expenditure.

  18. Influence of the structure of poly (L-lactic acid) electrospun fibers on the bioactivity of endothelial cells: proliferation and inflammatory cytokines expression.

    PubMed

    Liu, Xiaoyan; Zhang, Xiazhi; Wu, Keke; Yang, Wufeng; Jiao, Yanpeng; Zhou, Changren

    2017-02-01

    Electrospinning has been used to fabricate random and aligned poly (L-lactic acid) (PLLA) fibers with three kinds of diameter under optimal conditions. The main purpose of this paper was to investigate the influence of the diameter and orientation of fibers on the bioactivity of endothelial cells, especially on the inflammatory cytokines expression. The morphology of electrospun fibers and the cells on the fibers after 3 and 6 days culture were observed by scanning electron microscopy. Also the cell proliferation activity and cell cycle were tested and the results showed that the random fibers were more favorable for endothelial cells growth. The effect of PLLA film (served as a control) and six kinds of PLLA fibers mats on the inflammatory cytokines expression after cells incubated for 2 and 4 days were investigated. It was concluded that there was more intense inflammatory cytokines expression by cells on flat PLLA film than that on electrospun fiber mats. Also the fiber diameter has greater effect on the activity and inflammatory cytokines expression of endothelial cells than the fiber orientation, in which fibers with smaller size has weaker inflammatory reaction.

  19. Effects of DHA Supplementation on Vascular Function, Telomerase Activity in PBMC, Expression of Inflammatory Cytokines, and PPARγ-LXRα-ABCA1 Pathway in Patients With Type 2 Diabetes Mellitus: Study Protocol for Randomized Controlled Clinical Trial.

    PubMed

    Toupchian, Omid; Sotoudeh, Gity; Mansoori, Anahita; Djalali, Mahmoud; Keshavarz, Seyyed Ali; Nasli-Esfahani, Ensieh; Alvandi, Ehsan; Koohdani, Fariba

    2016-07-01

    Docosahexaenoic acid (DHA), as an omega-3 fatty acid, in a natural ligand of peroxisome proliferator-activated receptors (PPARs). Regarding the combinative effects of Nutrigenomics and Nutrigenetics and due to the lack of in vivo studies conducted using natural ligands of PPARs, we aimed to evaluate the effects of DHA supplementation on vascular function, telomerase activity, and PPARγ-LXRα-ABCA1 pathway, in patients with type 2 diabetes mellitus (T2DM), based on the Pro12Ala polymorphism in PPARγ encoding gene. 72 T2DM patients (36 dominant and 36 recessive allele carriers), aged 30-70, with body mass index of 18.5 to 35 kg/m2, will be participated in this double blind randomized controlled trial. In each group, stratification will be performed based on sex and age and participants will be randomly assigned to receive 2.4 g/day DHA or placebo (paraffin) for 8 weeks. PPARγ genotyping will be carried out using PCR-RFLP method; Telomerase activity will be estimated by PCR-ELISA TRAP assay; mRNA expression levels of target genes will be assessed using real time PCR. Serum levels of ADMA, sCD163 and adiponectin, will be measured using ELISA commercial kits. The present study is designed in order to help T2DM patients to modify their health conditions based on their genetic backgrounds, and to recommend the proper food ingredients as the natural agonists for PPARs in order to prevent and treat metabolic abnormalities of the disease.

  20. Calcitriol May Down-Regulate mRNA Over-Expression of Toll-Like Receptor-2 and -4, LL-37 and Proinflammatory Cytokines in Cultured Human Keratinocytes

    PubMed Central

    Jeong, Mi Sook; Kim, Ji-Yun; Lee, He In

    2014-01-01

    Background Although vitamin D analogs have been used in the topical treatment of psoriasis, their mechanisms of action are not well understand. Calcitriol, the hormonally active vitamin D3 metabolite, has been demonstrated to exert immunomodulatory effects in the skin by down-regulating the expression of Toll-like receptors (TLRs) and proinflammatory cytokines. Objective We investigated the effects of calcitriol on the expression of TLR2, TLR4, antimicrobial peptide LL-37, and proinflammatory cytokines in cultured human keratinocytes. Methods The mRNA expression levels of TLR2, TLR4, tumor necrosis factor α (TNF-α), interleukin (IL)-1β and LL-37 in cultured human keratinocytes were measured by real-time polymerase chain reaction (PCR) and reverse transcription (RT). Furthermore, we measured supernatant TNF-α levels by an enzyme-linked immunosorbent assay (ELISA) to confirm the effects of calcitriol on TLR2 and TLR4. Results As measured by RT-PCR and real-time PCR, calcitriol was found to suppress the lipopolysaccharide- and ultraviolet B radiation-mediated induction of expression of TLRs, LL-37 and proinflammatory cytokines such as TNF-α and IL-1β in normal human keratinocytes. The supernatant TNF-α levels measured by ELISA were also suppressed after treatment with calcitriol. Conclusion Calcitriol may down-regulate inflammatory stated over-expression of LL-37 and proinflammatory cytokines. PMID:24966627

  1. Differential expression of cytokines, chemokines and chemokine receptors in patients with coronary artery disease.

    PubMed

    de Oliveira, Rômulo Tadeu Dias; Mamoni, Ronei Luciano; Souza, José Roberto Matos; Fernandes, Juliano Lara; Rios, Francisco José O; Gidlund, Magnus; Coelho, Otávio Rizzi; Blotta, Maria Heloisa Souza Lima

    2009-07-24

    Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions.

  2. Cytokine expression in the placenta of pregnant cattle after inoculation with Neospora caninum.

    PubMed

    Cantón, Germán J; Katzer, Frank; Maley, Stephen W; Bartley, Paul M; Benavides-Silván, Julio; Palarea-Albaladejo, Javier; Pang, Yvonne; Smith, Sionagh H; Rocchi, Mara; Buxton, David; Innes, Elisabeth A; Chianini, Francesca

    2014-09-15

    Neospora caninum is recognized as a major cause of reproductive losses worldwide but its pathogenesis is not completely understood. Immune mediated placental pathology has been reported as being responsible for compromising pregnancy probably due to the adverse effects of exacerbated Th1 type response at the maternal-foetal interface. Different clinical outcomes are known to occur following experimental infections of cattle at different stages of gestation, with foetal death being the most common finding during early gestation, and the birth of live congenitally infected calves following infection later in gestation. The aim of the current study was to characterize the cytokine expression in the placenta of cattle experimentally challenged with tachyzoites of the Nc-1 strain during early, mid and late gestation. Moderate to severe infiltration of IL-12, IFN-γ and TNF-α expressing cells was observed in the placentas collected at early gestation and this infiltration was more pronounced in the samples collected from challenged dams carrying non-viable foetuses, compared with the mothers carrying viable foetuses. In contrast, the infiltration of Th1 cytokine expressing-cells was mild following N. caninum infection in mid gestation and scarce during infection in late gestation. Scarce expression of IL-4 was observed in the placentas from N. caninum-challenged and negative control animals throughout gestation. The milder Th1 immune response observed during later stages of gestation following Nc-1 infection could partially explain the less severe clinical outcome when compared to early pregnancy.

  3. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols

    PubMed Central

    Roh, Y. H.; Kim, W.; Park, K. U.

    2016-01-01

    Objectives This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Methods Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay. Results The concentration of cytokine released from PRP varied over time and was influenced by various activation protocols. Ca-only activation had a significant effect on the DS PRPs (where the VEGF, FGF, and IL-1 concentrations were sustained) while Ca/thrombin activation had effects on both SS and DS PRPs (where the PDGF and VEGF concentrations were sustained and the TGF and FGF concentrations were short). The IL-1 content showed a significant increase with Ca-only or Ca/thrombin activation while these activations did not increase the MMP-9 concentration. Conclusion The SS and DS methods differed in their effect on cytokine release, and this effect varied among the cytokines analysed. In addition, low dose of thrombin/calcium activation increased the overall cytokine release of the PRP preparations over seven days, relative to that with a calcium-only supplement or non-activation. Cite this article: Professor J. H. Oh. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res 2016;5:37–45. DOI: 10.1302/2046-3758.52.2000540 PMID:26862077

  4. Signal transduction controls heterogeneous NF-κB dynamics and target gene expression through cytokine-specific refractory states

    PubMed Central

    Adamson, Antony; Boddington, Christopher; Downton, Polly; Rowe, William; Bagnall, James; Lam, Connie; Maya-Mendoza, Apolinar; Schmidt, Lorraine; Harper, Claire V.; Spiller, David G.; Rand, David A.; Jackson, Dean A.; White, Michael R. H.; Paszek, Pawel

    2016-01-01

    Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1β instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation. PMID:27381163

  5. Interleukin 3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines

    PubMed Central

    1989-01-01

    In response to IgE and specific multivalent antigen, mast cell lines (both growth factor-dependent and -independent) induce the transcription and/or secretion of a number of cytokines having a wide spectrum of activities. We have identified IL-1, IL-3, IL-5, IL-6, IFN- gamma, GM-CSF, JE, MIP1 alpha, MIP1 beta, and TCA3 RNA in at least two of four mast cell clones. The production of these products (except JE) is activation-associated and can be induced by IgE plus antigen. In selected instances cytokine expression can also be induced by activation with Con A or phorbol ester plus ionophore, albeit to levels less than those observed with IgE plus antigen. In addition, long-term mast cell clones and primary cultures of bone marrow-derived mast cells specifically release IL-1, IL-4, and/or IL-6 bioactivity after activation. These findings suggest that in addition to their inflammatory effector function mast cells may serve as a source of growth and regulatory factors. The relationship of mast cells to cells of the T lymphocyte lineage is discussed. PMID:2473161

  6. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure—relevance of inflammatory cytokines

    PubMed Central

    Matsuo, Yae; Gleitsmann, Konstanze; Mangner, Norman; Werner, Sarah; Fischer, Tina; Bowen, T Scott; Kricke, Angela; Matsumoto, Yasuharu; Kurabayashi, Masahiko; Schuler, Gerhard; Linke, Axel; Adams, Volker

    2015-01-01

    Background Chronic heart failure (CHF) is commonly associated with muscle atrophy and increased inflammation. Irisin, a myokine proteolytically processed by the fibronectin type III domain containing 5 (FNDC5) gene and suggested to be Peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α activated, modulates the browning of adipocytes and is related to muscle mass. Therefore, we investigated whether skeletal muscle FNDC5 expression in CHF was reduced and if this was mediated by inflammatory cytokines and/or angiotensin II (Ang-II). Methods Skeletal muscle FNDC5 mRNA/protein and PGC-1α mRNA expression (arbitrary units) were analysed in: (i) rats with ischemic cardiomyopathy; (ii) mice injected with tumour necrosis factor-α (TNF-α) (24 h); (iii) mice infused with Ang-II (4 weeks); and (iv) C2C12 myotubes exposed to recombinant cytokines or Ang-II. Circulating TNF-α, Ang-II, and irisin was measured by ELISA. Results Ischemic cardiomyopathy reduced significantly FNDC5 protein (1.3 ± 0.2 vs. 0.5 ± 0.1) and PGC-1α mRNA expression (8.2 ± 1.5 vs. 4.7 ± 0.7). In vivo TNF-α and Ang-II reduced FNDC5 protein expression by 28% and 45%, respectively. Incubation of myotubes with TNF-α, interleukin-1ß, or TNF-α/interleukin-1ß reduced FNDC5 protein expression by 47%, 37%, or 57%, respectively, whereas Ang-II had no effect. PGC-1α was linearly correlated to FNDC5 in all conditions. In CHF, animals circulating TNF-α and Ang-II were significantly increased, whereas irisin was significantly reduced. A negative correlation between circulating TNF-α and irisin was evident. Conclusion A reduced expression of skeletal muscle FNDC5 in ischemic cardiomyopathy is likely modulated by inflammatory cytokines and/or Ang-II via the down-regulation of PGC-1α. This may act as a protective mechanism either by slowing the browning of adipocytes and preserving energy homeostasis or by regulating muscle atrophy. PMID:26136413

  7. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines

    PubMed Central

    Yoon, Y-S; Kim, S-Y; Kim, M-J; Lim, J-H; Cho, M-S; Kang, J L

    2015-01-01

    Changes in macrophage phenotype have been implicated in apoptotic cell-mediated immune modulation via induction of peroxisome proliferator-activated receptor-γ (PPARγ). In this study, we characterized PPARγ induction by apoptotic cell instillation over the course of bleomycin-induced lung injury in C57BL/6 mice. Next, the role of PPARγ activation in resolving lung inflammation and fibrosis was investigated. Our data demonstrate that apoptotic cell instillation after bleomycin results in immediate and prolonged enhancement of PPARγ mRNA and protein in alveolar macrophages and lung. Moreover, PPARγ activity and expression of its target molecules, including CD36, macrophage mannose receptor, and arginase 1, were persistently enhanced following apoptotic cell instillation. Coadministration of the PPARγ antagonist, GW9662, reversed the enhanced efferocytosis, and the reduced proinflammatory cytokine expression, neutrophil recruitment, myeloperoxidase activity, hydroxyproline contents, and fibrosis markers, including type 1 collagen α2, fibronectin and α-smooth muscle actin (α-SMA), in the lung by apoptotic cell instillation. In addition, inhibition of PPARγ activity reversed the expression of transforming growth factor-β (TGF-β), interleukin (IL)-10, and hepatocyte growth factor (HGF). These findings indicate that one-time apoptotic cell instillation contributes to anti-inflammatory and antifibrotic responses via upregulation of PPARγ expression and subsequent activation, leading to regulation of efferocytosis and production of proresolving cytokines. PMID:25586556

  8. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling

    PubMed Central

    Dixon, Dan A.; Tolley, Neal D.; Bemis-Standoli, Kristi; Martinez, Mark L.; Weyrich, Andrew S.; Morrow, Jason D.; Prescott, Stephen M.; Zimmerman, Guy A.

    2006-01-01

    Tight regulation of COX-2 expression is a key feature controlling eicosanoid production in atherosclerosis and other inflammatory syndromes. Adhesive interactions between platelets and monocytes occur in these conditions and deliver specific signals that trigger inflammatory gene expression. Using a cellular model of monocyte signaling induced by activated human platelets, we identified the central posttranscriptional mechanisms that regulate timing and magnitude of COX-2 expression. Tethering of monocytes to platelets and to purified P-selectin, a key adhesion molecule displayed by activated platelets, induces NF-κB activation and COX-2 promoter activity. Nevertheless, COX-2 mRNA is rapidly degraded, leading to aborted protein synthesis. Time-dependent signaling of monocytes induces a second phase of transcript accumulation accompanied by COX-2 enzyme synthesis and eicosanoid production. Here, generation of IL-1β, a proinflammatory cytokine, promoted stabilization of COX-2 mRNA by silencing of the AU-rich mRNA decay element (ARE) in the 3′-untranslated region (3'UTR) of the mRNA. Consistent with observed mRNA stabilization, activated platelets or IL-1β treatment induced cytoplasmic accumulation and enhanced ARE binding of the mRNA stability factor HuR in monocytes. These findings demonstrate that activated platelets induce COX-2 synthesis in monocytes by combinatorial signaling to transcriptional and posttranscriptional checkpoints. These checkpoints may be altered in disease and therefore useful as targets for antiinflammatory intervention. PMID:16998585

  9. IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis.

    PubMed

    Wang, Claire Q F; Akalu, Yemsratch T; Suarez-Farinas, Mayte; Gonzalez, Juana; Mitsui, Hiroshi; Lowes, Michelle A; Orlow, Seth J; Manga, Prashiela; Krueger, James G

    2013-12-01

    Inflammation-associated pigmentation changes are extremely common, but the etiology underlying this clinical observation remains elusive. Particularly, it is unclear how the myriad of cytokines known to be involved in inflammatory skin processes affect epidermal melanocytes. We sought to determine how IL-17 and tumor necrosis factor (TNF) influence normal human melanocytes, as these two cytokines have been implicated in various skin diseases. IL-17 and TNF jointly stimulated broad inductions of cytokines, including melanoma mitogens CXCL1 and IL-8. Moreover, IL-17 and TNF synergistically inhibited pigmentation-related signaling and melanin production, and induced keratinocyte production of β-defensin 3, an antagonist for melanocortin 1 receptor. When analyzing psoriasis lesions that are known to overexpress IL-17 and TNF, we observed an increase in melanocyte number and a simultaneous decrease in pigmentation signaling. Furthermore, therapeutic neutralization of TNF and IL-17 with mAbs resulted in a rapid recovery of pigment gene expression in psoriasis lesions. These results demonstrate that IL-17 and TNF can affect both the growth and pigment production of melanocytes, which may contribute to the pigmentation changes associated with psoriasis. These findings may allow the development of novel therapeutics for pigmentary disorders and bring new insights into the immune milieu surrounding melanocytes and related neoplasms.

  10. Correlation of cytokines and inducible nitric oxide synthase expression with prognostic factors in ovarian cancer.

    PubMed

    Martins Filho, Agrimaldo; Jammal, Millena Prata; Côbo, Eliângela de Castro; Silveira, Thales Parenti; Adad, Sheila Jorge; Murta, Eddie Fernando Candido; Nomelini, Rosekeila Simões

    2014-01-01

    The study related the immunohistochemical staining of cytokines (IL2, IL5, IL6, IL8, IL10, and TNF-alpha), and iNOS staining with clinical and pathological parameters of patients with primary ovarian malignancy. We prospectively evaluated 40 patients who underwent surgical treatment in accordance with pre-established criteria and later confirmed diagnosis of ovarian cancer. Immunohistochemistry study for cytokines (IL2, IL5, IL6, IL8, IL10, TNF-alpha) and iNOS was performed. The evaluation of prognostic factors was performed using the Fisher's exact test. The significance level was less than 0.05. Histological grade 1 was significantly correlated with strong intensity for TNF-α (p=0.0028). In addition, early stages showed strong expression intensity of TNF-α, but this was at the limit of significance (p=0.0525). Strong staining immunohistochemical IL5 was related to disease-free survival less than or equal to 24 months, suggesting that a factor of poor prognosis, but there was no statistical significance (p=0.1771). There was no statistical significance in relation at other cytokines studied. Therefore, immunohistochemical staining in strong intensity for TNF-α was related to histological grade 1 and early stages of ovarian cancer in our sample of patients.

  11. [Immunosuppression in kidney donors with rapamycin and tacrolimus. Proinflammatory cytokine expression].

    PubMed

    Cicora, Federico; Roberti, Javier; Lausada, Natalia; González, Pedro; Guerrieri, Diego; Stringa, Pablo; Raimondi, Clemente

    2012-01-01

    The ischemia-reperfusion injury (IRI) remains a major problem in transplantation. The objective of this study was to evaluate the effects of preconditioning a donor group with rapamycin and another donor group with tacrolimus to prevent IRI. Twelve hours before nephrectomy, donor Wistar rats received immunosuppressive drugs. The sample was divided into four experimental groups: a sham group, an untreated control group, a group treated with rapamycin (2 mg/kg) and a group treated with tacrolimus (0.3 mg/kg). Left kidneys were removed and, after three hours of cold ischemia, grafts were transplanted. Twenty-four hours later, the transplanted organs were recovered for histological analysis and evaluation of cytokine expression. The pre-conditioning treatment with rapamycin or tacrolimus significantly reduced donor blood urea nitrogen and creatinine levels compared with control group (BUN: p < 0.001 vs. control and creatinine: p < 0.001 vs. control). Acute tubular necrosis was significantly lower in donors treated with immunosuppressant drugs compared with the control group (p < 0.001). Finally, inflammatory cytokines such as TNF-a, IL-6 and rIL-21 showed lower levels in the graft of pre-treated animals. This exploratory experimental study shows that preconditioning donors with rapamycin and tacrolimus in different groups improves clinical outcome and pathology in recipients and reduces in situ pro-inflammatory cytokines associated with Th17 differentiation, creating a favorable environment for the differentiation of regulatory T cells (Tregs).

  12. ICAM-1 expression on chondrocytes in rheumatoid arthritis: induction by synovial cytokines

    PubMed Central

    Sharma, H.; Pigott, R.

    1992-01-01

    The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1α, TNFα and IFNγ or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus. PMID:18475445

  13. Cordyceps militaris Enhances MHC-restricted Antigen Presentation via the Induced Expression of MHC Molecules and Production of Cytokines

    PubMed Central

    Shin, Seulmee; Park, Yoonhee; Kim, Seulah; Oh, Hee-Eun; Ko, Young-Wook; Han, Shinha; Lee, Seungjeong; Lee, Chong-Kil; Cho, Kyunghae

    2010-01-01

    Background Cordyceps militarys water extract (CME) has been reported to exert antitumor and immunomodulatory activities in vivo and in vitro. However, the therapeutic mechanism has not yet been elucidated. In this study, we examined the effects of CME on the antigen presenting function of antigen presenting cells (APCs). Methods Dendritic cells (DCs) were cultured in the presence of CME, and then allowed to phagocytose microspheres containing ovalbumin (OVA). After washing and fixing the efficacy of OVA, peptide presentation by DCs were evaluated using CD8 and CD4 T cells. Also, we confirmed the protein levels of proinflammatory cytokines through western blot analysis. Results CME enhanced both MHC class I and class II-restricted presentation of OVA in DCs. In addition, the expression of both MHC class I and II molecules was enhanced, but there was no changes in the phagocytic activity of exogenous OVA. Furthermore, CME induced the protein levels of iNOS, COX-2, proinflammatory cytokines, and nuclear p65 in a concentration-dependent manner, as determined by western blot. Conclusion These results provide an understanding of the mechanism of the immuno-enhancing activity of CME on the induction of MHC-restricted antigen presentation in relation to their actions on APCs. PMID:20844738

  14. B7 expression and antigen presentation by human brain endothelial cells: requirement for proinflammatory cytokines.

    PubMed

    Prat, A; Biernacki, K; Becher, B; Antel, J P

    2000-02-01

    Interaction between systemic immune cells with cells of the blood-brain barrier is a central step in development of CNS-directed immune responses. Endothelial cells are the first cells of the blood-brain barrier encountered by migrating lymphocytes. To investigate the antigen-presenting capacity of human adult brain endothelial cells (HBECs), we used HBECs derived from surgically resected temporal lobe tissue, cocultured with allogeneic peripheral blood derived CD4+ T lymphocytes. HBECs in response to IFN-gamma, but not under basal culture conditions, expressed HLA-DR, B7.1 and B7.2 antigens. Despite such up-regulation, these IFN-gamma-treated HBECs, in contrast to human microglia and PB monocytes, did not sustain allogeneic CD4+ cell proliferation, supported only low levels of IL-2 and IFN-gamma production, and did not stimulate IL-2 receptor expression. CD4+ T cell proliferation and increased IL-2 receptor expression could be obtained by addition of IL-2. Our data suggests that, although HBECs cannot alone support T cell proliferation and cytokine production, HBECs acting in concert with cytokines derived from a proinflammatory environment could support such a response.

  15. Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics.

    PubMed

    Kim, Do-Hyung; Austin, Brian

    2006-12-15

    Understanding how the various host cells respond to probiotic bacteria in vitro may provide important insight into elaborate immune responses triggered by beneficial bacteria. The aim of this study was to investigate the detailed pattern of the mRNA expression of cytokines (IL-1beta, IL-8, TNF-alpha and TGF-beta) in head kidney (HK) leucocytes and gut cells isolated from rainbow trout (Oncorhynchus mykiss Walbaum) after co-culturing with live probiotics. HK leucocytes and gut cells adjusted to 5 x 10(6) and 2 x 10(6) ml(-1), respectively, in L-15 medium containing 25% decomplemented FCS and 300 mg l(-1) L-glutamine were co-cultured with Carnobacterium maltaromaticum B26 and C. divergens B33 at an multiplicity of infection of 25 for 6 and 12 h. Quantitative real-time reverse transcriptase polymerase chain reaction using SYBR Green I was employed to determine the mRNA expression of studied genes. Although neither probiotic strains significantly induced mRNA of the cytokines in gut cells, expression ratios of IL-1beta and TNF-alpha of HK cells were significantly higher, suggesting that these bacteria can stimulate innate immunity in rainbow trout.

  16. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  17. Serum Cytokine Profile in Asian Indian Patients with Takayasu Arteritis and its Association with Disease Activity

    PubMed Central

    Goel, Ruchika; Kabeerdoss, Jayakanthan; Ram, Babu; Prakash, John Antony Jude; Babji, Sudhir; Nair, Aswin; Jeyaseelan, Lakshmanan; Jeyaseelan, Visalakshi; Mathew, John; Balaji, Veeraraghavan; Joseph, George; Danda, Debashish

    2017-01-01

    Background: Arterial inflammation Takayasu arteritis (TA) is an outcome of balance between pro- and anti-inflammatory cytokines. Comprehensive assessment of these cytokines is important for understanding pathogenesis and assessing disease activity. Objective: To study pro- and anti-inflammatory cytokines representing different T-helper cell pathway in serum samples of Asian Indian patients with TA and to assess their association with disease activity. Methods: Consecutive Indian patients with TA were assayed for serum interferon-γ, interleukin-6, interleukin-23, interleukin-17, interleukin-10 and transforming growth factor- β levels at baseline and follow up visit. Patients were grouped into active and stable disease based on Indian Takyasu Arteritis clinical Activity Score-2010. Serum levels of these cytokines between active and stable disease and between baseline and follow up visits were compared by non-parametric tests. Results: Among 32 patients enrolled, 15 were classified as active while 17 as stable disease at baseline. IFN-γ levels were significantly higher in active disease than stable disease (p=0.0129) while other cytokines did not differ significantly between 2 groups. Serum levels of none of the cytokines changed significantly over 2 visits in both responders and non-responders. IL23 levels positively correlate with disease duration ((r=0.999; p<0.005). Modest correlation was observed between IFN-γ and IL23 levels at both baseline and follow up and between IFN-γ and IL-6 and CRP at follow up. Conclusion: IFN-γ levels are raised in active disease in TA and correlates well with other biomarkers of disease activity and proinflammatory cytokines. There is also a direct correlation between Il-23 levels and disease duration.

  18. SIRT1 expression is refractory to hypoxia and inflammatory cytokines in nucleus pulposus cells: Novel regulation by HIF-1α and NF-κB signaling.

    PubMed

    Wang, Xiaofei; Li, Hongjian; Xu, Kang; Zhu, Haipeng; Peng, Yan; Liang, Anjing; Li, Chunhai; Huang, Dongsheng; Ye, Wei

    2016-06-01

    Hypoxia and a marked increase in inflammatory cytokines are common hallmarks of intervertebral disc degeneration; these events disrupt the normal balance between extracellular matrix (ECM) degradation and synthesis in degenerative intervertebral discs. SIRT1, one of the NAD+-dependent class III histone deacetylases, controls cellular processes and is regulated by hypoxia and inflammatory cytokines in a cell-type-dependent manner. SIRT1 protects degenerative human nucleus pulposus cells against apoptosis. However, the role of SIRT1 in inflammation in intervertebral discs is still unclear. The current study showed that in rat NP cells, as in other cells, SIRT1 suppressed the induction of the mRNA expression of proteases that degrade ECM induced by TNF-α. Moreover, real-time PCR, transfection, and loss- and gain-of-function experiments revealed that SIRT1 mRNA and protein expression were refractory to hypoxia and HIF-1α. Additionally, SIRT1 mRNA and protein expression and the activity of the SIRT1 promoter were not affected by inflammatory cytokines but were sustained by NF-κB signaling in the presence or absence of TNF-α. In summary, the present study suggested that SIRT1 is not affected by hypoxia and inflammatory cytokines in rat intervertebral discs. Moreover, not HIF-1α but NF-κB signaling is critical for the maintenance of SIRT1 expression in NP cells under physiologic and pathophysiologic conditions.

  19. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance

    PubMed Central

    Eritja, Nuria; Mirantes, Cristina; Llobet, David; Masip, Gemma; Matias-Guiu, Xavier; Dolcet, Xavi

    2012-01-01

    Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance. PMID:22328525

  20. The Activated Type 1–Polarized Cd8+ T Cell Population Isolated from an Effector Site Contains Cells with Flexible Cytokine Profiles

    PubMed Central

    Doyle, Anthony G.; Buttigieg, Kathy; Groves, Penny; Johnson, Barbara J.; Kelso, Anne

    1999-01-01

    The capacity of activated T cells to alter their cytokine expression profiles after migration into an effector site has not previously been defined. We addressed this issue by paired daughter analysis of a type 1–polarized CD8+ effector T cell population freshly isolated from lung parenchyma of influenza virus–infected mice. Single T cells were activated to divide in vitro; individual daughter cells were then micromanipulated into secondary cultures with and without added IL-4 to assess their potential to express type 2 cytokine genes. The resultant subclones were analyzed for type 1 and 2 cytokine mRNAs at day 6–7. When the most activated (CD44highCD11ahigh) CD8+ subpopulation from infected lung was compared with naive or resting (CD44lowCD11alow) CD8+ cells from infected lung and from normal lymph nodes (LNs), both clonogenicity and plasticity of the cytokine response were highest in the LN population and lowest in the activated lung population, correlating inversely with effector function. Multipotential cells were nevertheless detected among clonogenic CD44highCD11ahigh lung cells at 30–50% of the frequency in normal LNs. The data indicate that activated CD8+ T cells can retain the ability to proliferate and express new cytokine genes in response to local stimuli after recruitment to an effector site. PMID:10523606

  1. Selective phosphorylation of the Dlg1AB variant is critical for TCR-induced p38 activation and induction of proinflammatory cytokines in CD8+ T cells.

    PubMed

    Crocetti, Jillian; Silva, Oscar; Humphries, Lisa A; Tibbs, Michelle D; Miceli, M Carrie

    2014-09-15

    CD8(+) T cells respond to TCR stimulation by producing proinflammatory cytokines, and destroying infected or malignant cells through the production and release of cytotoxic granules. Scaffold protein Discs large homolog 1 (Dlg1) specifies TCR-dependent functions by channeling proximal signals toward the activation of p38-dependent proinflammatory cytokine gene expression and/or p38-independent cytotoxic granule release. Two Dlg1 variants are expressed in CD8(+) T cells via alternative splicing, Dlg1AB and Dlg1B, which have differing abilities coordinate TCR-dependent functions. Although both variants facilitate p38-independent cytotoxicity, only Dlg1AB coordinates p38-dependent proinflammatory cytokine expression. In this study, we identify TCR-induced Dlg1 tyrosine phosphorylation as a key regulatory step required for Dlg1AB-mediated p38-dependent functions, including proinflammatory cytokine expression. We find that Dlg1AB but not Dlg1B is tyrosine phosphorylated by proximal tyrosine kinase Lck in response to TCR stimulation. Furthermore, we identify Dlg1 tyrosine 222 (Y222) as a major site of Dlg1 phosphorylation required for TCR-triggered p38 activation and NFAT-dependent expression of proinflammatory cytokines, but not for p38-independent cytotoxicity. Taken together, our data support a model where TCR-induced phosphorylation of Dlg1 Y222 is a key point of control that endows Dlg1AB with the ability to coordinate p38 activation and proinflammatory cytokine production. We propose blocking Dlg1AB phosphorylation as a novel therapeutic target to specifically block proinflammatory cytokine production but not cytotoxicity.

  2. IL-34 and M-CSF form a novel heteromeric cytokine and regulate the M-CSF receptor activation and localization.

    PubMed

    Ségaliny, Aude I; Brion, Régis; Brulin, Bénédicte; Maillasson, Mike; Charrier, Céline; Téletchéa, Stéphane; Heymann, Dominique

    2015-12-01

    Interleukin-34 (IL-34) is a newly-discovered homodimeric cytokine that regulates, like Macrophage Colony-Stimulating Factor (M-CSF), the differentiation of the myeloid lineage through M-CSF receptor (M-CSFR) signaling pathways. To date, both cytokines have been considered as competitive cytokines with regard to the M-CSFR. The aim of the present work was to study the functional relationships of these cytokines on cells expressing the M-CSFR. We demonstrate that simultaneous addition of M-CSF and IL-34 led to a specific activation pattern on the M-CSFR, with higher phosphorylation of the tyrosine residues at low concentrations. Similarly, both cytokines showed an additive effect on cellular proliferation or viability. In addition, BIAcore experiments demonstrated that M-CSF binds to IL-34, and molecular docking studies predicted the formation of a heteromeric M-CSF/IL-34 cytokine. A proximity ligation assay confirmed this interaction between the cytokines. Finally, co-expression of the M-CSFR and its ligands differentially regulated M-CSFR trafficking into the cell. This study establishes a new foundation for the understanding of the functional relationship between IL-34 and M-CSF, and gives a new vision for the development of therapeutic approaches targeting the IL-34/M-CSF/M-CSFR axis.

  3. Anti-human cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro.

    PubMed Central

    Davignon, J L; Castanié, P; Yorke, J A; Gautier, N; Clément, D; Davrinche, C

    1996-01-01

    The control of latent cytomegalovirus (CMV) infections by the immune system is poorly understood. We have previously shown that CD4+ T cells specific for the human CMV major regulatory protein IE1 are frequent in latently infected healthy blood donors. In order to learn about the possible role of these cells, we have developed IE1-specific CD4+ T-cell clones and, in this study, analyzed their epitope specificity and function in vitro. We measured their cytokine production when stimulated with specific IE1 peptides or whole recombinant IE1 protein. Their cytokine profiles, as deduced from gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and interleukin-4 (IL-4) and IL-6 production, were of the Th0- and Th1-like phenotypes. Supernatants from IE1-specific clones producing IFN-gamma and TNF-alpha were shown to inhibit CMV replication in U373 MG cells. This effect was due, as found by using cytokine-specific neutralizing antibodies, mostly to IFN-gamma, which was secreted at higher levels than TNF-alpha. To better assess the anti-CMV activity of cytokines, recombinant IFN-gamma and TNF-alpha were used and shown to have a synergistic effect on the inhibition of CMV replication and protein expression. Thus, IE1-specific CD4+ T cells display in vitro anti-CMV activity through cytokine secretion and may play a role in the control of in vivo latent infections. PMID:8642638

  4. Altered Immune Cytokine Expression Associated with KoRV B Infection and Season in Captive Koalas

    PubMed Central

    Higgins, Damien P.

    2016-01-01

    Koala (Phascolarctos cinereus) populations are increasingly vulnerable and one of the main threats is chlamydial infection. Koala retrovirus (KoRV) has been proposed as an underlying cause of the koala’s susceptibility to infection with Chlamydia and high rates of lymphoid neoplasia; however, the regionally ubiquitous, endogenous nature of this virus suggests that KoRV A infection is not sufficient for immune suppression to occur. A recently discovered exogenous variant of KoRV, KoRV B, has several structural elements that cause increased pathogenicity in related retroviruses and was associated with lymphoid neoplasia in one study. The present study assesses whether KoRV B infection is associated with alterations in immune function. Cytokine gene expression by mitogen stimulated lymphocytes of KoRV B positive (n = 5–6) and negative (n = 6–7) captive koalas was evaluated by qPCR four times (April 2014-February 2015) to control for seasonal variation. Key immune genes in the Th1 pathway (IFNγ, TNFα), Th2 pathway (IL 10, IL4, IL6) and Th17 pathway (IL17A), along with CD4:CD8 ratio, were assessed. KoRV B positive koalas showed significantly increased up-regulation of IL17A and IL10 in three out of four sampling periods and IFNγ, IL6, IL4 and TNFα in two out of four. IL17A is an immune marker for chlamydial pathogenesis in the koala; increased expression of IL17A in KoRV B positive koalas, and concurrent immune dysregulation, may explain the differences in susceptibility to chlamydial infection and severity of disease seen between individuals and populations. There was also marked seasonal variation in up-regulation for most of the cytokines and the CD4:CD8 ratio. The up-regulation in both Th1 and Th2 cytokines mirrors changes associated with immune dysregulation in humans and felids as a result of retroviral infections. This is the first report of altered immune expression in koalas infected by an exogenous variant of KoRV and also the first report of

  5. Shark cartilage extract induces cytokines expression and release in endothelial cells and induces E-selectin, plasminogen and t-PA genes expression through an antioxidant-sensitive mechanism.

    PubMed

    Simard, Bryan; Ratel, David; Dupré, Isabelle; Pautre, Virginie; Berger, François

    2013-01-01

    Neovastat® is a standardized extract of marine cartilage, an avascular tissue, which contains many biologically active molecules and has multiple antiangiogenic properties. In addition to VEGFR2 and MMPs inhibition, shark cartilage extract (SCE) has recently been shown to induce tissue plasminogen activator gene (PLAT) expression in bovine endothelial cells in a TNF like manner, by inducing the typical mediators NF-κB and JNK. There is now compelling evidences that the NF-κB and JNK pathways are activated by cytokines induced generation of reactive oxygen species (ROS). We used macroarray genes expression analysis on human umbilical vein endothelial cells, to investigate if that mechanism could mediate the effect of SCE. Transcriptomic results showed that SCE induced expression of several cytokines. Their impact must be important, given that treatment of endothelial cells with the cytokine TNF-α was able to reproduce most of the effects of cartilage extract on genes expression. In addition, most of the genes, known to be inducible by NF-κB or JNK following cytokines stimulation, were less induced by SCE when endothelial cells were pretreated with the antioxidant N-Acetylcysteine (NAC), suggesting a role of ROS in endothelial cell activation by SCE. Finally, the possible effects of PLAT, PLG, SELE, IL8 and PRDX2 (those validated by q-PCR) on angiogenesis, will also be discussed.

  6. [Antistaphylococcal activity of the complex of natural cytokines].

    PubMed

    Koval'chuk, L V; Gankovskaia, L V; Moroz, A F; Avedova, T A; Ukhina, T V

    2004-01-01

    The in vitro study of the action of the complex of natural cytokines (CNC), or preparation Superlymph, on different microbial test strains (Staphylococcus aureus, Escherichia coli, yeast-like fungi of the genus Candida) was carried out. CNC suppressed the growth of S. aureus test culture, depending on the concentration of the preparation. The inhibiting effect was observed in the presence of Ca and Mg bivalent cations in the medium. Under the chosen conditions of the experiment CNC did not inhibit the growth of E. coli test cultures, as well as test cultures of yeast-like fungi of the genus Candida. In addition to its antibacterial effect, Superlymph also produced some effect on the release of cathepsin G, the lysosomal enzyme of human leukocyte granules.

  7. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression

    PubMed Central

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K. Craig

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB–mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms. PMID:26483397

  8. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression.

    PubMed

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K Craig; Liu, Bo

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P < 0.05). Immunohistochemistry analyses revealed that Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB-mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms.

  9. ICAM-1 expression by lung cancer cell lines: effects of upregulation by cytokines on the interaction with LAK cells.

    PubMed

    Melis, M; Spatafora, M; Melodia, A; Pace, E; Gjomarkaj, M; Merendino, A M; Bonsignore, G

    1996-09-01

    Intercellular adhesion molecule-1 (ICAM-1) expression by tumour cells may be involved in their interaction with defensive cells. In this study the surface ICAM-1 expression and soluble ICAM-1 (sICAM-1) production by five small cell lung cancer (SCLC) and five non-SCLC (NSCLC) cell lines was investigated. In addition, the effects of ICAM-1 upregulation by cytokines on the adhesion of lung cancer cells to allogeneic lymphokine-activated killer (LAK) cells and susceptibility to LAK cytotoxicity was also evaluated. ICAM-1 expression was assessed by flow cytometry. Soluble ICAM-1 release was measured by enzyme-linked immunosorbent assay (ELISA). Interaction with LAK cells was tested by adhesion and cytotoxicity assays. At baseline, SCLC lines did not express ICAM-1, while 4 of the 5 NSCLC lines expressed ICAM-1. ICAM-1 expression was induced by interferon-gamma (IFN-gamma) in 4 of the 5 SCLC lines and upregulated in 1 of the 5 NSCLC lines. ICAM-1 expression was induced by tumour necrosis factor-alpha (TNF-alpha) in 1 of the 5 SCLC lines (National Cancer Institute (NCI) H211), and upregulated in 2 of the 5 NSCLC lines (NCI H460 and NCI H838). Among the latter lines, one (NCI H838) released significant amounts of sICAM-1. Adhesion to LAK cells and susceptibility to LAK cytotoxicity were significantly higher in TNF-alpha-treated NCI H460 and NCI H211 cells, compared to untreated NCI H460 and NCI H211 cells. In contrast, no difference in adhesion to LAK cells and susceptibility to LAK cytotoxicity was detected between baseline and TNF-alpha-treated NCI H838 cells. Intercellular adhesion molecule-1 surface expression and soluble intercellular adhesion molecule-1 release may play an important role in interactions between lymphokine-activated killer cells and lung cancer cells.

  10. Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance.

    PubMed Central

    Stein, U.; Walther, W.; Shoemaker, R. H.

    1996-01-01

    Reversal of multidrug resistance (MDR) may offer a means of increasing the effectiveness of tumour chemotherapy. A variety of recent evidence indicates that cytokines may be particularly useful in this endeavour. To investigate the molecular mechanism by which cytokines may sensitise multidrug-resistant colon carcinoma cells, HCT15 and HCT116, to treatment with MDR-related drugs, we evaluated the effects of the human cytokines tumour necrosis factor alpha (TNF alpha), interleukin 2 (IL-2) and interferon gamma (IFN gamma) on mdr1 gene expression at the mRNA level by reverse transcription-polymerase chain reaction (RT-PCR) and at the protein level with monoclonal antibodies by immuno flow cytometry. P-glycoprotein function was examined after accumulation of the fluorescent drug, doxorubicin, by flow cytometry. Chemosensitivity to doxorubicin and vincristine was analysed using the XTT assay. All three cytokines were found to modulate the MDR characteristics on mdr1 expression levels, P-glycoprotein function and measured chemosensitivity to MDR-associated anti-cancer drugs. This cytokine-induced reversal of MDR was strongly time dependent, with maximal effects after 48 and 72 h of cytokine treatment. If similar modulation of MDR phenotype can be obtained in in vivo models, it may be possible to verify the time course for modulation by cytokine treatment and to design appropriate clinical trials of this strategy for MDR reversal. Images Figure 1 PMID:8912533

  11. Dysregulation of temperature and liver cytokine gene expression in immunodeficient wasted mice

    SciTech Connect

    Libertin, C.R.; Ling-Indeck, L.; Weaver, P.; Chang-Liu, Chin-Mei; Strezoska, V.; Heckert, B.; Woloschak, G.E. |

    1995-04-25

    Wasted mice bear the spontaneous autosomal recessive mutation wst/wst; this genotype is associated with weight loss beginning at 21 days of age, neurologic dysfunction, immunodeficiency at mucosal sites, and increased sensitivity to the killing effects of ionizing radiation. The pathology underlying the disease symptoms is unknown. Experiments reported here were designed to examine thermoregulation and liver expression of specific cytokines in wasted mice and in littermate and parental controls. Our experiments found that wasted mice begin to show a drop in body temperature at 21-23 days following birth, continuing until death at the age of 28 days. Concomitant with that, livers from wasted mice expressed increased amounts of mRNAs specific for cytokines IL,6 and IL-1, the acute phase reactant C-reactive protein, c-jun, and apoptosis-associated Rp-8 when compared to littermate and parental control animals. Levels of {beta}-transforming growth factor (TGF), c-fos, proliferating cell nuclear antigen (PCNA), and ornithine amino transferase (OAT) transcripts were the same in livers from wasted mice and controls. These results suggest a relationship between an acute phase reactant response in wasted mice and temperature dysregulation.

  12. Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines.

    PubMed

    Esnault, Stephane; Kelly, Elizabeth A; Johansson, Mats W; Liu, Lin Ying; Han, Shih-Tsung; Akhtar, Moneeb; Sandbo, Nathan; Mosher, Deane F; Denlinger, Loren C; Mathur, Sameer K; Malter, James S; Jarjour, Nizar N

    2014-01-01

    Semaphorin 7A (sema7a) plays a major role in TGF-β1-induced lung fibrosis. Based on the accumulating evidence that eosinophils contribute to fibrosis/remodeling in the airway, we hypothesized that airway eosinophils may be a significant source of sema7a. In vivo, sema7a was expressed on the surface of circulating eosinophils and upregulated on bronchoalveolar lavage eosinophils obtained after segmental bronchoprovocation with allergen. Based on mRNA levels in unfractionated and isolated bronchoalveolar cells, eosinophils are the predominant source of sema7a. In vitro, among the members of the IL-5-family cytokines, sema7a protein on the surface of blood eosinophils was increased more by IL-3 than by GM-CSF or IL-5. Cytokine-induced expression of cell surface sema7a required translation of newly synthesized protein. Finally, a recombinant sema7a induced alpha-smooth muscle actin production in human bronchial fibroblasts. semaphorin 7A is a potentially important modulator of eosinophil profibrotic functions in the airway remodeling of patients with chronic asthma.

  13. Chronic hepatitis C and persistent occult hepatitis C virus infection are characterized by distinct immune cell cytokine expression profiles.

    PubMed

    Pham, T N Q; Mercer, S E; Michalak, T I

    2009-08-01

    Hepatitis C virus (HCV) replicates in immune cells in both chronic hepatitis C (CHC) and occult HCV infection, but the extent of virus replication in this compartment in these opposing infection forms varies greatly. It was unknown whether this could be linked to HCV genotype or to differences in host gene expression shaping the immune response, and whether HCV replication in immune cells is sensitive to endogenous antiviral cytokines. In this study, we uncovered that significantly greater HCV load in peripheral blood mononuclear cells (PBMC), but not in plasma, coincided with HCV genotypes 2 and 3 in CHC, but with genotype 1 in residual occult infection after clinical resolution of hepatitis C. Moreover, PBMC from individuals with occult infection transcribed significantly greater levels of IFN-alpha, IFN-gamma and TNF-alpha, but less interleukin (IL)-10 than those from CHC. In CHC, PBMC with low HCV load expressed significantly more IFN-gamma but less IL-12 than did cells with high virus content. In occult infection, HCV RNA detection in PBMC was associated with much lower IFN-alpha and IL-12 expression. Further, HCV replication in T lymphocytes could be completely eliminated by activation of endogenous IFN-gamma in CHC, but of IFN-alpha in occult infection. In conclusion, CHC and persistent occult HCV infection are characterized by clearly different profiles of antiviral cytokine response in circulating immune cells which are also different from those of healthy individuals. Higher expression of IL-10, combined with lower transcription of IFN-alpha, IFN-gamma and TNF-alpha, is associated with a more robust HCV replication in immune cells.

  14. In situ cytokines (IL-4, IL-10, IL-12, IFN-γ) and chemokines (MCP-1, MIP-1α) gene expression in human Leishmania (Leishmania) Mexicana infection.

    PubMed

    Valencia-Pacheco, Guillermo; Loría-Cervera, Elsy Nalleli; Sosa-Bibiano, Erika Ivett; Canché-Pool, Elsy B; Vargas-Gonzalez, Alberto; Melby, Peter C; Andrade-Narvaez, Fernando J

    2014-09-01

    Crucial to the defense against Leishmania is the ability of the host to mount a cell-mediated immune response capable of controlling and/or eliminating the parasite. The composition of the cell populations recruited in the early phase of the infection seems to be essential for defining the infection outcomes. The signals that initiate and regulate the early immune response and local accumulation of cell subsets in the skin are poorly understood. We previously studied the in situ expression of cytokine genes in patients with localized cutaneous leishmaniasis (LCL) caused by Leishmania (Leishmania) mexicana. In the present study we examined in situ cytokine (IL-4, IL-10, IL-12, IFN-γ) and chemokine (MCP-1, MIP-1α) gene expression in L. (L.) mexicana active LCL lesions, and in the delayed type hypersensitivity (DTH) skin response to Leishmania antigen in subjects with healed lesion and subclinical infection. Data regarding cytokines were similar to previous studies in patients with active LCL. There were no significant differences in the profile of cytokine and chemokine gene expression in DTH from subjects with healed or subclinical infection. IL-12 gene expression detected in both groups was similar. High expression of MCP-1 was detected in all patients with active LCL. There was no difference in the level of MCP-1 expression between the healed lesion and the subclinical infection groups (p = 0.876). IL-12 and MCP-1 in the absence of IFN-γ might be playing a crucial role in infection outcomes at skin level.

  15. Differential cytokine expression in skin graft healing in inducible nitric oxide synthase knockout mice.

    PubMed

    Most, D; Efron, D T; Shi, H P; Tantry, U S; Barbul, A

    2001-10-01

    Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test. Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05). Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These

  16. Effect of carvacrol on various cytokines genes expression in splenocytes of asthmatic mice

    PubMed Central

    Kianmehr, Majid; Rezaei, Abdolrahim; Boskabady, Mohammad Hossein

    2016-01-01

    Objective(s): With regard to pharmacological effects of carvacrol on the respiratory system, its effect on cytokines genes expression in splenocytes of asthmatic mice was examined in this study. Materials and Methods: Splenocytes were isolated from non-sensitized (control group), sensitized mice to ovalbumin (OVA) (group S), and S animals treated with dexamethasone, and three concentrations of carvacrol. IL-4, IFN-γ, TGF-β, FOXP3, and IL-17 genes expression were carried out in cultured splenocytes using the real-time PCR method. Results: Compared to the control group, IFN-γ and FOXP3 genes expression were significantly decreased (P<0.001 for both cases), but IL-4 and IL-17 genes expression were significantly increased in the S group (P<0.001 and P<0.05, respectively). IL-4 gene expression due to treatment of all concentrations of carvacrol, TGF-β gene expression due to its two higher concentrations, and IL-17 gene expression due to its high concentration were significantly decreased compared to group S (P<0.01 to P<0.001). IFN-γ gene expression was significantly increased due to last carvacrol concentration (300 µg/ml, P<0.01), and FOXP3 due to its two last concentrations (150 and 300 µg/ml, P<0.05 and P<0.001, respectively) in treated S splenocytes. Dexamethasone treatment of sensitized splenocytes only showed significant inhibitory effect on IL-4 and TGF-β genes expression (P<0.001 for both cases). Conclusion: These results showed the immunomodulatory effect of carvacrol indicating increased IFN-γ and FOXP3 but decreased IL-4, TGF-β, and IL-17 genes expression, which was more selective than the effect of dexamethasone in sensitized mice splenocytes, which indicates its possible therapeutic value in allergy, autoimmunity, and infectious diseases. PMID:27279984

  17. Maltose-Binding Protein Fusion Allows for High Level Bacterial Expression and Purification of Bioactive Mammalian Cytokine Derivatives

    PubMed Central

    Pennati, Andrea; Deng, Jiusheng; Galipeau, Jacques

    2014-01-01

    Fusokines are chimeric proteins generated by the physical coupling of cytokines in a single polypeptide, resulting in proteins with highly pleiotropic activity and the potential to treat cancer and autoimmune ailments. For instance, the fusokine GIFT15 (GM-CSF and Interleukin 15 Fusion Transgene) has been shown to be a powerful immunosuppressive protein able to convert naïve B cells into IL-10-producing B cells. To date, the mammalian cell systems used for the expression of GIFT15 allow for secretion of the protein in the culturing media, an inefficient system for producing GMP-compliant fusokines. In this study we report the bacterial expression of bioactive recombinant GIFT15 (rGIFT15). Indeed, there is a constant demand to improve the expression systems for therapeutic proteins. Expression of a maltose-binding protein (MBP) fusion protein efficiently allowed the accumulation of soluble protein in the intracellular milieu. Optimizing the bacterial culture significantly increased the yield of recombinant protein. The biological activity of rGIFT15 was comparable to that of fusokine derived from a mammalian source. This approach led to the production of soluble, endotoxin-free functional protein, averaging 5 mg of rGIFT15 per liter of culture. This process is amenable to scale up for the development of Food and Drug Administration (FDA)-compliant immune-modulatory rGIFT15. PMID:25198691

  18. Protective effects of Pogostemon cablin Bentham water extract on inflammatory cytokine expression in TNBS-induced colitis in rats.

    PubMed

    Park, Su-Young; Neupane, Ganesh Prasad; Lee, Sung Ok; Lee, Jong Suk; Kim, Mi-Young; Kim, Sun Yeou; Park, Byung Chul; Park, Young-Joon; Kim, Jung-Ae

    2014-02-01

    In inflammatory bowel disease (IBD), colon epithelial cells express a variety of inflammatory mediators, including chemokines, which perpetuate inflammatory response. In the current study, we report that water extract of Pogostemon cablin Bentham aerial parts (PCW), which has traditionally been used for treatment of the common cold and infectious disease, suppressed colon inflammation. Treatment with PCW resulted in effective inhibition of tumor necrosis factor (TNF)-α-induced adhesion of monocytes to HT-29 human colonic epithelial cells. In a trinitrobenzene sulfonic acid (TNBS)-induced rat model of IBD, PCW suppressed clinical signs of colitis, including weight loss, colon tissue myeloperoxidase activity, a marker for inflammatory cell infiltration, and cyclooxygenase-2 expression in a dose-dependent manner. In addition, PCW suppressed TNBS-induced mRNA expression of IL-8, MCP-1, and IL-6 in rat colon. The nuclear level of NF-κB in TNBS-treated rat colon and NF-κB luciferase reporter gene activity in TNF-α-treated HT-29 cells were significantly inhibited by PCW. Taken together, the results of this study suggest that PCW suppressed colon inflammation via suppression of NF-κB-dependent expression of pro-inflammatory cytokines.

  19. Maltose-binding protein fusion allows for high level bacterial expression and purification of bioactive mammalian cytokine derivatives.

    PubMed

    Pennati, Andrea; Deng, Jiusheng; Galipeau, Jacques

    2014-01-01

    Fusokines are chimeric proteins generated by the physical coupling of cytokines in a single polypeptide, resulting in proteins with highly pleiotropic activity and the potential to treat cancer and autoimmune ailments. For instance, the fusokine GIFT15 (GM-CSF and Interleukin 15 Fusion Transgene) has been shown to be a powerful immunosuppressive protein able to convert naïve B cells into IL-10-producing B cells. To date, the mammalian cell systems used for the expression of GIFT15 allow for secretion of the protein in the culturing media, an inefficient system for producing GMP-compliant fusokines. In this study we report the bacterial expression of bioactive recombinant GIFT15 (rGIFT15). Indeed, there is a constant demand to improve the expression systems for therapeutic proteins. Expression of a maltose-binding protein (MBP) fusion protein efficiently allowed the accumulation of soluble protein in the intracellular milieu. Optimizing the bacterial culture significantly increased the yield of recombinant protein. The biological activity of rGIFT15 was comparable to that of fusokine derived from a mammalian source. This approach led to the production of soluble, endotoxin-free functional protein, averaging 5 mg of rGIFT15 per liter of culture. This process is amenable to scale up for the development of Food and Drug Administration (FDA)-compliant immune-modulatory rGIFT15.

  20. Cytokine expression in the colostral cells of healthy and allergic mothers.

    PubMed

    Hrdý, Jiří; Novotná, Olga; Kocourková, Ingrid; Prokešová, Ludmila

    2012-05-01

    There is no doubt about the beneficial effect of breastfeeding on the newborn's immune system. It is not fully elucidated what the differences are between the colostrum/milk of healthy and allergic mothers and how beneficial breastfeeding by an allergic mother is. The gene expression of selected cytokines was tested in cells isolated from colostra of healthy and allergic mothers using quantitative real-time PCR. Allergic phenotype was evident in colostral cells of allergic mothers: gene expressions of IL-4, IL-13 and EGF were increased and those of IFN-gamma decreased in comparison with colostral cells of healthy mothers. The allergic phenotype of the colostral cells of allergic mothers supporting the bias to a Th2 type response was found. It remains a question if a small number of these cells could influence the immature newborn immune system.

  1. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta.

    PubMed

    Issazadeh, S; Lorentzen, J C; Mustafa, M I; Höjeberg, B; Müssener, A; Olsson, T

    1996-09-01

    Experimental autoimmune encephalomyelitis (EAE) in rats is typically a brief and monophasic disease with sparse demyelination. However, inbred DA rats develop a demyelinating, prolonged and relapsing encephalomyelitis after immunization with rat spinal cord in incomplete Freund's adjuvant. This model enables studies of mechanisms related to chronicity and demyelination, two hallmarks of multiple sclerosis (MS). Here we have investigated, in situ, the dynamics of cytokine mRNA expression in the central nervous system (CNS) and peripheral lymphoid organs (lymph node cells and splenocytes) of diseased DA rats. We demonstrate that peripheral lymphoid cells stimulated in vitro with encephalitogenic peptides 69-87 and 87-101 of myelin basic protein responded with high mRNA expression for proinflammatory cytokines; interferon-gamma, interleukin-12 (IL-12), tumour necrosis factors alpha and beta, IL-1 beta and cytolysin. A high expression of mRNA for these proinflammatory cytokines was also observed in the CNS where it was accompanied by classical signs of inflammation such as expression of major histocompatibility complex class I and II, CD4, CD8 and IL-2 receptor. The expression of mRNA for proinflammatory cytokines was remarkably long-lasting in DA rats as compared to LEW rats which display a brief and monophasic EAE. Furthermore, mRNAs for putative immunodownmodulatory cytokines, i.e. transforming growth factor-beta (TGF-beta), IL-10 and IL-4 were almost absent in DA rats, in both the CNS and in vitro stimulated peripheral lymphoid cells, while their levels were elevated in the CNS of LEW rats during the recovery phase. We conclude that the MS-like prolonged and relapsing EAE in DA rats is associated with a prolonged production of proinflammatory cytokines and/or low or absent production of immunodownmodulatory cytokines.

  2. C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells.

    PubMed

    Jung, Chang Hee; Lee, Min Jung; Kang, Yu Mi; Lee, Yoo La; Seol, So Mi; Yoon, Hae Kyeong; Kang, Sang-Wook; Lee, Woo Je; Park, Joong-Yeol

    2016-01-05

    Although recent studies have reported cardioprotective effects of C1q/TNF-related protein 9 (CTRP9), the closet adiponectin paralog, its role on cytokine-induced endothelial inflammation is unknown. We investigated whether CTRP9 prevented inflammatory cytokine-induced nuclear factor-kappa B (NF-κB) activation and inhibited the expression of adhesion molecules and a chemokine in the vascular endothelial cell. We used human aortic endothelial cells (HAECs) to examine the effects of CTRP9 on NF-κB activation and the expression of NF-κB-mediated genes, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1). Tumor necrosis factor alpha (TNFα) was used as a representative proinflammatory cytokine. In an adhesion assay using THP-1 cells, CTRP9 reduced TNFα-induced adhesion of monocytes to HAECs. Treatment with CTRP9 significantly decreased TNFα-induced activation of NF-κB, as well as the expression of ICAM-1, VCAM-1, and MCP-1. In addition, treatment with CTRP9 significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), the downstream target of AMPK. The inhibitory effect of CTRP9 on the expression of ICAM-1, VCAM-1, and MCP-1 and monocyte adhesion to HAECs was abolished after transfection with an AMPKα1-specific siRNA. Our study is the first to demonstrate that CTRP9 attenuates cytokine-induced vascular inflammation in endothelial cells mediated by AMPK activation.

  3. Cytokine gene expression profiles in peripheral blood mononuclear cells from Neospora caninum naturally infected dams throughout gestation.

    PubMed

    Almería, S; Serrano, B; Yàniz, J L; Darwich, L; López-Gatius, F

    2012-02-10

    Neospora caninum is a major cause of abortion in cattle but it is not known why some infected animals suffer abortion while others do not. An essential role in protective immunity against N. caninum has been proposed for Th1 cytokines such as IFN-γ and IL-12 although cytokine patterns in N. caninum infected pregnant cattle have been scarcely addressed. In this study, gene expression of the cytokines IFN-γ, IL-12, IL-10, IL-4 and TNF-α was analyzed by real time RT-PCR in peripheral blood mononuclear cells in N. caninum naturally infected dams throughout pregnancy. Blood samples were drawn from 18 cows (13 N. caninum seropositive and 5 N. caninum seronegative) on Days 45, 90, 120, 150, 180 and 210 of pregnancy or until abortion. Four seropositive animals aborted. Compared to the seronegative animals, N. caninum infected dams showed up-regulated mRNA levels of the Th1 cytokines, IFN-γ, TNF-α and IL-12p40, along with up-regulation of the T regulatory (Treg) cytokine IL-10. In contrast, expression levels of IL-4 (Th2 cytokine) did not differ significantly among the different groups throughout the study period. Our findings indicate clear differences in peripheral blood cytokine gene expression levels during pregnancy between animals naturally infected with N. caninum and seronegative control animals. To the best of our knowledge, this is the first study to examine the gene expression of Th1, Th2 and regulatory cytokines in the peripheral blood of pregnant cows naturally infected with N. caninum.

  4. Human Lymph Node-Derived Fibroblastic and Double-Negative Reticular Cells Alter Their Chemokines and Cytokines Expression Profile Following Inflammatory Stimuli.

    PubMed

    Severino, Patricia; Palomino, Diana Torres; Alvarenga, Heliene; Almeida, Camila Bononi; Pasqualim, Denise Cunha; Cury, Adriano; Salvalaggio, Paolo Rogério; De Vasconcelos Macedo, Antonio Luiz; Andrade, Maria Claudina; Aloia, Thiago; Bromberg, Silvio; Rizzo, Luiz Vicente; Rocha, Fernanda Agostini; Marti, Luciana C

    2017-01-01

    Lymph node (LN) is a secondary lymphoid organ with highly organized and compartmentalized structure. LNs harbor B, T, and other cells among fibroblastic reticular cells (FRCs). FRCs are characterized by both podoplanin (PDPN/gp38) expression and by the lack of CD31 expression. FRCs are involved in several immune response processes but mechanisms underlying their function are still under investigation. Double-negative cells (DNCs), another cell population within LNs, are even less understood. They do not express PDPN or CD31, their localization within the LN is unknown, and their phenotype and function remain to be elucidated. This study evaluates the gene expression and cytokines and chemokines profile of human LN-derived FRCs and DNCs during homeostasis and following inflammatory stimuli. Cytokines and chemokines secreted by human FRCs and DNCs partially diverged from those identified in murine models that used similar stimulation. Cytokine and chemokine secretion and their receptors expression levels differed between stimulated DNCs and FRCs, with FRCs expressing a broader range of chemokines. Additionally, dendritic cells demonstrated increased migration toward FRCs, possibly due to chemokine-induced chemotaxis since migration was significantly decreased upon neutralization of secreted CCL2 and CCL20. Our study contributes to the understanding of the biology and functions of FRCs and DNCs and, accordingly, of the mechanisms involving them in immune cells activation and migration.

  5. Human Lymph Node-Derived Fibroblastic and Double-Negative Reticular Cells Alter Their Chemokines and Cytokines Expression Profile Following Inflammatory Stimuli

    PubMed Central

    Severino, Patricia; Palomino, Diana Torres; Alvarenga, Heliene; Almeida, Camila Bononi; Pasqualim, Denise Cunha; Cury, Adriano; Salvalaggio, Paolo Rogério; De Vasconcelos Macedo, Antonio Luiz; Andrade, Maria Claudina; Aloia, Thiago; Bromberg, Silvio; Rizzo, Luiz Vicente; Rocha, Fernanda Agostini; Marti, Luciana C.

    2017-01-01

    Lymph node (LN) is a secondary lymphoid organ with highly organized and compartmentalized structure. LNs harbor B, T, and other cells among fibroblastic reticular cells (FRCs). FRCs are characterized by both podoplanin (PDPN/gp38) expression and by the lack of CD31 expression. FRCs are involved in several immune response processes but mechanisms underlying their function are still under investigation. Double-negative cells (DNCs), another cell population within LNs, are even less understood. They do not express PDPN or CD31, their localization within the LN is unknown, and their phenotype and function remain to be elucidated. This study evaluates the gene expression and cytokines and chemokines profile of human LN-derived FRCs and DNCs during homeostasis and following inflammatory stimuli. Cytokines and chemokines secreted by human FRCs and DNCs partially diverged from those identified in murine models that used similar stimulation. Cytokine and chemokine secretion and their receptors expression levels differed between stimulated DNCs and FRCs, with FRCs expressing a broader range of chemokines. Additionally, dendritic cells demonstrated increased migration toward FRCs, possibly due to chemokine-induced chemotaxis since migration was significantly decreased upon neutralization of secreted CCL2 and CCL20. Our study contributes to the understanding of the biology and functions of FRCs and DNCs and, accordingly, of the mechanisms involving them in immune cells activation and migration. PMID:28261205

  6. Development of ileal cytokine and immunoglobulin expression levels in response to early feeding in broilers and layers.

    PubMed

    Simon, K; de Vries Reilingh, G; Kemp, B; Lammers, A

    2014-12-01

    Provision of feed in the immediate posthatch period may influence interaction between intestinal microbiota and immune system, and consequently immunological development of the chick. This study addressed ileal immune development in response to early feeding in 2 chicken breeds selected for different production traits: broilers and layers. Chicks of both breeds either received feed and water immediately posthatch or were subjected to a 72-h feed and water delay. Ileal cytokine and immunoglobulin mRNA expression levels were determined at different time points. Effects of early feeding were limited, but breeds differed strikingly regarding cytokine and immunoglobulin expression levels. Cytokine expression levels in broilers were low compared with layers and showed a transient drop in the second to third week of life. In contrast, broilers showed considerably higher expression levels of IgA, IgM, and IgY. These findings indicate that the 2 breeds use different immune strategies, at least on the ileal level.

  7. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    SciTech Connect

    Ci Xinxin; Song Yu; Zeng Fanqin; Zhang Xuemei; Li Hongyu; Wang Xinrui; Cui Junqing Deng Xuming

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS. Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.

  8. Proinflammatory cytokine and cytokine receptor gene expression kinetics following challenge with Flavobacterium psychrophilum in resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Kutyrev, Ivan; Cleveland, Beth; Leeds, Timothy; Wiens, Gregory D

    2016-11-01

    Flavobacterium psychrophilum (Fp) is the causative agent of bacterial cold water disease (BCWD) which causes appreciable economic losses in rainbow trout aquaculture. We previously reported development of a genetic line, designated ARS-Fp-R that exhibits higher survival relative to a susceptible line, designated ARS-Fp-S, following either laboratory or natural on-farm challenge. The objectives of this study were to determine the temporal kinetics of gene expression between experimentally-challenged ARS-Fp-R and ARS-Fp-S fish and the correlation between gene expression and pathogen load. We developed a GeXP multiplex RT-PCR assay to simultaneously examine expression of immune-relevant genes, concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. Spleen tissue was sampled at 6 h, 24 h, 48 h and 144 h post-challenge and pathogen load quantified by qPCR. Transcript abundance of cytokine genes tnfa1, tnfa2, tnfa3, il1b1, il1b2, il11a; acute phase response genes saa and drtp1; and putative cytokine receptors il1r1-like-b, il1r2, tnfrsf1a, tnfrsf9, tnfrsf1a-like-b increased following challenge while the transcript abundance of il1r-like-1 and tnfrsf1a-like-a decreased compared to PBS-injected line-matched control fish. Principal component analysis identified transcript levels of genes il1r-like-1 and tnfrsf1a-like-a as exhibiting differential expression between genetic lines. In summary, Fp i.p. injection challenge elicited a proinflammatory cytokine gene expression response in the spleen, with ARS-Fp-R line fish exhibiting modestly higher basal expression levels of several putative cytokine receptors. This study furthers the understanding of the immune response following Fp challenge and differences in gene expression associated with selective breeding for disease resistance.

  9. Hematopoietic cytokines.

    PubMed

    Metcalf, Donald

    2008-01-15

    The production of hematopoietic cells is under the tight control of a group of hematopoietic cytokines. Each cytokine has multiple actions mediated by receptors whose cytoplasmic domains contain specialized regions initiating the various responses-survival, proliferation, differentiation commitment, maturation, and functional activation. Individual cytokines can be lineage specific or can regulate cells in multiple lineages, and for some cell types, such as stem cells or megakaryocyte progenitors, the simultaneous action of multiple cytokines is required for proliferative responses. The same cytokines control basal and emergency hematopoietic cell proliferation. Three cytokines, erythropoietin, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor, have now been in routine clinical use to stimulate cell production and in total have been used in the management of many millions of patients. In this little review, discussion will be restricted to those cytokines well established as influencing the production of hematopoietic cells and will exclude newer candidate regulators and those active on lymphoid cells. As requested, this account will describe the cytokines in a historical manner, using a sequential format of discovery, understanding, validation, and puzzlement, a sequence that reflects the evolving views on these cytokines over the past 50 years.

  10. Effect of individual and combination treatment with cytokines on expression of sialoadhesin by bone marrow macrophages.

    PubMed

    Kusmartsev, S A; Danilets, M G; Bel'skaya, N V; Agafonov, V I; Dygai, A M; Gol'dberg, E D

    2003-08-01

    We studied the effects of lipopolysaccharide, interferon-gamma, interleukin-1, or tumor necrosis factor-alpha and combination treatment with tumor necrosis factor-alpha and interleukin-1 or interferon-gamma on the expression of sialoadhesin receptors on the membrane of bone marrow macrophages, macrophage adherent ability, and production of nitric oxide by these cells. Sialoadhesin expression was evaluated by binding of macrophages to sheep erythrocytes labeled with radioactive (51)Cr. Treatment of bone marrow cells with interferon-gamma improved adhesive properties of macrophages, but did not modulate expression of sialoadhesin. Interleukin-1 and tumor necrosis factor-alpha had no effect on the test parameters. Combination treatment with these cytokines enhanced binding of sheep erythrocytes to macrophages. Administration of lipopolysaccharide or combination treatment with interferon-gamma and tumor necrosis factor-alpha increased the count of macrophages adhering to plastic and stimulated expression of sialoadhesin. Combination treatment with interferon-gamma and tumor necrosis factor-alpha stimulated production of nitric oxide by bone marrow macrophages. Blockade of nitric oxide synthesis had no effect on adhesive properties of macrophages and expression of sialoadhesin.

  11. Topical Tetracycline Improves MC903-induced Atopic Dermatitis in Mice through Inhibition of Inflammatory Cytokines and Thymic Stromal Lymphopoietin Expression

    PubMed Central

    Liu, Xiao-Jing; Mu, Zhang-Lei; Zhao, Yan; Zhang, Jian-Zhong

    2016-01-01

    Background: Tetracycline (TET) has been found to have both antibiotic and anti-inflammatory properties. The anti-inflammatory effect of topical TET on atopic dermatitis (AD) has not been reported. The purpose of this study was to explore the potential role of topical TET and its anti-inflammatory effects in a mouse model of AD. Methods: The 2% TET was applied topically to ears of MC903-induced AD-like BALB/c mice once a day. AD-like symptoms and severity were evaluated by assessing skin scoring of dermatitis, ear thickness, and frequency of scratching. Serum IgE and thymic stromal lymphopoietin (TSLP) levels were measured by enzyme-linked immunosorbent assay. Western blot was used for analyzing the expressions of TSLP, protease-activated receptor 2 (PAR2), and nuclear factor-kappa B (NF-κB) in skin lesions. Real-time polymerase chain reaction was performed to assess the mRNA levels of TSLP and inflammatory cytokines including interleukin (IL)-4, IL-13, tumor necrosis factor (TNF)-α, and IL-1β in skin lesions. Results: Scoring of dermatitis (9.00 ± 0.63 vs. 6.67 ± 1.03, P = 0.001), ear thickness (0.44 ± 0.02 mm vs. 0.40 ± 0.03 mm, P = 0.018), and serum IgE level (421.06 ± 212.13 pg/ml vs. 244.15 ± 121.39 pg/ml, P = 0.047) were all improved in the 2% TET treatment group compared with AD group. Topical TET significantly reduced the serum level of TSLP (119.04 ± 38.92 pg/ml vs. 65.95 ± 54.61 pg/ml, P = 0.011) and both mRNA and protein expressions of TSLP in skin lesions compared with AD group (P = 0.003 and 0.011, respectively), and NF-κB and PAR2 expression in skin lesions were also suppressed (P = 0.016 and 0.040, respectively). Furthermore, expressions of inflammatory cytokines IL-4, IL-13, and TNF-α in skin lesions were down-regulated in 2% TET group compared with AD group (P = 0.035, 0.008, and 0.044, respectively). Conclusions: Topical TET exerted anti-inflammatory effects through suppression of TSLP and inflammatory cytokines in AD mouse model

  12. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia

    PubMed Central

    Veit, Guido; Bossard, Florian; Goepp, Julie; Verkman, A. S.; Galietta, Luis J. V.; Hanrahan, John W.; Lukacs, Gergely L.

    2012-01-01

    Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air–liquid but not liquid–liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr∆F508/∆F508 immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor–mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia. PMID:22973054

  13. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract.

    PubMed

    Jang, Seong Soon; Kim, Hyeong Geug; Han, Jong Min; Lee, Jin Seok; Choi, Min Kyung; Huh, Gil Ja; Son, Chang Gue

    2015-02-01

    We investigated the modulating effect of Panax ginseng extract (PGE) on radiation-induced lung injury (RILI) by measuring early changes in oxidative stress levels, cytokine expression, and the histopathology of mouse lung tissue treated with high dose of X-ray radiation. The mice were pretreated with 25, 50, and 100-mg/kg doses of PGE orally for four consecutive days, and their thoraces were then exposed to 15-Gy X-ray radiation 1 h after the last administration of PGE on day 4. The pretreatments with 50 and 100 mg/kg PGE led to significant reductions in the elevation of lipid peroxidation levels at 2 and 10 days, respectively, after irradiation. The mice pretreated with PGE exhibited dose-dependent reductions in the irradiation-induced production of tumor necrosis factor α and transforming growth factor β1 cytokines 10 days after irradiation, with these reductions nearly reaching the control levels after the 100-mg/kg dose. Furthermore, together with providing significant protection against reductions in catalase activity and glutathione content, pretreatment with 100 mg/kg PGE resulted in a marked attenuation of the severity of inflammatory changes in lung tissue 10 days after irradiation. A high pretreatment dose of PGE may be a useful pharmacological approach for protection against RILI.

  14. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function.

    PubMed

    Krug, Anne; French, Anthony R; Barchet, Winfried; Fischer, Jens A A; Dzionek, Andrzej; Pingel, Jeanette T; Orihuela, Michael M; Akira, Shizuo; Yokoyama, Wayne M; Colonna, Marco

    2004-07-01

    Natural interferon-producing cells (IPC) respond to viruses by secreting type I interferon (IFN) and interleukin-12 (IL-12). Toll-like receptor (TLR) 9 mediates IPC recognition of some of these viruses in vitro. However, whether TLR9-induced activation of IPC is necessary for an effective antiviral response in vivo is not clear. Here, we demonstrate that IPC and dendritic cells (DC) recognize murine cytomegalovirus (MCMV) through TLR9. TLR9-mediated cytokine secretion promotes viral clearance by NK cells that express the MCMV-specific receptor Ly49H. Although depletion of IPC leads to a drastic reduction of the IFN-alpha response, this allows other cell types to secrete IL-12, ensuring normal IFN-gamma and NK cell responses to MCMV. We conclude that the TLR9/MyD88 pathway mediates antiviral cytokine responses by IPC, DC, and possibly other cell types, which are coordinated to promote effective NK cell function and MCMV clearance.

  15. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers

    SciTech Connect

    Peterson, V.M.; Adamovicz, J.J.; Madonna, G.S.; Gause, W.C.; Elliott, T.B.; Moore, M.M.; Ledney, G.D.; Jackson, W.E. III

    1994-09-01

    Prompt, cytokine-mediated restoration of hematopoiesis is a prerequisite for survival after irradiation. Therapy with biologic response modifiers (BRMs), such as LPS, 3D monophosphoryl lipid A (MPL), and synthetic trehalose dicrynomycolate (S-TDCM) presumably accelerates hematopoietic recovery after irradiation are poorly defined. One hour after sublethal (7.0 Gy) {sup 60}Co gamma irradiation, B6D2F1/J female mice received a single i.p. injection of LPS, MPL, S-TDCM, an extract from Serratia marcescens (Sm-BRM), or Tween 80 in saline (TS). Five hours later, a quantitative reverse transcription-PCR assay demonstrated marked splenic gene expression for IL-1{beta}, IL-3, IL-6, and granulocyte-CSF (G-CSF). Enhanced gene expression for TNF-{alpha}, macrophage-CSF (M-CSF), and stem cell factor (SCF) was not detected. Injection of any BRM further enhanced cytokine gene expression and plasma levels of CSF activity within 24 h after irradiation and hastened bone marrow recovery. Mice injected with S-TDCM or Sm-BRM sustained expression of the IL-6 gene for at least 24 h after irradiation. Sm-BRM-treated mice exhibited greater gene expression for IL-1{beta}, IL-3, TNF-{alpha}, and G-CSF at day 1 than any other BRM. When challenged with 2 LD{sub 50/30} of Klebsiella pneumoniae 4 days after irradiation, 100% of Sm-BRM-treated mice and 70% of S-TDCM-treated mice survived, whereas {le}30% of mice treated with LPS, MPL, or TS survived. Thus, sublethal irradiation induces transient, splenic cytokine gene expression that can be differentially amplified and prolonged by BRMs. BRMs that sustained and/or enhanced irradiation-induced expression of specific cytokine genes improved survival after experimental infection. 67 refs., 7 figs., 1 tab.

  16. Dataset of proinflammatory cytokine and cytokine receptor gene expression in rainbow trout (Oncorhynchus mykiss) measured using a novel GeXP multiplex, RT-PCR assay.

    PubMed

    Kutyrev, Ivan; Cleveland, Beth; Leeds, Timothy; Wiens, Gregory D

    2017-04-01

    A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset includes expression values for drpt, il11a, il1b1, il1b2, il1b3, il1r-like-1(e3-5), il1r-like-1(e9-11), il1r1-like-a, il1r1-like-b, il1r2, saa, tnfa1, tnfa2, tnfa3, tnfrsf1a, tnfrsf1a-like-a, tnfrsf1a-like-b, tnfrsf5, and tnfrsf9. Gene expression was measured at four time-points post-challenge in both a resistant line (ARS-Fp-R) and a susceptible line (ARS-Fp-S) of rainbow trout. In addition, fish body weight, spleen index and the Flavobacterium psychrophilum load are reported. These data are an extension of information presented and discussed in "Proinflammatory cytokine and cytokine receptor gene expression kinetics following challenge with Flavobacterium psychrophilum in resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss)" (Kutyrev et al., 2016) [1].

  17. Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity

    PubMed Central

    Dias, Joana; Sobkowiak, Michał J.; Sandberg, Johan K.; Leeansyah, Edwin

    2016-01-01

    Mucosa-associated invariant T cells are a large and relatively recently described innate-like antimicrobial T-cell subset in humans. These cells recognize riboflavin metabolites from a range of microbes presented by evolutionarily conserved major histocompatibility complex, class I-related molecules. Given the innate-like characteristics of mucosa-associated invariant T cells and the novel type of antigens they recognize, new methodology must be developed and existing methods refined to allow comprehensive studies of their role in human immune defense against microbial infection. In this study, we established protocols to examine a range of mucosa-associated invariant T-cell functions as they respond to antigen produced by Escherichia coli. These improved and dose- and time-optimized experimental protocols allow detailed studies of MR1-dependent mucosa-associated invariant T-cell responses to Escherichia coli pulsed antigen-presenting cells, as assessed by expression of activation markers and cytokines, by proliferation, and by induction of apoptosis and death in major histocompatibility complex, class I-related–expressing target cells. The novel and optimized protocols establish a framework of methods and open new possibilities to study mucosa-associated invariant T-cell immunobiology, using Escherichia coli as a model antigen. Furthermore, we propose that these robust experimental systems can also be adapted to study mucosa-associated invariant T-cell responses to other microbes and types of antigen-presenting cells. PMID:27034405

  18. Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1).

    PubMed

    Little, A R; Benkovic, S A; Miller, D B; O'Callaghan, J P

    2002-01-01

    Enhanced expression of proinflammatory cytokines and chemokines has long been linked to neuronal and glial responses to brain injury. Indeed, inflammation in the brain has been associated with damage that stems from conditions as diverse as infection, multiple sclerosis, trauma, and excitotoxicity. In many of these brain injuries, disruption of the blood-brain barrier (BBB) may allow entry of blood-borne factors that contribute to, or serve as the basis of, brain inflammatory responses. Administration of trimethyltin (TMT) to the rat results in loss of hippocampal neurons and an ensuing gliosis without BBB compromise. We used the TMT damage model to discover the proinflammatory cytokines and chemokines that are expressed in response to neuronal injury. TMT caused pyramidal cell damage within 3 days and a substantial loss of these neurons by 21 days post dosing. Marked microglial activation and astrogliosis were evident over the same time period. The BBB remained intact despite the presence of multiple indicators of TMT-induced neuropathology. TMT caused large increases in whole hippocampal-derived monocyte chemoattractant protein (MCP)-1 mRNA (1,000%) by day 3 and in MCP-1 (300%) by day 7. The mRNA levels for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, cytokines normally expressed during the earliest stage of inflammation, were not increased up to 21 days post dosing. Lipopolysaccharide, used as a positive control, caused large inductions of cytokine mRNA in liver, as well as an increase in IL-1beta in hippocampus, but it did not result in the induction of astrogliosis. The data suggest that enhanced expression of the proinflammatory cytokines, TNF-alpha, IL-1beta and IL-6, is not required for neuronal and glial responses to injury and that MCP-1 may serve a signaling function in the damaged CNS that is distinct from its role in proinflammatory events.

  19. Longitudinal Study of Cytokine Expression, Lipid Profile and Neuronal Growth Factors in Human Breast Milk from Term and Preterm Deliveries.

    PubMed

    Collado, Maria Carmen; Santaella, Marina; Mira-Pascual, Laia; Martínez-Arias, Elena; Khodayar-Pardo, Parisá; Ros, Gaspar; Martínez-Costa, Cecilia

    2015-10-19

    Breast milk (BM) is considered as a reference for infant nutrition. The role of bioactive components, such as cytokines, hormones, growth factors (GFs) and fatty acids (FAs) is poorly known, but they might be implicated in immune response development. The aim of this study was to identify the lipid profile and the spectrum of cytokines and neuronal GF in BM samples and analyse the influence of gestational age and lactation time on these components. This study used a longitudinal prospective method for the characterization of cytokines, FAs and GFs global profiles in 120 BM samples from 40 healthy mothers (20 preterm and 20 term) collected as colostrum, transitional and mature milk. The cytokines were analysed by protein array (Ray Bio® Human Cytokine Array G6. Ray Biotech, Inc. Norcross, GA, USA) and the FAs were analysed by gas chromatography. The FA profile was similar between the term and the preterm BM samples. Omega-3-α-linoleic and docosahexaenoic acid (DHA) and omega-6-linoleic acid were the most abundant in the term and preterm samples during lactation. Omega-3 ETA and omega-3 EPA we observed exclusively in the preterm samples. The cytokine profile showed a different trend based on gestational age. A significantly higher expression of neurotrophic factors was found in the mature preterm milk samples as compared to the mature term samples. Our study is the first to identify the influence and interactions of perinatal factors on cytokine, GFs and FAs in human milk.

  20. Longitudinal Study of Cytokine Expression, Lipid Profile and Neuronal Growth Factors in Human Breast Milk from Term and Preterm Deliveries

    PubMed Central

    Collado, Maria Carmen; Santaella, Marina; Mira-Pascual, Laia; Martínez-Arias, Elena; Khodayar-Pardo, Parisá; Ros, Gaspar; Martínez-Costa, Cecilia

    2015-01-01

    Breast milk (BM) is considered as a reference for infant nutrition. The role of bioactive components, such as cytokines, hormones, growth factors (GFs) and fatty acids (FAs) is poorly known, but they might be implicated in immune response development. The aim of this study was to identify the lipid profile and the spectrum of cytokines and neuronal GF in BM samples and analyse the influence of gestational age and lactation time on these components. This study used a longitudinal prospective method for the characterization of cytokines, FAs and GFs global profiles in 120 BM samples from 40 healthy mothers (20 preterm and 20 term) collected as colostrum, transitional and mature milk. The cytokines were analysed by protein array (Ray Bio® Human Cytokine Array G6. Ray Biotech, Inc. Norcross, GA, USA) and the FAs were analysed by gas chromatography. The FA profile was similar between the term and the preterm BM samples. Omega-3-α-linoleic and docosahexaenoic acid (DHA) and omega-6-linoleic acid were the most abundant in the term and preterm samples during lactation. Omega-3 ETA and omega-3 EPA we observed exclusively in the preterm samples. The cytokine profile showed a different trend based on gestational age. A significantly higher expression of neurotrophic factors was found in the mature preterm milk samples as compared to the mature term samples. Our study is the first to identify the influence and interactions of perinatal factors on cytokine, GFs and FAs in human milk. PMID:26492267

  1. Inhibition of NF-kB activation and cytokines production in THP-1 monocytes by 2-styrylchromones.

    PubMed

    Gomes, Ana; Capela, João P; Ribeiro, Daniela; Freitas, Marisa; Silva, Artur M S; Pinto, Diana C G A; Santos, Clementina M M; Cavaleiro, José A S; Lima, José L F C; Fernandes, Eduarda

    2015-01-01

    Nuclear factor kappa B (NF-kB) is one of the most important transcription factors whose modulation triggers a cascade of signaling events, namely the expression of many cytokines, enzymes, chemokines, and adhesion molecules, some of which being potential key targets for intervention in the treatment of inflammatory conditions. The 2-styrylchromones (2-SC) designation represents a well-recognized group of natural and synthetic chromones, vinylogues of flavones (2-phenylchromones). Several 2-SC were recently tested for their anti-inflammatory potential, regarding the arachidonic acid metabolic cascade, showing some motivating results. In addition, several flavones with structural similarities to 2-SC have shown NF-kB inhibitory properties. Hence, the aim of the present work was to continue the investigation on the interference of 2-SC in inflammatory pathways. Herein we report their effects on lipopolysaccharide (LPS)-induced NF-kB activation and consequent production of proinflammatory cytokines/chemokine, using a human monocytic cell line (THP-1). From the twelve 2-SC tested, three of them were able to significantly inhibit the NF-kB activation and to reduce the production of the proinflammatory cytokines/chemokine. The compound 3',4',5-trihydroxy-2- styrylchromone stood up as the most active in both assays, being a promising candidate for an anti-inflammatory drug.

  2. Activity of cytokine-induced killer cells against bone and soft tissue sarcoma

    PubMed Central

    Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Aglietta, Massimo; Grignani, Giovanni

    2014-01-01

    Cytokine-induced killer (CIK) cells are T lymphocytes expanded ex vivo that are endowed with MHC-independent tumoricidal activity. We have recently demonstrated, in a preclinical setting, that CIK cells are active against autologous bone and soft tissue sarcomas. In particular, CIK cells killed a putative sarcoma stem cell population that may underlie disease relapse and chemoresistance. PMID:25050197

  3. Regulatory T cell levels and cytokine production in active non-infectious uveitis: in-vitro effects of pharmacological treatment

    PubMed Central

    Molins, B; Mesquida, M; Lee, R W J; Llorenç, V; Pelegrín, L; Adán, A

    2015-01-01

    The aim of this study was to quantify the proportion of regulatory T cells (Treg) and cytokine expression by peripheral blood mononuclear cells (PBMCs) in patients with active non-infectious uveitis, and to evaluate the effect of in-vitro treatment with infliximab, dexamethasone and cyclosporin A on Treg levels and cytokine production in PBMCs from uveitis patients and healthy subjects. We included a group of 21 patients with active non-infectious uveitis and 18 age-matched healthy subjects. The proportion of forkhead box protein 3 (FoxP3)+ Treg cells and intracellular tumour necrosis factor (TNF)-α expression in CD4+ T cells was determined by flow cytometry. PBMCs were also either rested or activated with anti-CD3/anti-CD28 and cultured in the presence or absence of dexamethasone, cyclosporin A and infliximab. Supernatants of cultured PBMCs were collected and TNF-α, interleukin (IL)-10, IL-17 and interferon (IFN)-γ levels were measured by enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in nTreg levels between uveitis patients and healthy subjects. However, PBMCs from uveitis patients produced significantly higher amounts of TNF-α and lower amounts of IL-10. Dexamethasone treatment in vitro significantly reduced FoxP3+ Treg levels in PBMCs from both healthy subjects and uveitis patients, and all tested drugs significantly reduced TNF-α production in PBMCs. Dexamethasone and cyclosporin A significantly reduced IL-17 and IFN-γ production in PBMCs and dexamethasone up-regulated IL-10 production in activated PBMCs from healthy subjects. Our results suggest that PBMCs from patients with uveitis express more TNF-α and less IL-10 than healthy subjects, and this is independent of FoxP3+ Treg levels. Treatment with infliximab, dexamethasone and cyclosporin A in vitro modulates cytokine production, but does not increase the proportion of FoxP3+ Treg cells. PMID:25354724

  4. Regulatory T cell levels and cytokine production in active non-infectious uveitis: in-vitro effects of pharmacological treatment.

    PubMed

    Molins, B; Mesquida, M; Lee, R W J; Llorenç, V; Pelegrín, L; Adán, A

    2015-03-01

    The aim of this study was to quantify the proportion of regulatory T cells (Treg ) and cytokine expression by peripheral blood mononuclear cells (PBMCs) in patients with active non-infectious uveitis, and to evaluate the effect of in-vitro treatment with infliximab, dexamethasone and cyclosporin A on Treg levels and cytokine production in PBMCs from uveitis patients and healthy subjects. We included a group of 21 patients with active non-infectious uveitis and 18 age-matched healthy subjects. The proportion of forkhead box protein 3 (FoxP3)(+) Treg cells and intracellular tumour necrosis factor (TNF)-α expression in CD4(+) T cells was determined by flow cytometry. PBMCs were also either rested or activated with anti-CD3/anti-CD28 and cultured in the presence or absence of dexamethasone, cyclosporin A and infliximab. Supernatants of cultured PBMCs were collected and TNF-α, interleukin (IL)-10, IL-17 and interferon (IFN)-γ levels were measured by enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in nTreg levels between uveitis patients and healthy subjects. However, PBMCs from uveitis patients produced significantly higher amounts of TNF-α and lower amounts of IL-10. Dexamethasone treatment in vitro significantly reduced FoxP3(+) Treg levels in PBMCs from both healthy subjects and uveitis patients, and all tested drugs significantly reduced TNF-α production in PBMCs. Dexamethasone and cyclosporin A significantly reduced IL-17 and IFN-γ production in PBMCs and dexamethasone up-regulated IL-10 production in activated PBMCs from healthy subjects. Our results suggest that PBMCs from patients with uveitis express more TNF-α and less IL-10 than healthy subjects, and this is independent of FoxP3(+) Treg levels. Treatment with infliximab, dexamethasone and cyclosporin A in vitro modulates cytokine production, but does not increase the proportion of FoxP3(+) Treg cells.

  5. Supercritical extract of Seabuckthorn Leaves (SCE200ET) inhibited endotoxemia by reducing inflammatory cytokines and nitric oxide synthase 2 expression.

    PubMed

    Jayashankar, Bindhya; Mishra, K P; Ganju, L; Singh, S B

    2014-05-01

    Endotoxins from infectious organisms lead to sepsis, a systemic inflammatory response, and a major cause of death. Numerous studies have shown the potential role of plants and plant-derived compounds in the suppression of LPS induced endotoxemia in vivo. In the present study, we have identified a plant namely Seabuckthorn (Hippophae rhamnoides L.) as a potent agent for the treatment of endotoxemia. The objective of the study was to investigate the influence of Supercritical Extract of Seabuckthorn Leaves (SCE200ET) and its active component Isorhamnetin (IR) on the LPS induced endotoxemia in Balb/c mice by measuring the level of nitric oxide (NO), TNF-α and IL-6. Expression of COX-2 and iNOS was measured to understand the involvement of various pathways in the mechanism of action of SCE200ET and IR. The results indicated that SCE200ET and IR inhibited LPS induced NO production by peritoneal macrophages. Cytokines mediated effector functions were influenced by the reduction of IL-6 and TNF-α production and CD40 expression was also markedly diminished in the extract or IR treated groups. In addition, the anti-inflammatory properties were further characterized by decreased expression of COX-2 and iNOS proteins. Fractionation and phytochemical analysis of the extract by RP-HPLC led to identification of isorhamnetin, as bioactive component. Thus, SCE200ET extract and its active component Isorhamnetin could be potential therapeutic agents for the treatment of endotoxin induced sepsis.

  6. Effect of leptin on activation and cytokine synthesis in peripheral blood lymphocytes of malnourished infected children

    PubMed Central

    Rodríguez, L; Graniel, J; Ortiz, R

    2007-01-01

    Malnutrition compromises immune function, resulting in reduced resistance to infection. Recent animal and human studies have suggested that leptin is capable of modulating the immune response and that its levels, which are regulated by nutritional status, fall rapidly during starvation. Leptin deficiency is associated with impaired cell-mediated immunity, an increased incidence of infectious disease and an associated increase in mortality. The purpose of this study was to examine the effect of leptin on activation and cytokine production in peripheral blood T cells from malnourished children. The data obtained in the present study demonstrate that leptin produced an increase in the percentage of CD4+ and CD8+ cells producing interleukin (IL)-2 and interferon (IFN)-γ in 24-h cultures. Moreover, leptin decreased the percentage of CD4+ and CD8+ cells producing IL-4 and IL-10, and enhanced activation of circulating T cells when co-stimulated by phorbol 12-myristate 13 acetate (PMA)–ionomycin. Leptin enhanced the expression of activation markers CD69 and CD25 in both CD4+ and CD8+ cells after 5 h of stimulation. In conclusion, the results obtained show that leptin modulates CD4+ and CD8+ cell activation towards a T helper 1 (Th1) phenotype by stimulating the synthesis of IL-2 and IFN-γ. In contrast, leptin decreases IL-4 and IL-10 production. Moreover, leptin enhanced the expression of CD69 and CD25 on CD4+ and CD8+ cells after stimulation with PMA–ionomycin. PMID:17355247

  7. Differential expression of cytokines in subcutaneous and marrow fat of aging C57BL/6J mice.

    PubMed

    Gasparrini, Marco; Rivas, Daniel; Elbaz, Alexandre; Duque, Gustavo

    2009-09-01

    Increasing marrow adipogenesis plays a causative role in the pathogenesis of age-related bone loss that could be associated with high cytokine production. In this study, we characterized the age-related changes in cytokine expression by bone marrow (BM) adipocytes as compared with subcutaneous (SC) fat. BM and SC adipocytes were isolated from young (4 months) and old (24 months) male C57BL/6J. Total proteins were extracted and proteomic analysis of 96 cytokines was performed using a cytokine antibody array. Proteins showing a significant change were grouped according with their known function in bone. We found a significant age-induced difference in the expression of 53 cytokines. As compared with SC adipocytes, aging BM adipocytes showed a more pro-adipogenic, anti-osteoblastogenic and pro-apoptotic phenotype. These data suggest that, with aging, BM adipocytes become significantly more toxic than SC adipocytes. These cytokines, if secreted, could play a role in the pathogenesis of age-related bone loss by affecting other cells within the marrow milieu.

  8. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.

    PubMed

    Trune, Dennis R; Kempton, Beth; Hausman, Frances A; Larrain, Barbara E; MacArthur, Carol J

    2015-08-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media.

  9. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells

    PubMed Central

    ODEWUMI, CAROLINE; LATINWO, LEKAN M.; SINCLAIR, ANDRE; BADISA, VEERA L.D.; ABDULLAH, AHKINYALA; BADISA, RAMESH B.

    2015-01-01

    Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)-1α and IL-10 cytokines at various concentrations and incubation durations were assessed in MRC-9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme-linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC-9 lung cells. In the normal MRC-9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC-9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity. PMID:26397147

  10. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    PubMed Central

    2012-01-01

    . However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and/or metabolic activity is insufficient to predict their pathogenicity. Moreover, they show that acute responses of the lung epithelium, including up-regulation of genes linked to inflammation, oxidative stress, and proliferation, as well as secretion of inflammatory and proliferative mediators, can be indicative of pathologic potential using either immortalized lines (BEAS 2B) or primary cells (NHBE). Assessment of the degree and magnitude of these responses in vitro are suggested as predictive in determining the pathogenicity of potentially harmful particulates. PMID:22300531

  11. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells

    PubMed Central

    Jia, Yin-ping; Zhu, Pan; Fang, Yao; Zhang, Zhu-jun; Mao, Xu-hu; Li, Qian; Zeng, Dong-Zhu

    2016-01-01

    Fusobacterium nucleatum (F. nucleatum) plays a critical role in gastrointestinal inflammation. However, the exact mechanism by which F. nucleatum contributes to inflammation is unclear. In the present study, it was revealed that F. nucleatum could induce the production of proinflammatory cytokines (IL-8, IL-1β and TNF-α) and reactive oxygen species (ROS) in Caco-2 colorectal) adenocarcinoma cells. Furthermore, ROS scavengers (NAC or Tiron) could decrease the production of proinflammatory cytokines during F. nucleatum infection. In addition, we observed that autophagy is impaired in Caco-2 cells after F. nucleatum infection. The production of proinflammatory cytokines and ROS induced by F. nucleatum was enhanced with either autophagy pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (ATG5 or ATG12) in Caco-2 cells. Taken together, these results indicate that F. nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 Cells. PMID:27828984

  12. Expression of proinflammatory cytokines by hepatic macrophages in acute classical swine fever.

    PubMed

    Núñez, A; Gómez-Villamandos, J C; Sánchez-Cordón, P J; Fernández de Marco, M; Pedrera, M; Salguero, F J; Carrasco, L

    2005-07-01

    Fourteen pigs were inoculated with the 'Alfort 187' strain of classical swine fever (CSF) virus and killed in pairs at 2, 4, 7, 9, 11, 14 or 17 days post-inoculation for histopathological, ultrastructural and immunohistochemical examination. For the latter method, the antibodies used were those against viral antigen Gp55, porcine myeloid marker SWC3, IL-1alpha, IL-6, TNF-alpha and Factor VIII-related antigen. Activation and increase in the number of hepatic macrophages was observed following viral detection in liver, as well as an increase in IL-1alpha and IL-6 production, mainly by Kupffer cells. Maximum detection of viral antigen was observed in the middle stage of the experiment coinciding with overexpression of the three cytokines studied, with IL-6 production by interstitial macrophages prominent at the end. Additionally, the labelling of platelets for Factor VIII-related antigen and the ultrastructural study of the sinusoids revealed activation and aggregation of thrombocytes close to Kupffer cells at the beginning of the infection. The liver seems to play a prominent role in the origin of the thrombocytopenia that occurs in CSF and contributes to the overexpression of proinflammatory cytokines considered responsible for the disorders observed during the course of the disease.

  13. Deletion of a coordinate regulator of type 2 cytokine expression in mice

    SciTech Connect

    Mohrs, Markus; Blankespoor, Catherine M.; Wang, Zhi-En; Loots, Gaby G.; Hadeiba, Husein; Shinkai, Kanade; Rubin, Edward M.; Locksley, Richard M.

    2001-07-30

    Mechanisms underlying the differentiation of stable T helper subsets will be important in understanding how discrete types of immunity develop in response to different pathogens. An evolutionarily conserved {approx}400 base pair non-coding sequence in the IL-4/IL-13 intergenic region, designated CNS-1, was deleted in mice. The capacity to develop Th2 cells was compromised in vitro and in vivo in the absence of CNS-1. Despite the profound effect in T cells, mast cells from CNS-1-deleted mice maintained their capacity to produce IL-4. A T cell-specific element critical for optimal expression of type 2 cytokines may represent evolution of a regulatory sequence exploited by adaptive immunity.

  14. Sexual activity modulates shifts in Th1/Th2 cytokine profile across the menstrual cycle: An observational study

    PubMed Central

    Lorenz, Tierney K.; Heiman, Julia R.; Demas, Gregory E.

    2015-01-01

    Objective To investigate if sexual activity moderated menstrual cycle-related shifts in cytokines associated with helper-T type 1 (Th1) cells (e.g., interferon-γ, IFN-γ) and helper T type 2 (Th2) cells (e.g., interleukin-4, IL-4). Immune activity shifts across the menstrual cycle, with higher follicular-phase Th1 cell activity, but higher luteal-phase Th2 cell activity There is little known about how social behaviors alter Th1/Th2 ratios, despite evidence that psychosocial factors can influence immunity. Of particular interest is how sexual activity influences immune responses that may support conception, such as the Th1/Th2 balance. Design Participants provided saliva samples at four timepoints (menstrual, follicular, ovulatory, and luteal), which were assayed using enzyme-linked immunosorbent assays (ELISA). Setting Academic laboratory. Participants Thirty healthy premenopausal women (16 sexually abstinent, 14 sexually active), not taking hormonal or immunoactive medications. Interventions None. Main outcome measures Salivary estradiol (E2), progesterone (P4), IFN-γ, IL-4. Results Sexually active, but not abstinent, women were significantly more likely to express Th2-like cytokine ratios (IFN-γ < IL-4) in the luteal phase than other phases. Similarly, sexually active women had significantly higher P4, and higher P4 to E2 (P/E) ratios, in the luteal phase than did abstinent women. The P/E ratio mediated menstrual variations in cytokine ratios in sexually active women. Conclusion These results support the hypothesis that shifts in immune response across the menstrual cycle may reflect tradeoffs between reproduction and immunity. These findings point to the need for further research on the interaction between sexual behavior, the menstrual cycle, and immune response. PMID:26385401

  15. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  16. The Cytotoxic Enterotoxin of Aeromonas hydrophila Induces Proinflammatory Cytokine Production and Activates Arachidonic Acid Metabolism in Macrophages

    PubMed Central

    Chopra, A. K.; Xu, X.-J.; Ribardo, D.; Gonzalez, M.; Kuhl, K.; Peterson, J. W.; Houston, C. W.

    2000-01-01

    An aerolysin-related cytotoxic enterotoxin (Act) of Aeromonas hydrophila possesses multiple biological activities, which include its ability to lyse red blood cells, destroy tissue culture cell lines, evoke a fluid secretory response in ligated intestinal loop models, and induce lethality in mice. The role of Act in the virulence of the organism has been demonstrated. In this study, we evaluated the potential of Act to induce production of proinflammatory cytokines associated with Act-induced tissue injury and Act's capacity to activate in macrophages arachidonic acid (AA) metabolism that leads to production of eicosanoids (e.g., prostaglandin E2 [PGE2]). Our data indicated that Act stimulated the production of tumor necrosis factor alpha and upregulated the expression of genes encoding interleukin-1β (IL-1β) and IL-6 in the murine macrophage cell line RAW264.7. Act also activated transcription of the gene encoding inducible nitric oxide synthase. Act evoked the production of PGE2 coupled to the cyclooxygenase-2 (COX-2) pathway. AA is a substrate for PGE2, and Act produced AA from phospholipids by inducing group V secretory phospholipase A2. We also demonstrated that Act increased cyclic AMP (cAMP) production in macrophages. cAMP, along with PGE2, could potentiate fluid secretion in animal models because of infiltration and activation of macrophages resulting from Act-induced tissue injury. After Act treatment of RAW cells, we detected an increased translocation of NF-κB and cAMP-responsive element binding protein (CREB) to the nucleus using gel shift assays. Act also upregulated production of antiapoptotic protein Bcl-2 in macrophages, suggesting a protective role for Bcl-2 against cell death induced by proinflammatory cytokines. The increased expression of genes encoding the proinflammatory cytokines, COX-2, and Bcl-2 appeared correlated with the activation of NF-κB and CREB. This is the first report of the detailed mechanisms of action of Act from A

  17. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death

    PubMed Central

    DeLaney, Alexandra; Santos-Marrero, Melanie; Grier, Jennifer T.; Sun, Yan; Zwack, Erin E.; Hu, Baofeng; Olsen, Tayla M.; Rongvaux, Anthony; López, Carolina B.; Oberst, Andrew; Beiting, Daniel P.; Brodsky, Igor E.

    2016-01-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense. PMID:27737018

  18. Caspase‐8 regulates the expression of pro‐ and anti‐inflammatory cytokines in human bone marrow‐derived mesenchymal stromal cells

    PubMed Central

    Moen, Siv H.; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N.; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J.; Sponaas, Anne‐Marit

    2016-01-01

    Abstract Introduction Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll‐like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase‐8 is involved in activation of NF‐kB downstream of TLRs in immune cells. Here we investigated the role of caspase‐8 in regulating TLR‐induced cytokine production from human bone marrow‐derived mesenchymal stromal cells (hBMSCs). Methods Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase‐8 were silenced using siRNA. Caspase‐8 was also inhibited using a caspase‐8 inhibitor, z‐IEDT. Results We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro‐inflammatory cytokines in a TLR‐dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti‐inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase‐8 was involved in the induction of IL‐ IL‐1β, IL‐6, CXCL10, and in the inhibition of HGF and TGFβ. Conclusion Caspase‐8 appears to modulate hBMSCs into gaining a pro‐inflammatory phenotype. Therefore, inhibiting caspase‐8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders. PMID:27621815

  19. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways.

    PubMed

    Zhang, Jing; Liu, Yangang; Beard, Caroline; Tuveson, David A; Jaenisch, Rudolf; Jacks, Tyler E; Lodish, Harvey F

    2007-06-15

    When overexpressed in primary erythroid progenitors, oncogenic Ras leads to the constitutive activation of its downstream signaling pathways, severe block of terminal erythroid differentiation, and cytokine-independent growth of primary erythroid progenitors. However, whether high-level expression of oncogenic Ras is required for these phenotypes is unknown. To address this issue, we expressed oncogenic K-ras (K-ras(G12D)) from its endogenous promoter using a tetracycline-inducible system. We show that endogenous K-ras(G12D) leads to a partial block of terminal erythroid differentiation in vivo. In contrast to results obtained when oncogenic Ras was overexpressed from retroviral vectors, endogenous levels of K-ras(G12D) fail to constitutively activate but rather hyperactivate cytokine-dependent signaling pathways, including Stat5, Akt, and p44/42 MAPK, in primary erythroid progenitors. This explains previous observations that hematopoietic progenitors expressing endogenous K-ras(G12D) display hypersensitivity to cytokine stimulation in various colony assays. Our results support efforts to modulate Ras signaling for treating hematopoietic malignancies.

  20. Profiling of Cytokines Secreted by Conventional Aqueous Outflow Pathway Endothelial Cells Activated In Vitro and Ex Vivo With Laser Irradiation

    PubMed Central

    Alvarado, Jorge A.; Chau, Phuonglan; Wu, Jianfeng; Juster, Richard; Shifera, Amde Selassie; Geske, Michael

    2015-01-01

    Purpose To profile which cytokine genes are differentially expressed (DE) as up- or downregulated by cultured human trabecular meshwork (TMEs) and Schlemm's canal endothelial cells (SCEs) after three experimental treatments consisting of selective laser trabeculoplasty (SLT) irradiation, exposure to media conditioned either by SLT-irradiated TMEs (TME-cm) or by SCEs (SCE-cm). Also, to profile which cytokines are upregulated ex vivo in SLT-irradiated human conventional aqueous outflow pathway (CAOP) tissues. Methods After each treatment, Affymetrix microarray assays were used to detect upregulated and downregulated genes for cytokines and their receptors in TMEs and SCEs. ELISA and protein antibody arrays were used to detect upregulated cytokines secreted in SLT-irradiated CAOP tissues ex vivo. Results The SLT irradiation upregulated numerous cytokine genes in TMEs, but only a few in SCEs. Exposure to TME- and SCE-cm induced SCEs to upregulate many more cytokine genes than TMEs. Selective laser trabeculoplasty irradiation and exposure to TME-cm downregulated several cytokine genes in TMEs but none in SCEs. Selective laser trabeculoplasty irradiation induced one upregulated and three downregulated cytokine-receptor genes in TMEs but none in SCEs. Exposure to TME-cm induced upregulation of one and downregulation of another receptor gene in TMEs, whereas two unique cytokine-receptor genes were upregulated in SCEs. Cytokine protein expression analysis showed that at least eight cytokines were upregulated in SLT-irradiated human CAOP tissues in situ/ex vivo. Conclusions This study has helped us identify a cytokine signaling pathway and to consider newly identified mechanisms regulating aqueous outflow that may lay the foundation for the future development of cytokine-based glaucoma therapies. PMID:26529044

  1. Impaired Expression of Cytokines as a Result of Viral Infections with an Emphasis on Small Ruminant Lentivirus Infection in Goats

    PubMed Central

    Jarczak, Justyna; Kaba, Jarosław; Reczyńska, Daria; Bagnicka, Emilia

    2016-01-01

    Knowing about the genes involved in immunity, and being able to identify the factors influencing their expressions, helps in gaining awareness of the immune processes. The qPCR method is a useful gene expression analysis tool, but studies on immune system genes are still limited, especially on the caprine immune system. Caprine arthritis encephalitis, a disease caused by small ruminant lentivirus (SRLV), causes economic losses in goat breeding, and there is no therapy against SRLV. The results of studies on vaccines against other viruses are promising. Moreover, the Marker-Assisted Selection strategy against SRLV is possible, as has been shown in sheep breeding. However, there are still many gaps in our knowledge on the caprine immune response to infection. All types of cytokines play pivotal roles in immunity, and SRLV infection influences the expression of many cytokines in different types of cells. This information encouraged the authors to examine the results of studies conducted on SRLV and other viral infections, with an emphasis on the expression of cytokine genes. This review attempts to summarize the results of studies on the expression of cytokines in the context of the SRLV infection. PMID:27399757

  2. Notochordal Cells Influence Gene Expression of Inflammatory Mediators of Annulus Fibrosus Cells in Proinflammatory Cytokines Stimulation

    PubMed Central

    Moon, Hong Joo; Joe, Hoon; Kwon, Taek Hyun; Choi, Hye-Kyoung; Park, Youn Kwan

    2010-01-01

    Objective Notochordal cells in the intervertebral disc interact with nucleus pulposus (NP) cells and support the maintenance of disc homeostasis by regulation of matrix production. However, the influence of notochordal cells has not been evaluated in the annulus fibrosus (AF), which is the primary pain generator in the disc. We hypothesized that the notochordal cell has the capacity to modulate inflammatory mediators secreted by AF cells secondary to stimulation. Methods Notochordal and AF cells were isolated from adult New Zealand white rabbits. AF pellets were cultured with notochordal cell clusters or in notochordal cell-conditioned media (NCCM) for 24 or 48 hours with proinflammatory cytokines at varying concentrations. Gene expression in AF pellets were assayed for nitric oxide synthase (iNOS), cyclo-oxygenase (COX)-2, and interleukin (IL)-6 by real time reverse transcriptase polymerase chain reaction (RT-PCR). Results AF pellet in NCCM significantly decreased the iNOS and COX-2 messenger ribonucleic acid (mRNA) levels compared to AF pellets alone and AF pellets with notochordal cells (p < 0.05). AF pellet resulted in dose-dependent iNOS and COX-2 expression in response to IL-1β, stimulation, demonstrating that 1 ng/ml for 24 hours yielded a maximal response. AF pellet in NCCM significantly decreased the expression of iNOS and COX-2 in response to 1ng/ml IL-1β, stimulation at 24 hours (p < 0.05). There was no difference in IL-6 expression compared to AF pellets alone or AF pellets with notochordal cell clusters. Conclusion We conclude that soluble factors from notochordal cells mitigate the gene expression of inflammatory mediators in stimulated AF, as expected after annular injury, suggesting that notochordal cells could serve as a novel therapeutic approach in symptomatic disc development. PMID:20717505

  3. Dectin-1 gene polymorphism is associated with susceptibility to nonspecific digestive disorders and cytokine expression in rabbits.

    PubMed

    Zhang, G W; Zhang, W X; Chen, S Y; Yoshimura, Y; Isobe, N; Lai, S J

    2013-09-01

    Dectin-1 plays a critical role in the pathogenesis of intestinal inflammation by recognizing the pathogenic agents and mediating cytokine responses. The objective of this study was to establish the association between dectin-1 polymorphisms and susceptibility to nonspecific digestive disorders (NSDD) and cytokine expression in rabbits. A total of 7 coding SNP were detected in dectin-1 gene. The genetic association between SNP (ss707197675A > G) and susceptibility to NSDD was evaluated using a case-control study (178 cases and 174 controls). The results revealed that the A allele was associated with an increased risk of developing NSDD in rabbits. The AA genotype significantly increased the genetic susceptibility to NSDD with odds ratio of 4.76 (95% confidence interval, 1.92-12.50, P = 0.0002) compared with GG and GA genotypes. We also experimentally induced NSDD in another independent growing rabbit population by feeding a low-fiber diet and subsequently investigated the cytokine mRNA expression. Among the 4 studied cytokines, the expression of interferon-γ, IL-17F, and IL-22 were increased 2.8 to 6.0-fold in AA genotype compared with GG genotype (P < 0.01). The greater IL-17F and IL-22 mRNA expressions indicated a positive correlation with severe intestinal inflammation (P < 0.05). The decreased expression of IL-10 was associated with severe intestinal inflammation (P = 0.006), but IL-10 expression was not influenced by dectin-1 genotype. In conclusion, polymorphism ss707197675 of dectin-1 is related with susceptibility to NSDD and increased expression of proinflammatory cytokines, and dectin-1 could be an important candidate gene associated with NSDD in rabbits.

  4. Expression of proinflammatory cytokines and receptors by human fallopian tubes in organ culture following challenge with Neisseria gonorrhoeae.

    PubMed

    Maisey, Kevin; Nardocci, Gino; Imarai, Monica; Cardenas, Hugo; Rios, Miguel; Croxatto, Horacio B; Heckels, John E; Christodoulides, Myron; Velasquez, Luis A

    2003-01-01

    Infection of the Fallopian tubes (FT) by Neisseria gonorrhoeae can lead to acute salpingitis, an inflammatory condition, which is a major cause of infertility. Challenge of explants of human FT with gonococci induced mRNA expression and protein secretion for the proinflammatory cytokines interleukin (IL)-1alpha, IL-1beta, and tumor necrosis factor alpha (TNF-alpha) but not for granulocyte-macrophage colony-stimulating factor. In contrast, FT expression of IL-6 and of the cytokine receptors IL-6R, TNF receptor I (TNF-RI), and TNF-RII was constitutive and was not increased by gonococcal challenge. These studies suggest that several proinflammatory cytokines are likely to contribute to the cell and tissue damage observed in gonococcal salpingitis.

  5. Expression of Proinflammatory Cytokines and Receptors by Human Fallopian Tubes in Organ Culture following Challenge with Neisseria gonorrhoeae

    PubMed Central

    Maisey, Kevin; Nardocci, Gino; Imarai, Monica; Cardenas, Hugo; Rios, Miguel; Croxatto, Horacio B.; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis A.

    2003-01-01

    Infection of the Fallopian tubes (FT) by Neisseria gonorrhoeae can lead to acute salpingitis, an inflammatory condition, which is a major cause of infertility. Challenge of explants of human FT with gonococci induced mRNA expression and protein secretion for the proinflammatory cytokines interleukin (IL)-1α, IL-1β, and tumor necrosis factor alpha (TNF-α) but not for granulocyte-macrophage colony-stimulating factor. In contrast, FT expression of IL-6 and of the cytokine receptors IL-6R, TNF receptor I (TNF-RI), and TNF-RII was constitutive and was not increased by gonococcal challenge. These studies suggest that several proinflammatory cytokines are likely to contribute to the cell and tissue damage observed in gonococcal salpingitis. PMID:12496205

  6. Low-dose gamma-rays and simulated solar particle event protons modify splenocyte gene and cytokine expression patterns.

    PubMed

    Rizvi, Asma; Pecaut, Michael J; Gridley, Daila S

    2011-01-01

    The goal was to investigate the T helper (Th) response in splenocytes of mice exposed to low-dose/low-dose-rate (LDR) γ-rays, simulated solar particle event protons (sSPE), or combination of both. C57BL/6 mice were exposed to LDR γ-radiation ((57)Co) to a total dose of 0.05 Gray (Gy) at 0.024 cGy/h, either with or without subsequent exposure to 2 Gy sSPE protons. Expression of genes related to Th cells was evaluated immediately after exposure (day 0). On day 21, intra- and extracellular cytokine production was assessed after activation with anti-CD3 monoclonal antibodies (mAb) or phorbol 12-myristate 13-acetate/ionophore (PMA/I). Five genes were significantly modulated on day 0 in one or more of the irradiated groups compared to controls (p < 0.05): Ccl11, Ccr5, Cd80, Inha, and Il9. On day 21, numbers of cells positive for interferon-γ were high in the LDR + sSPE group versus 0 Gy and LDR γ-rays (p < 0.05), but there was no difference in IL-2 and TNF-α. Levels of secreted cytokines after anti-CD3 mAb activation were high for 5 (MIP-1α, GM-CSF, IFN-γ, TNF-α, IL-13) and low for 2 (IL-7, IL-9) in all irradiated groups. Priming with LDR photons had a significant effect on IFN-γ and IL-17 compared to sSPE protons alone; IL-2 was low only in the LDR + sSPE group. The cytokine patterns after anti-PMA/I activation were different compared to anti-CD3 mAb and with fewer differences among groups. The data show that total-body exposure to space-relevant radiation has profound effects on Th cell status and that priming with LDR γ-rays can in some cases modulate the response to sSPE.

  7. A correlation of pregnancy term, disease activity, serum female hormones, and cytokines in uveitis

    PubMed Central

    Chan, C-C; Reed, G F; Kim, Y; Agrón, E; Buggage, R R

    2004-01-01

    Background/aims: Pregnancy and the postpartum period are associated with the activity of autoimmune diseases including uveitis. Although the exact mechanism is unknown, hormones are reported to alter inflammatory cytokines and influence disease activity. The authors studied ocular inflammation, female hormones, and serum cytokine levels during and after pregnancy. Methods: A prospective, observational case study was conducted. Four pregnant women in their first trimester with chronic non-infectious uveitis were followed monthly until 6 months after delivery. Serum female hormones (oestrogen, progesterone, prolactin) and various cytokines (IL-2, IL-4, IL-5, IL-6, IL-10, IFN-γ, and TGF-β) were measured by ELISA. Results: The four patients had five full term pregnancies. Uveitis activity decreased after the first trimester but flared in the early postpartum period. Serum female hormones, highly elevated during pregnancy, drastically dropped post partum. Cytokine levels except TGF-β were mostly undetectable. Conclusion: Female hormones and TGF-β may contribute to the activity of uveitis during pregnancy and the postpartum period. PMID:15548800

  8. Cytokine and Chemokine Expression in Kidneys during Chronic Leptospirosis in Reservoir and Susceptible Animal Models

    PubMed Central

    Matsui, Mariko; Roche, Louise; Geroult, Sophie; Soupé-Gilbert, Marie-Estelle; Monchy, Didier; Huerre, Michel; Goarant, Cyrille

    2016-01-01

    Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. Humans can be infected after exposure to contaminated urine of reservoir animals, usually rodents, regarded as typical asymptomatic carriers of leptospires. In contrast, accidental hosts may present an acute form of leptospirosis with a range of clinical symptoms including the development of Acute Kidney Injury (AKI). Chronic Kidney Disease (CKD) is considered as a possible AKI-residual sequela but little is known about the renal pathophysiology consequent to leptospirosis infection. Herein, we studied the renal morphological alterations in relation with the regulation of inflammatory cytokines and chemokines, comparing two experimental models of chronic leptospirosis, the golden Syrian hamster that survived the infection, becoming carrier of virulent leptospires, and the OF1 mouse, a usual reservoir of the bacteria. Animals were monitored until 28 days after injection with a virulent L. borgpetersenii serogroup Ballum to assess chronic infection. Hamsters developed morphological alterations in the kidneys with tubulointerstitial nephritis and fibrosis. Grading of lesions revealed higher scores in hamsters compared to the slight alterations observed in the mouse kidneys, irrespective of the bacterial load. Interestingly, pro-fibrotic TGF-β was downregulated in mouse kidneys. Moreover, cytokines IL-1β and IL-10, and chemokines MIP-1α/CCL3 and IP-10/CXCL-10 were significantly upregulated in hamster kidneys compared to mice. These results suggest a possible maintenance of inflammatory processes in the hamster kidneys with the infiltration of inflammatory cells in response to bacterial carriage, resulting in alterations of renal tissues. In contrast, lower expression levels in mouse kidneys indicated a better regulation of the inflammatory response and possible resolution processes likely related to resistance mechanisms. PMID:27219334

  9. Gold nanoparticles and diclofenac diethylammonium administered by iontophoresis reduce inflammatory cytokines expression in Achilles tendinitis

    PubMed Central

    Dohnert, Marcelo B; Venâncio, Mirelli; Possato, Jonathann C; Zeferino, Rodrigo C; Dohnert, Luciana H; Zugno, Alexandra I; De Souza, Cláudio T; Paula, Marcos MS; Luciano, Thais F

    2012-01-01

    Introduction Tendinitis affects a substantial number of people in several occupations involving repetitive work or direct trauma. Iontophoresis is a therapeutic alternative used in the treatment of injury during the inflammatory phase. In recent years, gold nanoparticles (GNP) have been studied due to their therapeutic anti-inflammatory capacity and as an alternative to the transport of several proteins. Purpose This study evaluates the therapeutic effects of iontophoresis using GNPs and diclofenac diethylammonium on inflammatory parameters in rats challenged with traumatic tendinitis. Methods Wistar rats were divided in three treatment groups (n = 15): (1) iontophoresis + diclofenac diethylammonium; (2) iontophoresis + GNP; and (3) iontophoresis + diclofenac diethylammonium + GNP. External control was formed by challenged tendons without treatment (n = 15). Iontophoresis was administered using 0.3 mA direct current on 1.5 cm2 electrodes. Results The levels of both inflammatory cytokines were significantly higher in untreated challenged rats, when compared with the control (5.398 ± 234 for interleukin 1 beta and 6.411 ± 432 for tumor necrosis factor alpha), which confirms the occurrence of an inflammatory stage in injury (P < 0.05). A significant decrease was observed in expression of cytokines interleukin 1 beta in the three treatment groups, in comparison with untreated challenged tendons, although, in the group treated with diclofenac and GNP, results were similar to the control (1.732 ± 239) (P < 0.05). Concerning tumor necrosis factor alpha, only the group treated with the association diclofenac and GNPs presented decreased levels, compared with the control (3.221 ± 369) (P < 0.05). Conclusion The results show the efficacy of drug administration using direct current to treat tendinitis in an animal model, and the potential anti-inflammatory, carrier, and enhancing effects of GNPs in iontophoresis. PMID:22619518

  10. Minocycline modulates cytokine and gene expression profiles in the brain after whole-body exposure to radiation.

    PubMed

    Mehrotra, Shalini; Pecaut, Michael J; Gridley, Daila S

    2014-01-01

    An effective countermeasure against radiation damage to normal tissues is urgently needed. The major goal of the present study was to determine if minocycline could modify the immunomodulatory effects of radiation on the brain. C57BL/6 mice were treated with minocycline intraperitoneally for 5 days beginning immediately before total-body exposure to 0, 1, 2 and 3 Gray (Gy) (60)Co γ-rays. Brains were collected on days 4 and 32 post-irradiation for cytokine and gene analyses. Minocycline treatment significantly increased the levels of interleukin (IL)-10, IL-15 and vascular endothelial growth factor (VEGF) in the brain on day 4 in one or more irradiated groups compared to radiation-alone (p<0.05). IL-10 is anti-inflammatory, IL-15 can prevent apoptosis and VEGF is nuroprotective. On day 32, the drug decreased IL-1β in the 2- Gy group (p<0.05 vs. 2-Gy alone); this cytokine is implicated in immune-related central nervous system pathologies. Microarray analysis of brains on day 32 showed that while radiation increased expression of inflammatory genes such as Il1f10, Il17, Tnfrsf11b, Tnfsf12, Il12b and Il1f8, these were no longer up-regulated in the minocycline-treated groups. Similarly, the pro-apoptotic gene Bik and nitric oxide synthase producer (Nostrin) were no longer up-regulated in the drug-treated groups. Pathway analysis based on gene data suggested that catenin-β1 and tumor suppressor-related transcription regulation were significantly activated by radiation and/or minocycline (activation z-score >2.0). Overall, the data warrant further testing of minocycline as a potential neuroprotectant against radiation-induced damage.

  11. Compound 19e, a Novel Glucokinase Activator, Protects against Cytokine-Induced Beta-Cell Apoptosis in INS-1 Cells

    PubMed Central

    Oh, Yoon Sin; Seo, Eunhui; Park, Kaapjoo; Jun, Hee-Sook

    2017-01-01

    Previously, compound 19e, a novel heteroaryl-containing benzamide derivative, was identified as a potent glucokinase activator (GKA) and showed a glucose-lowering effect in diabetic mice. In this study, the anti-apoptotic actions of 19e were evaluated in INS-1 pancreatic beta-cells co-treated with TNF-α and IL-1β to induce cell death. Compound 19e protected INS-1 cells from cytokine-induced cell death, and the effect was similar to treatment with another GKA or exendin-4. Compound 19e reduced annexin-V stained cells and the expression of cleaved caspase-3 and poly (ADP-ribose) polymerase protein, as well as upregulated the expression of B-cell lymphoma-2 protein. Compound 19e inhibited apoptotic signaling via induction of the ATP content, and the effect was correlated with the downregulation of nuclear factor-κB p65 and inducible nitric oxide synthase. Further, 19e increased NAD-dependent protein deacetylase sirtuin-1 (SIRT1) deacetylase activity, and the anti-apoptotic effect of 19e was attenuated by SIRT1 inhibitor or SIRT1 siRNA treatment. Our results demonstrate that the novel GKA, 19e, prevents cytokine-induced beta-cell apoptosis via SIRT1 activation and has potential as a therapeutic drug for the preservation of pancreatic beta-cells.

  12. IL-36 cytokine expression and its relationship with p38 MAPK and NF-κB pathways in psoriasis vulgaris skin lesions.

    PubMed

    He, Qi; Chen, Hong-xiang; Li, Wen; Wu, Yan; Chen, Shan-juan; Yue, Qing; Xiao, Min; Li, Jia-wen

    2013-08-01

    This study examined the correlation of the expression of interleukin-36 (IL-36), a novel member of interleukin-1 (IL-1) family, with p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-κB) pathways in psoriasis vulgaris skin lesions. The expression levels of IL-36α, IL-36β, IL-36Γ, phosphorylated p38 MAPK, and NF-κBp65 were detected in the skin tissues of 38 psoriasis patients and 17 healthy control subjects by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. The cytokine expression levels were compared between the psoriasis group and the control group. A correlation analysis between cytokine proteins was performed in the psoriasis group. Results showed that the expression levels of IL-36a, IL-36β, IL-36Γ, phosphorylated p38 MAPK and NF-κBp65 in the psoriasis group were significantly higher than those in the control group (P<0.001). In the psoriasis group, the IL-36 cytokine expression was positively correlated with phosphorylated p38 MAPK and NF-κBp65 expression (P<0.05). A significant positive correlation was also found between the phosphorylated p38 MAPK and NF-κBp65 expression (P<0.01). It was concluded that the increased IL-36 expression is correlated with p38 MAPK and NF-κB pathways in psoriasis vulgaris skin lesions. All the three factors may be jointly involved in the pathogenesis and local inflammatory response of psoriasis.

  13. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study

    PubMed Central

    Ma, Hongyue; Hong, Min; Duan, Jinao; Liu, Pei; Fan, Xinsheng; Shang, Erxin; Su, Shulan; Guo, Jianming; Qian, Dawei; Tang, Yuping

    2013-01-01

    Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (P<0.05) in the three phases of menstruation, respectively. In the menstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8) were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN) were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea. PMID:23390521

  14. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    PubMed Central

    Chauhan, Vinita; Howland, Matthew; Wilkins, Ruth

    2012-01-01

    Alpha- (α-) particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF) was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific. PMID:22619631

  15. Altered energy balance and cytokine gene expression in a murine model of chronic infection with Toxoplasma gondii.

    PubMed

    Arsenijevic, D; Girardier, L; Seydoux, J; Chang, H R; Dulloo, A G

    1997-05-01

    The temporal pattern of changes in energy balance and cytokine mRNA expression in spleen and brain were examined in a mouse model of infection with Toxoplasma gondii. During days 1-7 postinfection, food intake was unaltered, but energy expenditure was significantly increased, and this was associated with elevated tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1, IL-5, and interferon (IFN)-gamma. The hypermetabolic state persisted during subsequent anorexia, whose onset coincided with elevated IL-2, and at the end of the acute phase of cachexia, the dual anorexic and hypermetabolic states were associated with the cytokines examined: TNF-alpha, IL-1 beta, IL-2, IL-4, IL-5, IL-6, IL-10, and IFN-gamma. In the chronic phase of the infection, the mice showed either partial weight recovery (gainers) or no weight regain (nongainers). The infected gainers, though still hypophagic, were no longer hypermetabolic, and their cytokine mRNA was no longer elevated, except for TNF-alpha and IL-10. In contrast, the infected nongainers continued to show both anoroxia and hypermetabolism, which were associated with elevations in all cytokines examined and particularly those of the TH2 profile (IL-4 and IL-5) and IL-6. Taken together, these studies reveal a distinct pattern of cytokine mRNA expression underlying 1) hypermetabolism vs. anorexia, 2) acute vs. chronic cachexia, and 3) stable weight loss vs. partial weight recovery.

  16. A comparitive assessement of cytokine expression in human-derived cell lines exposed to alpha particles and X-rays.

    PubMed

    Chauhan, Vinita; Howland, Matthew; Wilkins, Ruth

    2012-01-01

    Alpha- (α-) particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF) was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  17. Pro-inflammatory and antiviral cytokine expression in vaccinated and unvaccinated horses exposed to equine influenza virus.

    PubMed

    Quinlivan, Michelle; Nelly, Maura; Prendergast, Michael; Breathnach, Cormac; Horohov, David; Arkins, Sean; Chiang, Yu-Wei; Chu, Hsien-Jue; Ng, Terry; Cullinane, Ann

    2007-10-10

    Most studies of the cytokine response to influenza virus infection have been carried out in human, porcine and murine models, however the data available on equine cytokines is limited. An experimental challenge study was undertaken in unvaccinated naïve horses and horses vaccinated with a commercial inactivated influenza vaccine. The humoral antibody response to vaccination and virus challenge was measured by single radial haemolysis (SRH) assay and clinical signs of influenza and viral shedding were monitored post-challenge. Levels of three equine pro-inflammatory cytokines interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha and the antiviral cytokine interferon (IFN)-alpha were examined by quantitative RT-PCR of mRNA. Vaccination provided significant clinical and virological protection and resulted in a significant reduction of IFN-alpha and IL-6 expression on day 2 post-challenge. The patterns of cytokine expression observed in control animals suffering from influenza after challenge are comparable to those reported in studies of other species.

  18. Cytokine gene expression in skin of susceptible guinea-pig infected with Treponema pallidum.

    PubMed Central

    Wicher, V; Scarozza, A M; Ramsingh, A I; Wicher, K

    1998-01-01

    Using a semi-quantitative multiplex reverse transcription-polymerase chain reaction assay, we examined cytokine mRNA expression for interleukin-1alpha (IL-1alpha), IL-2, IL-10, IL-12p40, tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) in skin samples obtained from C4-deficient (C4D) guinea-pigs inoculated intradermally with virulent Treponema pallidum (VTP). Controls included unmanipulated animals, guinea-pigs injected with T. pallidum-free rabbit inflammatory testicular fluid (ITF) alone, or mixed with heat-killed organisms (HKTP). The expression of IL-1alpha, IL-12p40, and TNF-alpha mRNA [T helper type 1 (Th1)] remained within the normal range in both infected and control animals throughout the experimental period. However, a significant increase (P<0.05) in IL-10 mRNA (Th2) was found exclusively in the VTP-inoculated animals from 3 to 30 days post-infection. Another unique characteristic of the inflammatory response in infected guinea-pigs was the appearance, between 11 and 30 days post-inoculation, of a substantial number of eosinophils in addition to infiltrating mononuclear cells. The results showed a local Th2 response which is consistent with an inadequate immune response. This is reflected by the lengthy and incomplete clearance of the pathogen from the local site of entry and the chronic infection of distant organs. Images Figure 1 Figure 4 PMID:9824482

  19. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity

    PubMed Central

    Sander, Christian; Minkwitz, Juliane; Thormann, Julia; Chittka, Tobias; Mergl, Roland; Kirkby, Kenneth C.; Faßhauer, Mathias; Stumvoll, Michael; Holdt, Lesca M.; Teupser, Daniel; Hegerl, Ulrich; Himmerich, Hubertus

    2015-01-01

    Context Chronic systemic inflammation in obesity originates from local immune responses in visceral adipose tissue. However, assessment of a broad range of inflammation-mediating cytokines and their relationship to physical activity and adipometrics has scarcely been reported to date. Objective To characterize the profile of a broad range of pro- and anti-inflammatory cytokines and the impact of physical activity and energy expenditure in individuals with general obesity, central obesity, and non-obese subjects. Design, Setting, and Participants A cross-sectional study comprising 117 obese patients (body mass index (BMI) ≥ 30) and 83 non-obese community-based volunteers. Main Outcomes Measures Serum levels of interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)-α were measured. Physical activity and energy expenditure (MET) were assessed with actigraphy. Adipometrics comprised BMI, weight, abdominal-, waist- and hip-circumference, waist to hip ratio (WHR), and waist-to-height-ratio (WHtR). Results General obesity was associated with significantly elevated levels of IL-5, IL-10, IL-12, IL-13, IFN-γ and TNF-α, central obesity with significantly elevated IL-5, IL-10, IL-12, IL-13 and IFN-γ-levels. In participants with general obesity, levels of IL-4, IL-10 and IL-13 were significantly elevated in participants with low physical activity, even when controlled for BMI which was negatively associated with physical acitivity. Cytokines significantly correlated with adipometrics, particularly in obese participants. Conclusions Results confirm up-regulation of certain pro- and anti-inflammatory cytokines in obesity. In obese subjects, physical activity may lower levels and thus reduce pro-inflammatory effects of cytokines that may link obesity, insulin resistance and diabetes. PMID:25781614

  20. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R), reverse-transcriptase (RT), PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard tec...

  1. Sex hormone modulation of proinflammatory cytokine and CRP expression in macrophages from older men and postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation plays a central role in the development and progression of coronary heart disease (CHD). The sex hormones estrogen and testosterone have been shown to modify the inflammatory response by influencing cytokine expression in human macrophage cells obtained from younger individuals. The eff...

  2. Evaluation of cytokine gene expression after avian influenza virus infection in avian cell lines and primary cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune responses elicited by avian influenza virus (AIV) infection has been studied by measuring cytokine gene expression by relative real time PCR (rRT-PCR) in vitro, using both cell lines and primary cell cultures. Continuous cell lines offer advantages over the use of primary cell cult...

  3. Regulation of Inflammatory Cytokine Expression in Pulmonary Epithelial Cells by Pre-B-cell Colony-enhancing Factor via a Nonenzymatic and AP-1-dependent Mechanism*

    PubMed Central

    Liu, Peng; Li, Hailong; Cepeda, Javier; Xia, Yue; Kempf, Jessica A.; Ye, Hong; Zhang, Li Qin; Ye, Shui Qing

    2009-01-01

    Although our previous studies found Pre-B-cell colony-enhancing factor (PBEF) as a highly up-regulated gene in acute lung injury that could stimulate expressions of other inflammatory cytokines, the underlying molecular mechanisms remain to be fully elucidated. Growing evidence indicates that PBEF is a nicotinamide phosphoribosyltransferase involved in the mammalian salvage pathway of NAD synthesis. This study was designed to determine whether the effect of PBEF to stimulate expressions of inflammatory cytokines depends on its enzymatic activity. We prepared two human PBEF mutant (H247E and H247A) recombinant proteins and overexpressing constructs for their overexpressions in A549 cells and confirmed that enzymatic activities of both mutants were nearly or completely abolished. Two mutants stimulated interleukin-8 (IL-8) expression at both the mRNA level and protein level just as equally effective as the wild-type PBEF did. These effects were due to the increased transcription, not the mRNA stability, of the IL-8 gene. Reporter gene assays and gel shift experiments indicated that AP-1 transcription factor is required to mediate these effects. SB203580, a p38 MAPK pathway inhibitor, and JNK inhibitor 1 can attenuate these effects. Both PBEF mutants similarly stimulated the expression of two other inflammatory cytokines: IL-16 and CCR3. These results indicate that PBEF stimulated expression of IL-8, IL-16, and CCR3 via its non-enzymatic activity. This effect is AP-1-dependent, in part via the p38 MAPK pathway and the JNK pathway. This finding reveals a new insight, which may manifest a novel role of PBEF in the pathogenesis of acute lung injury and other inflammatory disorders. PMID:19654329

  4. Alcohol vapor exposure differentially impacts mesocorticolimbic cytokine expression in a sex-, region-, and duration-specific manner.

    PubMed

    Baxter-Potter, Lydia N; Henricks, Angela M; Berger, Anthony L; Bieniasz, Kennedy V; Lugo, Janelle M; McLaughlin, Ryan J

    2017-03-27

    Alcohol exposure elicits the production of cytokines that regulate the host response to infection, immunity, inflammation, and trauma. Although increased production of pro-inflammatory cytokines has been linked to symptoms of alcoholism, few studies have evaluated whether cytokine expression changes across the development of alcohol dependence, or whether these changes are region and/or sex specific. In the present study, we subjected adult male and female rats to different regimens of alcohol vapor exposure (acute, subchronic, or chronic) and measured relative mRNA expression for tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2) in reward-related brain regions. Results indicated that acute alcohol exposure increased TNFα mRNA expression in the basolateral amygdala (BLA), nucleus accumbens (NAc), and ventral tegmental area (VTA), whereas IL-6 expression was increased in the VTA, NAc, and ventromedial prefrontal cortex (vmPFC) only in males. After subchronic exposure (1week daily intermittent exposure, 14h on:10h off), TNFα expression remained elevated in the BLA, NAc, and VTA, while IL-6 expression was reduced in the male vmPFC. Chronic alcohol exposure (6week daily intermittent exposure, 14 h on: 10 h off) increased TNFα mRNA expression in the NAc and increased IL-6 mRNA in the vmPFC and NAc. Interestingly, chronic alcohol exposure also robustly increased CCL2 mRNA expression in the BLA and VTA in males but not females. Thus, alcohol vapor exposure elicits sex-, region-, and duration-specific cytokine alterations that may contribute to differences in the manifestation and progression of symptoms of alcohol dependence in male and female populations.

  5. Influence of β2-Integrin Adhesion Molecule Expression and Pulmonary Infection with Pasteurella haemolytica on Cytokine Gene Expression in Cattle

    PubMed Central

    Lee, Haa-Yung; Kehrli, Marcus E.; Brogden, Kim A.; Gallup, Jack M.; Ackermann, Mark R.

    2000-01-01

    β2-Integrins are leukocyte adhesion molecules composed of alpha (CD11a, -b, -c, or -d) and beta (CD18) subunit heterodimers. Genetic CD18 deficiency results in impaired neutrophil egress into tissues that varies between conducting airways and alveoli of the lung. In this study, we investigated whether CD18 deficiency in cattle affects proinflammatory cytokine (PIC) expression in pulmonary tissue after respiratory infection with Pasteurella haemolytica. Cattle were infected with P. haemolytica via fiberoptic deposition of organisms into the posterior part of the right cranial lung lobe. Animals were euthanized at 2 or 4 h postinoculation (p.i.), and tissues were collected to assess PIC gene expression using antisense RNA probes specific for bovine interleukin-1α (IL-1α), IL-1β, IL-6, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) along with the β-actin (β-Act) housekeeping gene. Expression of PIC was induced at 2 h p.i. in P. haemolytica-infected cattle and continued to 4 h p.i. At 2 h p.i., induction of gene expression and increase of cells that expressed PIC were observed both in CD18+ and CD18− cattle after inoculation of P. haemolytica. The induction of gene expression with P. haemolytica inoculation was more prominent in CD18− cattle than in CD18+ cattle by comparison to pyrogen-free saline (PFS)-inoculated control animals. At 4 h p.i., however, the induction of PIC, especially IL-1α, IL-6, and IFN-γ, in the lungs of CD18+ cattle inoculated with P. haemolytica was greater than that in lungs of the CD18− cattle. IFN-γ and TNF-α genes were not increased in P. haemolytica-inoculated CD18− cattle lungs compared to the PFS-inoculated control lungs at 4 h p.i. In PFS-inoculated lungs, we generally observed a higher percentage of cells and higher level of gene expression in the lungs of CD18− cattle than in the lungs of CD18+ cattle, especially at 4 h p.i. The rate of neutrophil infiltration into the lungs of CD18− cattle at

  6. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction, and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway.

    PubMed

    Lou, Hongfei; Lu, Jingning; Choi, Eun Byul; Oh, Min Hee; Jeong, Mingeum; Barmettler, Sara; Zhu, Zhou; Zheng, Tao

    2017-04-01

    Increased expression of Th22 cytokine IL-22 is a characteristic finding in atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of AD in vivo has yet to be elucidated. Consistent with observations in human AD, IL-22 was significantly increased in the AD skin of mice after epicutaneous sensitization to house dust mite allergen. Utilizing a skin-specific inducible transgenic system, we show in the present study that expression of IL-22 in the skin of mice caused an AD-like phenotype characterized by chronic pruritic dermatitis associated with Th2-biased local and systemic immune responses, downregulation of epidermal differentiation complex genes, and enhanced dermatitis upon epicutaneous allergen exposure. IL-22 potently induced the expression of gastrin-releasing peptide (GRP), a neuropeptide pruritogen, in dermal immune cells and sensory afferents and in their skin-innervating sensory neurons. IL-22 also differentially upregulated the expression of GRP receptor (GRPR) on keratinocytes of AD skin. The number of GRP(+) cells in the skin correlated with the AD severity and the intensity of pruritus. IL-22 directly upregulated the expression of epithelial-derived type 2 cytokines (thymic stromal lymphopoietin and IL-33) and GRP in primary keratinocytes. Furthermore, GRP not only strongly induced thymic stromal lymphopoietin but it also increased the expression of IL-33 and GRPR synergistically with IL-22. Importantly, we found that the expression of GRP was strikingly increased in the skin of patients with AD. These results indicate that IL-22 plays important pathogenic roles in the initiation and development of AD, in part through inducing keratinocyte production of type 2 cytokines and activation of the GRP/GRPR pathway.

  7. Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages

    PubMed Central

    Gorovoy, Matvey; Gaultier, Alban; Campana, W. Marie; Firestein, Gary S.; Gonias, Steven L.

    2010-01-01

    LRP1 is a type-1 transmembrane receptor that mediates the endocytosis of diverse ligands. LRP1 β-chain proteolysis results in release of sLRP1 that is present in human plasma. In this study, we show that LPS and IFN-γ induce shedding of LRP1 from RAW 264.7 cells and BMMs in vitro. ADAM17 was principally responsible for the increase in LRP1 shedding. sLRP1 was also increased in vivo in mouse plasma following injection of LPS and in plasma from human patients with RA or SLE. sLRP1, which was purified from human plasma, and full-length LRP1, purified from mouse liver, activated cell signaling when added to cultures of RAW 264.7 cells and BMMs. Robust activation of p38 MAPK and JNK was observed. The IKK-NF-κB pathway was transiently activated. Proteins that bind to the ligand-binding clusters in LRP1 failed to inhibit sLRP1-initiated cell signaling, however an antibody that targets the sLRP1 N terminus was effective. sLRP1 induced expression of regulatory cytokines by RAW 264.7 cells, including TNF-α, MCP-1/CCL2, and IL-10. These results demonstrate that sLRP1 is generated in inflammation and may regulate inflammation by its effects on macrophage physiology. PMID:20610799

  8. Pro-inflammatory cytokines enhance ERAD and ATF6α pathway activity in salivary glands of Sjögren's syndrome patients.

    PubMed

    Barrera, María-José; Aguilera, Sergio; Castro, Isabel; Cortés, Juan; Bahamondes, Verónica; Quest, Andrew F G; Molina, Claudio; González, Sergio; Hermoso, Marcela; Urzúa, Ulises; Leyton, Cecilia; González, María-Julieta

    2016-12-01

    Salivary gland (SG) acinar-cells are susceptible to endoplasmic reticulum (ER) stress related to their secretory activity and the complexity of synthesized secretory products. SGs of Sjögren's syndrome patients (SS)-patients show signs of inflammation and altered proteostasis, associated with low IRE1α/XBP-1 pathway activity without avert increases in apoptosis. Acinar-cells may avoid apoptosis by activation of the ATF6α pathway and ER-associated protein degradation (ERAD). The aim of this study was to evaluate the role of pro-inflammatory cytokines in ATF6α pathway/ERAD activation and cell viability in labial salivary glands (LSG) of SS-patients. In biopsies from SS-patients increased ATF6α signaling pathway activity, as evidenced by generation of the ATF6f cleavage fragment, and increased expression of ERAD machinery components, such as EDEM1, p97, SEL1L, gp78, UBE2J1, UBE2G2, HERP and DERLIN1, were observed compared to controls. Alternatively, for pro- (active-caspase-3) and anti-apoptotic (cIAP2) markers no significant difference between the two experimental groups was detected. Increased presence of ATF6f and ERAD molecules correlated significantly with increased expression of pro-inflammatory cytokines. These observations were corroborated in vitro in 3D-acini treated with TNF-α and/or IFN-γ, where an increase in the expression and activation of the ATF6α sensor and ERAD machinery components was detected under ER stress conditions, while changes in cell viability and caspase-3 activation were not observed. Cytokine stimulation protected cells from death when co-incubated with an ERAD machinery inhibitor. Alternatively, when cytokines were eliminated from the medium prior to ERAD inhibition, cell death increased, suggesting that the presence of pro-inflammatory cytokines in the medium is essential to maintain cell viability. In conclusion, the ATF6α pathway and the ERAD machinery are active in LSG of SS-patients. Both were also activated by TNF

  9. Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes: TLR2 up-regulation in psoriatic skin.

    PubMed

    Begon, Edouard; Michel, Laurence; Flageul, Béatrice; Beaudoin, Isabelle; Jean-Louis, Francette; Bachelez, Hervé; Dubertret, Louis; Musette, Philippe

    2007-01-01

    The aim of the research described here was to investigate the expression of Toll-like receptors (TLRs) in normal human keratinocytes, to study its modulation by proinflammatory cytokines, and to characterize the function of the latter within the epidermis. Our results demonstrate that normal human keratinocytes may present an intra-cytoplasmic expression of TLR2, TLR3, and TLR4. Exposure of keratinocytes to IFN-gamma and TNF-alpha increased intra-cytoplasmic expression and led to partial translocation at the cell surface. Keratinocyte activation by TLR2, TLR3, and TLR4 ligands led to the nuclear translocation of NF-kappab and the release of proinflammatory cytokines TNF-alpha and IL-8. In immunochemistry analysis, psoriatic skin showed a strong over-expression of TLR2 in the epidermis compared with normal skin. Our results thus demonstrate large TLR expression in keratinocytes and the functionality of TLRs 2, 3, and 4. TLR2 over-expression in psoriatic skin provides new insights into TLR implication in the pathogenesis of psoriasis, through inappropriate stimulation by infectious or endogen ligands.

  10. RHS6-mediated chromosomal looping and nuclear substructure binding is required for Th2 cytokine gene expression.

    PubMed

    Hwang, Soo Seok; Jang, Sung Woong; Lee, Gap Ryol

    2017-03-01

    Subset-specific gene expression is a critical feature of CD4 T cell differentiation. Th2 cells express Th2 cytokine genes including Il4, Il5, and Il13 and mediate the immune response against helminths. The expression of Th2 cytokine genes is regulated by Rad50 hypersensitive site 6 (RHS6) in the Th2 locus control region; however, the molecular mechanisms of RHS6 action at the chromatin level are poorly understood. Here, we demonstrate that RHS6 is crucial for chromosomal interactions and nuclear substructure binding of the Th2 cytokine locus. RHS6-deficient cells had a marked reduction in chromatin remodeling and in intrachromosomal interactions at the Th2 locus. Deficiency of RHS6-binding transcription factors GATA3, SATB1, and IRF4 also caused a great reduction in chromatin remodeling and long-range chromosomal interactions involving the Th2 locus. RHS6 deficiency abrogated association of the Th2 locus with the nuclear substructure and RNA polymerase II. Therefore, RHS6 serves as a crucial cis-acting hub for coordinate regulation of Th2 cytokine genes by forming chromosomal loops and binding to a nuclear substructure.

  11. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Shun, Chia-Tung; Tsao, Po-Nien; Yang, Yu-Shih; Yang, Jehn-Hsiahn

    2015-10-15

    Endometrial inflammation has contradictory effects. The one occurring at peri-implantation period is favourable for embryo implantation, whereas the other occurring after the stimulation by copper intrauterine device (Cu-IUD) prevents from embryo implantation. In this study, 8 week female ICR mice were used to investigate the endometrial inflammation, in which they were at proestrus stage (Group 1), at peri-implantation period (Group 2), and had a copper wire implanted into right uterine horn (Group 3). Cytokine array revealed that two cytokines were highly expressed in Group 2 and Group 3 as compared with Group 1, and seven cytokines, including tumour necrosis factor α (TNF-α), had selectively strong expression in Group 3. Immunohistochemistry demonstrated prominent TNF-α staining on the endometrium after Cu-IUD stimulation, and in vitro culture of human endometrial glandular cells with Cu induced TNF-α secretion. The increased TNF-α concentration enhanced in vitro THP-1 cells chemotaxis, and reduced embryo implantation rates. These results suggest that inflammatory cytokine profiles of endometrium are different between those at peri-implantation period and after Cu-IUD stimulation, and TNF-α is the one with selectively strong expression in the latter. It might account for the contradictory biological effects of endometrial inflammation.

  12. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device

    PubMed Central

    Chou, Chia-Hung; Chen, Shee-Uan; Shun, Chia-Tung; Tsao, Po-Nien; Yang, Yu-Shih; Yang, Jehn-Hsiahn

    2015-01-01

    Endometrial inflammation has contradictory effects. The one occurring at peri-implantation period is favourable for embryo implantation, whereas the other occurring after the stimulation by copper intrauterine device (Cu-IUD) prevents from embryo implantation. In this study, 8 week female ICR mice were used to investigate the endometrial inflammation, in which they were at proestrus stage (Group 1), at peri-implantation period (Group 2), and had a copper wire implanted into right uterine horn (Group 3). Cytokine array revealed that two cytokines were highly expressed in Group 2 and Group 3 as compared with Group 1, and seven cytokines, including tumour necrosis factor α (TNF-α), had selectively strong expression in Group 3. Immunohistochemistry demonstrated prominent TNF-α staining on the endometrium after Cu-IUD stimulation, and in vitro culture of human endometrial glandular cells with Cu induced TNF-α secretion. The increased TNF-α concentration enhanced in vitro THP-1 cells chemotaxis, and reduced embryo implantation rates. These results suggest that inflammatory cytokine profiles of endometrium are different between those at peri-implantation period and after Cu-IUD stimulation, and TNF-α is the one with selectively strong expression in the latter. It might account for the contradictory biological effects of endometrial inflammation. PMID:26469146

  13. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia

    SciTech Connect

    Park, Hye Young; Kim, Nam Deuk; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung-Woo; Kim, Wun Jae; Choi, Yung Hyun

    2012-07-15

    Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.

  14. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages.

    PubMed

    Kim, Jin; Park, Chang-Shin; Lim, Yunsook; Kim, Hyun-Sook

    2009-04-01

    Natural products are increasingly recognized as potential targets for drug discovery and development. We previously reported that Paeonia japonica, Houttuynia cordata, and Aster scaber enhanced macrophage activation both in vitro and in vivo. In the present study we investigated the immunomodulating effects of these plants on lipopolysacharide (LPS)-stimulated macrophages. An aqueous extract of each plant was administered to female BALB/c mice every other day for 4 weeks. Peritoneal macrophages were then collected and incubated to examine the immunoreactivity of macrophages against LPS at different time points. The expression levels of inducible nitric oxide (NO) synthetase (iNOS), cyclooxygenase (COX)-2, and inhibitory factor kappaB alpha (IkappaBalpha) proteins and the production of NO metabolite (nitrite), prostaglandin (PG) E(2), and the pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were determined in the activated macrophages treated with extracts from each plant individually or combined. High levels of pro-inflammatory cytokines were produced by A. scaber-, P. japonica-, and H. cordata-treated macrophages following 24 hours of LPS stimulation. P. japonica, H. cordata, and A. scaber treatment also induced the production of nitrate by LPS-treated macrophages. Induction of iNOS mRNA and protein was also different in each group. PGE(2) secretion was up-regulated by all extract-treated macrophages at early time points; however, no significant differences were observed between the groups by 8 hours post-LPS stimulation. Treatment with A. scaber extract resulted in the highest levels of IkappaBalpha degradation. Our findings illustrate that the natural plant products P. japonica, H. cordata, and A. scaber may enhance immune function by modulating ex vivo pro-inflammatory cytokine and NO production as well as the expression of iNOS and COX-2.

  15. Infection with Theiler's murine encephalomyelitis virus directly induces proinflammatory cytokines in primary astrocytes via NF-kappaB activation: potential role for the initiation of demyelinating disease.

    PubMed

    Palma, JoAnn P; Kwon, Daeho; Clipstone, Neil A; Kim, Byung S

    2003-06-01

    Theiler's virus infection in the central nervous system (CNS) induces a demyelinating disease very similar to human multiple sclerosis. We have assessed cytokine gene activation upon Theiler's murine encephalomyelitis virus (TMEV) infection and potential mechanisms in order to delineate the early events in viral infection that lead to immune-mediated demyelinating disease. Infection of SJL/J primary astrocyte cultures induces selective proinflammatory cytokine genes (interleukin-12p40 [IL-12p40], IL-1, IL-6, tumor necrosis factor alpha, and beta interferon [IFN-beta]) important in the innate immune response to infection. We find that TMEV-induced cytokine gene expression is mediated by the NF-kappaB pathway based on the early nuclear NF-kappaB translocation and suppression of cytokine activation in the presence of specific inhibitors of the NF-kappaB pathway. Further studies show this to be partly independent of dsRNA-dependent protein kinase (PKR) and IFN-alpha/beta pathways. Altogether, these results demonstrate that infection of astrocytes and other CNS-resident cells by TMEV provides the early NF-kappaB-mediated signals that directly activate various proinflammatory cytokine genes involved in the initiation and amplification of inflammatory responses in the CNS known to be critical for the development of immune-mediated demyelination.

  16. Cytokine activation during embryonic development and in hen ovary and vagina during reproductive age and Salmonella infection.

    PubMed

    Anastasiadou, M; Michailidis, G

    2016-12-01

    Salmonellosis is one of the most important zoonotic diseases and is usually associated with consumption of Salmonella Enteritidis (SE) contaminated poultry meat or eggs. Contamination with SE is usually the result of infection of the digestive tract, or reproductive organs, especially the ovary and vagina. Thus, knowledge of endogenous innate immune mechanisms operating in the ovary and vagina of hen is an emerging aspect of reproductive physiology. Cytokines are key factors for triggering the immune response and inflammation in chicken to Salmonella infection. The aim of this study was to investigate the expression profile of 11 proinflammatory cytokines in the chicken embryos during embryonic development, as well as in the hen ovary and vagina in vivo, to investigate whether sexual maturation affects their ovarian and vaginal mRNA abundance and to determine whether cytokine expression was constitutive or induced in the ovary and vagina as a response to SE infection. RT-PCR analysis revealed that several cytokines were expressed in the chicken embryos, and in the ovary and vagina of healthy birds. Expression of various cytokines during sexual maturation appeared to be developmentally regulated. In addition, a significant up-regulation of several cytokines in the ovary and vagina of sexually mature SE infected birds compared to healthy birds of the same age was observed. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the hen reproductive organs.

  17. Stress downregulates lipopolysaccharide-induced expression of proinflammatory cytokines in the spleen, pituitary, and brain of mice.

    PubMed

    Goujon, E; Parnet, P; Laye, S; Combe, C; Kelley, K W; Dantzer, R

    1995-12-01

    Mice injected with LPS (10 mu g/mouse, sc) or saline were submitted to a 15-min restraint stress and sacrificed 1 or 2 h later to assess the effect of stress on the induction of interleukin-1beta (IL-1beta) and other proinflammatory cytokines (IL-1alpha, IL-1ra, IL-6, and tumor necrosis factor-alpha) in the spleen, pituitary, hypothalamus, hippocampus, and striatum. LPS-induced cytokine gene expression, as determined by comparative RT-PCR, was lower in stressed than in nonstressed mice. LPS increased plasma and tissue levels of IL-1beta, as determined by ELISA, but this effect was less marked in stressed than in nonstressed mice. These results are discussed in relation to the modulatory effects of glucocorticoids on cytokine production.

  18. JANEX-1, a JAK3 inhibitor, protects pancreatic islets from cytokine toxicity through downregulation of NF-{kappa}B activation and the JAK/STAT pathway

    SciTech Connect

    Lv, Na; Kim, Eun-Kyung; Song, Mi-Young; Choi, Ha-Na; Moon, Woo Sung; Park, Sung-Joo; Park, Jin-Woo; Kwon, Kang-Beom; Park, Byung-Hyun

    2009-07-15

    JANEX-1/WHI-P131, a selective Janus kinase 3 (JAK3) inhibitor, has been shown to delay the onset of diabetes in the NOD mouse model. However, the molecular mechanism by which JANEX-1 protects pancreatic {beta}-cells is unknown. In the current study, we investigated the role of JANEX-1 on interleukin (IL)-1{beta} and interferon (IFN)-{gamma}-induced {beta}-cell damage using isolated islets. JANEX-1-pretreated islets showed resistance to cytokine toxicity, namely suppressed nitric oxide (NO) production, reduced inducible form of NO synthase (iNOS) expression, and decreased islet destruction. The molecular mechanism by which JANEX-1 inhibits iNOS expression was mediated through suppression of the nuclear factor {kappa}B (NF-{kappa}B) and JAK/signal transducer and activator of transcription (STAT) pathways. Islets treated with the cytokines downregulated the protein levels of suppressor of cytokine signaling (SOCS)-1 and SOCS-3, but pretreatment with JANEX-1 attenuated these decreases. Additionally, islets from JAK3{sup -/-} mice were more resistant to cytokine toxicity than islets from control mice. These results demonstrate that JANEX-1 protects {beta}-cells from cytokine toxicity through suppression of the NF-{kappa}B and JAK/STAT pathways and upregulation of SOCS proteins, suggesting that JANEX-1 may be used to preserve functional {beta}-cell mass.

  19. Expression of cytokines, chemokines and other effector molecules in two prototypic autoinflammatory skin diseases, pyoderma gangrenosum and Sweet's syndrome

    PubMed Central

    Marzano, A V; Fanoni, D; Antiga, E; Quaglino, P; Caproni, M; Crosti, C; Meroni, P L; Cugno, M

    2014-01-01

    Pyoderma gangrenosum (PG) and Sweet's syndrome (SS) are two inflammatory skin diseases presenting with painful ulcers and erythematous plaques, respectively; both disorders have a debilitating clinical behaviour and PG is potentially life-threatening. Recently, PG and SS have been included among the autoinflammatory diseases, which are characterized by recurrent episodes of sterile inflammation, without circulating autoantibodies and autoreactive T cells. However, an autoinflammatory pattern clearly supporting this inclusion has never been demonstrated. We studied 16 patients with PG, six with SS and six controls, evaluating, using a sandwich-based protein antibody array method, the expression profile of inflammatory effector molecules in PG, SS and normal skin. The expressions of interleukin (IL)-1 beta and its receptor I were significantly higher in PG (P = 0·0001 for both) and SS (P = 0·004–0·040) than in controls. In PG, chemokines such as IL-8 (P = 0·0001), chemokine (C-X-C motif) ligand (CXCL) 1/2/3 (P = 0·002), CXCL 16 (P = 0·003) and regulated upon activation normal T cell expressed and secreted (RANTES) (P = 0·005) were over-expressed. In SS, IL-8 (P = 0·018), CXCL 1/2/3 (P = 0·006) and CXCL 16 (P = 0·036) but not RANTES were over-expressed, suggesting that chemokine-mediated signals are lower than in PG. Fas/Fas ligand and CD40/CD40 ligand systems were over-expressed in PG (P = 0·0001 for Fas, P = 0·009 for Fas ligand, P = 0·012 for CD40, P = 0·0001 for CD40 ligand), contributing to tissue damage and inflammation, while their role seems to be less significant in SS. Over-expression of cytokines/chemokines and molecules amplifying the inflammatory network supports the view that PG and SS are autoinflammatory diseases. The differences in expression profile of inflammatory effectors between these two disorders may explain the stronger local aggressiveness in PG than SS. PMID:24903614

  20. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  1. Early changes in cytokine expression in peste des petits ruminants disease

    PubMed Central

    2014-01-01

    Peste des petits ruminants is a viral disease of sheep and goats that has spread through most of Africa as well as the Middle East and the Indian subcontinent. Although, the spread of the disease and its economic impact has made it a focus of international concern, relatively little is known about the nature of the disease itself. We have studied the early stages of pathogenesis in goats infected with six different isolates of Peste des petits ruminants virus representing all four known lineages of the virus. No lineage-specific difference in the pathogenicity of the virus isolates was observed, although there was evidence that even small numbers of cell culture passages could affect the degree of pathogenicity of an isolate. A consistent reduction in CD4+ T cells was observed at 4 days post infection (dpi). Measurement of the expression of various cytokines showed elements of a classic inflammatory response but also a relatively early induction of interleukin 10, which may be contributing to the observed disease. PMID:24559207

  2. Novel environment influences the effect of paradoxical sleep deprivation upon brain and peripheral cytokine gene expression

    PubMed Central

    Ashley, Noah T.; Sams, David W.; Brown, Audrey C.; Dumaine, Jennie E.

    2016-01-01

    Sleep loss increases inflammatory mediators in brain and peripheral tissues, but the mechanisms underlying this association are not fully understood. Male C57BL/6j mice were exposed to paradoxical sleep deprivation (PSD) for 24 h using the modified multiple platform (MMP) technique (platforms over water) or two different controls: home cage or a dry platform cage, which constituted a novel environment. PSD mice exhibited increased IL-1β and TNF-α pro-inflammatory gene expression in brain (hypothalamus, hippocampus, pre-frontal cortex), as well as in peripheral tissues (liver, spleen), when compared with home-cage controls. In addition, among PSD mice, TGFβ1, an anti-inflammatory cytokine, was increased in pre-frontal cortex, liver, and spleen in conjunction with elevated serum corticosterone concentration relative to home-cage controls. However, these differences were nearly abolished when PSD mice were compared with control mice subjected to a dry MMP cage, suggesting that simply exposing mice to a novel environment can induce an acute inflammatory response. PMID:26806035

  3. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter.

    PubMed

    Sijan, Zana; Antkiewicz, Dagmara S; Heo, Jongbae; Kado, Norman Y; Schauer, James J; Sioutas, Constantinos; Shafer, Martin M

    2015-07-01

    the other half. Overall, this PM-induced cytokine expression assay could be effectively integrated into health studies and air quality monitoring programs to better understand relationships between specific PM components, oxidative stress activity and inflammatory signaling potential.

  4. Microarray analysis of glial cells resistant to JCV infection suggests a correlation between viral infection and inflammatory cytokine gene expression

    PubMed Central

    Manley, Kate; Gee, Gretchen V; Simkevich, Carl P; Sedivy, John M; Atwood, Walter J

    2007-01-01

    The human polyomavirus, JCV, has a highly restricted tropism and primarily infects glial cells. The mechanisms restricting infection of cells by JCV are poorly understood. Previously we developed and described a glial cell line that was resistant to JCV infection with the aim of using these cells to identify factors that determine JCV tropism. Gene expression profiling of susceptible and resistant glial cells revealed a direct correlation between the expression of inflammatory cytokines and susceptibility to JCV infection. This correlation manifested at the level of viral gene transcription. Previous studies have suggested a link between an increase in cytokine gene expression in HIV patients and the development of PML and these data support this hypothesis. PMID:17555786

  5. Alteration of serum inflammatory cytokines in active pulmonary tuberculosis following anti-tuberculosis drug therapy.

    PubMed

    Chowdhury, Imran Hussain; Ahmed, Albin Mostaque; Choudhuri, Subhadip; Sen, Aditi; Hazra, Avijit; Pal, Nishith Kumar; Bhattacharya, Basudev; Bahar, Bojlul

    2014-11-01

    Active pulmonary tuberculosis (APTB) is associated with a failure of the host immune system to control the invading Mycobacterium tuberculosis (Mtb). The objective of this study was to quantify and assess the role of serum inflammatory cytokines in active pulmonary tuberculosis patients following anti-tuberculosis drug (ATD) therapy. Blood samples were collected from APTB patients and normal healthy subjects (NHS) (total n=204) at baseline and 2, 4 and 6 months post-therapy and the abundance of serum inflammatory cytokines were measured by cytokine specific ELISA. Compared to NHS, APTB patients at baseline had higher levels of serum pro-inflammatory cytokines IL-12p40 (P<0.001), IFN-γ (P<0.001), TNF-α (P<0.01), IL-1β (P<0.001) and IL-6 (P<0.001) and anti-inflammatory cytokines IL-10 (P<0.001) and TGF-β1 (P<0.001) while there was no change in the level of IL-4. In APTB patients, the serum levels of IFN-γ, TNF-α, IL-6 and TGF-β1 directly relate to the bacterial load while the TNF-α, IL-1β, IL-6 and TGF-β1 relate to radiological severity. At baseline, the IL-6 level in NHS and APTB patients differed most and following ATD therapy, this level rapidly decreased and stabilized by 4-month in APTB patients. It is concluded that a subtle reduction in the serum level of IL-6 of the APTB patients following ATD therapy might play a vital role in immune-protection of the host against Mtb infection and hence the serum IL-6 level can be a useful marker to diagnose the effectiveness of therapy in the patients.

  6. Adsorption properties of an activated carbon for 18 cytokines and HMGB1 from inflammatory model plasma.

    PubMed

    Inoue, Satoru; Kiriyama, Kentaro; Hatanaka, Yoshihiro; Kanoh, Hirofumi

    2015-02-01

    The ability of an activated carbon (AC) to adsorb 18 different cytokines with molecular weights ranging from 8 kDa to 70 kDa and high mobility group box-1 (HMGB1) from inflammatory model plasma at 310 K and the mechanisms of adsorption were examined. Porosity analysis using N2 gas adsorption at 77K showed that the AC had micropores with diameters of 1-2 nm and mesopores with diameters of 5-20 nm. All 18 cytokines and HMGB1 were adsorbed on the AC; however, the shapes of the adsorption isotherms changed depending on the molecular weight. The adsorption isotherms for molecules of 8-10 kDa, 10-20 kDa, 20-30 kDa, and higher molecular weights were classified as H-2, L-3, S-3, and S-1 types, respectively. These results suggested that the adsorption mechanism for the cytokines and HMGB1 in the mesopores and on the surface of the AC differed as a function of the molecular weight. On the basis of these results, it can be concluded that AC should be efficient for cytokine adsorption.

  7. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases.

    PubMed

    Calcagni, Emanuele; Elenkov, Ilia

    2006-06-01

    Associations between stress and health outcomes have now been carefully documented, but the mechanisms by which stress specifically influences disease susceptibility and outcome remain poorly understood. Recent evidence indicates that glucocorticoids (GCs) and catecholamines (CAs), the major stress hormones, inhibit systemically IL-12, TNF-alpha, and INF-gamma, but upregulate IL-10, IL-4, and TGF-beta production. Thus, during an immune and inflammatory response, the activation of the stress system, through induction of a Th2 shift may protect the organism from systemic "overshooting" with T helper lymphocyte 1 (Th1)/proinflammatory cytokines. In certain local responses and under certain conditions, however, stress hormones may actually facilitate inflammation, through induction of IL-1, IL-6, IL-8, IL-18, TNF-alpha, and CRP production, and through activation of the corticotropin-releasing hormone (CRH)/substance P(SP)-histamine axis. Autoimmunity, chronic infections, major depression, and atherosclerosis are characterized by a dysregulation of the pro/anti-inflammatory and Th1/Th2 cytokine balance. Thus, hyperactive or hypoactive stress system, and a dysfunctional neuroendocrine-immune interface associated with abnormalities of the "systemic anti-inflammatory feedback" and/or "hyperactivity" of the local proinflammatory factors may contribute to the pathogenesis of these diseases. Conditions that are associated with significant changes in stress system activity, such as acute or chronic stress, cessation of chronic stress, pregnancy and the postpartum period, or rheumatoid arthritis (RA) through modulation of the systemic or local pro/anti-inflammatory and Th1/Th2 cytokine balance, may suppress or potentiate disease activity and/or progression. Thus, stress hormones-induced inhibition or upregulation of innate and Th cytokine production may represent an important mechanism by which stress affects disease susceptibility, activity, and outcome of various immune

  8. Carvedilol differentially regulates cytokine production from activated human peripheral blood mononuclear cells.

    PubMed

    Yang, Shih-Ping; Ho, Ling-Jun; Cheng, Shu-Meng; Hsu, Yu-Lin; Tsao, Tien-Ping; Chang, Deh-Ming; Lai, Jenn-Haung

    2004-05-01

    Chronic inflammation is one of the important mechanisms involved in atherosclerosis formation. The activated monocytes and their secreted cytokines contribute significantly to this inflammatory process. Here we examined the effects of carvedilol, a recently introduced cardio-protective alpha-1- and beta-receptor blocker, on cytokine production from various stimuli-activated human immune effector cells. By ELISA analysis, we showed that carvedilol inhibited interferon-gamma (IFN-gamma), but enhanced interleukin (IL)-12 production in phytohemagglutinin (PHA)- and concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs). The production of tumor necrosis factor-alpha (TNF-alpha) was marginally affected. When purified monocytes were examined, we observed the consistent up-regulation of IL-12 production while both IL-10 and TNF-alpha were unaffected or marginally down-regulated, respectively, by carvedilol. In agreement with the observation in monocytes, the production of IL-12 from activated macrophages was also up-regulated by carvedilol. We concluded that carvedilol might mediate its therapeutic effects through differentially regulating cytokine production from activated mononuclear cells, including at least monocytes and macrophages.

  9. Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4.

    PubMed

    Cen, Yanyan; Liu, Chao; Li, Xiaoli; Yan, Zifei; Kuang, Mei; Su, Yujie; Pan, Xichun; Qin, Rongxin; Liu, Xin; Zheng, Jiang; Zhou, Hong

    2016-09-01

    Severe acute pancreatitis (SAP) is a severe clinical condition with significant morbidity and mortality. Multiple organs dysfunction (MOD) is the leading cause of SAP-related death. The over-release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α is the underlying mechanism of MOD; however, there is no effective agent against the inflammation. Herein, artesunate (AS) was found to increase the survival of SAP rats significantly when injected with 3.5% sodium taurocholate into the biliopancreatic duct in a retrograde direction, improving their pancreatic pathology and decreasing serum amylase and pancreatic lipase activities along with substantially reduced pancreatic IL-1β and IL-6 release. In vitro, AS-pretreatment strongly inhibited IL-1β and IL-6 release and their mRNA expressions in the pancreatic acinar cells treated with lipopolysaccharide (LPS) but exerted little effect on TNF-α release. Additionally, AS reduced the mRNA expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) p65 as well as their protein expressions in the pancreatic acinar cells. In conclusion, our results demonstrated that AS could significantly protect SAP rats, and this protection was related to the reduction of digestive enzyme activities and pro-inflammatory cytokine expressions via inhibition of TLR4/NF-κB signaling pathway. Therefore, AS may be considered as a potential therapeutic agent against SAP.

  10. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis.

  11. Analysis of the expression of toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection.

    PubMed

    Cezário, Glaucia Aparecida Gomes; de Oliveira, Larissa Ragozo Cardoso; Peresi, Eliana; Nicolete, Vanessa Cristina; Polettini, Jossimara; de Lima, Carlos Roberto Gonçalves; Gatto, Mariana; Calvi, Sueli Aparecida

    2011-08-01

    Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.

  12. The Effect of PSD-93 Deficiency on the Expression of Early Inflammatory Cytokines Induced by Ischemic Brain Injury.

    PubMed

    Zhang, Qingxiu; Cheng, Hongyu; Rong, Rong; Yang, Hui; Ji, Qiuhong; Li, Qingjie; Rong, Liangqun; Hu, Gang; Xu, Yun

    2015-12-01

    The aim of the study was to explore the effect of PSD-93 deficiency on the expression of early inflammatory cytokines induced by cerebral ischemia/reperfusion injury. Ten- to twelve-week-old male PSD-93 knockout (PSD-93 KO) mice (C57BL/6 genetic background) and wild-type (WT) littermates were randomly divided into sham and ischemia/reperfusion (I/R) group. The focal cerebral I/R model was established by middle cerebral artery occlusion (MCAO) suture method. RT-PCR was used to detect the mRNA expression of IL-6, IL-10, Cox-2, iNOS, and TNF-α4h following reperfusion. Infarct volume at different time points after I/R was analyzed using 2,3,5-triphenyl tetrazolium staining, and neurological damage score (neurological severity scores, NSS) was used to evaluate the effect of PSD-93 gene knockout on the MCAO-induced neurological injury. In WT mice, early I/R injury led to the increase in the mRNA expression of proinflammatory cytokines IL-6, Cox-2, iNOS, and TNF-α that coincided with the decrease in the expression of anti-inflammatory cytokine IL-10, as compared to the sham group (P < 0.05). This effect was markedly attenuated by depleting PSD-93 levels by gene knockout. As compared to sham group, in PSD-93 KO mice I/R4h led to downregulation of Cox-2 and iNOS expression, and increase in the mRNA levels of IL-10 (P < 0.05). In addition, following MCAO, PSD-93 KO mice exhibited improved NSS and reduced infarct volumes, as compared with WT animals. PSD-93 knockout may play a neuroprotective role by mediating the early release of inflammatory cytokines induced by cerebral ischemia.

  13. Constitutive expression of types 1 and 2 cytokines by alveolar macrophages from feline immunodeficiency virus-infected cats.

    PubMed

    Ritchey, J W; Levy, J K; Bliss, S K; Tompkins, W A; Tompkins, M B

    2001-05-10

    Evidence suggests that feline immunodeficiency virus (FIV), causes pulmonary immunodeficiency. The overall objective of this study was to explore FIV-induced alterations in cell counts and cytokine gene expression in the pulmonary compartment during the acute stage infection. Bronchoalveolar lavage (BAL) cells were collected from FIV-infected and control cats at 0, 4, 10, and 16 weeks post-FIV infection for phenotype and cytokine analysis. The major change in BAL cellular populations following FIV-infection was the development of a neutrophilia. Total BAL cell counts and relative numbers of alveolar macrophages (AM), eosinophils, and lymphocytes remained similar in both groups. The RT-qcPCR analyses of AM purified from BAL showed constitutive expression of TNFalpha, IL6 and IL10 mRNAs that peaked during the acute stage of infection then declined. The TNFalpha and IL6 bioactive protein secretion showed a similar response. In contrast, IFNgamma expression increased progressively with time after infection and paralleled a progressive increase in FIV-gag mRNA in AM. The IL12 p40 expression also differed from the other cytokines in that there was a progressive decrease in the number of cats with AM IL12 expression following FIV infection. Infection of AM in vitro with FIV also caused an increase in TNFalpha and IL6 mRNA and bioactive protein suggesting that the increased cytokine response by AM following infection of cats with FIV is an intrinsic characteristic of FIV-infected AM. In summary, pulmonary immune changes seen in FIV-infected cats are similar to those seen in HIV-infected human patients.

  14. 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines.

    PubMed

    Sakai, Hiroyasu; Sagara, Atsunobu; Matsumoto, Kenjiro; Hasegawa, Satoshi; Sato, Ken; Nishizaki, Maiko; Shoji, Tetsuro; Horie, Syunji; Nakagawa, Takayuki; Tokuyama, Shogo; Narita, Minoru

    2013-01-01

    Although the mechanisms of 5-fluorouracil (5-FU)-induced diarrhea remain unclear, accumulating evidence has indicated that changes in the mucosal immune system and aquaporins (AQPs) may play a role in its pathogenesis. Therefore, we investigated the possible changes in the gene expression of inflammatory cytokines and AQPs in the intestines of mice with 5-FU-induced diarrhea. In the present study, the expressions of mRNAs that encode inflammatory cytokines, TNF-α, IL-1β, IL-6, Il-17A and IL-22, were significantly increased throughout the entire colon of mice that exhibited diarrhea following 5-FU administration. In contrast, the gene expression of IFNγ was upregulated only in the distal colon. These increases were significantly reduced by the administration of etanercept. However, 5-FU-induced diarrhea was not recovered by etanercept. On the other hand, the genes for AQPs 4 and 8 were markedly present in the colon, and these expressions in the intestines were significantly decreased by treatment with 5-FU. These decreases were not reversed by etanercept. These findings suggest TNF-α neutralization had no effect on the acutely 5-FU-induced diarrhea and impaired AQPs but reduced dramatically several inflammatory cytokines.

  15. Iontophoresis and sonophoresis stimulate epidermal cytokine expression at energies that do not provoke a barrier abnormality: lamellar body secretion and cytokine expression are linked to altered epidermal calcium levels.

    PubMed

    Choi, Eung Ho; Kim, Min Jung; Yeh, Byung-Il; Ahn, Sung Ku; Lee, Seung Hun

    2003-11-01

    We performed this study to identify whether the expression of epidermal cytokines is altered by changes in epidermal calcium content, independent of skin barrier disruption. Iontophoresis and sonophoresis with the energies that do not disrupt the skin barrier, but induce changes in the epidermal calcium gradient, were applied to the skin of hairless mice. Immediately after iontophoresis and sonophoresis, immersion in a solution containing calcium was carried out, and iontophoresis in either high- or low-calcium solutions was performed. The biopsy specimens were taken for real-time quantitative RT-PCR to detect changes in mRNA level of interleukin-1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta in the epidermis and for immunohistochemical stain with primary antibodies to IL-1alpha and TNF-alpha. The expression of each cytokine mRNA increased in the epidermis treated with iontophoresis and sonophoresis compared to a nontreated control as well as in tape-stripped skin used as a positive control and was lower after immersion in a high-calcium solution than in low-calcium solution. IL-1alpha and TNF-alpha immunohistochemical protein staining increased with iontophoresis at low calcium. These studies suggest that changes in epidermal calcium can directly signal expression of epidermal cytokines in vivo, independent of changes in barrier function.

  16. Anti-tumor necrosis factor modulates anti-CD3-triggered T cell cytokine gene expression in vivo.

    PubMed Central

    Ferran, C; Dautry, F; Mérite, S; Sheehan, K; Schreiber, R; Grau, G; Bach, J F; Chatenoud, L

    1994-01-01

    De novo expression of TNF, IFN gamma, IL-3, IL-4, and IL-6 genes was initiated rapidly by treatment of mice with anti-CD3. A specific feature of this reaction was that TNF was derived exclusively from T cells. TNF was produced both as a mature soluble trimeric protein and as a 26-kD anti-TNF-reactive protein compatible with membrane-anchored TNF. Pretreatment with anti-TNF did not affect anti-CD3-triggered TNF mRNA expression in T cells. In contrast, in vivo and in vitro anti-TNF treatment upregulated anti-CD3-induced IFN gamma mRNA expression and inhibited IL-4 mRNA expression. These latter effects were not dependent on TNF neutralization: pretreatment with soluble recombinant 55-kD TNF receptor (TBPI) as an alternative TNF-neutralizing agent did not modify the anti-CD3-induced cytokine profile. These results suggest that a direct interaction between anti-TNF and T cell membrane-anchored TNF could account for the observed modulation of cytokine gene expression. The increased expression of INF gamma mRNA observed in anti-TNF-treated animals correlated with a decrease in IL-3 and IL-6 mRNA expression. Conversely, IFN gamma blockade by a neutralizing anti-IFN gamma mAb led to a substantial increase in both IL-3 and IL-6 gene expression induced by anti-CD3. Taken together, these results strongly argue for the existence, in the anti-CD3-induced cytokine cascade, of IFN gamma-dependent regulation of IL-3 production, which in turn modulates IL-6 production. Images PMID:8182150

  17. Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Hein, Martina; Petersen, Frank; Thon, Lutz; Adam, Dieter; Bulfone-Paus, Silvia

    2005-04-01

    Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.

  18. Over-expression of GTP-cyclohydrolase 1 feedback regulatory protein attenuates LPS and cytokine-stimulated nitric oxide production.

    PubMed

    Nandi, Manasi; Kelly, Peter; Vallance, Patrick; Leiper, James

    2008-02-01

    GTP-cyclohydrolase 1 (GTP-CH1) catalyses the first and rate-limiting step for the de novo production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS). The GTP-CH1-BH(4) pathway is emerging as an important regulator in a number of pathologies associated with over-production of nitric oxide (NO) and hence a more detailed understanding of this pathway may lead to novel therapeutic targets for the treatment of certain vascular diseases. GTP-CH1 activity can be inhibited by BH(4) through its protein-protein interactions with GTP-CH1 regulatory protein (GFRP), and transcriptional and post-translational modification of both GTP-CH1 and GFRP have been reported in response to proinflammatory stimuli. However, the functional significance of GFRP/GTP-CH1 interactions on NO pathways has not yet been demonstrated. We aimed to investigate whether over-expression of GFRP could affect NO production in living cells. Over-expression of N-terminally Myc-tagged recombinant human GFRP in the murine endothelial cell line sEnd 1 resulted in no significant effect on basal BH(4) nor NO levels but significantly attenuated the rise in BH(4) and NO observed following lipopolysaccharide and cytokine stimulation of cells. This study demonstrates that GFRP can play a direct regulatory role in iNOS-mediated NO synthesis and suggests that the allosteric regulation of GTP-CH1 activity by GFRP may be an important mechanism regulating BH(4) and NO levels in vivo.

  19. Barium chloride induces redox status unbalance, upregulates cytokine genes expression and confers hepatotoxicity in rats-alleviation by pomegranate peel.

    PubMed

    Elwej, Awatef; Grojja, Yousri; Ghorbel, Imen; Boudawara, Ons; Jarraya, Raoudha; Boudawara, Tahia; Zeghal, Najiba

    2016-04-01

    The present study was performed to establish the therapeutic efficacy of pomegranate peel against barium chloride induced liver injury. Adult rats were divided into four groups of six animals each: group I, serving as controls, received distilled water; group II received by their drinking water 67 ppm of BaCl2; group III received both 67 ppm of BaCl2 by the same way than group II and 5 % of pomegranate peel (PP) via diet; group IV received 5 % of PP. Analysis by HPLC/MS of PP showed its rich composition in flavonoids such as gallic acid, castalin, hyperin, quercitrin, syringic acid, and quercetin. The protective effects of pomegranate peel against hepatotoxicity induced by barium chloride were assessed using biochemical parameters and histological studies. Exposure of rats to barium caused oxidative stress in the liver as evidenced by an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOHs), H2O2 and advanced oxidation protein product (AOPP) levels, and lactate dehydrogenase (LDH), gamma glutamyl transpeptidase (GGT), alanine aminotransferase (AST) and aspartate aminotransferase (ALT) activities, a decrease in catalase (CAT) and glutathione peroxidase (GPx) activities, glutathion (GSH), non-protein thiol (NPSH), vitamin C levels, and Mn-SOD gene expression. Liver total MT levels, MT-1, and MT-2 and pro-inflammatory cytokine genes expression like TNF-α, IL-1β and IL-6 were increased. Pomegranate peel, supplemented in the diet of barium-treated rats, showed an improvement of all the parameters indicated above.The present work provided ethnopharmacological relevance of pomegranate peel against the toxic effects of barium, suggesting its beneficial role as a potential antioxidant.

  20. Cytokine induction of Fas gene expression in insulin-producing cells requires the transcription factors NF-kappaB and C/EBP.

    PubMed

    Darville, M I; Eizirik, D L

    2001-08-01

    Fas-mediated cell death may play a role in the autoimmune destruction of pancreatic beta-cells in type 1 diabetes. beta-Cells do not express Fas under physiological conditions, but Fas mRNA and protein are induced in cytokine-exposed mouse and human islets, rendering the beta-cells susceptible to Fas ligand-induced apoptosis. The aim of the present study was to investigate the molecular regulation of Fas by cytokines in rat beta-cells and in insulin-producing RINm5F cells. Fas mRNA expression was increased 15-fold in fluorescence-activated cell sorting-purified rat beta-cells exposed to interleukin (IL)-1beta, whereas gamma-interferon had no effect. Transfection experiments of rat Fas promoter-luciferase reporter constructs into purified rat beta-cells and RINm5F insulinoma cells identified an IL-1beta-responsive region between nucleotides -223 and -54. Inactivation of two adjacent NF-kappaB and C/EBP sites in this region abolished IL-1beta-induced Fas promoter activity in RINm5F cells. Binding of NF-kappaB and C/EBP factors to their respective sites was confirmed by gel shift assays. In cotransfection experiments, NF-kappaB p65 transactivated the Fas promoter. NF-kappaB p50 and C/EBPbeta overexpression had no effect by themselves on the Fas promoter activity, but when cotransfected with p65, each factor inhibited transactivation by p65. These results suggest a critical role for NF-kappaB and C/EBP factors in cytokine-regulation of Fas expression in insulin-producing cells.

  1. Effects of Reducing Suppressors of Cytokine Signaling-3 (SOCS3) Expression on Dendritic Outgrowth and Demyelination after Spinal Cord Injury

    PubMed Central

    Park, Keun Woo; Lin, Ching-Yi; Li, Kevin; Lee, Yu-Shang

    2015-01-01

    Suppressors of cytokine signaling-3 (SOCS3) is associated with limitations of nerve growth capacity after injury to the central nervous system. Although genetic manipulations of SOCS3 can enhance axonal regeneration after optic injury, the role of SOCS3 in dendritic outgrowth after spinal cord injury (SCI) is still unclear. The present study investigated the endogenous expression of SOCS3 and its role in regulating neurite outgrowth in vitro. Interleukin-6 (IL-6) induces SOCS3 expression at the mRNA and protein levels in neuroscreen-1 (NS-1) cells. In parallel to SOCS3 expression, IL-6 induced tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3) in NS-1 cells. Lentiviral delivery of short hairpin RNA (shSOCS3) (Lenti-shSOCS3) to decrease SOCS3 expression into NS-1 cells enhanced IL-6-induced tyrosine phosphorylation of STAT3 (P-STAT3 Tyr705) and promoted neurite outgrowth. In addition, we determined if reduction of SOCS3 expression by microinjection of Lenti-shSOCS3 into spinal cord enhances dendrite outgrowth in spinal cord neurons after SCI. Knocking down of SOCS3 in spinal cord neurons with Lenti-shSOCS3 increased complete SCI-induced P-STAT3 Tyr705. Immunohistochemical analysis showed that complete SCI induced a significant reduction of microtubule association protein 2-positive (MAP-2+) dendrites in the gray and white matter at 1 and 4 weeks after injury. The SCI-induced reduction of MAP-2+ dendrites was inhibited by infection with Lenti-shSOCS3 in areas both rostral and caudal to the lesion at 1 and 4 weeks after complete SCI. Furthermore, shSOCS3 treatment enhanced up-regulation of growth associated protein-43 (GAP-43) expression, which co-localized with MAP-2+ dendrites in white matter and with MAP-2+ cell bodies in gray matter, indicating Lenti-shSOCS3 may induce dendritic regeneration after SCI. Moreover, we demonstrated that Lenti-shSOCS3 decreased SCI-induced demyelination in white matter of spinal cord both rostral and

  2. SoSoSo or its active ingredient chrysophanol regulates production of inflammatory cytokines & adipokine in both macrophages & adipocytes

    PubMed Central

    Hong-Kun, Rim; Phil-Dong, Moon; In-Hwa, Choi; Eun-Hee, Lee; Hyung-Min, Kim; Hyun-Ja, Jeong

    2013-01-01

    Background & objectives: Obesity is now considered as a major risk factor for the development of fatty liver diseases, cardiovascular diseases, and atherosclerosis. SoSoSo is a newly developed dietary supplement made of seven medicinal herbs. This study was aimed at examining the anti-obesity effect of SoSoSo or its active ingredient chrysophanol on the production of inflammatory cytokines and adipokine in macrophyage cell line RAW264 and 3T3-L1 adipocytes. Methods: No release was measured as a form of nitrite by Griess method. The production of inflammatory cytokines and adipokine were measured with the ELISA method. The m-RNA expression of each cytokine and adipokine were measured using RT-PCR. The nuclear proteins for NF-κB were analyzed with western blotting. Results: SoSoSo or chrysophanol significantly inhibited the nitric oxide production in lipopolysaccharide-stimulated RAW264 cells as well as in RAW264 cells-conditioned medium (CM)-treated 3T3-L1 cells. The production of interleukin (IL)-6 and tumour necrosis factor (TNF)-α were inhibited by SoSoSo or chrysophanol. In addition, SoSoSo or chrysophanol inhibited the activation of nuclear factor-κB in RAW264 cells. SoSoSo or chrysophanol inhibited the productions of IL-6, TNF-α, and monocyte chemoattractant protein-1 as well as the reduction of adiponectin production in CM-treated 3T3-L1 cells. Interpretation & conclusions: These results suggest a potential of SoSoSo or chrysophanol as a source of anti-inflammatory agent for obesity. Further in vivo studies would be required to confirm these findings. PMID:23481064

  3. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    PubMed Central

    Lisak, Robert P; Benjamins, Joyce A; Bealmear, Beverly; Nedelkoska, Liljana; Studzinski, Diane; Retland, Ernest; Yao, Bin; Land, Susan

    2009-01-01

    Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS) in multiple sclerosis (MS). Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M). Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE), related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1) seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter signaling in glia. PMID

  4. Diminished monocytic HLA-DR expression and ex vivo cytokine secretion capacity in patients with glioblastoma: effect of tumor extirpation.

    PubMed

    Woiciechowsky, C; Asadullah, K; Nestler, D; Schöning, B; Glöckner, F; Döcke, W D; Volk, H D

    1998-04-15

    Severe immunodysregulation on lymphocyte level has been described in patients with glioblastoma and is likely involved into its unfavorable prognosis. Although the major importance of monocytic cells for immunoregulation is well established, only very limited data exist regarding the monocyte status in glioblastoma patients. Here we demonstrate a markedly diminished monocytic HLA-DR expression and ex vivo cytokine secretion capacity (TNF-alpha, IL-1beta, IL-10) as signs for monocyte deactivation in glioblastoma patients but not in patients with astrocytoma. As known in immunocompromised patients from other reasons, monocyte deactivation indicate global immunodepression associated with an enhanced risk of infectious complications. Interestingly, tumor resection resulted in partial recovery from the monocytic deactivation. This suggests that the glioblastoma itself contributed to this phenomenon. However, IL-10 and the active forms of transforming growth factor-beta2 and -beta1, which are produced by glioblastoma cells and known to inhibit monocyte function, were not detectable in plasma in our patients. Moreover, low levels of the adrenocorticotropic hormone and cortisol excluded hypothalamo-pituitary-adrenal axis involvement. So, further investigations are necessary to clarify the mechanism. The demonstrated severe glioblastoma-associated monocytic deactivation may contribute to its unfavorable prognosis. Therefore, monocytes may represent target cells for new adjuvant immunotherapies in glioblastoma.

  5. The high mobility group box 1 protein of Sciaenops ocellatus is a secreted cytokine that stimulates macrophage activation.

    PubMed

    Zhao, Lu; Hu, Yong-Hua; Sun, Jin-Sheng; Sun, Li

    2011-10-01

    High mobility group box 1 protein (HMGB1) is a chromatin-associated nonhistone protein that is involved in nucleosome formation and transcriptional regulation. In addition, HMGB1 is also known as an extracellular cytokine that triggers inflammation and immune responses. HMGB1-like sequences have been identified in a number of fish species, however, the function of piscine HMGB1 remains uninvestigated. In this study, we reported the identification and analysis of SoHMGB1, an HMGB1 homologue from red drum (Sciaenops ocellatus). SoHMGB1 is 206 residues in length and contains two basic HMG boxes and a highly acidic C-terminal domain. SoHMGB1 shares 71-87% overall sequence identities with the HMGB1 counterparts from human, rat, and several fish species. Quantitative real time RT-PCR analysis showed that constitutive SoHMGB1 expression was detected in various tissues, with the lowest and highest levels found in kidney and muscle respectively. Bacterial challenge upregulated SoHMGB1 expression in head kidney (HK) and HK macrophages and induced extracellular secretion of SoHMGB1 by the activated macrophages. Recombinant SoHMGB1 (rSoHMGB1) purified from yeast exhibited no direct antimicrobial effect but was significantly stimulatory on the proliferation, activation, and bactericidal activity of HK macrophages. Taken together, these results indicate for the first time that a fish HMGB1, SoHMGB1, can function as a secreted cytokine in the event of bacterial infection and promote innate defense through the activation of macrophages.

  6. Impact of elvitegravir on human adipocytes: Alterations in differentiation, gene expression and release of adipokines and cytokines.

    PubMed

    Moure, Ricardo; Domingo, Pere; Gallego-Escuredo, José M; Villarroya, Joan; Gutierrez, Maria Del Mar; Mateo, Maria G; Domingo, Joan C; Giralt, Marta; Villarroya, Francesc

    2016-08-01

    Elvitegravir is a recently developed integrase inhibitor used for antiretroviral treatment of HIV infection. Secondary effects, including disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function, are common concerns associated with antiretroviral treatments. Here, we provide the first study of the effects of elvitegravir (in comparison with efavirenz, a non-nucleoside analog inhibitor of reverse transcriptase; and raltegravir, another integrase inhibitor) on human adipocyte differentiation, gene expression and secretion of adipokines and cytokines. Elvitegravir impaired adipogenesis and adipocyte metabolism in human SGBS adipocytes in a concentration-dependent manner (delaying acquisition of adipocyte morphology and reducing the expression of adipogenesis marker genes such as PPARγ, glucose transporter GLUT4, lipoprotein lipase, and the adipokines adiponectin and leptin). Compared with efavirenz, the effects of elvitegravir were similar but tended to occur at higher concentrations than those elicited by efavirenz, or were somewhat less intense than those caused by efavirenz at similar concentration. Elvitegravir tended to cause a more moderate induction of pro-inflammatory cytokines than efavirenz. Efavirenz induced a marked concentration-dependent increase in interleukin-8 expression and release whereas elvitregravir had little effect. Raltegravir had totally neutral actions of adipogenesis, adipocyte metabolism-related gene expression and release of adipokines and cytokines. In conclusion, elvitegravir alters adipocyte differentiation and function and promotes induction of pro-inflammatory cytokines similarly to efavirenz, but several effects were less intense. Further assessment of lipid metabolism and adipose tissue function in patients administered elvitegravir-based regimes is advisable considering that totally neutral effects of elvitegravir on lipid homeostasis cannot be anticipated from the current study in vitro.

  7. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses

    PubMed Central

    Joshi, Sonali; Platanias, Leonidas C.

    2013-01-01

    The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed. PMID:23710261

  8. Cytokine mRNA expression in hepatitis C virus infection: TH1 predominance in patients with chronic hepatitis C and TH1-TH2 cytokine profile in subjects with self-limited disease.

    PubMed

    Gigi, E; Raptopoulou-Gigi, M; Kalogeridis, A; Masiou, S; Orphanou, E; Vrettou, E; Lalla, T H; Sinakos, E; Tsapas, V

    2008-02-01

    Many determinants of the immune response have been implied in the pathogenesis of chronic hepatitis C. TH1 and TH2 cytokines play a prominent role in viral infections and a dysregulation of these cytokines could account for viral persistence and evolution of chronic disease. To explore a possible TH1 and TH2 cytokine dysregulation resulting in the inability to terminate hepatitis C virus (HCV) infection, we studied TH1 [interferon (IFN)-gamma, interleukin (IL)-2] and TH2 (IL-4, IL-10) mRNA expression of peripheral blood mononuclear cells (PBMC) in response to NS3 HCV antigen stimulation, in 31 untreated patients with chronic hepatitis C and 29 subjects with self-limited disease. After a 48 h culture of PBMC, total RNA isolation was performed and complementary DNA was prepared by reverse transcription. mRNA levels were quantified by real-time polymerase chain reaction using a standard curve formed after cloning each cytokine gene and a reference gene using recombinant DNA technology in a specific plasmid vector. In the patients group, mRNA expression of IFN-gamma, IL-2 and IL-4 but not IL-10 was detected, IFN-gamma being the predominant cytokine expressed. All four cytokines were expressed in subjects with self limited disease, however levels of IFN-gamma were lower and a significant higher expression of IL-10 compared to patients was found. There was a significant correlation between IFN-gamma mRNA expression levels and stage of fibrosis. Our findings show that in chronic hepatitis C, TH1 cytokines predominate and correlate to liver immunopathology. Furthermore, subjects with self-limited disease, maintain the ability to respond to HCV antigens for a long time after disease resolution.

  9. Influence of seminal plasma, spermatozoa and semen extender on cytokine expression in the porcine endometrium after insemination.

    PubMed

    Jiwakanon, J; Persson, E; Berg, M; Dalin, A-M

    2011-02-01

    The effects of semen components or extender alone on the expression of selected cytokines [interleukine (IL)-1β, IL-6, granulocyte-macrophage colony stimulating factor (GM-CSF), IL-10 and transforming growth factor (TGF)-β1] on the porcine endometrium were studied, as well as the presence of polymorphonuclear neutrophilic granulocytes (PMNs). In experiment (Exp) I, groups of gilts were sampled at 5-6h after insemination with fresh semen in extender (Beltsville thawing solution, BTS), spermatozoa in extender (Spz), seminal plasma (SP), or only BTS (control). In Exp II, gilts were sampled 35-40h after insemination with Spz, SP, BTS or only catheter inserted (as control). Immunohistochemical (IHC) labelling of IL-6, IL-10 and TGF-β1 was evident, especially in surface and glandular epithelia of the porcine endometrium. There were no consistent differences in IHC-labelling of the cytokines in relation to different treatments. However, the scores for IL-6 and IL-10 in surface epithelium and sub-epithelial connective tissue compartments were higher at 35-40h than shortly (5-6h) after treatment. Cytoplasmic labelling in the sub-epithelial connective tissue was observed in scattered individual cells but not in PMNs. Shortly (5-6h) after insemination, there were no differences between animals inseminated with BTS (control) and the semen components for any of the cytokine mRNAs. Later however, at 35-40h, lower endometrial expression of TGF-β1 mRNA was observed in the Spz and BTS groups compared with the control (catheter only). The same pattern was found for IL-10 (NS). The mRNA expression of IL-6 in the BTS inseminated group was higher compared to the control group. Insemination with SP resulted in significantly lower PMN cell infiltration in the sub-epithelial connective tissue compared with Spz or BTS groups shortly (5-6h) after insemination. Later (35-40h), a significant difference was found between SP (lower) and the control group (only catheter). To conclude, our

  10. Expression of epithelial cell-derived cytokine genes in the duodenal and colonic mucosae of dogs with chronic enteropathy

    PubMed Central

    OSADA, Hironari; OGAWA, Misato; HASEGAWA, Ayana; NAGAI, Makoto; SHIRAI, Junsuke; SASAKI, Kazuaki; SHIMODA, Minoru; ITOH, Hiroshi; KONDO, Hirotaka; OHMORI, Keitaro

    2016-01-01

    It remains unclear whether epithelial cell-derived cytokines, including interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), contribute to development of canine chronic enteropathy (CE), which includes antibiotic-responsive enteropathy (ARE), food-responsive enteropathy (FRE) and inflammatory bowel disease (IBD). In the present study, we examined mRNA expression of il-25, il-33 and tslp in the duodenal and colonic mucosae of dogs with ARE, FRE and IBD. Real-time PCR analysis revealed that mRNA expression of il-33 was significantly lower in the duodenum in dogs with FRE than in healthy dogs. The results suggest that epithelial cell-derived cytokines may not be an inducer of Th2-type immunity in the gut of dogs with CE, and decreased expression of IL-33 may be involved in induction of FRE. Further studies are required to clarify roles of epithelial cell-derived cytokines, especially IL-33, in the pathogenesis of canine CE. PMID:28049868

  11. Expression of epithelial cell-derived cytokine genes in the duodenal and colonic mucosae of dogs with chronic enteropathy.

    PubMed

    Osada, Hironari; Ogawa, Misato; Hasegawa, Ayana; Nagai, Makoto; Shirai, Junsuke; Sasaki, Kazuaki; Shimoda, Minoru; Itoh, Hiroshi; Kondo, Hirotaka; Ohmori, Keitaro

    2017-02-28

    It remains unclear whether epithelial cell-derived cytokines, including interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), contribute to development of canine chronic enteropathy (CE), which includes antibiotic-responsive enteropathy (ARE), food-responsive enteropathy (FRE) and inflammatory bowel disease (IBD). In the present study, we examined mRNA expression of il-25, il-33 and tslp in the duodenal and colonic mucosae of dogs with ARE, FRE and IBD. Real-time PCR analysis revealed that mRNA expression of il-33 was significantly lower in the duodenum in dogs with FRE than in healthy dogs. The results suggest that epithelial cell-derived cytokines may not be an inducer of Th2-type immunity in the gut of dogs with CE, and decreased expression of IL-33 may be involved in induction of FRE. Further studies are required to clarify roles of epithelial cell-derived cytokines, especially IL-33, in the pathogenesis of canine CE.

  12. ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X1 and P2X3 receptors in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Koch-Nolte, Friedrich; Haag, Friedrich; Bulfone-Paus, Silvia

    2009-04-01

    Extracellular ATP mediates a diverse array of biological responses in many cell types and tissues, including immune cells. We have demonstrated that ATP induces purinergic receptor P2X(7) mediated membrane permeabilization, apoptosis, and cytokine expression in murine mast cells (MCs). Here, we report that MCs deficient in the expression of the P2X(7) receptor are resistant to the ATP-induced membrane permeabilization and apoptosis. However, ATP affects the tyrosine phosphorylation pattern of P2X(7)knockout cells, leading to the activation of ERK1/2. Furthermore, ATP induces expression of several cytokines and chemokines in these cells, including IL-4, IL-6, IFN-gamma, TNF-alpha, RANTES, and MIP-2, at the mRNA level. In addition, the release of IL-6 and IL-13 to cell-conditioned medium was confirmed by ELISA. The ligand selectivity and pharmacological profile indicate the involvement of two P2X family receptors, P2X(1) and P2X(3). Thus, depending on genetic background, particular tissue microenvironment, and ATP concentration, MCs can presumably engage different P2X receptor subtypes, which may result in functionally distinct biological responses to extracellular nucleotides. This finding highlights a novel level of complexity in the sophisticated biology of MCs and may facilitate the development of new therapeutic approaches to modulate MC activities.

  13. Use of Synthetic Derivatives To Determine the Minimal Active Structure of Cytokine-Inducing Lipoteichoic Acid▿

    PubMed Central

    Deininger, Susanne; Figueroa-Perez, Ignacio; Sigel, Stefanie; Stadelmaier, Andreas; Schmidt, Richard R.; Hartung, Thomas; von Aulock, Sonja

    2007-01-01

    Lipoteichoic acid (LTA) from gram-positive bacteria is the counterpart to lipopolysaccharide from gram-negative bacteria. LTA, which activates Toll-like receptor 2 (TLR2), induces a unique cytokine and chemokine pattern. The chemical synthesis of LTA proved its immunostimulatory properties. To determine the minimal active structure of LTA, we reduced synthetic LTA in a number of steps down to the synthetic anchor and employed these molecules to stimulate interleukin-8 (IL-8) release in human whole blood. Ten times more of the synthetic structures with four to six d-alanine-substituted polyglycerophosphate units (50 nM) than of the native LTA preparation was required to induce IL-8 release. A further reduction to three backbone units with two or no d-alanine residues resulted in cytokine induction only from 500 nM. The synthetic anchor was not able to induce IL-8 release even at 5 μM. When the LTA derivatives were used at 500 nM, they induced increasing levels of IL-8 and tumor necrosis factor alpha with increasing elongation of the backbone. Peritoneal macrophages were less responsive than human blood to the synthetic structures. Therefore, TLR2 dependency could be shown only with cells from TLR2-deficient mice for the two largest synthetic structures. This was confirmed by using TLR2-transfected HEK 293 cells. Taken together, these data indicate that although the synthetic anchor (which, unlike the native anchor, contains only myristic acid) cannot induce cytokine release, the addition of three backbone units, even without d-alanine substituents, confers this ability. Lengthening of the chain with d-alanine-substituted backbone units results in increased cytokine-inducing potency and a more sensitive response. PMID:17928431

  14. Inflammatory Cytokine Gene Expression in Mesenteric Adipose Tissue during Acute Experimental Colitis

    PubMed Central

    Mustain, W. Conan; Starr, Marlene E.; Valentino, Joseph D.; Cohen, Donald A.; Okamura, Daiki; Wang, Chi; Evers, B. Mark; Saito, Hiroshi

    2013-01-01

    Background Production of inflammatory cytokines by mesenteric adipose tissue (MAT) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT. Methods Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water) for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF), and mesenteric lymph nodes. Results During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF. Conclusions Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes. PMID:24386254

  15. Cytokine expression in the seminal plasma and its effects on fertilisation rates in an IVF cycle.

    PubMed

    Seshadri, S; Bates, M; Vince, G; Jones, D I Lewis

    2011-12-01

    Cytokines are released by various immunocompetent cell subsets in the male urogenital tract and are thought to affect sperm cell function and reproductive process. The aim of the study was to evaluate the levels and a possible role of seven seminal plasma cytokines with fertilisation rates in men attending an in vitro fertilisation (IVF) programme. A total of 36 men of couples who were undergoing traditional IVF in a regional reproductive medicine unit were recruited into this prospective study. Cytokines such as interleukin (IL)-6, IL-8, IL-10, IL-11, IL-12, tumour necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) in the seminal plasma were determined using enzyme linked immunosorbent assay. IL-6, IL-8, IL-10, IL-11 and IFN-γ were detected in all samples. IL-12, and TNF-α were detected in most samples. Levels of IL-11 were significantly higher in the good fertiliser group (P ≤ 0.05). Positive correlation between cytokines such as IL-6 and IL-8 (P < 0.03), IL-10 and IL-11 (P < 0.001) and IFN-γ and IL-10 and IL-11 (P < 0.04 and P < 0.0001 respectively) were found. Our study confirms that the six cytokines other than IL-11 do not affect spermatozoon-oocyte interaction and fertilisation rates in IVF. IL-11 could have a role in the fertilising capacity of the spermatozoa. Significant correlation exists among these cytokines which shows that cytokines rarely act in isolation but rather in a network.

  16. Cytokine Expression Profile of Dengue Patients at Different Phases of Illness

    PubMed Central

    Rathakrishnan, Anusyah; Wang, Seok Mui; Hu, Yongli; Khan, Asif M.; Ponnampalavanar, Sasheela; Lum, Lucy Chai See; Manikam, Rishya; Sekaran, Shamala Devi

    2012-01-01

    Background Dengue is an important medical problem, with symptoms ranging from mild dengue fever to severe forms of the disease, where vascular leakage leads to hypovolemic shock. Cytokines have been implicated to play a role in the progression of severe dengue disease; however, their profile in dengue patients and the synergy that leads to continued plasma leakage is not clearly understood. Herein, we investigated the cytokine kinetics and profiles of dengue patients at different phases of illness to further understand the role of cytokines in dengue disease. Methods and Findings Circulating levels of 29 different types of cytokines were assessed by bead-based ELISA method in dengue patients at the 3 different phases of illness. The association between significant changes in the levels of cytokines and clinical parameters were analyzed. At the febrile phase, IP-10 was significant in dengue patients with and without warning signs. However, MIP-1β was found to be significant in only patients with warning signs at this phase. IP-10 was also significant in both with and without warning signs patients during defervescence. At this phase, MIP-1β and G-CSF were significant in patients without warning signs, whereas MCP-1 was noted to be elevated significantly in patients with warning signs. Significant correlations between the levels of VEGF, RANTES, IL-7, IL-12, PDGF and IL-5 with platelets; VEGF with lymphocytes and neutrophils; G-CSF and IP-10 with atypical lymphocytes and various other cytokines with the liver enzymes were observed in this study. Conclusions The cytokine profile patterns discovered between the different phases of illness indicate an essential role in dengue pathogenesis and with further studies may serve as predictive markers for progression to dengue with warning signs. PMID:23284941

  17. Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells.

    PubMed

    de Girolamo, L; Stanco, D; Galliera, E; Viganò, M; Colombini, A; Setti, S; Vianello, E; Corsi Romanelli, M M; Sansone, V

    2013-07-01

    Low frequency pulsed electromagnetic field (PEMF) has proven to be effective in the modulation of bone and cartilage tissue functional responsiveness, but its effect on tendon tissue and tendon cells (TCs) is still underinvestigated. PEMF treatment (1.5 mT, 75 Hz) was assessed on primary TCs, harvested from semitendinosus and gracilis tendons of eight patients, under different experimental conditions (4, 8, 12 h). Quantitative PCR analyses were conducted to identify the possible effect of PEMF on tendon-specific gene transcription (scleraxis, SCX and type I collagen, COL1A1); the release of pro- and anti-inflammatory cytokines and of vascular endothelial growth factor (VEGF) was also assessed. Our findings show that PEMF exposure is not cytotoxic and is able to stimulate TCs' proliferation. The increase of SCX and COL1A1 in PEMF-treated cells was positively correlated to the treatment length. The release of anti-inflammatory cytokines in TCs treated with PEMF for 8 and 12 h was significantly higher in comparison with untreated cells, while the production of pro-inflammatory cytokines was not affected. A dramatically higher increase of VEGF-A mRNA transcription and of its related protein was observed after PEMF exposure. Our data demonstrated that PEMF positively influence, in a dose-dependent manner, the proliferation, tendon-specific marker expression, and release of anti-inflammatory cytokines and angiogenic factor in a healthy human TCs culture model.

  18. Expression of cytokines by human astrocytomas following stimulation by C3a and C5a anaphylatoxins: specific increase in interleukin-6 mRNA expression.

    PubMed

    Sayah, S; Ischenko, A M; Zhakhov, A; Bonnard, A S; Fontaine, M

    1999-06-01

    C3a and C5a anaphylatoxins are two proinflammatory peptides generated during complement activation that act through distinct Gi protein-coupled receptors named C3aR and C5aR, respectively. We have demonstrated previously that human astrocytes expressed C3aR and C5aR constitutively and were able to produce a functional complement. In this study, we examined the effect of an anaphylatoxin stimulation on cytokine expression by human astrocyte cell lines. Interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha, and transforming growth factor-beta mRNA expression was studied by quantitative RT-PCR. Whereas IL-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta mRNA levels remained unchanged, stimulation of astrocytoma cells (T98G, CB193, U118MG) by C3a, C5a, and peptidic C3aR and C5aR agonists induced an increase in the IL-6 mRNA level. The amount of IL-6 was markedly increased at 3 and 6 h and returned to the basal level at 9 h of stimulation. This response was specific, because pretreatment of cells with pertussis toxin or with polyclonal anti-C3aR or anti-C5aR antibodies completely blocked the IL-6 mRNA increase. The IL-6 response was also investigated at the protein level, but IL-6 protein was detected neither in cell lysates nor in supernatants of stimulated cells. The anaphylatoxin-mediated transcriptional activation of IL-6 gene suggests that C3a and C5a could play a role in priming glial cells during the inflammatory process in the brain.

  19. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: Effects of endothelin-1, oxidative stress and cytokines

    PubMed Central

    Cullingford, Timothy E.; Butler, Matthew J.; Marshall, Andrew K.; Tham, El Li; Sugden, Peter H.; Clerk, Angela

    2008-01-01

    Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli. PMID:18406357

  20. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors.

    PubMed

    Castro-García, Flor P; Corral-Jara, Karla F; Escobedo-Melendez, Griselda; Sandoval-Hernandez, Monserrat A; Rosenstein, Yvonne; Roman, Sonia; Panduro, Arturo; Fierro, Nora A

    2014-12-01

    Hepatitis A virus (HAV) infection is the major cause of acute liver failure in paediatric patients. The clinical spectrum of infection is variable, and liver injury is determined by altered hepatic enzyme function and bilirubin concentration. We recently reported differences in cytokine profiles between distinct HAV-induced clinical courses, and bilirubin has been recognized as a potential immune-modulator. However, how bilirubin may affect cytokine profiles underlying the variability in the course of infection has not been determined. Herein, we used a transcription factor (TF) binding site identification approach to retrospectively analyse cytokine expression in HAV-infected children and to predict the entire set of TFs associated with the expression of specific cytokine profiles. The results suggested that modulation of the activity of signal transducers and activators of transcription proteins (STATs) may play a central role during HAV infection. This led us to compare the degree of STAT phosphorylation in peripheral blood lymphoid cells (PBLCs) from paediatric patients with distinct levels of conjugated bilirubin (CB). Low CB levels in sera were associated with increased STAT-1 and STAT-5 phosphorylation. A positive correlation was observed between the serum interleukin-6 (IL-6) content and CB values, whereas higher levels of CB correlated with reduced serum IL-8 values and with a reduction in the proportion of PBLCs positive for STAT-5 phosphorylation. When CB was used to stimulate patients' PBLCs in vitro, the levels of IL-6 and tumour necrosis factor-α were increased. The data showed that bilirubin plays a role in STAT function and affects cytokine profile expression during HAV infection.

  1. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors

    PubMed Central

    Castro-García, Flor P; Corral-Jara, Karla F; Escobedo-Melendez, Griselda; Sandoval-Hernandez, Monserrat A; Rosenstein, Yvonne; Roman, Sonia; Panduro, Arturo; Fierro, Nora A

    2014-01-01

    Hepatitis A virus (HAV) infection is the major cause of acute liver failure in paediatric patients. The clinical spectrum of infection is variable, and liver injury is determined by altered hepatic enzyme function and bilirubin concentration. We recently reported differences in cytokine profiles between distinct HAV-induced clinical courses, and bilirubin has been recognized as a potential immune-modulator. However, how bilirubin may affect cytokine profiles underlying the variability in the course of infection has not been determined. Herein, we used a transcription factor (TF) binding site identification approach to retrospectively analyse cytokine expression in HAV-infected children and to predict the entire set of TFs associated with the expression of specific cytokine profiles. The results suggested that modulation of the activity of signal transducers and activators of transcription proteins (STATs) may play a central role during HAV infection. This led us to compare the degree of STAT phosphorylation in peripheral blood lymphoid cells (PBLCs) from paediatric patients with distinct levels of conjugated bilirubin (CB). Low CB levels in sera were associated with increased STAT-1 and STAT-5 phosphorylation. A positive correlation was observed between the serum interleukin-6 (IL-6) content and CB values, whereas higher levels of CB correlated with reduced serum IL-8 values and with a reduction in the proportion of PBLCs positive for STAT-5 phosphorylation. When CB was used to stimulate patients’ PBLCs in vitro, the levels of IL-6 and tumour necrosis factor-α were increased. The data showed that bilirubin plays a role in STAT function and affects cytokine profile expression during HAV infection. PMID:24943111

  2. Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines.

    PubMed

    Nagoor Meeran, Mohamed Fizur; Jagadeesh, Govindan Sangaran; Selvaraj, Palanisamy

    2015-05-05

    Inflammation plays an important role in the development of myocardial infarction (MI). The current study dealt with the protective effects of thymol on inflammation in isoproterenol (ISO) induced myocardial infarcted rats. Male albino Wistar rats were pre and co-treated with thymol (7.5mg/kg body weight) daily for 7 days. ISO (100mg/kg body weight) was injected subcutaneously into rats at an interval of 24h for two days (6th and 7th day) to induce MI. ISO induced myocardial infarcted rats showed increased levels of serum cardiac troponin-T, high sensitive C-reactive protein (hsCRP), lysosomal thiobarbituric acid reactive substances (TBARS) and elevated ST-segments. Also, the activities of lysosomal enzymes such as β-glucuronidase, β-galactosidase, cathepsin-B and D, the stimulators of inflammatory mediators were increased in the serum and heart of ISO induced myocardial infarcted rats. Furthermore, ISO up regulates the expressions of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) genes in the myocardium of rats analyzed by reverse transcription polymerase chain reaction (RT-PCR). Pre and co-treatment with thymol (7.5mg/kg body weight) near normalized the levels of lysosomal TBARS, activities of serum and heart lysosomal enzymes and downregulates the expressions of pro-inflammatory cytokines in the myocardium of ISO induced myocardial infarcted rats. Histopathological and transmission electron microscopic findings were also found in line with biochemical findings. Thus, the results of our study revealed that thymol attenuates inflammation by inhibiting the release of lysosomal enzymes and downregulates the expressions of pro-inflammatory cytokines by its potent anti-inflammatory effect.

  3. Differential Expression of Inflammatory Cytokines and Stress Genes in Male and Female Mice in Response to a Lipopolysaccharide Challenge

    PubMed Central

    Everhardt Queen, Ashleigh; Moerdyk-Schauwecker, Megan; McKee, Leslie M.; Leamy, Larry J.

    2016-01-01

    Background Sex plays a key role in an individual’s immune response against pathogenic challenges such that females fare better when infected with certain pathogens. It is thought that sex hormones impact gene expression in immune cells and lead to sexually dimorphic responses to pathogens. We predicted that, in the presence of E. coli gram-negative lipopolysaccharide (LPS), there would be a sexually dimorphic response in proinflammatory cytokine production and acute phase stress gene expression and that these responses might vary among different mouse strains and times in a pattern opposite to that of body temperature associated with LPS-induced shock. Materials and Methods Interleukin-6 (IL-6), macrophage inflammatory protein-Iβ (MIP-1β), tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) as well as beta-fibrinogen (Fgb) and metallothionein-1 (Mt-1) mRNA expression were measured at four time points (0, 2, 4 and 7 hours) after injection of E. coli LPS in mice from three inbred strains. Results Statistical analysis using analyses of variance (ANOVAs) showed that the levels of the all six traits changed over time, generally peaking at 2 hours after LPS injection. Mt-1, Fgb, and IL-6 showed differences among strains, although these were time-specific. Sexual dimorphism was seen for Fgb and IL6, and was most pronounced at the latest time period (7 hours) where male levels exceeded those for females. Trends for all six cytokine/gene expression traits were negatively correlated with those for body temperatures. Discussion The higher levels of expression of Fgb and IL6 in males compared with females are consistent with the greater vulnerability of males to infection and subsequent inflammation. Temperature appears to be a useful proxy for mortality in endotoxic shock, but sexual dimorphism in cytokine and stress gene expression levels may persist after an LPS challenge even if temperatures in the two sexes are similar and have begun to stabilize. PMID

  4. Differential Expression of Matrix Metalloproteinases 2, 9 and Cytokines by Neutrophils and Monocytes in the Clinical Forms of Chagas Disease

    PubMed Central

    Medeiros, Nayara I.; Fares, Rafaelle C. G.; Franco, Eliza P.; Sousa, Giovane R.; Mattos, Rafael T.; Chaves, Ana T.; Nunes, Maria do Carmo P.; Dutra, Walderez O.; Correa-Oliveira, Rodrigo; Rocha, Manoel O. C.; Gomes, Juliana A. S.

    2017-01-01

    Dilated cardiomyopathy, the most severe manifestation in chronic phase of Chagas disease, affects about 30% of patients and is characterized by myocardial dysfunction and interstitial fibrosis due to extracellular matrix (ECM) remodeling. ECM remodeling is regulated by proteolytic enzymes such as matrix metalloproteinases (MMPs) and cytokines produced by immune cells, including phagocytes. We evaluated by flow cytometry the expression of MMP-2, MMP-9, IL-1β, TNF-α, TGF-β and IL-10 by neutrophils and monocytes from patients with indeterminate (IND) and cardiac (CARD) clinical forms of Chagas disease and non-infected individuals (NI), before and after in vitro stimulation with Trypanosoma cruzi antigens. Our results showed an important contribution of neutrophils for MMPs production, while monocytes seemed to be involved in cytokine production. The results showed that neutrophils and monocytes from IND and CARD patients had higher intracellular levels of MMP-2 and MMP-9 than NI individuals. On the other hand, T. cruzi derived-antigens promote a differential expression of MMP-2 and MMP-9 in patients with Chagas disease and may regulate MMPs expression in neutrophils and monocytes, mainly when a cardiac alteration is not present. Our data also showed that in the presence of T. cruzi derived-antigens the production of cytokines by neutrophils and monocytes, but mainly by monocytes, may be intensified. Correlation analysis demonstrated that MMP-2 had a positive correlation with IL-10 and a negative correlation with IL-1β, whereas MMP-9 showed a negative correlation with IL-10. We also observed that IND patients presented a greater percentage of high producer cells of regulatory molecules when compared to CARD patients, indicating a different pattern in the immune response. Our data suggest that MMPs and cytokines produced by neutrophils and monocytes are important contributors for cardiac remodeling and may be an interesting target for new biomarker research. PMID

  5. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs

    PubMed Central

    2011-01-01

    This study evaluated the effect of the probiotics Pediococcus acidilactici a